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Abstract

Ultracold atoms in optical lattices open up a wide range of possibilities to simulate many-body
quantum phenomena, which would elsewise be neither computationally nor experimentally tangi-
ble.

The topology of the optical lattice is a decisive property of these kind of experiments and therefore
of major interest. Recently, efforts have been reported to create novel optical potentials through the
use of digital micromirror arrays that permit alterations of localized potentials. Though promising
results have been achieved — in particular for static potentials — limitations due to the mechanical
nature of these mirror arrays arise, for instance, with regard to dynamical control.

In the present work we present an alternative implementation of localized optical lattice potentials
based on acousto-optic deflectors and direct digital synthesizers.

We will give a brief theoretical introduction into the main concepts, i.e. the interaction of neutral
atoms with optical potentials as well as the general operation of direct digital synthesizer and
acousto-optic deflectors. From the physics we can derive the requirements imposed on the technical
implementation of the radio frequency (RF) signal source and the deflection.

We will find that even though the platform of digital signal synthesis generally suites our appli-
cation in terms of modulation capabilities and resolution, the particular implementation of the
AD9910 demonstrates several shortcomings.

In the second part we characterize the deflection efficiency of the acousto-optic deflectors. Towards
the end we try to minimize the variance of the deflection efficiency by performing a random search
on the amplitude segments of the RF signal. It turns out that the deflection efficiency is a
highly non-linear function of the applied RF power and frequency. Furthermore minimization of
the deflection efficiency variances proves to be very unstable. Though we can largely preclude
electronic defects to be the source of this behaviour, further investigation is required.
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Chapter 1.

Introduction

In this first chapter we want to familiarize the reader with the scientific background of our work and
its motivation. We hope to clarify what basic questions the discipline of ultracold atom experiments
tries to solve. In a second part we want to elaborate on the concepts of localized optical potential
dynamics and summarize related work reported by the community.

Many-body quantum systems studied inter alia in condensed matter physics are experimentally
challenging to access and investigate directly. As a way forward, experiments with ultracold atoms
in optical lattices give us a highly controllable environment where you can access observables at a
single atom level, prepare clean, well-known quantum states and increase length and time scales to
experimentally accessible quantities. Thus the platform of ultracold atoms in optical lattices per-
mits us to simulate and explore quantum effects and expand our current understanding of quantum
mechanics and statistical physics [1, 2]. The apparatus used for ultracold-atom experiments com-

Oven 2D MOT Zeeman Slower

3D MOT

Glass Cell

Figure 1.1.: Apparatus of the cesium experiment. On the left-hand side an oven heats
up the cesium source. A two-dimensional (2D) magneto-optical trap (MOT) generates a
particle beam twoards the pipe running through the Zeeman slower in the center. The
Zeeman slower creates a magnetic field gradient, such that the atoms are in resonance with
a cooling laser antiparallel to their flight direction. In the three-dimensional (3D) MOT
atoms are cooled even further until they are transported to a glass cell where they are
loaded into the optical lattice and the actual experiments are conducted. Thank you to Till
Klostermann and Hendrik v. Raven for providing the cesium apparatus render.

prises a vacuum system with multiple chambers and windows for optical control and manipulation.
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Figure 1.1 depicts an exemplary apparatus used for such an experiment with cesium atoms. The
oven on the left-hand side heats up a cesium source to produce a hos gas of cesium atoms, which
will then diffuse to the right. Two orthogonal pairwise windows enable for transverse cooling of
the atoms in a 2D MOT. The Zeeman slower in the center of the apparatus creates a magnetic
field gradient such that the atoms are always in resonance with a cooling laser antiparallel to the
momentum direction. Through this cooling step many of the atoms can be slowed down in order
to be captured in the 3D MOT where the atoms are cooled further [3]. Finally the atom cloud
is transported to a glass cell at the top, where they are loaded into an optical lattice. The glass
cell is placed between two high numerical aperture objectives for in-situ, single site imaging and
addressing.

One major ingredient to control and manipulate the ultracold atom ensemble in the experimental
chamber is the optical lattice itself. In Figure 1.2 a square 2D optical lattice is illustrated. The
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Figure 1.2.: Simple square 2D optical lattice. The atoms (blue points) sit on their respective
lattice site created by the superposition of two periodic potentials.

atoms (blue points) sit on their respective lattice sites (nodes in the gray grid) which are created
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by the superposition of two orthogonal optical lattice potentials (outer diagrams) [4]. In such
periodic structures the atomic wave functions already show amazing similarity to the electron
wave functions known from solid states physics but with much higher energies and longer time
scales because of the greater mass [5, 6]. Though the square 2D optical lattice already offers many
possiblities, one can think of many more variations in terms of lattice structures like hexagonal
lattices or even lattices with a substructure in the literature known as superlattices. Beside
changes to the global lattice structure we can also think of local changes. In Figure 1.3 we show
an embodiment of a local optical lattice used to confine particles. By changing the barrier height
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Figure 1.3.: Simple square 2D optical lattice with local barrier potential. The local barrier
potential confines atoms inside the green box in a finite homogeneous lattice potential.

one can control tunel coupling between neighboring lattice sites which allows one to confine atoms
in an optical lattice without harmonic trap and to study interesting physics at the edges, i.e.
topologically protected edge states in the quantum Hall effect, which cannot be studied without
sharp edge heights. A similar potential can be realized using attractive local potentials to create
a potential pot as illustrated in Figure 1.4. Dynamically controllable high-resolution potentials
could be used, for instance, to dynamically shape the global potentials to reach lower entropies

9



or to generate local potentials that affect only a single lattice site [7, 8, 9]. These are only a few
examples, there are, of course, many more applications of locally controllable optical potentials.

High-precision local potentials have been created using high-resolution imaging techniques in com-
bination with digital micromirror devices or spatial light modulators. The generation of high-
quality arbitrary potentials is, however, challenging and the degree of dynamical control is lim-
ited. Another possibility is the use of arrays of optical tweezers that allow for trapping, stacking
and sorting for particles [10], however, there is no tunnel coupling between neighboring sites. An
alternative approach consists in the implementation of time-averaged optical potentials. The key
concept to create time-averaged local optical potentials is similar to the operation of cathode ray
tube screens. The idea is to consecutively illuminate a finite set of points that covers the desired
space. A complete passthrough of the finite set has to occur on a time scale short compared to
the time scale of the observed processes such that on average the passthrough yields an effective
time-averaged potential in the observed process. Yet, only recently, attempts to interact with local
particle clusters through high-precision time-averaged optical potentials have been reported [11].
In comparison to the state of the art which uses mechanical mirror arrays for creation of local
potentials [11] our approach is based on acousto-optic deflector (AOD). In the following we con-
tinue on the ground work laid out in reference [12] which provided us with an optical setup for
single-site manipulation using an AOD as well as the discussion of aperture limited Gaussian beam
propagation.

We will start with the theoretical foundation of optical lattice potentials and give more details on
how the lattice potential is modified under the presence of an additional perturbation potential.
From there on we will estimate the required time scale set by the hopping frequency and energy
bands of the atoms between neighboring lattice sites. After a short introduction to direct digital
signal synthesis we will calculate, if and how the direct-digital synthesizer (DDS) meet the previ-
ously determined demands. That in place we can continue with an overview of our experimental
setup and results. The experiments separate in a two parts: the first one concerns a detailed
understanding of the radio electronics, which powers the AOD and the second one is dedicated to
the diffraction efficiency of the laser beam after the AOD, which is influenced by the RF signal
and its time-dependence.
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Chapter 2.

Optical potentials

In the introduction we emphasized the importance of optical lattices, yet we left out many details,
for instance, how these optical lattices are created and how the optical quantities enter the potential
energy of the atoms. In this chapter we will make up for said gaps. First we will recapitulate the
theory behind laser light intensities and then derive a formulation of the effective lattice potentials
felt by the atoms.

2.1. Atom-light interaction

At first we need to ask ourselves how the laser field acts as a perturbation to the Hamiltonian
of the atomic system and how this perturbation leads to an intensity dependent potential for the
atoms, which we can control in the experiment. In deviations are loosely based on references [13,
14, 15].

2.1.1. Dipole potential

We will use SI units unless stated otherwise. The Hamiltonian of an electron in an external
electromagnetic field reads

Ĥem = 1
2me

(p̂ + eA)2 − eΦ + V̂0, (2.1)

with vector potential A and scalar potential Φ of the external field and the Coulomb potential of
the nucleus V̂0. Further me denotes the electron mass and e the elementary charge. Equation (2.1)
is exact for the hydrogen atom that only hosts one electron. For alkali atoms we know that inner
electron shells are closed and the single outer electron is approximately described by eq. (2.1).
The electromagnetic field relates to the vector and scalar potential through

E = −∇Φ − ∂A
∂t

, B = ∇ × A, (2.2)

where E is the electric and B the magnetic field component.

The canonical momentum p̂ + eA in eq. (2.1) is difficult to work with. Fortunately Gauge trans-
forms

A → A + ∇χ Φ → Φ − ∂χ

∂t
, (2.3)
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allow us to simplify eq. (2.1) by choosing a specific Gauge function χ(x, t). The Gauge function
itself χ does not amend the electromagnetic field components eq. (2.2) which we usually consider
to represent physical reality — in contrast to the electromagnetic potentials A,Φ which are usually
only considered mathematical aid.1 In the following we choose the gauge function χ = −A · x and
assume the dipole approximation A(x, t) ≈ A(t). The dipole approximation neglects the spatial
variation of the electromagnetic field over the atom and instead assumes a small separation of
opposite charges at the nucleus. The dipole approximation is reasonable as wave length of visible
light are much larger than atomic length scales [13]. For a rigorous upper error bound on the
dipole approximation see Ref. [16]. In the dipole approximation χ satisfies the Coulomb gauge
condition ∇ · A = 0 allowing us to set Φ = 0 as no external sources are present [14]. Finally we
can rewrite eq. (2.1) as

Ĥdip = p̂2

2m + V̂0 + V̂dip = Ĥ0 + V̂dip, (2.4)

with the dipole potential
V̂dip = −d̂ · E, (2.5)

the dipole operator d̂ = −ex and the spatially homogeneous light field E(t).

2.1.2. AC-Stark effect

We are now going to solve eq. (2.4) for an arbitrary light field of the form

E(t,x) = E0(x) cos(ωt), (2.6)

where E0(x) should be compatible with Maxwell’s equations and be approximately constant on
atomic length scales to not violate the dipole approximation. Further we need the laser frequency
ω to be far-off-resonant to the atomic transition frequencies to avoid population dynamics.

At t < 0 the system is in the energy eigenstate |n〉 of the unperturbated Hamiltonian Ĥ0

Ĥ0 |n〉 = En |n〉 = ~ωn |n〉 . (2.7)

At t > 0 the external light field appears immediately. The new state |ψ〉 can be expanded in the
complete basis of the previous energy eigenstates

|ψ〉 =
∑

n

cn(t)e−iωnt |n〉 . (2.8)

Inserting eq. (2.8) into the time-dependent Schrödinger equation with the dipole Hamiltonian
eq. (2.4) and applying 〈m| eiωmt to the right hand side leads us to a set of differential equations

ċm = − i

~
∑

n

cn(t)e−iωnmt 〈m| V̂dip |n〉 , (2.9)

with ωnm = ωn − ωm. One can read eq. (2.9) as the rate by which the probability amplitude of a
state m changes in time. It is equal to the sum of oscillations between states n and m weighted by
the current probability of state cn(t) and the interaction strength. If we are able to solve eq. (2.9)
for cn(t) the population dynamic is entirely described by the time-dependent probabilities |cn(t)|2.
By using eq. (2.6) we can rewrite the dipole transition matrix elements

〈m| V̂dip |n〉 = Ωnm(x) cos(ωt)~, (2.10)

1The Aharonov-Bohm effect actually provides evidence that aso the electromagnetic potentials represent physical
reality.
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where we introduced the Rabi frequency

Ωnm(x) = 〈n| d̂ · E0(x) |m〉 /~. (2.11)

More general expressions for dipole transition elements of one and two electron systems can be
found in Reference [17].

Two-level system

From now on we assume a two state system that initially is in the ground state cg(0) = 1, ce(0) = 0.
Under these circumstances the dynamics described in eq. (2.9) simplify to

iċg = Ωgece(t) cos(ωt)e+iω0t iċe = Ωgecg(t) cos(ωt)e−iω0t. (2.12)

Writing cos(ωt) in terms of exponential functions and dropping e±i(ω+ωge)t yields the so-called
rotating wave approximation (RWA)

iċg ≈ Ωge

2 ce(t)e+i∆ωt iċe ≈ Ωge

2 cg(t)e−i∆ωt, (2.13)

where we introduced the frequency detuning ∆ω = |ω − ω0|. The RWA is motivated by the fact
that oscillations of frequency ω+ω0 are fast compared to changes in the population dynamics and
therefore vanish on average.

We now define ag = cg and ae = cee
i∆ωt and rewrite eq. (2.13) by

iȧg = Ωge

2 ae(t) iȧe = Ωge

2 ag(t) − ae∆ω. (2.14)

Using eq. (2.14) we can diagonalize the Hamiltonian and find the energy eigenvalues to be

Ee,g = ~
2

(
−∆ω ∓

√
Ω2

ge + ∆ω2
)

≈ ∓
~Ω2

ge

4∆ω , (2.15)

where we applied a Taylor expansion for Ωge/∆ω � 1 around Ωge/∆ω = 0 and omitted terms of
higher order.

Consequently, atoms in an external off-resonant light field experience an effective periodic lattice
potential

V̂lat(x) = ∓
~Ω2

ge(x)
4∆ω = ∓d2

0E
2
0(x)

4~∆ω , (2.16)

with dipole element d0. The sign has to be chosen with respect to the direction of the laser detuning
from resonance. If the laser is red-shifted compared to the resonance frequency, ω − ω0 > 0, we
need to choose the negative sign as the particles are drawn towards the areas of maximum intensity.
If the laser is blue-shifted compared to the resonance frequency, ω−ω0 < 0, we need to choose the
positive sign as the particles are drawn towards the area of minimum intensity. The same results
can also be obtained by the use of second order perturbation theory [18].

2.2. Laser light fields

In this section our focus will be on the spatial distribution of the lattice and perturbation laser
light fields that create the time-averaged dynamical potentials we discussed in the introduction.
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2.2.1. Gaussian beams

The predominant output mode of most lasers is the fundamental transverse gaussian mode. For
a laser beam propagating along the z-direction it is described by

E(r, z) = E0
w(0)
w(z) exp

{
− r2

w(z)2

}
exp
{

−ik
(
z + r2

2R(z) − arctan
(
z

zR

))}
, (2.17)

where w(z) is the waist radius, zR = πw(0)2
/λ the Rayleigh range and R(z) the radius of curvature

of the beam’s wavefront at position z. Figure 2.1 unveils how the parameters relate to the beam

Expansion
Wavefront
Intensity Profile
Curvavture

Figure 2.1.: Illustration of Gaussian beam parameters from Ref. [19] translated into English
with changed radius of curvature.

profile as a function of propagation distance z. The waist radius w(z) corresponds to the full
width at half maximum (FWHM) by w(z) = FWHM(z)/

√
2 ln 2, R(z) relates to the wavefront

curvature and zR is the distance from origin z = 0 where the beam waist is w(z) =
√

2w(0). Beam
waist and curvature of radius evolve according to

w(z) = w(0)
[

1 +
(
z

zR

)2
]1/2

R(z) = z

[
1 +

(zR

z

)2
]
. (2.18)

Fortunately eq. (2.16) only depends on the absolute square of the electric field, thus we can drop the
complex exponential from eq. (2.17) to find an expression for the Gaussian intensity distribution

I(r, z) = I0

(
w(0)
w(z)

)2
exp
{

− 2r2

w(z)2

}
= I0

exp
{

− 2r2

w(z)2

}
1 +

(
z

zR

)2 , (2.19)

where I0 is the maximum intensity at r = z = 0.

Lattice intensity

A one-dimensional (1D) optical lattices can be generated through the interference of two counter-
propagating Gaussian beams. One way to achieve counter-propagation while keeping the coherence
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stable, is to use a mirror. Under the assumption of perfect reflection of the mirror, the electrical
field component of the laser beam is described by

E→(x, t) + E←(x, t) = E0(r, z) cos(ωt− kz) + E0(r, z) cos(ωt+ kz)
= 2E0(r, z) cos(kz) cos(ωt).

Hence, the intensity distribution equals eq. (2.19) with an additional 4 cos2(kz) factor

I(r, z) = 4I0 cos2(kz)
exp
{

− 2r2

w(z)2

}
1 +

(
z

zR

)2 , (2.20)

caused by the constructive interference. Table 2.1 lists typical values for a Gaussian beam used

Laser wavelength λ Lattice constant a = λ/2 Beam waist w(0) Rayleigh length zR

1064 nm 532 nm 150 µm 66 mm

Table 2.1.: Typical values for a Gaussian beam used to generate an optical
lattice potential.

to construct an optical lattice potential. Typical atom clouds occupy about 50–100 lattice sites
spanning over a range of l = 50a ≈ 27 µm [20]. As typical atom clouds are much smaller then the
typical beam waists used for optical lattices, we have r/w(z) � 1 and can approximate eq. (2.20)

I(r, z) ≈ 4I0 cos2(kz), (2.21)

which we will use from now on as the intensity distribution for 1D optical lattices.

Perturbation intensity

For the generation of optical lattices we want large beam waists because otherwise the potential is
not homogeneous and there is a potential energy difference between neighboring lattice sites. For
our perturbation potential, however, we need very high resolution on the order of a single lattice
site, and therefore need a tightly focused beam. Table 2.2 summarizes the beam parameter of the

Laser wavelength λ Beam waist w(0) Rayleigh length zR

532 nm 1 µm 6 µm

Table 2.2.: Typical values for a Gaussian beam used to perturbate the optical
lattice potential reported by [12].

perturbation potential as suggested in Ref. [12]. For these parameters approximations made for
optical lattice are not valid because of the small beam waist and Rayleigh length and we need to
the exact eq. (2.19) formula. In fact for an actual experiment we would like to focus the laser beam
to even smaller waists. The ultimate goal would be the ability to address single lattice sites.

2.3. Effective local potentials

With eq. (2.16) we found an expression of the potential energy in terms of atomic properties like
the dipole transition element, the atomic resonance and the laser intensity distribution. For the
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laser intensity distribution of the optical lattice we derived eq. (2.21) and we concluded that the
intensity of the laser used for the creation of local potentials obeys eq. (2.19). If we add these
pieces together we can calculate the effective potential with local perturbation as seen by the
atoms. We will find that its shape deviates from the idealized local potentials we presented in the
introduction in Figure 1.4 and Figure 1.3.

Box

In an first embodiment of local potentials we describe a box potential. A box potential could
be used to draw surrounding atoms and confine them to a sharp-edged box. One application for
such a box potential would be to replace the currently used harmonic traps imposed on optical
lattice structures to prevent atoms to move away from the optical lattice. Figure 2.2 visualizes
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Figure 2.2.: Local pot potential and lattice potential in recoil energies. The pot potential
is created by targetting multiple focus points close to each other. Over average this yields
a kind of potential valley.

the realization of such a box potential through time-averaged high-resolution perturbation. In
the first three plots we see how the perturbation is created at three neighboring lattice sites. In
the final plot we see how an average of such a perturbation could look like. We note that the
spatial resoltuion of the applied perturbation has to be very high in order to create a flat valley
— otherwise one would create additional barriers and/or canyons inside the box. In practice it is
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difficult to guarantee such high resolution. Fortunately there is an alternative realization which
can be used to confine atoms inside a subregion of an optical lattice.

Barrier

The alternative approach to confine atoms in an optical lattice consists of creating an additive
positive barrier potential as depicted in Figure 2.3. For the simple 1D case, it would be sufficient
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Figure 2.3.: Local barrier potential and lattice potential in recoil energies. The barrier
potential is created by targetting two different focus points with the perturbation beam
(first two rows). If both focus points are targetted in a sufficiently short period an average
potential (last row) can be created.

to alternate the perturbation between two distinct lattice sites. For higher dimensions, however,
multiple lattice sites are again necessary with the requirement of high resolution deflection in order
to create a continuous barrier. Nevertheless precision demands are slightly lifted compared to the
box potential as deflection at overlapping sites will only cause the barrier to be higher.
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Chapter 3.

Characteristic energy scales

In the previous chapter we focused on the effective potential obtained by the superposition of the
averaged superposition of the perturbation potential and the lattice potential. In this chapter we
want to understand the characteristic energy scales in an optical lattice in order to infer the
scanning timescales needed for the generation of a time-averaged optical potential the physics that
determine the time scale of the perturbation potential.

3.1. Harmonic approximation

Given the optical lattice potential eq. (2.16) the lattice Hamiltonian reads

Ĥlat = p̂2

2m + V̂lat. (3.1)

One first naive approach to solve the time-independent Schrödinger equation subject to the ef-
fective lattice Hamiltonian would be to Taylor expand the lattice potential up to second order in
kx

Vlat(x) = V0 cos2(kx) ≈ V0

(
1 − 1

2(kx)2
)
. (3.2)

With eq. (3.2) we get the Hamiltonian of a linear harmonic quantum oscillator

Ĥhar − V0 = p̂2

2m − 1
2V0k

2x̂2, (3.3)

with the well-known energy levels

En = ~ω(2n+ 1)/2, ω =
√

|V0|/mk =
√

2|V0|Er/~, (3.4)

where we introduced the recoil energy Er = (~k)2/(2m) as an atom-independent energy scale. In
natural scales of the quantum harmonic oscillator we find the time-independent wave functions
for the energy level n to be

ψn(x) = 〈x|ψ〉 =
exp
(
− 1

2x
2)

√
2nn!π1/4

Hn(x), (3.5)

where Hn(x) is the nth Hermite polynomial and the spatial coordinate x is expessed in natural
length units of xi = (2Er/|V0|)1/4/k. In Figure 3.1 we have visualized the probability densities
of the wave functions of the harmonic approximation for the lattice depth V0 = −30Er up to the
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Figure 3.1.: Probability density of the wave functions of the harmonic approximation of the
lattice potential.

fourth energy level. The probablity density decays exponentially at the potential boundary and
thereby the probability for a particle to tunnel through the lattice potential vanishes. It turns out
that the harmonic approximation is not suited for usual lattice depths of below V0 = −30Er as
we will after comparing the energy levels of the harmonic approximation with the exact energies.
Nevertheless the harmonic approximation gives a correct magnitude of the energy while being soft
on complexity.

3.2. Lattice structures

The periodicity of the lattice potential eq. (2.16) suggests that there exists a finite representation
in the frequency domain. In the context of lattice structures the frequency domain is commonly
known as the reciprocal lattice. We will shortly recapitulate the lattice structure basics from
Ref. [21]. Let

R = 〈x|R〉 =
N∑

i=1
niai, n1, . . . , nN ∈ Z, (3.6)

be an element of the Bravais lattice, i.e. a member of the lattice in the spatial domain, with ai

being the primitive vectors that span the primitive lattice cell. Then the reciprocal lattice is
defined as the discrete point set

G = 〈p|G〉 =
N∑

i=1
mibi, m1, . . . ,mN ∈ Z, (3.7)
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that satisfy the condition exp(R · G) = 1, with bi being the reciprocal primitive lattice vector.
For a simple cubic lattice structure the reciprocal primitive lattice vector relates to the primitive
vector by

bi = 2πai/ai
2. (3.8)

For the subsequent sections we will only consider the one dimensional simple cubic lattice. Cubic
lattices of higher dimension, however, can be easily obtained by superposition of the potentials.
We now take |Gu〉 to be the uth reciprocal lattice point. An arbitrary operator Â with known
representation in the spatial domain can be expressed in the recoprocal lattice basis through the
transformation

〈Gu| Â |Gv〉 =
∫

dx 〈Gu|x〉∗ 〈x| Â |x〉 〈Gv|x〉 =
∫

dxA(x)e2ikx(u−v). (3.9)

Evaluation of eq. (3.9) for the specific lattice potential found in eq. (2.16) yields

〈Gu| V̂lat |Gv〉 = 1
4V0

(
2δu

v + δu
v−1 + δs

u+v

)
, (3.10)

which we will later use as matrix elements.

3.3. Bloch states

While eq. (3.10) gives us a simple representation of the periodic lattice potential we are missing
an Ansatz for the wave function to solve the time-independent Schrödinger equation. Fortunately
Bloch’s theorem states that for a periodic potential

Vper(x+ a) = Vper(x), (3.11)

there exists a complete set of wave functions that are energy eigenstates of the Hamiltonian

Ĥper = p̂2

2m + V̂per, (3.12)

and each of these Bloch waves can be written into the form〈
x
∣∣Ψn

q

〉
= Ψn

q (x) = eiqxψn
q (x), (3.13)

with ψn
q (x+a) = ψn

q (x), wave vector q and bandindex n. We confine the wave number to the first
Brillouin zone [−k,+k[, also known as the primitive cell of the reciprocal lattice,

q = ks

N
, s ∈ [−N,N − 1] ∩ Z, (3.14)

with N being the number of lattice sites. The discretization arises from the Born-von Karman
boundary condition. For a complete proof of Bloch’s theorem as well as details on the Born-von
Karman boundary condition we refer the reader to Ref. [21] and Ref. [15].

3.4. Energy band structure

Using the Bloch states eq. (3.13) as ansatz to solve eq. (3.1) and noting that by the product rule
p̂2Ψn

q (x) = eiqx(p̂+ ~q)ψn
q (x), we find

En
q

∣∣Ψn
q

〉
= Ĥlat

∣∣Ψn
q

〉
= eiqx

(
(p̂+ ~q)2

2m + V̂lat

) ∣∣ψn
q

〉
. (3.15)
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Expansion of the state ψn
q in states of the reciprocal lattice returns

∣∣ψn
q

〉
=
(∑

u

|Gu〉 〈Gu|

)∣∣ψn
q

〉
=
∑

u

〈
Gu

∣∣ψn
q

〉
|Gu〉 =

∑
u

cn
uq |Gu〉 , (3.16)

where the summation over u is restricted to the number of reciprocal lattice sites one wants
to consider for numeric evaluation, or the set of integer numbers in general. The momentum
eigenvalues of the state |Gu〉 can be found by expansion into position space

p̂ |Gs〉 =
∫ ∫

dx dy |y〉 〈y| p̂ |x〉 〈x|Gs〉 . (3.17)

With 〈y| p̂ |x〉 = −i~δ(y−x) d
dx we can take the derivative of 〈x|Gs〉 = e2ikxu and simplify eq. (3.17)

down to
p̂ |Gu〉 = 2~ku

∫
dx |x〉 〈x|Gu〉 = 2~ku |Gu〉 . (3.18)

Finally we insert eq. (3.16) into eq. (3.15) and apply 〈Gv| to the right hand side while using
eq. (3.10) and eq. (3.18), yielding

En
q c

n
vq = cn

vq

(2u+ q/k)2

2m Er +
∑

u

cn
uq 〈Gv| V̂lat |Gu〉 , (3.19)

with recoil energy Er = ~2k2/(2m). Using eq. (3.10) we finally find the matrix elements of the
lattice Hamiltonian eq. (3.1) to be

Huv = 〈Gu| Ĥlat |Gv〉 =


(2u+ q/k)2Er + 1

2V0, if u = v
1
4V0, if |u− v| = 1
0, otherwise

. (3.20)

By choosing a sufficient large matrix dimension, setting its values according to eq. (3.20) and
finding its eigenvalues, we are able to reproduce the energy band structure. Table 3.1 lists the

Lattice sites N Matrix dimension M Matrix indices u, v
51 60 −25,−24, . . . ,+24,+25

Table 3.1.: Parameters used for the lattice Hamiltonian matrix elements to calculate the
energy bands.

parameters we choose to calculate the energy bands for the lattice Hamiltonian matrix elements
defined in eq. (3.20). The energy band structure for these parameters is depicted in Figure 3.2
for various lattice depths. For V0 = 0 we can see how the confinement to the first Brillouin zone
causes the energy band to be reflective at the boundaries of the Brillouin zone. Further we see that
with increasing lattice depth the energy spacing increases. In Figure 3.3 we plotted the minimum
and maximum energy range for the first four energy bands with increasing lattice depth next to
the energy levels of the harmonic approximation. We can see how with increasing lattice depth
the energy bands narrow to discrete energy levels as predicted with the harmonic approximation
eq. (3.4).

Beside of the energy levels, we know that quantum particles have a non-zero probability amplitude
to tunnel through classically forbidden potentials. In our context these quantum tunneling effects
are described by the hopping term — an energy which corresponds to the mobility of the atoms
in the lattice.
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3.5. Wannier states

So far we studied the effects of a periodic lattice potential on the energy levels and the Bloch wave
functions that are extended over the full lattice. As lattice hopping is a local effect it makes sense
to use a more localized basis like the Wannier basis.

The most common definition of the Wannier function with bandindex n on lattice site l reads

|φn
l 〉 = 1√

N

∑
q

e−iqla
∣∣Ψn

q

〉
, (3.21)

where
∣∣Ψn

q

〉
is the Bloch wave function defined in eq. (3.13). The defintion in eq. (3.21) is valid for

simple lattice structures, however for more sophisticated lattices the Gauge degree of freedom of
the phase of the Bloch states leads to different Wannier states, whereof only one is the maximally
localized one [22]. One can find the phase of the Bloch states by minimizing the spread of the
Wannier functions defined in eq. (3.21), however there exists an alternative definition that resolves
the phase ubiquity. According to this definition the Wannier states are best to construct as the
eigenstates of the band projected position operator. The band projector for a band n is defined
as

P̂n =
∑

q

∣∣Ψn
q

〉 〈
Ψn

q

∣∣ , (3.22)

and the band projected position operator just follows as

x̂n = P̂nx̂nP̂n. (3.23)

The Wannier states are now defined as the eigenstates of the eigenvalue equation

x̂n |φn
l 〉 = xn

l |φn
l 〉 , (3.24)

where xn
l is the lth lattice site in the nth energy band. Choosing the Bloch functions to find the

elements of the band projected position operator eq. (3.23) through

Xnn′

qq′ =
〈
Ψn

q

∣∣ x̂n

∣∣∣Ψn′

q′

〉
=
∫ Na

0
dxΨn

q (x)∗xΨn′

q′ (x), (3.25)

provides an analytical expression to calculate the matrix elements [23]. Let dmn
lq be the diagonalized

matrix Xnn′

qq′ in eq. (3.25) then the Wannier states are fully determined by

|φn
l 〉 =

∑
n,q

dmn
lq

∣∣Φn
q

〉
. (3.26)

3.6. Hopping energy

With the previous tools in place we are now set to give an expression for the tunneling matrix
element between neighboring lattice sites. We define the hopping from lattice site l to lattice site
l′ for bandindex n as

Jn
l−l′ = − 〈φn

l | Ĥlat |φn
l′〉 . (3.27)

Using the common definition of the Wannier states eq. (3.21) for eq. (3.27) we find

Jn
l−l′ = − 1

N

∑
q,q′

eiqa(l−l′) 〈Ψn
q

∣∣ Ĥlat
∣∣Ψn

q′

〉
. (3.28)
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The Bloch states are energy eigenstates eq. (3.19) and orthonormal, henceforth

Jn
l−l′ = − 1

N

∑
q

En
q e

iqa(l−l′), (3.29)

where the sum covers all allowed q as defined in eq. (3.14). Expression eq. (3.29) is exact for a
given number of lattice sites N and can be evaluated numerically. The form of eq. (3.29) resembles
a discrete Fourier transform. The inverse Fourier transform gives us the energies in terms of the
hopping probabilites

En
q =

∑
l−l′

Jn
l−l′e−iqa(l−l′), (3.30)

where the sum runs from l − l′ = −N to l − l′ = +N .

3.6.1. Nearest-neighbor approximation

For deep potentials V0 ' −3Er hopping only contributes from direct neighbour sites [20], thus we
can abort the sum in eq. (3.30) for |l − l′| > 1

En
q ≈ Jn

l+1−le
−iqa + Jn

l−1−le
+iqa + Jn

l−l = Jn
0 + 2Jn

1 cos(qa), (3.31)

where we have used Jn
−1 = Jn

+1 = J1 because of translation invariance. Evaluation of Jn
0 using

eq. (3.27) tells us that Jn
0 just is the average energy of an energy band. Evaluation of eq. (3.31)

at q = 0 and q = k and subtracting the results from eachother yields us the tight-binding approx-
imation

Jn
1 ≈ 1

4 (En
k − En

0 ) , (3.32)

which assumes a cos(qa) shaped energy band. Further [1] reports an analytical proxmity

Jn
1 ≈ 4√

π

(
V0

Er

)3/4
exp
(

−2
√
V0/Er

)
, (3.33)

to be valid for sinusoidal potentials like eq. (2.16) and to be derived from the Mathieu equation.
The Mathieu equation can be obtained from the time-independent Schrödinger equation with
V0 cos2(kx) = 1

2V0 (1 − cos(2kx)). In Ref. [24] we found a more elaborate deviation of eq. (3.33).
Figure 3.4 compares the exact numerical calculations using eq. (3.29) for l − l′ = 1, the tight-
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Figure 3.4.: Nearest-neighbor hopping energy derived from the exact numerical calculations,
the tight-binding approximation and an analytical proxmity eq. (3.33).

binding approximation defined in eq. (3.32) and an analytical approximation eq. (3.33). We note
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that the tight-binding approximation and the exact calculations converge already for small lattice
depths for the first energy band and for medium lattice depths for the second energy band. For
the third and higher energy bands the numerical evaluation should be used. From now on we
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Figure 3.5.: Hopping energies for different neighbour ranges.

will use the exact numerical calculation of the hopping energy. In Figure 3.5 we calculated the
hopping terms using eq. (3.29) for different l − l′ as well as a sum over all l − l′. We can see that
the nearest-neighbor term Jn

1 is most dominant, and, except for the second energy band, greater
than the sum over all hopping terms. Because of this and the fact that perturbation potential
is about the size of a single lattice site, as we have seen in the previous chapter, we will reduce
ourselves to the nearest-neighbor hopping term Jn

1 .

3.7. Conclusion

Through the Planck-Einstein formula E = hf , one can express energies as frequencies. We have
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Figure 3.6.: Nearest-neighbor hopping energy as frequency and relative energy band differ-
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used f = E/h to express the nearest-neighbor hopping and band energies relative to ground level
as frequency. The so obtained frequencies should give us the magnitude of the sweep frequencies
used for our envisioned perturbation potential in order for the time-average to hold. Figure 3.6
discloses the frequencies of hopping and band energies relative to the first energy band. We note
that the hopping frequencies of the first four energy bands are in the single digit kHz range while
the energy band frequencies of the first four energy bands releative to the first energy band go up
to 40 kHz. The energy band frequencies are obviously higher then the hopping frequency, and thus
should be a better upper bound. Regardless, it is left for discussion if the hopping frequencies
are not more relevant for the ungoing physics. For the now we will take 50 kHz as an upper
bound for generation of time-averaged potentials. This relates to a maximum duration of 20 µs
the perturbation laser beam should spent between being deflected to the same lattice site.
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Chapter 4.

Experimental setup

The exerimental setup was largely adopted from Ref. [12] and we will only give a brief summary
including a short characterization. Amendments we made include the RF signal source of the
AOD.

4.1. Optics

We start by describing the optical aspects of our setup. The main component of this work is the
AOD. We will describe some of its properties below and then head on to the optical setup.

4.1.1. Acousto-optic deflectors

A schematic drawing of the AOD is depicted in Figure 4.1. We see the two AOD elements in
the respective horizontal and vertical slot. The internals of the vertical AOD (left-hand side)
are illustrated. The element itself spans through the casing (dashed line) while the acousto-
optic crystal (dotted line) is glued onto the element. The laser beam (green) passes through the
acousto-optic crystal. In the following we will refer to the horizontal AOD element as the AOD
element anticipated for the horizontal slot and accordingly to the vertical AOD element as the
AOD element intended for the vertical AOD socket. Under the assumption of a light polarized

Figure 4.1.: Drawing of the used 2D AOD.

perpendicular or parallel to the elastic waves under normal incident angle Ref. [25] reports that
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the acousto-optic acts as a diffraction grating with

sin θn = ±nλΛ , (4.1)

where θn denotes the angle of the nth diffraction order, λ the laser wavelength and Λ the wavelength
of the elastic wave inside the acousto-optic crystal.

Ref. [12] discloses a linear model for the spatial resolution in the atomic plane in terms of the
AOD frequencies

x(fh)/µm = 3.66 fh

1 MHz − 379 y(fv)/µm = 3.62 fv

1 MHz − 360, (4.2)

wherein fh, fv denote the frequencies applied to the horizontal (H) respective vertical (V) AOD.

4.1.2. Setup

The optical setup can be disected into two parts: a closed first section that reduces the power of
the 532 nm laser source from 10 W to below 2 mW, it also includes an acousto-optic modulator
(AOM) for intensity regulation. The second section is the actual setup where a 2D AOD is used to
manipulate the angle of the laser beam in order to dynamically control the position of the tightly-
focused laser beam in the imaging plane. Both sections are connected through a single-mode
optical fiber (SMF).

First section: power reduction

Because of safety concerns the power reduction section is confined into a visually sealed box
housing. Figure 4.2 reveals the inside of the power reduction setup. The laser beam leaving the

Laser
532 nm, 10 W

Cubeλ/4

Dump

Mirror 1

Mirror 3Mirror 2

Mirror 4

Lens 1 Lens 2 AOM

Irisλ/2

Fiber

f = 100 mm f = 50 mm

Figure 4.2.: Optical configuration of the power reduction section.

laser source is linearly polarized. In order to divert the majority of the power into a beam dump
we use a λ/2 retarder plate and a high-power polarizing beam splitter. Afterwards Mirror 1 and
Mirror 2 direct the beam towards the center of a 2 : 1 telescope composed of Lens 1 and Lens 2.
The telescope is there to reduce the beam diameter by 2 in order to avoid cut-off at the aperture
of the subsequent AOM. The AOM diffracts the laser beam into multiple orders as it acts as a
tunable diffraction grating. Mirror 3 and Mirror 4 direct these orders onto a pinhole which is
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configured to intromit only the first order deflection. The power in the first diffraction order can
be controlled by changing the RF power sent to the AOM. Finally a λ/2 retarder plate is used
together with Mirror 3 and Mirror 4 to couple the beam into the polarization-maintaining SMF.

Beam deflection and detection

The section for beam deflection and detection as disclosed in Figure 4.3 receives the down-powered
laser beam from the previously described section by a SMF. Hereinafter the beam passes a rotatable
retarder plate and beam splitter Cube 1 to clean the polarization of the laser beam after passing
through the SMF. A second polarizer with Cube 2 is used to branch off a part of the beam to
Photodiode 1 that is positioned to be at the focal point of Lens 1. Photodiode 1 is connected via
a feedback loop with the amplitude modulation of the AOM depicted in Figure 4.2 to stabilize the
laser intensity against, for instance, thermal drifts. For horizontal and vertical beam deflection
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Figure 4.3.: Optical configuration of the beam deflection section.

two AODs are used. A 1 : 1 telescope comprised of two lenses (Lens 2 and Lens 3) is used to
image the beam on a pair of objectives. The purpose of the first objective is to translate a change
in the incident angle to a position offset in the atom plane. The components described so far
are sufficient to offset a high-resolution pertubation laser perpendicular to the atomic plane. The
purpose of the other components is to unfocus the laser back for detection. Combining the the
focal length of the (second) objective fobj with the focal length of f4 we achieve a magnification
of

M = f4

fobj
= 500 mm

4.5 mm ≈ 111. (4.3)

The so colliminated and magnified laser beam is then imaged onto the charge-coupled device
(CCD) camera sensor. Cube 3 forks a portion of the beam away from the CCD camera on Mirror
5 that guides the beam towards Lens 5 in order to focus the beam onto Photodiode 2. It is
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important that the sensor of Photodiode 2 is positioned on the focal spot of Lens 5, otherwise the
laser beam would leave the sensor when deflected by the AOD.

4.2. Electronics

Beforehand we described the optical setups used. Now we want to emphasize on the electronics
and how they are integrated into the optical setup.

In Figure 4.4a the electronic setup of the AOM control loop is presented. The DDS signal source
outputs a 80 MHz RF signal which is amplified and then supplied to the AOM for intensity
modulation, see Figure 4.2. Photodiode 1 measures the modulated laser intensity and is connected
to a proportional-integral-derivative controller (PID). The PID outputs a signal proportional to
the deviation of the measured intensity from the configured intensity which is provided to the
amplitude modulation input of the power amplifier. In Figure 4.4b the electronic setup connecting

Power
Ampli�erSignal

(80 MHz)

Photodiode 1

AOM

PID

(a) Intensity control via AOM.

Power
Ampli�er H

Signal H
(80-120 MHz)

AOD H

Power
Ampli�er V

Signal V
(80-120 MHz)

AOD V

(b) Deflection control via AOD.

Figure 4.4.: Electronic setup used to control the electro-optic devices.

the 2D AOD with the DDS signal sources are presented. The DDS output is configured through
a network interface as we will explain later. Furthermore there is a reference signal source (not
shown) that provides a 10 MHz reference signal to the DDS. First we will elaborate on the general
components used in Figure 4.4 as well as our experiments.

4.2.1. Signal source

We require the signal source to generate a sinusoidal RF signal

x(t) = A cos (2πft) , (4.4)

where 0 ≤ A ≤ 1 denotes the amplitude and f the frequency. For the AOM setup in Figure 4.4a it
is sufficient to configure a constant frequency f = 80 MHz and amplitude A = 1, which is further
varied by the feedback loop. For the AOD control, however, our requirements are beyond a
constant signal. Ideally we would like to program a time-dependent amplitude A(t) and frequency
f(t), supplementary to the support of an external trigger signal in order to syncronize multiple
signal sources. For our setup we chose to use DDS as signal sources as they provide high frequency
resolution, a wide range of modulation options and are cheap compared to signal generators. In
chapter 6 we will give a more detailed view of the characteristics and limitations of the AD9910,
the DDS integrated circuit (IC) we use as signal source.
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4.2.2. Power amplifier

We use three signal amplifiers with respective input from the signal sources to have an output
power of about P = 2 W required by the AODs and the AOM for maximum diffraction efficiency.
The used amplifiers offer a second input for external amplitude modulation. In case of the AOM
we connect this input to the output of the feedback loop.

4.2.3. PID controller

A feedback loop takes a reference r(t), also called setpoint, and a process variable y(t) as input and
outputs the value for a control variable u(t), which in turn, affects the process that determines y(t).
A PID is a specific implementation of such a feedback loop that uses a proportional, differential
and integrative term to estimate the control variable u(t). In Figure 4.5 we see a block diagram

Proportional

Integrator

Di�erentiator

+
+

+
Process

Setpoint
+

-

Error
Control
Variable

Process
Variable

Figure 4.5.: Block diagram of a PID feedback loop.

of a PID. The error values is supplied to the proportional block as well as the differentiator and
integrator which in sum give the updated control variable value u(t). The process changes with
u(t) and we read off the process variable y(t) we want to regulate and feed it back to the start of
the loop. The control variable of the PID can be expressed through

u(t) = Kpe(t) +Ki

∫ t

0
dt′ e(t′) +Kd

dt
de(t) , (4.5)

where Kp,Ki,Kd denote the coefficients of the respective terms. The ideal values for the coeffi-
cients have to be found by loop tuning for each application. Every term contributing to eq. (4.5)
can be thought of to account for a different time scale of the process: the proportional term con-
siders the momentary error, the differential predicts trends and the integrator corrects for past
errors. For our particular application the control variable is the amplitude A(t) supplied to the
modulation input of the power amplifier of the AOM RF signal. The process variable of our PID
is the voltage measured at Photodiode 1.

4.2.4. Trigger source

To syncronize the signal sources, the CCD camera and the oscilloscope it was necessary to design
a network programable trigger source that outputs a square pulse and forwards it to multiple
devices. The schematics, board layout and source code can be found in the Appendix A.1.
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4.3. Communication

In the last section of this chapter we will see that the diffraction efficiency of the AODs is not
constant and requires readjustment by amplitude modulation of the RF signal supplied to the
AODs. We consider this readjustment step as a calibration process. The efficienct implementation
of such a calibration process requires an orchestrated interplay of different electronic devices which
we will discuss now. In Figure 4.6 the communication setup of our electronic devices is illustrated.

HTTP

SPI

HTTP

VISA

Trigger HubTrigger Host

DDS VDDS H

Computer Oscilloscope

DDS Host

Figure 4.6.: Communication setup of the electronic devices in the experimental setup.

The computer, the trigger host, the oscilloscope and the DDS host are connected to the local area
network (LAN). The trigger host and the DDS host are both BeagleBone Black (BBB) that run
a hypertext transport protocol (HTTP) server from which the computer can change parameters
over the network. The implementation of the HTTP server of the trigger host as well as the
schematics of the trigger hub can be found in Appendix A.1. The HTTP service that runs on
the DDS host also contains a driver which writes the DDS parameters over to the respective
DDS board. The oscilloscope can be controlled through virtual instrument software architecture
(VISA). In Listing 4.1 we can see an examplary measurement using a Python module we wrote to
abstract away the interaction with the setup.
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1 import time
2 import control
3

4 # enable 100 MHz AOM signal
5 control.aom()
6

7 # supply 100 MHz signal at 80% amplitude to AOD H
8 control.aod_h(amplitude=.8, frequency=100e6)
9

10 # supply 80 to 120 MHz chirp at 100% amplitude to AOD V on trigger
11 control.aod_v(frequency=[80e6, 120e6], duration=20e-3)
12

13 # initialize scope connection
14 scope = control.MSOX6004A('172.22.22.30')
15

16 # put scope into SINGLE mode to capture a single measurement
17 scope.single()
18

19 # wait 1 s until scope is ready
20 time.sleep(1)
21

22 # fire the trigger signal to scope and dds
23 control.trigger()
24

25 # wait 2 s until scope is ready
26 time.sleep(2)
27

28 # load the voltage trace from scope
29 scope.data()

Listing 4.1.: Example usage of the Python module to control the setup.

4.4. Trial run

After we integrated the DDS into the experimental setup, we wanted to test its capabilities.
Therefore we wrote a simple script that transforms short letter sequences to a list of frequency
pairs that we can playback from the H and V DDS. In Figure 4.7 we see the projected text as
captured by the camera. The text projection is created by iterating through a set of frequency
pairs, which as we know, correspond to a position offset. For a sufficient exposure of the CCD
camera we can capture a time average over all single points just as we plan to do with the optical
potentials. Even though we configured the DDS with constant amplitude, we notice that the
illumination is not homogenous. In fact we will see that the diffraction efficiency of the AOD
depends heavy on the frequency and it will turn out to be a challenging endeavour trying to
compensate for this dependency as we will see in the final part of this thesis.
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Figure 4.7.: Text projection as captured by the CCD camera.
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Chapter 5.

Characterisation of the optical
setup

In this short chapter we want to characterize the optical setup introduced in Chapter 4. In
particular we want to estimate the performance of the intensity feedback loop and the quality of
our alignment by comparing the beam profile with the results reported in Ref. [12].

5.1. Intensity control

In Chapter 4 we stated that the laser intensity is regulated by a control loop using an AOM in
the power reduction setup. Without the additional intensity regulation we would observe various
intensity drifts from the laser source throughout the measurements as depicted in Figure 5.1 where
we can observe short- and long-term oscillations over a large intensity range. The setup used to
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Figure 5.1.: Time evolution of the uncontrolled laser intensity.

record the intensity evolutions is disclosed in Figure 5.2. It differs from the optical setup described
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in Chapter 4 by the absence of the AOD and the relocation of Photodiode 2 at the end of the
laser beam. The photodiode gain of Photodiode 2 was lowered from 70 dB to 50 dB because the
lack of AODs would otherwise cause the photodiode to saturate due to higher intensities. In
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λ/4λ/4

Lens 1
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Lens 4
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Photodiode 2Oscilloscope

Figure 5.2.: Optical setup and intensity detection. The beam hits Photodiode 2 which is
connected to the oscilloscope.

order to to estimate the error contribution due to imperfect intensity regulation, we will conduct a
short- and a long-term measurement of the stabilized intensity. Technically a typical photodiode
measurement takes about a fraction of a millisecond, yet we can decide on different intervals
between the measurements in order to separate short-term from long-term trends like the ones
noted in the uncontrolled meausrement. Table 5.1 summarizes the different time scales for the
conducted short- and long-term measurement of the intensity control. The voltage time series for

Short Long AOD
Interval 10 s 120 s 3 s

Duration 1 h 16 h <2 h

Table 5.1.: Interval and duration times of the short- and long-term measurement as well as
a typical AOD frequency sweep measurement.

both intensity control measurements are presented in Figure 5.3. The outlier at about 22:45 h
was caused by accidently interfering with the setup during measurement. Beside of that incident
the long-term intensity seems stable. On a smaller timescale we see that the intensity evolution
performs periodic oscillations. Overall we can confirm that the intensity control loop successfully
holds the intensity mean, though with small oscillations. In order to estimate the relevance of these
small oscillations of the controlled intensity for later measurements, we performed a measurement
of the intensity variations introduced by the AOD subject to constant frequency increments for
comparison. Table 5.2 presents the statistics of said intensity measurements. We should note
that not all of the statistical measurements are directly comparable because of the 20 dB higher
photodiode gain used in the AOD frequency sweep measurement. Nevertheless we can directly
compare the uncontrolled and the controlled short- and long-term measurements directly. As we
divide by the mean µ, the relative standard deviation σ/µ is a scale invariant statistical measure
and thereby comparable through measurements conducted with different photodiode gain setting.
Comparing the relative standard deviation yields that the intensity drifts are small on a short
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Measure Not-Stabilized Long Short AOD
Mean µ 8.45 V 6.79 V 6.79 V 1.95 V
Minimum 7.43 V 4.88 V 6.77 V 0.00 V
Maximum 6.82 V 6.86 V 6.82 V 9.08 V
Standard Deviation σ 0.49 V 0.09 V 0.01 V 0.54 V
Relative Standard Deviation σ/µ 5.75 % 1.35 % 0.19 % 27.69 %

Table 5.2.: Descriptive statistics of not-stabilized and actively stabilized short- and long-term
intensity evolutions as well as a typical AOD frequency sweep measurement for comparison.
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Figure 5.3.: Long- and short-term measurement of the controlled intensity at different volt-
age scales.

time scale compared to intensity variations in a typcial measurement. In order to compare the
intensity deviations further we calculate the relative mean deviation (RMD) via

Irmd = I − I

I
, (5.1)

where I denotes the intensity mean. In Figure 5.4 the RMD of the not-stabilized and the actively
stabilized measurements are presented as boxplots. Boxplots are heavily based on the concept of
interquartile range (IQR). The IQR is a scale invariant measure of statistical dispersion and is
defined as the inverse of the cummulative distribution function (CDF). The start and end of the
boxes inside a boxplot denote the lower (first) quantile Q1 and the upper (third) quantile Q3 of
the IQR. Expressed through the CDF these read

Q1 = CDF−1
(

1
4

)
Q3 = CDF−1

(
3
4

)
. (5.2)

Alternatively one can define Q1 as the median of the n smallest entries and Q3 as the median of
the n largest entries where the total dataset consists out of 2n entries for the even and 2n + 1
entries for the odd case. The whiskers below and atop of the boxes are at Q1 ± 1.5IQR. Values
outside this range are usually considered outliers and marked as circles. The median is denoted
with an orange line. The left boxplot confirms that the oscillations of the controlled intensity are
negligible for typical intensity measurements. Further the right boxplot confirms that the intensity
control oscillations cover a much smaller range as the uncontrolled oscillations.
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Figure 5.4.: RMD of not-stabilized and actively stabilized long- and short-term measurement
as well an actively stabilized AOD intensity measurement.

5.2. Beam profile

Independently of the error introduced by the imperfect intensity control, errors can originate from
unideal optical alignment. One way to assess the quality of our alignment is to evaluate the
spatial profile of the laser beam as registered with the CCD camera. In Figure 5.5 we present
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Figure 5.5.: The beam is focused onto the CCD sensor of the camera.

the setup used to measure the spatial beam profile. In comparison to the previous setup we
replaced Photodiode 2 with a CCD camera. The AODs are configured at a center frequency of
100 MHz. The distance between Lens 4 and the CCD sensor is chosen such that the laser beam
is focused onto the CCD sensor of the camera. Figure 5.6 shows an enlarged image patch of the
complete image capture taken with the CCD camera. We can see a strong illuminated circular
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Figure 5.6.: Image of the focused laser beam measured with the CCD camera.

spot in the center of the image with an area of about 2.5 mm. The intensity inside the spot seems
homogeneous, however this is caused by a saturation of the pixels in this area. We could reduce
the intensity or apply an optical filter to the camera to resolve the intensity gradient inside the
spot, but only at the cost of the intensity distribution around the spot. Around the circular spot
we can see a diffraction ring. The diffraction ring is well described in [12] and originates from the
finite aperture of the objectives. For better comparison of the radial symmetry we performed two
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Figure 5.7.: One dimensional perpendicular cut of the two dimensional intensity distribution
from the two dimensional beam profile in Figure 5.6 with fitted gaussian curve.

perpendicular cuts and visualized the one dimensional spatial beam distribution in Figure 5.7.
In Figure 5.7 we can clearly observe the effects of saturation around the center. The Gaussian
fit illustrated how we would expect the intensity to be if we could experimentally resolve it. In
contrast to the ideal Gaussian profile we again observe contributions in the wings due to the Airy
disc causes by the finite aperture of the objectives in the optical setup, see Figure 4.3. Further we
can clearly observe an assymmetry in the intensity distributions in the wings which means that
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our alignment is not perfect. Using

FWHM = 2
√

2 ln 2σ, (5.3)

we can find the from the Gaussian fit, being 0.89 µm for the horizontal and 1.02 µm for the vertical
axis of the beam in the atomic plane.

We can confirm the results reported in [12] that the spatial beam profile equals a two dimensional
Airy disk caused by the finite aperture of the objectives. Further we observe slight assymmetries
in the diffraction ring suggesting inperfect alignment. Though asymetries in the spatial beam
profile are present, we do not see any further complications as the intensity measurements with
the photodiode will cover the complete beam profile.
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Chapter 6.

Digital signal synthesis

The previous chapters have covered the physics of our application and we were able to recover
some technical requirements imposed on our implementation. In this chapter we will review the
fundamentals of digital signal synthesis, the theory on which the DDS — our RF signal source
to control the AOD — are based on. DDS offer some distinct advantages over traditional analog
synthesizer. For one they can cover a wide frequency range with high tuning resolution. In contrast
analog devices have to be fitted to a narrow operation range and are subject to variations caused by
aging, thermal drift and manufacturing. In addition DDS permit extremly fast, phase-continous
frequency changes, without the loop-settling behaviour known to analog devices. Overall these
advantages make the DDS an attractive solution for our application where it is used as RF signal
source [26].

6.1. Operating principle

Figure 6.1 depicts a flow diagram of the components that make up a simple DDS. Given a system
clock frequency fsys and the desired output frequency fout one can derive the phase accumulator
increment

∆ϕ =
⌈
fout

fsys
2N

⌉
, (6.1)

where N denotes the number of bits the phase accumulator can store and d·e is the ceiling function.
For every clock cycle the phase accumulator is incremented by ∆ϕ. On overflow of the accumulator

Phase
Accumulator

Digital-Analog
Converter

FilterAmplitude
Lookup Table

Δφ φ A

fsys

fout

Figure 6.1.: Signal flow through a simple DDS. The output frequency determines a phase
step ∆ϕ by which the accumulator is incremented at each clock cycle. The value of the
phase accumulator is used for amplitude lookup of the desired output signal shape. A digital
to analog converter (DAC) samples the output signal which then is filtered to smooth the
discrete DAC output.

a new signal period starts. The phase accumulator value is used to lookup the corresponding
amplitude value of the desired output signal shape. For example one can use a lookup table with
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the values of a sinusoidal output signal. Alternatively one can omit the lookup table and output a
sawtooth output signal by suppling the phase accumulator output directly to the DAC or a square
wave signal output by suppling the most significant bit directly. Finally a DAC converts the digital
amplitude value to an analog signal. An optional analog filter can be used to smooth the discrete
output. Table 6.1 discloses system parameters used for our DDS model and the AD9910 we use

Example AD9910
Phase Accumulator Precision N 8 bit 32 bit

Digital-Analog-Converter Precision P 14 bit 8 bit
System Clock fsys 1 GHz 1 GHz

Signal Frequency fout 100 MHz 100 MHz

Table 6.1.: System parameters used for our simplified DDS model and used in the AD9910.

in our setup [27]. Except for the precision which in practice is not the same accross the phase
accumulator, lookup table and DAC our model parameters are choosen to be similar to the ones
used in the setup. In Figure 6.2 the signal of our model DDS at different processing stages with
the model parameters from table 6.1 are illustrated. In the first column of Figure 6.2 we can see
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Figure 6.2.: Signal outputs at different stages in a simple DDS. The phase accumulator is
incremented at each clock cycle by ∆φ. The phase accumulator value is used to lookup a
sinusoidal amplitude value that is supplied to a DAC. The final result is smoothed using a
filter.

how the phase accumulator is incremented on every clock iteration and resets on overflow. In the
second column the lookup table has been used to return the corresponding cosine amplitude. We
can see a difference in output shape between even and odd samples. This is caused by the fact
that the phase increment is not a divisor of the phase accumulator size and we will later discuss
workarounds.
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6.1.1. Clock generation

The Nyquist-Shannon sampling theorem states that for a given sample rate a perfect reconstruction
is guaranteed possible for fout < fsamp/2. Until now we have considered the system clock frequency
fsys = fsamp as given. In practice reliable reference signals are clocked below the desired output
range and thereby cannot directly be used as system clock according to the Nyquist-Shannon
sampling theorem. In Figure 6.3 the system clock generation from a reference signal is illustrated.

Phase
Detector

Low-Pass
Filter

Voltage-Controlled
Oscillator

Divider

fref fsys

Figure 6.3.: Block diagram of the system clock generation from reference clock through
phase-locked-loop (PLL) and divider.

The phase detector yields a non-linear error response comparing the phase of the voltage-controlled
oscillator (VCO) with the phase of the reference signal. A low-pass filter removes fast oscillations
from the phase detector output. The VCO changes its phase according to the error signal. One
can use a system clock of a multiple frequency of the reference clock by using a frequency divider
in between the phase detector and the output of the VCO. A divider of M ∈ N results in a system
clock running at fsys = Mfref.

6.1.2. Parameter modulation

So far we only discussed the case of frequency modulation of the generated output signal, however,
we will see that it can be easily extended to support amplitude and phase modulation too. In
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Accumulator

Digital-Analog
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Amplitude
Lookup Table

Δφn φ
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Adder
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Figure 6.4.: DDS architecture supporting modulation of frequency, amplitude and phase
offset parameters. Phase accumulator increment ∆ϕn(t) is now time dependent. The phase
offset ϕn(t) is also time dependent and is added as a last step to the phase accumulator
before supplied to the DAC. The time dependent amplitude parameter An(t) is multiplied
with the amplitude obtained from the lookup table.

Figure 6.4 we can see one realization of an architecture that supports amplitude, frequency and
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phase modulation. The main components are the same as in Figure 6.1. In addition we have an
adder for a time dependent phase offset and a multiplier for the digital amplitude value obtained
from the lookup table. The time dependence of the parameters can be either determined by
reading from memory or through generation of another circuit. In a later section we will discuss
the case of a linear frequency sweep provided by a digital ramp.

6.2. Quantization effects

At the beginning of this chapter we elaborated greatly on the advantages that digital signal syn-
thesis has to offer. Yet we know that every technical design involves its unqiue set of compromises.
One important part in any engineering process is to carefully evaluate the implications of these
compromises. In that sense we will discuss the side-effects arising from the digital nature of digital
signal synthesis and what methods exist to reduce them.

Phase jitter

Phase jitter is created when one configures an output frequency for which ∆ϕ is not a divider of
2N . In this case a phase error builds up in each clock cycle [28]. According to

fout

fsys
2N − ∆ϕ, (6.2)

with the phase accumulator increment ∆ϕ defined in eq. (6.1), we have a phase error of 0.4 per
clock cycle for the model system parameters listed in Table 6.1. In Figure 6.5 the phase error
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Figure 6.5.: Phase error for system model parameters in Table 6.1 when comparing phase
accumulator with 2N = 256 and 250 values.

is visualized for a phase accumulator with 2N = 256 values and 250 values. The later phase
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accumulator value yields zero for the phase error defined in eq. (6.2) and thereby represents the
ideal signal. In the first row of Figure 6.5 we can see how the phase error builds up with every
clock cycle. After 255 cycles the phase error resets. In the second row we can see how the output
signal with phase error differs from the ideal output signal where no phase error is present. In
the last row we see the power spectrum of the ideal and erroneous output signal. Because the
instantaneous frequency relates to the change in phase of a periodic signal, we can see how the
linear increasing phase error shifts the output frequency to the right.

Phase truncation

Phase truncation occurs because the amplitude lookup table and DAC usually have a reduced
precision P compared to the phase accumulator. Fortunately there are many procedures to use
the limited memory of a sinewave lookup table more efficiently. For example one can reduce the
sinewave data to the domain from 0 to π/4 and use symmetry to infer the values from π/4 to 2π.
Sophisticated compressions methods allow compression ratios up to 165:1 [29] so that in practice
phase truncation is not a problem.

There of course exists other sources of signal imperfection, for instance because of PLL errors, not
covered in this section from which many can be described analytically [30].

6.3. Frequency response

Beside the previously discussed signal shape deviations caused by finite precision, sampling theory
predicts a sinc frequency response of the amplitude for the DAC [31]. Let us considers the discrete-
time signal obtained from the amplitude lookup table of the DDS

x(t) = A(t)
∑

n

δ(t− nT ) =
∑

n

A(nT )δ(t− nT ) =
∑

n

Anδ(t− nT ), (6.3)

where we define the delta distribution to be

δ : R → {0,∞} (6.4)

t 7→ δ(t) :=
{

∞, if t = 0
0, otherwise

, (6.5)

and the sum is evaluated over the total number of samples and T = 1/fsys denotes the sampling
period. Most DAC — including the DAC integrated into the AD9910 — perform signal recon-
struction by zero-order hold. In zero-order hold a sample is hold for one sample interval, this can
be expressed by

y(t) =
∑

n

An rect
(
t− Tn

T

)
, (6.6)

where the sum has to be taken over the number of sampled points, and

rect : R → {0, 1} (6.7)

t 7→ rect(t) :=
{

1, if 0 ≤ t < 1
0, otherwise

, (6.8)

being the piecewise-constant output signal of the DAC. The DAC output can be modeleled through
a linear transfer function h that relates to the input x and output signal y by convolution

y(t) = (x~ h) (t). (6.9)
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The sampled eq. (6.3) and the reconstructed signal eq. (6.6) in the frequency domain read

X(ω) =
∑

n

xne
−iωnT (6.10)

Y (ω) =
∑

n

xne
−iωnTTe−iωT/2 sinc

(
ωT

2

)
, (6.11)

where we define the sinc function to be

sinc : R → R (6.12)

x 7→ sinc(x) :=
{

sin(x)
x , t ∈ R \ {0}

1, t = 0
. (6.13)

According to the Convolution theorem the convolution of two functions in the time domain equals
the product of the two functions in the frequency domain, thus by using

Y (ω) = X(ω)H(ω), (6.14)

eq. (6.10) and eq. (6.11), we can easily read of the transfer function in the frequency domain

H(ω) = Te−iωT/2 sinc
(
ωT

2

)
. (6.15)

As we are interested in the relative power of the DAC integrated into the DDS we need to look at
the relative power transfer with respect to the output frequency fout∣∣∣∣H (fout)

fsys

∣∣∣∣2 = sinc2
(
π
fout

fsys

)
. (6.16)

We visualized the frequency roll-off of the DAC in Figure 6.6 from zero to the Nyquist frequency
fsys/2. In the second plot we show the frequency range 80 MHz to 120 MHz which we will use as
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Figure 6.6.: Power transfer of the DAC according to the zero-order hold model with respect
to relative output frequency from zero to the Nyquist frequency fsys/2. In the second plot
we see the power transfer for the later operating range of the DDS.

the operating range for our DDS. For said operating range the power falls off linearly by about
2.6 %.
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6.4. Memory playback

In this and the next section we will discuss frequency and amplitude modulation by the digital
ramp and memory playback integrated into the AD9910, therefore the following insights will be
very specific to the AD9910. The digital ramp is used to implement sweep modulation with
constant increments. In our case we will use the digital ramp to sweep the frequency applied to
the AOD from 80 MHz to 120 MHz. The playback mode allows modulation from memory. We can
use it to define up to 1024 distinct amplitude values in order to indirectly modulate the efficiency
of the diffraction of the AOD. Both digital ramp and memory playback are controled by a timer
that is clocked with

ftimer = fsys/4 = 250 MHz. (6.17)

The sample interval of the memory playback is controlled by a 16 bit playback rate word

∆tmem = P

ftimer
= 4P
fsys

. (6.18)

In Figure 6.7 we illustrate the playback sample interval and total playback duration when using
the complete playback memory in dependency of the playback rate word P . In Table 6.2 we
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Figure 6.7.: Playback sample interval and total playback duration when using the complete
1024 memory points in dependency of the playback rate word P .

present the minimal and maximal playback parameters. The maximum duration of one iteration
through all playback values T will limit the duration of the digital ramp as we will see later.

Rate Word P Sample Interval ∆tmem Duration Tmem

1 4 ns 4.096 µs
65 536 262.144 µs 268.435 456 ms

Table 6.2.: Minimal and maximal playback parameters of the AD9910 according to eq. (6.18)
with fsys = 1 GHz.
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6.5. Digital ramp

The digital ramp allows amplitude, frequency or phase offset modulation with constant increments.
In our setup we use the digital ramp to sweep the frequency range 80 MHz to 120 MHz to change
the beam deflection angle via AOD. In Table 6.3 the register of the digital ramp to perform
frequency increments are listed. The lower and upper limits are related to the start and final

Lower Limit L Upper Limit U Step Size S Step Rate R
32 bit 32 bit 32 bit 16 bit

Table 6.3.: Digital ramp register that control the frequency and their respective presicion.

frequency of a sweep by

L =
⌊

232 fstart

fsys

⌉
U =

⌊
232 ffinal

fsys

⌉
, (6.19)

where b·e maps to the closest integer. In Table 6.4 we present the digital ramp limit register values
for a frequency sweep from 80 MHz to 120 MHz as used for later measurements. The slope rate R

Register Value Quantity
Lower Limit L 343 597 384 80 MHz
Upper Limit U 515 396 076 120 MHz

Table 6.4.: Digital ramp limit registers for a frequency sweep from 80 MHz to 120 MHz.

and the step size S relate to the frequency and time increments via

∆tramp = R

ftimer
= 4R
fsys

∆framp = S

232 fsys. (6.20)

In the driver we set R and S indirectly through the sweep duration

Tramp = U − L

S

4R
fsys

∆tramp. (6.21)

The integer ratioR/S is found using best-ratio approximation as described in Ref. [32]. In Table 6.5
the step register values of the digital ramp for the most common sweep duration of 260 ms used
in our measurements are listed. The increments reported in Table 6.5 are converted internally in

Register Value Quantity
Step Size S 42 949 673 10 MHz
Step Rate R 16 250 112 65 ms

Table 6.5.: Digital ramp step registers for a frequency sweep from 80 MHz to 120 MHz with
duration Tramp = 260 ms.

the AD9910 and applied to the phase accumulator of the AD9910, thus even though the step size
and rate are large compared to the sweep duration and frequency range, the effective frequency
increments are of finer scale as we later measurements will show. Unfortunately the datasheet of
the AD9910 [27] does not disclose any details on the exact conversion of the digital ramp steps
to the phase accumulator, such that we cannot estimate the effective frequency resolution of the
digital ramp of the AD9910.
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6.6. Frequency and time resolution

Although we cannot give the exact frequency resolution imposed by the digital ramp of the
AD9910, we can compare the possible time scales of the digital ramp and memory playback
mode with the time scales found in chapter 3. Furthermore the specified frequency resolution of
230 mHz in the constant frequency operation mode of the DDS can give us a rough estimate of
the achievable spatial resolution.

The time scale of the AD9910 are limited by the playback duration time

Tmem = N
4P
fsys

, (6.22)

where N is the number of memory words used. The AD9910 supports up to N = 1024 memory
words. Using the fact that P is of 16 bit precision we can calculate the minimal and maximal
durations times for the DDS. In Table 6.6 we are presented the possible time scales imposed by

Memory Words N Playback Rate P Maximum Duration T

1 1 4 ns
1024 1 4 µs

1 65 536 262 µs
1024 65 536 268 ms

Table 6.6.: Time scales of the AD9910 imposed by the technical limits of the playback
duration time of the AD9910.

the playback duration time of the AD9910. From chapter 3 we know that we need to operate on
a time scale of below 10 µs. We can see that for P = 1 and N = 1024 we could — in principle
— achieve such duration times. If we use the memory playback to modulate the frequencies, we
could address up to 1024 distinct positions on the lattice. The frequency resolution of the AD9910
is given with ∆f = 230 mHz [27] which translates to a spatial resolution using eq. (4.2) of about

∆x ≈ ∆y ≈ 8 pm, (6.23)

which is smaller than the actual laser wavelength. We therefore conclude that the frequency and
time resolution of the DDS are in theory sufficient to implement the time-averaged perturbation
potentials discussed in chapter 2.
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Chapter 7.

Characterisation of the electronic
setup

By the time the RF signal has reached the acoustic transducer, it has been synthesized from a
reference signal, amplified, and matched to the impedance of the AOD transducer. We are going to
inspect the RF signal characteristics at each transmission and find that each stage unintentionally
carries out frequency dependent amplitude characteristics which, as we will see in the next chapter,
are responsible for the complex intensity distribution observed with the photodiode.

7.1. Digital signal synthesizer

We already covered the fundamental functionality of the DDS in Chapter 6 and its integration
in our experimental setup in Section 4.2.1. In this chapter we will discuss measurements of the
frequency and the amplitude characteristics.

Physical analysis of the DDS output RF signal is in fact no simple endeavour as usual operation
time scales are of many magnitudes greater than the signal periodicity. The procedure we used to
resolve this circumstance is depcited in Figure 7.1. The strategy consists of capturing multiple,
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Figure 7.1.: Idealized DDS signal output with constant frequency increments. The measured
window only captures a subset (gray) of the complete modulation (shades of blue).

small time windows of the signal (gray) which delayed would cover the complete signal trace (blue).
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The experimental setup used to reailize this concept is schematically drawn in Figure 7.2. In

OscilloscopeDDS

DelayTrigger

Trigger

Synthesized
Signal

Delayed
Trigger

Figure 7.2.: Measurement setup of the synthesizer signal. By inserting a pulse generator
in between the trigger source and the oscilloscope we can delay the capture window of the
oscilloscope by the pulse width.

between the oscilloscope and the trigger source we inserted a pulse generator. The pulse generator
width equals the delay time of the oscilloscope and the oscilloscope is configured to capture on the
falling edge of the signal generated by the pulse generator. Further the oscilloscope’s impedance
was configured to 50 as high impedance measurements in the high frequency regime are subject
to reflection and inductance effects. In Table 7.1 we can find an overview of the experimental
parameters used. The specified frequency range is motivated to cover the greatest possible spatial

Frequency Range f Sweep Duration Ts Window Duration Tw Number Windows Nw

80 MHz to 120 MHz 30 ms 50 µs 300

Table 7.1.: Experimental parameters used to inspect the output RF signal of the DDS.

dimensions permitted by the dimensions of the optics. According to eq. (4.2) this translates to a
spatial resolution in the atomic plane of about 146 µm (typical atomic clouds are with 30 µm much
smaller). Sweep and window duration were selected as a compromise between the oscilloscope
being able to resolve the signal fine enough to perform fast-fourier-transform (FFT) and the
sweep duration being comparable to later experiments. The time delay was incremented in Nw

steps until Ts = Tw, thus we will capture Nw overlapping windows.

Frequency spectrum

For an ideal linear frequency sweep we would expect a continuous increase of the frequency with
respect to time, yet we know that the DDS makes use of digital signal processing methods which
suggests a discrete frequency spectrum. To help us expose the characteristics of the digital fre-
quency sweep we will utilize a spectrogram. A spectrogram visualizes how the frequency spectrum
varies in time. One way to obtain a spectrogram is to partition the data into overlapping time
chunks while performing FFT which allows us to combine time and frequency domain specific char-
acteristics. In our case we choose the relative spectral power to be encoded as color. Figure 7.3
depicts four spectrograms, each taken at a different time window during the frequency sweep. The
first spectrogram captures the start of the frequency sweep as can be read from the time scale.
The first time window does not disclose any signal. This phenomena will be observed frequently.
For unknown reasons the output signal of the DDS is absent for multiple microseconds after the
DDS receives the external trigger signal. The exact duration of the trigger delay varies around
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Figure 7.3.: Spectrogram of delayed time windows with width 100 µs of the DDS output
signal configured to perform a linear frequency sweep. For an ideal linear sweep we would
expect a linear timeline of the frequency, instead we observe a discrete set of frequencies.

4 ms but does not affect the internal state of the DDS as the first measured frequency matches
the theoretically expected frequency according to the ramp. If we take a look at the following
spectrogram windows we can see how the DDS outputs a constant frequency over a short time pe-
riod (100 µs), therefore the frequency range consists of discrete frequencies. We can actually even
observe such a frequency increment in the second, third and fifth spectrogram. Finally in the last
spectrogram the frequency drops back to the initial value — a side effect of the DDS sweep mode
which unfortunately is the only mode, that supports an external trigger signal. In Chapter 6 we
were unable to make a statement about the frequency resolution of the digital ramp. Therefore we
visualized the frequency evolution with each delayed measurement in Figure 7.4. Neglecting the
first 50 measurements because of the trigger hole, we find that on average the frequency increments
by about 310 kHz. Using eq. (4.2) this relates to a spatial resolution of about 1.1 µm.

Amplitude frequency response

In the Fourier space we can locate the dominant frequency at the maximum of the power spectrum.
That in mind we can reduce the previous obtained time window measurements to pairs of dominant
frequencies and maximum amplitude. Under the assumption that the maximum voltage per
measurement is approximately the mean peak-to-peak amplitude of the signal we can find the
amplitude frequency response spectrum with little effort. Figure 7.5 visualizes the described
routine for the DDS assigned to the H and V AOD with frequency control by digital ramp and
manual increments. The peak-to-peak amplitude of the synthesizser signal is constant with small
noise contributions. On a closer view we can see that the oscilloscopes voltage resolution is at
its limit, thus we only observe discrete voltage steps. We conclude from Figure 7.5 that the
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Figure 7.4.: Most dominant frequency in the FFT spectrum for each (delayed) measurement
during a frequency sweep of the DDS.

amplitude response of the DDS is independent of the output frequency and the method used to
provide frequency increments. The sinc response we theorized to cause a drop of about 2 % of the
amplitude in Chapter 6 is not observable in our measurements.
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Figure 7.5.: Amplitude frequency response of the DDS signal sources for the H and V AOD.
The frequency increments are performed through the integrated digital ramp and manually.

7.2. Power amplifier

The piezoelectric attached to the acousto-optic crystal inside the AOD elements has to emit
acoustic waves strong enough to propagate through the crystal of the AOD. The power demands
specified by the AOD are not met by the DDS, therefore we have to employ a power amplifier
between the DDS and the AOD. Even though we previously concluded that the DDS signal
amplitude is independent of the output frequency, the power amplifier can introduce new frequency
dependent characteristics which we dedicate ourselves to in this section.

Amplitude frequency response

The measurement procedure described in the previous section is still valid for the now ampli-
fied signal of strength 33 dBm. At the usual 50 in between coaxial cables this corresponds to
an approximate voltage of 10 V. In order to protect the oscilloscope against potential damage
caused by too much power, we inserted a chain of attentuators (order given from coaxial cable to
oscilloscope): 1 dB – 3 dB – 3 dB – 6 dB – 10 dB – 10 dB. The order was chosen in such a way to
distribute heat uniformly accross the attentuators. The total damping of this configuration yields
33 dB which should give us the same signal power as before from the DDS. Figure 7.6 presents the
damped output signal after amplification for the two distinct (H, V) amplifiers and DDS signals for
the same input frequencies as in the previous measurement. In comparison to the DDS response
the amplifier introduces small ripple. Again, we cannot identify significant differences between the
type of frequency increment used. Although these effects are small in terms of voltage it is difficult
to relate them to the overall power response as only voltage but not current was measured.
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Figure 7.6.: Amplitude frequency response of the DDS signal after power amplification. In
comparison to the DDS we observe very small oscillations.

Network analyzer transmission

We previously discovered that the amplifier amends the frequency amplitude response, neverthe-
less it is difficult to isolate the actual influence of the amplifier. Therefore we conducted more
detailed measurements of the amplifiers power transmission with the network analyzer. The net-
work analyzer is a device that can measure reflection and transmission parameters of electric
components. As it was exactly built for these types of measurements, we expect it to have more
significance, then the previous measurement. As in the measurement with the oscilloscope we also
haveto protect the network analyzer against the output power of the amplifier. This time we used
a single 30 dB attentuator in between the network analyzer input and the power amplifier output.
In Figure 7.7 we see the frequency transmission spectrum obtained through the network analyzer
connected to the horizontal and vertical amplifiers. We can confirm an offset of the amplification
gain between both amplifiers. If we assume a power amplification difference of L = 0.2 dB, i.e.
between 80 MHz and 115 MHz with the V amplifier, according to

P = P010L/10 dB, (7.1)

and P0 = 2 W we would have to expect a drop of up to 0.05 W in power. Unfortunately we cannot
say in how far this is a relevant magnitude for the AOD.
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Figure 7.7.: Frequency transmission spectrum obtained via the network analyzer of the
horziontal and vertical amplifiers.

7.3. Acoustic transducer

In the previous sections we explored the signal transfer of the synthesis and amplification stage.
The last stage that is accessable to us concerns the power reflection at the AOD itself. From
the reflection we may estimate power transmission characteristics, hence for a large reflection we
would expect a small transmission and in that sense less beam intensity in the first diffraction
order.

7.3.1. Reflection spectrum

The power reflection measurements were conducted with the network analyzer which we have
introduced in the previous section. In a first embodiment of the experiment we directly supplied
the AOD through a coaxial cable of the network analyzer with power and measured the reflection.
In a second embodiment we used a directional coupler to supply the respective amplifier with a
signal and measure the reflection through a directional coupler.

Direct connection

Figure 7.8 visualizes the power reflection spectrum of both AOD elements when directly connected
to the network analyzer at a maximum output power of 10 dB m. The network analyzer port
supplies the signal and measures its reflection. The most interesting finding in Figure 7.8 is that
the power reflection shows very different behaviour for the distinct AOD elements. The AOD
anticipated for the vertical deflection is most transmissive at 97 MHz with transmission falling of
on both sides while the AOD anticipated for the horizontal deflection has two local transmission
maxima and a rather bad transmision near the center frequency.
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Figure 7.8.: Signal reflection of the two different AOD when directly connected to the net-
work analyzer.

Amplified coupled connection

In the second procedure we amplify the signal and couple the network analyzer through a di-
rectional coupler to measure the refleciton. This is done in order to avoid harm to the network
analyzer as the network analyzer is not able to handle 2 W signals. The direct-coupler is an appa-
ratus comprising a coaxial input and output port as well as a coaxial input reflection and output
reflection port. It is disignated to measure the reflection of a (possible) high power signal without
jeopardizing measurement equipement. In Figure 7.11 we see the reflection spectrum for the case
that we provide the network analyzer output signal to the input of the directional coupler and
connect the reflection output of the directional coupler with the second network analyzer port
while the remaining ports are under 50 closure. We note that the reflection measured through
the directional coupler is lowered by many orders of magnitude compared to the input signal but
essentially of the same shape. The noise in the reflection is very high because of the low power
supplied into the directional coupler. We now use the directional coupler to measure the output
reflection at the AOD elements after the signal was amplified. The setup is depicted in Figure 7.10.
The network analyzer on the left-hand side supplies an input signal to the amplifier. The input
signal changes linear in frequency. The output signal of the amplifier is connected through a di-
rectional coupler with the acousto-optic element. The directional coupler allows to measure input
and output reflection. In Figure 7.9 we see the effective reflection spectrum for the distinct AOD
elements. The effective reflection spectrum is obtained when subtracting the input reflection from
the output reflection.

Comparison

In the previous part we saw that the reflection spectrum does not show any power dependence,
thus we should be able to compare the spectrum we obtained directly with the amplified result.
In Figure 7.12 we can see how there is additional reflection from the amplifier, nevertheless the
global characteristics remain the same.
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Figure 7.9.: Reflection at the direct-coupler output after amplification of the network an-
alyzer input signal for different amplifications with reference to 1 mW. We see that the
applied power does not affect the spectrum.

Summary

Distinct AOD elements show different power transmission characteristics independent of the ap-
plied power. A detailed examination of the AOD elements discloses different impedance matching
circuits. Impedance matching is used to reduce power reflection by providing a constant input
resistance of 50 accross a wide frequency range. Still the impedance differs between the AODs.
We assume that the crystal properties, i.e. cutting angle or purity, are responsible for that. This is
supported by the fact that the impedance matching circuits differ between the AOD elements.

Network Analyzer

Ampli�er

AOD

Directional Coupler

Figure 7.10.: Experimental setup to measure the reflection at the acousto-optic transducer.
The network analyzer supplies an input signal to the amplifier. The output signal of the
amplifier is connected through a directional coupler with the acousto-optic element. The
directional coupler allows to safely measure input and output reflection.
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Figure 7.11.: Input power reflection when supplying the directional coupler with −10 dB m
input signal and reflection at the closed output of the directional coupler while other ports
are closed with 50 .
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Figure 7.12.: Reflection from amplified input signal and direct signal as well as transmission
spectrum from the amplifier. We can see that the better amplification left of 90 MHz slightly
changes the reflection spectrum of the AOD.
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Chapter 8.

Characterisation of the
acousto-optic deflectors

In the previous chapter we seeked for different aspects of the RF signal powering the AOD elements
and found that the electronic equipement provides an overall stable signal for the AOD. In this
chapter we want to explore the diffraction efficiency characteristics of the AODs subject to the
different frequency and amplitude parameters one can configure the DDS with. In the end we will
find that the intensity shows highly non-linear behaviour with respect to the RF signal parameters.

8.1. Difference between individual acousto-optic deflectors

Our optical setup uses a single two dimensional AOD that comprises two AOD elements perpen-
dicular to each other. At first we want to examine the behaviour of the individual AOD elements
in comparison to each other. In particular we are interested if and how the elements differ.

8.1.1. Individual acousto-optic deflectors

For the following experiment we will only leave one AOD element mounted in the casing depicted
in Figure 4.1. The other slot will be empty. Then we will exchange socket positions for each
respective AOD element and measure the beam intensity subject to the linear frequency sweep
from 80 MHz to 120 MHz over a duration of 260 ms and the configured DDS amplitude. As RF
signal source the amplifier and DDS combination intended for the horizontal AOD element was
used to avoid influences of the amplification offset between the two amplifiers. The results for
the four configurations (horizontal element in horizontal slot, horizontal element in vertical slot,
vertical element in horizontal slot and vertical element in vertical slot) are visualized as heatmaps
in Figure 8.1. The color values are normalized in between the different heatmaps and can be
related to the measured voltage from the photodiode via the colorbar on the right-hand side.
Oddly enough we observe that both AODs differ strongly in their respective intensity transmission
behaviour depending on their slot position. Furthermore we observe that the intensity transmission
is much higher in the case of the horizontal AOD element mounted to the intended horizontal slot
compared to all other configurations. In addition we can see that the intensity map measured with
the horizontal AOD displays a jump. The highest intensity transmission is obtained for relative
amplitudes configured between 60 % and 90 % with large dependence on the frequency. Another
interesting observation is that the intensity transmission seems very similar for the horizontal
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Figure 8.1.: Intensity distribution over linear frequency sweep at different configured DDS
amplitudes for different individual AOD configurations.

element in the vertical slot and the vertical element in the vertical slot whose map also seems
more symmetric with respect to the frequency axis. In fact for these configurations the amplitude
dependence seems to be essentially independent of the frequency dependence. We assume that the
individual elements are designed for different polarisation angles. In order to prove this hypothesis
we added a tunable λ/2 retarder plate after Cube 2. Tuning the λ/2 retarder before Cube 2 would
change the intensity fraction that gets redirected into the beam dump as Cube 2 is a beam splitter
sensible to polarisation. In Figure 8.2 the intensity transmission of the H AOD in the H slot at
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Figure 8.2.: Intensity transmission of the H AOD in the H slot at maximum output amplitude
for different angles of the λ/2 plate.

maximum RF amplitude is presented for different polarisation angles. The polarisation angles are
the remainder left after division by 90° of the angles read of from the retarder plate mount. The
reason behind this step is that a rotation of a retarder plate by φ effectively changes the polarisation
angle by 2φ. Further the polarisation angles are uniquely contained in the range [0°, 180°[. We note
the maximum intensity transmission of the H AOD at 20° and the minimum intensity transmission
at around 70°. The difference between the polarisation angle at minimum and maximum intensity
is about 50° which is close to 45° that would suggest that intensity minimum and maximum are
located at the respective perpendicular polarisation axis. In Figure 8.3 the intensity transmission
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Figure 8.3.: Intensity transmission of the V AOD in the V slot at maximum output amplitude
for different angles of the λ/2 plate.

subject to the polarisation angle of the V AOD in the V slot is shown. We again observe a difference
of about 45° between the polarisation angles at maximum and minimum intensity transmission.
Finally we want to compare the polarisation angles between the individual AODs. Therefore
we extracted the intensity transmission at 100 MHz frequency for both AOD measurements and
plotted them against the polarisation angle in Figure 8.4. We observe a sinusoidal shaped intensity
response as a function of the angle for the H and V AOD which seem to be out of phase by nearly
90°. This, however, makes sense as the polarisation in the first diffraction order is rotated by
90°.

The 2D AOD casing allows to rotate the individual AOD elements. So far we choose the rotation
angle of the AOD elements that maximizes the intensity transmission at the center frequency.
What would we obtain if we tilted the rotation angle a bit to the left and to the right? In
Figure 8.5 we find the answer to this question. We observe changes in shape and overall intensity
with respect to the incident angle. We should note that small changes in the incident angle
cause already large deflections of the beam, thus it is not guaranteed that the left and right
measurements are free from aperture effects. Nevertheless we can record that the incident beam
angle is an important parameter in the intensity transmission of the AODs. In particular we need
to consider the incident beam angle for the 2D AOD configuration.
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Figure 8.4.: Intensity transmission of the H and V AOD at 100 MHz and maximum output
amplitude for different polarisation angles.
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Figure 8.5.: Intensity distribution at different amplitudes for tilted individual AODs. We
observe that the intensity decreases if the incident angle deviates from 90°.
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8.2. 2D intensity distribution

In the present section we now want to explore the intensity transmission for a two dimensional
sweep as intended to be used for the optical potentials.

The experimental setup is similar to the previous setups and is shown in Figure 8.6. We have
both AODs mounted in their anticipated position. The AOD elements are aligned to maximize
intensity at the center frequency. The laser beam is directed into Photodiode 2 where we measure
the intensity with respect to the configured DDS signal.

Cube 1Cube 2

Dump

Mirror 3

Mirror 2
Objective 1 Objective 2

Mirror 1

Mirror 4

Fiber

λ/4λ/4

Lens 1

Lens 2

Lens 3

Lens 4

Photodiode 1

Photodiode 2Oscilloscope

AOD HAOD V

Figure 8.6.: Experimental setup used to measure the intensity transmission of the 2D AOD
in dependence of the configured DDS signal.

Digital ramp frequency sweep

In a first attempt we configure a first DDS to output a constant frequency whereas a second
DDS is configured to do a frequency sweep using the internal digital ramp. After one such sweep
the constant frequency output of the first DDS is increased and the measurement repeats. The
procedure is repeated until the first DDS covered the same frequency range as the second DDS.
In Figure 8.7 we present the intensity measured at the second photodiode in the setup shown in
Figure 8.6. On the left-hand map the first DDS is the DDS responsible for translations in the
vertical direction whereas the second DDS is responsible for translations in horizontal direction.
The frequency sweep performed by the digital ramp is more dense compared to the frequency sweep
performed through the driver. We of course could also perform increments through the driver with
the same precision as the digital ramp, this, however, would make measurements much more time
consuming. As the differences in Figure 8.7 are of only subtile nature we additionally reveal the
absolute difference between both maps in Figure 8.8. We observe nearly a binary map of dark and
bright blue areas whereas the dark area can be intepreted as small and the bright area as large
difference. The binary nature of the absolute difference could be interpreted as a fixed offset in
the power level between the H and V RF signal supplied to the AODs. In areas of small intensity
difference (dark blue) the ouptut level may be sufficient to saturate the acousto-optics. However
we must admit that these are simply suggestions and need further evidence.
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Figure 8.7.: Intensity measured as voltage at the photodiode in dependence of the horizontal
and vertical applied frequency signal to the AOD. The left map is obtained by enabling the
digital ramp on the horizontal DDS whereas the vertical DDS is configured to output a
constant frequency which is manually increased after each measurement. On the right-hand
side map the roles are exchanged.

Constant sampled frequencies

In section 7.2 we did not find differences in the amplitude frequency response of the amplified
RF signal between frequency increments performed by the internal digital ramp of the DDS and
frequency increments performed by manually updating the output frequency through the driver.
Yet, it remains open if differences arise in the transmission frequency response of the AOD as
the AOD is not a purely electronic device. To partly answer this question we sampled random
frequency pairs over a two dimensional uniform distribution and passed them as constant frequency
parameter to the respective DDS through the driver interface. The yielded intensity distribution is
visualized in Figure 8.9. We note that in comparison to Figure 8.7 the intensity differences are more
concentrated around the vertical axis. We believe that acousto-optics possess a non-instantaneous
frequency response characteristic that requires further investigation.

Different radio frequency signal source

In the previous two sections we found that the AODs are independent of the method used to
perform the frequency increments. In order to further gather further proof, we decided to replace
one DDS with a high-quality signal generator while the other DDS was configured to output a
constant 100 MHz signal. The output level of the signal generator was configured to match the
output level of the DDS and amplified using the usual power amplifier. Figure 8.10 discloses the
different intensity transmission registered by the photodiode for a frequency sweep performed by
the DDS through the digital ramp and by the signal generator. In comparison to the DDS the
signal generator does not support continous frequency changes as we can see from the intensity
drops between the frequency increments of the signal generator trace. Further ignoring these
intensity drops we observe that the global response characteristics differ in particular at the begin
of the frequency sweep and at the center. As the power amplifier remains unchanged through the
measurements and the output voltage of the signal sources are independent of frequency, we are
only left with two explainations. For one the power supplied to the AOD could differ as we did
not measure the current response. On the other hand the frequency drops in between frequency
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Figure 8.8.: Absolute difference between the 2D intensity distribution performed with the
digital ramp configured set to different axes.

increments of the signal generator could cause the observed characteristis. The later hyphothesis
would also confirm the result of the previous sections in which we found a different transmission
characteristic for different frequency sampling strategies.

Summary

In summary we found that the intensity transmission of the AODs show a highly non-linear
dependence in the applied power and the method used for frequency sampling. It would be
interesting to continue to explore the intensity transmission subject to the effective power of the
RF signal applied to the AOD. So far we only know that the voltage of the RF signal of the
DDS is constant over our frequency range of 80 MHz to 120 MHz, however, we cannot make any
statements with respect to the current characteristics. All in all there are too many factors to
consider to describe with a simple analytical model and we will further try to work with a model-
free optimization procedure in the next chapter in order to minimize the intensity transmission
variance and produce a constant laser intensity in the atom plane.
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Figure 8.9.: Intensity measured as voltage at the photodiode in dependence of the horizontal
and vertical applied frequency signal to the AOD. Frequency pairs are sampled over a
uniform distribution and then passed as constant output frequency paramter to the DDS.
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Figure 8.10.: Intensity measured as voltage at the photodiode with one AOD at constant
center frequency supplied by a DDS and the other AOD performing a linear frequency sweep
with the DDS and a high-quality signal generator.
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8.3. Diffraction efficiency optimization

The previous two chapters addressed the characteristics of the RF signal and the intensity trans-
mission of the AOD. Therewith the groundwork has been set out to finally approach the mission
of minimizing the intensity variance to obtain a homogenous optical potential.

But how do we minimize the intensity variance? The DDS permits to read N = 1024 amplitude
values from memory. The optimization problem therefore is to minimize the variance of the
intensity distribution I(A) subject to an amplitude vector A ∈ [0, 1]N . The conclusions drawn
from the intensity measurements suggest that we have to expect non-linear, irregular behaviour
in I(A), and indeed first attempts to model I(A) through polynomial fits, multilayer perceptron
networks and least-squared minimizations have failed.

During these optimization procedures we observed that changing an amplitude value Ai ∈ A does
affect the intensity voltage at subsequent Ai+1, . . . , AN . Fortunately we found that by respecting
the amplitude order with respect to increasing frequency during optimization we where able to
bypass these effects. Further we created amplitude segments (Aj , . . . , Aj+m) consisting of m
ordered amplitude values to reduce the optimization time. Optimization then was performed
through random search which was proven to yield better results as grid search [33].

Overview

First, we want to provide an overview of the final optimization results obtained at different hy-
perparameters for the random search. The hyperparameter includes the number of amplitude
segments N/m and the target intensity. In Figure 8.11 we present the final optimization results
for target intensities of 800 mV, 1000 mV and 1200 mV and amplitude segments 8, 16, 32. We ob-
serve heavy oscillations for amplitude segments greater than eight. The optimization results using
16 amplitude segments performs better than the run with 32 amplitude segments. At present
we have no explainations for this behaviour. For the sake of simplicity we will limit us to the
case of eight amplitude segments. In Figure 8.12 we have a closer view on the first column of
Figure 8.11.

Process

We now want to elaborate on the optimization process. We limit ourselves to the optimization
process with eight amplitude segments as it was the most successful one and can be covered com-
pletly with eight plots. In Figure 8.13 we see the intensity and amplitude at different optimization
stages. At each stage one amplitude segment is sampled from a uniform distribution over [0.2, 0.8].
The intensity segment associated with this amplitude segment is then used to calculate the mean
squarred error (MSE) and compare it to the previous best MSE. If the new MSE is less than the
previous best MSE the previous best MSE is updated and the amplitude segment value is saved.
This procedure is repeated 500 times. Every time a new best value was found we saved the data.
For the diagrams we choose the four most separated iteration steps to visualize the process of the
optimization.

If we take a look at the succeeding segment from the currently optimized amplitude segment we
observe that these differ for different amplitude values and henceforth confirms that amplitude
values are not independent but affect subsequent segments.
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Figure 8.11.: Minimized intensity variance for different target intensities and number of
amplitude segments. We note heavy oscillations for amplitude segments greater than eight.

Failure

With the optimization showing reasonable convergence for eight amplitude segments we would
expect it to improve if we choose more amplitude segments, yet we observed heavy oscillations.
In this section we want to check the optimization process in the case of 32 amplitude segments
to investigate in the possible origins of the optimization failure. In Figure 8.14 we can see the
optimization progress for selected amplitude segments of the optimization run with 32 segments.
We observe that non-linear oscillations increase during the optimization process.

Summary

Our attemps to minimize the intensity variance where of mixed success. On the one hand we were
able to minimize the intensity deviation down to 100 mV, on the other hand we were not able to
train any model on the intensity response that would allow fast optimization or even predicition
of the expected intensity response given an amplitude configuration.

However, we also found that irregularities arise when increasing the number of amplitude segments.
We suspect that fast changes of the output amplitude draws power that may non-deterministically
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Figure 8.12.: Final result of the intensity variance minimization and the corresponding am-
plitude segment values obtained through random search with eight independent amplitude
segments.

affect the next clock cycle inside the DDS. Given that the one dimensional optimizations already
required multiple hours to run and the non-linear response between amplitude segments we do
not believe that it is not within the capabilites of our present setup to compensate for the two
dimensional intensity distribution measured in the previous chapter.
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Figure 8.13.: Intensity and amplitude at different stages of the optimization process. In
each column a different amplitude segment is optimized. The different traces in each plot
mark the respective iteration.
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Figure 8.14.: Optimization progress for the 2.,4.,6.,8.,10. and 20. amplitude segment of
the failed optimization run with 32 amplitude segments. We can see that with increasing
amplitude segments the non-linear response following the optimized amplitude segment
increases.
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Chapter 9.

Summary and outlook

We began this thesis with an introduction to the field of ultracold atoms in optical lattices and
motivated the need for local time-averaged optical potentials as an alternative to harmonic traps,
as well as a pathway for new potential dynamics. From there we dove into the physics of atoms in
optical lattices, in order to obtain an understanding of the requirements placed on our technical
implementation. In this context we found that the deflection of our optical perurbation needs to
operate on a time scale of about 100 kHz and that we need a tightly focused laser beam in order to
create high-precision perturbation potentials. Fortunately Hertlein has already proven in Ref. [12]
that our optical setup is capable of creating such high-precision beams in the atom plane. So we
were left with exploring the limitations of our electronic and acousto-optic setup.

In Chapter 6 we concluded that digital signal synthesis is in theory an ideal platform for us to
create a stable, phase continous, high-precision RF signal and in fact measurements in Chapter 7
have proven mostly good characteristics of the used AD9910 DDS. However, we also found that
our AD9910 implementation shows a signal delay when receiving an external trigger of up to
40 µs which is a deal breaker as we need to operate on time scales below 10 µs. Furthermore the
frequency resolution of the digital ramp may be too low to create spatially continous potentials
(depending on the lattice parameters) in the atom plane. Howsoever we need to recognize that
the AD9910 is sold as a general purpose DDS. It is likely that there are other DDS that suit our
demands better or that one can create an own DDS design using field programmable gate array
(FPGA).

In the second part of our work we investigated the characteristics of our 2D AOD. We found that
the AODs exhibit a non-linear response to the relative amplitude and frequency of the applied RF
signal. It remains open if it is the AOD to blame for or if there are electronic effects we did not
unveal. Evidence that points into the direction that there may be electronic defects contributing
to the non-linear characteristic of the AOD where found in Section 8.2 where we used a signal
generator to perform a frequency sweep and found differences in the diffraction efficiency spectrum.
We would like to check if these observed differences are due to different current characteristics.
So far we only measured the voltage amplitude of the amplified DDS where we did not observe a
significant frequency dependency.

We would also like to dig deeper into the theory of acousto-optics to check if there are any reports
of the observed characteristics and if there are workarounds. In addition we would find theoretical
evidence that our acousto-optics can handle the targeted time scales. It may be very well the
case that the speed of sound inside the acousto-optics is too slow to deflect the laser beam on
our required time scale. This would also explain the instability we observed in the attempt to
minimize the variance of the diffraction efficiency. Good literature that should answer these and
more questions can be found in Ref. [34] and Ref. [25].
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In case that the AODs do show theoretial limitations, or we can exclude electronic defects for
the observed characteristics and we need to accept these characteristics as given, we could also
investigate electro-optical deflectors (EOD)s. EODs utilize the electro-optical effect to deflect a
laser beam. Usually electrical fields are well understood and controllable, such that these do not
fall under the same limitations as the AODs, however EODs require high voltages which may
cause other problems.

Finally there are also interesting industrial applications to consider if the outstanding issues can
be resolved. For example the field of ophthalmologics covers a wide range of opportunities for
precision laser control like corrective eye surgeries which according to [35], [36] and [37] make use
of mechanical deflectors. Certainly there are also industrial applications in solid-state industries,
yet we did not check up closer.
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Glossary

AD9910 a direct digital synthesizer from Analog Devices.

SI International System of Units.
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Acronyms

1D one-dimensional.

2D two-dimensional.

3D three-dimensional.

AOD acousto-optic deflector.

AOM acousto-optic modulator.

CCD charge-coupled device.

CDF cummulative distribution function.

DAC digital to analog converter.

DDS direct-digital synthesizer.

FFT fast-fourier-transform.

FPGA field programmable gate array.

FWHM full width at half maximum.

H horizontal.

IQR interquartile range.

MOT magneto-optical trap.

MSE mean squarred error.

PLL phase-locked-loop.

RF radio frequency.
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RMD relative mean deviation.

RWA rotating wave approximation.

SMF single-mode optical fiber.

V vertical.

VCO voltage-controlled oscillator.

78



List of Figures

1.1. Apparatus of the cesium experiment. On the left-hand side an oven heats up the
cesium source. A 2D MOT generates a particle beam twoards the pipe running
through the Zeeman slower in the center. The Zeeman slower creates a magnetic
field gradient, such that the atoms are in resonance with a cooling laser antiparallel
to their flight direction. In the 3D MOT atoms are cooled even further until they
are transported to a glass cell where they are loaded into the optical lattice and the
actual experiments are conducted. Thank you to Till Klostermann and Hendrik v.
Raven for providing the cesium apparatus render. . . . . . . . . . . . . . . . . . . . 7

1.2. Simple square 2D optical lattice. The atoms (blue points) sit on their respective
lattice site created by the superposition of two periodic potentials. . . . . . . . . . 8

1.3. Simple square 2D optical lattice with local barrier potential. The local barrier po-
tential confines atoms inside the green box in a finite homogeneous lattice potential.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Simple square 2D optical lattice with local pot potential. The local potental pot
draws particles from the unperturbated lattice potential to a confined area. . . . . 11

2.1. Illustration of Gaussian beam parameters from Ref. [19] translated into English
with changed radius of curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Local pot potential and lattice potential in recoil energies. The pot potential is
created by targetting multiple focus points close to each other. Over average this
yields a kind of potential valley. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Local barrier potential and lattice potential in recoil energies. The barrier potential
is created by targetting two different focus points with the perturbation beam (first
two rows). If both focus points are targetted in a sufficiently short period an average
potential (last row) can be created. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. Probability density of the wave functions of the harmonic approximation of the
lattice potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Energy band structure for N = 51 lattice sites and various lattice potential depths
V0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. Minimum and maximum energy range for the first four energy bands with the energy
levels derived from the harmonic approximation. . . . . . . . . . . . . . . . . . . . 23

3.4. Nearest-neighbor hopping energy derived from the exact numerical calculations, the
tight-binding approximation and an analytical proxmity eq. (3.33). . . . . . . . . 25

3.5. Hopping energies for different neighbour ranges. . . . . . . . . . . . . . . . . . . . 26
3.6. Nearest-neighbor hopping energy as frequency and relative energy band differences

with respect as frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1. Drawing of the used 2D AOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Optical configuration of the power reduction section. . . . . . . . . . . . . . . . . 29
4.3. Optical configuration of the beam deflection section. . . . . . . . . . . . . . . . . . 30
4.4. Electronic setup used to control the electro-optic devices. . . . . . . . . . . . . . . 31
4.5. Block diagram of a PID feedback loop. . . . . . . . . . . . . . . . . . . . . . . . . 32

79



4.6. Communication setup of the electronic devices in the experimental setup. . . . . . 33
4.7. Text projection as captured by the CCD camera. . . . . . . . . . . . . . . . . . . 35

5.1. Time evolution of the uncontrolled laser intensity. . . . . . . . . . . . . . . . . . . 36
5.2. Optical setup and intensity detection. The beam hits Photodiode 2 which is con-

nected to the oscilloscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3. Long- and short-term measurement of the controlled intensity at different voltage

scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4. RMD of not-stabilized and actively stabilized long- and short-term measurement as

well an actively stabilized AOD intensity measurement. . . . . . . . . . . . . . . . 39
5.5. The beam is focused onto the CCD sensor of the camera. . . . . . . . . . . . . . . 39
5.6. Image of the focused laser beam measured with the CCD camera. . . . . . . . . . 40
5.7. One dimensional perpendicular cut of the two dimensional intensity distribution

from the two dimensional beam profile in Figure 5.6 with fitted gaussian curve. . 40

6.1. Signal flow through a simple DDS. The output frequency determines a phase step
∆ϕ by which the accumulator is incremented at each clock cycle. The value of the
phase accumulator is used for amplitude lookup of the desired output signal shape.
A DAC samples the output signal which then is filtered to smooth the discrete DAC
output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2. Signal outputs at different stages in a simple DDS. The phase accumulator is incre-
mented at each clock cycle by ∆φ. The phase accumulator value is used to lookup a
sinusoidal amplitude value that is supplied to a DAC. The final result is smoothed
using a filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3. Block diagram of the system clock generation from reference clock through PLL
and divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4. DDS architecture supporting modulation of frequency, amplitude and phase offset
parameters. Phase accumulator increment ∆ϕn(t) is now time dependent. The
phase offset ϕn(t) is also time dependent and is added as a last step to the phase
accumulator before supplied to the DAC. The time dependent amplitude parameter
An(t) is multiplied with the amplitude obtained from the lookup table. . . . . . . 44

6.5. Phase error for system model parameters in Table 6.1 when comparing phase accu-
mulator with 2N = 256 and 250 values. . . . . . . . . . . . . . . . . . . . . . . . . 45

6.6. Power transfer of the DAC according to the zero-order hold model with respect to
relative output frequency from zero to the Nyquist frequency fsys/2. In the second
plot we see the power transfer for the later operating range of the DDS. . . . . . . 47

6.7. Playback sample interval and total playback duration when using the complete 1024
memory points in dependency of the playback rate word P . . . . . . . . . . . . . 48

7.1. Idealized DDS signal output with constant frequency increments. The measured
window only captures a subset (gray) of the complete modulation (shades of blue). 51

7.2. Measurement setup of the synthesizer signal. By inserting a pulse generator in
between the trigger source and the oscilloscope we can delay the capture window
of the oscilloscope by the pulse width. . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3. Spectrogram of delayed time windows with width 100 µs of the DDS output sig-
nal configured to perform a linear frequency sweep. For an ideal linear sweep we
would expect a linear timeline of the frequency, instead we observe a discrete set of
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4. Most dominant frequency in the FFT spectrum for each (delayed) measurement
during a frequency sweep of the DDS. . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.5. Amplitude frequency response of the DDS signal sources for the H and V AOD.
The frequency increments are performed through the integrated digital ramp and
manually. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

80



7.6. Amplitude frequency response of the DDS signal after power amplification. In
comparison to the DDS we observe very small oscillations. . . . . . . . . . . . . . 56

7.7. Frequency transmission spectrum obtained via the network analyzer of the horzion-
tal and vertical amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.8. Signal reflection of the two different AOD when directly connected to the network
analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.9. Reflection at the direct-coupler output after amplification of the network analyzer
input signal for different amplifications with reference to 1 mW. We see that the
applied power does not affect the spectrum. . . . . . . . . . . . . . . . . . . . . . 59

7.10. Experimental setup to measure the reflection at the acousto-optic transducer. The
network analyzer supplies an input signal to the amplifier. The output signal of the
amplifier is connected through a directional coupler with the acousto-optic element.
The directional coupler allows to safely measure input and output reflection. . . . 59

7.11. Input power reflection when supplying the directional coupler with −10 dB m input
signal and reflection at the closed output of the directional coupler while other ports
are closed with 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.12. Reflection from amplified input signal and direct signal as well as transmission
spectrum from the amplifier. We can see that the better amplification left of 90 MHz
slightly changes the reflection spectrum of the AOD. . . . . . . . . . . . . . . . . . 60

8.1. Intensity distribution over linear frequency sweep at different configured DDS am-
plitudes for different individual AOD configurations. . . . . . . . . . . . . . . . . . 62

8.2. Intensity transmission of the H AOD in the H slot at maximum output amplitude
for different angles of the λ/2 plate. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.3. Intensity transmission of the V AOD in the V slot at maximum output amplitude
for different angles of the λ/2 plate. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.4. Intensity transmission of the H and V AOD at 100 MHz and maximum output
amplitude for different polarisation angles. . . . . . . . . . . . . . . . . . . . . . . 64

8.5. Intensity distribution at different amplitudes for tilted individual AODs. We observe
that the intensity decreases if the incident angle deviates from 90°. . . . . . . . . 64

8.6. Experimental setup used to measure the intensity transmission of the 2D AOD in
dependence of the configured DDS signal. . . . . . . . . . . . . . . . . . . . . . . . 65

8.7. Intensity measured as voltage at the photodiode in dependence of the horizontal and
vertical applied frequency signal to the AOD. The left map is obtained by enabling
the digital ramp on the horizontal DDS whereas the vertical DDS is configured to
output a constant frequency which is manually increased after each measurement.
On the right-hand side map the roles are exchanged. . . . . . . . . . . . . . . . . 66

8.8. Absolute difference between the 2D intensity distribution performed with the digital
ramp configured set to different axes. . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.9. Intensity measured as voltage at the photodiode in dependence of the horizontal
and vertical applied frequency signal to the AOD. Frequency pairs are sampled over
a uniform distribution and then passed as constant output frequency paramter to
the DDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.10. Intensity measured as voltage at the photodiode with one AOD at constant center
frequency supplied by a DDS and the other AOD performing a linear frequency
sweep with the DDS and a high-quality signal generator. . . . . . . . . . . . . . . 68

8.11. Minimized intensity variance for different target intensities and number of amplitude
segments. We note heavy oscillations for amplitude segments greater than eight. . 70

8.12. Final result of the intensity variance minimization and the corresponding amplitude
segment values obtained through random search with eight independent amplitude
segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.13. Intensity and amplitude at different stages of the optimization process. In each
column a different amplitude segment is optimized. The different traces in each
plot mark the respective iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

81



8.14. Optimization progress for the 2.,4.,6.,8.,10. and 20. amplitude segment of the failed
optimization run with 32 amplitude segments. We can see that with increasing am-
plitude segments the non-linear response following the optimized amplitude segment
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1. Elecronic circuit schematics of the trigger hub. The 3.3 V input signal is amplified
by the SN74128 line driver and outputed to four SubMiniature version A (SMA)
connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1. Focused camera with view on the balcony bars on the top of the university tower. 91
B.2. Focused camera with view on the weather cock on the top of the university tower. 92

82



List of Tables

2.1. Typical values for a Gaussian beam used to generate an optical lattice potential. . 16
2.2. Typical values for a Gaussian beam used to perturbate the optical lattice potential

reported by [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Parameters used for the lattice Hamiltonian matrix elements to calculate the energy
bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1. Interval and duration times of the short- and long-term measurement as well as a
typical AOD frequency sweep measurement. . . . . . . . . . . . . . . . . . . . . . 37

5.2. Descriptive statistics of not-stabilized and actively stabilized short- and long-term
intensity evolutions as well as a typical AOD frequency sweep measurement for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1. System parameters used for our simplified DDS model and used in the AD9910. . 43
6.2. Minimal and maximal playback parameters of the AD9910 according to eq. (6.18)

with fsys = 1 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3. Digital ramp register that control the frequency and their respective presicion. . . 49
6.4. Digital ramp limit registers for a frequency sweep from 80 MHz to 120 MHz. . . . 49
6.5. Digital ramp step registers for a frequency sweep from 80 MHz to 120 MHz with

duration Tramp = 260 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6. Time scales of the AD9910 imposed by the technical limits of the playback duration

time of the AD9910. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1. Experimental parameters used to inspect the output RF signal of the DDS. . . . . 52

83



List of Listings

4.1. Example usage of the Python module to control the setup. . . . . . . . . . . . . . 34

A.1. BBB script that starts a HTTP server to listen for requests on which to trigger a
rising edge signal. On execution it pulls the signal general purpose input output
(GPIO) to high. The request callback then pulls the GPIO to low for one 1 ms. . 89

84



Bibliography

[1] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. “Many-body physics with ultracold
gases”. In: Rev. Mod. Phys. 80 (3 July 2008), pp. 885–964. doi: 10.1103/RevModPhys.80.
885. url: https://link.aps.org/doi/10.1103/RevModPhys.80.885.

[2] Christian Gross and Immanuel Bloch. “Quantum simulations with ultracold atoms in optical
lattices”. In: Science 357.6355 (2017), pp. 995–1001. issn: 0036-8075. doi: 10.1126/science.
aal3837. eprint: http://science.sciencemag.org/content/357/6355/995.full.pdf.
url: http://science.sciencemag.org/content/357/6355/995.

[3] William D. Phillips. “Nobel Lecture: Laser cooling and trapping of neutral atoms”. In: Rev.
Mod. Phys. 70 (3 July 1998), pp. 721–741. doi: 10.1103/RevModPhys.70.721. url: https:
//link.aps.org/doi/10.1103/RevModPhys.70.721.

[4] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. “Optical Dipole Traps for
Neutral Atoms”. In: ed. by Benjamin Bederson and Herbert Walther. Vol. 42. Advances In
Atomic, Molecular, and Optical Physics. Academic Press, 2000, pp. 95–170. doi: https:
//doi.org/10.1016/S1049-250X(08)60186-X. url: http://www.sciencedirect.com/
science/article/pii/S1049250X0860186X.

[5] Matthew P. A. Fisher et al. “Boson localization and the superfluid-insulator transition”.
In: Phys. Rev. B 40 (1 July 1989), pp. 546–570. doi: 10.1103/PhysRevB.40.546. url:
https://link.aps.org/doi/10.1103/PhysRevB.40.546.

[6] D. Jaksch et al. “Cold Bosonic Atoms in Optical Lattices”. In: Phys. Rev. Lett. 81 (15 Oct.
1998), pp. 3108–3111. doi: 10.1103/PhysRevLett.81.3108. url: https://link.aps.org/
doi/10.1103/PhysRevLett.81.3108.

[7] Tin-Lun Ho and Qi Zhou. “Squeezing out the entropy of fermions in optical lattices”. In:
Proceedings of the National Academy of Sciences 106.17 (2009), pp. 6916–6920. issn: 0027-
8424. doi: 10.1073/pnas.0809862105. eprint: http://www.pnas.org/content/106/17/
6916.full.pdf. url: http://www.pnas.org/content/106/17/6916.

[8] Jean-Sébastien Bernier et al. “Cooling fermionic atoms in optical lattices by shaping the
confinement”. In: Phys. Rev. A 79 (6 June 2009), p. 061601. doi: 10.1103/PhysRevA.79.
061601. url: https://link.aps.org/doi/10.1103/PhysRevA.79.061601.

[9] Anton Mazurenko et al. “A cold-atom Fermi–Hubbard antiferromagnet”. In: Nature 545.7655
(2017), p. 462.

[10] Brian J. Roxworthy et al. “Application of Plasmonic Bowtie Nanoantenna Arrays for Optical
Trapping, Stacking, and Sorting”. In: Nano Letters 12.2 (2012). PMID: 22208881, pp. 796–
801. doi: 10.1021/nl203811q. eprint: https://doi.org/10.1021/nl203811q. url:
https://doi.org/10.1021/nl203811q.

[11] Richard Roy et al. “Rapid cooling to quantum degeneracy in dynamically shaped atom
traps”. In: Phys. Rev. A 93 (4 Apr. 2016), p. 043403. doi: 10.1103/PhysRevA.93.043403.
url: https://link.aps.org/doi/10.1103/PhysRevA.93.043403.

[12] Simon Hertlein. “Test setup for single–site manipulation using a 2D acousto-optic deflector””.
2017.

85

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
http://science.sciencemag.org/content/357/6355/995.full.pdf
http://science.sciencemag.org/content/357/6355/995
https://doi.org/10.1103/RevModPhys.70.721
https://link.aps.org/doi/10.1103/RevModPhys.70.721
https://link.aps.org/doi/10.1103/RevModPhys.70.721
https://doi.org/https://doi.org/10.1016/S1049-250X(08)60186-X
https://doi.org/https://doi.org/10.1016/S1049-250X(08)60186-X
http://www.sciencedirect.com/science/article/pii/S1049250X0860186X
http://www.sciencedirect.com/science/article/pii/S1049250X0860186X
https://doi.org/10.1103/PhysRevB.40.546
https://link.aps.org/doi/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.81.3108
https://link.aps.org/doi/10.1103/PhysRevLett.81.3108
https://link.aps.org/doi/10.1103/PhysRevLett.81.3108
https://doi.org/10.1073/pnas.0809862105
http://www.pnas.org/content/106/17/6916.full.pdf
http://www.pnas.org/content/106/17/6916.full.pdf
http://www.pnas.org/content/106/17/6916
https://doi.org/10.1103/PhysRevA.79.061601
https://doi.org/10.1103/PhysRevA.79.061601
https://link.aps.org/doi/10.1103/PhysRevA.79.061601
https://doi.org/10.1021/nl203811q
https://doi.org/10.1021/nl203811q
https://doi.org/10.1021/nl203811q
https://doi.org/10.1103/PhysRevA.93.043403
https://link.aps.org/doi/10.1103/PhysRevA.93.043403


[13] C. Gerry and P. Knight. Introductory Quantum Optics. Cambridge University Press, 2004.
isbn: 9781139453554. url: https://books.google.de/books?id=MDwgAwAAQBAJ.

[14] J. Jackson and J.D. Jackson. Wie Classical Electrodynamics, 3rd Edition, Intern Ational
Edition. John Wiley & Sons, Limited, 2005. isbn: 9780471427643. url: https://books.
google.de/books?id=XFyDkgEACAAJ.

[15] M. Bartelmann et al. Theoretische Physik 2. Springer Berlin Heidelberg, 2018. isbn: 9783662561164.
url: https://books.google.de/books?id=seqmswEACAAJ.

[16] Lea Boßmann. “On the Dipole Approximation”. 2016. url: http://www.mathematik.uni-
muenchen.de/~bohmmech/theses/Bossmann_Lea_MA.pdf.

[17] H.A. Bethe and E.E. Salpeter. Quantum mechanics of one- and two-electron atoms. Springer,
1957. url: https://books.google.de/books?id=1ZUuAAAAIAAJ.

[18] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. “Optical Dipole Traps
for Neutral Atoms”. In: Advances In Atomic, Molecular, and Optical Physics 42 (2000).
Ed. by Benjamin Bederson and Herbert Walther, pp. 95–170. issn: 1049-250X. doi: https:
//doi.org/10.1016/S1049-250X(08)60186-X. url: http://www.sciencedirect.com/
science/article/pii/S1049250X0860186X.

[19] Wikimedia Commons. File:Gaussian beam with german description.svg — Wikimedia Com-
mons, the free media repository. [Online; accessed 31-August-2018]. 2014. url: https://
commons.wikimedia.org/w/index.php?title=File:Gaussian_beam_with_german_
description.svg&oldid=143765578.

[20] Tim Rom. “Bosonische und fermionische Quantengase in dreidimensionalen optischen Git-
tern”. Dec. 2009.

[21] U. Rössler. Solid State Theory: An Introduction. Advanced Texts in Physics. Springer Berlin
Heidelberg, 2004. isbn: 9783540222446. url: https : / / books . google . de / books ? id =
qgU50X9vtIoC.

[22] Frederik Görg. “Ultracold Fermionic Atoms in Optical Superlattices”. Mar. 2014.
[23] Ulf Bissbort. “Dynamical effects and disorder in ultracold bosonic matter”. 2013. url: http:

//publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/28591.
[24] J. N. L. Connor et al. “Eigenvalues of the Schrödinger equation for a periodic potential

with nonperiodic boundary conditions: A uniform semiclassical analysis”. In: The Journal
of Chemical Physics 80.10 (1984), pp. 5095–5106. doi: 10.1063/1.446581. eprint: https:
//doi.org/10.1063/1.446581. url: https://doi.org/10.1063/1.446581.

[25] D. ROYER, S.N. Lyle, and E. Dieulesaint. Elastic Waves in Solids II: Generation, Acousto-
optic Interaction, Applications. Advanced Texts in Physics. Springer Berlin Heidelberg, 1999.
isbn: 9783540659310. url: https://books.google.de/books?id=q%5C_9rJYpgjZ0C.

[26] A Technical Tutorial on Digital Signal Synthesis. Analog Devices. url: https://www.ieee.
li/pdf/essay/dds.pdf.

[27] 1 GSPS, 14-Bit, 3.3 V CMOS Direct Digital Synthesizer. AD9910. Rev. D. Analog Devices.
May 2012. url: http://www.analog.com/media/en/technical-documentation/data-
sheets/AD9910.pdf.

[28] J. Vankka and K.A.I. Halonen. Direct Digital Synthesizers: Theory, Design and Applications.
The Springer International Series in Engineering and Computer Science. Springer US, 2013.
isbn: 9781475733952. url: https://books.google.de/books?id=-CsLCAAAQBAJ.

[29] L. Cordesses. “Direct digital synthesis: a tool for periodic wave generation (part 1)”. In:
IEEE Signal Processing Magazine 21.4 (July 2004), pp. 50–54. issn: 1053-5888. doi: 10.
1109/MSP.2004.1311140.

[30] B.G. Goldberg. Digital techniques in frequency synthesis. McGraw-Hill, 1996. isbn: 9780070241664.
url: https://books.google.de/books?id=oCtTAAAAMAAJ.

86

https://books.google.de/books?id=MDwgAwAAQBAJ
https://books.google.de/books?id=XFyDkgEACAAJ
https://books.google.de/books?id=XFyDkgEACAAJ
https://books.google.de/books?id=seqmswEACAAJ
http://www.mathematik.uni-muenchen.de/~bohmmech/theses/Bossmann_Lea_MA.pdf
http://www.mathematik.uni-muenchen.de/~bohmmech/theses/Bossmann_Lea_MA.pdf
https://books.google.de/books?id=1ZUuAAAAIAAJ
https://doi.org/https://doi.org/10.1016/S1049-250X(08)60186-X
https://doi.org/https://doi.org/10.1016/S1049-250X(08)60186-X
http://www.sciencedirect.com/science/article/pii/S1049250X0860186X
http://www.sciencedirect.com/science/article/pii/S1049250X0860186X
https://commons.wikimedia.org/w/index.php?title=File:Gaussian_beam_with_german_description.svg&oldid=143765578
https://commons.wikimedia.org/w/index.php?title=File:Gaussian_beam_with_german_description.svg&oldid=143765578
https://commons.wikimedia.org/w/index.php?title=File:Gaussian_beam_with_german_description.svg&oldid=143765578
https://books.google.de/books?id=qgU50X9vtIoC
https://books.google.de/books?id=qgU50X9vtIoC
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/28591
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/28591
https://doi.org/10.1063/1.446581
https://doi.org/10.1063/1.446581
https://doi.org/10.1063/1.446581
https://doi.org/10.1063/1.446581
https://books.google.de/books?id=q%5C_9rJYpgjZ0C
https://www.ieee.li/pdf/essay/dds.pdf
https://www.ieee.li/pdf/essay/dds.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9910.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9910.pdf
https://books.google.de/books?id=-CsLCAAAQBAJ
https://doi.org/10.1109/MSP.2004.1311140
https://doi.org/10.1109/MSP.2004.1311140
https://books.google.de/books?id=oCtTAAAAMAAJ


[31] A.V. Oppenheim, A.S. Willsky, and S.H. Nawab. Signals and Systems. Prentice-Hall signal
processing series. Prentice Hall, 1997. isbn: 9780138147570. url: https://books.google.
de/books?id=LwQqAQAAMAAJ.

[32] David T. Ashley et al. “On Best Rational Approximations Using Large Integers”. In: (2013).
url: http://esrg.sourceforge.net/docs/paper_brap_detailed.pdf.

[33] James Bergstra and Yoshua Bengio. “Random Search for Hyper-parameter Optimization”.
In: J. Mach. Learn. Res. 13 (Feb. 2012), pp. 281–305. issn: 1532-4435. url: http://dl.
acm.org/citation.cfm?id=2188385.2188395.

[34] Design and Fabrication of Acousto-Optic Devices. Optical Science and Engineering. Taylor
& Francis, 1994. isbn: 9780824789305. url: https : / / books . google . de / books ? id =
iGQvMUy3C0AC.

[35] Mark Bendett et al. “Method and apparatus for precision working of material”. US20180110655.
2018.

[36] Mark E. Arnoldussen et al. “Operator-controlled scanning laser procedure designed for large-
area epithelium removal”. US20180064579. 2008.

[37] Mark Bendett et al. “Apparatus and method for opthalmologic surgical procedures using a
femtosecond fiber laser”. US7131968. 2004.

[38] SN54128, SN74128 Line Drivers. Analog Devices. Mar. 1988. url: http://www.ti.com/
lit/ds/symlink/sn74128.pdf.

87

https://books.google.de/books?id=LwQqAQAAMAAJ
https://books.google.de/books?id=LwQqAQAAMAAJ
http://esrg.sourceforge.net/docs/paper_brap_detailed.pdf
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
https://books.google.de/books?id=iGQvMUy3C0AC
https://books.google.de/books?id=iGQvMUy3C0AC
http://www.ti.com/lit/ds/symlink/sn74128.pdf
http://www.ti.com/lit/ds/symlink/sn74128.pdf


Appendix A.

Electronics

A.1. Trigger hub

The trigger hub is driven by a 3.3 V input signal and a 5 V voltage source. The input signal is
amplified to drive four transistor-transistor logic (TTL) inputs through use of the SN74128 [38]
line driver. Furthermore the hub is designed to be mounted on the BBB which itself provides the
trigger network interface. The SN74128 exposes four independent outputs Y , each is driven by a
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Figure A.1.: Elecronic circuit schematics of the trigger hub. The 3.3 V input signal is
amplified by the SN74128 line driver and outputed to four SMA connectors.

two-input (A and B) with NOR (A+B = Y ) logic. As our objective is to forward rising edge
trigger signals we pulled all four B to low by connecting them with ground (GND). The four A
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where connected together with the input signal. The input signal has to transition from 1 to 0
in order to signal a rising edge trigger signal. Using the BBB makes it easy to write scripts that

1 var http = require('http')
2 var bone = require('bonescript')
3

4 const PIN = 'P8_15'
5

6 bone.pinMode(PIN, 'out')
7 bone.digitalWrite(PIN, 1)
8

9 http.createServer(function(req, res) {
10 bone.digitalWrite(PIN, 0)
11

12 setTimeout(function() {
13 bone.digitalWrite(PIN, 1)
14

15 res.end('OK')
16 }, 1)
17 }).listen(6200)

Listing A.1.: BBB script that starts a HTTP server to listen for requests on which to trigger
a rising edge signal. On execution it pulls the signal GPIO to high. The request callback
then pulls the GPIO to low for one 1 ms.

communicate with other devices over the LAN. We used the bonescript library to access the GPIO
interface as it is pre-installed on the BBB.
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Appendix B.

Calibration

Alterations of the laboratory environment combined with the exchange of components from the
original setup made it necessary to recalibrate the setup. In this chapter we want to document the
calibration steps required to reproduce the claimed results.

B.1. Fiber coupling

The visually shielded section of the setup, used to reduce the output power of the laser source,
is optically paired with the open section for beam deflection via a SMF that only permits two
orthogonal polarization and a single gaussian mode. By tuning the polarisator inside the power
reduction section we can try to match one of the orthogonal polarization modes supported by the
SMF. Polarization discrepancies cause the polarization inside the SMF to oscillate with vibrations
or changes in temperature, henceforth it is key to couple polarization modes in order to ensure
a stable operation. A strategy proven to find an approximate polarization match between the
laser beam and the SMF is presented. In addition to the setup described in Section 4.1.2 and
Section 4.1.2 an oscilloscope and a hot air gun were used.

1. Connect the photodiode to the oscilloscope and use a coarse time scale (i.e. 2 s).

2. Apply appropriate laser safety glasses and inform present personal of the imminent danger.

3. Open the cover of the power reduction setup.

4. Apply heat to the SMF through the hot air gun, alternatively you can try to move the fiber.

5. The photodiode signal should start to oscillate. Tune the polarizor inside the power reduction
subject to minimizing the oscillation.

The oscillations occur as the polarization circulates inside the fiber and will stop at some point
when a new equilbrium has been established. In this case remove the heat or mechanical stress
on the fiber and wait before you reapplying new impetus.

90



B.2. Beam alignment

Beams that pass off-centered through spherical lenses experience optical aberrations, additionally
uncentered beams may cause further optical defects from reflections or clipping at boundaries.
Since most changes to the optical setup outdate the previous beam alignment, hence making
the realignment a rather frequent procedure, we want to showcase what worked well for us. As
auxilliaries we used a pair of iris diaphragms that can be placed in front of the lens mounts as a
screen (i.e. a white sheet of hard paper). By placing both iris diaphragms towards the incident
beam on two successive lenses we we can visually find a center reference point by inspecting the
symmetry of the iris illumination at different pinhole diameters.

B.3. Camera focus

Finally we had to reposition the camera to focus the incoming beam on the CCD sensor of the
camera. Finding the precise focus position is not an easy undertaking. There is no sharp focal
spot but rather a focal area, however outside the focal area no image can be seen. We followed the
procedure described in [12] that consists of extracting the camera rail with its lens and focusing it
on a far distant object. In our case we choose the university tower as distant object. The window

Figure B.1.: Focused camera with view on the balcony bars on the top of the university
tower.

frame used by [12] was overgrown by trees at the time of writing. In Figure B.1 we can see the
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university tower as seen by a common digital camera. If we look careful on the left-hand side of
the tower top we discover a weathercock. In Figure B.2 we can see the weathercock on top of the

Figure B.2.: Focused camera with view on the weather cock on the top of the university
tower.

university tower as seen by the CCD camera at aligned focal position.

92



Declearation of authorship

Statutory declearation

I hereby declare that this thesis has been composed solely by myself except where indicated
otherwise by reference or acknowledgment.

The work presented has not been submitted, in whole or in part, in any previous application for
a degree.

Munich, September 7, 2018

93


	Introduction
	Optical potentials
	Atom-light interaction
	Dipole potential
	AC-Stark effect

	Laser light fields
	Gaussian beams

	Effective local potentials

	Characteristic energy scales
	Harmonic approximation
	Lattice structures
	Bloch states
	Energy band structure
	Wannier states
	Hopping energy
	Nearest-neighbor approximation

	Conclusion

	Experimental setup
	Optics
	Acousto-optic deflectors
	Setup

	Electronics
	Signal source
	Power amplifier
	PID controller
	Trigger source

	Communication
	Trial run

	Characterisation of the optical setup
	Intensity control
	Beam profile

	Digital signal synthesis
	Operating principle
	Clock generation
	Parameter modulation

	Quantization effects
	Frequency response
	Memory playback
	Digital ramp
	Frequency and time resolution

	Characterisation of the electronic setup
	Digital signal synthesizer
	Power amplifier
	Acoustic transducer
	Reflection spectrum


	Characterisation of the acousto-optic deflectors
	Difference between individual acousto-optic deflectors
	Individual acousto-optic deflectors

	2D intensity distribution
	Diffraction efficiency optimization

	Summary and outlook
	Glossary
	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Electronics
	Trigger hub

	Calibration
	Fiber coupling
	Beam alignment
	Camera focus


