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ABSTRACT: We present a density-matrix embedding theory
(DMET) study of the one-dimensional Hubbard−Holstein
model, which is paradigmatic for the interplay of electron−
electron and electron−phonon interactions. Analyzing the
single-particle excitation gap, we find a direct Peierls insulator
to Mott insulator phase transition in the adiabatic regime of
slow phonons in contrast to a rather large intervening metallic
phase in the anti-adiabatic regime of fast phonons. We
benchmark the DMET results for both on-site energies and
excitation gaps against density-matrix renormalization group
(DMRG) results and find good agreement of the resulting
phase boundaries. We also compare the full quantum
treatment of phonons against the standard Born−Oppenheimer (BO) approximation. The BO approximation gives
qualitatively similar results to DMET in the adiabatic regime but fails entirely in the anti-adiabatic regime, where BO predicts a
sharp direct transition from Mott to Peierls insulator, whereas DMET correctly shows a large intervening metallic phase. This
highlights the importance of quantum fluctuations in the phononic degrees of freedom for metallicity in the one-dimensional
Hubbard−Holstein model.

1. INTRODUCTION

The interplay of competing interactions is a central theme of
quantum many-body physics. In quantum materials, the
electron−electron (el−el) and electron−phonon (el−ph)
interactions naturally compete against each other. This is most
easily understood by noting that el−el Coulomb repulsion is
generically repulsive, whereas el−ph interactions can lead to
effectively attractive el−el interactions, as highlighted by the
Cooper pairing mechanism in conventional superconductors.1

In strongly correlated low-dimensional materials, the competi-
tion between el−el and el−ph interactions has led to long-
standing debates, such as the origin of high-temperature
superconductivity and the anomalous normal states observed
in entire classes of materials.2,3

At the same time, competing interactions lead to competing
ground states and phase transitions, as exemplified by the
complex phase diagrams in correlated oxides.4 This competition
and sensitivity to parameter changes poses a major roadblock on
the way toward reliable numerical solutions for the quantum
many-body electron−phonon problem. The simplest generic
el−ph model is the Hubbard−Holstein Hamiltonian.5,6

Advanced numerical methods for its solution have been
developed over the past decades that are accurate in certain
regimes but cannot be easily applied in other cases. Among these
are Quantum Monte Carlo (QMC)7−13 and variational wave
function14−27 schemes and the density-matrix renormalization
group (DMRG),28 as well as dynamical mean-field theory
(DMFT).29−31

A new, promising method that has recently been added to this
arsenal is density-matrix embedding theory (DMET),32,33 which
in some sense bridges DMRG and DMFT-related methods.
DMET has the advantage of being numerically less demanding
than DMRG and at the same time being a good descriptor for
one-dimensional systems. DMET has been benchmarked
against other methods for the 2D Hubbard model,34,35 and
recently, a systematic extension of DMET toward DMFT was
proposed.36 However, for the Hubbard−Holstein model, only
one DMET study has been published to the best of our
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knowledge so far, which compared ground state energies for the
1D Hubbard−Holstein model against DMRG results.37

In this work, we perform extensive comparisons of DMET
against both DMRG and Born−Oppenheimer (BO) results for
the 1D Hubbard−Holstein model. In particular, we extend the
previous comparisons to excitation gaps and the difference of the
electron density between neighboring sites, which indicates the
existence of a charge-density wave (CDW). This allows us to
construct DMET phase diagrams that are compared directly
against DMRG.
The paper is organized as follows: In Section 2, we explain the

extension of the DMET method for electron−phonon systems,
following the derivation presented in ref 37. In Section 3, we
discuss the Hubbard−Holstein model, its phases, and possible
observables to determine these phases. In Section 4, we discuss
our DMET results and benchmark them against a DMRG
calculation. Moreover, we then benchmark a semiclassical
Born−Oppenheimer calculation against DMET and show when
the Born−Oppenheimer approximation fails.

2. DMET FOR COUPLED ELECTRON-BOSON SYSTEMS

When trying to solve the Schrödinger equation

̂ |Ψ⟩ = |Ψ⟩H E (1)

for a given general Hamiltonian, the well-known problem of the
exponential wall of quantummechanics occurs, making the costs
of the calculation grow exponentially with system size. Even
though there are wave function methods that scale this problem
down to polynomial growth, it is still a fact that wave function
methods grow fast with the size of the regarded system,making it
hard to describe large systems. One possible way to circumvent
this problem is the embedding idea that is used in different
methods including DMET: Instead of solving the Schrödinger
equation for the whole system, a small subsystem is chosen,
which is small enough to be solved efficiently. The idea of
DMET is then to include the interactions of the rest of the
system with this subsystem, which will from now on be called
“impurity”, in the embedding step. This is equivalent to a
complete active space calculation in quantum chemistry,
assuming that the impurity part of the system is in the active
space. This way, the system is in two unentangled parts: the so-
called embedded system, consisting of the impurity and those
parts of the rest of the system interacting with the impurity, and
the environment that consists of those parts of the system that
do not interact with the impurity directly. Then, by solving the
embedded system, the physics of the impurity, including
interactions with the rest of the system (and with that, also
finite size effects and the influence of the boundaries) can be
computed effectively with an accurate wave function method,
since the embedded system is typically much smaller than the
originally considered system.
Mathematically, the projection from an original basis to the

impurity plus active space basis can be formulated with the help
of the Schmidt decomposition:

∑ ∑

∑ ∑ ∑

∑

λ

λ

|Ψ⟩ = Ψ | ̃ ⟩| ̃ ⟩

= | ̃ ⟩| ̃ ⟩

= | ⟩| ⟩

U V

(2)

(3)

(4)

a b
ab a b

a b i
ai i ib a b

i
i i i

a b

a b i

i

 

  



where ≤i a  corresponds of the dimension of the Fock space
defined on the impurity part of the system and b corresponds to
the dimension of the Fock space defined on the rest of the
system. Every wave function can be decomposed into two parts
| ̃ ⟩a and | ̃ ⟩b , where the former is defined on the impurity and
the latter, on the rest of the system. Both parts are coupled to
each other by the transition matrix Ψab. Performing a singular
value decomposition of this matrix leads then to a new basis
consisting of the many-body states | ⟩i and | ⟩i . The number of
many-body states describing the whole system is then
significantly less than before, as the sum over i in eq 2 is only
going over the dimension of the impurity Fock space.
Knowing the many-body states | ⟩i and | ⟩i , a projection

∑̂ = | ⟩| ⟩⟨ |⟨ |P
ij

i i j j
(5)

can be defined, that projects the Hamiltonian onto a new basis

̂ = ̂ ̂ ̂†H P HPemb (6)

Ĥemb is then a many-body Hamiltonian of dimension ×2 i ,
defined on a subspace of the original Fock space. For smallNimp,
it can be diagonalized efficiently with a chosen wave function
method.
Unfortunately though, in order to find the active space states

| ⟩i , the whole transition matrix Ψij, that is, the whole wave
function |Ψ⟩, needs to be known. This is why, instead of using
the exact projection, we have to approximate it in order to find
the embedding Hamiltonian. Note that we only approximate the
projection of the Hamiltonian into a new basis and not the
Hamiltonian itself.
In this paper, we discuss the DMET method for the coupled

electron−phonon systems whose Hamiltonian is of the form:

̂ = ̂ + ̂ + ̂ + ̂− −H T U T Uel ph el el ph el ph (7)

where T̂el and Ûel describe the electronic kinetic energy and the
electron−electron interactions. T̂ph describes the phononic
kinetic energy, and Ûel−ph is the electron−phonon interaction.
To obtain the projection, we treat both the electronic and the

phononic part of the Hamiltonian on amean-field level such that
there is no coupling between electronic and phononic degrees of
freedom.

̂ = ̂ + ̂−H H Hel ph
mf

el
mf

ph
mf

(8)

As the ground state wave function of eq 8 is a product state of
the electronic and the phononic wave function, also the
projection of eq 5 can be factorized into an electronic and a
phononic projection. We thus have to find two separate
projections, one for the electrons and one for the phonons
(visualized in Figure 1). As the procedure for obtaining the
electronic projection has already been widely discussed in refs 32
and 33, we will only very briefly describe it here, while we will
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present the derivation of the phononic projection in detail.
Subsequently, we derive the coupled electron−phonon
embedding Hamiltonian eq 6 from the original Hamiltonian
in eq 7 with the two projections.
2.1. Fermionic Projection. As an initial guess for the

electronic mean-field Hamiltonian, we simply choose electronic
kinetic energy:

̂ = ̂H Tel
mf

el (9)

which will later be improved in a self-consistent manner by
adding a nonlocal potential V̂el. The ground state of T̂el can be
written in terms of a Slater determinant, which can be further
decomposed to33

∑ ∑ ϕ|Φ⟩ = Φ | ⟩| ⟩ + | ⟩∼A B B
i l

il i l
j

j j
,

emb environment

i j 

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖ
(10)

Here, = 4i
Nimp is the dimension of the electronic impurity

Fock space and = −4j
N N2 imp is the dimension electronic

environment Fock space. i is significantly smaller than j as we
choose the impurity to be much smaller than the total system.
Neglecting the environment part of eq 10 as this is the part that
does not couple to the impurity region of the system, we obtain

∑̂ = | ⟩| ⟩⟨ |⟨ |P A B A B
ij

i i j jel
(11)

2.2. Phononic Projection. In order to obtain the phononic
projection, we choose as initial guess a Hamiltonian describing a
shifted harmonic oscillator, which has the same form as the
phononic part of the electron−phonon Hamiltonian of eq 7:

∑ ∑ω̂ = ̂ ̂ + ̂ + ̂ = ̂ + ̂
σ

† †H a a g a a T C( )
i

i i
i

i iph
mf

0
,

ph ph
(12)

Equivalently to the electronic case, this Hamiltonian will also be
improved self-consistently. The ground state wave function of
this Hamiltonian is the product state of coherent states on each
lattice site i:

| ⟩ = ⊗ | ⟩Z z
i

i (13)

∑| ⟩ = | ⟩ =
!

| ⟩−| |

=

∞
†

z e e
z

j
j0

( )
i

a z z

j

i
j

/2

0

i i i
2

(14)

where zi = ⟨aî
† + aî⟩̂ is the shift of the phonon mode from the

initial position on the lattice site i. Note that the state |zi⟩ is a
superposition of all possible phononic Fock numbers states on
site i. In the original Hamiltonian Ĥel−ph, defined in eq 7, due to
the coupling term between electrons and phonons, the total
number of phonons is not conserved (whichmakes sense as they
are only quasi-particles describing the lattice vibrations of the
solid). As the coherent state defined here in eq 13 also does not
obey phononic particle number conservation, it is well suited to
describe our problem.
Similar to the electronic case,32,33 we determine the phononic

projection by splitting the phononic wave function up into three
parts:

∑ ∑| ⟩ = | ⟩| ⟩ + | ̃ ⟩Z A B B
i l

i l
j

j
,

ph ph ph
i j 

(15)

Here, the |Ai
ph⟩ is again just defined on the impurity region of the

lattice, |Bl
ph⟩ is composited by those coherent states that have an

overlap over the impurity region, and |B̃j
ph⟩ is composited by the

coherent states that do not have an overlap over the impurity
region.

The numbers = Ni
N
ph

imp and = −Nj
N N
ph

2 imp , similar to the
electronic case, determine the dimension of the phononic Fock
spaces on the impurity i and on the rest of the system j . Due to
their bosonic nature, the number of phononic basis functions is
in principle indefinitely Nph = ∞. In the numerical calculation,
we restrict ourselves to only a few phononic basis functions, as
otherwise the computation would not be feasible.
Neglecting again the part of the wave function that does not

have an influence on the impurity, we define the phononic
projection as

∑̂ = | ⟩| ⟩⟨ |⟨ |
α β

α β β αP A B B Aph
,

ph ph ph ph
a

(16)

2.3. Projection of the Full Hamiltonian. Knowing the
electronic as well as the phononic projection, we are now able to
find the embedding Hamiltonian of the coupled system. The
coupled electron−phonon embedding Hamiltonian eq 6 is
obtained by projecting the purely electronic part of the original
Hamiltonian (T̂el and Ûel) with the electronic projection P̂el and
the purely phononic part T̂ph with the phononic projection P̂ph.
The coupling term Ûel−ph

emb needs to be projected with both the
electronic and the phononic projection.

̂ = ̂ + ̂ + ̂ + ̂− −H T U T Uel ph
emb

el
emb

el
emb

ph
emb

el ph (17)

̂ = ̂ ̂ ̂†T P T Pel
emb

el el el (18)

̂ = ̂ ̂ ̂†U P U Pel
emb

el el el (19)

Figure 1. Visualization of the decomposition of the electron−phonon
system via the projection P̂: Starting with a 1D lattice in real space that
on each site has both electronic (blue) and phononic (red) degrees of
freedom, we choose one part of the system that is from then on called
impurity, whereas the rest is the environment. The electronic and the
phononic sites are treated equally in this scheme by defining the full
projection as a product of one projection for the electrons and one for
the phonons. This projection then leaves the basis on the (electronic
and phononic) impurities the same (a real space lattice), whereas it
projects the (electronic and phononic) environment degrees of
freedom into a new basis set whose physical meaning is abstract.
Within this new basis set, the environmental degrees of freedom can be
divided into those interacting with the impurity and those not
interacting with the impurity, called environment. The system
containing the impurity and the basis sites interacting with the impurity
is called embedded system. In our calculation, we discard the
environment system and only calculate the embedded system.
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̂ = ̂ ̂ ̂†T P T Pph
emb

ph ph ph (20)

̂ = ̂ ̂ ̂ ̂ ̂−
† †

−
†U P P U P Pel ph ph el el ph

emb
ph el (21)

2.4. Self-Consistently Improving the Projections. The
initial guess for the projections is not necessarily very good, as in
addition to assuming a noninteracting active space for both the
electrons and the phonons, it also assumes a product state
between electronic and phononic degrees of freedom.
We self-consistently optimize the electronic and the phononic

projection by adding nonlocal potentials to the mean-field
Hamiltonian eq 8:

̂ = ̂ + ̂H T Vel
mf

el el (22)

̂ = ̂ + ̂ + ̂ + ̂H T V C Wph
mf

ph ph ph ph (23)

For the electronic case, as was explained in detail in previous
works,32,33 we optimize the nonlocal potential

∑̂ = ̂ ̂
σ

σ σ
†V v c c

i j
ij i jel

, , (24)

such that the electronic reduced one-particle density matrix of
the interacting and the noninteracting system is minimized:

∑ ⟨Ψ | ̂ ̂|Ψ ⟩ − ⟨Φ| ̂ ̂|Φ⟩
∈

† †c c c cmin
i j

i j i j
, emb

emb emb
(25)

For the phonons on the other hand, the mean-field
Hamiltonian contains two terms, one for the kinetic energy
(T̂ph) and one for the shift of each harmonic oscillator from its
initial position (Ĉph). This is why we also have to add two
nonlocal potentials (V̂ph and Ŵph) to the mean-field
Hamiltonian. While

∑̂ = ̂ ̂†V v a a
ij

ij i jph
(26)

is optimized such that it minimizes the phononic reduced one-
particle density matrices of the interacting and the non-
interacting system,

∑̂ = ̂ + ̂†W w a a( )
i

i i iph
(27)

minimizes the difference between the shift of the interacting and
the noninteracting system.
While V̂ph depends on the phononic reduced one-particle

density matrix ⟨aî
†aĵ⟩, Ŵph depends on the shift of the phonons

from their rest position ⟨aî
† + aî⟩. The potentials are again found

by minimizing the difference between the properties of the
interacting and the noninteracting system:

∑

∑

⟨Ψ | ̂ ̂ |Ψ ⟩ − ⟨ | ̂ ̂ | ⟩

+ ⟨Ψ | ̂ + ̂ |Ψ ⟩ − ⟨ | ̂ + ̂ | ⟩

∈

† †

∈

† †

a a Z a a Z

a a Z a a Z

min
i j

i j i j

i
i i i i

, emb
emb emb

emb
emb emb

(28)

where |Z⟩ is the ground state wave function of the Hamiltonian
defined in eq 23 and |Ψemb⟩ is the ground state wave function of
the full embedding Hamiltonian defined in eq 17.
The whole DMET procedure is visualized in Figure 2.

The embedding problem is then solved using MPS-
DMRG.38−40 We obtain the optimal site ordering41 from an
initial approximate calculation.42 This site ordering is then used
in a second higher-precision calculation. In both cases, we
construct the Hamiltonian as described in ref 43. Electronic and
phononic sites were kept separate, and the DMRG3S
algorithm40 was used to achieve linear scaling with the relatively
large local dimension.

3. HUBBARD−HOLSTEIN MODEL
The Hubbard−Holstein model is described by the Hamiltonian

∑ ∑ ∑

∑

ω̂ = ̂ ̂ + ̂ ̂ + ̂ ̂

+ ̂ ̂ + ̂

σ
σ σ

σ
σ

−
†

̂

↑ ↓

̂

†

̂

†

̂ −

H tc c Un n a a

gn a a( )

i j
i j

T

i
i i

U
i

i i

T

i
i i i

U

el ph
, ,

0

,
,

el el ph

el ph

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖ

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(29)

Here, cîσ
(†) is the electronic particle creation (annihilation)

operator on site i, where σ (= ↑, ↓) is the spin degree of freedom,
n̂i↑(↓) = cî↑(↓)

† cî↑(↓) is the spin-up (spin-down) particle number
operator, and aî

(†) is the phononic particle creation (annihila-
tion) operator. The kinetic energy of the electrons is
approximated as a simple next-neighbor hopping term T̂el, and
the electron−electron interaction is assumed to be a purely local
Hubbard U term Ûel. The phonons are approximated by
harmonic oscillators T̂ph which are bilinearly coupled to the
density of the electrons Ûel−ph. One phonon mode is considered
per electronic site.

3.1. Physics. In the one-dimensional Hubbard−Holstein
model, three competing forces can be found: first, the electron
hopping strength t, that leads to mobilization of the electrons
and will put the system in a metallic phase; second, the
electron−electron interaction U that, if dominant, leads to an
immobilized spin wave for the electronic degrees of freedom,
that is, a Mott phase; third, the electron−phonon coupling g
that, if dominant, leads to a Peierls phase, which is the position of
the electrons on the lattice if distorted from the initial position,
forming a charge density wave.

Figure 2. Visualization of the DMET procedure: from the purely
electronic and the purely Fermionic projected Hamiltonians Ĥel

mf and
Ĥph

mf, we obtain the projections P̂el and P̂ph. When applied to the full
Hubbard−Holstein Hamiltonian Ĥel−ph, these yield the embedding
Hamiltonian Ĥel−ph

emb . In order to improve the projections P̂el and P̂ph, we
aim at making the electronic and phononic one-body properties of the
interacting (Ôph

emb, Ôph
emb) and the noninteracting (Ôph

proj, Ôph
proj) systems as

similar as possible. This is done by adding nonlocal potentials to the
projected Hamiltonians that minimize the difference between the one-
body observables of the interacting system and the noninteracting
systems. When the new potentials are found, new projections can be
calculated which yield a new embedding Hamiltonian. This procedure
is repeated until the nonlocal potentials found do not differ up to an
accuracy of 10−5 from the nonlocal potentials of the iteration before.
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Due to strong quantum fluctuations of the phonons, the
Peierls phase can be destroyed and can lead to ametallic phase, if
the electron−electron interactions are not too strong to prevent
this. This is why we expect a distinct metallic phase when
considering high phonon frequencies ω0 in comparison to the
itineracy of the electrons t. In contrast, if the phonon frequency
is small compared to the electronic hopping, the metallic phase
should, if existent, be smaller than in the anti-adiabatic limit.
3.2. Observables Monitoring the Phase Transition. In

order to describe the phase transition of the one-dimensional
Hubbard−Holstein model, we need to define observables that
unambiguously show which phase the system is in.
We choose here three different observables, namely, the

double occupancy ⟨ni↑ni↓⟩, the electronic density difference
between neighboring sites ⟨ni⟩ − ⟨ni+1⟩, and the energy gap Δc
defined in eq 30.
The double occupancy and the electronic density difference

between neighboring sites are local properties and can simply be
calculated on one arbitrary (impurity) site. Unfortunately
though, the double occupancy only gives a rough estimate of
the phase, and the electronic density difference between
neighboring sites only indicates the transition to the Peierls
phase; in the Mott phase, the electronic density stays
homogeneous.
The energy gap Δc indicates unambiguously whether the

system is in the metallic phase (where the gap is zero) or in an
insulating state, which can be either Mott or Peierls (where the
gap is finite). Unfortunately though, it cannot be simply defined
locally but is a global property of the whole system for different
particle numbers

Δ = × − −− +c E E E2 N N N
0

/2
0

/2 1
0

/2 1
(30)

where E0
N/2 is the ground state energy of the Hamiltonian for half

filling, E0
N/2 − 1 is the ground state energy of the system for half

filling minus one, and E0
N/2 + 1 is the energy of the system for half

filling plus one.
As our DMET calculation has only been implemented for

closed shell systems, we have to approximate the calculation of
the gap. Instead of doing three calculations with different
particle numbers, we consider our “sophisticated mean-field”
Hamiltonian

̂ = ̂ + ̂ + ̂ + ̂ + ̂ + ̂−H T V T V C Wel ph
proj

el el ph ph ph ph (31)

which is optimized to have similar one-body properties as the
interacting Hamiltonian. We calculate the (one-body) spectrum
of this Hamiltonian by diagonalizing it and then approximate the
gap by defining

Δ = × − −
= ϵ − ϵ

− +

+

c E E E2 N N N

N N

0
/2

0
/2 1

0
/2 1

/2 /2 1

(32)

where

∑̂ |Φ⟩ = ϵ |Φ⟩ = ϵ−
=

H E;i
M

i

M

iel ph
proj

0
1 (33)

3.3. Parameters. The phase transition depends on the
itineracy of the electrons (∝ t), the electron−electron repulsion
(∝ U), the electron−phonon interaction (∝ g), and the relative
velocity of the phononic degrees of freedom with respect to the
electrons. This is why we introduce the adiabaticity ratio

α
ω

=
t

0
(34)

accounting for the relation between the kinetic hopping energy
of the electrons t and the frequency of the phonons ω0. We also
decide to discuss our results in terms of dimensionless coupling
constants:

λ
ω

= =u
U

t
g
t4

,
2

2

0 (35)

4. RESULTS
In the following section, we discuss the results of our DMET
calculation when solving the Hubbard−Holstein model
Hamiltonian. First, in Section 4.1, we describe the quantum
phase transitions in the anti-adiabatic (α = 5.0) and in the
adiabatic (α = 0.5) limit obtained with DMET. Afterward, in
Section 4.2, we compare the DMET results with results obtained
from a pure real-space DMRG calculation on the original chain,
using the code presented in ref 40. Finally, in Section 4.3, we
investigate the importance of the quantum nature of the
phonons by comparing DMET results with the Born−
Oppenheimer (BO) approximation, i.e., by regarding the
phonons as the vibrations of classical ions.
In order to obtain trustworthy results, we have to make sure

that our results do not depend on the implementation details, or
if that is not possible, we have to quantify the impact of our
implementation on the results. We therefore conducted
convergence tests for DMET with respect to the total system
size N, the number of considered impurity lattice sitesNimp, and
the number of phononic basis functions per siteNph. The results
of these tests are discussed in the Appendix. Summarizing these
results, we could remove the dependence from the total system
size N by linear extrapolation (Finite Size Scaling). An accurate
extrapolation of the results with Nimp and Nph was not possible
for some parameter ranges (see Number of Phononic Basis
Functions and Scaling with Impurity Size, respectively).
Maintaining the balance between accuracy and numerical
costs, we consider an impurity system size of Nimp = 6 and a
total number of bosonic basis functions of Nph = 8. These
parameters, together with a bond dimension of 2000 for the
DMRG impurity solver, are used throughout this paper, if not
stated otherwise.

4.1. DMET Results. 4.1.1. Anti-adiabatic Limit. In Figure 3,
we plot the energy gap Δc/t, the electronic density difference
between neighboring sites ⟨ni⟩ − ⟨ni+1⟩, and the double
occupancy ⟨ni↑ni↓⟩ (as defined in Section 3.2) in the anti-
adiabatic limit (α = 5.0) for an electron−electron repulsion of u
= 1.0 and for different electron−phonon coupling strengths λ.
For all three observables, we observe a Mott phase for 0≤ λ≤

0.7. With growing λ, we indeed observe a distinct metallic phase
(0.7 ≤ λ ≤ 1.1) which is followed by a Peierls phase for 1.1 ≤ λ.
We summarize additional data in the phase diagram for different
values of u and λ in the anti-adiabatic limit in Figure 4. We
observe that the system always undergoes a distinct metallic
phase when transiting fromMott to Peierls phase. This behavior
agrees with the assumption that strong quantum fluctuations of
the phonons lead to a destruction of the Peierls phase and also
prevent the emergence of the Mott phase for weak electron−
electron interaction, overall resulting in a metallic behavior. The
range of the metallic phase stays approximately constant.

4.1.2. Adiabatic Limit. The occurrence of a pronounced
metallic phase in the anti-adiabatic limit was to be expected; it is
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however not clear whether this phase also occurs for all
electron−electron interaction strength u in the adiabatic limit,
where the phonon frequency is small in comparison to the
electronic hopping and, thus, the quantum fluctuations of the
phonons are suspected to be smaller.
In Figure 5, we again show the energy gapΔc/t, the electronic

density difference between neighboring sites ⟨ni⟩ − ⟨ni+1⟩, and
the double occupancy ⟨ni↑ni↓⟩ (as defined in Section 3.2) in the
adiabatic limit (α = 0.5) for different electron−electron
repulsions (u = 0.0; 0.2; 0.4), and different electron−phonon
coupling strengths λ.
When the electron−electron interaction is absent, we do not

observe a Mott phase, but there is a direct transition from the
metallic to the Peierls phase at λ = 0.2. This result is expected as
the Mott phase is driven by the electron−electron interaction
and therefore cannot occur in this limit.

For a small electron−electron interaction, u = 0.2, the Mott
phase exists for very small electron−phonon interactions 0≤ λ≤
0.1. The gap indicating the Mott phase though is very small in
comparison to the gap that indicates the pronounced Peierls
phase for 0.3 ≤ λ. Between the Mott and the Peierls, we observe
a small metallic phase for electron phonon coupling values of 0.1
≤ λ ≤ 0.3.
When considering bigger electron−electron interactions u =

0.4, the size of the gap indicating the Mott gap grows
considerably, as does the range of the Mott phase: for 0 ≤ λ ≤
0.25, we observe a Mott phase, followed again by a narrow
metallic phase for 0.25 ≤ λ ≤ 0.45. Afterward, we observe a
Peierls phase, whose gap is less pronounced than for lower u but
still clearly visible.
Our results for the adiabatic limit of the Hubbard−Holstein

model are summarized in the phase diagram shown in Figure 6.
We observe that the Mott phase, while not existent at all for u =
0.0, grows more and more pronounced for growing electron−
electron interaction values u. The range of the metallic phase
shrinks with increasing electron−electron interaction until it
vanishes completely for u = 0.4. The position of the metallic
phase shifts from small values for electron−phonon interaction λ
to intermediate values. Also, the Peierls phase is getting less
pronounced for growing u.

4.2. Comparison DMET and DMRG Calculations. We
benchmark the accuracy of DMET against results obtained using
the DMRG method. The results are obtained with the SyTen
library, which for this purpose was expanded to be able to treat
coupled Fermion-boson systems. Similar to the DMET
calculation, the extrapolation of DMRG results with respect to
the system size was performed for all data (see Finite Size
Scaling). Also for DMRG, an accurate convergence with the
number of phonon basis function per site Nph was not possible
for all parameter ranges, as discussed in greater detail in Number
of Phononic Basis Functions. Again, maintaining the balance
between accuracy and computational costs, we pickNph = 10 for
all DMRG calculations throughout the paper as well as a bond
dimension of 4000.
We compare the DMRG and the DMET results for both the

anti-adiabatic limit (α = 5.0) and the adiabatic (α = 0.5) limit.
In Figure 7, we compare the DMRG and the DMET results

for the anti-adiabatic limit (α = 5.0) and an electron−electron
repulsion of u = 1.0. Up to an electron−phonon coupling value
of λ = 1.1, we observe a quantitative agreement between DMET
and DMRG for all three considered quantities including the
energy gap, although different approximations were invoked to
calculate this property. For larger values of λ inside the Peierls
phase, DMET overestimates both the size of the energy gap
(computed from the mean-field value within DMET as detailed
above) and the staggered charge-density compared to the
respective values within DMRG. Apparently quantum fluctua-
tions that reduce both of the reported quantities are important
close to the phase transition between the metallic and the Peierls
phase, and these quantum fluctuations are more pronounced in
the DMRG results compared to DMET here.
However, the point of the quantum phase transition between

the metallic and the Peierls phase is predicted equivalently for
the DMRG and the DMET calculation within the chosen
parameter grid.
In Figure 8, we compare the DMRG and the DMET results

for the adiabatic limit (α = 0.5) and an electron−electron
repulsion of u = 0.2. While the position of the phase transition
between the Mott and the metallic phase agrees within the

Figure 3. Energy gap Δc/t, density difference of the electrons between
neighboring sites ⟨ni⟩ − ⟨ni+1⟩, and double occupancy ⟨ni↑ni↓⟩ for the
anti-adiabatic limit α = 5.0 and an electron−electron coupling of u = 1.0
for different electron−phonon couplings λ. For 0 ≤ λ ≤ 0.7, a Mott
phase is observed, which changes into a metallic phase for 0.7≤ λ≤ 1.1.
Above coupling values of 1.1 ≤ λ, we observe a Peierls phase.

Figure 4. Phase diagram for the anti-adiabatic limit (α = 5.0) of the
Hubbard−Holstein model. For different electron−electron coupling
values u and different electron−phonon coupling values λ, the phase of
the model at these parameters is indicated. We always observe a
pronounced metallic phase in between the Mott and the Peierls phase.
We further observe a shift of the position of the metallic phase to higher
λ values with growing values of u.
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chosen parameter grid, the position of the phase transition
between the metallic and the Peierls phase slightly disagrees
between DMET and DMRG. DMRG predicts the occurrence of
the phase transition for higher values of λ thanDMET. Similar to
the above discussion of discrepancy between energy gaps and
staggered charge densities in this parameter regime, it is possible
that DMRG is more sensitive to quantum fluctuations here
compared to DMET and, thus, predicts a more robust metallic
phase compared to DMET. Another reason for the discrepancy
can be that both methods do not predict the point of the phase
transition accurately in this limit due to computational
limitations. As discussed in Scaling with Impurity Size, an

accurate extrapolation of DMET results with the impurity size
Nimp is not possible in the Peierls phase. Here, especially, the size
of the charge gap might be overestimated and the point of the
phase transition can be predicted for too small values of λ,
whereas in DMRG the point of the phase transition might be
predicted for too large values of λ due to the lack of convergence
with Nph in this region of the phase diagram (see Number of
Phononic Basis Functions).

Figure 5. Energy gapΔc/t, density difference of the electrons between neighboring sites ⟨ni⟩ − ⟨ni+1⟩ and double occupancy ⟨ni↑ni↓⟩ for the adiabatic
limit α = 0.5 and three different electron−electron couplings, u = 0.0, u = 0.2, and u = 0.4 for different electron−phonon couplings λ. For u = 0.0 (absent
electron−electron coupling), we do not observe any Mott phase, but there is a direct transition from the metallic to the Peierls phase at λ = 0.2. For a
value of u = 0.2, the Mott phase exists for values of 0 ≤ λ ≤ 0.1, but the gap is very small. For values 0.1 ≤ λ ≤ 0.3, a metallic phase can be observed,
followed by a Peierls phase for λ ≥ 0.3. For bigger electron−electron couplings (u = 0.4), we observe a phase transition from Mott to Peierls phase
without an intermediate metallic phase. The energy gap indicating the Mott phase (from 0 ≤ λ ≤ 0.4) gets more pronounced in this regime while the
size of the gap indicating the Peierls phase decreases.

Figure 6. Phase diagram for the adiabatic limit (α = 0.5) of the
Hubbard−Holstein model. For different electron−electron coupling
values u and different electron−phonon coupling values λ, the phase of
the model at these parameters is indicated. While not existent at all for u
= 0, the Mott phase gets more and more pronounced with growing u
and small λ values. The Peierls phase, while always existing in this range,
needs higher electron−phonon coupling strength to occur when the
electron−electron interactions are also growing bigger. The range of the
metallic phase shrinks with increasing electron−electron interaction
until it vanishes completely for u = 0.4.

Figure 7. Comparison of the energy gap Δc/t, density difference of the
electrons between neighboring sites ⟨ni⟩ − ⟨ni+1⟩, and double
occupancy ⟨ni↑ni↓⟩ for the DMRG and the DMET calculation in the
anti-adiabatic limit α = 5.0. Plotted are different electron−phonon
coupling values λ for a constant electron−electron coupling of u = 1.0.
We observe a quantitative agreement in the position of the phase
transitions between Mott and metallic phase at λ = 0.7 and between
metallic and Peierls phase at λ = 1.1.
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4.3. Born−Oppenheimer Approximation. The Hamil-
tonian has so far been written in second quantized form, but it
can equivalently also be written as
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In contrast to eq 29, here the bosonic degrees of freedom are not
considered in terms of phonons but in terms of the distortion
from the initial position x̂i of the ions. p̂i is the momentum of the
ions.
In the BO approximation, we assume the ions to be classical

particles as, due to their higher mass, they are moving much
slower than the electrons. Thus, we can neglect their kinetic
energy which yields
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Here, the remaining ionic term,∑ ̂ω xi i2
20

2

, purely depends on the

distortion of the ions and can be treated as an external
parameter. We treat the BO Hamiltonian with purely electronic
DMET and optimize the distortion of the ions x̂i to minimize the
total energy. The optimization of the xi values was performed on
the impurity lattice sites of the system. The calculation was

performed for growing impurity sizes (Nimp = 2, 4, 6) and
converged at Nimp = 4.

In Figure 9, we compare the double occupancy ⟨ni↑ni↓⟩ and
the distortion of the electronic density ⟨ni⟩ − ⟨ni+1⟩ for the BO
system and the full quantum mechanical system in the anti-
adiabatic limit (α = 5.0) and for an electron−electron repulsion
of u = 1.0.
We observe that, for both observables, the Born−

Oppenheimer description of the phase transition is not accurate.
While in the full quantum mechanical model, the transition
between metallic and Mott phase occurs for a value of λ = 1.1, in
the Born−Oppenheimer model, this transition already occurs
for λ = 1.0. Additionally, the actual phase transition is of second
order, while the Born−Oppenheimer treatment predicts a phase
transition of first order.
In Figure 10, we again compare the full quantum mechanical

treatment with the BO approximation, this time for the adiabatic
limit and an electron−electron repulsion of u = 0.2. While still
not accurate (the phase transition is predicted too early, at λ =
0.25 (BO) instead of λ = 0.3 (full)), at least the qualitative nature
of the phase transition as being second order is grasped.
This result confirms our expectation that, in order to treat the

quantum phase transitions of the Hubbard−Holstein model, the
quantum mechanical nature both of the electrons and of the
phonons needs to be taken into account. Especially, when the
phononic frequency is higher than the electronic kinetic
hopping, the BO approximation, which assumes the phonons
to be moving much slower than the electrons, fails.

5. CONCLUSIONS AND OUTLOOK
In conclusion, we have benchmarked the density-matrix
embedding theory against density-matrix renormalization
group results for the one-dimensional Hubbard−Holstein
model.

Figure 8. Comparison of the energy gapΔc/t, density difference of the
electrons between neighboring sites ⟨ni⟩ − ⟨ni+1⟩, and double
occupancy ⟨ni↑ni↓⟩ for the DMRG and the DMET calculation in the
adiabatic limit α = 0.5. Plotted are different electron−phonon coupling
values λ for a constant electron−electron coupling of u = 0.2. We
observe a quantitative agreement in the position of the phase transitions
between Mott and metallic phase at λ = 0.1. The position of the phase
transition between metallic and Peierls phase is predicted slightly
differently: λ = 0.3 for the DMET calculation and λ = 0.35 for the
DMRG calculation.

Figure 9. Comparison of the density difference of the electrons
between neighboring sites ⟨ni⟩ − ⟨ni+1⟩ and the double occupancy
⟨ni↑ni↓⟩ in the anti-adiabatic limit for the full quantum mechanical
treatment and the BO approximation of the Hubbard−Holstein model.
Both calculations are performed with DMET. While for the full
quantum mechanical treatment the position of the phase transition is
grasped quantitatively, both the nature and the position of the gap are
predicted falsely in the BO approximation, predicting a first-order phase
transition as well as an earlier occurrence of the transition. Parameters
are α = 5.0, u = 1.0, telec = tphon = 1, Nimp = 6, and Nphon = 8.
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We have demonstrated good agreement not only for ground
state energies but also notably of excitation gaps and phase
diagrams between DMET and DMRG.
An important prospect of DMET for the electron-boson

problem lies in its possible extensions to electron-photon
systems. Notably, recent efforts toward cavity quantum-
electrodynamical engineering of materials properties44−51 have
been made. We envision that these developments will open up a
whole new field in which efficient methods able to deal with
correlated electron-boson lattice systems from weak to strong
coupling are urgently needed. Our benchmark study helps pave
the way to these new endeavors.

■ APPENDIX
In this Appendix, we will discuss how our results depend on
implementational details and howwe remove this dependency, if
possible, or which parameters we chose for reliable calculations.

Dependence of following parameters has to be investigated for
both DMET and DMRG calculations: finite size effects with
respect to the size of the full system N and number of phononic
basis functions per site Nph. This analysis is done in Finite Size
Scaling and Number of Phononic Basis Functions, respectively.
Additionally, we analyze the dependence of DMET results on

the chosen impurity size Nimp in Scaling with Impurity Size.
Although not being an observable of physical interest, the

energy per site is an important property to show how well two
methods agree with each other. This is why, in Energies, we
show the energy per site for the DMRG method and both
implementations of the DMET method (with and without the
Born−Oppenheimer approximation).

Finite Size Scaling.The Hubbard−Holstein model is defined
in infinite space and translationally invariant. Numerically
though, we are only able to consider finite systems and therefore
have to consider finite size effects and the influence of the
boundaries on the observables. This is why, both for the DMRG
and for the DMET calculation, we do a finite size scaling.

Figure 10. Comparison of the density difference of the electrons
between neighboring sites ⟨ni⟩ − ⟨ni+1⟩ and the double occupancy
⟨ni↑ni↓⟩ in the adiabatic limit for the full quantummechanical treatment
and the Born−Oppenheimer approximation of the Hubbard−Holstein
model. Both calculations are performed with DMET. While for the full
quantum mechanical treatment the position of the phase transition is
grasped quantitatively, it is predicted too early with the Born−
Oppenheimer method. Parameters are α = 0.5, u = 0.2, telec = tphon = 1,
Nimp = 6, and Nphon = 8.

Figure 11. Finite size scaling for the energy gap in the DMET
calculation. We show some examples both for the adiabatic limit (λ =
0.1, 0.3, and 0.5 and u = 0.2) and for the anti-adiabatic limit (λ = 0.2, 0.8,
and 1.4 and u = 1.0). The extrapolation is done with system sizes ofN =
204; 408; 816. The scaling is linear, making it possible to remove finite
size effects.

Figure 12. Finite size scaling for the energy gap in the DMRG
calculation. We show some examples both for the adiabatic limit (λ =
0.1, 0.3, and 0.5 and u = 0.2) and for the anti-adiabatic limit (λ = 0.2, 0.8,
and 1.4 and u = 1.0). The extrapolation is done with system sizes ofN =
24, 48, and 96. The scaling is again linear, making it possible remove
finite size effects.

Figure 13. Dependence of the energy gap on the number of phononic
basis functions in the DMET calculation for both the adiabatic limit (α
= 0.5, u = 0.2) and the anti-adiabatic limit (α = 5.0, u = 1.0). In the anti-
adiabatic limit, the size of the gap converges with 10 phonons in all
regions of the phase diagram. In the adiabatic limit, the size of the gap
converges fast in the Mott and metallic phase but does not converge in
the Peierls phase. The point of the phase transition from the metallic to
the Peierls phase, however, converges.
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As the numerical costs grow quadratically with increasing total
system size, we can regard very big systems and therefore did the
finite size scaling with system sizes ofN = 204,N = 408, andN =
816 sites, as shown in Figure 11.
As the other observables, namely, the density difference of the

electrons between neighboring sites ⟨ni⟩− ⟨ni+1⟩ and the double
occupancy ⟨ni↑ni↓⟩ are local properties, the finite size effects and
the influence of the boundaries do not influence the results
anymore for system sizes bigger than N = 204.
In the DMRG calculation, opposed to the DMET calculation,

we only have two sources of possible errors due to finite size
effects: the system size itself and the maximal number of
considered basis functions in the phononic Fock space, Nphon.
The numerical costs of these calculations also grow polynomially
with growing system sizes. This is why, for our extrapolation, we
chose to consider system sizes ofN = 24,N = 48, and N = 96, as
can be seen in Figure 12.
Number of Phononic Basis Functions. In Figures 13 and 14,

we show the dependence of the energy gap on the number of

phononic basis functions in both DMET and DMRG
calculations for both the adiabatic limit (α = 0.5, u = 0.2) and
the anti-adiabatic limit (α = 5.0, u = 1.0).
In both cases, we observe a convergence of the gap size in the

anti-adiabatic limit for all regions of the phase diagram (DMET
with 8 phonons and DMRG with 10 phonons). In the adiabatic
limit, a convergence of the gap size in the Mott and the metallic
phase can be observed, but neither DMET nor DMRG seem to
converge in the Peierls phase. This makes predictions regarding
the actual size of the energy gap in the Peierls phase and also the
comparison between DMET and DMRG results difficult in this
region. The position of the phase transition from the metallic to
the Peierls phase converges for DMET but not for DMRG.

Scaling with Impurity Size. The results of a DMET
calculation always depend on the chosen size of the impurity
Nimp. The finite size effects due to the size of the impurity,
however, cannot be taken into account that easily, as their
scaling is not linear and therefore cannot be rescaled easily.

Figure 14. Dependence of the energy gap on the number of phononic
basis functions in the DMRG calculation for both the adiabatic limit (α
= 0.5, u = 0.2) and the anti-adiabatic limit (α = 5.0, u = 1.0). In the anti-
adiabatic limit, the size of the gap converges with 8 phonons in all
regions of the phase diagram. In the adiabatic limit, the size of the gap
converges fast in the Mott and metallic phase but does not converge in
the Peierls phase. The point of the phase transition from the metallic to
the Peierls phase might be predicted for too large values of λ.

Figure 15. Scaling of the energy gap with growing impurity size
(DMET calculation) for the adiabatic limit (α = 0.5, u = 0.2) as well as
for the anti-adiabatic limit (α = 5.0, u = 1.0). We see that the
discrepancy between the results gets smaller for growing impurity sizes.

Figure 16. Scaling of the energy gap with the inverse impurity size
(DMET calculation) for the adiabatic limit and some values of λ in the
Mott and the Peierls phase. We observe a nonlinear scaling, which
makes an extrapolation with impurity size not possible.

Figure 17. Comparison of the energy per site Esite, calculated with the
DMRG and with the DMET method. In the upper graph, we show the
anti-adiabatic limit (α = 5.0, u = 1.0), and in the lower graph, the
adiabatic limit (α = 0.5, u = 0.2). For both limits, the results agree
quantitatively.
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We show the scaling for the energy gap and different impurity
sizes in Figure 15 for the adiabatic and the anti-adiabatic limit.
With growing impurity sites, the estimation of the energy gap in
the Peierls phase gets smaller for both cases and the discrepancy
between the results for growing impurity sites get smaller.
To show the scaling explicitly, we plot the energy gap as a

function of the inverse impurity size 1/Nimp for the adiabatic
limit and multiple values of λ (Figure 16). In contrast to the
scaling with the full systems size, we cannot observe a linear
behavior here, making it hard to extrapolate the results or give a
quantitative error estimate. We observe that overall the size of
the gap in the Peierls phase decreases with increasing Nimp,
suggesting that in the limit of largeNimp a gap closing is possible
at higher values of λ. Hence, it is possible that, forNimp = 6, which
has been used for all DMET calculations throughout the paper,
the point of the phase transition frommetallic to Peierls phase is
predicted for too small values of λ.
Energies. In order to benchmark the results of the DMET

calculation, we compare the results for the calculated energy per
site Esite with those from theDMRG calculation. In Figure 17, we
show the energy per site for the anti-adiabatic (α = 5.0, u = 1.0)
as well as for the adiabatic limit (α = 0.5, u = 0.2) for DMRG and
DMET calculations. For both cases, the results agree on a
quantitative level.
Additionally, we also compare the energies per site between

the full Hubbard−Holstein model and the Hubbard−Holstein
model with BO approximation in Figure 18. For the anti-
adiabatic limit, the energy per site shows approximately the same
behavior while not agreeing quantitatively. In the adiabatic limit,
a qualitative agreement can be observed.
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