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A geometric approach is used to find the threshold energies for ion orbit loss in a realistic tokamak geometry,
like that of ASDEX Upgrade. The e↵ects of any pre-existing radial electric field are maintained as they
non-trivially a↵ect the calculations. The associated velocity-space loss hole is investigated using equilibria
and profiles from ASDEX Upgrade discharges 30628 and 31533. For the former, we consider the L-mode
just before the L-H transition and also the resultant H-mode. A single instance of the comparably high ion
temperature H-mode of shot 31533 is investigated. We follow two ion orbit loss definitions, SOL sampling
orbits and X-loss, and in both cases thermal ion orbit losses are significant in the pedestal region and scale
with the ion temperature. The radial electric field plays a significant role in determining the orbits of ions,
and consequentially swaths of configuration-space near the inner-midplane support toroidally trapped orbits
under its influence. The accessibility of banana orbits is often dependent on an ion’s energy which results
in upwardly bounded velocity-space loss holes hereby called banana loss islands (BLIs). BLIs are prone to
thermally refill under relaxation and should thus be considered when fully characterizing ion orbit loss.

I. Introduction

For a tokamak plasma, there is a regime of improved
confinement that is achieved under the correct oper-
ating conditions1, the primary requirement being su�-
cient heating. This high confinement mode of opera-
tion, called the H-mode, in contrast to the lower con-
finement L-mode, is further associated with steep gra-
dients in the density and temperature profiles near the
plasma edge in a region frequently referred to as the
plasma pedestal. These features are accompanied by a
similarly strong radial electric field which provides for a
local shear E⇥B poloidal flow thought to suppress local
turbulent transport processes2,3. Thereupon, a connec-
tion between these characteristics and an edge transport
barrier is made. For this reason, the H-mode is com-
monly viewed as a necessary running condition for any
e�cient tokamak of the future, like ITER. This necessity
has inspired much research into the physics of the plasma
pedestal and its formation, the L-H transition.

Ion orbit loss has been studied as a potential cause, or
as a contributing factor, for the L-H transition following
the discovery of the H-mode4,5 and is still an active re-
search topic6–10. Between then and now, there has been
a strong e↵ort to understand ion orbit loss both analyti-
cally and computationally11–17. These e↵orts have shown
that the axi-symmetric field geometry of a tokamak al-
lows for the loss of thermal ions with orbits near the last
closed flux surface (LCFS). The losses are non-ambipolar,
since only the ions are a↵ected, and are thus a potential
source of the radial electric field in the edge. The mag-
nitude of ion orbit loss, and the electric field thereby
generated, shares sensitivities to both the rB drift di-
rection and the X-point geometry with the L-H transi-
tion power thresholds5,17,18. Additionally, the heating
condition necessary for the L-H transition is possibly re-

flected by the direct dependence of thermal ion orbit loss
on the local ion temperature19. The typical methods of
heating a tokamak, as well as the desired fusion events
themselves, introduce fast ions into the plasma which
also contribute to the ion orbit losses13,14. The fluxes
of fast ion losses can be measured and allow for a direct
connection to experimental e↵orts8,20.
Various ion orbit loss models have been designed to

study the contribution of such losses to electric field
generation10,21, the distribution of ions entering the
SOL22, and the intrinsic toroidal rotation associated with
the preferred loss of counter-current ions23–27. Our aim is
to continue this research in order to find a model for ion
orbit loss in a realistic axi-symmetric magnetic field ge-
ometry while accounting for the e↵ects of a pre-existing
radial electric field, to characterize the ion losses while
providing a physical description for how ion orbit loss
contributes to the pedestal formation and the radial elec-
tric field.
To best capture the e↵ects of ion orbit loss, our model

makes use of experimentally determined equilibria and
profiles. In this work, experimental data from two AS-
DEX Upgrade discharges are investigated: 30628 and
31533. As a generator of radial electric field, self-
consistency requires that the e↵ects of any pre-existing
radial electric field be carefully considered, highlighting
the importance of precise experimental measurements of
Er

28,29. Two instances in time are chosen for shot 30628:
one during the L-mode just before the L-H transition and
the other in the resultant H-mode. A single timestamp
for ASDEX Upgrade discharge 31533, which has similar
plasma parameters but a higher ion temperature profile,
is also studied.
We first develop the ion orbit loss model in general-

ity. Along the way, for clarity, illustrations are made
using experimental shot data. We approach the problem
beginning with the guiding center constants of motions,
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similarly to many of our predecessors11–15,21,23. After
developing a set of equations and conditions that guide
our application of said equations, we define two moti-
vated and non-mutually exclusive definitions of ion orbit
loss. Once the model has been established, the calcu-
lations are applied to the three experimental data sets
mentioned above. A qualitative discussion concerning
the future dynamic treatment of ion orbit loss concludes
the work.

II. The Constraint Surface

Following previous investigations of ion orbit loss, we
begin by considering the three constants of motion as-
sociated with the guiding center motion of an ion in an
axi-symmetric magnetic field:
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where m and q are the ion’s mass and charge, R is the
distance from the center line of the tokamak, B is the
magnitude of the magnetic field, � is the electric poten-
tial,  is the poloidal flux, v is the ion’s velocity, v� is the

toroidal velocity, vk = ~v · ~B/B is the parallel velocity, v?
is the perpendicular velocity, ⇣ =

vk
v is the cosine of the

pitch angle, and f� = B�

B . The spatial quantities are all
evaluated at the guiding center position. Note, the final
form of Eq. (3) enforces that v0 is a positive quantity.

For a collisionless trajectory, the energy, E, is an exact
invariant. The magnetic moment, µ, is the well known
adiabatic invariant. The toroidal canonical momentum,
p�, is an exact invariant in a perfectly axi-symmetric
magnetic field. While the e↵ects of toroidal symmetry
breaking are an active area of research, axi-symmetry is
assumed for simplicity.

The energy and canonical momentum are only per-
fectly conserved when evaluated at the particle position.
The related guiding center constants of motion are con-
served to a high degree; typically negligible di↵erences,
at least first order in the gyroradius, occur as a result of
evaluation at the guiding center position rather than the
instantaneous particle position30. Furthermore, the guid-
ing center constants of motion typically omit the lowest
order corrections for the perpendicular drifts. The first
magnetic moment correction is first order in the gyrora-
dius, and µ is reasonably conserved for thermal ions in
a field configuration resembling that of a tokamak30,31.
The first correction for the canonical momentum is sec-
ond order30.

The constants of motion are often used to find the
parallel velocity for an ion’s guiding center,
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as a function of its position in the poloidal plane, char-
acterized by coordinates (R, z). R⇤

b defines the toroidal
bounce position in the case of negligible radial electric
field.
We further rearrange the constants of motion to de-

velop a geometric representation of the guiding center
orbit. Two functional surfaces, labeled  + and  �, are
found that inform which values of the poloidal flux an ion
can experience such that its constants of motion remain
unchanged. Together, these two functional surfaces form
the constraint surface,
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We use the lower-case  for the constraint surface to
emphasize that it is derived from Eqs. (1)-(3).
This surface contains di↵erent information than the

equilibrium poloidal flux determined by the Grad-
Schlüter-Shafranov equation,
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where I = RB� and p is the pressure. The above de-
fines another surface in (R-z- )-space which represents
the flux prescribed by the MHD equilibrium. This physi-
cal flux further regulates the poloidal flux values that an
ion will truly experience throughout an orbit. In other
words, the intersection between  pol and  ± defines the
allowed guiding center orbit.
The constraint surface allows for the determination of

the initial energy needed for an ion to have an orbit which
intersects the separatrix at some loss point P, (RL, zL).
Rearranging Eq. (5) provides the initial kinetic energy
required for the intersection to take place,
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(a)

(b)

FIG. 1. A sample constraint surface is plotted in the case of

radial electric field neglect (a) and inclusion (b). The initial

position (R0, z0,  0) is indicated by the black dot,  pol is in

blue, and  ± is in red and green. The equilibrium poloidal

flux is that of ASDEX Upgrade shot 31533 at t = 3.0s.

The ambiguity found within the ‘±’ sign is clarified by
separately finding the minimum energy for the intersec-
tion to occur with either  +,
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As noted before, our definition of p� assumes the posi-
tiveness of v0. For the energy to be consistent with pre-

vious definitions, the bracketed quantities in Eq. (8) and
Eq. (9) must be positive as well. This is shown to be a
su�cient condition in Appendix B.

As a brief aside, consider how an ion’s initial conditions
inform its initial position on  ±. Evaluating  ±(R0, z0)
indicates that

 ±(R0, z0) =
1

q
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The previous is only true if the ‘+’ corresponds to ⇣0  0
and the ‘-’ to ⇣0 > 0. The former begin on  + and
the latter on  �. Without loss of generality, we have
made the arbitrary choice to consider ions with ⇣0 = 0 as
initially being on  +.

Eq. (8) and Eq. (9) do not provide freedom but rather
the requirement of determining when each is valid for ap-
plication. It is clearly seen in Fig. 1, that the minimum
energy for the ion orbit to intersect the LCFS coincides
with the first occurrence of an intersection of the upper
surface and the separatrix. In the case of ions with initial
conditions placing them on the lower surface, whether a
transfer from the lower surface to the upper can take
place should be taken into consideration. To ensure the
correct threshold loss energies are found, orbit type ac-
cessibility for di↵ering ions must be classified.

III. Banana Orbit Accessibility

Throughout this discussion, we will refer to the specific
case presented in Fig. 1:  sep >  0 and  + �  �.
In generality, the discussion can be convoluted as the
arbitrary orientations of B� and Ip introduce subtle sign
changes. For example, B� < 0 implies that  � �  +.
Furthermore, the signs of B� and Ip influence whether
 sep is lesser or greater than the interior, in order for the
definition of p� to be consistent.

In this configuration, an ion beginning its orbit on  +,
⇣0  0, will reach the LCFS with minimum energy at the
first intersection of  + with the separatrix, since  + >
 �. If an ion begins its orbit on  �, ⇣0 > 0, the threshold
loss energy will occur under the same condition as long
as  pol allows for a banana orbit to take place, otherwise
the threshold will occur at the first intersection of  �
with the separatrix.

A transfer from  � to  + must occur when  � =  + =
p�/q. To determine if an ion with ⇣0 > 0 will exhibit a
banana orbit, we find the contour of  pol where a transfer
would occur,  pol = p�/q. The rooted quantity in Eq.
(5) is used to determine if there is a point where the
constraint surface intersects  pol. Making use of the fact
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that in a tokamak B(R, z) ⇡ B(R) ⇠ 1/R, one sees that
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where the subscript ‘b’ is used to represent variables eval-
uated at the toroidal bounce point, ✓ is the poloidal angle
measured from the outer-midplane, and ⇢ is a dimension-
less radial coordinate which labels flux surfaces.

For simplicity, the profiles of the electric potential and
temperature are taken to be only dependent on the di-
mensionless radial coordinate, ⇢pol, defined in Eq. (18).
The toroidal bounce location can be further specified
as it must occur at the ⇢ corresponding to the contour
 pol = p�/q,
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R0(1� ⇣2

0
)

1 + 2q
mv2

0

(�0 � �(⇢( pol = p�/q)))
. (11)

The bounce location is dependent on both the geometry
of the magnetic and electric fields and the initial condi-
tions of the ion and will be used to find the accessibility
of banana orbits for counter-current ions initiated with
some (R0, z0, ⇣0), or alternately (⇢0, ✓0, ⇣0).

The relevant energy range for banana losses is lower
bounded by the energy needed to escape the electric po-
tential,

EBmin
= q(�sep � �0), (12)

and is upper bounded by the energy for the bounce to
occur at the same poloidal flux value as the LCFS,
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Although a more energetic, yet similar, ion may techni-
cally travel on a banana orbit, the ion would cross the
separatrix before the toroidal bounce and is captured by
Eq. (9).

For a banana orbit to occur, Eq. (11) must return a
value for Rb that is valid to intersect the contour  pol =
p�/q; Rb needs to be larger than the minimum position
on the contour,

R1 ⌘ Rb(E)�Rmin

�
 pol = p�(E)/q

�
� 0, (14)

and smaller than the maximum,

R2 ⌘ Rmax

�
 pol = p�(E)/q

�
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For electric potential profiles typical in the edge of a toka-
mak, like those seen in Fig. 5, there are four possible
options for an ion with initial conditions (⇢0, ✓0, ⇣0).

(a)

(b)

FIG. 2. The results of following the procedure outlined in

Section III. for ASDEX Upgrade shot 31533 at t = 3.0s for

the ⇢0 = 0.98 flux surface in the cases of radial electric field

neglect (a) and inclusion (b). White-faced color-edged cir-

cles correspond to option 3, full banana orbit accessibility.

Color-faced color-edged circles corresponds to option 4, finite

energy banana orbit accessibility. Black-faced color-edged cir-

cles correspond to 2, no banana orbit accessibility. For colors,

see Fig. 6.

1. If EBmin
> EBmax

, an ion cannot be lost via  + due
to the electric potential. We must find a loss energy
using Eq. (9) that is able to escape the potential well.

2. If R1 < 0 or R2 < 0 8 EBmin
 E  EBmax

, then
any ion within the relevant range cannot be lost via
a banana orbit. We must find the minimum energy
using Eq. (9).

3. If R1 � 0 and R2 � 0 8 EBmin
 E  EBmax

, then
any ion within the relevant range of energies has the
potential for loss via a banana orbit. Or if R1 � 0 8
EBmin

 E  EBmax
and R2 � 0 8 EBmin

< ẼRlb


E  EBmax
, then any ion within the range ẼRlb

 E 
EBmax

can be lost via a banana orbit, corresponding to
energies given by Eq. (8).

4. Else, we find that there is a finite range of energies that
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allow for banana orbits. The electric field allows for a
fraction of ions in the relevant range to banana orbit
while more energetic ions exhibit passing orbits.

It should be noted that the above procedure is ap-
proximate. For any set of initial conditions, one could in
principle find the exact guiding center orbit. Doing so
for all relevant ions would be unavoidably more expen-
sive. Due to the geometries of  pol and  ±, nearly field-
perpendicular counter-current ions starting from very
near the midplane will have a slight over-estimation in
their trapped orbit accessibility. The results should not
qualitatively or quantitatively be appreciably altered.

Fig. 2 shows the e↵ects of the radial electric field on
orbit type accessibility. Greater areas of configuration-
space have full access to banana orbits for more initial
pitch directions and now many regions have energeti-
cally bounded access to such orbits. A stronger radial
field has a more pronounced e↵ect and for large enough
magnitudes can inhibit banana orbit accessibility, firstly
for ions starting near the outer-midplane.

In the following subsection, option 4. is discussed in
more detail. Unlike the other cases, for (⇢0, ✓0, ⇣0) falling
into case 4., the choice of application of Eq. (8) or Eq.
(9) is in itself energy dependent.

A. Banana Loss Islands (BLIs)

For some (⇢0, ✓0, ⇣0), the radial electric field allows for
a finite range of energies which correspond to banana or-
bits; energies above some upper bound are passing orbits.
The required energy for a counter-current ion to cross the
LCFS is significantly lowered if the ion will travel on a
banana orbit. Therefore any tokamak plasma that has a
radial electric field in its edge, generically corresponding
to a positive potential increase with ⇢, will have isolated
regions in velocity-space that correspond to toroidally
trapped orbits. If the trapped orbits are lost out of the
plasma, the associated loss holes bleed out relatively low
energy counter-current ions. These loss islands sit under-
neath populated regions of velocity-space corresponding
to higher energy ions and are likely to refill under thermal
relaxation.

Fig. 3 visualizes orbits representative of this phe-
nomenon. Here, the equilibrium and profiles for ASDEX
upgrade shot 31533, which are detailed in section V., are
used. The red and green lines correspond to the intersec-
tion of  + and  � with  pol in the same way as in Fig.
1. The radial electric field has a pronounced e↵ect on
the three-dimensional behavior of the orbits. In a typical
banana orbit where the e↵ects of Er are unimportant,
the poloidal and toroidal bounce positions are taken to
be the same. It is known that near the separatrix, the
strong radial electric field can reverse the toroidal rota-
tion direction32. The top plot illustrates a similar ef-
fect happening to a single ion. The radial electric field
decouples the orbit’s poloidal and toroidal bounce loca-
tions, allowing for the pictured banana orbit. A more

(a)

(b)

FIG. 3. Two ion guiding center orbits starting from the same

poloidal angle on the ⇢0 = 0.98 flux surface, one existing in a

BLI (a) and the other just above (b).

energetic ion, with the same (⇢0, ✓0, ⇣0), has a receded
toroidal bounce position which is no longer accessible,
see Eq. (11), and the counter-current ion cannot transfer
from  � to  +. The ion is forced onto a passing orbit.
Although the instance in Fig. 3 does, there is noth-

ing that guarantees that an ion with an electric-field-
allowed banana orbit will be lost. We must always check
if any of the energies within this range correspond to or-
bits that fit a definition of lost. If they do, then there is
an upwardly bounded region of velocity-space from which
counter-current ions leave the plasma. We refer to these
as banana loss islands (BLIs) to highlight their discon-
nectedness from the upwardly unbounded velocity-space
loss holes associated with the threshold loss energies.
For various initial (⇢0, ✓0, ⇣0) we have developed a

method to determine if the lowest energy required for
energetically unbounded ion loss, the threshold ion loss
energy, is given by Eq. (8) or Eq. (9). There are also
bounded loss regions in velocity-space, BLIs, which cor-
respond to an energy dependence in appropriate applica-
tion of either Eq. (8) or Eq. (9). Before characterizing
the velocity-space loss hole for the plasma, it is important
to establish what is meant by ‘loss’.



6

0.8 0.85 0.9 0.95 1

pol

0

500

1000

1500

2000

2500
T i (e

V)

0

5

10

15

n e (m
-3

)

1019

31533 H-mode T i
30628 H-mode T i
30628 L-mode T i

ne
ne
ne

FIG. 4. Experimental electron density and ion temperature

profiles for ASDEX Upgrade discharges.

IV. Lost Orbit Definitions

Thus far, we have simply found expressions for the
required energy an ion must possess in order to have its
guiding center orbit intersect some position on the LCFS.
Two definitions for ion orbit loss will be proposed: one
is inclusive while the other is more strict.

The first considers all orbits which intersect the sepa-
ratrix at any point to be lost. These so called ‘lost’ ions
will sample the scrape o↵ layer (SOL). Some fraction will
either backscatter into the plasma or will re-enter the
LCFS on an unperturbed orbit21.

The second definition only considers ions which are
lost via the X-point. Ion X-loss is kinetically associated
with a poloidal trapping of the orbit in the region of low
poloidal B near the X-point16. The poloidally trapped
ions su↵er a prolonged exposure to the unchecked e↵ects
of the rB and curvature drifts. Insofar as a guiding
center theory is correct, these orbits are captured by the
geometries of  ± and  pol. X-lost ions spend little time
in the SOL and are not expected to re-enter the plasma.
Since ions lost very near the X-point behave similarly17,
ions intersecting the separatrix within 0.1 rad of the X-
point are taken to be X-lost. All X-lost orbits are also
captured by the SOL sampling definition for ion orbit
loss.

It is known that the forward rB configuration, ion
drifts pointing towards the X-point, results in a more
pronounced Er generation5,17. In the case of backward
rB, the X-lost ions cross the LCFS at the opposite side
of the plasma and are maximally exposed to the SOL
e↵ects mentioned above. Radial electric field generation
is not null in the unfavorable drift configuration, implying
that some fraction of the SOL sampling ions that cross
the LCFS away from the X-point must truly be lost. To
that end, it is important to consider both loss classes
when characterizing ion orbit loss.

(a)
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FIG. 5. Experimental (solid) and calculated (dashed) radial

electric field (a) and electric potential (b) profiles for ASDEX

Upgrade discharges.

V. Ion Orbit Loss

The aforementioned machinery is used to investigate
ion orbit loss for both SOL sampling ions and for X-lost
ions. Recall, Eq. (8) and Eq. (9) respectively provide
the minimum energies such that  + and  � intersect
with some given point on the separatrix. A unique ion is
categorized by its initial conditions, (⇢0, ✓0;E, ⇣0).
Therefore, ions with the same (⇢0, ✓0, ⇣0) are only dif-

ferentiated by their energy; for some energies the ions
are confined whereas for others the ions are lost. As de-
tailed in Section III., for each unique (⇢0, ✓0, ⇣0) we need
to ensure which type of orbit can take place.
For the SOL sampling ions, we scan over a series of

loss points along the separatrix and take the minimum
intersection energy to be the threshold loss energy,

ET = min
⇣
E+�+ + E���

���
P
8 P 2 LCFS

⌘
. (16)

In the above, �+ and �� are respectively zero if the
threshold energy corresponds to either a loss on  � or
 +, according to the procedure outlined in Section III.
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The X-loss thresholds are found by simply finding the
minimum energy for an ion to be lost very near the X-
point, see Section IV. In both cases, the BLIs are not
included in the calculations; the definition of a threshold
loss energy ensures that any more energetic, yet other-
wise identical, ion will also be lost. For the (⇢0, ✓0, ⇣0)
determined to support banana orbits for a finite range of
energies, the BLI associated energy range is separately
checked for losses.

Experimentally determined equilibria data and radial
profiles from two ASDEX Upgrade discharges, 30628
(B� = �2.494T , Ip = 1.002MA, R̄ = 1.68m) and 31533
(B� = �2.465T , Ip = 1.004MA, R̄ = 1.71m), are inves-
tigated. We study two instances in time for shot 30628:
t = 1.6s corresponds to L-mode conditions just before
the L-H transition and t = 3.5s to those of the H-mode.
Also considered is the H-mode discharge 31533, taken at
t = 3.0s; discharge 31533 has an ion temperature profile
considerably higher than that of shot 30628 allowing for
a look into ion temperature sensitivity. Since B� and
Ip are oppositely signed in both discharges, ⇣0 > 0 corre-
sponds to counter-current ions while ⇣0 < 0 to co-current.
The orientations of the toroidal field and poloidal current
also inform that  � �  + and  0 >  sep, ensuring con-
sistency with previous definitions.

For comparison, the neoclassically predicted radial
electric fields are also considered33,

ENEO =
Ti

q

✓
1

h⇢

1

ni

dn

d⇢
+

kt
h⇢

1

Ti

dTi

d⇢

◆
(17)

where Ti is the ion temperature, ni is the ion number
density, kt ⇠ 1 reflects the plasma’s regime of collisional-
ity, and h⇢ is the scale factor necessary in the dimension-
less coordinates. In the above, the terms relating to the
main ion rotation are neglected. The poloidal rotation is
small in the neoclassical approximation, and the toroidal
rotation contributes little in the edge; both contribute
negligibly to the edge radial electric field when compared
to the main ion gradients34. Studying the neoclassical
electric fields allows us to investigate the e↵ects of subtle
electric potential profile changes.

The threshold ion loss energies and BLIs for deuterium
ions initiated at di↵erent poloidal locations along various
initial flux surfaces, labeled using the poloidal flux, are
found. The dimensionless radial coordinate,

⇢pol ⌘

s
 pol � axis

 sep � axis

, (18)

is defined such that ⇢ = 0 lies on the magnetic axis and
⇢ = 1 corresponds to the LCFS. Since the threshold en-
ergies are found for various (⇢0, ✓0, ⇣0), we choose to rep-
resent the initial pitch directions via color and typically
in the plots hold either ⇢0 or ✓0 constant while varying
the other. Fig. 5 illustrates the chosen color gradient, as
well as establishing the color representative for the ion
temperature.

0
105

0 = 1.0

0 = 0.5

0 = 0.0

0
1050 = -0.5

0 = -1.0
Ti

FIG. 6. Legend for Fig. 2 and Figs. 7-11. The color gradient

spans over initial pitch directions, and the dashed red line

represents the local ion temperature.

A. Velocity-Space Loss Hole

During the initial characterization of ion orbit loss,
only the experimental data from the L-mode and H-mode
of shot 30628 will be compared. Both H-mode sets of
data produce results which share many qualitative fea-
tures. Discharge 31533 is included when the di↵erences
become illuminating.

SOL Sampling Ions

The threshold energies are found for ions to cross the
LCFS for ASDEX Upgrade Shot 30628 in the L-mode
and H-mode. For each initial flux surface, ⇢0, the pro-
cedure outlined in Section III. is followed to determine
for which (✓0, ⇣0) to apply either Eq. (8) or Eq. (9).
Each instance is applied to di↵erent loss locations and
the minimum of the energies is taken to be the threshold
energy.
Fig. 7 shows the threshold energies for SOL sampling

ions initiated from the ⇢0 = 0.99 flux surface for the
two experimental data sets. Any ion located above the
threshold energy line is considered lost. The plots are
largely similar but contain telling di↵erences.
Generically, counter-current ions are more likely to

be lost when starting from near the outer-midplane,
✓0 = 0.0, while co-current ions are typically only lost
when starting from near the inner-midplane, ✓0 = ⇡.
The sudden jumps in the threshold ion energy corre-
spond to the accessibility of banana losses. If able to
toroidally bounce at all, counter-current ions with initial
pitch closer to unity will only banana orbit when starting
from nearer the outer-midplane. These results are in line
with previous works22,23,26

The e↵ects of the radial electric field are various and
are most easily noted when comparing the H- and L-mode
cases. There is an overall shift in the loss energies associ-
ated with the more sharply radially-increasing potential
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FIG. 7. The SOL sampling orbit threshold energies for ions

initiated from flux surface ⇢0 = 0.99. See Fig. 6 for legend.

found in the edge of the H-mode. The rise in the energies
competes with the wider range of configuration-space in
which counter-current ions are able to be lost on banana
orbits in the presence of substantial electric fields typical
in the edge, see Section III. A. In the case of the H-mode,
counter-current ions starting from the ⇢0 = 0.99 flux sur-
face with initial pitch direction as great as ⇣0 = 0.9 have
threshold loss energies corresponding to trapped orbits.
In the L-mode, only counter-current ions up to ⇣0 = 0.7
behave similarly. Another e↵ect of Er is seen in the H-
mode this near the edge of the plasma. The electric field
inhibits the typically preferred banana losses for ions be-
ginning at the outer-midplane, increasing the minimum
loss energies. The e↵ect is more easily seen in Fig. 9. A
further di↵erence between the two modes of operation is
related to the increase of the local ion temperature in the
H-mode compared to the L-mode. Larger regions of the
loss hole are thermally accessible to the H-mode plasma.

The BLIs first mentioned in Section III. A. are ac-
counted for in Fig. 8. For the chosen discharge, these
types of losses are seen close to the edge and informed
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FIG. 8. The BLIs for SOL sampling loss orbits starting from

the ⇢0 = 0.99 flux surface. The loss holes are plotted against

the counter-current ion loss thresholds from Fig. 7. See Fig.

6 for legend.

the previous choice to look at the ⇢0 = 0.99 flux surface.
For that reason, Fig. 8 plots the BLIs under the H- and
L-mode conditions for shot 30628 for ions starting from
the ⇢0 = 0.99 flux surface. For comparison, the loss is-
lands are plotted against the threshold energies seen in
Fig. 7. Any ion with initial pitch of matching color will
be lost if found within a shaded region. In the case of
the H-mode, the loss islands are more significant and are
concentrated nearer the inner-midplane. One can imag-
ine that as the radial electric field increases in the edge,
ions initiated nearer and nearer the inner-midplane are
able to be toroidally trapped, as mentioned in Section III.
While the field is developing, there would be an interim
where lower energy ions are lost while more energetic
ions are unable to exhibit banana orbits. In Eq. (11), for
a given (⇢0, ✓0, ⇣0), there is only a single free parameter,
that being the ratio of the potential change to the energy.
A growing electric field corresponds to a growing poten-
tial di↵erence. As the electric field grows in magnitude,
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FIG. 9. The SOL sampling orbit threshold energies as a func-

tion of the radial coordinate for ions initiated from the outer-

midplane (✓0 = 0). See Fig. 6 for legend.

the only way to leave Eq. (11) unchanged for a given
(⇢0, ✓0, ⇣0) is to consider ions of increasing energy. There-
fore, the upper bounds for the BLIs increase until they
would theoretically open up to the rest of the velocity-
space hole, provided there was a su�ciently growing Er.

Fig. 9 illustrates the radial coordinate dependency for
the SOL sampling threshold energies for ions found at
the outer-midplane. Typically, ions nearer the separa-
trix have lower threshold loss energies. There is a clear
preferential loss of counter-current ions for most of the
flux surfaces with significant losses. As hinted at by Fig.
7, nearer the edge counter-current ions are unable be lost
on banana orbits, and as expected, the velocity-space loss
hole for ions initiated at the outer-midplane is raised to
higher energies in the presence of a strong electric field16.
Due to the impact of said field on the ion orbits, the re-
sultant threshold energy is often larger than that of a
passing orbit loss in the case of negligible Er. The pref-
erential loss of counter-current ions is tempered by the
radial electric field close to the LCFS; the peak of the
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FIG. 10. The SOL sampling orbit threshold energies as a

function of the radial coordinate for ions initiated from near

the inner-midplane (✓0 = 3⇡/4). See Fig. 6 for legend.

intrinsic toroidal rotation associated with ion orbit loss
lies within the separatrix, as similarly expected27,35.

Fig. 10 is a companion to Fig. 9, only representing
ions initiated near the inner-midplane (✓0 = 3⇡/4). Here,
Er often has the opposite e↵ect; the radial electric field
allows for trapped orbits and thereby lowers the threshold
loss energies for local ions. The L- and H-mode losses are
otherwise quite similar for co-current ions starting near
the inner-midplane. The higher temperature profile in
the H-mode still allow for greater thermal access to the
loss hole than in the L-mode.

Now that we have found the velocity-space loss hole
for ions that sample the SOL in any capacity, we nar-
row our view to ions that are lost near the X-point. The
discussion will be briefer to avoid redundancy since sim-
ilar calculations are performed on a restricted set of loss
locations.
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X-lost Ions

The velocity-space loss hole is now classified in the case
of X-loss for both chosen instances of shot 30628. Again,
this definition was selected for a more conservative view
of ion orbit loss based on the fact that X-lost ions are
unlikely to re-enter the plasma.

Fig. 11 plots both the threshold loss energies and the
BLIs for X-lost ions starting from the ⇢0 = 0.99 flux sur-
face. Similar to the case of SOL sampling orbits, the be-
havior of the co-current ions only sightly di↵ers between
L- and H-mode conditions. There is still the shift in the
energies associated with the larger magnitude negative
electric field in the edge of the H-mode. Now, the pos-
sibility of extremely energetic losses for co-current ions
originating from the outer-midplane are disallowed be-
cause such passing orbits are never lost near the X-point,
see Fig. 1. The behavior of the counter-current losses is
subtler. For similar reasons mentioned above, the pass-
ing counter-current ions are more easily lost when initi-
ated near the outer-midplane. For trapped ions, X-loss
can only occur if the poloidal bounce point allows for
loss near the X-point. For each initial pitch direction,
only a selection of initial poloidal angles fit the criterion.
Since the banana orbits associated with the BLIs typi-
cally toroidally bounce on the high field side, they are
easily lost via the X-point and are an important factor
for X-loss.

Having found the loss regions in velocity-space for ion
orbit loss in a few experimental configurations, we now
calculate the fraction of lost ions, using both definitions.
The fractions illustrate the significance of the thermal ion
orbit losses in the pedestal.

B. Loss Fractions

By integrating the particle distribution function over
the velocity-space loss hole, one determines the change
in the ion density associated with ion orbit loss21,

nLOSS(⇢0, ✓0) = 2⇡

Z
1

�1

d⇣0

"Z 1

vT (⇢0,✓0,⇣0)
v2
0
f(⇢0, v0)dv0+

Z vBH
(⇢0,✓0,⇣0)

vBL
(⇢0,✓0,⇣0)

v2
0
f(⇢0, v0)dv0

#
,

(19)

from the original number density of ions,

n(⇢0) = 4⇡

Z 1

0

v2
0
f(⇢0, v0)dv0, (20)

where f(⇢0, v0) is the particle distribution function. The
lower bound of the first integral, vT , corresponds to the
velocity associated with the threshold loss energy while
the bounds for the second integral, vBL

and vBH
, corre-

spond to the bounds of the BLIs, not to Eq. (12) and
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FIG. 11. The X-loss orbit threshold energies for ions initiated

from flux surface ⇢0 = 0.99 plotted alongside the BLIs. For

readability, most nearly vertical lines were omitted from the

plot. See Fig. 6 for legend.

Eq. (13). We have assumed that the particle distribution
function is initially isometric in velocity space; an ion is
equally likely to have any initial pitch direction.

The poloidal-angle-dependent loss ratio for a given flux
surface is the ratio of Eq. (19) and Eq. (20). Averaging
over the flux surface determines the fraction of lost ions
for a given ⇢0,

F (⇢0) =

R
2⇡
0

R
2⇡
0

nLOSS

n

p
gd�d✓

R
2⇡
0

R
2⇡
0

p
gd�d✓

=

H
nLOSS

n
dl
BH

dl
B

,

(21)

where
p
g is the Jacobian and the path integral is over a

cross-section of the flux surface.

To continue, a distribution function, f(⇢0, v0), must be
specified. For simplicity, a simple Maxwellian distribu-
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tion,

f(⇢0, v0) = n(⇢0)

✓
m

2⇡Ti

◆3/2

e�mv2

0
/2Ti , (22)

where Ti is in eV and

n(⇢0) =

Z
f(⇢0, v0)dv

3

= 4⇡

Z 1
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0
f(⇢0, v0)dv0,

(23)

is chosen for simplicity.
The loss fraction is written as the following,
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In the above, � refers to the upper incomplete gamma
function and a change of coordinates from velocities to
kinetic energies was made.

We calculate various loss fractions for the L- and H-
mode conditions for ASDEX Upgrade discharge 30628
and for ASDEX Upgrade H-mode shot 31533. As shown
in Fig. 4 and Fig. 5, the primary relevant di↵erence be-
tween the two H-mode discharges is the ion temperature
profile. Disparities in the electric field and potential pro-
files are also important to keep in mind. Discharge 31533
has a deeper potential well with a minimum further in the
plasma. While likely within experimental error bars, it is
worth noting the e↵ects on the theory. To further probe
e↵ects of the electric potential profile, we also consider
both the experimental and neoclassically predicted fields
for shot 30628.

Fig. 12 shows the loss fractions for SOL sampling ions
in all three scenarios while Fig. 13 shows the loss frac-
tions for X-lost ions. Both cases demonstrate significant
losses in the edge pedestal region of the plasma with the
X-losses being fewer and more localized to the edge. Both
plots also include the loss fractions calculated in the ab-
sence of a radial electric field.

In general, the SOL sampling ion loss fractions are
more significant for the H-mode plasmas than for the L-
mode instance. However, in the near edge, the loss frac-
tion is greater in the L-mode as a result of its less signif-
icant radial electric field; in the H-mode cases, the radial
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FIG. 12. Various loss fractions for SOL sampling ions. Plot

(a) illustrates the total loss fractions for various accounts of

the radial electric field while (b) shows the contributions from

the banana orbit loss islands.

electric field is strong enough to taper o↵ the growth of
the loss fractions near the separatrix. Discharge 31533
exhibits a larger loss fraction than the 30628 H-mode
primarily linked to its greater temperature profile. Dis-
regarding the radial electric field provides simple curves
for the loss fractions, which overestimate the number of
ion losses. The starkest change when accounting for the
e↵ects of Er is seen in the H-mode loss fractions for shot
30628. It would appear that a higher ion temperature
profile acts to mitigate the stronger e↵ects of the electric
field on ion orbit loss. This can also be inferred from Fig.
9. In the L-Mode, the temperature profile in the edge is
su�ciently high that the raised velocity-space loss hole is
still thermal. Conversely, in the H-mode the temperature
profile is beneath the thresholds near the separatrix. For
a similar radial electric field, a higher temperature profile
would allow the higher threshold losses to be thermally
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FIG. 13. The X-loss version of Fig. 11. Plot (a) includes the

total loss fractions for di↵erent electric potential profiles and

(b) shows the BLI loss fractions.

accessible.

There is a sizeable di↵erence in the predicted losses
for the H-mode instance of shot 30628 in the near edge,
⇢0 > 0.995, when using the neoclassical radial electric
field in place of experimental measurements. This should
have minimal consequences; the corresponding velocity-
space loss hole is likely depopulated and the near edge
has a relatively lower density of ions. Regardless, this is
likely explainable by the second-derivative dissimilarities
in the two potential profiles; the disparity begins near
where the curvature di↵erences are seen.

In the case of X-loss, shown in Fig. 13, similar be-
havior in the loss fractions can be seen. However, disre-
garding the electric field has a less than obvious e↵ect on
the X-loss loss fractions. Er growth evokes a competi-
tion between the overall shift in energy of the losses and
the increased accessibility for trapped orbit losses in the

plasma. As seen in Fig. 10, the most thermally accessible
X-losses are trapped orbits. Extremely near the edge, the
e↵ect of a strong electric field acts to reduce the X-losses,
while it can be seen to enhance, or at least not diminish,
the X-losses farther in the plasma due to the importance
of banana orbit accessibility. This is seen particularly
well in the higher ion temperature case of shot 31533,
most notably between ⇢0 ⇠ 0.98 and ⇢0 ⇠ 0.99.
For both loss definitions, the BLI loss fractions behave

similarly to each other. For the L-mode, the losses are
least significant, but not negligible, and are most local-
ized to the edge. Under H-mode conditions, the losses
peak at just under 2% and 1%, for SOL sampling and X-
loss respectively, and decline to less than 0.1% near the
respective pedestal tops, seen in the temperature profiles
in Fig. 4. The loss fractions are also insignificant very
near the separatrix; here, the BLIs have opened up to
the rest of the velocity-space loss hole.
So far, our findings only apply to single instances in

time. Following the ion orbit losses, the loss hole de-
populates and the radial electric field strengthens, or the
loss hole was already depopulated and only a diminished
fraction of ions are lost. We highlight a few e↵ects that
are instrumental in treating the losses dynamically.

VI. Ion Orbit Loss as a Dynamic E↵ect

As an inherently non-ambipolar transport mechanism,
ion orbit loss is both sensitive to and is a source of the
radial electric field via the resultant return current. Fol-
lowing the depopulation of the velocity-space loss hole,
the radial electric field grows and the loss hole is sensi-
tive to this change. Furthermore, the ion losses should
be reflected in the time-evolved temperature and density
profiles.
We will discuss a few aspects which find importance

when considering ion orbit loss dynamically. The argu-
ments are at most semi-quantitative, anything more is
currently beyond the scope of the paper. The first con-
cerns the return of ‘lost’ ions back into the main plasma.
The second considers the repopulation of the velocity-
space loss hole and the particular importance of the ba-
nana loss islands.

A. Returning Ions

Our first definition of a lost orbit simply considered
ions with SOL sampling orbits. In reality, some of
these ions still follow closed orbits and many others may
backscatter into the plasma while in the SOL. The true
loss fraction,

F̃ = CFSOL, 0 < C  1, (25)

should be the calculated SOL sampling loss fraction mod-
ified by a coe�cient C, where C is the fraction of parti-
cles that cross the LCFS and do not re-enter the plasma.
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Such a number is only a simple model as the likelihood
of a SOL sampling ion re-entering the plasma would be
highly dependent on the location it crosses the separa-
trix.

We now turn our attention to the X-lost ions. Ions lost
near the X-point have short paths to the divertor, and
are considered less likely to re-enter the plasma. The ions
are only lost near the X-point in the favorable forward
rB configuration, otherwise they would be lost across
the separatrix at the opposite end of the plasma, thus
being maximally exposed to the return e↵ects.

The loss fraction calculated following the first loss def-
inition can be expressed as the sum of the loss fraction
of ions lost via the X-Point and those lost anywhere else,

FSOL = FX + FNon-X , (26)

where FX are the X-lost ions. We represent the true loss
fraction, F̃ , as the sum of these two parts where each is
modified by a di↵erent loss coe�cient

F̃ = C1FX + C2FNon-X , 0 < C2 < C1  1, (27)

where C1 is expected to be much closer to unity.
By integrating the curves in Fig. 12 and Fig. 13, the

fraction of the losses captured by our first loss defini-
tion that also meet our requirement for X-loss is found.
Around 44.1% of SOL sampling ions in the L-mode and
40.2% in the H-mode for discharge 30628 and 39.7%
for discharge 31533 are lost in this fashion. We take
FX ⇡ 0.4FSOL, insinuating that if the tokamak is de-
signed with drifts pointing towards the X-point, 40%
of the SOL sampling ions would experience mitigated
plasma re-entry. If the drifts are directed unfavorably,
then the 40% of ion losses that would have been X-lost
are maximally impacted by the SOL e↵ects. In this case,
the loss coe�cient C2 is simply applied to all losses. In
the preferred drift direction

F̃rB# = C1FX + C2FNon-X

' (
4

10
C1 +

6

10
C2)FSOL.

(28)

In the unpreferred drift direction

F̃rB" = C2(FX + FNon-X)

= C2FSOL,
(29)

which results in

F̃rB#

F̃rB"
' 1

5

✓
2
C1

C2

+ 3

◆
. (30)

An orbit following study has shown that 80% of ions
lost across the separatrix at a poloidal angle very near the
X-point will not re-enter the plasma while only around
40% of the ions that cross the LCFS elsewhere will reach
the wall9. Respectively, using the above values for C1

and C2 indicates that the true loss fraction in the for-
ward configuration is 1.44 times larger than that in the

backward configuration. Another work indicates that of
the 60% of non-X-lost ions with wall intersecting orbits,
some fraction will re-enter the plasma via SOL e↵ects.
They take the adjusted loss coe�cient to be 50%7. This
value for C2 results in ion orbit loss being 1.24 times
larger in the forward configuration. Assuming a linear
relationship between the number of lost ions and ra-
dial electric field growth finds semi-quantitative agree-
ment with simulation results where it was found that the
downwards drift configuration features an electric poten-
tial well about 30% larger compared to the upwards drift
case36.
Treating ion orbit loss dynamically requires appropri-

ate classification of losses. SOL sampling ions and X-lost
ions appear to be a good combination of definitions since
the first captures all possible losses and the second cap-
tures losses with a known specific behavior. Continued
studies for the recycling rates, and their parameter de-
pendencies, for both types of ion orbit losses is instru-
mental for time evolution.

B. Loss Hole Repopulation

For the purposes of this discussion, let us again as-
sume that the velocity-space particle distribution can be
thought of as a Maxwellian about the local ion temper-
ature. After the ion orbit losses, the Maxwellian will be
truncated above the calculated threshold ion loss ener-
gies. As the distribution relaxes around a new temper-
ature, previously accessible loss energies may no longer
be thermally accessible and the loss hole will be empty.
To successfully treat ion orbit loss as a progressive phe-
nomenon, the mechanisms that repopulate the emptied
regions of velocity-space must communicate well with the
ion orbit loss model.
However, with the inclusion of the BLIs, not only is the

Maxwellian truncated above the threshold loss energies,
but also an additional slice of the Maxwellian is lost.
Velocity-space both above and below the BLIs can be
populated and under these conditions the banana loss
islands will surely repopulate under relaxation. With an
increase of Er magnitude, there is the potential for both
the formation of new BLIs or the growth of existing ones.
As mentioned towards the end of Section V.A.1., if the
radial electric field grows su�ciently large in magnitude,
the BLIs are prone to open and connect to the higher
energy regions of velocity-space corresponding to losses
on  �. The BLIs are able to bleed out thermal ions more
or less continuously until there is a strong enough local
radial electric field or the Maxwellian has relaxed to a
low enough energy to inhibit the losses.

VII. Conclusion

We have developed a method to study the non-
ambipolar ion orbit loss in the axi-symmetric magnetic
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field of a tokamak by considering the intersection of
an ion’s constraint surface,  ±, and the poloidal flux,
 pol, determined by the Grad-Schlüter-Shafranov equa-
tion. The e↵ects of the radial electric field are accounted
for by determining which initial ion locations have ac-
cessible banana orbits for varying pitch direction. A full
characterization of ion orbit loss includes not only thresh-
old loss energies, upwardly unbounded loss regions, but
also energy ranges which comprise banana loss islands,
upwardly bounded loss regions.

Thermal ion losses are substantial in the pedestal re-
gion for two definitions of ion orbit loss: SOL sampling
ions and X-lost ions. Many SOL sampling orbits are
prone to re-enter the plasma which causes the first defi-
nition to over-estimate the number of losses. The second
definition only considers the ions directly lost to the di-
vertor very near the X-point. The loss hole is shown to
be more substantial in ASDEX Upgrade discharge 30628
in the H-mode than in the L-mode just prior to the L-H
transition. The loss hole is further shown to be larger
for a higher ion temperature H-mode plasma, ASDEX
Upgrade discharge 31533.

Additionally, we discussed a few key details that are
important in determining the cumulative e↵ects of ion
losses as a function of time. First are the e↵ects of
lost ions returning to the plasma. The fraction of lost
ions that are largely exempt from this phenomenon in
the preferred rB drift direction is determined using the
relationship between the two loss definitions. By com-
paring the loss fractions in both orientations of the rB
drift, under realistic expectations for both SOL sampling
and X-lost ions re-entering the plasma, there is a semi-
quantitative agreement with expectations of the ratio of
Er generation in the forwards and backwards drifts, fur-
ther highlighting the importance of considering both defi-
nitions of ion orbit loss. Second is the repopulation of the
loss hole. BLIs are a means to bleed out the edge plasma
since the loss holes are prone to thermally refilling. They
provide a continuous, yet slight, source of ion loss while
the radial electric field is strengthened. Eventually, the
islands can open in the presence of a su�ciently large ra-
dial electric field and join the rest of the loss hole. For the
H-mode discharges, BLI losses diminish at the pedestal
top.

To further develop the model as a tool to calculate the
contribution of ion orbit loss to the radial electric field,
several things must be considered. Statically, the model
would be improved by taking into account the toroidal
asymmetries in the equilibria or poloidal asymmetries in
the plasma profiles. Furthermore, investigating the ion
orbit loss dependence on X-point geometry would be in-
sightful. Dynamically, the repopulation of the loss hole
via pitch-angle scattering and other neoclassical e↵ects
is crucial in understanding how ion orbit loss can gener-
ate a radial electric field over a timescale longer than a
typical toroidal bounce.
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Appendix

A. Approximation of p�

Eq. (3) is an expression for the guiding center canoni-
cal momentum. Let us here first write the exact expres-
sion for the canonical momentum,

p� = mRv� + e , (A1)

where all quantities are evaluated at the location of the
ion. approximated v� ' vk

B�

B . Here, we consider the va-
lidity of the approximation. We start from the definition
of vk,

vkB = ~v · ~B = v�B� + vRBR + vzBz

vk = ±
r

(v�B� + vRBR + vzBz)2

B2

= ±v�

vuuut
(1 + vRBR

v�B�

+ vzBz

v�B�

)2

1 +
B2

R

B2

�

+ B2
z

B2

�

,

(A2)

and make use of the neoclassical nature of the problem.
A direct connection between the magnetic field geome-

try ratios and the dynamics of the particle, the velocities,
is made. To lowest order, the guiding center’s trajectory
follows magnetic field lines. The dominant field line in
the tokamak is B�. Thus,

vR
v�

⇠ BR

B�
,

vz
v�

⇠ Bz

B�
. (A3)

In fact, a correction should be made for the guiding center
drifts, vD, which are the combination of both therB and
curvature drifts,

vz � vD
v�

⇠ Bz

B�
, (A4)
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where,

~vD = ~vrB + ~vRc
,

~vrB =
mv2?
2qB

~B ⇥rB

B2
,

~vRc
=

mv2k
qB

~Rc ⇥ ~B

BR2
c

.

(A5)

We continue with our expression for the parallel velocity,

vk = ±v�

vuuut
(1 +

B2

R

B2

�

+ B2
z

B2

�

+ vDBz

v�B�

)2
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+ 2
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We have,

B�

B
 1,

BR

B
 BR

B�
⌧ 1,

Bz

B
 Bz

B�
⌧ 1. (A6)

Keeping only the highest order correction term shows
that

vk ' ±v�
B

B�

s

1 + 2
vD
v�

BzB�

B2

' ±v�
B

B�

✓
1 +

vD
v�

BzB�

B2

◆
.

We simply solve for v�,

v� ' vk
B�

B
� BzB�

B2
vD. (A7)

The positive sign was selected to ensure that vk is truly
parallel to the magnetic field. The largest correction term
is small and is appropriately dropped in the text.

B. The Positiveness of v0

We will show that ensuring the positiveness of the
bracketed terms in (8) and (9) is identical to ensuring
that v0 is positive.

This is easily achieved by deriving the minimum initial
velocity for an intersection of  + with the separatrix,
at a loss point, P, characterized by a poloidal location
(RL, zL), in the case of ~E = ~0,

v0min =
q

m

 sep �  0

R0f�0⇣0 +RLf�L
q
1� BL

B0

(1� ⇣2
0
)
> 0,

(B1)

and connecting that to (8) in the same case, ~E = ~0. We

find that

Emin+ =
q2

2m⇠2
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which implies that

ṽ0 = ± q

mRf�⇠
( sep �  0)
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We see v0min and ṽ0 are equivalent when the ‘+’ sign is
chosen. Therefore, keeping the bracketed terms in (8)
and (9) positive, is the same as ensuring that v0 is posi-
tive in order to be consistent with the definition of p�.
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Klüber, M. Kornherr, K. Lackner, G. Lisitano, G.G. Lister, H.M.
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