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Zusammenfassung

Ein hoch angeregtes Vielteilchensystem relaxiert normalerweise in einen Gleichgewichts-
zustand, in dem alle Observablen ihre thermischen Werte annehmen. Das Verhalten des
Systems wird dann effektiv klassisch. Dieses Verhalten, bekannt als Thermalisierung, tritt
in fast allen Systemen auf. Bekannte Ausnahmen sind integrierbare Systeme, bei denen
eine extensive Anzahl von Erhaltungsgrößen die Dynamik einschränkt, und Vielteilchen-
lokalisierung, die in nicht-periodischen Potenzialen auftritt.

Diese Arbeit befasst sich mit Experimenten zur Lokalisierung von 40K-Atomen in
einem quasiperiodischen optischen Gitter. Mithilfe von Messungen der Ausdehnung
der Atomwolke, sowie dem Zerfall eines mikroskopischen Dichtemusters im Anfangszu-
stand, charakterisieren wir zunächst das Verhalten einzelner Teilchen in unserem quasi-
periodischen Potenzial. Unsere Messungen zeigen, dass sich individuelle Teilchen von
einer ausreichend starken Quasiperiodizität lokalisieren lassen. Wir finden ein Parameter-
regime, in dem sich das System durch den Aubry-André Hamiltonoperator beschreiben
lässt. Außerhalb dieses Regimes können delokalisierte und lokalisierte Zustände, getrennt
von einer Mobilitätskante, koexistieren. Des Weiteren untersuchen wir das Verhalten von
Vielteilchensystemen und zeigen, dass die Lokalisierung auch in der Gegenwart von Wech-
selwirkungen zwischen den Teilchen bestehen bleiben kann. Wir studieren die Dynamik
in der Nähe des Phasenübergangs und leiten daraus eine untere Grenze für die kritische
Stärke des quasiperiodischen Potenzials ab. Zusätzlich wird ein neu entwickeltes Ver-
fahren zur Implementierung eines gut kontrollierbaren externen Bades vorgestellt. Dieses
Bad wird verwendet, um Vielteilchenlokalisierung in offenen Systemen zu erforschen.
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Abstract

The long-time dynamics of a highly excited many-body system typically bring it into an
equilibrium state, where observables take their thermal values and its behavior becomes
effectively classical. This thermalizing behavior is generic in the sense that it occurs in
almost all systems with only two major exceptions: integrable systems, where an extensive
amount of conserved quantities restrict the dynamics, and many-body localized systems,
where non-periodic changes of local potentials result in a non-ergodic behavior.

In this thesis, we report on experiments investigating the localization of 40K atoms in
a quasi-periodic optical lattice. Using the global expansion of the cloud and the decay
of an initially imprinted microscopic density pattern, we first characterize the behavior
of single particles in the quasi-periodic potential, finding localization if the quasi-periodic
detuning is sufficiently strong. We distinguish parameter regimes where a single-particle
mobility edge is present from regimes where the system is well described by the Aubry-
André Hamiltonian, which does not exhibit a single-particle mobility edge. Further, we
investigate the behavior of the many-body systems, showing that localization can persist
in the presence of interactions. We present a detailed study of the dynamics close to the
many-body localization phase transition and derive a lower bound on the critical detuning
strength. Additionally, a newly developed method to implement a controllable external
bath to the system via scattering of near-resonant photons is applied to the many-body
localized system.
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CHAPTER 1

Introduction

There are two vastly different approaches to studying quantum-mechanical many-body
systems. One approach focuses on properties of the ground state, while the other in-
vestigates dynamics in highly excited states. Close to the ground state, the low energy
properties of condensed matter systems are studied in thermal equilibrium and phases
of matter are classified via e.g. spontaneous symmetry breaking [1], where the ground
state breaks a symmetry of the underlying Hamiltonian when the system is driven across
a phase transition. Popular examples include the transition of a metal into a ferromagnet
below the Curie temperature, where the direction of the magnetization is chosen spon-
taneously, as well as the condensation of Bosons into a macroscopic matter wave which
spontaneously chooses a phase. Such low energy phases host many intriguing quantum
phenomena, such as superfluidity [2, 3] and superconductivity [4, 5], and have been the
subject of intense research. Also, quantum phase transitions, such as the superfluid to
Mott-insulator transition [6], have received a vast amount of attention. Here, the phase
of a system changes as a Hamiltonian parameter is tuned at zero temperature.

At elevated temperatures, however, spontaneously broken symmetries are forbidden
via the Mermin-Wagner theorem [7–9], at least in lower dimensions. Here, research fo-
cuses on the out-of-equilibrium dynamics ensuing after a quantum quench, i.e. a sudden
change of a Hamiltonian parameter. In a generic many-body system, the expectation is
that such dynamics will result in the full thermalization of the system [10–12], yielding an
equilibrium state that can effectively be described by classical statistical mechanics. While
local equilibrium is usually achieved after only few collisions, slow relaxation of hydrody-
namic tails of globally conserved quantities typically continues to much longer times [13].
However, the basic ingredients necessary for a thermalizing behavior, i.e. a quantum me-
chanical equivalent of dynamical chaos [14, 15], are yet to be understood in quantum
mechanics. Following the current understanding, the dynamics after a quench are indeed
not at the core of thermalization, which rather occurs on the level of individual eigenstates.
This notion is known as the Eigenstate Thermalization Hypothesis [16, 17] (ETH), which
states that individual eigenstates are thermal themselves. Just after a quench, coherences
between eigenstates hide their thermal nature. In the ensuing time evolution, however,
local degrees of freedom become entangled with the rest of the system and hence proper-
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ties of the initial state become non-retrievable for local observables, which therefore take
their (classical) thermal values.

Experiments have already demonstrated, that these ideas are not true for all many-
body systems. Especially, it was shown that an array of interacting Bose gases does not
equilibrate in one dimension [18]. This is explained by the presence of an extensive set
of conserved quantities, making the system integrable and preventing the relaxation to
thermal equilibrium. It is clear though, that integrability cannot be seen as a generic
alternative to thermalization, as it appears only in a small range of fine-tuned systems.
Small changes, which break the integrability, result in a thermalizing behavior.

Recently, a more generic alternative to thermalization has been found in disordered
systems, where single particles are Anderson localized [19–21]. In Anderson localized
systems, interferences from wavefunction reflections off the disorder pattern result in
an exponential localization of the single-particle wavefunctions, already at infinitesimal
strengths of the disorder pattern in one dimension. The generalization of this phenomenon
to interacting systems is known as Many-Body Localization (MBL) [22–24]. In the MBL
phase, eigenstates violate the ETH and out-of-equilibrium dynamics after a quench do not
result in a thermal state with an effective classical description. Instead, a full quantum de-
scription is necessary to describe the time evolution of the system up to infinite times. Key
properties of the MBL phase, such as a logarithmic growth of the entanglement entropy
after a quench, can be derived from a picture of ‘emergent integrability’ [25–27], which
describes the MBL phase using an extensive number of local integrals of motion. Due to
the localization of excitations, the MBL phase is a candidate for quantum memories and
can also prevent the thermalization of phases typically only occurring in the ground state,
a phenomenon known as ‘localization protected order’ [28–33]. Recent reviews on the
MBL phase can be found in Refs [34, 35]. Apart from the MBL phase itself, the transition
between the thermal and the MBL phase is of considerable interest [36–38]. The transi-
tion is fundamentally distinct from conventional quantum phase transitions, as it occurs
not only in the ground state but over a broad range of energy densities. Instead, it is a
novel type of eigenstate phase transition, where the eigenstates themselves change from
obeying to violating the ETH in a singular manner [28, 33]. Numerical investigations of
the phase transition are difficult, as the possible existence of increasingly large Griffiths
regions, small inclusions that are locally in the other phase, prevent access to the universal
scaling regime in simulations of small systems [39–41].

Other than in disordered systems, MBL can also occur in quasi-periodic geome-
tries [42–44], where single particle eigenstates become exponentially localized above
a finite critical strength of the quasi-periodic detuning [45–47]. While MBL is tradi-
tionally studied in random systems, recently quasi-periodic systems have received an
increase of interest as numerical investigations of the localization transition promise to be
more feasible due to the a-priori absence of Griffiths regions in the deterministic poten-
tials [41, 48]. Quasi-periodic models further allow for the construction of single-particle
mobility edges [49, 50], which enable localization studies in more complex scenarios
where only a part of the underlying single-particle system is localized [51–53].
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While there is an immense amount of theoretical work on disordered systems in gen-
eral, and specifically on MBL, experimental work is much rarer. The localization of single
particles in random potentials has been explored in a multitude of settings [54–56] in-
cluding cold-gases [21, 57, 58], where quasi-periodic single-particle localization was also
observed [47]. In the presence of interactions, initial experiments mostly focused on
disorder driven transitions in the ground state [59–62]. Initial results on a finite temper-
ature insulator were reported in Refs. [62, 63]. Only recently, however, did experiments
give convincing evidence for localization at high energy densities in cold-gases experi-
ments [43, 64] and ion traps [65]. Further, an experiment with NV-centers reported criti-
cal thermalization [66] and signatures of MBL were found in systems of nuclear spins [67]
and superconducting qubits [68].

Experimental efforts in observing MBL are usually hindered by the presence of (small)
couplings to external baths [69, 70] (via. e.g. particle loss or scattering of photons) which
are unavoidable in practical situations. Such couplings generally result in a full thermal-
ization of the open system [71, 72] on a timescale proportional to the inverse of the cou-
pling rate. This limits the observation of MBL features to intermediate timescales, similarly
to how finite temperatures limit the study of quantum effects of the ground states [73].
Strong limitations against the realization of an MBL state exist in solid state materials,
where the presence of phonons generally results in rapid thermalization [74]. The effects
of couplings to thermal systems are also studied in the context of small baths [75, 76],
i.e. extended systems with only a few degrees of freedom. These studies are e.g. relevant
in the context of possible Griffiths regions and their potential role in destabilizing MBL
in higher dimensions [77, 78], as well as the question of the existence of a many-body
mobility edge [79, 80].

In this thesis, localization will be investigated experimentally in the setting of ultra-
cold atoms in optical lattices. Such systems are routinely used to study condensed matter
problems in a controlled environment [81, 82], thereby implementing Feynman’s idea of
a quantum simulator [83]. They rely on loading either a Bose-Einstein condensate [84–
86] or a Fermi-sea [87–89] into an optical standing wave, called an optical lattice [90].
Atoms trapped in such a periodic potential can be well described by Hubbard Hamiltoni-
ans [91], which characterize the system via a hopping rate between neighboring potential
wells, as well as an on-site interaction term. Varying lattice geometries allow for the
implementation of a multitude of different models [47, 92–96]. Via the lattice depth,
the strength of the tunnel coupling can be accurately controlled, and even phases can
be imprinted [97, 98]. The on-site interactions can be adjusted via a Feshbach reso-
nance [99, 100]. Cold gases in optical lattices thus provide an exceptional control over a
defect-free implementation of condensed matter Hamiltonians, which even extends to the
level of individual atoms [101]. They have not only been extensively used to investigate
ground states, e.g. Mott-insulators [6, 102, 103], but have also proven well suited for
probing out-of-equilibrium dynamics of excited states [18, 104–106]. Thus, cold gases are
an ideal platform to study the localization of interacting particles in various geometries by
employing dynamic observables. Additionally, cold gases systems provide the very good
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isolation from their surroundings that is required for the creation of MBL states. Resid-
ual couplings to the environment can often be tuned experimentally [107], allowing for
systematic studies of their effects.

Contents of this thesis: In this thesis, we experimentally study localization in quasi-
periodic potentials in a cold-gases setting. We create the quasi-periodic potential via the
superposition of two optical lattices with incommensurate wavelengths as in Ref. [47] and
probe the properties of the system using measurements of its out-of-equilibrium dynamics.
Specifically, we probe the relaxation of an initial charge-density wave state, as well as the
expansion dynamics of the initially confined cloud. The thesis is divided into two parts:
Part I focuses on the non-interacting system and part II on many-body localization.

In part I, chapter 2, we introduce the setup used for our experiments and establish
connections to theoretical models studied in the context of single-particle localization.
We also discuss differences between our quasi-periodic system and the more popular An-
derson Hamiltonian with random disorder. We introduce the observables and discuss the
experimental implementation of the used methods for state preparation and readout of the
observables. In chapter 3, we show exemplary behavior of the employed observables in
the quasi-periodic lattice. This data is then used to map out the full non-interacting phase
diagram. We find a localized and an extended phase, which are separated by an inter-
mediate phase where a single-particle mobility edge exists. We also identify a parameter
regime where the intermediate phase vanishes and the experimental system accurately
maps onto the Aubry-André (AA) Hamiltonian.

In part II, we study the localization of interacting particles (MBL) in the context of
the AA-model. Chapter 4 discusses the current understanding of highly excited systems,
i.e. the expectation that the system will thermalize, in both classical and quantum me-
chanics. Many-body localization is introduced as the opposite of thermalization and its
basic properties are briefly reviewed. The numerical and experimental challenges in in-
vestigating interacting systems as compared to non-interacting systems are discussed in
chapter 5. Especially, we give a detailed characterization of the experimental initial state
and show how changes in the initial state influence the system. Additionally, we show
initial results on MBL in our experimental system which serve as a basis for the follow-
ing chapters. Chapter 6 focuses on the transition between the thermalizing and the MBL
phase. We review the differences between typical quantum phase transitions and the MBL
phase transition, as well as the current understanding of the MBL transition in disordered
models. We then present a detailed analysis of the dynamical behavior of our observables
to determine the MBL critical point. In the analysis of the dynamics, we find unexpected
similarities to the case of random disorder. We discuss various ideas on the origins of
these similarities. In chapter 7, we present a newly developed method for implement-
ing controlled openness via the scattering of near-resonant photons in cold-gases setups,
which can be used in a large variety of scenarios. We then employ this method to our MBL
system and find a linear susceptibility of the localized system to the photon bath. Finally,
in chapter 8, we summarize the presented results and give an outlook on the prospects of
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studying interaction effects in a regime of our quasi-period lattice, where a single-particle
intermediate phase is present.

Publications: The main results described in this thesis are published in the following
papers:

• Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Lüschen, Mark H.
Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider and Immanuel Bloch. Observa-
tion of many-body localization of interacting fermions in a quasirandom optical
lattice.
Science, 349(6250):842-845, 2015 [43]

• Henrik P. Lüschen, Pranjal Bordia, Sean S. Hodgman, Michael Schreiber, Saub-
hik Sarkar, Andrew Daley, Mark Fischer, Ehud Altman, Immanuel Bloch and Ulrich
Schneider. Signatures of Many-Body Localization in a Controlled Open Quan-
tum System.
Physical Review X, 7, 011034, March 2017 [70]

• Henrik P. Lüschen, Pranjal Bordia, Sebastian Scherg, Fabien Alet, Ehud Altman,
Ulrich Schneider and Immanuel Bloch. Observation of Slow Dynamics near the
Many-Body Localization Transition in One-Dimensional Quasi-Periodic Sys-
tems.
Physical Review Letters, 119:260401 Dec 2017 [108]

• Henrik P. Lüschen, Sebastian Scherg, Thomas Kohlert, Michael Schreiber, Pranjal
Bordia, Xiao Li, S. Das Sarma and Immanuel Bloch. Exploring the Single-Particle
Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice.
Preprint on ArXiv:1709.03478 [109]

Additionally, I contributed to the following publications which are not described in this
thesis:

• Pranjal Bordia, Henrik P. Lüschen, Sean S. Hodgman, Michael Schreiber, Immanuel
Bloch and Ulrich Schneider. Coupling identical one-dimensional many-body lo-
calized systems.
Physical Review Letters, 116:140401, Apr 2016 [69]

• Pranjal Bordia, Henrik P. Lüschen, Ulrich Schneider, Michael Knap and Immanuel
Bloch. Periodically driving a many-body localized quantum system.
Nature Physics (2017) [110]

• Pranjal Bordia, Henrik P. Lüschen, Sebastian Scherg, Sarang Gopalakrishnan,
Michael Knap, Ulrich Schneider and Immanuel Bloch. Probing Slow Relaxation
and Many-Body Localization in Two-Dimensional Quasi-Periodic Systems.
Physical Review X, 7, 041047, November 2017 [111]
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Part I

Single-particle localization





CHAPTER 2

Experimental setup and theoretical models

In this chapter, we will introduce the experimental apparatus used to perform the pre-
sented experiments. Especially, we will discuss the implementation of the quasi-periodic
potential and distinguish it from randomly disordered systems. We will show to what ex-
tent the experimental system implements the well known Aubry-André model and present
the observables used to experimentally probe for localization.

2.1 Quasi-periodicity

Since Anderson’s discovery that single particles localize in random potentials [19], local-
ization phenomena are most commonly studied in systems with uncorrelated potential
landscapes. In such systems, the potential at a certain location x does not give any in-
formation on the potential at any other location in the system, as correlations are absent
on both long and short length scales. However, this randomness is not necessary for the
localization of particles, which can also occur in quasi-periodic potentials [46]. In con-
trast to randomly disordered systems, quasi-periodic systems do show a certain amount of
recurrence, without actually being periodic. While a periodic function p(t) will have the
same value after a full period T , i.e. p(t) = p(t+T ), a quasi-periodic function qp(t) is only

Quasi-Periodic Random

Figure 2.1: Quasi-periodic geometry: Comparison of a discrete quasi-periodic versus a random

pattern. The quasi-periodic pattern is generated as a superposition of two incommensurate frequen-

cies along the two directions with incommensurable ratios of ∼ 1.4. A two-dimensional pattern was

chosen for a better visualization.
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almost periodic in a sense that it approximately retains its value after a quasi-period, i.e.
qp(t)≈ qp(t + T ).

Typically, quasi-periodic functions are characterizable by a finite number of one or
more frequencies, e.g.

qp(t) =
i<∞
∑

i=2

cos(ωi t) (2.1)

where the most basic example is the superposition of two frequenciesω1 andω2. This will
result in a quasi-periodic function, as long as the two frequencies are incommensurate, i.e.
no relation nω1 = mω2 exists, with n, m being integers. Should such a relation exist, the
resulting function would be periodic when n×m cycles of the faster frequency have passed.
In the limit of an infinite number of contributing frequencies, the function would become
random.

Quasi-periodic systems are distinctively different from randomly disordered systems,
as is illustrated in Fig. 2.1. Here, a two-dimensional quasi-periodic pattern is compared to
a random pattern. It is visible that the quasi-periodic pattern possesses a certain almost-
regularity while the random pattern is fully uncorrelated. As a result of the lack of corre-
lations, the random pattern can show statistically rare inclusions, where a small subregion
is only very slightly, or even non-disordered. A similar effect in quasi-periodic patterns is
not possible. This creates fundamental differences between localization in quasi-periodic
and randomly disordered systems (see chapter 6), as the localization properties in ran-
dom systems can change locally [41]. As in this thesis we will discuss and compare results
from both kinds of systems, we will explicitly distinguish between random disorder and
quasi-periodic detuning to emphasize the discussed type of potential pattern.

2.2 Experimental setup

In this section, we will give a brief introduction to the experimental setup. All experiments
described in this thesis were performed using ultracold 40K Potassium atoms in optical
lattices. As the cooling of gases to quantum degeneracy has become a well established
tool [84–89], the standard methods currently in use for cooling and trapping atoms will
not be discussed in this thesis. However, the general sequence of the cooling and trapping
of 40K atoms in our setup will be briefly outlined and the optical setup introduced. A more
detailed description of the apparatus and the sequence used for cooling the atoms can be
found in previous Ph.D. theses performed on the same setup [112–115].

2.2.1 Creation of a degenerate gas of 40K

Cooling: The cloud of 40K atoms is cooled to quantum degeneracy using a multi-step
process: Initially, the 40K atoms are loaded together with a large cloud of bosonic 87Rb
atoms in a dual-species magneto-optical trap (MOT). Subsequently, forced evaporation is
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Figure 2.2: Dipole trap setup: Geometry of the three dipole beams employed to confine the atom

cloud. The shown dimensions refer to the beam diameters.

performed on the 87Rb atoms in an optically-plugged magnetic quadrupole trap to sym-
pathetically cool the 40K atoms. The final evaporative cooling steps are performed in a
three-beam optical dipole trap [116]. At the end of the cooling procedure, only 40K atoms
remain, as the trap is too weak to hold the much heavier 87Rb atoms against gravity. For
the experiments described in this thesis, we generate clouds of typically N = 105 atoms of
40K at a temperature of T/TF = 0.15, where TF is the Fermi temperature in the dipole trap.
Both atom numbers and temperatures show fluctuations of about 10% between different
runs of the experiment.

Spin composition of the atomic cloud: During sympathetic cooling, the fermionic
cloud is prepared in its lowest hyperfine state |F , mF 〉 = |

9
2 ,−9

2〉 ≡ |↓〉. For a detailed sum-
mary of the properties of 40K see Ref. [117]. Populations of unwanted spin states are selec-
tively removed via Feshbach resonances [118] during the evaporative cooling in the dipole
trap: Tuning the magnetic field to a Feshbach resonance between a specific hyperfine state
and 87Rb results in a strong loss of atoms in said hyperfine state due to three-body recom-
binations. This reduces the population of unwanted hyperfine states to below the imaging
detection threshold (∼ 1% of atoms). A list of the resonances can be found in Ref. [119].
Afterwards, a mixture of the two lowest hyperfine states |↓〉 and |F , mF 〉= |

9
2 ,−7

2〉 ≡ |↑〉 can
be created using a radio-frequency sweep. For the non-interacting experiments described
in part I of this thesis, we load a spin-polarized gas, where all atoms are in the absolute
ground state |↓〉. Since fermionic atoms of the same spin cannot interact with each other
at ultra-low temperatures, the spin-polarized configuration is fully non-interacting. For
the interacting experiments in part II, we load an equal mixture of |↓〉 and |↑〉, where the
interaction strength between the two spins can be tuned via a Feshbach resonance [100].

Dipole traps: To confine and support the atomic cloud versus gravity during the last
cooling steps and the experiments, we employ three tightly focused red-detuned laser
beams, commonly referred to as dipole traps. The geometry of the optical dipole traps is
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presented in Fig. 2.2. It consists of three orthogonal beams, running along the spatial x,y
(horizontal) and z (vertical) direction respectively. All three beams have a wavelength of
approximately 1064nm and are created by Coherent’s ‘Mephisto MOPA’ lasers. Orthogonal
polarizations, as well as small detunings relative to each other, ensure that the beams
do not interfere. Atoms are supported versus gravity by two beams traveling along the
horizontal x and y direction. These beams are tightly focused in the vertical z direction
with beam diameters of 33µm, to minimize the influence of the gravitational potential
on the experiments. However, they have large diameters of approximately 300µm in the
horizontal directions and hence, the horizontal trapping frequency is dominated by the
vertically traveling dipole beam with a diameter of 150µm.

2.2.2 Optical lattices

All optical lattices used in our setup are created by retro-reflected laserbeams, resulting
in the formation of a standing wave pattern with period λ/2, where λ denotes the wave-
length of the laser. We employ lattices at wavelengths of 738nm, 1064nm and 532nm.
The 738nm laser light is generated by a Coherent Titanium-Sapphire ‘MBR’ laser system
pumped by a Coherent ‘Verdi-V18’, generating approximately 4.5W of laser light. The
laser is locked to its internal reference cavity, achieving short-term linewidths on the order
of ∼ 1MHz. The 1064nm light is created by an NP Photonics ‘Rock’ laser source and am-
plified by a Nufern fiber amplifier. This setup can produce up to 45W of power, however,
usually the amplifier is running on a lower current resulting in only about 10W output
power, which vastly extends the lifetime of the amplifier. The ‘Rock’ laser source is locked
to a stable reference cavity, achieving a linewidth of ∼ 100kHz. The 532nm light is pow-
ered by another Coherent ‘Verdi-V18’, generating 18W of laser light. This laser is locked
relative to the 1064nm light with a linewidth of ∼ 1MHz. Details of this lock are described
in Ref. [114].

Most lattices (all except 1064nm) are blue detuned relative to the atomic resonance
frequency of 40K. Blue detuned lattices have the advantage, that the Gaussian shape of
the lattice beam does not create an additional confining potential on top of the dipole
beams, but instead produces an anti-confinement. Due to this anti-confinement, different
strengths of the dipole traps can create not only globally trapped but also anti-trapped and
homogeneous potential landscapes [112, 120]. Especially the homogeneous case is im-
portant, as it is necessary for the expansion of atoms, which is one of the used observables
(see section 2.4.2). In order to be able to compensate the anti-confinement of the lattices
with the confinement of the dipole trap in the horizontal directions, the lattice beams have
the same geometry as the vertical dipole trap, i.e. a beam diameter of 150µm.

Another important aspect of the Gaussian shape of the lattice beams is, that atoms
on the outer edge of the cloud experience slightly smaller lattice depths than those in
the center. The cloud has a diameter of about 40µm in the horizontal, and 12µm in the
vertical direction, resulting in a maximum deviation of the lattice depths of about 10%.
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Figure 2.3: Optical lattice setup: The optical lattice setup consists of two deep 738 nm lattices

along the orthogonal y and z directions, which split the system into an array of one-dimensional

tubes. Along these tubes, the combination of the 532 nm ‘primary’ (green), 1064 nm ‘long’ (red) and

738 nm ‘detuning’ (purple) lattices can be used to create various geometries. Shown on top is the

superposition of primary and detuning lattice, resulting in a quasi-periodic geometry, where on-site

energies do not repeat. On the bottom, a tilted superlattice geometry is illustrated, as resulting from

the superposition of primary and super-lattice. Here, every second site has the same energy.

One dimensional optical lattice: We employ optical lattices along all three spatial di-
rections x,y and z. The experiments reported in this thesis are performed in a one-
dimensional quasi-periodic structure which is generated parallel to the x direction. In
order to achieve a one-dimensional behavior of the atoms in the three-dimensional cloud,
we employ two deep lattices along the ‘orthogonal’ y and z directions, as is illustrated in
Fig. 2.3. These lattices use 738nm light and achieve depths of up to 45 E738nm

r , where
Eλr = h2/2mλ2 denotes the recoil energy at a wavelength of λ with the mass m of 40K and
h being the Planck constant. At these depths, they effectively freeze the dynamics along
the orthogonal directions, resulting in the creation of effectively one-dimensional ‘tubes’.
Note that the term ‘one-dimensional optical lattice’ is also often used to describe systems
with optical lattices along only one direction, as in e.g. Ref. [47]. In such systems, one-
dimensional behavior can also be studied, but only if the spatial directions are separable.
As interactions break this separability, this limits experiments to single-particle physics.

The superlattice setup: Along the one-dimensional tubes which are generated as de-
scribed above, we employ a superlattice setup, which enables us to differentially address
even and odd sites. The superlattice consists of the ‘primary’ lattice at 532nm and a ‘long’
lattice at 1064nm. The lattices can achieve depths of up to 25 E532nm

r and ∼ 100 E532 nm
r ,

respectively. Due to the relative lock between the 532nm and 1064nm light, the phase
between the two lattices is long-term stable. Since the optical lattices are required to have
a node at the retro-reflection mirror, their relative phase at the position of the atoms is
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set by the distance between mirror and atoms, as well as their wavelength. Hence, the
relative phase of primary and long lattice at the position of the atoms can be controlled
via small changes in the wavelength of, in our case, the primary lattice. This allows for the
creation of arbitrarily tilted superlattice patterns [121, 122] by superimposing the long
and primary lattice with different relative phases (see Fig. 2.3). Since the long lattice
has exactly twice the wavelength of the primary lattice, these patterns will repeat every
second site and are hence known as double-wells.

The quasi-periodic lattice: In addition to the 1064nm lattice, the primary 532nm lattice
can also be superimposed with some 738nm light, called the ‘detuning’ lattice. This creates
a quasi-periodic pattern which explicitly does not repeat itself like the superlattice pattern.
The detuning lattice is usually much weaker than the primary lattice and hence has only
enough power for approximately 4 E738

r . Note that the primary and the detuning lattice are
not locked relative to each other, and hence their relative phase is not long-term stable.
Over the short times on which the experiments are performed, the passive stability is,
however, good enough. Also, the relative phase can be actively changed via the frequency
of the MBR. This can, however, not be done while the optical lattices are switched on
since the orthogonal lattices along the y and z direction experience the same wavelength
change and hence would move as well.

2.2.3 The quasi-periodic system

The system studied in this thesis is the one-dimensional, quasi-periodic lattice, created by
the superposition of the primary 532nm and the 738nm detuning lattice. The behavior of
atoms with mass m in this potential is described by the continuum Hamiltonian

Ĥcont = −
ħh2

2m
d2

d x2
+ Vp sin2 (kp x) + Vd sin2 (kd x +φ), (2.2)

where the Vi (i ∈ {p, d}) are the strength of the primary and detuning lattice and the ki

denote the respective lattice’s wavevector. As the primary and detuning lattices share a
common retro-reflection mirror, their relative phase φ can be changed via slight changes
of the wavelength of the detuning lattice.

In order to implement a quasi-periodic potential (as compared to a periodic poten-
tial) the two superimposed lattices need to have incommensurable wavelengths. This is
typically characterized via the incommensurability

β = kd/kp. (2.3)

The incommensurability will take an irrational value if the two wavelengths are incom-
mensurate. Should β be rational, the above Hamiltonian describes a periodic system
which can be easily solved to have extended Bloch waves as its eigenstates [123]. Hence,
only irrational β are suitable for studying localization [124].
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In our setup, the incommensurability is approximately β ≈ 0.72. Note that the experi-
mental β is definitely irrational, as the individual wavelengths of the two lattices are irra-
tional themselves. As the experiment implements a finite-sized system, it would, however,
be sufficient to require that there are no repeating patterns in the range that is populated
by atoms. The finite-size characteristics of the system further require that experimental re-
sults are averaged over the detuning phase φ, to ensure that all possible realizations of the
quasi-periodic pattern are probed. In the thermodynamic limit of infinite system size, the
detuning phase would become irrelevant as all possible realizations of the quasi-periodic
pattern occur in some part of the infinitely sized system.

2.3 Theoretical model systems

In theoretical studies of localization, continuum Hamiltonians as e.g. in eq. (2.2) are
barely used. Instead, theoretical studies use model Hamiltonians typically formulated
in a tight-binding description. There are two notable models that are most often used: the
Anderson [19] and the Aubry-André (AA) model [46]. The by far most popular model is
the Anderson Hamiltonian [19], where on-site energies are randomly distributed. Con-
sidering quasi-periodic models, the AA Hamiltonian [46] is the most popular choice. In
this section, we will give a brief introduction to this model Hamiltonian and discuss how
it corresponds to the experimentally implemented system.

Note that localization can occur in a much broader class of systems than the one-
dimensional lattice models discussed in this thesis. This especially includes both higher
dimensional systems [57, 58, 62, 66, 111, 125, 126], as well as non-lattice models [21].

In the literature, the term ‘Anderson-localization’ is often used to depict the single-
particle (non-interacting) case in the context of both the Anderson and the AA model.
Throughout this thesis, the focus will be on the AA model, but especially in the discussion
of interacting systems (part II) also results obtained for the Anderson model will be used
in the discussion. To avoid confusion, in this thesis the considered model will always be
clearly stated.

2.3.1 The Aubry-André Hamiltonian

The Aubry-André Hamiltonian is a tight-binding lattice model with a quasi-periodic distri-
bution of on-site energies. The Hamiltonian can be written as

ĤAA = −J
∑

i,σ

�

ĉ†
i,σ ĉi+1,σ + h.c.

�

+∆
∑

i,σ

cos(2πβ i +φ)n̂i,σ, (2.4)

with the fermionic creation (annihilation) operators ĉi,σ (ĉ†
i,σ) on lattice site with index

i and spin σ ∈ [↑,↓]. The local density operator is n̂i = ĉ†
i ĉi. The first term depicts the

usual hopping term between nearest neighbors with amplitude J that is commonly present
in Hubbard models [91]. The second term denotes the quasi-periodic modulation of the
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on-site energies with overall amplitude ∆, incommensurability β and relative phase φ. In
the literature, ∆ is often referred to as the ‘disorder strength’. However, as was illustrated
in Fig. 2.1, quasi-periodicity is distinctly different from randomness. Hence, in order to
clearly separate the quasi-periodic AA model from models with actual randomness, in this
thesis we will refer to ∆ as the ‘detuning strength’.

The Aubry-André Hamiltonian exhibits a localization transition at a finite detuning
strength of ∆= 2 J , where all single-particle eigenstates simultaneously become localized.
Here, we call an eigenstate |Φi(x)〉 localized around x0, if for every ε > 0 one can find a
distance d > 0 such that

|Ψi(x0 ± d)|2 < ε. (2.5)

Intuitively, this means that the probability of finding a particle in eigenstate |Φi(x)〉 has
to go to zero far away from its center x0. On the localized side of the AA model, the
eigenstates are exponentially localized, i.e. they can be written as

|Φi(x , x0)〉= f (x , x0) e
−|x−x0|/λ, (2.6)

where f (x , x0) is an arbitrary function and λ is called the localization length. This local-
ization length is the same for all eigenstates and given by [46]

λ=
1

ln
�

∆
2J

� . (2.7)

The localization length is infinite in the extended phase and at the transition. Above the
transition it rapidly decreases with increasing ∆ to below one lattice site.

As in the experimental quasi-periodic lattice, a crucial condition for localization in the
AA model is the irrationality of the incommensurable ratio β . Should β be rational, the
second term in eq. (2.4) will become periodic on long distances, and hence the system
will be delocalized at all ∆ in the infinite size limit. Again, in finite-sized systems, it is
sufficient to choose β such that the period is larger than the system size and results need
to be averaged over the relative phase φ.

Experimentally, localization in the Aubry-André model has been studied both in optical
lattices [43, 47], as well as with light waves in photonic lattices [55].

2.3.2 Mapping of the experimental lattice to the Aubry-André Hamiltonian

In this section, we will discuss in what sense the experimental system is an implementation
of the AA model. We will show the mathematical mapping between the two models and
discuss the approximations that are made. This will allow us to find parameter regimes in
which the experimental system accurately maps to the Aubry-André model. The accuracy
of the mapping is also experimentally investigated in section 3.3.

We start from the continuum description of the quasi-periodic optical lattice

Ĥcont = −
ħh2

2m
d2

d x2
+ Vp sin2 (kp x) + Vd sin2 (kd x +φ), (2.8)
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where the Vi (i ∈ {p, d}) are the strength of the primary and detuning lattice, the ki denote
the respective lattice’s wavevector and φ the relative phase between the two lattices. The
mapping to the Aubry-André Hamiltonian is performed (following Ref. [127]) by expand-
ing this continuum Hamiltonian in the Wannier basis of the lowest band [128, 129] of the
primary lattice:

Ĥ =
∑

i, j

|wi〉〈wi|Ĥ|w j〉〈w j|. (2.9)

Here |w j〉 labels the Wannier state maximally localized around the lattice site with index
j. Note that the Wannier states of the primary lattice used here are only a meaningful
basis in the presence of a weak detuning lattice. Should the detuning lattice be similarly
strong as the primary lattice, the Wannier states of the system would differ significantly.
However, the expansion in this basis still remains valid, as long as sufficiently high order
terms are considered.

For the derivation of the matrix elements 〈wi|Ĥ|w j〉, it is convenient to write the Hamil-
tonian in terms of the recoil energy Ep

r = ħh2k2
p/2m of the primary lattice and to change

coordinates to ξ= kp x , yielding

Ĥcont

Ep
r
= −∇2

ξ +
Vp

Ep
r

sin2 (ξ) +
Vdβ

2

Ep
r

sin2 (βξ+φ)

= Ĥ0 +
Vdβ

2

Ep
r

sin2 (βξ+φ),
(2.10)

where Ĥ0 is the continuum Hamiltonian of the periodic system (the system in the absence
of the detuning lattice).

Tight-binding limit: We will first evaluate the Wannier expansion in the tight-binding
limit of a deep primary lattice weakly perturbed by the detuning lattice. In this limit, it is
sufficient to consider the overlap of nearest-neighbor Wannier functions with the periodic
Hamiltonian to obtain the standard hopping term of Hubbard-models J [90] and the on-
site contribution of the detuning lattice [130, 131] to compute the matrix elements

〈wi|Ĥ|w j〉 ≈ −Jδi, j±1 +δi, j
Vdβ

2

Ep
r
〈wi| sin2 (βξ+φ)|w j〉. (2.11)

On-site contributions of the periodic Hamiltonian 〈wi|Ĥ0|wi〉 give constant terms that can
be neglected by choosing an appropriate energy offset. Corrections to the nearest-neighbor
hopping J due to the detuning lattice ∼ 〈wi| sin2 (βξ+φ)|wi±1〉 tend to be small compared
to J [131], just as any terms beyond the nearest neighbors.

Equation 2.11 can be further simplified (see Ref. [127]) to read

〈wi|Ĥ|w j〉 ≈ −Jδi, j±1 +δi, j∆ cos (2πβ i +φ′) (2.12)

with the detuning strength

∆=
Vdβ

2

2Ep
r
〈w0| cos (2βξ)|w0〉. (2.13)
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Figure 2.4: Applicability of the Aubry-André model: Corrections to the nearest-neighbor hopping

∆J as a function of the primary and detuning lattice strengths Vp and Vd . Note that both lattice

depths are given in units of the recoil energy of the primary lattice Ep
r . The yellow line marks the

location where the transition would be located in a pure Aubry-André description, i.e. where ∆ = 2 J .

Writing the resulting, simplified Hamiltonian in the form of a tight-binding model gives
the AA model in equ. (2.4).

Beyond the tight-binding limit: Outside of the tight-binding limit, the nearest-neighbor
approximation is no longer valid and higher order terms need to be considered. Dominant
corrections come from variations in the nearest-neighbor tunneling rate due to the detun-
ing lattice given by

∆J =
Vdβ

2

2Ep
r
〈w0| cos (2βξ)|w1〉 (2.14)

and next-to-nearest-neighbor hopping terms

J1 = 〈wi|Ĥ0|wi±2〉. (2.15)

This gives rise to the additional Hamiltonian terms

Ĥ = ĤAA + J1

∑

i,σ

�

ĉ†
i,σ ĉi+2,σ + h.c.

�

+∆J
∑

i,σ

cos
�

2πβ
�

i +
1
2

�

+φ
�

�

ĉ†
i,σ ĉi+1,σ + h.c.

�

.

(2.16)
Note that the expansion of the continuum Hamiltonian to the Wannier basis is also valid
in this regime, only the restriction to nearest-neighbor terms is no longer possible.

To assess the range in which the Aubry-André Hamiltonian gives a valid description of
the bichromatic lattice, Fig. 2.4 shows the corrections to the nearest-neighbor tunneling
∆J as a function of Vd and Vp. The figure also illustrates the location of the non-interacting
phase transition (at ∆ = 2 J) in a pure Aubry-André description via the yellow line. As
expected, ∆J shows a strong increase with the depth of the detuning lattice, as well as a
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Figure 2.5: Exponential localization: Releasing an initially strongly confined Bose-Einstein con-

densate (a) into a speckle pattern reveals the exponential localization (b). The static density distri-

bution of the localized state is shown on the right. Blue lines are exponential fits to the tails of the

distribution. Figure reused from Ref. [21] with permission. Copyrighted by Springer Nature.

slight tendency to increase at lower strengths of the primary lattice. Whether a description
by the Aubry-André model is valid or not, however, is mostly given by the location of
the localization transition, which moves to lower depths of the detuning lattice if the
primary lattice depth is increased. At e.g. a primary lattice depth of Vp = 8 Ep

r , a ratio of
∆J/J ≈ 4% is present at the phase transition. At weaker primary lattice depths, however,
the correction terms are already much more significant at the transition. Note that in
principle the mapping between the two systems becomes more accurate the deeper the
primary lattice is. In practice, however, choosing arbitrarily deep primary lattice depths is
not possible, as the hopping timescale in the primary lattice τ= ħh/J becomes too large.

2.3.3 The Anderson Hamiltonian

While in this thesis localization is studied in quasi-periodic systems, the most famous
model system for localization is the Anderson model. As we will be using theoretical
results obtained from the Anderson Hamiltonian in the discussion of our results, a brief
introduction to the model will be given here.

In 1958, Anderson first showed the absence of diffusion in certain random lattices [19].
The typical lattice Hamiltonian studied in this context reads

Ĥ = −J
∑

i,σ

�

ĉ†
i,σ ĉi+1,σ + h.c.

�

+∆
∑

i

Vi n̂i,σ. (2.17)

As in the AA model, the first term depicts the usual hopping term between nearest neigh-
bors with amplitude J that is commonly present in Hubbard models [91]. The second term
depicts the disorder potential with global amplitude ∆ and a random distribution of the
Vi ∈ [−1, 1], which are usually drawn from a box distribution. Note that in the Anderson
model we will refer to ∆ as the disorder strength.

The Anderson model shows a transition from all eigenstates being spatially extended
Bloch waves at ∆ = 0 to all eigenstates being localized at infinitesimally small disorder
strengths∆> 0. In contrast to the AA model, its localization transition thus does not occur
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at a finite disorder strength. Similarly to the AA model, the localized eigenstates show
exponential localization, as was directly experimentally observed in Ref. [21]. As shown in
Fig. 2.5, releasing an initially tightly confined Bose-Einstein condensate into a waveguide
in the presence of a speckle pattern, and waiting for the system to equilibrate, reveals the
exponential envelope of the particle density and allows for a direct measurement of the
localization length. Note that this experiment was not performed in an optical lattice, but
instead in a continuum system, where Anderson localization also occurs. An experimental
realization of a randomly disordered two-dimensional lattice system was presented in
Ref. [64].

The mechanism underlying Anderson localization is that of waves being reflected from
(small) potential barriers. These reflections interfere destructively traveling forward, but
constructively backward, resulting in the localization of the wavefunction. Accordingly,
Anderson localization has also been observed in classical wave-mechanic systems (see
e.g. [54, 132] and references therein). Considering the localization of particles, how-
ever, it is a purely quantum effect, as classical trajectories of high energy states would be
delocalized.

2.4 Observables

To characterize the quasi-periodic system, two complementary observables are employed.
The density imbalance I between even and odd sites sensitively captures the presence of
localized states based on the decay of an initially imprinted charge-density wave. The
global expansion E probes for localization in the most intuitive manner, as it is closely
related to transport. It is sensitive to the presence of extended states. In order to be
able to directly compare results between the two observables, we choose to use the same
initial state for both observables. As the imbalance requires a charge-density wave pattern
as an initial state, the charge-density wave is hence also employed for measurements of
the expansion. The preparation of this initial state is described in section 2.4.1.

2.4.1 Local density imbalance

The primary observable used in the described experiments is the density imbalance I
between even and odd sites. This observable is based on the idea that microscopic patterns
not present in the Hamiltonian cannot persist in ergodic time evolution. As is illustrated in
Fig. 2.6, we monitor the time evolution of an initial charge-density wave (CDW) pattern,
where atoms can only occupy even sites. In an extended system, time evolution will erase
this initial pattern, resulting in an equilibrium state where all sites are equally occupied.
In the presence of localized states, however, remnants of the initial CDW will persist.
Note that while a persisting pattern always indicates the presence of localized states, a
vanishing pattern does not necessarily mean that the system is ergodic.
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Figure 2.6: Relaxation of a charge-density wave: Illustration of the time evolution of an initially

prepared charge-density wave, where only even sites are occupied. In a fully extended system,

the charge-density wave will fully relax and all sites are occupied with the same probability. In the

presence of localized states parts of the initial state remain.

We quantify the imbalance I as the normalized population difference between the
atom number on even Ne and on odd No sites

I =
Ne − No

Ne + No
. (2.18)

With this definition, the imbalance of the initial state ideally is Iinitial = 1. In an extended
system, the imbalance decays to zero, while a finite imbalance 0≤ I ≤ 1 indicates a local-
ized system. However, initial imbalances measured are usually only about Iinitial,real = 0.92,
indicating that the preparation of the CDW and the detection of atoms are not perfect.
Whether this reduced initial imbalance is mostly caused by the preparation or the detec-
tion sequence is unknown. It is, however, not problematic, since the basic observations of
whether a system is localized or not can be made independent of the exact initial imbal-
ance.

The charge-density wave can in principle relax on the microscopic timescale of a sin-
gle tunneling time τ = ħh/J , as no long-distance mass transport is necessary to reach an
equilibrium state. This makes the imbalance an intrinsically fast observable, which is able
to resolve even very slow dynamics. Slow dynamics is e.g. expected close to phase transi-
tions. In contrast, global observables, like the expansion, require mass transport over long
distances to relax and are expected to show slow hydrodynamic tails [13].

Initial state preparation: To create the charge-density wave, the atom cloud is loaded
into the ground band of a three-dimensional optical lattice, formed by deep lattices along
the orthogonal directions as well as the long 1064nm lattice along the one-dimensional
tubes in the longitudinal direction. During the loading of the lattice, the atom cloud
is tightly confined by strong dipole traps. If a spin mixture is present, the interaction
strength can be set anywhere in-between strongly repulsive (110 a0, where a0 is the Bohr
radius), or attractive (−90 a0) to favor or suppress the formation of doubly occupied sites.
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Figure 2.7: Charge-density-wave preparation and readout: a) Schematic illustration of the cre-

ation of the CDW for a single double-well. Black dashed lines indicate energy bands of the lattice,

which are labeled with their band index, where the 1st band is the ground band. b) Schematics of the

imbalance readout. The atom sitting on an even (blue) and odd (red) site are indicated by different

colors, which do not (necessarily) imply different spin states. The color coding is further used to in-

dicate the location of atoms on even/odd sites on the shown band-mapped picture, which was taken

after 8ms of time-of-flight. Since there are no atoms in the 2nd band, atoms on even and odd sites

are clearly spatially separated and their respective numbers can be extracted from the pixel count.

The imbalance I can then be calculated as their normalized difference.
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In this initial state, the central tube along the x direction typically fills about 100 sites
of the long lattice (corresponding to 200 sites in the primary lattice). The system is about
120 tubes broad in the y direction, as well as about 25 tubes in the z direction. Since the
lattices are relatively deep, the coherence between the lattice sites dephases due to the
dipole trap and technical heating. Hence, the system is well described by a product state
of the individual particles occupying Wannier states on their respective sites.

The sequence for the creation of the charge-density-wave is illustrated in Fig. 2.7a
for a single double-well. The exact sequence, involving all lattice depths and ramp dura-
tions, can be found in Appendix A. The density imbalance onto the even sites is created
by splitting the long lattice asymmetrically with the primary lattice to create a tilted con-
figuration. The asymmetry is achieved by choosing a relative phase of π/3 between the
lattices. The splitting causes the lowest energy band of the long lattice to split into two.
Since the process is performed adiabatically, atoms stay in the lowest energy band, which
is now located on the even sites. Holding in this tilted configuration, the magnetic field is
ramped to set the interaction strength to its final value (i.e. the value wanted during the
evolution time). A full calculation of the band structure throughout the sequence can be
found in Ref. [122].

In the last preparation step, the long lattice is suddenly switched off, thereby project-
ing the populations onto the primary lattice. Simultaneously, the detuning lattice is over-
lapped. Then, the primary lattice is quenched down to allow tunneling, thereby initiating
the time-evolution in the quasi-periodic system.

Final state readout: The evolution time is ended by suddenly freezing the atoms, which
is achieved by quickly increasing the depth of the primary lattice. The readout of the im-
balance I is then performed using the superlattice in combination with a band-mapping
technique [104]. This sequence is illustrated for a single double-well with an atom on an
even and an atom on an odd site in Fig. 2.7b. In a first step, the atoms are diabatically
transferred into the tilted superlattice configuration which was also used in the prepara-
tion by overlapping the primary with the long lattice. Simultaneously, the detuning lattice
is switched off. Since this first step is diabatic, the atoms do not both tunnel onto the
site with lower energy but remain at their respective sites. This excites atoms that were
on odd sites to the second band. As in the loading procedure, in this configuration, the
magnetic field is ramped again to set the interactions to zero, which is required for the
band-mapping steps.

Afterwards, the long lattice is, again diabatically, ramped to extremely deep values of
almost 90 E1064 nm

r . This causes a crossing of the 2nd and the 3rd band which the atoms
cannot follow. Hence, after switching off the primary lattice adiabatically, atoms initially
located on odd sites are in the 3rd band of the long lattice, while atoms initially on even
sites remain in the 1st (ground) band. Band-mapping the system, i.e. mapping the lattice
momenta onto real-space momenta, results in the shown picture, which was taken after
a time-of-flight of 8ms. Since the atoms from the third and the first bands are clearly
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Figure 2.8: Expansion of a cloud: a) Schematics of expansion measurements. A cloud (blue),

initially confined in a harmonic trap, is released into a homogeneous lattice. After expansion, the

full-width-at-half-maximum cloud size is extracted from in-situ measurements. b) Calculation of the

structure of the lowest band for the experimental parameters with a strong (red), zero (dark blue) and

intermediate dipole trap strength (light blue). The dipole trap potential is individually defined such

that it is zero in the trap center. In the absence of a dipole trap, the cloud is strongly anti-confined

due to the blue-detuned lattices. At the correct depth of the dipole trap the harmonic terms of the

confinement and the anti-confinement cancel. However, higher order terms cannot be canceled, and

hence the band is not fully flat. The inset shows a zoom of the trap center to better visualize the

comparison of the bandwidth to the harmonic trap in the three cases. Typical in-situ images, taken

after 60 τ expansion time in the deconfined and the confined geometry, are shown.

spatially separated, simply counting pixels yields the relative atom numbers on even and
odd sites respectively.

2.4.2 Global expansion

The expansion of an initially confined atom cloud is a natural probe for localization, as it
intuitively connects to the idea of transport. Furthermore, its experimental implementa-
tion in e.g. waveguides [21, 47] is, compared to measurements of the imbalance, rather
straightforward. Accordingly, it has been used to investigate localization in a variety of
different systems and settings [21, 47, 57–61, 64, 125, 126]. The expansion of interact-
ing and non-interacting systems is also interesting in its own right and has been studied
experimentally in homogeneous systems [105, 133–135]. It can be quantified in a large
variety of ways. While the most straightforward quantification is the actual size of the
cloud, it can e.g. also be understood as the melting of domain walls [64], where the atom
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cloud is initially confined to one half of the system and the expansion is quantified via the
fraction of atoms that moved to the initially unoccupied side. The defining characteristic
of expansion, namely global mass transport, remains the same in this case.

Limits of expansion dynamics: Studying expansion is performed by preparing an atom
cloud in an initially tightly confined trap, which is then removed to start the expansion
(Fig. 2.8a). This is most easily implemented in one-dimensional geometries consisting of a
single dipole beam and optical lattice (potentially overlapped with a second optical lattice
to create a quasi-periodic pattern), as e.g. performed in [21, 47]. In such a setup, the
dipole beam and the lattices create a strong trapping potential in the transverse directions,
but the longitudinal direction is essentially unconfined. This is important for the expansion
of the cloud, as a trapping (or anti-trapping) potential in the longitudinal direction would
restrict the expansion of the cloud. The maximally achievable cloud size in the presence
of a trap can be estimated as

4J ≈
1
2

mω2σ2
max (2.19)

where σmax denotes the maximally achievable cloud size and ω the trapping frequency.
This equation states that a cloud can only expand to the point where the energy of the
trap becomes similar to the bandwidth. This is intuitive as the bandwidth is equivalent to
the maximum kinetic energy a particle can have.

Unfortunately, the above-described lattice geometry of a single beam along the longitu-
dinal direction does not confine the motion of the atoms in the perpendicular direction. In-
stead, the motion along the orthogonal directions is that of particles in a two-dimensional
homogeneous system. While this is unproblematic in a non-interacting system, where the
motion along the respective directions is separable, interactions will couple the spatial
directions and the two-dimensional planes start acting as a bath [136].

In our setup, this is avoided by employing deep lattices along the transverse direc-
tions, which freeze out those motional degrees of freedom. The evolution in the resulting
one-dimensional tubes then implements a one-dimensional system also in the presence of
interactions. However, studying expansion in such a geometry is far more challenging, as
the (anti-)confinement of the transverse lattices creates strong trapping potentials in the
longitudinal direction, thereby inhibiting the expansion of the cloud.

Creating flat potentials to enable expansion: In the presented setup, expansion mea-
surements are realized by first loading the atom cloud into the charge-density wave con-
figuration as described in section 2.4.1. In this configuration, the atoms are held in a
three-dimensional optical lattice and are strongly confined by three dipole beams. To
initiate the evolution time, the primary lattice along the x direction is ramped low to en-
able tunneling. Simultaneously, the trapping along the longitudinal direction is removed
by compensating the anti-confinement of the lattice beams with the confinement of the
dipole beams. Specifically, the vertical dipole beam is set to a strength where it cancels
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the anti-confinement created by the blue-detuned transverse lattice beams. Since the hor-
izontal dipole traps have a different geometry than the lattice beams (see section 2.2.2),
they cannot be used to compensate the anti-confinement and are hence switched off dur-
ing the evolution time. The longitudinal beams do not contribute a confinement along
the longitudinal direction. This results in a geometry where the cloud see a flat potential
in the longitudinal direction, but is anti-confined along the orthogonal directions. This
anti-confinement is unproblematic, as the dynamics in this direction are frozen out by the
deep orthogonal lattices.

The structure of the lowest band along the longitudinal x direction is shown in Fig. 2.8b
for three different strengths of the vertical dipole trap. In the absence of any dipole trap
(dark blue), the cloud is strongly anti-confined. In the typical configuration used for
loading the charge-density wave (red), the cloud is strongly confined. At an intermediate
strength of the dipole trap, however, the harmonic terms of the trapping and anti-trapping
potentials cancel, allowing the cloud to expand along the x direction. Note that a perfectly
flat potential can never be achieved, as only the quadratic terms of the trapping and anti-
trapping potential cancel, but higher order terms remain. Additionally, misalignments of
the beams and slightly different shapes limit the achievable flatness in the experiment.

After the time evolution, the expanded cloud is imaged in-situ. Typical pictures after
times of 60τ for a confined and a deconfined system are shown in the inset of Fig. 2.8. It
is clearly visible, that the deconfined cloud shows a pronounced elongation resulting from
the expansion, while the almost round shape of the confined cloud suggests that it barely
expanded.

Quantification of the cloud size: We quantify the expansion of the cloud via the full-
width-at-half-maximum (FWHM) cloud size σ. To extract this parameter from the in-situ
images, we first integrate the pictures along the y direction, thereby suppressing imaging
noise. The half-maximum points in the integrated density profile are then determined
as the location of the first pixel whose value is above half-maximum when moving in-
wards from both directions. The cloud size σ can then be calculated from the pixel index
difference, multiplied by the pixel size, which was calibrated to be ∼ 2µm.

Details of the experimental procedures, as well as the FWHM observable, are described
in more detail in Ref. [112]. There, also the experimental advantages and problems of
different quantities characterizing the expansion are discussed. In our work, we have
found the FWHM to be most reliable for the experimental data. In numerical studies,
however, other quantities yield better results (see section 3.1.4).



CHAPTER 3

Single-particle localization in a
quasi-periodic lattice

In this chapter, we will show experimental measurements and numerical simulations ana-
lyzing the localization of non-interacting particles in the quasi-periodic lattice. Specifically,
we employ both observables (the imbalance and the expansion) to map out the full phase
diagram of the quasi-periodic optical lattice. Our measurements demonstrate the exis-
tence of an intermediate phase, in which extended and localized states coexist at different
energies. This intermediate phase vanishes when the tight-binding limit is approached. In
the tight-binding limit, we compare experimental measurements of the imbalance to nu-
merical simulations of the AA model, thereby verifying that the model indeed accurately
describes the experimental system.

Fig. 3.6 illustrates the various phases present in the quasi-periodic lattice model. At
low depths of the detuning lattice, we expect the system to be fully in the extended phase.
In this regime, the initial CDW-pattern should rapidly vanish and the atomic cloud should
show a continuous expansion. In the opposite limit of a deep detuning lattice, we expect
a fully localized phase where no expansion is visible and remnants of the CDW pattern
remain. In-between those two phases, a third, more intriguing ‘intermediate’ phase can
exist. In this phase, the system is neither fully localized nor extended. Instead, both
extended and localized states can exist simultaneously, but at different energies. Note
that a coexistence at the same energy is generally not possible [137]. As is shown in the
illustration of the density of states n(ε), the localized and extended states are separated
by a critical energy εc, known as the ‘single-particle mobility edge’ (SPME).

Distinguishing the intermediate phase from the localized or extended phase is not pos-
sible based on measurements of a single observable, as e.g. the presence of an extended
state in an otherwise localized system will only give a quantitative change in the imbal-
ance. However, the combination of imbalance and expansion are suited to distinguish
the intermediate phase as the regime where both quantities have finite values. While
we can accurately detect the intermediate phase, in our setup a direct measurement of
the critical energy εc is not possible. This is because of the charge-density wave ini-
tial state required for measurements of the imbalance. In the charge-density wave state,
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Figure 3.1: Schematic illustration of the phases in the quasi-periodic lattice: Schematic illus-

tration of the phases and the dynamical behavior of an initial CDW state in the quasi-periodic lattice.

A finite imbalance (I > 0) indicates the presence of localized states, a finite expansion E > 0 the

presence of extended states. In the intermediate phase, where extended and localized states coexist,

both quantities are simultaneously finite.

single-particle eigenstates throughout the entire spectrum are occupied and hence it is not
possible to address specific energy intervals.

Intermediate phases are expected in almost all systems with some form of quasi-
periodicity [49, 138–143], as well as in randomly disordered systems in three dimen-
sions [20, 144], where they have been observed experimentally [58, 125, 126] (although
the interpretation of the experimental results is still under discussion [145]). Especially,
the intermediate phase has also been theoretically predicted for our lattice model [50,
114, 146]. Note, however, that neither the one-dimensional Anderson nor the AA model
possesses an intermediate phase.

3.1 Time evolution in the quasi-periodic system

In this section, we will show typical time traces of the imbalance and the expansion. We
will discuss their dynamical behavior and describe how we can investigate the phases of
the quasi-periodic lattice with measurements after certain, finite evolution times. We will
give the time in units of the tunneling time τ = ħh/J in the primary lattice, which is the
characteristic timescale of the Hamiltonian. Here, J denotes the coupling between nearest
neighboring sites as in section 2.3.2. Note that while J is independent of the strength of
the detuning lattice Vd , it heavily depends on the depth of the primary lattice Vp and is
therefore not constant throughout the phase diagram. Typical values of the tunneling time
lie in-between τ(Vp = 4 Ep

r ) ≈ 0.1ms and τ(Vp = 8 Ep
r ) ≈ 0.3ms. Note that we will give all

lattice depths in recoil energies of the primary lattice Ep
r .
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Figure 3.2: Time evolution of the imbalance: a) Time traces of the imbalance I for various depths

of the detuning lattice Vd at a primary lattice depth of Vp = 8Ep
r . Points are experimental measure-

ments, averaged over 6 different detuning realizations φ. Errorbars denote the standard deviation of

the mean. Lines are theoretical simulations, which correctly take into account the trapping potential

and the averaging over neighboring tubes, which are present in the experiment. However, they are

performed on the AA Hamiltonian. b) Long-term time trace on a logarithmic time axis. The gray

shaded region is the result of a numerical simulation on the AA model, the solid line is a stretched

exponential guide-to-the-eye. Numerical data calculated by Pranjal Bordia [43, 69].

3.1.1 Time traces of the imbalance I

As described in section 2.4.1, measurements of the imbalance are performed by first
preparing the initial CDW-state, quenching to the quasi-periodic system and letting the
system time evolve under its intrinsic dynamics until finally extracting the imbalance with
a band-mapping technique. Any measurement of the imbalance is averaged over six re-
alizations of the detuning pattern φ to ensure that different detuning realizations are
sampled by the finite size system, and to suppress noise. Fig. 3.2 shows exemplary time
traces at a primary lattice depth of Vp = 8Ep

r for various strengths of the detuning lattice
Vd . Time traces at other primary lattice depths look qualitatively similar.

We find that the imbalance quickly decays from its starting value I(t = 0) ≈ 0.95 to
a steady state value, reached after only few tunneling times. The starting imbalance is
not exactly one, due to the limited fidelity of the initial state preparation and readout
procedure. In the absence of detuning (Vd = 0) the imbalance quickly decays to zero, in
agreement with the expectations for an extended system. At Vd = 0, this decay should fol-
low a Bessel function, whose average value quickly decays to zero, but which shows long-
lived oscillations with an envelope that decays as 1/

p
t. These oscillations are, however,

not present in the experimental data. This is predominantly due to two effects: (1) An
inherent averaging over many neighboring one-dimensional systems (tubes). Due to the
Gaussian shape of the beams creating the optical lattice, the lattice depth in a tube sightly
decreases towards the edges of the system, resulting in stronger tunneling strengths J and
a slightly weaker detuning lattice depth Vd and (2) the overall harmonic confinement. In
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the presence of the detuning lattice, the same sharp decay of the imbalance from its initial
value is observed. However, the steady-state value reached afterward is finite and depends
on the strength of the detuning lattice, indicating that the system is indeed localized.

The experimental measurements are compared to theoretical simulations, which in-
clude the dipole trap and the averaging over many tubes. In the presence of the detuning
lattice, these simulations additionally need to be averaged over the realizations of the
detuning lattice. The statistical uncertainty, resulting from this averaging, is indicated in
Fig. 3.2a via the width of the lines. We find a very good agreement between the theoretical
and experimental results, indicating a good understanding of the effects of the tube aver-
aging and the dipole trap. Furthermore, the presented calculations have been performed
not for the full lattice model, but instead on the AA-Hamiltonian. The good agreement
suggests that a primary lattice depth of Vp = 8 Ep

r is sufficiently close to the tight-binding
regime for the experimental system to accurately map to the AA-model. This is further
investigated in section 3.3.

Problems with the imbalance arise at longer times, as is shown in Fig. 3.2b. At such
long times, the imbalance does not remain at its stationary value, as is expected from
theoretical simulations, but instead shows a slow decay to zero. This is due to couplings
of the system to its environment slowly resulting in the thermalization of the system. From
the shown time trace we find that these external couplings become relevant after about
200τ. However, this timescale depends heavily on the depth of the detuning lattice, as
well as on the value of τ [69]. A detailed study of the effects of external baths is presented
in chapter 7.

Our observations suggest that the behavior of the system does not require a full dy-
namical analysis, but can instead be captured accurately enough via a single measurement
of the equilibrium value of the imbalance. We choose to access the equilibrium imbalance
after an evolution time of 200τ. This time was chosen as the longest possible time where
effects from external decays are not significant yet. It is important to choose the evolution
time as long as possible to avoid finite-time effects close to the phase transition, where
we expect slow dynamics (see section 6.3). In order to suppress noise and access various
realizations of the detuning pattern, finite-time measurements will be averaged over six
phases of the detuning lattice φ.

3.1.2 Estimation of finite time errors in the imbalance

In order to estimate the magnitude of the finite-time error resulting from slow dynamics
and the measurement of the imbalance after only 200τ, we compare the experimental
non-interacting imbalance to the numerically simulated imbalance after 3000τ in Fig 3.3.
The comparison is shown for various depths of the detuning lattice Vd at a primary lat-
tice depth of Vp = 4 Ep

r , where the finite-time error is most significant. We find that the
experiment agrees well with the numerics for most Vd . However, there is a small regime
where significant deviations are observable. We will later identify this regime to be largely
consistent with the intermediate phase. Importantly, the deviations between 200τ and
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Figure 3.3: Finite time errors in the imbalance: Experimentally measured imbalance after 200 τ

and numerically calculated imbalance after 3000 τ at a primary lattice depth of Vp = 4Ep
r . Errorbars

denote the standard deviation of the mean. The solid black line is a guide-to-the-eye. Numerical data

was calculated by Xiao Li.

3000τ are only of quantitative nature. The detuning lattice depth, where the imbalance
first becomes finite, is essentially unaffected.

3.1.3 Time traces of the expansion E

We extract the expansion of the cloud by comparing the in-situ cloud size σ before and
after time evolution. For this, we employ the same state preparation sequence as for the
imbalance, but instead of the detection sequence, an in-situ picture is taken. The size
is extracted as the full-width at half maximum (FWHM) width of the cloud, which was
found to be the most stable quantity as in Refs. [105, 112, 120, 133]. The expansion can
then be defined as E = A ∗ (σ − σ0), where σ0 is the initial cloud size at t = 0 and A =
0.01 site is a constant scaling factor which enables an easy comparison of the imbalance
and the expansion on the same scale. Exemplary time traces of the cloud size σ at a
primary lattice depth of Vp = 4 Ep

r for various depths of the detuning lattice are shown
in Fig. 3.4a. Later, we will find that the three detuning lattice depths correspond to the
extended, intermediate and localized phase, respectively. We find a very fast expansion
in the extended phase and a constant cloud size in the localized phase. The intermediate
phase exhibits a very slow expansion, which demands long observation times in order to
be properly resolved.

We compare our experimental measurements to numerical simulations of the edge
density, which gives a more direct description of extended states and is numerically more
stable than the FWHM (see section 3.1.4). The edge density D is defined as the frac-
tion of atoms that leave an initially populated center third of a simulated system of size
L = 369 sites, i.e. D = 1−Nc/N , where N is the total particle number and Nc the number of
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In the numerical analysis the cloud sizes eventually saturate due to the finite size of the simulated

system. Numerical data was calculated by Xiao Li.

particles remaining in the center third. The edge density is also simulated from a slightly
different initial state. While the experimental initial state is a product of Wannier states
with an overall Gaussian envelope and a charge-density wave configuration, the numeri-
cal initial state is chosen to be the eigenstates of the center third of the system. However,
we do not expect the initial state to have a qualitative impact, as it is also a high energy
state after the quench to the full system. A detailed comparison of different expansion
observables for the experimental state can be found in section 3.1.4.

As Fig. 3.4 shows, we indeed find that the edge density shows a qualitatively similar
behavior compared to the cloud size σ. In the extended phase, it rapidly increases until
it saturates due to the limited system size. In the localized phase, the edge density does
not register any dynamics. In the intermediate phase, the edge density is significantly
slower than in the extended phase, but also eventually saturates to a maximum value.
This maximum value is smaller than the corresponding one in the extended phase, as not
all particles participate in the expansion dynamics.

To enable the cloud to expand in the experiment, the confining potential of the dipole
traps needs to be removed. This is achieved by reducing the strength of the dipole traps
such that they just compensate the anti-confinement of the blue-detuned optical lattices
(see section 2.4.2). However, slight unevennesses might remain, as only the harmonic
term can be compensated. Additionally, any misalignment or fringes will result in inho-
mogeneities. As will be discussed in detail in section 3.1.4, this unevennesses potentially
heavily affects the expansion dynamics, especially in the presence of a strong detuning
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Figure 3.5: Comparison of various expansion obervables: Comparison of the FWHM cloud size,

the edge density D and the root mean expectation value of the squared radius
√
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product of Wannier states with a Gaussian envelope of size σ = 123 sites. The dipole trap employed

in d)-f) was chosen to have a trapping frequency of ω = 2π × 3.5Hz. Data was calculated by Xiao

Li [109].

lattice. In the extreme case, the unevenness could cause the absence of expansion dynam-
ics even if extended states are present. However, a finite expansion still always marks the
presence of extended states and the very good agreement between the experimental and
theoretical phase diagram in section 3.2.1 suggests that the influence of remaining un-
evennesses cannot halt the expansion dynamics completely if extended states are present.

In order to capture the presence or absence of expansion dynamics from a single finite-
time measurement of the cloud size, the very slow expansion speed in the intermediate
phase requires a long evolution time. Indeed, we choose an evolution time as long as
3000τ. This is potentially problematic, as the imbalance shows that at such long times the
system is already heavily influenced by external couplings. However, such effects should
influence a global quantity, like the expansion, only on much longer timescales than a
local quantity like the imbalance.

3.1.4 Numerical comparison of different expansion observables

In this section, we will motivate the use of a different observable for the expansion in
theory than in the experiment, and show numerical simulations illustrating the effects of
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a (very) weak trapping potential on the expansion. Fig. 3.5 shows simulated time traces of
three different expansion observables. The simulations have been performed on a model
of the experimental initial state, i.e. a product of Wannier states with a Gaussian envelope.
For a simple box-shaped initial state, the FWHM would not capture the expansion if less
than half the particles were extended.

The FWHM and the edge density are calculated as described earlier. Further, the ex-
pectation value of the square of the radius is calculated as 〈r2〉 =

∑

i(i − ic)2〈n̂i〉, where
ic is the index of the central site and n̂i is the density operator on site i. We find that all
three observables show a similar behavior of fast expansion in the extended phase, slow
expansion in the intermediate phase and no expansion in the localized phase. Further, a
comparison with Fig. 3.4b shows that the edge density is not qualitatively influenced by
the different initial state. We find, however, that the simulated FWHM is much noisier
than the other quantities. This is likely due to the FWHM depending mostly on the local
densities of only a few sites, whereas the other quantities inherently average densities over
all sites of the system. Hence, much more averaging would be needed to get a noise-free
signal from the FWHM, making its simulation much harder in numerics.

Fig. 3.5d)-f) studies the effects of inhomogeneities in the global potential on the ex-
ample of a weak dipole trap. For these simulations, we choose a trapping frequency of
ω = 2π× 3.5Hz, which is chosen from a rough estimate of the expected inhomogeneity
in the experimental system. For this frequency and the simulated system size, the effects
of the dipole trap remain very weak compared to the bandwidth of the homogeneous
system. Accordingly, we find that the expansion in the absence of the detuning lattice
is barely influenced. However, in the presence of the detuning lattice, we do find lower
saturation values, even within the fully extended phase. This is even more pronounced
in the intermediate phase, suggesting that any inhomogeneities indeed become increas-
ingly relevant with increasing strengths of the detuning lattice. Hence, the experimental
expansion dynamics are certainly influenced by the remaining inhomogeneities eventually.

3.2 Observation of the intermediate phase

Based on the finite time measurements of the imbalance I and the expansion E , we probe
the phases of the quasi-periodic lattice at infinite temperature as a function of the primary
and the detuning lattice depth Vp and Vd . As was discussed in the previous section, the two
observables show dynamics on vastly differing timescales, necessitating measurements at
different timescales of 200τ for the imbalance and 3000τ for the expansion. Exemplary
measurements for three different primary lattice depths are shown in Fig. 3.6a)-c). We
find, that for all primary lattice depths there exist three different phases. At low depths
of the detuning lattice, we always find a phase where the imbalance is zero. This directly
shows the absence of any localized states and hence this phase is fully extended. At deep
detuning lattices, we find a phase where the expansion is zero. As this excludes any
extended states, this phase is fully localized. In between, we find a phase where both the
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Figure 3.6: Direct measurement of the intermediate phase: a)-c) Measurement of the stationary

imbalance I after 200 τ and the expansion E after 3000 τ . Experimental data is averaged over six

realizations of the detuning phase φ, error-bars denote the standard error of the mean. The gray

shading illustrates the approximate extent of the intermediate phase and black solid lines are fitting

functions to extract the critical detuning strengths VI and VE . d)-f) Numerical simulations for the
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show the result for the central tube. The horizontal black dashed line marks the threshold of 0.015

that is used to determine VI and VD from the theoretical simulations. Theoretical simulations were

performed by Xiao Li [109].
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imbalance and the expansion is simultaneously finite. This directly shows the coexistence
of extended and localized states and hence marks the intermediate phase.

The experimental results are compared to numerical simulations for the imbalance and
the edge density D (see section 3.1.3), which are performed as in Ref. [146] and shown as
dashed lines in Fig. 3.6d)-f). In these simulations, both the imbalance and the edge density
are evaluated after 3000τ. As in the experiment, we always find the described three
phases. However, while the imbalance agrees very well between theory and experiment,
the edge density predicts a significantly narrower intermediate phase in theory. This is
again due to the averaging over many parallel one-dimensional tubes, which is inherently
present in the experiment. Due to the finite extent of the beams forming the optical
lattices, tubes on the outside of the system have slightly lower lattice depths than those in
the center. Including this effect in the numerical simulations (as described in appendix B)
gives the results presented as solid lines. These predict an intermediate phase in very good
agreement with the experimental measurements.

Note that considering the averaging over tubes, as compared to only considering the
central tube, has only a quantitative effect on the imbalance, but actually shifts the detun-
ing lattice depth where the expansion vanishes. This highlights again that the imbalance
is most sensitive to the presence of localized states, which initially appear in the center of
the system, whereas the expansion is more sensitive to extended states, the last ones of
which disappear at the far edges of the system.

To characterize the phase diagram, we extract the phase boundaries between the ex-
tended and the intermediate phase as the detuning lattice depth where the imbalance
becomes finite VI , as well as the boundary between the intermediate and the localized
phase as the detuning lattice depth where the expansion vanishes VE . For the experimen-
tal data, this is done via heuristic fit functions. For the imbalance, we choose the fitting
function

I =

(

a× ln(Vd/VI) + o Vd > VI
0 else

(3.1)

The logarithmic fit is motivated by the known behavior of the localization length in the
non-interacting Aubry-André model [46]. The expansion is fitted as

E =

(

b× (VE − Vd)2 + o Vd < VE
0 else

(3.2)

The quadratic form was chosen as it fitted the expansion best for most values of Vp. Fitting
with a variable exponent gave bad results as small exponents can often be readily com-
pensated by large amplitudes b and a significant shift in VE . For the fits to the expansion
also the fitting range had to be manually restricted to exclude datapoints in the fully ex-
tended phase, as there the expansion is much faster and the quadratic function no longer
describes the data well.

The theoretical phase boundaries are extracted via a simple threshold value, which is
possible due to the low noise. As in Ref. [146], we chose this value to be 0.015, which is
just above the noise floor.
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Figure 3.7: Phase diagram of the quasi-periodic lattice: Extracted phase boundaries from Fig. 3.6

based on experimental data (points) and numerical calculations (lines). Errorbars denote the uncer-
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intermediate phase. The inset shows the numerical result for the central tube. Numerical simulations

were performed by Xiao Li.

3.2.1 Phase diagram of the bichromatic lattice

Fig. 3.7 shows the phase diagram resulting from the extracted phase boundaries. We
find that at all strengths of the detuning lattice an intermediate phase exists in between
the fully localized and the fully extended phases. This intermediate phase is broadest at
low depths of the primary lattice and shrinks, as well as moves towards lower depths of
the detuning lattice when the primary lattice depth is increased. These observations are
true for both the central tube and the full, averaged system. We find very good agree-
ment between the theoretical and experimental phase boundaries for the expansion, but
a systematic trend of the experiment to slightly underestimate the lower phase boundary,
extracted from the imbalance measurements. We attribute this to finite time errors due to
the comparatively short time evolution used for the imbalance of only 200τ, which might
not fully capture the effects of slow dynamic close to a phase transition.

The comparison of the numerical results for the averaged system and the central tube
shows that the width of the intermediate phase in the experiment is almost fully due to
the averaging over tubes when the tight-binding limit is approached. This observation is
consistent with the idea that in the tight-binding limit the system should map onto the AA-
model, which does not have an intermediate phase. We will further investigate a potential
description of the experimental system via the AA-Hamiltonian in the following section.
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3.3 Tight-binding description via the Aubry-André model

As was argued in section 2.3.2, in the tight-binding limit of nearest-neighbor tunneling,
which is approached with increasing depths of the primary lattice Vp, our quasi-periodic
lattice should map onto the AA-Hamiltonian. Evidence of this mapping being accurate
enough already at a primary lattice depth of Vp = 8 Ep

r was given in section 3.2, where
we found that the intermediate phase is essentially absent. This is a necessary condition
as the AA-model does not have an intermediate phase. Also, in section 3.1.1 we found
that time traces of the imbalance were well reproduced by simulations based on the AA-
Hamiltonian. In this section, we will briefly discuss the absence of the intermediate phase
in the AA-model and show further data showing a good description of the experimental
setup by the AA-model in the tight-binding limit.

3.3.1 Absence of a single-particle mobility edge in the Aubry-André model

The existence of an SPME in an intermediate phase is the generically expected behavior
in any system that exhibits a localization transition. This is true for both generic quasi-
periodic geometries [49, 138–143], as well as for randomly disordered systems [20, 58,
125, 126, 144]. However, both typically studied model systems (the Anderson and the
Aubry-André Hamiltonians) in one dimension explicitly do not show an SPME. Instead,
eigenstates of all energies localize at the same critical disorder/detuning strength. Both
model systems are fine-tuned in this regard, as any deviations would result in an SPME. For
example, an experimental realization of the one-dimensional Anderson model has found
an effective mobility edge due to a finite correlation length in their disorder pattern [21].

In the Anderson model, the absence of a SPME is easily explained as all eigenstates al-
ready localize at infinitesimal disorder strengths. In the Aubry-André model, however, the
transition does occur at a finite detuning strength, making the absence of an intermediate
phase very remarkable. The absence of a SPME in this model arises from a self-duality in
the Hamiltonian [46]. This self-duality can be easily seen by considering the AA Hamilto-
nian

ĤAA = −J
∑

n

�

ĉ†
n ĉn+1 + h.c.

�

+∆
∑

n

cos(2πβn)ĉ†
n ĉn (3.3)

and then Fourier transforming the hopping term using

ĉn =
1
L

∑

k

ei2πβkn ĉk, (3.4)

giving
ĤAA = 2J

∑

k

cos(2πβk)ĉ†
k ĉk +∆

∑

n

cos(2πβn)ĉ†
n ĉn. (3.5)

From this form it is obvious that the extended k-modes and the localized n-modes swap
their roles at the transition point∆= 2 J . Note, however, that a self-duality is not sufficient
to rule out the existence of a SPME, as it is possible to construct self-dual models that do
exhibit an intermediate phase [147]. The crucial aspect is the energy-independence of
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the self-duality, which guarantees that states at all energies localize at the same detuning
strength.

3.3.2 Direct comparison to the Aubry-André model

To establish full confidence in a description of our lattice model at Vp = 8 Ep
r by the AA-

model, we compare finite-time measurements of the imbalance to AA simulations. In
order to avoid any influence of external couplings, for this comparison, we choose short
observation times of only about 20τ. Oscillations of the imbalance and experimental noise
are reduced by averaging over 3 randomly chosen times in an interval approximately 5τ
broad. Additionally, we average over 4 detuning phases φ. Fig. 3.8 shows the measured
data, as well as the simulations as a function of the detuning strength ∆/J , which are
the parameters in the AA-model. The experimental data has been scaled to this axis by
converting the detuning lattice depth Vd using the calculations presented in section 2.3.2.

As expected, we find that the simulations of the clean AA-model, presented as the gray
line, shows a sharp localization transition at around ∆ = 2 J . The experimental measure-
ments, however, show a much more smeared out transition and values of the imbalance
agree with the simulation only deep in the localized phase. We find that this smearing of
the transition can be fully attributed to the presence of a dipole trap in the experiment,
which effectively gives a finite localization length also in the extended phase. Including
the harmonic confinement in the simulations (red line) gives a very good agreement with
the experimental values.
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Note that also the theoretical simulation without the dipole trap does not show a
transition at exactly ∆ = 2 J , but at slightly lower detuning strengths. This is dominantly
due to a finite time effect, as the dynamics close to the phase transition are critically slow,
and hence the finite observation time of 20τ chosen in the experiment does not fully
capture the imbalance after an infinite evolution time in this regime.

From the good agreement of the non-interacting experimental data with the numerical
simulations, we find that our system is indeed well described by the Aubry-André model.
A similar comparison with the expansion dynamics might give additional confidence but is
much harder to perform as the calculations would need to implement the detailed, global
experimental state (i.e. simulations would need to be performed on the actual scale of the
experimental cloud size).



Part II

Many-body localization





CHAPTER 4

Thermalization versus many-body
localization

In this chapter, we will discuss the behavior of closed many-body systems, that are pre-
pared in a highly excited initial state. From classical statistical mechanics [148] we know
that generic systems will tend towards a thermal equilibrium state whose properties can
be described by the microcanonical ensemble. As all systems are quantum, we expect the
same behavior to emerge from a quantum description. Exceptions to this generic behavior
do exist in so-called integrable systems, where an extensive amount of conserved quan-
tities restricts the relaxation of the system. Typical examples of integrable systems are
non-interacting systems, but integrability can also occur in interacting systems. Integrable
systems are, however, very fine-tuned in the sense that slight changes of the Hamilto-
nian will result in a thermal behavior. Another exception occurs in disordered/detuned
systems. Here, the localization of interacting particles, known as many-body localization
(MBL), presents a more robust alternative to thermalization.

In this chapter, we will introduce the concepts of thermalization and many-body local-
ization, focusing on closed quantum systems at high energy densities. We will first discuss
the basic concepts and ingredients necessary for thermalization in classical systems and
then expand these concepts to quantum systems, where the notion of thermalization will
be discussed in the context of the eigenstate thermalization hypothesis [12, 16, 17] (ETH).
We will then show how many-body localized systems break the ETH and give a brief re-
view of their phenomenology.

4.1 Themalization in classical systems

In classical statistical physics, the process of thermalization describes the relaxation of
a system prepared in an arbitrary initial state to thermal equilibrium. Once a system
has reached thermal equilibrium, there are no macroscopic flows of e.g. energy or atom
numbers occurring and the system is in a macrostate that can be described by few macro-
scopic quantities (e.g. the temperature). Properties of the macrostate can be calculated
by averaging over all possible microscopic realizations of the macrostate, known as the
microcanonical ensemble. In closed systems, the number of microscopic realizations is
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limited by the condition that they have to have an energy in the interval E + δE, where E
is the total energy of the closed system and δE→ 0.

In order to reach thermal equilibrium based on the ideas above, a closed system in an
arbitrary initial microstate needs to evolve such that it eventually does indeed sample all
available microstates. This is for example the case if the time evolution is fully random.
In this case, the probabilities of finding the system in any specific microstate will become
equal for sufficiently long times and the time average of the system will become equal to
the ensemble average. This property is known as ergodicity. More specifically, a system
is considered ergodic if its behavior averaged over time f̂ is equal to the average over all
possible microstates x ∈ X of the system f̄

f̂ = f̄ , (4.1)

where f is any function acting on a microscopic realization x in the ensemble of possible
microstates X , i.e. an observable. The averages are defined as

f̂ (x0) = lim
n→∞

1
n

n−1
∑

k=0

f (T k x0)

f̄ =
1
µ(X )

∑

x∈X

f (x),
(4.2)

where T is the (discrete) time evolution operator acting on the initial realization x0 (i.e.
x1 ≡ x t=1 = T x t=0 ≡ T x0, where t denotes the discrete time). The function µ is the
measure of the space of possible realizations.

The central question whether a certain classical system can thermalize thus strongly
relates to the question of whether the system is ergodic. In general, most systems behave
ergodically, as long as they are interacting, or more generally contain a non-linearity. How-
ever, as the Fermi-Pasta-Ulam-Tsingou experiment [149, 150] showed, this alone need not
be sufficient to guarantee ergodicity. Instead, next to being interacting, systems typically
need to be dynamically chaotic. In dynamically chaotic systems, the future time evolution
is extremely sensitivity on the exact details of the initial state. Hence, while the dynamics
is in principle deterministic, it is very hard to predict as even slight uncertainties can cause
an exponentially different behavior [151]. This causes an effective randomness in the dy-
namics, helping the system to dynamically explore the full set of available microstates.

Note that also in classical systems the conditions for ergodicity and its role in thermal-
ization are not finally resolved, but remain an active field of research [152].

4.2 Thermalization in quantum mechanics

As all systems are quantum, a quantum-mechanical description of generic systems neces-
sarily needs to recover the intuitive classical result of thermalization known from every-
day life. However, applying the previously discussed concepts of ergodicity and dynamical
chaos to quantum mechanics is not straightforward at all. As the quantum-mechanical
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time evolution under a Hamiltonian is inherently linear, dynamical chaos is absent in
quantum systems [15]. Also, it is not possible to define a direct analog of classical ergod-
icity on the level of wavefunctions, which are the direct analog to the classical notion of
microstates [153].

An analog of classical ergodicity can, however, be defined via the expectation value of
observables [16, 154] as




〈Ψt |Â|Ψt〉
�

t =
1
D

∑

α:Eα∈[E,E+δE]

〈Φα|Â|Φα〉, (4.3)

where the left hand side denotes the infinite time average of the expectation value of an
observable Â in a quantum state |Ψt〉 and the right hand side the expectation value of Â
in the microcanonical ensemble. In equivalence to the classical microcanonical ensem-
ble, this expectation value is calculated by averaging the expectation value of Â from all
eigenstates |Φα〉 with corresponding eigenenergies Eα in the interval [E, E + δE], where E
is the total energy of the system and δE → 0. The principle of equal a priori probabil-
ity is fulfilled by weighing contributions from all eigenstates equally with the probability
1/D, where D is the number of eigenstates in the considered energy interval. Note that
the thermodynamic limit can be taken such that D tends to infinity even though δE tends
towards zero. The definition of quantum ergodicity in eq. (4.3) is a formulation of the
trivial requirement that the behavior observed in classical systems needs to emerge from
the expectation values of observables in a quantum mechanical formulation. However, as
we will show below, eq. (4.3) has some highly non-trivial implications.

The left-hand side of eq. (4.3) can be explicitly derived from the time evolution of the
initial state

|Ψt〉=
∑

α

cαe−
i
ħh Eα t |Φα〉 (4.4)

where the cα are the occupations of the eigenstates. The time average can then be calcu-
lated as




〈Ψt |Â|Ψt〉
�

t =
∑

α,β

cαc∗β
¬

e−
i
ħh (Eα−Eβ )t

¶

t
〈Φβ |Â|Φα〉

=
∑

α

|cα|
2 Âα,α,

(4.5)

because oscillating phases average to zero. Here Âα,α = 〈Φα|Â|Φα〉.
The right hand side of eq. (4.3) denotes the expectation value of Â in the micro-

canonical ensemble



Â
�

mc (E), which depends only on the energy E. This expectation
value can be calculated from the microcanonical density matrix ρ̂mc as




Â
�

mc (E) = tr(ρ̂mcÂ) (4.6)

with the micro-canonical density matrix

ρ̂mc =
1
D

∑

α:Eα∈[E,E+δE]

|Φα〉〈Φα|. (4.7)
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Figure 4.1: Thermalization in classical versus quantum mechanics: a) In classical mechanics

thermal equilibrium emerges from chaotic dynamics. b) In quantum mechanics, according to the

ETH, every eigenstate of the Hamiltonian is thermal. The coherence between the eigenstates hides

the thermal nature in the initial state. During the time evolution, these coherences dephase, revealing

the thermal nature. Figure reused from Ref. [12] with permission. Copyrighted by Springer Nature.

Using the calculations presented above, the definition of quantum ergodicity can be
rewritten as

∑

α

|cα|
2 Âα,α =

1
D

∑

α:Eα∈[E,E+δE]

Âα,α. (4.8)

From this form the strong implications of the definition of quantum ergodicity are easily
recognizable. The expression on the left hand side is heavily dependent on the initial
conditions set by the cα, while the right hand side only depends on the total energy.
Trivially, the above equation is not necessarily true, as a randomly chosen initial state
need not fulfill |cα|

2 = 1/D. With this in mind, however, eq. (4.8) can only be generically
fulfilled if the expectation values Âα,α are independent of the exact eigenstate α. This idea
is known as the Eigenstate Thermalization Hypothesis.

4.2.1 The Eigenstate Thermalization Hypothesis

Definition: The expectation value 〈Φα|Â|Φα〉 of an observable Â in an eigenstate
|Φα〉 with eigenenergy Eα of a large, interacting many-body Hamilto-
nian equals the microcanonical ensemble average at energy Eα

〈Φα|Â|Φα〉=



Â
�

mc (Eα). (4.9)
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The Eigenstate Thermalization Hypothesis [16, 17] (ETH) states, that the expectation
values of an observable Âα,α in an eigenstate |Φα〉 are essentially independent of the exact
eigenstate and only depend on the energy. In this scenario, eq. (4.8) holds for most initial
conditions. Exceptions are initial states with macroscopic uncertainties in the energy, i.e.
superpositions of very high and very low energy eigenstates. The ETH implies that in
quantum systems thermalization happens at the level of individual eigenstates, which are
thermal themselves. Further, it directly states that the knowledge of a single eigenstate is
sufficient to calculate thermodynamic expectation values. Hence, ensemble averages over
all possible eigenstates are not required.

Fig. 4.1 illustrates the process of thermalization in quantum systems (assuming the
ETH is true) and highlights the difference to classical systems. In classical systems, the
thermal state is constructed via the dynamics. Due to dynamical chaos, the system samples
possible microstates seemingly randomly, resulting in an equal probability of finding the
system in any microstate after sufficiently long times. As was already mentioned before,
such dynamical chaos is absent in quantum mechanics. However, in the context of the
ETH dynamical chaos is not required, as the dynamics play a mere auxiliary role in the
emergence of thermal equilibrium, which is already present in the individual eigenstates.
While coherences hide these properties in the initial state, the time evolution dephases
these coherences and the underlying thermal nature becomes visible.

While the ETH is well supported by numerical evidence (see e.g. [12] and references
therein), it is important to remember that it remains a hypothesis without formal proof.
Also, there are several exceptions to the ETH, e.g. restrictions on the observable Â, as well
as on the energy density.

Conditions on observables for which the ETH holds: From the definition of the ETH in
eq. (4.9) it quickly becomes apparent that the ETH will not hold for arbitrary observables
Â. For example, the projection operator on an individual eigenstate Â = P̂γ = |Φγ〉〈Φγ| is
clearly not thermal and not ergodic in the quantum sense, as P̂γ in equation 4.3 gives

�

�cγ
�

�

2
=

1
D

(4.10)

which would pose tight restrictions on the initial state. This is related to the fact that
projection operators are highly non-local and reveal long-distance entanglement in the
system. Indeed, the ETH only holds for local observables that are defined on a small sub-
system [155]. Another way to see this is that thermalization in quantum mechanics is the
thermalization of subsystems, that use the rest of the system as their bath. Initial local
correlations in a subsystem will spread through the entire system, resulting in an effec-
tive dephasing in the subsystem. Hence, the subsystem’s reduced density matrix will be
fully mixed and observables defined in the subsystem will approach their thermal values.
Considering the full system, however, correlations cannot be lost and hence appropriately
chosen global observables will always be able to retrieve the information of the initial
state.
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Note that the locality condition on the observables does not restrict the intuitive picture
of thermalization, nor the experimentally available observables in large quantum systems,
as all typical and (easily) realizable observables are local (such as e.g. densities).

Restrictions on the ETH by the energy density: In this thesis, we focus on the behavior
of systems in highly excited states at high energy densities. The energy density is defined
as in [155] as

ρE = lim
V→∞

E − E0

V
, (4.11)

where E0 is the energy of the ground state and V the Volume of the system. Note that a
high energy density is essentially equivalent to a high temperature. However, the temper-
ature is only well defined in thermal systems, and hence the concept of energy density is
more practical.

At finite ρE 6= 0, the ETH is expected to hold for large system sizes. However, the
ground state and low lying excitations over the ground state, with an energy density of
ρE = 0 often explicitly violate the ETH. This is because the ground states often exhibit
spontaneously broken symmetries, like e.g. a ferromagnetic spin system. Its ground state
exhibits a spontaneous symmetry breaking in that it chooses to be either spin-up or spin-
down. Once it chose an alignment, however, it will not explore the other alignment even
though both states are equally energetically favorable. Ergodicity would thus require that
the system explores both cases. Low lying excitations to this ground state can be expressed
as the sum of few spin-flip terms. Such excitations still have an energy-density of zero and
do clearly not result in thermalization. Only when the excitations are high enough that the
number of required spin-flip operators becomes extensive will the energy-density become
finite and the system will thermalize.

4.3 Integrable systems

While the overwhelming majority of systems thermalizes, exceptions occur e.g. in inte-
grable systems. Integrable systems present fine-tuned exceptions to thermalization in the
sense that even small changes in the Hamiltonian will restore a thermalizing behavior. In
classical mechanics, integrable systems are characterized by the existence of an extensive
amount of integrals of motion, which restrict the dynamics of the system and thus prevent
thermalization. A well-known example of such a system is Newton’s cradle.

In quantum mechanics, integrability is much harder to define than in the classical
sense. Especially, the classical definition of having an extensive set of conserved quantities
trivially fails, as in quantum mechanics these could be constructed by the projectors on
eigenstates, making every quantum system integrable. In fact, a commonly agreed upon
definition of integrability in the quantum sense is lacking. A review of common definitions
and their (dis)advantages can be found in Ref. [156]. In general, all non-interacting
systems are integrable, as it is usually easy to diagonalize their Hamiltonians via Fourier
transformations. Other integrable models are usually characterized by the existence of
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many non-trivial integrals of motion that have a significant effect on the dynamics of the
system.

Note that while some integrable systems simply show oscillations up to infinite times,
most integrable systems do show a relaxation to an equilibrium state similar to thermal
systems. The difference lies in the equilibrium state, which is not describable by the mi-
crocanonical ensemble, but instead by the generalized Gibbs ensemble [157–159] which
takes the restrictions in the dynamics into account. Such systems are non-thermal in the
sense that local observables can be found that have non-thermal values. However, it is
possible that most local observables still do take their thermal values. A special, and for
this thesis directly relevant, example of such an integrable system is the one-dimensional
Fermi-Hubbard model.

Integrability in the Fermi-Hubbard Hamiltonian: The one-dimensional Fermi-Hubbard
Hamiltonian (or simply Hubbard Hamiltonian [91])

Ĥ = −J
∑

〈i, j〉

∑

σ

ĉ†
iσ ĉ jσ + U

∑

i

n̂i↑n̂i↓ (4.12)

models the hopping J of fermions with on-site interactions U in a one-dimensional lattice.
It is not only integrable at U = 0 but was shown to be integrable at all U [160, 161] in the
sense that it can be solved using the Bethe-Ansatz [162].

The Hubbard Hamiltonian is of special interest for this thesis, as both the interacting
Anderson and the AA model reduce to the Fermi-Hubbard Hamiltonian in the absence
of disorder/detuning. Hence, it is important to understand how the integrability of the
underlying model affects the investigations of localization due to detuning. First, it is
important to note that the addition of disorder or detuning breaks the integrability of
the Hubbard Hamiltonian. Hence, the integrability can only affect the measurements in
(and close to) the limits of zero detuning. We will first consider the case of U = 0. In this
limit, the Hamiltonian can be diagonalized via a Fourier transformation and the conserved
quantities are the quasi-momenta. It is easy to see that while these restrictions will stop
a full thermalization, the relaxation of a real-space pattern (i.e. a charge-density wave)
should not be affected. In the presence of interactions, the conserved quantities come
from a solution from the Bethe Ansatz and are not easily visualizable. However, as in the
non-interacting case, there are no restrictions on the relaxation of density patterns.

4.4 Many-body localization

Another, more generic, exception to thermalization occurs in systems with a sufficiently
strong disorder/detuning [22–24], known as many-body localization (MBL). Here, ‘more
generic’ means that small changes of the Hamiltonian will indeed not restore a thermaliz-
ing behavior. MBL can be considered as the interacting generalization of single-particle lo-
calization discussed previously. However, thermalization of interacting systems is a much
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more robust phenomenon than the relaxation of single particles, and hence the existence
of localization in the presence of interactions is a much more surprising result. Indeed,
it is generally found that in the presence of interactions much higher disorder/detuning
strengths are required to localize a system. Note that MBL explicitly considers localiza-
tion in high energy density states, as ground states might be non-thermal even in non-
disordered systems.

First evidence for many-body localization was obtained through perturbative argu-
ments. Starting from fully localized states in heavily disorder systems with no tunneling
(J = 0), weakly hybridized many-body states can be constructed via perturbation the-
ory in J and U [163–165]. Comparing the level spacing to the coupling J results in the
conclusion that e.g. energy transport is absent and hence the system is localized. Later,
numerical simulations established the existence of MBL over a much wider range of pa-
rameter regimes [23, 29, 166].

As was discussed in section 4.3, breaking of quantum ergodicity is not an exclusive
feature of many-body localization, but also occurs in integrable systems. In these systems,
the breaking of ergodicity is associated with the presence of an extensive set of conserved
quantities. A similar structure of conserved quantities can also be constructed in MBL sys-
tems. However, while in integrable systems the conserved quantities only restricted full
thermalization, the conserved quantities of a localized MBL system need to actually pre-
vent changes in the density pattern. Such a constraint is not present for generic integrable
systems, which may relax in real-space but be non-ergodic in a different sense (as e.g. the
Fermi-Hubbard model).

The idea of such an emergent integrability in MBL systems was substantiated in
Refs. [25, 26, 167] (and reviewed in Ref. [27]). In these references, it was shown that
MBL Hamiltonians can be written as a non-linear function of a complete set of local
integrals of motion (so called LIOMs Îα). The Hamiltonian then takes the form

Ĥ = h0 +
∑

α

hα Îα +
∑

α,β

hα,β Îα Îβ + ..., (4.13)

where the dots indicate the presence of higher order terms up to infinite order. While this
expansion is in principle generic, only for MBL systems it implies a locality of both the Îα
and the coefficients h. The operators Îα are local in the sense that if expanded in terms
of the local operators in the Hamiltonian Ô (i.e. expanded in terms of annihilation and
creation operators)

Îα =
∑

i

A(α)i Ôi (4.14)

the amplitudes Ai decay exponentially as a function of the distance d from a certain point
in space around which the operator acts, i.e.

|Ai| ∼ e−d/ξ, (4.15)

where ξ is a length scale describing the spatial extent of the operator. Hence, the Îα are
only weak deformations of the local operators Ô.
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Due to the locality of the Îα, also the hα,β in eq. (4.13) decay exponentially with the
distance between the two operators Îα and Îβ . Additionally assuming that the Îα have
a binary structure (like spin degrees of freedom) is indeed sufficient to derive the full
phenomenology of strongly localized MBL systems [27]. Note though, that the presented
description via LIOMs is only useful deep in the localized phase as it cannot be applied
close to the phase transition.

4.4.1 Phenomenology of MBL

In this section, we discuss some signatures of many-body localized systems used in theory
and experiment. Note that the given list is not complete, but only a mentioning of the
most important observables. Further observables are e.g. a direct violation of the ETH or
the absence of level repulsion [166].

Eigenstate entanglement: In the theoretical analysis of many-body localization, where
the eigenstates of a system can be accessed, a classification between a thermal and an
MBL system can be performed based on the entanglement scaling of the eigenstates [29].
The entanglement can be characterized by the von Neumann entanglement entropy.

S(t) = −Tr(ρ̂ log(ρ̂)), (4.16)

where ρ̂ denotes the density operator. While the entanglement of the full eigenstate is
zero, as it is a pure state, the entanglement SA of a subsystem ρ̂A will scale with the size
of the subsystem Ld

A, where d denotes the dimensionality. Thermal systems at elevated
temperatures will typically show eigenstates with a volume-law entropy, i.e. SA ∼ Ld

A. In-
tuitively, this implies that entanglement spreads through the entire system. In contrast,
many-body localized systems (and single-particle localized systems) show area-law entan-
glement SA ∼ Ld−1

A . The scaling of the entanglement entropy with the boundary of the
subsystem implies that entanglement only spreads over short distances, and two distant
points are not entangled, which is consistent with the picture of localization.

Note that for the analysis of the eigenstate entanglement it is important to work at
elevated temperatures. The behavior in the ground state can be vastly different as area-
law scaling occurs even in non-disordered systems [168].

Out-of-equilibrium dynamics: While theoretical calculations can identify violations of
the ETH by simply looking at many-body eigenstates, considering local observables a lo-
calized system can only be distinguished from a thermal system via its out-of-equilibrium
dynamics after a quench. This becomes obvious when considering a thermal and a local-
ized system, each prepared in a thermal equilibrium state. Measurements of local quan-
tities will, in both cases, return thermal values. Also, the states will not change under
time evolution, as the thermal system already is in equilibrium and the localized system
is localized. To distinguish localized from thermalizing systems, it is thus required to pre-
pare an initial state far from thermal equilibrium (i.e. a state with large local differences
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in energy or atom number) and monitor its time evolution. While thermalizing dynamics
will tend towards a thermal equilibrium state, the time evolution in a localized system
preserves a memory of the initial state (see e.g. [37, 166, 169, 170]). This also means
that e.g. the expansion of a cloud in a localized system must be zero and local patterns
like the charge-density wave employed for measurements of the imbalance are preserved.

Time evolution of the entanglement entropy: Another experimentally inaccessible,
but theoretically often used observable to characterize many-body localized states is the
time evolution of the entanglement entropy starting from an unentangled initial state. This
is often a more sensitive probe than the monitoring of the out-of-equilibrium dynamics of
local quantities, as the key signature of MBL systems is a logarithmic growth of S(t) as
compared to the simple absence of dynamics. Also, it is numerically more accessible than
a full computation of the many-body eigenstates.

The time evolution of the entanglement entropy has most often been used in one-
dimensional systems and the subsystem is typically chosen such that LA = L/2, where L
denotes the length of the entire system. In non-disordered/detuned thermal systems, typ-
ically a ballistic growth of the entanglement was observed, i.e. SA(t)∼ t [171–173]. Note
that this growth of entanglement typically saturates after a certain time to a maximum
value, which scales with the volume of the subsystem (see section 4.4.1).

In many-body localized systems, the growth of the entanglement entropy was found
to be logarithmic in time SA ∼ log(t/τ) [174, 175]. An example of this is illustrated in
Fig. 4.2. Here, the entanglement entropy was calculated in the setting of an interacting
Aubry-André model at a detuning strength of ∆= 5 J for various interaction strengths. At
long times, the logarithmic growth of S is clearly visible for all interaction strengths except
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for U = 0, where S does not grow in time. Note that in the single-particle extended phase
the entanglement entropy would grow due to particle transport. A detailed investigation
of the entanglement entropy was performed in Ref. [175], where the growth of the entan-
glement entropy was found to be unbounded. Saturation only occurs after exponentially
long times, and the saturation values follow a volume law, a behavior expected for ther-
mal systems. However, the saturation values are still sub-thermal. A naive interpretation
of this behavior can be given as interactions causing a scrambling of phases through the
entire system. However, this does not actually result in the movement of particles and
hence the system remains localized.
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CHAPTER 5

Observing localization in interacting
systems

This thesis reports on two experiments on many-body localization of interacting parti-
cles. The first experiment investigates the MBL-to-ergodic phase transition in chapter 6
(Ref. [108]), the second experiment is a controlled study of MBL in open quantum sys-
tems in chapter 7 (Ref. [70]). Both experiments have been performed in the context of the
AA-model (at a primary lattice depth of Vp = 8 Ep

r ). An outlook on interacting experiments
at lower primary lattice depths, where an SPME is present, will be given in section 8.1.1.

In this chapter, we discuss the differences and challenges of studying interacting many-
body systems compared to studying single-particle physics. We further give some basic
results on many-body localization in our experimental setup as a basis for the following
chapters.

5.1 Modelling the interacting system

Both the Anderson (section 2.3.3) and the AA Hamiltonian (section 2.3.1) can in principle
be easily modified to include interactions by adding the standard on-site interaction term
commonly used in Hubbard models, i.e.

Ĥ = Ĥsp + ĤU , ĤU = U
∑

i

n̂i,↑n̂i,↓, (5.1)

where Ĥsp denotes the single-particle Hamiltonian describing either the Anderson or the
AA model. The interaction term adds an energy of U if two Fermions of opposite spin
occupy the same lattice site. In the absence of any disorder/detuning, the interacting
Anderson or AA Hamiltonians are both equivalent to the Fermi-Hubbard Hamiltonian
(equ. (4.12)).

Numerically studying the interacting Hamiltonian is much harder than simulating the
corresponding non-interacting Hamiltonians, as numerical tools struggle with the large
Hilbert space of the many-body system. Especially, exact diagonalization studies are lim-
ited to approximately 20 lattice sites, and approximate methods such as DMRG work only
deep in the localized phase.
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5.1.1 Hubbard versus spin systems

A useful method for reducing the size of the Hilbert space in numerical studies is to con-
sider spin systems instead of Hubbard models. Spin models describe qualitatively the same
physics as the Hubbard models, but quantitative differences emerge due to differences in
the interaction term. The most common spin-model used to study localization is the XXZ-
Hamiltonian, which models the behavior of spin one-half particles fixed to specific lattice
sites with overall filling one. Hence, the local Hilbert space of an individual lattice site
has only two possible states (spin-up or spin-down) instead of four as in the Hubbard
models (empty, spin-up, spin-down, spin-up and spin-down). The behavior of the spins is
described by the Hamiltonian

Ĥ = J⊥
∑

i

�

X̂ i X̂ i+1 + Ŷi Ŷi+1

�

+ Jz

∑

i

Ẑi Ẑi+1 +∆
∑

i

Vi Ẑi , (5.2)

where X̂ , Ŷ , Ẑ denote the Pauli spin operators. The first term of the Hamiltonian swaps
neighboring spins and corresponds to the hopping term in the Hubbard models. The
second term corresponds to the interaction term. It adds an energy Jz if two Fermions
with equal spins sit on neighboring lattice sites. Note that in contrast to the Hubbard
Hamiltonians, the interactions are not on-site, but instead nearest-neighbor. The last term
adds the disorder/detuning potential of overall strength∆with the Vi being either random
or quasi-periodic. The typical choice of the interaction strength in this model is J⊥ = Jz =
1. As for numerical simulations, J⊥ is simply a normalization, this choice of Jz corresponds
to fixing the interaction strength to U = J in the Hubbard models.

The XXZ-model can be mapped to a Hubbard type Hamiltonian via the Jordan-Wigner
transformation [176]. However, the resulting Hubbard Hamilton differs from the Hamilto-
nians describing the experimental system in several aspects: It describes spinless Fermions
instead of spinful Fermions, the particle number is fixed to L/2, where L is the system size,
and the interactions are nearest-neighbor. In this setting, it becomes clear, that the XXZ-
model describes qualitatively similar physics as the Hubbard models in eqs. (2.17), (2.4).
This is especially true in the absence of interactions, where no differences are expected.

Numerical simulations for our system are always performed on Hubbard models. How-
ever, stand-alone theoretical studies usually prefer spin-models. In comparing the pre-
sented experimental results to such studies, quantitative differences in e.g. the exact tran-
sition point are expected. Qualitatively, however, the described physics is expected to be
similar.

5.1.2 SU(2)-symmetry in the Hubbard model

In Hubbard type systems, interactions are only possible between fermions of different
spins, as interactions are on-site and two fermions of the same spin cannot occupy the
same lattice site. Implementing an interacting system thus requires the addition of a sec-
ond spin component. However, the second spin component comes with a subtle problem



5.2 Implementing interactions experimentally 57

that results in the absence of full MBL in Hubbard systems [177, 178]. Specifically, the de-
tuning pattern is typically not spin-dependent, enabling a resonant switch of two fermions
on neighboring sites even if the two sites are heavily detuned. This process constitutes a
bath to the system, which will result in the eventual thermalization of the system.

Full MBL in a Hubbard system thus requires disabling the described spin bath via
e.g. spin-dependent detunings/disorder. From an experimental perspective, however, this
is not necessary as the timescale of thermalization associated with the spin bath [177] is
much longer than the typical system lifetimes of the experimental platforms [69, 70]. Thus
the spin-bath only plays a minor role in the more general problem of creating experimental
systems that are isolated from their environment as well as possible.

5.2 Implementing interactions experimentally

Generalizing the single-particle measurements described in part I to interacting systems
is in principle straight-forward. Instead of loading a spin-polarized atom cloud, a spin-
mixture is required to allow the ultracold fermions to interact (see section 2.2.1). In
our experiments, the interactions occur between the two lowest hyperfine states of 40K
|F , mF 〉 = |9/2,−9/2〉 ≡ |↓〉 and |9/2,−7/2〉 ≡ |↑〉. Typically, the spin states are prepared in
a 50/50 mixture. The interaction strength U is given by

U =
4πħh2a

m

∫

d3r |w (r)|4 , (5.3)

where a denotes the s-wave scattering length, m the mass of 40K and w a Wannier function.
The scattering length can be experimentally tuned via a Feshbach resonance by slightly
varying the magnetic field around ∼ 200G [100]. At primary lattice depths of Vp = 8 Ep

r ,
which is used for all interacting measurements in this thesis, interaction strengths of U/J ∈
[−20,20] are easily accessible. At |U/J | = 20 the Fermions behave much like hardcore
particles and a further increase of the interaction strength will not change their behavior.

While implementing an interacting system is thus rather straightforward, in the pres-
ence of interaction several aspects have to be considered that were not relevant in the
single-particle case, which will be discussed in the following sections.

5.2.1 The interacting initial state

In the interacting AA-Hamiltonian, the only parameter that needs to be considered in
addition to those in the single-particle case is the interaction strength U . However, in the
presence of interactions, the imbalance is actually influenced by many more parameters
than just the detuning strength ∆ and the interaction strength U . This quickly becomes
apparent when e.g. considering the atom number density of the initial state: If the density
is reduced, the effects of interactions are reduced until in the extreme case of very low
densities the system should behave essentially non-interacting. Another similar effect is
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present due to the distribution of spins in the initial state. Since equal spins cannot interact
with each other, clusters of just a single spin species would behave non-interacting, which
is in stark contrast to e.g. the expected behavior of a Néel state. Also, numerical studies
generally find a strong dependence of the localization transition on the energy density (see
e.g. [170]). Meaningful statements about many-body localization thus require a detailed
description of the initial state. In our setup, the initial state can be influenced via three
control parameters: The atom number, the temperature (entropy) of the atom cloud, and
the scattering length while loading into the lattice. The key parameter characterizing the
initial state is the overall atom number density, the distribution of spins and the number
of doubly occupied lattice sites (doublons).

Atom number density: Throughout all experiments described in this thesis, the initial
atom number was kept fix at about N ≈ 100×103. At our lowest achievable temperatures,
this results in a filling of the central tube, which has a length of about 200 sites, with
about 80 atoms. Note that half of the sites must be empty due to the charge-density wave
initial state. As this already corresponds to a rather low density, no measurements were
performed with a further reduced initial atom number. The density can additionally be in-
fluenced by the temperature of the atom cloud, as the temperature changes the cloud size.
As higher temperatures correspond to lower densities, usually only the lowest possible
initial temperatures of about T = 0.15 TF to T = 0.2 TF were employed.

Spin distribution: Even the lowest initial temperatures achieved in our experiments are
high compared to the exchange interactions ∼ 4J2/U . Hence, we do not expect any corre-
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lations between spins to emerge during the loading of the optical lattice. The distribution
of spins is thus fully random.

Doublon number: Even at the fixed atom numbers and temperatures of our initial state,
we can drastically change the behavior of the system by controlling the number of dou-
bly occupied lattice sites (doublons). The number of doublons can be measured exper-
imentally by comparing a direct measurement of the atom number to a measurement
performed after ramping across the Feshbach resonance (i.e. the singularity in the in-
teraction strength U) between the two spin states in our system. Ramping across the
Feshbach resonance will convert any pair of atoms sitting on the same lattice site into
a molecule [100]. As the molecular transitions are detuned relative to the imaging fre-
quency of individual atoms, atoms paired up in molecules will not appear on the image.
The relative difference in atom number between the two images then gives the doublon
fraction. Fig. 5.1a shows the experimental control of the doublon fraction as a function
of the interaction strength during the loading of atoms into the lattice. Additionally, the
effect of the temperature of the atom cloud in the dipole trap is shown in Fig 5.1b. At the
lowest reached temperatures of T/TF = 0.2, we can achieve doublon fractions of about
50%. Repulsive interactions can suppress the doublon fraction down to about 10%. If the
atoms are loaded non-interacting, about 40% are doublons. As a function of temperature,
we observe that lower temperatures greatly favor the formation of doublons. However,
for repulsive interactions, the achievable doublon fraction remains low even at the coldest
temperatures. We note, that the interaction strengths are a much cleaner way of adjusting
the doublon fraction, as the initial temperature changes not only the doublon fraction but
also significantly enlarges the in-situ cloud size, thereby reducing the density.

5.2.2 Observables

In principle, both the imbalance, as well as the expansion are able to characterize localiza-
tion in the interacting system in the same way as in the absence of interactions. However,
especially the expansion requires more care in the interpretation of the data, as the ex-
pansion speeds can heavily depend on the interaction strength even in the absence of the
detuning lattice [105, 133, 179]. An exemplary measurement of the interacting expansion
after 3000τ at a primary lattice depth of Vp = 4 Ep

r is shown in Fig. 5.2. As is illustrated
there, we generally find that we cannot resolve an interaction effect in the experimental
expansion data. However, measurements of the imbalance (section 5.3) indeed show a
sizable interaction effect in good agreement with numerical results. Why this effect is
not visible in the expansion data is not quite clear. Possible reasons could be that the ex-
pansion dynamics in the many-body delocalized (but single-particle localized) phase are
much slower than in the single-particle extended phase, and are hence not resolvable on
the experimental timescales. Another possible reason could be that such dynamics are
influenced even more strongly by any inhomogeneities in the global potential. Since the
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reasons are unclear, we decide to not use the expansion for the interacting system, and
hence all interacting results will be only obtained from the imbalance.

In the context of interacting many-body systems, the functionality of the imbalance as
a probe for localization can be understood by considering localization as the opposite of
thermalization. A thermalizing system prepared in an arbitrary initial state should relax
back to thermodynamic equilibrium under its intrinsic time evolution. In this thermody-
namic equilibrium state, local observables, like e.g. the density on a specific lattice site,
are given by the microcanonical ensemble. As the quasiperiodic system does not break any
symmetry between even and odd sites, this means that the expectation value of the density
between even and odd sites should be equal. Hence, in a thermalizing system, the initial
density pattern should vanish and the imbalance tends to Ithermal = 0. Should the system,
however, be many-body localized, parts of the initial density pattern can remain and give
a finite imbalance IMBL > 0. Note that it is essentially impossible to show that a system is
actually thermal, as this would require one to show that all local observables are thermal.
The opposite is, however, not true: A single local observable yielding a non-thermal value
is sufficient to show the absence of thermalization.

While it is conceptually correct to consider localization as the opposite of thermaliza-
tion for the generic quasiperiodic system, care needs to be taken when no detuning is
present. In this limit, the system is described by the Fermi-Hubbard Hamiltonian [91],
which is integrable at all interaction strengths. However, while the present integrals of
motion prevent a full thermalization in this limit, they do not prevent the relaxation of the
imprinted density pattern, and hence this peculiarity has no effect on the measurements.
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5.3 Experimental results on many-body localization

In this section, we will present some basic experimental results on the interacting system,
obtained from measurements of the imbalance. We will show that the time evolution of
the imbalance behaves qualitatively similar to that in the single-particle case and map
out the phase diagram of the interacting Aubry-André model using a finite-time analysis.
Further, we will show how strongly the system is affected by changes in the initial state.
Note, however, that the finite-time analysis used in this chapter can give inaccurate results
in some regimes. Especially, close to the localization transition an analysis of the dynamics
is required as performed in chapter 6.

5.3.1 Time evolution of the imbalance

Exemplary time traces for various interaction and detuning strengths are shown in Fig. 5.3.
For these traces, the initial state contains approximately 40% doublons. We observe a
generally similar behavior as in the absence of interactions: At ∆ = 0, the imbalance
quickly decays to zero, whereas in the presence of finite detunings, it equilibrates to a
finite steady-state value. This already strongly suggests that localization can indeed persist
in the presence of interactions.

We compare the experimental data to theoretical Time-Evolving-Block-Decimation
(TEBD) simulations [180], which model the experimental system on 40 sites. The sim-
ulations model the details of the experimental initial state, but neglect the effects of the
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dipole trap and averaging over many tubes. Note that TEBD simulations are a viable tool
only when the entanglement in the system spreads slowly, i.e. in the localized phase. The
shown simulations at ∆ = 3 J are a borderline case of what is numerically possible. We
find very good agreement between the theoretical and experimental time traces, which
both suggest that localization will indeed survive in the presence of interactions. However,
a slight disagreement is observed between the traces at ∆ = 8 J . Here, the experimental
data seems to indicate a slow decay on a longer timescale, that is not present in the
simulations. This is due to the experiment coupling to its environment, which acts as an
external bath, ultimately thermalizing the system on long timescales. We find a general
reduction of the imbalance lifetime in the presence of interactions, as compared to the
non-interacting case (see Fig. 5.3b). External couplings thus seem to be more effective in
interacting systems [69, 70].

Due to the limited lifetime of the interacting imbalance, a characterization of the phase
diagram via the stationary state requires measurements after a short evolution time, which
we choose to be about 20τ. Note though, that the short evolution time implies finite-time
limitations. A good understanding of the basic features of the interacting Aubry-André
model can nevertheless be achieved from these steady-state imbalances.

5.3.2 Phase diagram of the interacting AA-model

The phase diagram resulting from the finite-time measurements of the imbalance is shown
in Fig. 5.4a over a wide parameter range of both ∆ and U . The measurements have been
performed at a doublon fraction of approximately 40%. Exemplary traces of the stationary
imbalance versus the interaction strength are shown in Fig. 5.4b, together with the results
of TEBD simulations where possible.

The dominant observable feature is the increase of the stationary imbalance from close
to zero in the delocalized (blue) phase to finite values when the detuning ∆ becomes suf-
ficiently large. This is observable at all interaction strengths U , showing that a localized
phase exists independent of the interaction strength. The effect of interactions is much
weaker and highlighted via equal-imbalance lines (dashed white). They clearly show, that
at intermediate interactions (U ∼ 5 J) a slightly larger detuning strength is required to
achieve the same imbalance as at U = 0. Upon further increasing the interaction strength,
the detuning strength required for the same imbalance decreases again and, in the hard-
core regime, is slightly lower than at U = 0. This trend along the interaction strength
is symmetric around U = 0, resulting in a ‘W’-shape of the stationary imbalance along
U , which is observable in Fig. 5.4b. This symmetry emerges from a dynamical symmetry
in the Fermi-Hubbard Hamiltonian between negative and positive interactions for initially
localized particles [105], which survives in the presence of the detuning [43]. The minima
of the ‘W’-shape move to higher interaction strengths as ∆ is increased. The depth of the
‘W’-shape decreases deep in the localized phase, indicating that the role of interactions is
most pronounced close to the transition, but decreases deep in the localized phase.
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function of U , taken from the phase diagram. Solid lines indicate the result of TEBD simulations. All

experimental data is averaged over three times (close to 20 τ ), and over 4 realizations of the detun-

ing pattern. Errorbars denote the standard error of the mean. TEBD simulations are performed by

Ronen Vosk, Mark Fischer and Ehud Altman [43].

These observations suggest, that interactions do indeed destabilize the localized phase
in the sense that a larger detuning strength is required for localization at intermediate
interactions as compared to the non-interacting case. The decreasing critical detuning
strength in the regime of hardcore interactions can be understood from an effective par-
ticle description of the present doublons. When the interaction strength U exceeds twice
the bandwidth, i.e. U > 8 J , doublons become new, bound quasi-particles. These quasi-
particles exhibit a reduced effective tunnel coupling strength of Jeff ∼ J2/U � J . Hence,
their effective detuning strength ∆/Jeff is much larger. As only about 40% of particles are
doublons, the system close to the transition is hence composed of particles that are delo-
calized and doublons that are localized. Since these particles can interact with each other,
the resulting dynamics might be both very complex and very slow. Hence, the short time
analysis presented here might not capture the full picture and, for simplicity, doublons
are not considered in the following chapters. A more detailed analysis of the doublon
dynamics can be found in Ref. [114].

From the phase diagram, it is not immediately obvious where the phase transition
between the thermal and the localized system occurs, as the transition is smoothed out
by the dipole trap. However, an estimate of the critical detuning strength can be made
based on the steady-state imbalance of the non-interacting system at ∆= 2 J . Specifically,
we estimate the transition as an equal imbalance line starting from this point. This line
is illustrated by the solid white line in Fig. 5.4a and shows the characteristic ‘W’-shape.
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Figure 5.5: Effect of doublons on the steady-state imbalance: Stationary imbalance I as a

function of the interaction strength U at a detuning strength close to the transition of ∆ = 3 J .

Curves are shown for attractive (aload ∼ −90 a0), non-interacting and repulsive (aload ∼ 140 a0)

interactions during the loading of the lattice, resulting in doublon fractions of about 50%, 40% and

10%. The data is averaged over 3 times and 4 phases (as in Fig. 5.4). Errorbars denote the standard

error of the mean. The gray shading indicates the results of TEBD simulations for the limiting cases

of 50% and 0% doublons. The inset shows a zoom into the region of small interaction strengths.

TEBD simulations were performed by Ronen Vosk, Mark Fischer and Ehud Altman [43].

However, as will be discussed in chapter 6, the short-time analysis presented in this chapter
is insufficient to correctly capture the behavior of the interacting system close to the phase
transition, as in this regime slow dynamics are present. Hence this estimation of the
critical detuning strength is rather inaccurate.

5.3.3 Effect of the initial state

In the previous section, a measurement of the full phase diagram was shown at a doublon
fraction of about 40%. In this section, we will show measurements highlighting how
features of this phase diagram change with the initial state.

Effect of doublons in the initial state: To gain a better understanding of the effects of
doublons, we consider the stationary imbalance for strong attractive interactions, giving
about 50% doublons, strong repulsive interactions resulting in about 10% doublons and
the non-interacting loading as discussed until now. We will focus on a detuning strength
of ∆ = 3 J , where interaction effects are observed most dominantly. Note that in chap-
ter 6 we will find that at this detuning strength the system is likely still delocalized at
intermediate interaction strengths. As the thermalization timescales are, however, very
long, for the short-time analysis presented here, the system well approximates the behav-
ior of a localized system. Fig. 5.5 shows traces of the stationary imbalance I along the
interaction strength U for the three different loading interactions. In all three cases, the
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‘W’-shape is clearly observable. Trivially, the doublon fraction is irrelevant in the non-
interacting case. Also for intermediate interactions of U < 8 J the doublon fraction has a
minor impact on the stationary imbalance. Only, when the hardcore regime is approached
(U > 8 J) significant differences appear. In the absence of doublons, we find that the im-
balance in the hard-core regime has the same value as in the non-interacting case. This
is due to a mathematical exact mapping of hardcore fermions to non-interacting parti-
cles [43]. However, this mapping is only valid in the absence of doublons. Hence, the
non-interacting and attractively loaded curves significantly deviate and show larger im-
balances with an increasing doublon fraction. This is, again, easily understandable via
the picture of doublons forming quasi-particles with slower hopping rates, as discussed
in the previous section. Note that the interplay of doublons and singlons has not been
fully investigated and might happen on a timescale much larger than the 20τ chosen for
the stationary imbalance. As this interplay is likely complicated and adds an additional
timescale, we use repulsive loading for all further experiments.

Effect of the temperature of the initial state: To investigate the effect of the temper-
ature of the cloud on the stationary imbalance, we heat the atom cloud by manipulating
the cooling sequence. The stationary imbalance is plotted in Fig. 5.6 as a function of the
cloud’s relative Fermi-temperature in the dipole trap, prior to loading into the lattice. As
the initial temperature also influences the number of doublons that can be loaded (see
Fig. 5.1), we distinguish between attractive loading and repulsive loading.

When loading attractively, the dominant mechanism of increased temperature is the
decreasing doublon fraction. This becomes apparent from the stationary imbalance at
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hard-core interactions, which decreases to the level of the non-interacting imbalance at
higher temperatures. When doublons are not present due to initial repulsive loading,
additional effects become visible. In this case, the hard-core and the non-interacting im-
balances remain constant, but the imbalance at intermediate interactions increases with
increasing temperature. This is likely due to the temperature increasing the initial cloud
size, thereby decreasing the density. Hence, the effect of interactions is reduced and the
imbalance increases.

Thus, we find that varying the temperature of the initial state is not a useful tool
to investigate MBL, as higher temperatures simply reduce the effects of interactions due
to a reduced density. The doublon fraction can be more accurately controlled via the
interaction strength during the lattice loading sequence (compare Fig. 5.1a).



CHAPTER 6

The many-body localization phase transition

In the previous chapter, we have established the existence of a many-body localized phase
in our system via a finite-time analysis of the imbalance. However, this analysis is likely
not sufficient to understand the regime close to the localization transition, where criti-
cally slow dynamics are expected [169]. In this chapter, we will present a more in-depth
study of this interesting regime. We will begin with a short discussion of typical quantum
phase transitions. On the example of the many-body localization transition in random
systems, which was studied much more extensively than the quasi-periodic case, we will
then explain in what sense the MBL (de)localization transition is atypical and introduce
some concepts and arguments used to discuss its behavior. Apart from being interesting in
its own right, we further motivate our study of the quasi-periodic transition by discussing
how its understanding can give insights into the transition in randomly disordered sys-
tems. We then give a detailed experimental analysis of the transition in quasi-periodic
systems via the dynamics of the imbalance and discuss the results in the context of recent
numerical investigations.

6.1 Phase transitions

Phase transitions mark a sudden change of a systems’ properties at a critical value of a
control parameter. Transitions can be classified into first and second order transitions,
depending on the first discontinuous derivative of a thermodynamic potential. A common
example of a first order transition is the melting of ice into water, which involves latent
heat and hence is of first order. At such first-order transitions, the two bordering phases
coexist at the critical value of the control parameter, which in this example is the tem-
perature. In contrast, in a second order, also called continuous, transition the two phases
do not coexist. A popular example of such a continuous transition is the vanishing of the
magnetic moment in iron above a critical temperature. We will focus on continuous phase
transitions.

A continuous transition is characterized by an order parameter, which is an observable
of the system that takes a finite value in one phase, and continuously vanishes when ap-
proaching the critical point. In the other phase, the order parameter is zero on average
but shows fluctuations which drive the transition. The typical length scale associated with
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of a phase diagram close to a typical quantum critical point with a control parameter C and temper-

ature T . In this example, an ordered phase at low enough temperatures shows a classical transition

to a disordered phase at high enough temperatures. Also, a disordered phase can be reached by

tuning the control parameter at T = 0 through the quantum critical point at C0 [73].

these fluctuations usually referred to as the correlation length ξ diverges when approach-
ing the critical point as

ξ∼ |δ|−ν , (6.1)

where δ ∼ (C −C0) is the distance to the critical point C0 for the control parameter C , and
ν is the critical exponent. The fluctuations are further associated with a typical timescale
τ that they decay in, which is given by

τ∼ ξz , (6.2)

where z is the dynamical critical exponent. The divergence of typical timescales close to
the transition is known as ‘critical slowing down’. Especially, critically slow timescales
result in very long equilibration times when a system is driven over the phase transition.

Due to the divergence of ξ and τ at the critical point, fluctuations in the order pa-
rameter happen on all time- and length scales. Hence, the system becomes scale-invariant
(i.e. rescaling all lengths does not change the physical properties) and the microscopic
details of the Hamiltonian become unimportant. As a consequence, all observables simply
depend on the external control parameters via power-laws, given by the critical exponents
that characterize the transition.

In classical phase transitions, the fluctuations driving the transition are thermal, and
the control parameter is often the temperature C = T . Quantum phase transitions are,
in contrast, driven by quantum fluctuations coming from the uncertainty principle [73].
Which type of fluctuations are dominant for a transition at finite temperatures can be
decided by comparing the typical energy scale of quantum fluctuations ħhω ∼ 1/τ to the
thermal energy kB T . As the energy scale of the quantum fluctuations goes to zero at the
transition, it is easy to recognize that a purely quantum transition can only occur at T = 0
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in the ground state. Hence, the temperature can also not serve as a control parameter,
which instead has to be a parameter of the Hamiltonian. A typical phase diagram in which
a control parameter in the Hamiltonian C , as well as the temperature T , can be varied is
illustrated in Fig. 6.1. In this example, an ordered phase (i.e. a phase where the order
parameter is finite) exists if the control parameter is C < C0 and the temperatures are low
enough. From this ordered phase, a classical phase transition, which is driven by thermal
fluctuations, leads to a phase where the order is destroyed thermally. Upon approaching
the transition at low temperatures, the classical critical regime becomes narrower, until
at T = 0 the transition turns into a quantum phase transition. If the control parameter is
larger than C0, the system is in a quantum disordered phase. Above the critical point is a
large quantum critical regime, which extends to finite temperatures, where the behavior
of the system is set by both quantum and thermal fluctuations. The boundaries of this
regime are accordingly given by kB T > ħhω ∼ |C − C0|

νz. More information on typical
phase transitions can be found in e.g. Refs. [73, 181].

6.2 Previous results on the transition in randomly disordered

systems

In recent years, the focus of research on the topic of MBL has shifted from the properties
of the localized phase to the transition itself. Especially, the transition in random systems
has received a lot of interest (see e.g. Refs. [36–38] for reviews), while the transition in
quasi-periodic systems has been neglected until recently. However, even the transition
in random systems is still poorly understood. Relatively certain is, though, that the MBL
localization transition does not fit into the concepts of typical quantum phase transitions
discussed above. Instead, it is a novel kind of eigenstate phase transition [28, 33], where
eigenstates obeying the ETH change in a singular manner to being non-thermal at the
transition. This is true for eigenstates over a large range of energy densities and hence the
MBL transition is quantum not only in the ground state but also at elevated temperatures.
The transition is, furthermore, a dynamical phase transition in the sense that it shows
singularities only in dynamical quantities but lacks thermodynamic signatures. Gaining
insights into the transition is difficult, as large-scale simulations via e.g. density-matrix
renormalization group (DMRG) calculations are only reliable deep in the localized phase.
Numerical simulations of the microscopic Hamiltonians are thus currently limited to exact
diagonalization (ED) calculations, which severely restricts the accessible system sizes.

6.2.1 The renormalization group picture

An effective picture of the MBL transition in random systems was recently developed via
coarse-grained renormalization group (RG) studies [39, 40, 182]. These studies have fo-
cused on the thermal side of the transition and managed to apply some concepts of typical
phase transitions to the MBL transition. Especially, they have found the transition to be
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as a power-law and is hence finite at finite times. At infinite times, the imbalance is only finite in the

localized phase. It is, however, not clear whether it rises continuously or jumps to a finite value at the

transition.

continuous with a critical exponent of ν ≈ 3. The developed effective picture is based on
rare ‘Griffiths’ regions [183]. These are (small) subsystems, which are locally ‘in the other
phase’, e.g. localized or critical in a globally thermal system. These subsystems emerge
due to the random nature of the disorder potential. In a random potential, naturally,
some regions appear with an untypically large disorder strength, thereby creating a local-
ized subsystem. The probability of such regions is suppressed exponentially in their size,
i.e. they appear with a probability density

p(L)∼
1
ξ

e−L/ξ. (6.3)

This can be understood as p(L) denoting the probability, that a given lattice site is part of
a localized subsystem of size L. Here, ξ denotes the typical size of a localized inclusion.
When the disorder strength is increased towards the critical disorder strength ∆→∆MBL

c ,
the probability of creating larger inclusions has to increase, which in this model happens
due to an increasing ξ. At the transition, when the entire system becomes localized, the
probability of a localized inclusion of infinite size consequently needs to be one, and hence
ξ has to diverge at the transition. Hence, ξ takes the role of the correlation length.

Below the transition, any localized inclusions will be thermalized by the globally ther-
mal system. The timescale of this thermalization process τ is exponentially long in the
size of the inclusion

τ∼ eL/x0 . (6.4)

Here, the length is compared to a microscopic length scale x0, which can be understood as
a localization length. Importantly, while x0 does depend on the disorder strength, it does
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not behave critically (i.e. diverges or vanishes) at the transition. Combining the exponen-
tial distributions of inclusion size and thermalization time results in a broad power-law
distribution of relaxation timescales present in the system

p(τ)∼ (1/τ)1+1/z , (6.5)

where z = ξ/x0. This distribution of timescales was argued to be visible in e.g. the imbal-
ance. This becomes clear if one estimates the imbalance I at time t as the fraction of sites
that belong to inclusions with relaxation times τ > t:

I ∼
∫ ∞

t
p(τ)dτ∼ t−1/z . (6.6)

The RG studies have found, that the correlation length ξ diverges with a universal
exponent of ν≈ 3 as

ξ∼
�

�∆−∆MBL
c

�

�

−ν
(6.7)

at the transition. Hence, 1/z ∼ 1/ξ vanishes at the MBL transition. Following equa-
tion (6.6) one would thus expect power-law decays of the imbalance in the thermal phase,
which gradually become slower when the transition is approached. The onset of the MBL
phase would then be marked by the imbalance being stationary. The RG studies [39, 40]
further showed that z denotes the dynamical exponent, which is associated with transport.
As 1/z vanishes continuously at the transition, this suggests that on the thermal side of
the transition a regime with sub-diffusive dynamics can be found.

A schematic illustration of the behavior of the dynamical exponent z and the imbalance
I in the presented picture is given in Fig. 6.2. This schematic additionally illustrates the
expected behavior of the imbalance. As the imbalance is expected to decay as a power-
law, at finite times t it can be non-zero even in the thermal phase. This directly shows
that the short time analysis presented in chapter 5 is potentially problematic close to the
transition. Note that the illustration includes both the possibility of a continuous behavior
of the infinite time imbalance, as well as the possibility of a discontinuous jump. While
the RG simulations would predict a continuous behavior, the question of whether the
transition is indeed continuous is not yet solved [48].

6.2.2 Numerical results

A major point of criticism of the RG simulations is that they do not start out from the
microscopic Hamiltonian, but rely on a set of assumptions on the behavior of the system
at larger scales. Due to the rapidly spreading entanglement in thermal systems, a direct
simulation of the microscopic Hamiltonian is, however, only possible via exact diagonal-
ization (ED). Such ED studies are in agreement with many of the predictions made by the
RG-studies. Especially, a regime of sub-diffusive dynamics has been found in the thermal
phase [169, 184, 185], and power-law relaxation processes of local quantities have been
observed in numerical models [169, 184, 186–188]. Fig. 6.3 shows an example, where
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Figure 6.3: Imbalance dynamics in a system with random disorder: Decay of the spin imbalance

in a randomly disordered spin system on a log-log plot. After a short initial decay, a longer timescale

becomes visible, which can be fitted with a power-law. The power-law relaxation becomes stronger

when the disorder strength h is increased. At around h = 4, the imbalance becomes steady, indi-

cating that the system is localized. The exponents of the power-laws ζ are shown on the right and

continuously go to zero. Figure reused from Ref. [169] with permission. Copyrighted by the American

Physical Society.

the spin imbalance is calculated as a function of time [169]. The spin imbalance is closely
related to the imbalance used in the experiment but is generalized to be usable in spin-
systems with arbitrary initial states. Its time evolution reveals the same fast initial decay
that is also observable in our experiments. This is followed by a much slower, further
decay, which was argued to be best describable with power-laws. Upon increasing the
disorder strength, the decay is becoming slower until the imbalance eventually becomes
stationary, thereby indicating that the system is many-body localized. The extracted ex-
ponents, presumably corresponding to 1/z, are found to vanish continuously when the
transition is approached.

While the observations of the slow dynamics are in good agreement with the RG re-
sults, the determination of the universal exponent ν consistently gives different values of
ν ≈ 1 in numerical (ED) simulations [166, 170, 189], as compared to ν ≈ 3 in RG. This
numerical result violates the Harris-Chayes criterion [190–192], which states that the uni-
versal exponent in a disordered system has to be at least ν ≥ 2. This violation, and the
difference to the RG result, likely emerge due to severe finite size limitations in ED. In
fact, ED simulations are restricted to system sizes of about L = 28 sites in spin models and
even smaller sizes of about L = 20 in Hubbard models, which likely restricts the access to
the universal scaling regime.

A recent ED study [48] compared the universal scaling behavior in random systems to
that in quasi-periodic systems. Through this comparison, the study found evidence that
for the system sizes achievable in ED, the randomness in the disorder pattern does not yet
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dominate the universal scaling behavior. This can e.g. be understood as the system being
too small to form the increasingly large Griffiths regions when approaching the transi-
tion. In this case, the universal scaling would be similar to that of a system that cannot
form rare inclusions due to a systematic detuning pattern, such as a quasi-periodic system.
Hence, for the small system sizes considered in ED, the random system would not need to
obey the Harris-Chayes criterion. In a following publication [41], this idea was further de-
veloped by the suggestion that two different universality classes exist: One class for large,
randomly disordered systems that need to fulfill the Harris-Chayes bound, and another
class for detuned, but not random (e.g. quasi-periodic) systems. In this picture, a small
random system would be closer to the non-random universality class. Upon increasing its
size, it would move towards the random universality class. However, it remains unclear
how large of a system would need to be simulated in order to obtain a good estimate of the
critical exponent in large, random systems. Definitely, such system sizes are not currently
accessible for ED studies and will likely never be.

The analysis of Refs. [41, 48] suggests, that there are two major mechanisms at play at
the many-body localization transition in random systems. The first mechanism is respon-
sible for localizing particles at a given local disorder strength. This mechanism dominates
the transition in small and/or quasi-periodic systems and seems to give a universal scaling
exponent of ν≈ 1. The second mechanism is that of Griffiths inclusions slowly being ther-
malized by the global system. This mechanism ultimately dominates the transition in large
random systems and, according to RG, gives a universal exponent of ν≈ 3. While the Grif-
fiths mechanism is hard to study numerically, a deeper understanding of the local mecha-
nism dominating the behavior of small systems can be achieved using current numerical
techniques. The local mechanism is, however, more cleanly accessible in a non-random
system, further motivating a more detailed study of the transition in quasi-periodic sys-
tems. Here, the many-body localization transition has barely been investigated to date,
and hence even less is known than for the case of random disorder. It is clear though,
that the effective RG picture developed for the random transition does not apply in the
quasi-periodic case, as Griffiths regions in the disorder pattern are a-priori absent [193].

6.3 Slow dynamics close to the quasi-periodic transition

Experimentally, we attempt to collect additional information on the transition in our quasi-
periodic system by analyzing the slow dynamics that are expected in its vicinity. Instead
of extracting a steady state value of the imbalance reached after few tunneling times (as
in chapter 5), we will look for additional, potentially much slower dynamics ensuing after
the initial decay. For long times, we expect that couplings to external baths will dominate
the behavior of the system (see chapter 7) and hence we will focus on an intermediate
time range of up to 40τ.

Fig. 6.4 shows a measurement of such intermediate timescale dynamics for both an
interacting system at an interaction strength of U = 4 J , and a non-interacting system at
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Figure 6.4: Interacting and non-interacting time traces close to the transition: Comparison of

the interacting (U = 4 J) and non-interacting (U = 0) dynamics for various detuning strengths close

to the known transition point in the non-interacting system at ∆ = 2 J . Points are averaged over 6

realizations of the detuning pattern φ, errorbars show the standard deviation of the mean. The quick

initial decay of the imbalance during the first 3 τ is omitted and a double-log scale is chosen to clearly

visualize the intermediate timescale dynamics.

U = 0. The graphs are plotted on a log-log scale, which is best suited for visualizing the
dynamics. The fast initial decay of the imbalance from its starting value during the first
3τ is omitted. We do not show a trace for a detuning strength of ∆ = 0, as here the
imbalance already decays to below the noise limit within the first three tunneling times.
Experimentally resolvable slow dynamics can only be observed for detuning strengths
above ∆ = 1.75 J , which is just below the single-particle transition at ∆U=0

c = 2 J . Here,
all single-particle states (and accordingly also all many-body states) are extended, and we
find that the interacting and the non-interacting system behave similarly. The fast initial
decay results in an imbalance of around I ≈ 0.1, and is followed by a slower, but still
comparatively fast, further decay. This further decay likely continues until the imbalance
has reached zero, indicating a delocalized system.

At the single-particle transition (∆U=0
c = 2 J) we still observe decaying dynamics in the

non-interacting system, although now slightly slower than before. This is the expected
behavior of a system that displays critical slowing down. Note that at the transition point
the imbalance is still expected to decay to zero. The interacting system shows a slightly
faster decay than the non-interacting system, suggesting that interactions help to relax the
imbalance.

Sufficiently far above the single-particle transition, the non-interacting imbalance be-
comes stationary, as one would expect in the localized phase. However, the interacting
imbalance still shows ongoing decays. Postulating that the observed decay continues until
the imbalance reaches zero, the interacting system will indeed still be thermal. Hence,
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the detuning strengths at which slow, intermediate time-scale dynamics are present.

at these parameters, the interactions destabilize and thermalize the underlying single-
particle localized system.

Only at much deeper detuning strengths do the decays of the interacting system also
vanish, indicating that the interacting system is many-body localized. The interacting
imbalance lies slightly below the non-interacting imbalance, which is likely due to a larger
localization length in the many-body case, and consistent with the measured ’W’-shape of
the stationary imbalance as a function of the interaction strength in section 5.3.2. Note
though, that the lower imbalance in the interacting system could also be explained via
other mechanisms, such as e.g. a faster background decay in the interacting system [69].
Also, logarithmically slow decays on intermediate timescales towards the true steady-state
imbalance could be present in the many-body localized phase [194].

6.3.1 Validity of finite-time investigations

In order to show the presence/absence of slow dynamics on an intermediate timescale
over a larger range of detuning strengths, we compare finite-time measurements of the
imbalance after 10τ (short) to those after 40τ (long) in Fig. 6.5. The two times are
chosen to be at the beginning and end of the dynamic range of the time traces shown
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in Fig. 6.4. As expected from the observed dynamics, for both the interacting and the
non-interacting system we find a regime where the imbalance after 40τ is significantly
below the imbalance after 10τ, indicating the presence of slow dynamics. Above and
below this regime, we find that the short and long-term imbalances agree well, suggesting
the absence of slow dynamics. There, the system is either fully delocalized or deep in
the localized phase. Comparing these results to the analysis used in chapter 5, where the
phase diagram was mapped out using a single finite time measurement of the imbalance
after ∼ 20τ, suggests that the general picture of an extended and a localized phase shown
in Fig. 5.4a is accurate. Only close to the transition the finite-time analysis does not
capture the full picture, likely resulting in an inaccurate estimation of the critical detuning
strength. A more accurate prediction needs to consider the slow dynamics.

The two finite-time measurements in Fig. 6.5 can already serve to give additional
insights into the transition. Comparing the interacting and non-interacting regime of slow
dynamics (i.e. disagreeing short and long-time imbalance), we find that both begin at
approximately the same detuning strength of ∆ ≈ 1.5 J . However, the interacting regime
of slow dynamics extends to much larger detuning strengths of approximately ∆ ≈ 3.5 J ,
as compared to the non-interacting regime which ends at ∆ ≈ 2.5 J , suggesting that the
many-body critical detuning strength is indeed larger than that in the single-particle case.
Also, the maximum observable difference of I10τ − I40τ is much larger in the interacting
system, suggesting that the dynamics are faster in the presence of interactions.

The slow dynamics regime in the non-interacting case is symmetric around the known
transition point of ∆U=0

c = 2 J . On the delocalized side of the transition, the dynamics
are due to a slow spreading of individual particles until the imbalance is zero. This is
in contrast to the localized side, where the dynamics are not expected to continue until
the imbalance is zero. Instead, the dynamics should only be observable on intermediate
timescales and end at a finite imbalance. The mechanism behind these dynamics is the
slow spreading of particles until they reach their localization length. Just above the tran-
sition, the localization length is comparatively large and hence significant intermediate
dynamics are observable. Upon increasing the detuning strength further, the localization
length shrinks and once it is on the order of a single lattice site, no dynamics are observ-
able anymore.

Based on the analysis of the transition in random systems shown in Fig. 6.3, a slightly
different picture emerges for the interacting system. In the interacting system, we expect
the thermal phase to be much more robust than the many-body localized phase, as even
small thermal inclusions might be able to destabilize an otherwise localized system. In
systems with random disorder, such regions emerge as thermal Griffiths inclusions due to
the randomness in the disorder pattern. Hence, the transition is usually expected where
no dynamics are observable on intermediate timescales anymore [169], as was discussed
in Fig. 6.3. Such estimates of the transition point are in quantitative agreement with
other methods, such as finite size scalings of the entanglement entropy, the level spacing
statistics or the participation ratios [170]. Additionally, any relaxation dynamics towards
a finite imbalance in the MBL phase were predicted to be logarithmically slow and hence
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Figure 6.6: Many-body dynamics close to the transition: a) Interacting (U = 4 J) time-traces of

the imbalance close to the transition. Points are averaged over 6 realizations of the detuning pattern

φ. Errorbars indicate the standard deviation of the mean. Solid lines are theoretical simulations

of the experimental system performed on L = 20 sites. Yellow lines indicate power-law fits to the

experimental data. Traces are plotted on a log-log scale and omit the initial decay of the imbalance

from its starting value. b) Decay of the imbalance at ∆ = 2.5 J , where we have the largest accessible

dynamical range. The left panel shows the data on a logarithmic y-axis with an exponential fit (red

line), the right panel on a double-log scale with a power-law fit (yellow line). c) Residuals of the

exponential and power-law fits to the experimental (top) and numerical (bottom) data at ∆ = 2.5 J .

Numerical simulations were performed by Fabien Alet [108].

should not be visible on the accessed timescales [194]. Based on these arguments, we
would expect the interacting transition to lie not in the center, but on the top end of the
interacting regime of slow dynamics. To further investigate the transition in the interacting
systems, we will present a detailed analysis of its dynamics in the following section.

6.4 Analysis of the slow dynamics in the interacting system

To further investigate the dynamics in the interacting system, we record time-traces for
various detuning strengths above the single-particle transition, three examples of which
are shown in Fig. 6.6a. The traces are again plotted on a double-log scale and the initial
decay of the imbalance during the first three tunneling times is omitted. We find that the
decays on intermediate timescales (as shown in Fig. 6.4) systematically become slower
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when the detuning strength is increased. Our experimental observations are in very good
agreement with theoretical calculations, which simulate our experimental setup on L = 20
sites. The calculations use an initial state where odd sites are empty and even sites are
randomly populated by one atom of either spin, such that the total spin is zero. As the
experiments are performed using repulsive loading, this is the exact description of the
initial state, except for ∼ 10% doublons and holes in the experimental initial state. Due
to imperfections in the loading and detection sequence, the initial imbalance in the exper-
iment is only about Iinit ≈ 0.9. To match the theoretical simulations to the experiment,
their results are rescaled by this factor.

Comparing the experimentally observed dynamics in our quasi-periodic system to
those numerically observed in randomly disordered systems (Fig. 6.3), we find strong
similarities. This is surprising, as the mechanism of Griffiths regions possibly responsi-
ble for the dynamics observed in random systems should not apply in our quasi-periodic
setting. In the random system, the dynamics were found to be best described using a
power-law fit [169]. Also, the experimental and numerical data for the quasi-periodic
system seems to be describable by power-laws. In order to get further insights into the
functional form, in Fig. 6.6b we show the imbalance time-trace at a detuning strength
of ∆ = 2.5 J on a logarithmic y-axis and on a double-log plot to slightly longer times of
100τ. At this detuning strength, the system displays one of the largest accessible dynamic
ranges in both imbalance and time, as the detuning strength is low enough for a fast decay
of the imbalance but large enough for the imbalance to stay above the noise floor even
after 100τ. We compare an exponential description (red line) to a power-law description
(yellow line). Both fits characterize the data well, but the power-law description appears
to be slightly better suited. The experimental points scatter more evenly above and below
the fitted line, and the theory line is straighter on the double-log plot. Fig. 6.6c shows
the residuals of the fits to theory and experiment. The residuals also show a slight prefer-
ence to the power-law description, as the residuals for the exponential fit show a stronger
systematic trend. However, the accessible dynamic range in the experiment is not large
enough to reach a definite conclusion on the functional shape. A similar analysis of the
intermediate time dynamics has also been performed in Ref. [195], which comes to the
same conclusion.

6.4.1 Characterization via power-laws

Based on the analysis presented above, we choose to characterize the dynamics via power-
law fits

I(t)∼ t−α, (6.8)

for which we choose a time window of 8 − 40τ for the experimental data. Fitting at
shorter times would pick up the oscillations that are initially present in the imbalance. In
the theoretical simulations, these oscillations are slightly longer lived. Hence, we perform
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the fits at slightly longer times of 20− 80τ. In order to emphasize all points equally, the
fits are performed by fitting a linear relationship to the logarithm of the data, i.e.

log(I) = A−α log(t). (6.9)

The fitted exponents are shown in Fig. 6.7. We find very good agreement between theory
and experiment. The exponents decrease continuously when the detuning strength is
increased and eventually settle to a finite offset value αo. Even though we have restricted
the accessed timescales to 40τ, this offset is likely due to the background decays that
are present in the experimental system. A more detailed analysis of this can be found in
section 6.4.3. The theoretical exponents also seem to saturate at a non-zero value, which
is likely a finite-size effect. However, also potential intermediate decays happening in the
localized phase [194] could contribute to these exponents.

In principle, the extracted exponents can be used to estimate the transition point as
the detuning strength where the exponents become zero. However, due to the background
decay induced offset in the exponents, this is not directly possible. Especially, estimations
are difficult as the interplay between the external decays and the internal relaxation dy-
namics is completely unknown. Considering the exponents, two limiting scenarios are
possible: In a first possible scenario, the effect of the background decays simply is to be
added onto the closed system’s exponents αclosed, i.e.

αclosed = α−αo. (6.10)

In this scenario, the two processes would be fully independent of each other and the crit-
ical detuning strength could be estimated as the detuning strength where the exponents
become compatible with the background. This value also serves as a lower bound for
the transition of ∆MBL

c > 3.5 J . However, the theoretical simulations already do indicate
that the actual transition point is located at a slightly larger detuning strength. In the
other limiting scenario, the background decays would simply mask the behavior of the
exponents once the internal relaxation becomes too slow. In this case the closed system’s
exponents would be given by

αclosed =

¨

α ifα > αo

unknown else.
(6.11)

Estimating the transition in this scenario is barely possible, as the transition point would
depend largely on the functional form of the exponents. Assuming a universal scaling, this
functional form would be given by the scaling exponent ν in

αclosed = |∆−∆MBL
c |ν. (6.12)

As a best estimation in this case, we will use the theoretically suggested exponent of
ν ≈ 1, as was discussed in section 6.2. This gives an estimation of the transition point of
∆MBL

c ≈ 4.5 J . This estimation is still in the limits of a previously found upper bound in
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Ref. [110]. There, DMRG simulations showed a steady imbalance up to very long times at
∆= 5 J .

We note, that the estimations of the critical disorder strength do not depend on the
power-law fitting. The same values can also be obtained by fitting an exponential decay
I ∼ e−γt and evaluating its decay rate γ instead of the exponent α as is shown in Fig. 6.8.
Equivalent to the power-law analysis, the fits of the exponentials were performed as linear
fits of log(I) vs. t.

6.4.2 Interaction dependence of the transition point

So far, the dynamics have been investigated at an interaction strength of U = 4 J . Esti-
mating the transition point as a function of the interaction strength U would, in principle,
require a full measurement of the relaxation exponents α versus the detuning strength ∆
at various interaction strengths. However, an indication of how the transition behaves with
different interaction strengths can be gained by simply scanning the interaction strength
at a single detuning strength. Fig. 6.9 shows the interaction dependence of the power-
law exponents at a detuning strength of ∆ = 2.5 J . The exponents clearly reveal that
the highest critical detuning strength is expected at intermediate interaction strengths of
about U ∼ 5 J . In the hard-core limit, the exponents are similar to those in the absence of
interactions, which is expected due to an exact mapping from hardcore to non-interacting
Fermions in the absence of doublons [43]. The shape of the curve is consistent with
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the earlier found ‘W’-shape of the finite time imbalances as a function of the interaction
strength (see section 5.3.2).

6.4.3 Effects of external couplings

In the analysis of the slow dynamics (section 6.3), the longest accessed time was limited
to 40τ, as on longer times the dynamics are increasingly strongly affected by background
decays. Still, the exponents in Fig. 6.7 settle to a finite value αo ≈ 0.1, indicating that the
decay of the imbalance does not completely stop in the localized phase. While some decays
on intermediate timescales could be present also in the localized phase [194], the dom-
inant contribution to these decays is likely the background decays, as our experimental
MBL system couples to external baths. In the localized phase, the effects of such external
decays are usually well described by stretched exponential decays (see e.g. [69, 70, 196])

I(t)∼ e−(t/τbg )β (6.13)

with a background decay time τbg and a stretching exponent β . Experimentally, an often
found value for the stretching exponent is β ≈ 0.6 [69, 70], and hence this value is chosen
for the following analysis. Fig. 6.10a shows stretched exponential decays corresponding to
various background decay times. In order to assess the effects of a stretched exponential
decay on the power-law exponents, the decay curves are evaluated at 10 different times
in the experimental measurement interval of 8− 40τ. The points are equally spaced on
a logarithmic timescale. Then, a power-law is fitted to those points by fitting a linear
behavior of the form

log(I) = A−αo log(t), (6.14)
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Figure 6.10: Exponent offset derived from background decays: a) The expected offset to the

power-law exponents αo is calculated by fitting a power-law (solid lines) to stretched exponential
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lines and yields an imbalance lifetime of several hundred tunneling times.

where αo directly gives the power-law exponent that is expected due to the stretched ex-
ponential background decay. The fitted power-laws are indicated as solid lines. Since the
plot is on a double-logarithmic axis, they appear as straight lines. It is clearly visible, that
for background decay times of τbg ¦ 100τ the stretched exponentials are well approxi-
mated by power-laws in the relevant time frame. Hence, on the accessed timescales, the
experimentally measured time-traces would continue to appear linear on a double-log plot
even if the behavior was dominated by a stretched exponential decay.

The extracted exponent offsets αo are shown in Fig. 6.10b as a function of the back-
ground decay time. As is illustrated by the black lines, the experimentally found value of
αo ≈ 0.1 would correspond to a background decay time of ∼ 400τ, which is approximately
the lifetime of the imbalance we expect at such low detuning strengths in the presence of
interactions (see chapter 7).

6.5 Interpretation

We have experimentally and numerically found that the dynamics in the quasi-periodic
system are fairly similar to those numerically observed in randomly disordered sys-
tems [169] (see Fig. 6.3). This is unexpected, as from the RG-picture (see section 6.2) the
power-law decays in the random system were expected due to Griffiths inclusions which
are absent in the quasi-periodic system. The similarity of the observed dynamics does,
however, suggest a common underlying mechanics. Such an idea is further supported
by the results of Ref. [41], which suggest that the apparent similarity in ED simulations
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between random and quasi-periodic systems might be due to ED failing to capture the
effects of Griffiths regions due to severe finite size restrictions. These results suggest that
the dynamics in random systems (shown in Fig. 6.3) is at least not entirely due to the
relaxation of Griffiths inclusions.

An alternative idea on the origin of the dynamics was suggested together with the
first observation of the slow dynamics in randomly disordered systems [169]. The au-
thors noted, that the slow dynamics span a much larger regime of disorder strengths than
would be expected from the Griffiths picture, and speculated that this might be due to
randomness in the initial state. This randomness could give rise to additional rare-region
effects, as subsystems with a lower (higher) local energy density might localize at differ-
ent disorder strengths. Such effects would indeed also be present in our quasi-periodic
experimental setup, due to the initially randomly distributed spins. In our case, subsys-
tems might localize at different detuning strengths depending on the magnetization

Msub = 2Ssub/Nsub (6.15)

of the subsystem, where Ssub and Nsub denote the total Spin and particle number in the
subsystem. For example, a subsystem with a magnetization of Msub = +1 or Msub = −1
would only have one spin species in it. Hence, it would locally appear non-interacting
and serve as a localized enclosure above the single-particle localization transition. While
such rare-region effects in the initial state could explain the observed dynamics on inter-
mediate timescales, they are fundamentally different from Griffiths regions emerging from
the disorder pattern: As the particles are mobile and the regions will rearrange and ther-
malize over time, rare-regions in the initial state will not result in power-law dynamics
on long timescales. Instead, the dynamics should become faster than power-law. In the
experimental system, there is an additional effect that limits the impact of such regions to
intermediate timescales, which is the delocalized spin sector [177]. As exchange processes
between neighboring spins are resonant, spins can diffuse even through regions where the
particles are localized and hence change the magnetization of subsystems.

In recent numerical studies, slow power-law dynamics on intermediate timescales have
also been found in quasi-periodic systems without randomness in the initial state [195,
197]. This further suggests that the mechanism of rare-regions in the initial state is at
least not the sole cause of the observed dynamics. An alternative explanation presented in
Ref. [197] is based on anomalous transition rates between single-particle eigenstates, the
combination of which also gives rise to a power-law behavior. However, the microscopic
origin of such atypical transition rates is not clear. A similar mechanism had already
been used to explain the results of an earlier experiment, which observed sub-diffusive
spreading of bosonic atoms in a quasi-periodic geometry [136]. These experiments were
performed at a detuning strength where our system would already be deep in the localized
phase. However, in this experiment, no lattices were employed along the orthogonal
directions. Hence, atoms were free to move and interact in two-dimensional discs, which
were able to serve as a bath, likely causing the observed dynamics.
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Figure 6.11: Non-interacting power-law exponents: a) Comparison of the non-interacting (U = 0)

versus the interacting (U = 4 J) power-law exponents. Errorbars denote the uncertainty of the fit.

Solid lines are guides-to-the-eye. b) Non-interacting simulations of the time traces at two different

detuning strengths. Yellow lines correspond to the power-law fits that were done on experimental

data. Numerical simulations were performed by Fabien Alet.

Recently, it was also suggested that the observed regime of slow dynamics might only
be a finite size effect [198] and that in the thermodynamic limit the dynamics in quasi-
periodic systems would discontinuously jump from diffusive relaxation to localization. In
randomly disordered systems, the continuously slowing dynamics were argued to persist.

In conclusion, an effective picture of the transition in quasi-periodic systems, which
might also dominate the numerically observed dynamics in randomly disordered systems,
is still missing. Hence, also the origin of the observed dynamics is at present unclear. This
also raises the question whether the observed dynamics will continue at longer times and
if (and how) they relate to universal properties of the transition. Potentially, a renormal-
ization group study of quasi-periodic systems could give further insight. Additionally, a
recently proposed approximate method for simulating thermalizing dynamics in quantum
systems up to very long times and large system sizes [199] gives hopes to be usable also in
the presence of (quasi-periodic) disorder, potentially enabling simulations of much larger
system sizes.

6.6 Additional discussions and information

6.6.1 Non-interacting power-law exponents

In Fig. 6.11 the power-law exponents of the interacting system (as in Fig. 6.7) are com-
pared to those obtained by fitting power-laws to the non-interacting dynamics. A signif-
icant difference is observable in the exponents. Clearly, the analysis performed to find
the interacting critical point would vastly overestimate the known non-interacting transi-
tion at ∆U=0

c = 2 J . This is due to intermediate dynamics of single particles relaxing until
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Figure 6.12: Interacting time traces calculated from exact diagonalization simulations: a) Sim-

ulations of the experimental system on S = 20 sites at an interaction strength of U = 4 J for

different detuning strengths. Thickness of the lines denotes the statistical uncertainty of the numeri-

cal results. Yellow lines illustrate power-law fits between 20− 80 τ used for the theoretical values of

the exponents in Fig. 6.12. b) Finite size scaling of the theoretical simulations with power-law fits at

a detuning strength of ∆ = 3 J and an interaction strength of U = 4 J .

they reach their localization length also in the single-particle localized phase. At longer
times, the imbalance would become stable at a finite value. The finite exponents in the
single-particle localized phase can thus be considered a finite-time effect. In the interact-
ing system, such dynamics on the localized side are expected to be much weaker (possibly
logarithmic [194]) and hence likely do not play a role.

Comparing the non-interacting exponents to theoretical simulations is surprisingly
more difficult than in the interacting case, as the non-interacting system exhibits strong os-
cillations on the investigated timescales, which make accurate fits impossible. Exemplary
time traces are shown in Fig. 6.11b. In the experiment, such oscillations dephase much
quicker due to the influence of trapping potentials and the averaging over neighboring
systems with slightly different tunneling strengths J . However, an approximate compari-
son of theory and experiment is still performed in the figure, which shows the result of the
power-law fit to the experimental data on top of the calculated time traces. It is clearly
visible, that the approximate slopes fit well. Note, however, that the power-law behavior
will not continue on longer timescales, at least in the non-interacting case. Hence, these
power-laws are only observable due to the small dynamic range.

6.6.2 Details of the theoretical simulations

The theoretical simulations of the experimental system are carried out on S = 20 sites.
The total atom number is 10 due to the charge-density wave initial state. The 5 atoms of
each spin species are randomly distributed over Wannier states on the even lattice sites,
the formation of doubly occupied sites is not allowed. All results are averaged over a
minimum of 80 combinations of different initial states and detuning realizations φ. Note
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that S = 20 is the maximum system size that is numerically accessible in Hubbard models
today. Fig. 6.11a shows exemplary time traces of the imbalance I for different detuning
strengths, as well as the power-law fits used to extract the exponents plotted in Fig. 6.12.
In the theoretical simulations, the fits are performed in between 20 − 80τ, as on earlier
timescales the system still displays oscillations which make the fit inaccurate. We find
that the fit describes the time traces well, especially at large detuning strengths. At lower
detuning strengths, however, one can see that the decays become faster than power-law
at longer times. This is likely not a finite-size effect, as is shown in Fig. 6.12b, as the
faster decays at longer times become more prominent at larger system sizes. Further, the
performed finite-size scaling shows that the theoretical simulations are not yet converged
at S = 20. The difference between the system sizes does, however, decrease. The error
of the fitted exponent in Fig. 6.7 is calculated as the difference between the fits at S = 16
and S = 20. At larger detuning strengths, this error becomes very small. However, at these
detuning strengths, we cannot access large enough times and system sizes to correctly
estimate the exponent, and hence the uncertainty should be on the order of the exponent
itself. The faster than power-law dynamics found in the theoretical simulations strongly
suggest that the power-laws do not continue to infinite times. In the picture of rare-
regions in the initial state, this could be due to rearrangements of the atom cloud, or due
to diffusion in the mobile spin-sector [177]. However, the mechanism causing the faster
dynamics at later times is still to be explored.
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CHAPTER 7

Signatures of many-body localization in
open systems

Many-body localization is an effect that is usually studied and discussed in the context of a
system that is fully isolated from its environment. In such fully isolated systems, the MBL
phase is separated via a sharp transition from the thermalizing phase and the dynamics
of the system are fully coherent. However, this setting is merely relevant in the context
of describing the behavior of disordered/detuned quantum systems occurring in nature,
or the behavior of experiments on MBL. This is because any real system will couple to
its surroundings to at least some extent. As these surroundings can be considered to act
as a bath, they give rise to external effects that will dephase the system with a rate γ
with which the system couples to its environment. The interplay of many-body localized
systems with various kinds of external baths has indeed been the focus of many studies
[69–72, 75, 196, 200–208]. Generally, it was found that any coupling of a bath to a many-
body localized system will eventually result in the full thermalization of the combined
system, thereby destroying the localization in the MBL system. As experiments will never
be fully isolated from their environments, true localization on very long timescales cannot
be achieved. This was already visible in previous chapters, where external baths resulted
in a decay of the imbalance at long times, visible in e.g. Fig. 5.3, as well as the offset
in the decay exponents in Fig. 6.7. Especially the offset of the decay exponents limited
the experiment’s accuracy in determining the MBL critical point. Hence, understanding
the external baths that couple to the presented setup, and studying their effects, is vital
to understand the experimental results and potentially enable an extrapolation to the
behavior of completely closed MBL systems.

An a-priori unexpected, but dominant decay mechanism resulting from the coupling
of neighboring identical systems in our experimental setup (see section 7.1) has already
been identified and thoroughly studied [69, 115]. However, further external processes
corresponding to the traditional heating sources in cold-gases systems are expected to
serve as external baths as well, such as frequency and amplitude noise on the lattice
and dipole potentials [209, 210], collisions with the hot background gas in the vacuum
chamber and the scattering of off-resonant photons from the optical potentials [211, 212].
While recent experiments on periodically driven MBL systems [110] suggest that slight
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Figure 7.1: Effects of coupling identical tubes: a) Schematic illustration of coupling between

identical tubes. In the experimental setup, neighboring tubes have the same quasi-periodic pattern,

and hence tunneling along the orthogonal directions is resonant. Typically, the tunneling within the

tubes J is much stronger than the tunneling between the tubes J⊥. b) Long-term time traces of the

imbalance for different interaction strengths in the 1D+ (2D) case with J⊥ ≈ 10−3 J (J⊥ = J). At

long times the traces show decays that are not present in a closed system, as is illustrated by the

ED-calculation for the non-interacting system. Points are averaged over six realizations of the quasi-

periodic pattern φ. Errorbars denote the standard error of the mean. Lines are fitting functions with

stretched exponential tails to extract the imbalance lifetime.

amplitude modulations of the optical potentials only contribute small heating rates, and
typical timescales of background gas collisions exceed the decay timescales present in our
MBL system by far, the scattering of photons could indeed contribute another major decay
channel. To systematically study the effects of external baths in general, and specifically
the effects of a photon bath, we implement a new technique of scattering near-resonant
photons from a dedicated scattering beam which is shone onto the MBL system during
the evolution time. These close-to-resonant photons effectively implement the effects of
‘dephasing’ studied in Refs. [196, 204, 206–208].

Before presenting the experimental results on the effects of photon scattering, we will
briefly discuss a previous result on external baths obtained on our experimental setup.
We will also give a detailed description of the experimental implementation of the photon
bath. Note that this photon bath can be used to implement controlled external couplings
also beyond the context of MBL. Detailed reviews of both previous theoretical and experi-
mental investigations on dissipative quantum systems can be found in Refs. [107, 213].

7.1 Openness due to coupling between identical systems

In this section, we will briefly comment on a previous result on external decays obtained on
our setup [69, 115]. In this previous experiment, the dominant decay mechanism present
in our experiments was investigated and found to be the result of a reminiscent coupling
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of (identical) one-dimensional tubes along the orthogonal directions (see Fig. 7.1a). This
mechanism is always present and hence poses challenges to the study of other decay
mechanisms as disentangling the respective contributions is potentially difficult.

The fundamental idea behind the ‘coupling’ mechanism is illustrated in Fig. 7.1a. In
the experimental setup, the one-dimensional characteristics of the tubes, in which the
experiments are performed, is created by deep lattices along the orthogonal directions.
This strongly suppresses the tunneling between neighboring tubes to J⊥ ≈ 10−3 J , where J
denotes the tunneling rate within the tubes. Hence, the system behaves one-dimensional
on short timescales, but on long timescales particles can also tunnel along the orthogonal
directions. Since the quasi-periodic pattern is identical between the tubes, the tunneling
along the orthogonal directions is resonant and can serve as a bath to thermalize the MBL
systems realized in the tubes.

The effects of external decays are most directly accessible via a measurement of the
lifetime of the steady-state imbalance in the MBL phase. Time traces for the cases of
J⊥ ≈ 10−3 J (called 1D+) and J⊥ = J (called 2D) are shown in Fig. 7.1b. We find that in
the absence of interactions the 1D+ and the 2D case have similar lifetimes. This is eas-
ily explained by the separability of the overall Hamiltonian along the spatial directions,
which is only broken in the presence of interactions. Hence, in the absence of interac-
tions, the coupling mechanism is ineffective and the imbalance lifetime is limited by other
mechanisms, the most likely candidate being the scattering of photons from the dipole
and lattice beams. In the presence of interactions, however, we find significantly shorter
lifetimes of the imbalance in the 2D case of strong coupling as compared to the 1D+

case. This is due to interactions breaking the separability of the system, thereby allowing
for a thermalization of the MBL systems via the resonant tunneling along the orthogonal
directions. The shown time traces illustrate the limits of the experimentally accessible pa-
rameter regime and directly show how potent the coupling mechanism is in thermalizing
the MBL systems. Additionally, also the 1D+ case shows a shorter lifetime than in the
absence of interactions. While this could simply be due to interactions enhancing the ef-
fects of the decay mechanism limiting the non-interacting lifetimes, we can show that it is
indeed dominantly due to the coupling mechanism: This becomes visible via the lifetimes
of the imbalance, which show a continuous increase when approaching the 1D+ case in an
interacting system [69]. This suggests that an even lower tunneling along the orthogonal
direction would give even longer lifetimes of the imbalance and therefore the coupling
mechanism limits the achievable interacting lifetimes even in the 1D+ case.

In the context of investigating the effect of photon scattering on the MBL system, the
observed coupling-induced decays are problematic. The most intuitive way of character-
izing the effect of photon scattering would be to vary e.g. the orthogonal lattice depths,
thereby controlling the scattering rate. In a naive picture, lower lattice depths would result
in less scattering and should give longer lifetimes. However, this behavior is completely
dominated and reversed by the coupling-effects. Hence, investigating the effects of photon
scattering by directly using the lattice beams in not possible.
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7.2 Theoretical description of open systems

In theoretical analysis, a Hamiltonian description of a (small) system coupled to a bath
cannot usually be captured using Hamiltonian dynamics. It is easy to write down a generic
Hamiltonian

Ĥ = ĤS + ĤB + Ĥγ, (7.1)

with the system’s and the bath’s Hamiltonians ĤS and ĤB, as well as the coupling term Ĥγ.
In this setting, the full system would be described by the density matrix ρ̂SB. However,
typical external baths are too complicated to allow for a full quantum description and
hence usually only the system is treated by considering the reduced density matrix ρ̂S =
TrB(ρ̂SB). Note that while ρ̂SB is pure and its dynamics is unitary, the density matrix of
the small system ρ̂S will typically be in a mixed state. Also, its dynamics will usually be
non-unitary, as the coupling to the bath introduces decoherence. The incoherent dynamics
of the system can be described by the Lindblad master equation [214]

˙̂ρS = −i
�

ĤS , ρ̂S

�

+ γ
∑

i

�

L̂iρ̂S L̂†
i −

1
2

�

L̂†
i L̂i , ρ̂S

	

�

. (7.2)

Here, the first term describes the unitary evolution of the closed system. The second term
captures the effects of the bath, where γ denotes the coupling strength and the L̂i are
the jump-operators that describe the action of the bath on the system. In the context
considered here, the L̂i are operators of the system. In a quantum trajectory picture,
the effect of the bath can be thought of as a continuous measurement of the operators
L̂i [215, 216].

In the context of MBL, dissipation is usually studied on the example of the particle
number operators for site i: L̂i = n̂i (see e.g. [196, 204, 206–208]). This corresponds
to a continuous measurement of the particle number on each lattice site. Effectively,
this transfers states consisting of coherent superpositions of Wannier states into incoher-
ent mixtures of the same Wannier states with the same probabilities, and is hence often
referred to as ‘dephasing’. Another interesting, but much harder operator to study theo-
retically is the annihilation operator L̂i = âi, which describes particle loss from the system
(see e.g. Refs. [196, 217]).

Experimentally, the scattering of photons directly implements the jump operators L̂i =
n̂i and L̂i = âi, as has been shown for both bosons [211] and fermions [218]. Intuitively,
this can be understood as the scattered photon providing information to the environment
about the location of the atom, effectively resulting in a measurement of the position of
the atom (see Fig. 7.2). This will project the atom initially in a quantum state |Ψinit(x)〉
onto a new wavefunction |Ψfin(x − x0)〉, which is localized around a location x0 on the
length scale λph/2π, where λph denotes the scattered photons wavelength. In this sim-
plified picture, the probability for the location x0 can be estimated via the overlap of the
wavefunctions before and after scattering the photon.

P(x0) = |〈Ψinit(x)|Ψfin(x − x0)〉|
2 . (7.3)
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Figure 7.2: Schematics of scattering a photon: An atom in an initially coherent superposition

(blue) of several Wannier states (dashed black lines) scatters a photon. As a result, the atom will

localize on a length scale of λph/2π, where λph is the wavelength of the scattered photon. If this

length scale is smaller than the lattice spacing d , the atom will become localized onto a single lattice

site. Since the Wannier state of the ground band is the most localized state that can be constructed

without any admixture of higher bands, localization on length scales smaller than d will necessarily

result in the excitation of higher bands.

In an optical lattice, this will result in the localization of an atom onto a single lattice site if
the lattice spacing d is smaller than the length scale the atom gets localized to λph/2π < d
(see Fig. 7.2). Hence, the scattering process can be described as a measurement of the
particle-number operator n̂b

i , where the index i labels the lattice site and b the band
index. Most theoretical descriptions neglect higher bands and consider only the ground
band, resulting in the ‘dephasing’ mechanism. Especially if λ/2π � d, however, higher
bands will be excited, as a wavefunction that is localized on a length scale smaller than
the ground band Wannier function can only be composed using admixtures from higher
bands. Atoms that do get excited to higher bands will usually be delocalized due to much
faster tunnel couplings. These faster tunneling rates allow the atoms to quickly tunnel
out of the system. In this case, excitations to higher bands can be treated as particle loss,
described by the annihilation operator.

7.3 Experimental implementation of controlled dissipation

In this section, we will describe in detail the experimental approach to implement a con-
trolled external bath via photon scattering. We note, that this approach is not only relevant
in the context of MBL, but can directly be used to study the effects of dissipation in other
phases of matter as well.

We implement dissipation by scattering near-resonant photons on the D2-line of
40K. The level structure and the relevant excitation and decay processes are illus-
trated in Fig. 7.3. The experiments are performed at magnetic field strengths close
to the Feshbach resonance of the two spin components |↓〉 ≡ |F = 9/2, mF = −9/2〉 and
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the quantum numbers mJ and mI , which are good quantum numbers in the Paschen-Back regime.
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lines, together with the respective branching ratios.
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|↑〉 ≡ |F = 9/2, mF = −7/2〉 at about 210G [100]. At this magnetic field strength, the
excited state manifold 4 2P3/2 is already deep in the Paschen-Back regime, where the
components of the total angular momentum F = J+ I decouple, and hence the projections
of the electronic angular momentum J and the nuclear spin I , mJ and mI , become good
quantum numbers. The ground state manifold is not completely in the Paschen-Back
regime, but using the quantum numbers mJ and mI is already a sufficiently good ap-
proximation. Corrections due to this approximation will be discussed in section 7.3.2. In
the Paschen-Back approximation, we can think of the spins of the particles |↑〉, |↓〉 to be
characterized solely by the nuclear spin component |↓〉 ≡ |mI = −4〉 and |↑〉 ≡ |mI = −3〉.
Since the mI do not couple to optical transitions, the spins are conserved during the
scattering of photons. Additionally, shifts in the energy levels between different mI are
negligible compared to those between different mJ . Hence, the schematic level structure
in Fig. 7.3 is accurate for both spin states, which can be treated separately (but equally).

The electronic angular component mJ splits the ground state manifold 4 2S1/2 with
J = 1/2 into 2 states. The |mJ = −1/2〉 (corresponding to |F = 9/2〉 at low magnetic
fields) is the ground state and is detuned from the higher lying |mJ = 1/2〉 (or |F = 7/2〉 at
low magnetic fields) by about 1.3GHz. The excited state manifold 4 2P3/2 has an electric
angular momentum of J = 3/2 and is hence split into 4 states. The respective detunings
between the states are on the order of ∼ 10MHz and are hence not significant relative to
the detuning in the ground state manifold.

Implementing dissipation via scattering of photons requires that after scattering a pho-
ton an atom will return to its initial state. This is important, as atoms in other states might
see different lattice depths (due to different Stark shifts) or might interact differently with
neighboring atoms. Also, the process of scattering a photon should happen on a timescale
that is short compared to the microscopic timescale of the investigated Hamiltonian, which
in our case is the hopping time τ. Additionally, the scattering rate from the ground state,
which will ultimately define the coupling strength to the bath γ, needs to be easily con-
trollable and be in a regime that is large compared to the tunneling time 1/γ � τ. This
ensures that experiments are performed in the limit of weak couplings. In the opposite
regime of a strong coupling, quantum Zeno effects would result in the localization of all
atoms (see e.g. Ref. [219]).

In our system, these criteria can be met by choosing π-polarized light that is resonant
with the transition from the higher lying ground state with mJ = 1/2 (indicated as red
arrows). Atoms initially in the ground state see the light detuned by about 1.3GHz, and
hence intensities of around Iscatt ∼ 1µW/cm2 result in scattering rates of about γ∼ 30Hz,
corresponding to approximately one photon every 100τ. The decay rate from the excited
state is on the order of 6MHz [117] and hence the duration of scattering a single photon
can be neglected compared to the tunneling time. Additionally, the wavelength of the
scattered photons of 766nm results in a localization of the atoms on a length scale of
766nm/2π≈ 120nm, which is smaller than the lattice spacing of d = 532nm/2≈ 260nm.
Hence, atoms will be localized to a single lattice site and higher bands will be excited.
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7.3.1 Scattering bursts

Complications to the concept presented above emerge due to the split ground state man-
ifold of 40K: Not all atoms that absorb a photon decay back to the ground state. Instead,
there is a probability of 33% for the atoms to decay to the higher lying |mJ = 1/2〉 state in
the ground state manifold, thereby not ending in the initial state. This problem is solved
via the choice of the detuning of the scattering light. From the higher lying state in the
ground state manifold, the atoms see the scattering light to be almost resonant (detunings
on the scale of 10MHz as compared to 1.3GHz in the ground state). Since the absorption
rate scales as 1/δ2, where δ denotes the detuning, scattering from the higher lying state
happens with a rate of hundreds of kHz, which is much faster than the tunneling time. The
fast scattering of photons on this transition will continue until the atom, with a probability
of 33%, falls back into the ground state.

Hence, after a first absorption from the ground state, atoms will either directly decay
back to the initial state or, if they decay to the higher lying ground state, be transferred
back to the initial state via the fast scattering of few photons. The total time of this process
is much shorter than a tunneling time and hence the dynamics of the many-body lattice
system during the burst can be neglected. As a result, considering the effects on the many-
body system, the entire scattering process can be seen as the scattering of a single effective
photon. This process will be referred to as a ‘scattering burst’.

While a scattering burst can be considered as a single photon considering the position-
measurement effect, the number of photons in the burst does change the probability of
the atom being excited to a higher band and being lost consecutively. As experimental
measurements are always averaged over a large system it is, however, sufficient to consider
the effects of an average scattering burst to describe the dissipative many-body system.

Rate of scattering bursts: The coupling strength to the external bath is set by the rate
of scattering bursts γ, which can be set experimentally via the intensity of the dedicated
scattering beam. This intensity is controlled by a feedback loop, which controls the volt-
age of a photodiode via an acusto-optic modulator. The photodiode is calibrated to the
scattering rate γ in the following way:

First, the voltage on the photodiode is calibrated on the total power of the scattering
beam. Then, the scattering beam is imaged at the location of the atoms, and the total
pixel count on the camera calibrated to the photodiode voltage. These pictures are then
compared to in-situ images of the atom cloud, giving the intensity at the atoms’ location I
as a function of the photodiode voltage. The scattering rate corresponding to the intensity
can then be calculated as

γ=
3πc2

2ħhω3
D2

�ΓD2

δsc

�

I , (7.4)

where c denotes the speed of light and ωD2
and ΓD2

the transition frequency and linewidth
of the D2 line of 40K. The detuning δsc = 1.3GHz refers to the detuning seen by atoms
in the ground state before the absorption of the initial photon. As the rate of any further
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i = 0 i = 1 i = 2 i = 3 i = 4

ix 0 1 0 0 2
iy 0 0 0 1 0
iz 0 0 1 0 0

Table 7.1: Band indices: Spatially resolved band indices for the five lowest bands. Index 0 denotes

the ground band.

scattered photons within a burst is orders of magnitude faster than the rate at which initial
photons are scattered, they do not need to be considered for the rate of scattering bursts.
The simple formula in equ. (7.4) can be used since the detuning to the D2 line is much
smaller than that to the D1 line and hence the effects of the D1 line need not be considered.
Also, the detuning is large enough that one can assume that the hyperfine levels of the
excited state are not resolved.

7.3.2 Band-excitation probabilities

A scattering burst generally has two effects on an atom: It localizes the atom onto a
single lattice site, which implements the theoretical concept of dephasing, and it can,
with a certain probability, excite the atom to a higher band of the lattice. If atoms in
the higher band can tunnel out of the system, this implements a loss channel. In order
to accurately understand and model the experimentally realized open quantum system,
the respective probabilities of exciting to a higher band or remaining in the ground band
have to be known. The simplest possible method to experimentally estimate the respective
probabilities would be a measurement of the decay rate of the atom number for different
scattering rates. However, as will be discussed later in section 7.3.3, in our setup, not
all atoms that are excited to higher bands actually leave the system, rendering such a
method unreliable. A more accurate method of determining the excitation probabilities
is a detailed theoretical bandstructure calculation for the experimental parameters. First,
the excitation probabilities of a single photon need to be calculated. Then, the average
excitation probability of a scattering burst can be estimated.

Excitation probabilities for a single photon: The calculations of the excitation proba-
bilities are carried out for the homogeneous system (no detuning lattice) with a 532nm
lattice along the x direction at a depth of 8 E532 nm

r and two 738nm lattices at 36 E738 nm
r

along the y,z direction respectively. Note that the calculations are specific to these lat-
tice parameters (and the wavelength of the scattering light). The excitation probability
of a single photon can be estimated by considering an atom initially in a Wannier state
|Ψinit〉 = |Wi〉 = |Wix

〉|Wiy
〉|Wiz 〉, where |Wi〉 denotes a Wannier state in the band with in-

dex i ≡ {ix , iy , iz}. The band indices used for the calculation are split along the spatial
directions according to table 7.1. In this lattice setup, the first excited band 1 ≡ {1,0, 0}
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Pi← j j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 0.823 0.103 0.023 0.023 0.016
i = 1 0.103 0.582 0.003 0.003 0.229
i = 2 0.023 0.003 0.772 0.000 0.000
i = 3 0.023 0.003 0.000 0.772 0.000
i = 4 0.016 0.229 0.000 0.000 0.406
"h j" 0.011 0.080 0.201 0.201 0.348

Table 7.2: Single-photon band excitation probabilities: Probability Pi←j of being excited from

the j -th to the i -th band by scattering a single photon. The spatially resolved components of the

band indices can be found in table 7.1. Note that the second and third excited bands are degenerate,

and hence the according excitation probabilities are equal. The values "hj " sum up the probabilities

of being excited to any band higher than the fourth excited band. Calculations were performed by

Andrew Daley [70].

corresponds to an excitation along the x direction, but the ground band in the orthogonal
directions. The second (2 ≡ {0, 1,0}) and third (3 ≡ {0, 0,1}) excited bands then corre-
spond to the ground band in the x direction, but an excitation along the y or z direction,
respectively. Due to the symmetry of the lattice setup, the second and third excited band
are degenerate.

The probability Pi← j of starting in band j and being excited to band i after the absorp-
tion of a photon and subsequent reemission can be calculated as

Pi← j =

∫

kph−sphere

dΩ
4πk2

ph

�

�

�〈Wjz |〈Wjy
|〈Wjx |e

−ik·reikph x |Wix
〉|Wiy

〉|Wiz 〉
�

�

�

2
. (7.5)

This is the wavefunction overlap of the Wannier states of different bands with the oper-
ators corresponding to the momentum kick of the absorbed photon eikph x and the emit-
ted photon e−ik·r. Here, k denotes the wavevector of the respective photon with length
|k|= kph = 2π/λph. Since the dedicated scattering beam is traveling along the x direction,
the momentum kick of the absorbed photon is only in this direction. The emitted pho-
ton can, however, travel in any direction. Hence, the wavefunction overlap is averaged
over the surface of the sphere spanned by all possible wavevectors with length kph. The
resulting probabilities are summarized in table 7.2. According to the definition of Pi← j in
equation 7.5, the probabilities of reaching any band in an infinite sized lattice should be
one. The calculation, however, only includes the lowest five bands. The probabilities of
being excited to any higher bands h j are summed up in the last row. The values h j are
chosen such that the normalization

∑4
i=0 Pi← j + h j = 1 holds.

Average excitation probabilities for a scattering burst: Based on the above calcula-
tions for the band-excitation probabilities of a single photon, we can estimate the probabil-
ities for an average scattering burst. As discussed above, a scattering burst can consist of n
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Figure 7.4: Band excitation probabilities of a scattering burst: a) Convergence of the sum in

equation 7.6. The average band-excitation probability of a scattering burst is given by the limit of

N → ∞, where N is the maximum number of photons in a scattering burst. b) Band excitation

probabilities as a function of the number of scattering bursts. The probabilities are shown for the

ground and the first excited band. All other populations are summed up and plotted together as

‘higher bands’. Calculations were performed by Saubhik Sarkar and Andrew Daley [70].
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individual photons, where n ∈ [1, 2,3,4, ...]. The first photon is scattered from the ground
state. With a probability of 2/3, the atom decays back into the ground state, thereby
ending the scattering burst. With a 1/3 probability, however, the atom decays into the
higher lying state in the ground state manifold, from which it can quickly cycle an arbi-
trary number of photons. Each photon will bring the atom back to the ground state with a
1/3 probability (see section 7.3.1 for a detailed discussion). The average band-excitation
probability Pburst

i← j of a scattering burst can be calculated as the sum of the excitation prob-
abilities after scattering n photons, weighted by the probability P#(n) to scatter n photons
in a scattering burst

Pburst
i← j =

N→∞
∑

n=0

P#(n) (Pi← j)
n. (7.6)

Here, Pi← j is the transition matrix containing the single-photon band-excitation probabil-
ities shown in table 7.2. The probability of scattering n photons in a burst can easily be
derived as

P#(n) =











2
3

, n= 1

1
9

�

2
3

�n−2

, n≥ 2
(7.7)

which quickly converges to zero for large n. Hence, the sum in equation 7.6 also quickly
converges. Note that since the transition matrix Pi← j is only calculated up to the fourth
band, return processes from any higher bands are not considered, potentially slightly
changing the probabilities Pburst

i← j . However, due to the low occupations in the higher bands,
this should result in corrections below 1%.

Fig. 7.4a shows the probabilities Pburst
i←0 of remaining in the ground band {0, 0,0} and

being excited to the first excited band {1,0, 0} by a scattering burst, starting in the ground
band, as a function of the number of photons N considered in the sum in equation 7.6. It is
clearly visible, that the sum quickly converges. The limit of Pburst

0←0 for N →∞ of remaining
in the ground band is the average probability of a scattering burst to result in dephasing,
and hence the dephasing rate γdeph in the system is given as

γdeph ≈ 0.7γ. (7.8)

Fig. 7.4b shows the probabilities of finding an atom in different bands as a function of
the number of scattering bursts, starting in the ground band. We see, that the probability
of an atom being excited to higher bands quickly increases. After about 10 scattering
bursts, the chance of an atom remaining in either the ground or first excited band is
almost zero. Hence, the implemented method for studying dissipation can only address
the weak scattering limit, as a too strong scattering will lose atoms too quickly.

Probability of a spin-flip: An additional mechanism that has so far not been considered,
is the potential flipping of the spins |↓〉 ≡ |mI = −4〉 and |↑〉 ≡ |mI = −3〉 during the scat-
tering of photons. In the Paschen-Back regime, where the quantum numbers I and J are
uncoupled, the mI should be conserved during optical transitions. However, the ground
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Figure 7.5: Spatial Bandstructure: Upper and lower band-edge of the bands with indices i =

0, 1, 4 along the x direction at y , z = 0. The structure emerges due to the Gaussian shape of the

lattice and dipole beams. The experimentally measured size of the atom cloud in the ground band is

denoted as wg . The horizontal dashed lines illustrate the criterion of whether a band is trapped or

not, showing that the first excited band is indeed trapped. The width w1st that an atom cloud in this

band is expected to expand to is in good agreement with in-situ absorption images of the atom cloud.

state manifold is, at the magnetic fields of around 200G used in the presented experi-
ments, not fully in the Paschen-Back regime yet. Hence, there is a remaining coupling
between mJ and mI resulting in the flipping of spins. The probabilities can be calculated
by including the nuclear spin and considering the exact hyperfine structure in the calcu-
lation of the branching ratios. The probabilities for a spin flip are found to be 4% for |↓〉
and 10% for |↑〉. Most of the occurring spin flips convert atoms between those two spin
states, which will on average not alter the global system too much. However, also atoms
with mI = −2 can be created. These atoms would have a significantly different interaction
strength with the other spin states. Due to the small probability of creating these atoms,
however, the effects are expected to be minimal, and indeed spin-resolved images of the
cloud never showed a measurable fraction of atoms in the mI = −2 state.

7.3.3 Atom-loss mechanism

Atom loss due to photon scattering relies on not only atoms being excited to higher bands,
but also on these atoms quickly tunneling out of the system. Generally, the quasiperiodic
potential seen by atoms in the excited bands will be much weaker and the tunneling
rates much higher. Hence, excited band atoms will be both delocalized and fast. In
order to leave the system, however, atoms additionally need to be untrapped. This is
a similar criterion as for the expansion of a cloud, discussed in section 2.4.2. Namely,
the kinetic energy of an atom, given by the bandwidth, needs to be larger than the depth
of the harmonic confinement. This criterion is illustrated in Fig. 7.5 for the lowest three
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bands of the primary 532nm lattice {0,0, 0},{1, 0,0} and {2,0, 0} (i.e. bands with indices
i = 0, 1,4 according to table 7.1). While the {2, 0,0} band is clearly untrapped, the first
excited band {1, 0,0} is still trapped, and hence atoms will not be able to leave the system.
This calculation was experimentally confirmed by deliberately loading atoms into the first
excited band and monitoring their time evolution. It was found that the lifetimes in the
second band are only slightly smaller than those in the first band. Additionally, the atom
cloud expanded to a width of w1st ≈ 150µm, which agrees well with the prediction by the
calculation. Bandstructure calculations have further shown, that bands with excitations
only in the y and z direction (especially {0, 1,0} and {0, 0,1}), remain trapped as well.
These bands are less relevant though since the number of atoms excited into them is
comparatively small. Still, a significant number of atoms can occupy these bands, as at
the edges of the system they are resonant with the first excited band in the x direction
{1,0, 0}. This is also checked experimentally by loading atoms into the first excited band
and imaging after bandmapping. Indeed, it was found that atoms redistribute between
these bands. Likely, this is also the reason why the second band atoms do not dominantly
show up on the bandmapped images taken to extract the imbalance (see e.g. Fig. 2.7).

Due to the first excited band {1, 0,0} being trapped, the rate at which atoms leave the
ground band is not equal to the rate at which atoms get lost from the system. Instead, a
significant amount of atoms will remain in the delocalized first excited band. The theo-
retically expected population of this band as a function of the number of scattering bursts
per atom is shown in Fig. 7.4b.

In order to estimate the rate at which atoms actually get lost from the system, we
need to consider the rate at which atoms are excited to the {2, 0,0} band (or higher).
The probability for an atom being lost as a function of time can hence be estimated by
the probability of an atom being excited to the {2, 0,0} band after n scattering bursts,
weighted by the probability Pburst(n, t) of having n scattering bursts up to time t, which is
given by a Poisson distribution

Pburst(n, t) =
(γt)ne−γt

n!
. (7.9)

The result is plotted in Fig. 7.6a. While the decay does not precisely follow an exponential,
it can be well estimated by one, as is indicated by the dashed black line. As a result of this
fit, we get an estimate of the expected loss rate γloss of

γloss = 0.17γ. (7.10)

In order to check this estimation, we define an atom number susceptibility to the
photon scattering

χN =
dΓN

dγloss
, (7.11)

where ΓN is the atom-number decay rate. This quantity can be measured experimentally
by monitoring the atom number decay in a system exposed to photon scattering for dif-
ferent scattering rates γ. The atom number decay rate ΓN can then be extracted using an
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exponential fit. As illustrated in Fig. 7.6b, a linear behavior is found between ΓN and γ.
The atom number susceptibility can be calculated from the slope. By definition, we would
expect χN = 1, if our model for atom loss is accurate. Experimentally measured values for
different strengths of the incommensurate potential are shown in Fig. 7.6c. The values
show a strong scatter but are roughly consistent with χN = 1. Overall, the experiment
slightly underestimates χN , suggesting that even fewer atoms are lost than is expected
from the calculations. This could be due to an uncertainty in the extraction of ΓN itself. As
time-resolved measurements have been taken primarily to investigate the behavior of the
imbalance, they have not been taken to long enough times for the atom number to fully
decay. This could make the exponential fits to the atom number unreliable, explaining the
large amount of scatter and the systematic error.

7.4 Experimental results on the open system

In this section, we will present results on open MBL systems that we obtained by apply-
ing the developed method of scattering near-resonant photons (see section 7.3) to our
MBL system. Our experimental results will be compared to numerical simulations of the
corresponding Lindblad equation (see section 7.2). We will focus on the fully localized
MBL phase. A study of the effects of external baths in the regime of slow dynamics on the
thermal side of the phase transition has not been attempted yet.

To investigate the effects of the controlled photon scattering on an MBL system, we
measure long-term time traces of both the imbalance I and the atom number N for var-
ious detuning and interaction strengths. Fig. 7.7 shows exemplary data at an interaction
strength of U = 4 J and a detuning strength of ∆ = 4 J . We find that generally any added
scattering results in a faster decay of both the imbalance I and the atom number N . This
is consistent with the picture of external couplings destroying localization and can be ex-
plained based on the picture described in section 7.3 (compare also Fig. 7.2): Scattering a
photon will localize an atom on the length scale of the wavelength of the scattered photon
λ/2π. In our system, this length scale compares to the lattice spacing d as λ/(2πd)≈ 0.45.
Hence, an atom can either be localized to a Wannier state in the ground band, or it can
be excited to a higher band. As we choose low scattering rates γ of only a few photons
every 100τ per atom, an atom can time evolve under the closed system’s Hamiltonian be-
tween successive scattering events. The time evolution of an atom after being re-located
resembles the time evolution of atoms after the initial quench. Since, however, the starting
Wannier state can be different, the scattering induced relocation of atoms in the lowest
band essentially re-enables hopping. Atoms excited to higher bands will ideally leave the
system, as the excited bands have stronger tunnel couplings and are delocalized. Scat-
tering can hence be described as a dephasing rate γdp = pdp ∗ γ which describes the rate
at which atoms are localized to Wannier states within the lowest band, and an excitation
rate to higher bands γex = (1− pdp)γ. Here pdp ≈ 0.7 denotes the probability of a scatter-
ing event resulting in dephasing. The ratio of dephasing and excitation rate is given by
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the wavelength of the scattered photons and the lattice geometry and is hence not easily
adjustable in the experiment. In our experiments, it is fixed at γdp/γex ≈ 2.3. This value is
obtained from ab-initio calculations for our system, which were discussed in section 7.3.2.
Note that in our system the excitation rate does not directly give the atom number loss
rate as atoms in the first excited band are trapped in the system by the dipole trap (see
section 7.3.3).

To analyze the time traces, we extract the atom number decay rate ΓN via simple
exponential fits. An analysis of the atom number lifetimes is given in section 7.3.3. The
decay rate of the imbalance ΓI is extracted via a fit to the function

I(t) =
�

Acos (ωt) e−Γ1 t + o
�

× e−(ΓI×t)β (7.12)

where ω and Γ1 describe the initial oscillating decay to the plateau value o. This function
is wrapped in a stretched exponential envelop with the stretching exponent β , describing
the effects of the external decays. The stretched exponential fits are motivated by previous
theoretical analysis, which commonly found this functional form (see e.g. [208]). Intu-
itively, the stretched exponential form can be understood as a superposition of external
decays with slightly different timescales [196]. In systems with random disorder, different
timescales can emerge due to variations in the local disorder strength, which also underly
the Griffiths mechanism. Note, however, that the very local action of a photon bath does
not require these variations to be present on large length scales. Instead, it is sufficient
if close-by sites show different energy differences, which is present also in quasi-periodic
systems.

Experimentally, we found that stretched exponential decays fit the imbalance data
slightly better than simple exponential decays. Fig. 7.8 shows exemplary exponents as a
function of the interaction strength U and the coupling rate γ. The extracted stretching
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exponents do not show any significant trend with the detuning or the interaction strength
and scatter strongly between values of approximately β ≈ 0.5 and β ≈ 1. This is likely
because the stretching exponents are mostly determined by the decay at longer times,
where the imbalances are already low and hence the signal to noise ratio becomes poor.
Additionally, we have found that the value of the fitted stretching exponent is not strongly
influencing our data analysis. This can e.g. be seen in Fig. 7.10, where we compare
data extracted using the described fitting procedure to the data extracted using simple
exponential fits (i.e. a fixed β = 1) and only find minor differences.

Definition of the susceptibility: As is illustrated in Fig. 7.9 for different interaction
strengths at ∆ = 4 J , we find an approximately linear behavior of the imbalance decay
rate with the scattering rate. This behavior is present for all values of ∆ and U in the lo-
calized phase. The slope of the linear behavior, as well as the offset, depend heavily on ∆
and U . While the varying offset is already well understood as being dominated by the cou-
pling between neighboring tubes (see section 7.1), the slope describes the susceptibility
of the system to photon scattering. To investigate the effects of photon scattering without
crosstalk from the coupling mechanism, we define the susceptibility χ of the system to the
effects of photon scattering as

ΓI = χγ+ Γbg , (7.13)

where Γbg denotes the offset due to other decay mechanisms. The susceptibility can hence
be extracted as the slope of linear fits to the imbalance decay rate, which are indicated as
solid lines in Fig. 7.9. Note that this model implies that the effects of photon scattering
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Figure 7.10: Non-interacting susceptibility vs. detuning strength: a) Experimental and theoreti-

cal susceptibility at U = 0 for various detuning strengths. Errorbars denote the uncertainty of the fit.

The theoretical results are extracted from a rate model [196]. The black dashed line indicates the the-

oretical upper bound of the susceptibility in the extended phase. The inset shows the linear behavior

of the imbalance decay rate with the scattering rate. The solid line indicates the linear fit used to ex-

tract the susceptibility. The theoretical rate model yields the same slope but has an offset relative to

the experiment. This is due to other decay mechanisms present in the experiment (see section 7.1).

b) Susceptibilities as in a) but extracted using simple-exponential fits instead of stretched exponential

fits. Numerical simualtions were performed by Mark Fischer and Ehud Altman [70].

and any other decay mechanisms are independent and do not influence each other. While,
in general, this need not be true, the linear slopes found experimentally suggest that it is
a sufficiently good approximation.

7.4.1 Single-particle results

In order to check the modeling of our photon bath described in section 7.3, we first analyze
the non-interacting system. In the absence of interactions, numerical simulations are
easily performable, which allows us to crosscheck the obtained results. Fig. 7.10 shows
the extracted non-interacting susceptibilities as a function of the detuning strength ∆.
We find that the susceptibility decreases with increasing detuning strength. This is in
very good agreement with the numerical simulations, which are performed using the rate
equation model presented in Ref. [196]. Since this model only implements the effects
of dephasing, its scattering rate is rescaled by the factor pdp = 0.7. This should give an
exact prediction of the experimental result, as in the absence of interactions we expect
that band excitations (atom loss) have no effect on the imbalance. This is because loss
processes occur on even and odd sites with identical rates. The inset of Fig. 7.10 shows
an exemplary comparison of the extraction of the susceptibility between the experiment
and the rate model. As expected, the rate model displays the same linear relationship
between imbalance decay rate and scattering rate as the experiment. However, its linear
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behavior does not show any offset, as no additional decay mechanisms are present. Good
agreement regarding the effects of photon scattering is thus present if the linear fits are
parallel, i.e. have the same slope and hence yield the same susceptibility. Indeed, we find
very good agreement between the rate model and the experiment.

The lower susceptibility at larger detuning strengths can be easily understood via a
simple model that was also described in Ref. [196]. The susceptibility essentially depends
on the probability of a scattering event transferring a particle, described by a localized
wavefunction around a central lattice site, to a neighboring site. If at very large detuning
strengths, the localization length is so small that the wavefunction overlap of the particle
with the neighboring lattice sites is essentially zero, a scattering event can only result in
the localization back onto the same Wannier state, resulting in a vanishing susceptibility.
At lower detuning strengths, however, where the localization length is large and hence
neighboring lattice sites strongly contribute to the wavefunction of the particle, the prob-
ability of a scattering event transferring a particle to a neighboring site is comparatively
large and hence the susceptibility is high. This picture also allows for the derivation of a
simple upper bound for the non-interacting susceptibility in the extended phase. In the
extended phase, every particle is completely delocalized, and hence a scattered photon
will result in the localization of a particle onto an even or an odd site with equal proba-
bility. Hence, every atom will have an imbalance of zero after a single scattering event.
The imbalance thus decays with a rate γdp, giving an upper bound for the susceptibility
of χmax = pdp. In our system, we cannot access this limit, as the imbalances become too
small below a detuning strength of ∆ = 3 J and hence the stretched exponential fits used
to extract the imbalance decay rates are not reliable anymore.

7.4.2 Many-body results

In the presence of interactions, we expect the susceptibility to be generically larger than
in the single-particle case. This is due to e.g. a larger spreading of the interacting wave-
function at the same detuning strength, as well as interacting dephasing events possibly
affecting close-by atoms. Additionally, also atom losses might perturb atoms in their sur-
roundings [196]. Hence, we do not expect the upper bound of the susceptibility derived
for non-interacting particles to hold. A further increase of the susceptibility may arise
due to an effect that is rather specific to our setup: In the presence of interactions also
the atoms trapped in the first excited band (see section 7.3.3) can contribute a decay
mechanism, as they are delocalized and can hence serve as an additional bath.

The experimentally extracted interacting susceptibilities are shown in Fig. 7.11 as a
function of the interaction strength for two different detuning strengths close to the tran-
sition (∆ = 4 J) and well in the localized phase (∆ = 6 J). We find that interactions show
almost no effect on the susceptibility deep in the localized phase, but find a pronounced
effect at ∆ = 4 J . This observation is consistent with the picture that interactions play an
important role close to the transition, but show little effect deep in the localized phase.
Close to the phase transition the susceptibility continuously increases with the interaction
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strength U . We expect this increase to saturate in the hard-core limit. The experimental
susceptibilities are compared to numerical simulations. Since the rate model [196] was
only developed for the non-interacting case, we use TEBD simulations that implement de-
phasing via a Lindblad equation (see section 7.2). Implementing the effects of atom loss
was not possible, as the simulations close to the phase transition would have been too
demanding. Hence, for the shown simulations the scattering rate of the numerical simula-
tions has been rescaled by pdp (as in the non-interacting case) and the effect of atom losses
are not considered. Still, our TEBD simulations show large truncation errors and hence
need to be interpreted with care. Note that a further theoretical study has managed to in-
vestigate the combined effect of both particle loss and dephasing in a randomly disordered
spin system [217]. Deep in the localized phase, numerics and experiment agree very well
and neither shows an effect of interactions. This suggests, that atom loss is unimportant
in this regime, which is to be expected if interactions generally show no large effect. Close
to the phase transition, both experiment and numerics show an increased susceptibility
at intermediate interaction strengths. However, in the regime of strong interactions, we
observe deviations between the experiment and the numerics. The numerical susceptibili-
ties come back to their non-interacting value in the hard-core limit, which is the expected
result if particle numbers are conserved. The experiment, where particle loss is present,
shows a dramatically different behavior. Hence, the difference likely reflects the effects
of particles being lost from the ground band. That the effects of particle loss become in-
creasingly relevant with increasing interaction strength is consistent with the results of
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Ref. [217]. Further investigating the interplay of dephasing and atom loss experimentally
is not possible, since the ratio of dephasing to loss events in our setup is fixed.

We note, that close to the phase transition at ∆ = 4 J , the lifetimes of the imbalance
and the atom number become comparable in the presence of scattering. Thus, the system
is subjected to a significant change in the density during the decay of the imbalance. As
a lower density also implies that interaction effects become less significant, we would
also expect a change in the functional form of the imbalance decay rate with time, i.e.
a faster decay rate at short times, where the density is large and hence atom number
loss significantly affects the imbalance, but a slower tail where the density is low and the
problem effectively becomes non-interacting. However, from our data, we cannot resolve
such an effect. This is likely due to the measurement of the imbalance being less reliable
when the atom numbers are low. Additionally, the described effect might not be cleanly
resolvable, as the decay of the imbalance is not given only by the scattering of photons,
but also limited by other effects (see section 7.1).

Another difference between the experiment and the numerics are the effects of the
particles trapped in the first excited band in the experiment. Understanding their mech-
anism is closely related to understanding the effects of a ‘small’ bath [51, 52, 76], which
describe finite delocalized systems coupled to a many-body localized system. Gaining a
better understanding of the effects of trapped second band atoms is thus a very interesting
task for future works.

7.5 Discussion

Truly many-body localized systems have to be completely isolated from the environment.
However, this is not possible in nature, which raises the question how the study of MBL is
important in any practical context. This question is similar to the question of the relevance
of ground state quantum phase transitions when practical situations always happen at
finite temperatures. In this case, it was found that although quantum critical points only
exist at zero temperature, their presence can influence a system even at finite temperatures
(compare Fig. 6.1). Based on our findings on the response of the MBL systems to coupling
and photon scattering in the localized phase, as well as the influence of external couplings
on the power-law decays found on the thermalizing side (see section 6.4.1), a similar
picture emerges, as is illustrated in Fig. 7.12. While true many-body localization can only
exist in a fully isolated quantum system, its properties can remain relevant on intermediate
timescales even in the presence of a bath. This is because signatures of an MBL system are
destroyed on a timescale that is inversely proportional to the coupling strength of the bath.
In a weak coupling regime, the properties of the MBL system thus dominate the short time
response of the system. The definition of ‘short times’ here depends on the susceptibility
of the system. Close to the phase transition, where the system is more susceptible, even
weak coupling strengths can e.g. erase the imbalance on rather short timescales. Deep in
the localized phase, a small coupling might only erase the imbalance after ∼ 1000τ.
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The blue and yellow shading in the figure directly correspond to the discernibility of
the imbalance and the power-law decays in the weak scattering limit. Outside of these
regions, the external bath thermalizes the system on extremely short timescales and prop-
erties of the underlying MBL system are unimportant. The coupling strength at which
the MBL system’s properties become unimportant reduces close to the phase transition.
This is a consequence of the increased susceptibility that was found when approaching
the transition. Indeed, we speculate that the susceptibility in an interacting system might
even diverge at the phase transition in the limit of weak scattering. This is, however, not
observable in the experiment, as the definition of weak scattering implies that the rate
of scattering is slow compared to intrinsic system timescales, which also diverge at the
phase transition. Hence, any experimental scattering rate will eventually leave the weak
scattering limit.

On the thermal side of the transition, the shading is oriented on the discernibility
of the power-law decays and is directly related to the power-law exponent α (see chap-
ter 6). When the transition is approached, the internal power-law decays become slower
(the exponent decreases) and hence the imbalance decay resembles an exponential decay.
Further away from the transition, where the internal dynamics are fast, much stronger
coupling strengths are required to influence these decays. A systematic study of the effect
of photon scattering on the slow dynamics on the thermal side has not been performed
yet but is a worthy goal for future work.



CHAPTER 8

Conclusion and outlook

In this thesis, we have described in detail how cold atoms in quasi-periodic optical lat-
tices can be used to study localization phenomena both in a single particle and a many-
body context. We gave the relevant background of earlier studies, mostly theoretical, and
presented new experimental results based on measurements of out-of-equilibrium observ-
ables. Specifically, we characterized a single-particle mobility edge in our quasi-periodic
lattice and investigated the thermalization dynamics close to the MBL phase transition in
the context of the Aubry-André model. Furthermore, we described a newly developed
method to implement a controlled bath to cold atom experiments and used it to study
MBL in an open quantum system.

In part I, chapter 2, we described the experimental setup in detail and compared
its Hamiltonian to both the Aubry-André and the Anderson model, which are typically
studied in the context of localization. We showed that our system should map onto the
Aubry-André model in the tight-binding limit of nearest neighbor hopping and discussed
the dominant corrections to this mapping. Furthermore, we introduced the imbalance and
the expansion as our dynamical observables and gave a basic overview of their experimen-
tal implementation. In chapter 3, we discussed how the expansion and the imbalance
can be used to sensitively detect the presence of extended and localized single-particle
states respectively, and used this property to map out the full phase diagram of the non-
interacting quasi-periodic lattice. We found an intermediate phase, where a single-particle
mobility edge is present, separating the fully localized from the fully extended phase. In
the tight-binding regime, the intermediate phase was found to vanish. This is expected
as here the lattice model should be well described by the Aubry-André model, which does
not have an intermediate phase, and indeed measurements of the imbalance showed good
agreement with calculations based on the AA model, suggesting an accurate mapping.

In part II, we contrasted many-body localization, i.e. the localization of interacting par-
ticles in highly excited states, to the generically expected behavior of thermalization. After
briefly discussing the current understanding of the respective thermal and MBL phase in
chapter 4, the experimental implementation of interactions was introduced in chapter 5.
Here, the basic experimental signatures of the MBL phase were discussed and the influ-
ence of the doublon fraction, density, and temperature of the initial state were shown.
Based on these observations, we chose the initial state with lowest doublon fraction and
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temperature, as well as the highest achievable density to be best suited for studying MBL
in the following chapters.

Using this initial state, in chapter 6, we investigated the dynamic behavior of the im-
balance close to the MBL phase transition. On the thermalizing side, we found increasingly
slow relaxation dynamics when approaching the transition. These dynamics were similar
to those numerically observed in randomly disordered systems. This is surprising, as in
disordered systems such slow dynamics are possibly based on the relaxation of rare Grif-
fiths regions, which cannot exist in quasi-periodic settings. We discussed possible reasons
for this similarity, including Griffiths regions in the initial state and anomalous distribu-
tions of transition rates between single-particle eigenstates. Furthermore, we argued that
the detuning strength where the observed relaxation dynamics stop can be used as an
estimate of the phase transition point and gave bounds on the transition point from the
experimental data.

In chapter 7, we described a newly developed method for implementing a controlled
bath to cold atom systems via the scattering of near-resonant photons. These photons
cause both a localization of the particles to the length scale of the scattered photon, as well
as the loss of particles. We compare ab-initio calculations to experimental results and show
a good understanding of both the coupling rate to the photon bath, as well as the ratio of
localization to loss events. Challenges remain in the understanding of the loss channels, as
in our system particles excited to the first excited band of the optical lattice remain trapped
in the system. We further apply the developed method of implementing controlled baths
to the MBL phase, where we find a linear dependence between the relaxation rate of the
imbalance and the coupling rate. We characterize this linear dependence by introducing
the susceptibility, for which we find very good agreement between theory and experiment
in the absence of interactions. In the presence of interactions, the experiment shows a
strong influence of atom loss on the imbalance decay rate, which could not be assessed
numerically.

8.1 Outlook

The works presented in this thesis (as well as those presented in earlier theses in
Refs. [114, 115]) experimentally show the existence of MBL, as well as many intriguing
phenomena, such as the thermalization dynamics close to the phase transition. However,
all experimental results in this thesis were also accessible using current numerical tech-
niques. While a full calculation of the experimental system is never numerically feasible,
deep in the MBL phase only small system sizes are required to reproduce the behavior, and
approximate methods such as DMRG can readily be employed. Close to the phase transi-
tion, where larger system sizes are required to access the critical scaling regime, current
experiments fail to access the necessary long times due to couplings to external baths.
Thus, even though the limitations are very different in nature, the accessible physics is
currently very similar in both experiment and theory. Future experiments need to aim to
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break these barriers by improving the systems’ lifetimes. The lifetimes are currently mostly
limited by a coupling between adjacent tubes [69], however, increasing orthogonal lattice
depths only give marginal improvements and would result in an enhanced scattering rate
of lattice photons. Solutions hence have to be looked for in either removing orthogonal
planes (as e.g. in Ref. [64] in two dimensions) or by decreasing the effectiveness of the
orthogonal directions as baths by e.g. adding detunings. Further, optical lattices need to
be created from very far detuned wavelengths to limit the number of scattered photons,
and tunneling times need to be reduced. This can e.g. be achieved via shorter lattice
spacings or by employing atoms with a lower mass. In our system, another possible
improvement can be achieved in the relative motion of the primary versus the detuning
lattice by locking the two lasers relative to each other.

Much of the interesting behavior that is currently not understood appears at long evo-
lution times, and in regimes where the imbalance will likely ultimately decay to zero.
An improvement of the lifetimes of the imbalance can hence only be exploited when a
simultaneous improvement in the detection of the imbalance is achieved. Here, both an
increased accuracy in the absolute value, as well as a reduction of the noise are necessary.

Given that significant improvements in the lifetime and detection accuracy can be
achieved, the presented setup can be used to explore a large variety of MBL phenomena
that are inaccessible to numerics due to finite size restrictions. Most of these phenomena
are related to the problem of small baths, which describes the interaction between an MBL
system and a small bath with a finite number of degrees of freedom. This problem arises
not only in the obvious context of many-body localization in the presence of a single-
particle mobility edge [53] and the question of the existence of a many-body mobility
edge [80], but also in the context of Griffiths regions close to the phase transition [38].
Generally, one could expect that any extended states generically delocalize the MBL states,
resulting in a purely thermal behavior. This is, however, only necessarily the case if the
thermal states are topologically protected [72, 75] and the coupling rate is outside of
the quantum Zeno regime. Otherwise, numerical studies have pointed to the possibility
that indeed also the MBL phase can, in some cases, localize the extended states, thereby
stabilizing the MBL phase [51, 52, 76, 146, 202]. This phenomenon was termed the many-
body localization proximity effect [202]. In the following, we will discuss the possibility
of studying the effects of small baths in our experimental system.

8.1.1 Experimental prospects for studying small baths

Generally, the question of the effects of a small bath appears in any setting, where a
localized system interacts with a second, thermal system of similar size. However, the
answer to the effects of small baths can heavily depend on the exact setting. In our
setup, a coupling between localized and extended states can be achieved in a variety of
interesting settings.
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Interaction coupling singe-particle localized and extended states: In this thesis, we
have studied the effects of interactions only in the context of the AA-model, where the
underlying single-particle system does not exhibit an SPME. However, adding interac-
tions to our system at lower depths of the primary lattice, where an SPME is present, is
straight-forward. In this setting, next-to-nearest-neighbor hopping terms are present and
hence experimentally showing the existence of a full MBL phase, i.e. a regime where all
many-body states are localized, is already a worthy goal. Note, though, that full MBL is
only expected to occur far above the single-particle intermediate phase, where all single-
particle states are already localized. Whether or not the intermediate phase survives in
the presence of interactions, or on which timescale the interaction coupling delocalizes
the single-particle localized states are very intriguing questions.

Limitations to studying the effects of small baths using an SPME appear due to the
small width of the intermediate phase in our system: Interactions couple not only the
single-particle extended to the single-particle localized states, but also localized to local-
ized, as well as extended to extended states. In case of a slim intermediate phase, the
interaction coupling between localized states could already be sufficient to delocalize all
states and hence the coupling to single-particle extended states would not dramatically
change the system’s properties.

Coupling a localized 87Rb system to a delocalized 40K bath: A slightly cleaner option
of studying the effects of small baths exists by loading a mixture of 40K atoms and 87Rb
atoms into the quasi-periodic system. In this setting, the much heavier 87Rb atoms would
localize at a much smaller depth of the detuning lattice and therefore take the role of
the localized system. By loading only one spin-species of 40K, both the localized and the
delocalized system would individually appear non-interacting, as the large background
scattering length of 87Rb will result in a fermionization of the bosons for sufficiently deep
primary and orthogonal lattices. Via a Feshbach resonance, the interactions between the
two species are tunable without making the individual systems interacting. Thus, a full
(de)localization can only occur via a crosstalk between the two systems. Here, also a
coexistence of the localized and the delocalized system is a possibility.

Using a superlattice to prepare and read-out a charge-density wave state of 87Rb has
been done before [104]. However, it is not clear whether or not the 40K atoms will also
form a CDW state in this case and whether a simultaneous read-out is possible. In the
preparation of the initial state, it is important to remove doublons formed by 87Rb atoms to
achieve the fermionization. Technically, the most demanding requirement is the magnetic
field stability required to address the Feshbach resonance, which is located at magnetic
field strengths of B ≈ 550G but only δB ≈ 3G wide [119]. In our system, we can achieve
long-term stable magnetic fields to an accuracy of ∼ ±5mG, which, at reasonable lattice
depths, would correspond to an uncertainty of the interaction strength of δUK−Rb ≈ ±1 JRB,
where JRB denotes the tunneling of the Rb atoms.
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Interaction coupling different bands: A similar scenario as with a mixture of 40K and
87Rb atoms can also be achieved by loading atoms not only into the ground but also into
the first excited band. In the first excited band, tunnel-couplings are much stronger than
in the ground band, and hence it will localize only at much higher detuning strengths.
If the two bands would be selectively populated by different spin-species of 40K, this sys-
tem would create the same Hamiltonian as above. Should both bands contain both spin-
species, the system would realize a coupled many-body Hamiltonian to an interacting
bath. In contrast to the scenario of using an SPME, however, in this case, the localization
transitions of the two bands would be separated far enough to achieve MBL in the ground
band while the first band is still localized. Note, however, that a controlled loading of
atoms into the second band is non-trivial.

Currently, it is not clear which of the presented settings is best suited to gain insights
into the aspects of small baths that are relevant for e.g. the existence of many-body mo-
bility edges or the Griffiths mechanism. Each setting is, however, already interesting in its
own right. I hope that at least some of these possibilities will indeed be experimentally
realized in the near future and give insights that can, at least currently, not be obtained
from small-scale numerics.
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APPENDIX A

Details of the experimental sequence

Fig. A.1 gives the details of an exemplary sequence used to load atoms into the optical
lattice, prepare the CDW initial state, initiate the time evolution and read out the imbal-
ance. This sequence is subject to minor changes depending on the exact experiment. For
example, the magnetic field during the loading of the lattice depends on the wanted dou-
blon fraction. For the experiments with photon scattering, the additional scattering beam
is switched on only during the evolution time.

The sequence used to measure the expansion of the cloud is similar and only differs
after the time evolution, as the CDW state is always employed. In this case, the atoms’
motion is frozen out by increasing the depth of the 532nm and 1064nm lattice as usual.
Afterwards, however, the magnetic field is switched off as quickly as possible (∼ 1ms).
Then all optical potentials are removed and the cloud is imaged in-situ. Note that this
sequence can only be employed for imaging atoms in-situ if no doublons are present, as
by switching off the magnetic field, the interactions ramp over the Feshbach resonance,
thereby creating molecules. As these molecules do not absorb the imaging light, this would
distort the images. In our case, this is not a problem, as all expansion measurements have
been performed either with a spin-polarized mixture or with an initial state that suppresses
the formation of doublons. Due to the low density in our system, we do not expect that a
significant number of doublons is formed dynamically.
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APPENDIX B

Implementation of the averaging over
neighboring tubes in numerics

In chapter 3, we have explained the difference between the experimental results for
the expansion and the numerical results by an averaging over many neighboring, one-
dimensional systems, which is inherently present in the experiment. Due to the finite
extent of the beams creating the optical lattices, these neighboring systems (tubes) expe-
rience slightly different lattice depths. Specifically, tubes on the outside of the cloud have
lower lattice depths than those in the center.

Considering this effect in the numerics is performed by simulating the system with
various multipliers for the lattice depths Vp and Vd , and then averaging these results with
weights based on the number of atoms subjected to the corresponding lattice depth mul-
tiplier. The used multipliers are given with the respective relative weights in Fig. B.1. The
values are calculated from the Gaussian widths of the lattice beams of 150µm, as well as
the extent of the atom cloud in the optical lattice in the orthogonal directions of 42µm
horizontally and 12µm vertically. Note that this effect is only considered in the single-
particle case. In the presence of interactions, the additional numerical effort would be
unjustified, as the imbalance is influenced much less than the expansion. Also, additional
effects like e.g. the decreasing density and the increasing entropy on the edges of the cloud
would need to be considered.
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