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ABSTRACT
Background rapid automatised naming (ran) and 
rapid alternating stimulus (raS) are reliable predictors 
of reading disability. the underlying biology of reading 
disability is poorly understood. However, the high 
correlation among ran, raS and reading could be 
attributable to shared genetic factors that contribute to 
common biological mechanisms.
Objective to identify shared genetic factors that 
contribute to ran and raS performance using a 
multivariate approach.
Methods We conducted a multivariate genome-wide 
association analysis of ran Objects, ran letters and 
raS letters/numbers in a sample of 1331 Hispanic 
american and african–american youth. Follow-up 
neuroimaging genetic analysis of cortical regions 
associated with reading ability in an independent sample 
and epigenetic examination of extant data predicting 
tissue-specific functionality in the brain were also 
conducted.
Results genome-wide significant effects were 
observed at rs1555839 (p=4.03×10−8) and replicated 
in an independent sample of 318 children of european 
ancestry. epigenetic analysis and chromatin state models 
of the implicated 70 kb region of 10q23.31 support 
active transcription of the gene RNLS in the brain, 
which encodes a catecholamine metabolising protein. 
chromatin contact maps of adult hippocampal tissue 
indicate a potential enhancer–promoter interaction 
regulating RNLS expression. neuroimaging genetic 
analysis in an independent, multiethnic sample (n=690) 
showed that rs1555839 is associated with structural 
variation in the right inferior parietal lobule.
Conclusion this study provides support for a novel trait 
locus at chromosome 10q23.31 and proposes a potential 
gene–brain–behaviour relationship for targeted future 
functional analysis to understand underlying biological 
mechanisms for reading disability.

InTROduCTIOn
Reading disability (RD, also known as develop-
mental dyslexia) is a complex neurodevelopmental 
disorder characterised by difficulties in reading 

despite educational opportunity and normal intel-
ligence, and is the most common neurodevelop-
mental disorder diagnosed in children ages 5–18 
years, with a prevalence of 5%–17%.1 The genetic 
component of RD is strong, with family and twin-
based studies estimating moderate to high herita-
bilities >0.50.2 To date, at least nine susceptibility 
loci for RD (DYX1-9) have been identified through 
linkage mapping and replicated in several indepen-
dent populations, along with several candidate risk 
genes including KIAA0319, DCDC2 and DYX1C1.2 
However, variants in these candidate genes and 
loci do not account for a substantial portion of the 
estimated heritability.3 In addition, genome-wide 
analyses predicated on quantitative measures of 
reading ability and case–control status for RD have 
identified novel variants but have had little success 
attaining genome-wide significance.4 This could be 
explained by low sample sizes in the studies, but 
another reason may be phenotypic heterogeneity of 
the RD phenotype.

One approach to studying the genetics of 
complex trait disorders such as RD is to examine 
relevant endophenotypes. An endophenotype 
is a quantitative trait measure that is correlated 
with a disorder or trait of interest due, in part, to 
shared (pleiotropic) underlying genetic influences. 
For a phenotype to be considered an endopheno-
type for a complex trait disorder, it must have a 
genetic component, be independent of clinical state 
(affected or unaffected), cosegregate with disorder 
status in a family and have reproducible measure-
ments.5 Endophenotypes are conceived as being 
closer to the underlying biology than the corre-
sponding complex disorder. This could improve 
the statistical power to identify genetic variants 
through larger effect sizes. Two potential endophe-
notypes for reading proficiency that satisfy these 
criteria are rapid automatised naming (RAN) and 
rapid alternating stimulus (RAS).

RAN tasks require sequential naming of visu-
ally presented, familiar items (eg, objects, letters, 
numbers or colours) as quickly and accurately 
as possible. RAN has been described as capturing 
a ‘mini-circuit’ of the reading network that taps 
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into cognitive subprocesses critical for reading, such as auto-
matic attentional processing.6 Reading and RAN performance 
are moderately correlated (0.28–0.57), with deficits in RAN 
performance observed in 60%–75% of individuals with RD.7–9 
Furthermore, performance on RAN in kindergarten is predic-
tive of later reading fluency and is stable through elementary 
school.10 11 RAN deficits even persist into adulthood.12 13

RAS tasks are similar in overall design to RAN tasks but involve 
sequential naming of items across alternating stimulus categories 
as quickly and accurately as possible (ie, alternating letters and 
numbers). RAS tasks evaluate the ability to direct attention while 
performing an automatic task like sequential naming.14 RAN 
and RAS are highly correlated (0.85), and like RAN, RAS perfor-
mance can differentiate poor from typically developing readers 
and is highly predictive of later reading ability.14–16

RAN has a strong genetic component with heritability esti-
mates ranging from 0.46 to 0.65.17 18 To date, several family-based 
studies have identified novel genetic loci linked to RAN and RAS 
performance, with some studies also supporting linkage to other 
previously identified DYX loci.19 The majority of studies focused 
on linkage mapping, while the limited number of association 
studies on RAN and RAS directly targeted the strongest candidate 
genes and/or variants identified for RD from the available litera-
ture. However, a recent genome-wide meta-analysis and multivar-
iate analysis of RAN Digits, RAN Letters and RAN Pictures found 
significant associations with rs17663182 in chromosome 18q12.2 
in a sample of 2562–3468 European individuals.20

Notably, genetic studies of RAN, RAS and RD were previ-
ously conducted on samples of largely European descent. 
This is problematic because for causal variants, differences in 
observed allele frequencies and linkage disequilibrium (LD) 
between populations could lead to associations observed in one 
population but not in another. Furthermore, lack of diversity 
in association studies leads to missed opportunities to identify 
novel trait loci present in certain populations, thus limiting 
the identification of biological clues surrounding the aetiology 
of a complex disorder.21 Using a single population to identify 
disease-associating regions constrains the ability to generalise 
relevant findings to other populations, and severely limits the 
benefits of biomedical research to only those populations with 
selected demographics.22 23

The present study aims to identify shared genetic factors that 
contribute to covariance across RAN Objects, RAN Letters and 
RAS Letters/Numbers using a multivariate genome-wide associa-
tion study in 1331 unrelated children in the Genes, Reading, and 
Dyslexia (GRaD) study, a case–control sample of RD in Hispanic 
American and African–American youth. It builds on previous 
studies that investigated the genetic underpinnings of RAN and 
RAS performance as univariate traits. However, a univariate 
design can miss underlying covariance shared across two or more 
correlated traits and therefore has low sensitivity for detecting 
shared genetic factors.24 We hypothesise that the correlations 
between RAN and RAS performance can partially be attributed to 
shared genetic factors.17 To test this hypothesis, we apply a multi-
variate genetic analysis to leverage covariance across phenotypes 
and to increase statistical power to identify the presence of genetic 
pleiotropy across different RAN and RAS tasks.24

MeThOdS
Subjects, recruitment and dnA collection
The GRaD study is a multisite, case–control study of RD in 
minority youth across the USA, Canada and Puerto Rico. Subject 
recruitment and collection of phenotype data and DNA were 
completed for 1432 unrelated children. Of these subjects, 1331 

children who passed genotyping quality control were included 
in the analysis.

The Colorado Learning Disability Research Center (CLDRC) 
cohort is a family-based sample selected for RD, Atten-
tion-Deficit/Hyperactivity Disorder (ADHD) and other learning 
disabilities. DNA and phenotype data from 318 participants, one 
from each twinship/sibship, were randomly selected for analysis 
from a total of 749 participants.

The Pediatric Imaging, Neurocognition, and Genetics (PING) 
study is a cross-sectional sample of typically developing children 
ranging in age from 3 to 20 years old. Imaging genetics analysis 
was conducted on 690 subjects with complete phenotype and 
genotype data.

Detailed descriptions of phenotypes, recruitment, inclusion 
and exclusion criteria, self-reported demographic breakdown, 
and DNA collection for each of the three samples are reported 
in the online supplementary methods and tables S1–S2.

Statistical analysis
A multivariate genome-wide association study (GWAS) of RAN 
Objects, RAN Letters and RAS Letters/Numbers was conducted 
using the R package MultiPhen.25 Joint models were corrected 
for the first three principal components (PC; online supplemen-
tary figure S1 and S2A) to correct for population stratification, 
sex, age and socioeconomic status (SES). A genome-wide signif-
icance threshold of p<5×10−8 was used to correct for multiple 
testing.26

Multivariate GWAS results were verified using a follow-up 
univariate GWAS on a latent variable composite of RAN Objects, 
RAN Letters and RAS Letters/Numbers in PLINK V.1.9 in the 
GRaD sample stratified by assignment to a ‘Hispanic American’ 
and ‘African American’ cluster based on genetic similarity to 1000 
genomes reference populations AMR (Ad Mixed American) and 
ASW (African–Americans in the Southwest USA), respectively 
(online supplementary figure S3). For the Hispanic American 
cluster, the univariate GWAS model was corrected for the effects 
of age, sex, SES and the first three ethnic-specific PCs to correct 
for intraethnic stratification (online supplementary figure S2B). 
For the African–American cluster, the model was corrected 
for age, sex, SES and the first two ethnic-specific PCs (online 
supplementary figure S2C). A meta-analysis was then conducted 
in METAL using summary statistics from the latent naming 
speed GWAS.27 Univariate analysis of covariance (ANCOVA) 
testing the top SNP against measures of reading fluency (Test of 
Word Reading Efficiency (TOWRE) and Woodcock-Johnson 3 
(WJ-III)) in the full GRaD sample was conducted in SPSS V.24. 
Models corrected for the effects of age, sex, SES and the first 
three genome-wide PCs (online supplementary figure S2A).

Replication was conducted using the CLDRC sample through 
joint analysis of RAN Colours, RAN Pictures, RAN Letters and 
RAN Numbers at SNPs identified in the GRaD discovery anal-
yses. Models were corrected for the effects of age, sex and the 
first genome-wide PC (online supplementary table S2).

Detailed descriptions of statistical analyses are reported in the 
online supplementary methods.

Bioinformatic analysis
All analyses were conducted using positions mapping to genome 
build GRCh37/hg19.

Predicted tissue-specific functionality in the genome was 
estimated through the presence of well-characterised DNase 
1 hypersensitivity sites and histone marks and using GenoSky-
line.28 Precalculated, genome-wide, tissue-specific, posterior 
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probability scores (GenoSkyline (GS) scores) for the whole 
brain and subregions of the brain (angular gyrus, prefrontal 
cortex, cingulate gyrus, anterior caudate, hippocampus, inferior 
temporal gyrus and substantia nigra) were obtained from the 
GenoSkyline database.

Follow-up analysis of epigenetic data from the Roadmap Epig-
enomics Project was conducted to identify predicted chromatin 
state in a genomic region of interest across specific tissue types. 
The 18-state model was evaluated in angular gyrus, prefrontal 
cortex, cingulate gyrus, anterior caudate, hippocampus, inferior 
temporal gyrus and substantia nigra. Data were visualised using 
the Washington University in St Louis EpiGenome Browser V.42.

The 3D Genome Browser was used to visualise publicly avail-
able chromatin contact maps at 10 kb resolution from adult 
hippocampal tissue.29 30

Detailed descriptions of the bioinformatic analysis are 
reported in the online supplementary methods.

neuroimaging genetic analysis
Neuroimaging genetics analysis in the PING sample was 
conducted using a linear regression association test in PLINK 
V.1.9. All analyses were corrected for the effects of age, sex, 
handedness, scanner device,31 intracranial volume, highest 
parental education, family income and the first four genome-
wide PCs to correct for population stratification (online supple-
mentary figure S2E). Left and right cortical volumes across seven 
regions of interest associated with the canonical reading network 
were tested for genetic association (online supplementary table 
S3). The left and right hippocampus was also included based on 
follow-up analyses, for a total of 16 assessed regions.

ReSulTS
Multivariate and univariate associations for RAn and RAS
There are significant Pearson correlations across RAN Objects, 
RAN Letters and RAS Letters/Numbers in the GRaD sample 
ranging from 0.621 to 0.781 (p<1×10−140; online supple-
mentary table S4), providing the rationale to use a multivar-
iate GWAS. Multivariate GWAS of RAS Letter/Numbers, RAN 
Objects and RAN Letters reveals a genome-wide significant 
effect for rs1555839 (p=4.03×10−8; genomic inflation factor 
[λ]=1.047; figure 1, online supplementary figure S4, table 1) 
located approximately 5 kb upstream from ribosomal protein 
L7 pseudogene 34 (RPL7P34). RPL7P34 is a long non-coding 
RNA (lncRNA) on chromosome 10 mapping between the 
genes LIPF and LIPJ. Additional SNPs approaching significance 
(p<1×10−5) cluster within a 70 kb region of chromosome 
10q23.31 that spans RPL7P34 and a gene called renalase (RNLS; 
MIM: 609360) (figure 1B). To determine whether specific vari-
ables may be driving the multivariate signal, we conducted an 
independent, post-hoc, univariate examination of RAN Objects, 
RAN Letters and RAS Letters/Numbers on the top SNPs iden-
tified in the multivariate analysis. The independent analysis 
shows that the SNPs located on chromosome 10q23.31 have 
an effect across all RAN and RAS tasks (table 1, online supple-
mentary figure S5–S7). The strongest association in the chro-
mosome 10q23.31 region is with SNP rs1555839 (β=−0.31, 
p=1.71×10−9) for RAS Letters/Numbers.

To further validate the findings from the multivariate GWAS 
of the full GRaD cohort, we performed a GWAS meta-analysis of 
Hispanic American (AMR cluster; n=883) and African–American 
(ASW cluster; n=441) participants in the GRaD sample on a latent 
naming speed variable (online supplementary figure S3). rs1555839 
and rs6963842, previously implicated in the multivariate GWAS 

of RAN Objects, RAN Letters and RAS Letters/Numbers, show 
suggestive association (p<1×10−6; λ=1.013; online supplemen-
tary figure S8, table S5). rs701825 on chromosome 10, also impli-
cated in the discovery multivariate GWAS, is also highly associated 
with naming speed latent variable in the meta-analysis. However, 
the significant heterogeneity statistic indicates a difference in the 
magnitude of the effect between Hispanic Americans and African–
Americans on naming speed, but the direction of effect remains 
the same (online supplementary table S5). Both the multivariate 
GWAS and the latent naming speed meta-analysis implicate the 
same regions of chromosome 7q31.1 and 10q23.31, providing 
independent evidence that findings are not from hidden popula-
tion stratification.

Due to significant correlations observed between RAN/RAS 
tasks and measures of word reading (r=0.325–578, p<1×10−32; 
online supplementary table S4), we evaluated whether allelic 
variation at rs1555839 was associated with mean differences in 
performance for TOWRE and WJ-III Basic Reading. Univariate 
ANCOVA shows a significant effect of rs1555839 with TOWRE 
(F[1,1281]=12.50, p=4.21×10−4, ηp

2=0.01) and WJ-III 
Basic Reading (F[1,1278]=13.47, p=2.53×10−4, ηp

2=0.01) 
(figure 2). Overall, performance on reading fluency and word 
reading is worse in the presence of the C allele at rs1555839, 
which is the same allele and direction of effect associated with 
reduced scores on RAN and RAS.

Replication of multivariate GWAS and latent naming speed 
GWAS meta-analysis
Next, we brought forward all three SNPs that achieved genome-
wide significance or were suggestive in both the discovery multi-
variate GWAS and the latent naming speed GWAS meta-analysis 
for replication in the CLDRC. Assessments of RAN Colours, RAN 
Letters, RAN Pictures and RAN Numbers were available in 318 
unrelated participants. RAN Objects and RAS Letters/Numbers 
were not assessed in the CLDRC. Multivariate analyses of RAN 
Colours, RAN Letters, RAN Pictures and RAN Numbers show 
a significant replication of rs701825 on chromosome 10, while 
we observe marginal significance with rs1555839. rs6963842 on 
chromosome 7 does not replicate (table 2). Post-hoc univariate 
association analysis shows a significant replication of rs1555839 
and rs701825 for RAN Letters (table 2, online supplementary 
table S6). The direction of effect on RAN Letters is the same for 
both cohorts (online supplementary table S6).

Bioinformatic analysis
RNLS, a gene located within 50 kB of rs1555839, is expressed 
in all regions of the brain (Genotype-Tissue Expression (GTEx) 
median >1 transcripts per million (TPM))32 and throughout the 
human lifespan (BrainSpan).33 LIPJ is expressed at low levels in 
the cerebellar hemisphere and cerebellum (median <0.7 TPM). 
LIPF is not expressed in the brain in either the GTEx or Brain-
Span databases.

We used GenoSkyline to evaluate the presence of predicted 
functional regions of the genome surrounding the 70 kb region 
of chromosome 10q23.31 spanning rs2576167–rs701825 impli-
cated in the discovery multivariate GWAS using epigenomic 
annotations from the National Institutes of Health Roadmap 
Epigenomics Project and Encyclopedia of DNA Elements 
(ENCODE). Within all sampled tissues, GenoSkyline predicts 
tissue-specific functionality surrounding our top SNPs. The 
first major peak (chr10:90341871–90343706) encompasses the 
promoter region of RNLS, reaching the maximum GS score of 
1 for all tissues (table 3, online supplementary figure S9). The 
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Figure 1 (a) Manhattan plot summarising the results of the multivariate genome-wide association study (gWaS) for ran Objects, ran letters and 
raS letters/numbers and (B) locusZoom plot of genomic region surrounding genome-wide significant SnP, rs1555839. the genome-wide-associated SnP, 
rs1555839, is marked by a black diamond. lncrna pseudogene, RPL7P34 (chr10: 90,377,980–90,378,691), is not represented in the locusZoom plot. grey 
line: Bonferroni correction for multiple testing, p<5×10−8. lncrna, long non-coding rna; ran, rapid automatised naming.

Table 1 Multivariate genome-wide association study results

Marker ChR BP Minor allele MAF

P value

GeneJoint model RAn Objects RAn letters
RAS letters/
numbers

rs1555839 10 90 382 820 C 0.16* 4.03×10−8† 7.06×10−5 6.20×10−6 1.71×10−9† RPL7P34

rs7913742 10 90 376 864 C 0.149 2.89×10−7 2.94×10−4 3.01×10−5 1.33×10−8† RPL7P34

rs10749593 10 90 374 057 C 0.153 3.04×10−7 4.30×10−4 2.21×10−5 1.31×10−8† RPL7P34

rs113424746 19 2 920 806 A 0.056 3.49×10−7 8.83×10−5 9.73×10−5 0.334 lnc-ZNF77-1

rs701825 10 90 417 547 G 0.132 7.92×10−7 5.47×10−4 1.35×10−6 6.15×10−8 –

rs6963842 7 107 634 989 G 0.471 8.57×10−7 2.43×10−4 1.84×10−7 2.08×10−6 LAMB1

Top associated markers with p<1×10−6 in the GRaD study that were identified using a joint model of RAN Objects, RAN Letters and RAS Letters/Numbers. Results from follow-up, 
independent univariate analysis of RAN Objects, RAN Letters and RAS Letters/Numbers at each marker are also represented. Markers were assigned to genes if they fell within 
the canonical gene body as described by 1000 Genomes Project Phase 3 (V.80 GRCh37).
*For self-reported African–Americans in the GRaD sample, rs1555839 has a MAF of 0.129. For self-reported Hispanic Americans, the MAF of rs1555839 is 0.178.
†Genome-wide significant (p<5×10−8).
BP, base position; CHR, chromosome; GRaD, Genes, Reading, and Dyslexia study; MAF, minor allele frequency; RAN, rapid automatised naming.
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Figure 2 Mean differences in tOWre and WJ-iii Basic reading performance by allelic variation at rs1555839 in the graD study. in the presence of 
the c allele, there is a significant reduction in tOWre and WJ-iii Basic reading performance, while correcting for the effects of age, sex and population 
stratification (the first three principal components). error bars represent 95% ci. tOWre n=901, WJ-iii n=898; ***p<0.001. graD, genes, reading, and 
Dyslexia study.

Table 2 CLDRC multivariate replication

Marker ChR BP Minor allele MAF*

P value

Joint model RAn Pictures RAn Colours RAn letters RAn numbers

rs6963842† 7 107 634 989 T 0.495 0.360 0.963 0.644 0.856 0.244

rs1555839† 10 90 382 820 C 0.319 0.018 0.256 0.019 2.38×10−3‡ 0.086

rs701825† 10 90 417 547 G 0.282 4.60×10−3‡ 0.562 4.09×10−3‡ 9.32×10−4‡ 0.04

Results from the joint analysis of RAN Colours, RAN Pictures, RAN Letters and RAN Numbers across the top associated markers from the GRaD multivariate and meta-analytic 
discovery analyses. Results from follow-up, independent univariate analysis of RAN Pictures, RAN Colours, RAN Letters and RAN Numbers at each marker are also represented.
*MAF based on allele frequencies within the CLDRC sample.
†Imputed markers.
‡Survives Bonferroni correction for multiple testing (p<0.05/3=0.0161).
BP, base position; CHR, chromosome; CLDRC, Colorado Learning Disability Research Center; GRaD, Genes, Reading, and Dyslexia study; MAF, minor allele frequency; RAN, rapid 
automatised naming.

second major peak (chr10: 90376471–90376828) is within 2 kB 
of RPL7P34, reaching a maximum GS score of 1 in the whole 
brain, 0.886 in the hippocampus, 0.629 in the anterior caudate 
and 0.880 in the cingulate gyrus (figure 3A, online supplemen-
tary figure S9). GS scores for the angular gyrus, dorsolateral 
prefrontal cortex, inferior temporal gyrus and substantia nigra 
are less than 0.5 (online supplementary figure S9).

To determine the chromatin state of the 70 kb region of chro-
mosome 10q23.31 that contributes to high posterior probability 
scores for tissue-specific functionality in the genome, we evalu-
ated the 18-state model previously generated by the Roadmap 
Epigenomics Project. The region closely associated with the most 
significant SNPs in the GRaD discovery analysis (rs10749593, 
rs7913742, rs1555839) flanks an active enhancer site in the 
hippocampus and cingulate gyrus. These SNPs also flank regions 
of heterochromatin containing ZNF genes and repeats in the 
cingulate gyrus and inferior temporal lobe (figure 3B). In addi-
tion, an active transcription start site for RNLS is predicted in all 
brain regions (figure 3B).

Examination of LD blocks across different ethnic groups 
sampled in 1000 Genomes Phase 3 that are represented in the 
GRaD sample (Utah Residents with Northern and Western 

European Ancestry (CEU), Ad Mixed American (AMR) and 
Yoruba in Ibadan, Nigeria (YRI)) shows a single LD block 
spanning approximately 39 kb encompassing the segment that 
spans rs2576167–rs7913742 but not including rs1555839 or 
rs701825 (figure 3C; online supplementary table S7). However, 
in CEU and AMR, a single LD block spans the 70 kb segment 
that spans all SNPs of interest (figure 3C; online supplementary 
table S7). Values for D’ for CEU, AMR and YRI populations 
range from 1 to 0.87, indicating high correlation across these 
SNPs in chromosome 10q23.31.34 35 Taken together, these data 
suggest a similar genetic architecture across ethnic populations 
within this region.

To evaluate whether a potential enhancer–promoter interaction 
exists between the predicted enhancer site near RPL7P34 and active 
transcription start site for RNLS in the hippocampus, we exam-
ined extant Hi-C contact maps publicly available through the 3D 
Genome Browser.29 30 There is evidence that a chromatin interac-
tion is present between a region containing the predicted enhancer 
site and the active transcription start site at a 10 kb resolution in 
the adult hippocampus (figure 3D). No extant Hi-C contact maps 
are publicly available for the cingulate gyrus to evaluate a potential 
enhancer–promoter interaction in this region.
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Table 3 Association results of rs1555839 tested against reading-related regions of interest in the PING study

left Right

Beta Se P value Beta Se P value

Pars opercularis −33.65 66.87 0.615 −10.56 59.98 0.860

Pars orbitalis 8.777 26.69 0.742 −23.26 32 0.468

Pars triangularis −68.95 52.30 0.188 −73.55 60.86 0.227

Supramarginal gyrus −186.1 119.4 0.120 67.43 117.2 0.565

Inferior parietal cortex −68.74 138.1 0.619 −437 143.8 2.47×10−3*

Inferior temporal gyrus −191.6 117.7 0.104 −53.74 119 0.652

Fusiform gyrus −118.9 95 0.211 −185 85.32 0.030

Hippocampus† −53.64 20.6 9.42×10−3 −34.57 21.54 0.109

Statistical models were corrected for population stratification (first four principal components), age, sex, scanner device, handedness, intracranial volume, parental education and 
family income.
*Survives Bonferroni correction for multiple testing (p<0.05/16=3.13×10−3).
†Structure not part of the canonical cortical reading network.

Figure 3 epigenetic examination of chromosome 10q23.31 containing the top-performing SnPs in the graD discovery analysis. (a) Plot of gS scores 
obtained from genoSkyline indicating the posterior probability for functionality in the brain at each genomic locus. a genoSkyline (gS) score of 1 indicates a 
high probability for functionality, while a gS score of 0 suggests no functionality. (B) 18-state chromatin model from roadmap epigenomics Project showing 
predicted chromatin states based on the presence of H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3 and H3K27ac sampled across different 
regions of the brain. (c) location of genes implicated in the graD discovery analysis, and location of linkage disequilibrium blocks (black bars) in ceU, aMr 
and Yri populations in 1000 genome Project Phase 3. (D) chromatin contact map of adult hippocampal tissue showing regions of chromatin interactions at 
10 kB resolution. Open stars represent the position of top chromosome 10q23.31 SnPs in the graD multivariate genome-wide association study (gWaS) 
analysis. aMr, ad Mixed american; graD, genes, reading, and Dyslexia study.

PInG neuroimaging genetic analysis
Following replication of rs1555839 and epigenetic analysis 
showing predicted functionality in brain tissue within the region 
of chromosome 10q23.31, we conducted a targeted neuroim-
aging genetics analysis in 690 typically developing children of 
various ancestral backgrounds from the PING sample. The C 
allele of rs1555839 is associated with lower cortical volume in 
the right inferior parietal cortex, after correcting for multiple 
testing (β=−437, p=2.43×10−3; table 3). There is a suggestive 

association between rs1555839 and lower cortical volumes in 
the left hippocampus (β=−53.64, p=9.42×10−3; table 3).

dISCuSSIOn
The present study is one of the first to examine the genetics 
of reading-related traits in an admixed population of Hispanic 
American and African–American children. Here, we describe 
a region of chromosome 10q23.31 that exceeds genome-wide 
significance with pleiotropic effects across RAN Objects, RAN 
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Letters and RAS Letters/Numbers—highly correlated tasks that 
are predictive of later reading outcome and reading ability in 
children and adults.6 We validated the GWAS results with a 
genome-wide meta-analysis of a univariate latent naming speed 
variable that implicates the same region of chromosome 10. 
Although results from the genome-wide meta-analysis did not 
attain genome-wide significance, this could reflect the loss of 
power by stratifying the GRaD cohort into smaller sample sizes, 
or perhaps the loss of power to identify genetic factors with 
pleiotropic effects using a univariate approach.24

Multivariate replication in a European sample further 
supports a shared effect from a small segment of chromo-
some 10 across RAN tasks. Within the CLDRC sample, only 
one endophenotype, RAN Letters, overlapped with the GRaD 
sample in the present analysis. Although this is not a perfect 
replication of the primary analysis, the high correlation across 
different RAN and RAS tasks16 17 and the underlying hypothesis 
of the overall study to identify shared genetic factors contrib-
uting to general RAN and RAS performance justify replicating 
in the CLDRC sample. Furthermore, the significant and same 
direction of effect we see with chromosome 10q23.31 SNPs, 
rs1555839 and rs701825, on RAN Letters in a different ethnic 
group suggests that these findings can be generalised across 
more than one population. This is supported by LD maps 
showing a similar underlying genetic architecture of this region 
across representative 1000 Genomes Project populations in 
CEU and AMR, as well as the high correlation across SNPs in 
CEU, AMR and YRI.

The most highly associated SNP in the RAS/RAN genome-wide 
screen, rs1555839, is located 5 kb upstream from the lncRNA, 
RPL7P34. The function of RPL7P34 is unknown, and the roles of 
lncRNAs in the genome are poorly understood. lncRNAs form a 
class of non-protein coding transcripts over 200 nucleotide bases 
long, and have characteristics that suggest functionality including 
tissue-specific expression, regulated expression, and regulation 
of gene expression and their networks.36 lncRNAs are reported 
to recruit transcription factors and interact with chromatin 
modifiers, suggesting that they facilitate epigenetic regulation of 
the genome.37 Approximately 40% of lncRNAs are expressed 
in the brain and are hypothesised to play critical roles in neural 
development such as neural proliferation and differentiation.38

Epigenetic examination of the region surrounding RPL7P34 
shows a predicted active enhancer site based on the presence 
of H3K4me1 and H3K27ac histone modifiers specifically in the 
hippocampus and cingulate gyrus. It is possible that RPL7P34 
plays a role in the recruitment of proteins that bind to enhancer 
sites, which promote transcription of nearby genes. The nearby 
gene RNLS, approximately 30 kb away, encodes the closest 
predicted transcription start site within the brain. Examination of 
chromatin contact maps shows that RPL7P34 and the promoter 
region of RNLS interact in the hippocampus, suggesting a poten-
tial enhancer–promoter interaction. Taken together, these results 
suggest that the enhancer region downstream from RPL7P34 
could regulate RNLS. However, further targeted functional anal-
yses to experimentally validate the molecular and epigenetic 
function of RPL7P34 and the nearby enhancer site would have to 
be conducted. It is also important to note that the epigenetic and 
Hi-C data in the brain analysed by the Roadmap Epigenomics 
Project were obtained from only two individuals.39 Although 
these data offer some clues to potential functionality, they 
should be interpreted with caution, considering the number of 
subjects sampled in the Roadmap Epigenomics Project, and lack 
of substantiation by a cell-based assay directly showing enhancer 
function in this region.

RNLS, implicated in our GWAS and epigenetic analysis, 
encodes a flavin adenine dinucleotide-dependent amine oxidase, 
called renalase, which metabolises catecholamines such as norepi-
nephrine and dopamine.40 41 Renalase is known to be secreted by 
the kidneys, circulates in blood, and modulates cardiac function 
and blood pressure.41 Gene expression data from GTEx and 
BrainSpan also suggest that renalase is present in the human 
central nervous system, including the cortex, hippocampus 
and cingulate gyrus.40 In vitro analysis of monoamine oxidase 
activity of renalase shows that it is most efficient in metabolising 
dopamine, but is also effective in metabolising epinephrine and 
norepinephrine.41 Two major neuromodulatory systems in the 
brain, dopaminergic and noradrenergic, play important func-
tions in motivation, attention, learning and memory forma-
tion—especially in the hippocampus and cingulate gyrus—but 
the functional role of renalase in metabolising neurotransmitters 
in the brain is currently unclear.40 42 However, genetic variants in 
RNLS have been associated with schizophrenia, a neuropsychi-
atric disorder that may be caused by an imbalance in neurotrans-
mission. Specifically, a recent study showed that human-induced 
pluripotent stem cell (hiPSC)-derived neurons from patients 
with schizophrenia had altered catecholamine release relative to 
control hiPSC-derived neurons.43

This is the first study to implicate RNLS in reading-re-
lated domains. However, it is not the first gene associated 
with the metabolism of catecholamines. COMT encodes cate-
chol-O-methyltransferase, which also degrades catecholamines 
in the brain, and has been associated with variation in reading-re-
lated tasks as well as functional networks associated with reading 
ability.44 45 There is also evidence showing neurochemical differ-
ences between poor readers and typically developing controls, 
suggesting that there could be alterations in how neurotransmit-
ters are metabolised in reading impaired individuals.46

Neuroimaging-genetic analysis indicates that rs1555839 is 
associated with variation in cortical volume in the right inferior 
parietal cortex. Limited studies have been conducted on struc-
tural neuroanatomical correlates of RAN, but there is evidence 
that RAN performance is associated with grey matter volumes in 
bilateral occipital-temporal and parietal-frontal regions, which 
include the right inferior parietal cortex.47 In addition, func-
tional variation in the right inferior parietal cortex has also been 
implicated in several reading-related tasks and RD.48

The small sample size is a limitation of this study for GWAS 
analyses. However, based on power calculations for a multivar-
iate GWAS, we had modest power of 0.68 to identify a genetic 
variant with a minor allele frequency of 0.16, effect size ranging 
from 0.03 to 0.013, and cross-phenotype correlation of 0.7, in 
a sample with 1263 individuals (both phenotype and genotype 
data) and α=5×10−8—all parameters applicable to this study 
and the observed SNPs showing most significant associations.49 
While hidden population admixture could be confounding our 
analyses, the calculated genomic inflation factor is within accept-
able ranges (λ<1.05) after correction, suggesting adequate 
control for population stratification. Furthermore, we split the 
GRaD cohort by genetic ancestry using k-means clustering with 
AMR and ASW reference populations and conducted a genome-
wide meta-analysis on a latent naming speed variable derived 
from performance across RAN Objects, RAN Letters and RAS 
Letters/Numbers, and we replicated the findings in an indepen-
dent sample of European ancestry, attaining similar results across 
all modes of analysis.

In conclusion, by leveraging different data sources and types 
across neuroimaging and epigenetic data, we identified and 
replicated association of a region of chromosome 10q23.31 
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with pleiotropic effects across RAN, RAS and reading abilities 
in a sample of Hispanic American and African–American youth. 
There is converging evidence that non-coding regions of the 
genome have an impact on reading-related traits, and the identi-
fication of an lncRNA associated with a reading endophenotype 
lends additional support.50 The association of RNLS also rein-
forces the hypothesis that alterations in neurochemical modu-
lation in the brain could contribute to impairments in reading 
performance. However, further functional assays must be 
conducted to shed mechanistic light on the pathways involved.

This study highlights the importance of studying the genetic 
architecture of RD across diverse ethnicities and how genetic 
effects and variants may differ (or be similar) across populations. 
This is critical in our understanding of the biological mechanisms 
that contribute to RD, and is necessary for presymptomatic iden-
tification and development of precision intervention strategies 
that are relevant to all populations.
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