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SUMMARY

Pluripotent stem cells can self-renew in culture and
differentiate along all somatic lineages in vivo. While
much is known about the molecular basis of pluripo-
tency, the mechanisms of differentiation remain un-
clear. Here, we profile individual mouse embryonic
stem cells as they progress along the neuronal line-
age. We observe that cells pass from the pluripotent
state to the neuronal state via an intermediate
epiblast-like state. However, analysis of the rate at
which cells enter and exit these observed cell states
using a hidden Markov model indicates the presence
of a chain of unobserved molecular states that each
cell transits through stochastically in sequence.
This chain of hidden states allows individual cells
to record their position on the differentiation trajec-
tory, thereby encoding a simple form of cellular
memory. We suggest a statistical mechanics inter-
pretation of these results that distinguishes between
functionally distinct cellular ‘‘macrostates’’ and func-
tionally similar molecular ‘‘microstates’’ and propose
a model of stem cell differentiation as a non-Markov
stochastic process.

INTRODUCTION

Two distinct pluripotent states are found in the pre-gastrulation

mouse embryo: a naive pluripotent state that emerges from the

inner cell mass of the blastocyst between E3.5 and E4.5 and a

primed pluripotent state that emerges after implantation of the

blastocyst into the uterus wall at E5.5 (Nichols and Smith,

2009). During this naive-to-primed pluripotency transition, cells
268 Cell Systems 5, 268–282, September 27, 2017 ª 2017 The Autho
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undergo dramatic changes to their signaling requirements, tran-

scriptional regulatory control mechanisms, and global epige-

netic status (Nichols and Smith, 2009). Thesemolecular changes

are accompanied by morphological changes of the pluripotent

tissue in vivo (Tam and Loebel, 2007).

Following this transition, cells become increasingly suscepti-

ble to the spatially coded differentiation cues that determine

the foundation of the principal germ layers in the body. A variety

of molecular mechanisms regulate this susceptibility in order to

prevent premature lineage commitment and enable the correct

formation of the egg cylinder, including the regionalization of

the extra-embryonic endoderm and hence the foundation for

the formation of differential signaling gradients across the em-

bryo during gastrulation (Tam and Loebel, 2007).

At this stage, the timely release of pluripotency maintenance

mechanisms is just as important as the gain of lineage-specific

characteristics (Betschinger et al., 2013; Nichols and Smith,

2009; Turner et al., 2014), and appropriate differentiation is regu-

lated by the balance of these two processes. However, despite

recent interest in this problem (Moris et al., 2016; Semrau

et al., 2016; Hormoz et al., 2016), the dynamics of exit from the

pluripotent state at the individual cell level are only partially

understood.

In particular, while it is known that stochastic fluctuations in

key transcription factors have an important role in the early

stages of differentiation (Chambers et al., 2007; Toyooka

et al., 2008; Hayashi et al., 2008; Abranches et al., 2014), it is

not yet clear if cellular responses to these fluctuations are

also stochastic or if this inherent molecular stochasticity is buff-

ered and differentiation progresses in a deterministic way

through a continuum of intermediary cell states (MacArthur

et al., 2012; Moris et al., 2016; Semrau et al., 2016; Hormoz

et al., 2016).

Previous reports have sought to approach these issues by

using mathematical and computational models to dissect the

structure and function of the gene regulatory networks that
rs. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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underpin specific cell identities and differentiation events (M€uller

et al., 2008; MacArthur et al., 2012, 2009; Dunn et al., 2014) or by

considering differentiation in more abstract terms using notions

from dynamical systems theory, for example as a noise-induced

or driven transition between attractor states (Ridden et al., 2015;

Chang et al., 2008; Mojtahedi et al., 2016; Richard et al., 2016;

Furusawa and Kaneko, 2012).

Both of these approaches have advantages and disadvan-

tages: the first focuses on details and therefore aims to provide

understanding of the molecular mechanisms that regulate spe-

cific cell-fate transitions, yet relies either on possession of a

good a priori understanding of key molecular drivers or a robust

way to infer them from data, and is not well equipped to separate

lineage-specific details frommore general mechanisms that may

be active in other contexts. By contrast the second focuses on

principles, and therefore aims to provide a general way to under-

stand cell-fate transitions in the absence of detailed molecular

regulatory information yet is not well equipped to dissect the

specifics of any particular fate transition.

Here, we sought to combine these two approaches by

profiling awell-defined transition in detail, and then using a range

of different mathematical modeling and analysis methods to

examine the resulting data. Using this integrative approach, we

explore how pluripotency regulatory networks are reconfigured

during the early stages of embryonic stem cell (ESC) differentia-

tion along the neural lineage and propose a general view of stem

cell lineage commitment that uses notions from statistical me-

chanics to distinguish between unobserved internal molecular

‘‘states’’ and observable cell ‘‘types.’’

RESULTS

Differentiation In Vitro Recapitulates Developmental
Dynamics In Vivo

Starting from the pluripotent ground state in leukemia inhibitory

factor (LIF) + 2i conditions, the closest in vitro equivalent to the

naive pluripotent state of the pre-implantation epiblast (Ying

et al., 2008), we directed differentiation of mouse ESCs in

mono-layer culture toward the neuroectoderm using a well-es-

tablished protocol (Ying et al., 2003; Bain et al., 1996). This tran-

sition was chosen since it has previously been shown to induce

robust and reliable differentiation (Ying et al., 2003; Abranches

et al., 2009) and therefore serves as a good model system to

examine the kinetics of the exit from pluripotency and the gain

of acquired lineage characteristics.

To determine the global molecular dynamics of differentiation,

mRNA expression changeswere assessed viamicroarray of bulk

cell material, andmorphological and protein expression changes

were examined by immunostaining (Figure 1A). To extract gen-

eral rather than cell-line-specific processes, we conducted two

biological replicates, starting with ESCs derived from mice with

different genetic backgrounds (R1 and E14tg2a [E14] strains).

We observed that in both cases, cells of the starting popula-

tion abundantly expressed proteins related to the pluripotent

state (Figures 1B, S1A, and S1B), while at the final time point

of the differentiation trajectory (168 hr), cells were marked pri-

marily by neuronal stem cell marker Sox1 and early neuronal

marker Tubb3 (Figures 1B, S1C, and S1D), indicating a predom-

inantly neuroprogenitor cell (NPC) phenotype.
To better understand the dynamics of the transition from the

ESC state to the NPC state, we constructed a supervised

machine-learning classifier that compares the observed gene

expression patterns with those from a training library of 161

cell-type-specific gene expression profiles curated from the liter-

ature (for complete list, see Table S1) and produces a similarity

score for each lineage based upon our previously published

methodology (Lenz et al., 2013).

This analysis revealed a gradual loss over time of gene expres-

sion characteristics associated with pluripotency and early

development, and a sequential emergence of gene expression

patterns related to the neural tube and brain development, in

accordance with the appropriate mouse developmental stages

(Figures 1C and S2 and Table S2). In particular, we observed

that gene expression patterns became increasingly similar to

those seen during specific stages of the head and ventral fore-

brain development (E9.5–E16.5), while similarity to tissues of

mesodermal and endodermal origin was either consistently low

or progressively reduced over time.

Complementary analysis of global gene expression changes

identified 1,726 differentially expressed genes throughout the

time course with substantial overlap between the two cell

lines (Figures S1F–S1H). Among those 877 consistently upre-

gulated genes, annotation terms for brain tissue and neuron dif-

ferentiation were significantly over-represented (p = 8.1 3 10�3

and p = 2.9 3 10�8 false discovery rate [FDR] corrected,

respectively), while annotations for ESC and stem cell mainte-

nance were enriched among the 849 downregulated genes

(p = 1.7 3 10�3 and p = 8.9 3 10�3 FDR corrected, respec-

tively) (Table S3).

These results indicate the induction of appropriate, and

broadly similar, differentiation programs in both cell lines. How-

ever, subtle differences in gene expression changes between

cell lines were also apparent, indicating the initiation of slightly

different developmental programs. For instance, expression of

Otx2, a transcription factor expressed in both primed pluripotent

cells (Acampora et al., 2013) and in the developing anterior brain

(Simeone et al., 1992), occurred only transiently during the first

48 hr of differentiation in E14 cells, while expression was sus-

tained in R1 cells (Figure 1D). Concomitant with this, expression

of Gbx2, an antagonist Otx2 during the formation of the mid/

hindbrain junction (Millett et al., 1999; Broccoli et al., 1999),

was subsequently induced in E14 but not in R1 cells (Figure 1D),

suggesting a slight specification bias intrinsic to each cell line

(see also Figure S1I).

These minor differences notwithstanding, taken together

these analyses indicate that differentiation in vitro reliably reca-

pitulates developmental dynamics in vivo.

Differentiation Progresses through an Intermediary
Metastable State
To investigate the dynamics of differentiation further, we sought

to monitor differentiation dynamics at the single-cell level. To do

so, gene expression changes for 96 pre-selected genes of inter-

est (including regulators of pluripotency and neuronal differenti-

ation, as well as epigenetic and cell-cycle regulators, see Table

S4) were recorded periodically over the course of the time series

within individual cells using a high-throughput RT-PCR array

(Figures 1A, 1E, and 2A).
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Figure 1. Differentiation In Vitro Recapitulates Development In Vivo

(A) Schematic of the experimental design.

(B) Immunostaining for pluripotency markers Oct4 and Nanog from cells at the start of the experiment (left panels, scale bars 50 mm) and neuronal markers

Tubb3b and Sox1 at the end of the experiment (right panels, scale bars 200 mm).

(C) Comparison of global gene expression profiles with a training library shows loss of pluripotency characteristics and progressive gain of neuronal charac-

teristics. Comparisons with the 20 most similar/dissimilar lineages are shown. The full comparison is shown in Figure S2.

(D) Loss of pluripotency markers and gain of neuronal lineage markers assessed by RT-PCR.

(E) Single-cell data show a gradual drift from the ESC state to the NPC state.

(F) Projection of the data onto the first two principal components reveals the presence of a transient intermediate state during differentiation. Color indicates

sampling time. Solid lines show mean trajectories for each cell line.

(G) Gene loadings for the first two principal components indicates that the intermediate state is a primed epiblast-like state. Throughout this figure, data for the R1

cell line are given in blue, and data for the E14 cell line are given in purple.
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Figure 2. Differentiation Is Accompanied by Regulatory Network Re-configurations and an Increase in Cell-Cell Variability
(A) Bean plots of expression changes of key genes from single-cell RT-PCR data.

(B) Single cell expression data naturally cluster into three distinct groups. Data are projected onto the first two principal components, determined independently

for each cell line. Color indicates classification according to k-means clustering with three clusters.

(C) Assessment of cluster quality using the GAP statistic (Tibshirani et al., 2001). The most natural partition of the data is associated with the ‘‘elbow’’ in this plot,

here at three clusters highlighted in red. Bars show SEs. Data for the E14 cell line is in black; data for the R1 cell line is in gray.

(D) Microarray expression data also naturally clusters into three groups.

(E) Regulatory network inferred from single-cell data has three distinct modules that are active at different times during differentiation. Boxplots to the right show

the distributions of PID scores, which measure edge importance (see STAR Methods), for all edges in each cluster at early and late times; all the data points are

shown beside the boxes. Significant changes in PID scores indicate differential expression of the module over time. p values were obtained using a Wilcoxon

rank-sum test.

(F) Genes with high degree are likely important for consolidating cellular identities in each state. Genes with high betweenness centrality are likely important in the

transition between states. Dotted lines show the 90th percentile.

(legend continued on next page)
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Hierarchical clustering of the data largely captured the natural

ordering by sampling time, indicating a gradual progression of

cellular identities away from the ESC state toward the NPC state

(Figure 1E).

Dimensionality reduction using principal component (PC)

analysis suggested that cells do not move directly from the

ESC state to the NPC state but rather pass through a transitory

intermediate state characterized by particular combinatorial pat-

terns of gene expression (Figure 1F). Analysis of the contribution

of the gene loadings to each of the first two PCs revealed that the

dynamics may be decomposed into two distinct molecular pro-

cesses (Figure 1G): PC1 associates with the transition from the

ground state of pluripotency toward the neuronal lineages (reg-

ulators of the ground state ESC identity such as Pou5f1, Nanog,

Esrrb, Zfp42, Klf4, Tbx3, Nr0b1, and Myc are negatively associ-

ated with this component; while genes associated with the NPC

identity such as Nestin, Rai1, Pax6, and Cdh2 are positively

associated); while PC2 associates with the process of epiblast

maturation (regulators of the primed epiblast that forms the

egg cylinder, such as Otx2, Fgf5, Cd34, and Cldn6 as well as

generic epigenetic regulators such asUtf1 andDnmt3b are posi-

tively associated with this component; while characteristic

neuronal genes such as Vim and Tubb3 are negatively associ-

ated) (see Figure 1G).

These analyses affirm similar dynamics seen in previous

studies (Abranches et al., 2009; Boroviak et al., 2014; Kalkan

and Smith, 2014) and indicate that differentiation progresses

through three phenotypically distinct cell states: from the ground

state of pluripotency to a primed epiblast-like state before the

commitment to neural lineage is specifically made.

To further determine if this partition into three states is a strong

feature of the data, we also conducted k-means clustering for

2–10 clusters and analyzed cluster qualities using the GAP sta-

tistic, a simple metric that compares the within-cluster variability

present for a given clustering to that expected from appropriate

randomization (Hastie et al., 2001), in order to identify natural

clustering patterns in the data. This analysis revealed the pres-

ence of three robust clusters in the data (characterized by naive

pluripotency, epiblast, and neural progenitor markers, respec-

tively) and thereby confirmed that the biologically intuitive parti-

tion of differentiation into three distinct phases is a natural

feature of data (Figures 2B–2D and S3A).

Taken together, this analysis suggests that ESC differentiation

along the neuronal lineage progresses via two transitions

through three biologically distinct cell states.

Cell-State Changes Are Accompanied by Regulatory
Network Reconfigurations
Having identified three robust cell states, we wanted to better

understand the transcriptional changes that occur as cells

move from one state to another and to identify functional rela-
(G) Cell-cell variability, as assessed by multivariate dispersion (see STAR Metho

rank-sum test.

(H) Shannon entropy, as a measure of gene expression variation, increases mono

entropy changes for all genes measured; line plots show mean entropy over al

variability in the middle of the time course (green); at the end of the time course (re

boxplots, boxes show first and third quartiles about the median, whiskers extend

are shown as outliers above or below boxes.
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tionships between genes that mediate these transitions. We

reasoned that if two genes are co-regulated, or if one gene reg-

ulates the other, then we would observe coordinated changes in

the expression levels of these genes over time. We therefore

sought to infer a putative regulatory network from the data in

order to better understand any patterns in these coordinated

changes.

Here, by the term ‘‘regulatory network,’’ we refer to the set of

(co-)regulatory relationships between genes that are active

under a given experimental condition or at a specific develop-

mental stage, rather than the complete set of all possible phys-

ical gene-gene interactions that are hardwired in the genome.

These relationships will, of course, vary over time as cells prog-

ress through development, resulting in re-configuration of the

inferred network structure.

To infer regulatory network reconfigurations, we assumed that

gene interactions that are actively involved in driving develop-

mental progression would result in observable changes in cell

transcriptional states and induce statistical dependencies in

the expression patterns of the interacting genes. To identify

these coordinated changes, we made use of information-theo-

retic measures that enable the identification of non-linear statis-

tical relationships between variables (here, genes), and are

therefore substantially more powerful than traditional correla-

tion-based network inference approaches (McMahon et al.,

2014). In particular, we used the partial information decomposi-

tion (PID), a recently derived method to examine the statistical

relationships between three or more variables that provides a

more detailed description of statistical relationships than stan-

dard information-theoretic measures such as pairwise mutual

information (Williams and Beer, 2010).

Our PID-based algorithm assigns a score to each potential

gene-gene interaction, indicating the strength of statistical asso-

ciation, which we interpret to be evidence of a putative functional

relationship, and selects only those interactions that pass a strin-

gent selection criterion. A full discussion of our method may be

found in the companion paper to this article, also published in

this edition of Cell Systems (Chan et al., 2017). Summary details

are provided in the STAR Methods.

This analysis revealed a network enriched with connections

between known regulators of pluripotency and neuronal differ-

entiation (Figure 2E). To dissect how regulatory interactions

change over time, we applied this method to different subsets

of the data: to infer interactions important for the early stages

of differentiation, we used data from cells identified as being in

the ESC and epiblast-like (EPI) states; to identify interactions

important for the later stages of differentiation, we used data

from cells identified as being in the EPI or NPC states (individual

cells were identified as being in the ESC, EPI, or NPC state via

k-means clustering, as described above). We selected these

subsets comprising pairwise combinations of cell states to
ds), increases over the time course. p values were obtained using a Wilcoxon

tonically in the R1 cell line and transiently in the E14 cell line. Heatmaps show

l genes measured at each time point. Side bars show genes that increase in

d); and those that lose variability at the end of the E14 time course (blue). In all

to 1.5 times the interquartile range from the box. Data points beyond whiskers



ensure that each subset includes cells at a variety of stages of

the developmental transition in question (either ESC to EPI, or

EPI to NPC), providing the heterogeneity necessary to detect

statistical dependencies between observed gene expression

states. This analysis revealed strong clustering of edges accord-

ing to their temporal importance (as colored in Figures 2E

and S3B).

To investigate this clustering further, we then identified regula-

tory modules within the network using an unsupervised commu-

nity detection algorithm that identifies modules across different

scales without assuming a fixed number of modules in advance

(Delvenne et al., 2010).

This analysis revealed the presence of seven regulatory mod-

ules (Figure S3B), three of which displayed significant changes in

activity over time (Figure 2E). Genes in module 1 are primarily

associated with the ground state of pluripotency (see Table S4

for gene annotations) and reduce substantially in expression dur-

ing the early stages of differentiation. Genes in module 2 are pri-

marily associated with the primed epiblast-like state and are

generally transiently upregulated toward the middle of the time

series and downregulated from approximately 72 hr onward.

Genes in module 3 are primarily associated with neuroectoderm

differentiation, and generally increase in expression throughout

the time course.

While most genes within each of these threemodules primarily

display strong intra-module connectivity (that is, they connect

strongly to other members of the same module but weakly to

members of different modules), some genes such as Zfp42,

Fgf5, Fgf4, andNestin also showed high inter-module connectiv-

ity (as assessed by betweenness centrality, a simple measure of

node importance; see Newman (2010) and STARMethods), sug-

gesting a potential role for these genes in coordinating the tran-

sitions between states (Figure 2F). In contrast, those genes that

form the hubs of their respective modules, such as Esrrb, Tbx3,

Dppa4, and Pou5f1 (Figure 2F) may be involved in the mainte-

nance or consolidation of one particular cell state.

Collectively, these results reaffirm that the early stages of dif-

ferentiation progress through two distinct pluripotent states and

indicate that coordinated changes in regulatory network struc-

ture accompany these cell-state changes.

Gene Expression Variability Increases during
Differentiation
Once we had identified these three states, we sought to better

understand the dynamics of cellular transitions between states.

We reasoned that if cells pass from one state to another in a

coordinated deterministic way at a constant rate, then the initial

cell-cell variability present in the population would propagate

with time and therefore remain approximately constant through

the time series. Alternatively, if cells progress in an uncoordi-

nated, stochastic way from one state to another, then cell-cell

variability would increase over time.

To investigate this, we estimated the total dispersion within the

population at each time point from the single-cell expression

data. Dispersion is a multivariate measure of cell-cell variability

that takes into account the variability of each gene as well as

the patterns of covariance between genes (see STAR Methods).

This analysis revealed a significant increase in cell-cell variability

over time (Figure 2G).
To investigate this increase further,we also estimated the Shan-

non entropy of expression for each gene at each time point, as a

simple measure of expression variability (MacArthur and Le-

mischka, 2013; Richard et al., 2016). We found that while some

genes remain relatively homogeneously expressed throughout

the experiment (see bottom cluster in Figure 2H), others showed

substantial changes in variability. Typically, these changes

occurred either immediately upon the exit from pluripotency and

persisted through the middle of the time course (highlighted with

green sidebar inFigure2H), or arose in the latter stagesof commit-

ment (highlighted with red side bar in Figure 2H). Patterns of varia-

tionwere generally consistent between the two cell lines (compare

the twoheatmaps inFigure2H,whichuse thesamegeneordering),

indicating that the observedchanges ingeneexpressionvariability

are intrinsic characteristics of the differentiation process.

To investigate how global patterns of variability changed over

time, we also calculated the mean entropy of gene expression at

each time point in both cell lines.We observed a general increase

in mean entropy as differentiation progressed in the R1 cell line,

and a transient increase at the exit from pluripotency in the E14

cell line (Figure 2H).

While the reason for this disparity is not fully clear, it appears to

reflect slight differences in the kinetics of the entry to the

neuronal state. For example, there is a panel of genes—which in-

cludes some important regulators of pluripotency including

Pou5f1 (also known as Oct4), Nanog, and Lif, as well as Otx2,

a regulator of both the primed pluripotent state and anterior brain

development—that become more homogeneously expressed at

the end of the time course in the E14 cell line, yet are relatively

heterogeneously expressed in the R1 line (see blue highlight

bar in Figure 2H).

This difference in variability relates to differences in the loss of

expression of these genes in the two cell lines. For instance,

although expression of Pou5f1 is quickly lost between 72 and

96 hr in most cells from both cell lines (see Figure 2A), a small re-

sidual population of cells retained Pou5f1 expression in the R1

line to 168 hr, while expression was entirely lost in the E14 line

beyond 96 hr. These differences suggest that the E14 cell line

consolidates the neural progenitor identity slightly earlier than

the R1 line, and this earlier consolidation is revealed as a loss

of cell-cell variability toward the end of the E14 experiment.

Taken together, these analyses indicate that cell-cell variability

increases upon the exit from the pluripotent state. It is likely that

the early increase in cell-cell variability is due to a stochastic

response to the release of the stringent constraints that 2i culture

conditions impose on the cells. Since similar increases in cell-cell

variability have been observed during differentiation in other

mammalian systems (Richard et al., 2016; Mojtahedi et al.,

2016; Semrau et al., 2016), itmay also reflectmore genericmech-

anisms such as the ‘‘flickering’’ that is often found in stochastic

systems passing through a critical point (Scheffer et al., 2009).

These results indicate that while all cells are exposed to the

same differentiation cues, cellular differentiation in response to

these cues progresses in an uncoordinated and apparently sto-

chastic way.

A Stochastic Model of Stem Cell Differentiation
In summary, our statistical analysis confirmed the widely

accepted model that differentiation progresses through three
Cell Systems 5, 268–282, September 27, 2017 273



Box 1. Mathematical Models

Let pA(t), pB(t), and pC(t) be the probabilities that a randomly selected cell is in the ESC, EPI, or NPC state, respectively, at exper-

imental time t. Assuming that all cells within a given state behave in the same way and transitions between states occur indepen-

dently at constant average rates, these dynamics are described by the following set of equations:

dpA

dt
= � q1pA; (Equation 1)

dpB

dt
=q1pA � q2pB; (Equation 2)

dpC

dt
=q2pB; (Equation 3)

where q1 and q2 are transition probabilities per unit time, and we assume that pA(0) = 1 and pB(0) = pC(0) = 0 (i.e., all cells start in the

ESC state). This model, which assumes that cells within each observable state are homogeneous with respect to their differenti-

ation potential, does not describe the data well (see Figure 3A).

This suggests that either: (1) cells do not transit independently at a constant average rate from one state to the next, but rather

transition rates are affected by paracrine feedback mechanisms within the developing colony; or (2) individual cells within each

observable state are not interchangeable, but rather are distinguished from one another with respect to some intrinsic hidden

variables.

A natural variation that accounts for the first option is to allow residual undifferentiated ESCs in the population to inhibit the further

differentiation of cells from the EPI to NPC state. Details of this model are given in the STAR Methods. Although this is a plausible

mechanism, we found that it does not describe the data well (see Figures 4A–4C), suggesting that paracrine effects are not pri-

marily responsible for the deviation from first-order kinetics that we observe.

To account for the second option, we modified the first-order model to allow each observable ‘‘macrostate’’ to conceal a directed

chain of ‘‘microstates’’ (see Box 2 for detailed definitions of microstates and macrostates). Let pn be the probability that a cell is at

microstate n at time t. For simplicity, we assume that the cells transition independently from one microstate to the next on average

at the same rate and transitions are irreversible. In this case, the dynamics of the hidden Markov process are given by

dp0

dt
= � qp0; (Equation 4)

dpn

dt
=qðpn�1 � pnÞ for n= 1.N� 1; (Equation 5)

dpN

dt
=qpN�1: (Equation 6)

where q is the transition probability per unit time, with pn(0) = dn0, where d is the Kronecker delta function (i.e., all cells start in the first

microstate), and we have assumed that the chain contains N+1 microstates in total.

This model is simply a homogeneous Poisson process, and may be solved exactly to give

pnðtÞ= ðqtÞn
n!

e�qt = fðn;qtÞ for 0%n<N; (Equation 7)

pNðtÞ= 1�
X
n= 0

N�1

pnðtÞ; (Equation 8)

where f(n;qt) is the Poisson probability density function.

Assuming that microstates 0, 1, 2,., nA identify with the ESC state, microstates nA + 1, nA + 2,., nB identify with the EPI state, and

microstates nB + 1, nB + 2,., N identify with the NPC state, the observed probabilities,

pAðtÞ=
XnA
n= 0

pnðtÞ; pBðtÞ=
XnB

n=nA + 1

pnðtÞ; pCðtÞ=
XN

n= nB + 1

pnðtÞ; (Equation 9)

may also easily be found as

(Continued on next page)
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Box 1. Continued

pAðtÞ=FðnA;qtÞ; pBðtÞ=FðnA;qtÞ � FðnB;qtÞ; pCðtÞ= 1� FðnB;qtÞ; (Equation 10)

where F(n;qt) is the Poisson cumulative distribution function. The dynamics of this model are illustrated in Figures 3E and 3F.

The assumption of reversibility in the microscopic dynamics may be relaxed at the expense of introducing an extra model param-

eter. Doing so does not substantially improve model fit (see Figure 4F) and results in estimates of forward transition rates that are

approximately 100–200 times larger than reverse transition rates, indicating that differentiation is a strongly directional process.

Details of a reversible version of this model are given by Equations 14–16 in the STAR Methods.

A central feature of our hiddenMarkovmodel is that it allows cell-cell variability to develop due to the inherently stochastic nature of

the differentiation process. However, it is also plausible that at least some of the variation seen during differentiation is due to deter-

ministic propagation of initial cell-cell variability. Details of a closely related continuum model that accounts for this ‘‘conveyor-

belt’’-like process are also given in the STAR Methods. This model is also able to explain the data well, although at the expense

of a larger number of free parameters (see Figures 4D and 4E and Discussion).

A schematic illustrating all of the models we considered is given in Figure B1.

A B

C D

critical points

Figure B1. Schematic of Mathematical Models

We consider four classes of model: (A) differentiation obeys first-order kinetics. This model is given by Equations 1–3 in the text. (B) Differentiation from the EPI

state to the NPC state is inhibited by residual ESCs in the colony. This model is given by Equations 11–13 in the STARMethods. (C) Differentiation is described

by a hidden Markov process. This model is given by Equations 4–6 and 10 in the text. A minor variation to allow reversible dynamics is given by Equations 14–

16 and 17 in the STAR Methods. (D) Differentiation is described by a continuous ‘‘conveyor-belt’’ process in which initial variability propagates forward at

constant speed. This model is given by Equation 18 in the STAR Methods. In all panels, orange denotes cells in the ESC state; green denotes cells in the EPI

state; purple denotes cells in the NPC state.
functional cell states: from the initial ESC state, to a primed EPI

state, and then on to the final NPC state (Abranches et al., 2009;

Boroviak et al., 2014; Kalkan and Smith, 2014).

However, the increase in cell-cell variability we observed also

indicated that cells do not synchronize their transitions through

these states. Rather it appeared that individual cells progress

in an uncoordinated, stochastic manner. We reasoned that this

inherent stochasticity might be important, yet the mechanisms

by which it is regulated were not clear.

To investigate further, we sought to construct a series of

mathematical models to explore the process of differentiation

further (see Box 1 for details). To do so, we first assigned each

cell in the time course to either the ESC, EPI, or NPC state based

upon our cluster analysis (see above, Figure 2B and STAR

Methods). Since each cell also comes with a time label (the

time at which it was sampled), we were able to use these two

labels to monitor and model how the proportion of cells in the

ESC, EPI, and NPC states changed over time as differentiation

progressed.
In our first, most basic, model we assumed that cells are

initially held in the naive pluripotent state when cultured in 2i con-

ditions, yet once these extrinsic constraints are released, cells

progress stochastically from one state to the next at constant

average rates (see schematic in Figure 3A and details in

Box 1). We found that this first model does not describe the

data well (Figure 3A), since it allows cells to transition quickly

through the ESC, EPI, and NPC states, yet we observed that

the first pioneer neurons emerge in vitro only after 72–96 hr (Fig-

ure S1C), corresponding to the same phenomenon in mouse

corticogenesis from E8.5 onward (Stainier and Gilbert, 1990).

Thus, while the majority of cells accumulate in the EPI state

around 72 hr in experiments, the model cannot account for this

accumulation.

This suggested that individual cells within each state are not

interchangeable with respect to their differentiation potential,

but rather are distinguished from one another with respect to

some hidden (that is, unmeasured) variables. To better under-

stand the observed dynamics, we therefore constructed a range
Cell Systems 5, 268–282, September 27, 2017 275
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Figure 3. Data Fitting to a Hidden Markov Model Reveals the Presence of Cellular Microstates

(A) Fit of data to Equations 1–3. Data are in blue; mean and 95% confidence intervals about the mean from bootstrapped k-means clustering are shown. This

memoryless stochastic process does not describe the data well.

(B) Fit of data to Equation 10. Data are in blue; mean and 95% confidence intervals about the mean from bootstrapped k-means clustering are shown. Data are

well described by this stochastic process with memory.

(C) Wait-time distribution in the ESC and EPI states. Full lines show E14 data, dotted lines show the R1 data.

(D) Cell-cycle times in LIF + 2i and N2B27 media are significantly longer than the inferred microstate residence times. Boxes show 1st and 3rd quartiles about the

median, whiskers extend to 1.5 times the interquartile range from the box. Data points beyond whiskers are shown as outliers above or below boxes.

(E) Illustrative simulation of 100 cells according to our hidden Markov model, given in Equations 7, 8, and 10. Parameters are taken from the R1 model fit.

(F) The resulting evolving probability density function over the microstates colored by macrostate.

Throughout this figure, orange represents the ESC state; green represents the EPI state; and purple represents the NPC state.
of alternative mathematical models that took into account both

cell-intrinsic and cell-extrinsic hidden mechanisms (see Box 1

and STAR Methods for details).

We found that cell-extrinsic mechanisms did not explain well

the deviation from first-order kinetics that we observed (see Fig-

ures 4A–4C). However, a simple hidden Markov model that uses

ideas from statistical mechanics (Pathria, 1996) to distinguish

between unobserved molecular states internal to the cell and

observable cell identities did perform well (Figure 3B).

In this revised model, we allowed the observed ESC, EPI, and

NPC ‘‘macrostates’’ to conceal a directed chain of hidden
276 Cell Systems 5, 268–282, September 27, 2017
‘‘microstates,’’ which the cells transit through stochastically in

sequence at a constant average rate (see Boxes 2 and 3 for

detailed definitions of microstates and macrostates and Box 1

for furthermodel details). While thesemicrostates are not directly

observable, their presence can be inferred by considering the

rates at which cells enter and exit the observed macrostates.

To estimate the number of hidden microstates within the ESC

and EPI states, we therefore fit this model to the data, including a

regularization term that penalizes excessive numbers of micro-

states (see STAR Methods for details). Model fitting indicated

the presence of 8 hidden microstates within the observed ESC



A D

F

B

C

E

Figure 4. Fits of Mathematical Models to the Data

Full details of all models are given in Box 1 and the STAR Methods. In all panels, data are in blue; mean and 95% confidence intervals about the mean from

bootstrapped k-means clustering are shown.

(A) Paracrine feedback model without cooperativity (Hill coefficient, h = 1).

(B) Paracrine feedback model with unconstrained Hill coefficient.

(C) Paracrine feedback model with ultrasensitivity (h/N).

(D) Conveyor-belt model with uniform initial conditions.

(E) Conveyor-belt model with Gaussian initial conditions.

(F) Hidden Markov model with reversible dynamics. Inferred forward transition probabilities (qf) per unit time are approximately 100–200 times larger than reverse

transition probabilities (qb), indicating that differentiation is a strongly directional process.
state for both cell lines and 11 (12) microstates within the

observed EPI state for R1 cells (E14 cells, respectively). The

expected transition time between microstates was 5.3 (4.8) hr
for R1 cells (E14 cells, respectively), giving a mean residence

times of 42.6 (40.8) hr in the ESC state, and 63.9 (56.1) hr in

the EPI state for R1 cells (E14 cells, respectively) (Figure 3C).
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Box 2. Statistical Mechanics

Differentiation is the process by which cells with specialist function are produced from less specialized founder cells. Since differ-

entiation is the transition from an unspecialized to a specialized cell type, understanding differentiation requires a robust notion of

what a cell ‘‘type’’ is. Notably, despite tremendous recent progress in dissecting the molecular basis of cell-fate decisions, this is

still a subject of considerable debate (Cell Systems, 2017).

In practice, cell types are often characterized by distinct functions or morphologies, or by distinct patterns of gene or protein

expression. However, there is no a priori reason why these two definitions should be directly related: many internal molecular

states (i.e., patterns of gene/protein expression, etc.) may map to the same cell function and different functions may be performed

by cells with similar internal molecular states. It is likely that there is a complex, interdependent relationship between the inherently

stochastic molecular dynamics that occur within individual cells and the emergence of well-defined cell fates. Indeed, how robust

and reproducible cell identities emerge from the fog of molecular noise is one of the great, and still largely mysterious, wonders of

cell biology.

This interdependence between the molecular and the cellular is reminiscent of similar problems encountered in statistical me-

chanics, and recent years have seen interest in using ideas from statistical mechanics to better understand cell fates (Garcia-

Ojalvo and Martinez-Arias, 2012; Trott et al., 2012; MacArthur and Lemischka, 2013; Moris et al., 2016).

Statistical mechanics is the branch of physics that seeks to understand how macroscopic properties of matter, such as pressure,

density, etc., arise from the microscopic dynamics of the atoms and molecules of which matter is composed (see Box 3). It has

been shown that a clear distinction between macrostates (bulk properties) and microstates (internal molecular configurations)

is both possible and advantageous. A fundamental principle of statistical mechanics is that each macrostate corresponds to a

large number of interchangeable microstates. The fundamental triumph of statistical mechanics was to show, in a rigorous

way, how many of the observable macroscopic properties of matter emerge naturally and reproducibly from the stochastic evo-

lution of the ensemble of microstates (see Pathria, 1996 and Figure B2).

Figure B2. Microstates and Macrostates

Statistical mechanics makes a clear distinction between the bulk properties of matter (known asmacrostates) and internal molecular configurations (known as

microstates). For example, the pressure of a gas in confinement is a macrostate that arises from collisions of the gas molecules with the walls of the container.

Importantly, full knowledge of the position and momentum of each molecule in the gas is not needed to measure its pressure: for a fixed number of molecules

and a fixed volume only the average kinetic energy per molecule is needed and, subject to reasonable assumptions on the dynamics, any molecular

configuration with the same average will give rise to the same pressure (left panel). As the temperature of the gas is raised, the average kinetic energy per

molecule is increased and the pressure increases accordingly (right panel). Typically macroscopic system properties change continuously with control pa-

rameters; however, at certain critical points (see Box 3) system properties may change abruptly.

Our model of differentiation aims to begin to apply some of these ideas to a specific biological context. By analogy with statistical

mechanics, we assume that each microstate is a distinct molecular configuration internal to the cell, broadly defined to include

patterns of gene/protein expression and expression and activity of epigenetic regulators, etc. By contrast, each macrostate is a

distinct functional cell ‘‘type,’’ in this case the ESC, EPI, and NPC identities. This formalism is similar to that proposed in Trott

et al. (2012) and Moris et al. (2016).

As in statistical mechanics, we allow many different microstates to map to the same macrostate (i.e., we endow cells in different

molecular states with the ability to perform the same function) and allow stochastic transitions between microstates to take place.

In principle, microstates may be arranged in a complex geometry and conversion back and forth between microstates within each

macrostate may occur. Indeed, a central principle of standard statistical mechanics is that microscopic dynamics are reversible at

(Continued on next page)
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Box 2. Continued

equilibrium, a concept known as detailed balance. However, here, since cells are being driven away from the ESC state and toward

the NPC state, the system is fundamentally out of equilibrium, and so is not expected to obey detailed balance.

To account for the non-equilibrium nature of the dynamics, we take the simplest possible arrangement of microstates: they are

ordered in a directed chain, and contiguous blocks are associated with successive macrostates. By doing so, we are assuming

that during the process of differentiation, the rate of forward transitions greatly exceeds the reverse rate to the extent that reverse

transitions do not significantly affect differentiation dynamics. Full details of the model are given in Box 1 and a variation of the

model to allow reverse transitions is also considered in Figure 4F.
It is of note that these inferred transition times between micro-

states are significantly shorter than the cell-cycle time, which is

approximately 15 hr for these cells in both 2i and N2B27 media

(Figure 3D), while the inferred transition times between macro-

states are significantly longer than the cell-cycle time. This sug-

gests that the dynamics are not primarily driven by cell division

events but rather by some other, as yet unidentified, molecular

processes. In principle, since our modeling framework deliber-

ately does not make the nature of cellular microstates explicit,

transitions between microstates may be associated with any pu-

tative molecular processes.

Candidates for driving mechanisms include the range of cell-

intrinsic processes that are known to be important for lineage

commitment, such as alterations in DNA methylation (Meissner

et al., 2008; Habibi et al., 2013; Singer et al., 2014; Lee et al.,

2014) and other global chromatin state changes (Mikkelsen

et al., 2007; Ziller et al., 2015); varying promoter dynamics (Miya-

nari and Torres-Padilla, 2012; Deng et al., 2014); and transcrip-

tional (Marks et al., 2012) and post-transcriptional regulation

(Salomonis et al., 2010) of gene expression.

Furthermore, although we found that they do not appear to

drive the observed dynamics, cell-extrinsic processes related

to the local microenvironment (van den Brink et al., 2014; Bed-

zhov and Zernicka-Goetz, 2014) and various forms of cell-cell

communication (Habib et al., 2013; Dunn et al., 2014) are also

likely to be important. Indeed, it is probable that macroscopic

transitions are associated with the collective action of multiple

cell-intrinsic and -extrinsic molecular processes, for example,

via engagement of fate-determining feedback loops, to direct

changes in cell identities.

The notable consistency in the fitted model parameter values

between the two cell lines suggests that both lines are undergo-

ing a common dynamical process, despite their slight molecular

differences. This consistency indicates that, although complex

and inherently stochastic, the underlying microscopic dynamics

are regulated and reproducible, and therefore amenable to

further investigation. Such analysis is beyond the scope of this

paper, but could, for example, utilize live-cell tracking to follow

individual cells as they progress through differentiation.

Taken together, this analysis suggests that stem cell differen-

tiation along the neuronal lineage is a strongly canalized yet

inherently stochastic process.

DISCUSSION

Recent years have seen remarkable advances in high-

throughput single-cell profiling technologies (Shapiro et al.,

2013). To better understand the data that these new and
emerging methods produce, there is now a need for modeling

and analysis methods that sift functional cell-cell variability

from measurement noise and identify distinct cellular identities

from highly heterogeneous data.

These issues are particularly apparent when considering time

course data, and a number of computational tools have accord-

ingly recently been developed to explore single-cell fate trajec-

tories and cell-cell variability within heterogeneous populations

(Stegle et al., 2015). These computational models are typically

based on the assumption that cells progress continuously

through measurable cell states and so implicitly assume that un-

derlying molecular stochasticity is buffered to the extent that a

continuum approximation is appropriate. However, it has been

observed that combinatorial fluctuations in key lineage-speci-

fying factors are important for stem cell fate specification (Cham-

bers et al., 2007; Toyooka et al., 2008; Hayashi et al., 2008;

MacArthur and Lemischka, 2013; Abranches et al., 2014), and

it has accordingly been argued that cell-fate commitment is a

discrete stochastic process (Moris et al., 2016).

Here, we have outlined an alternativemodeling framework that

infers the presence of discrete hidden cell states from limited

expression data and have used this framework to dissect the dy-

namics of neuronal differentiation of mouse ESCs in vitro.

In accordance with previous observations, we find that differ-

entiation progresses through two functionally distinct pluripotent

cell states: a naive pluripotent state representative of the tran-

sient ESC state in vivo and a primed pluripotent state, represen-

tative of the post-implantation epiblast in vivo (Abranches et al.,

2009; Boroviak et al., 2014). However, we also found that cell-

cell variability increased over time, suggesting that differentiation

is an inherently stochastic process.

To better understand this stochasticity, we considered a sim-

ple model in which these observed states conceal a multitude

of functionally similar hidden molecular states. By analogy with

statistical mechanics (MacArthur and Lemischka, 2013; Garcia-

Ojalvo and Martinez-Arias, 2012; Moris et al., 2016), we refer to

the observable functional cell states as cellular macrostates

and the variety of molecular configurations associated with

each functionalmacrostate asmolecularmicrostates (seeBox2).

In our framework, the microscopic dynamics are given by a

homogeneous Poisson process in which the number of hidden

states is allowed to vary. Since the probability that a cell will tran-

sition to the next microstate per unit of time is independent of

how long it has spent in its current microstate, this underlying

stochastic process is Markovian (or memoryless). However,

transitions between macrostates are not Markovian; the proba-

bility that a cell will move to the next macrostate depends on

how long it has already spent in the current macrostate.
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Box 3. Glossary

Statistical mechanics. The branch of physics that uses probability theory to study how large-scale properties of matter emerge

via averaging from the inherently stochastic dynamics of the elements of which matter is composed.

Microstate. A complete description of the position and momenta (or other relevant property) of every particle in a system.

Macrostate. A macroscopic property of a system, e.g., the pressure of a gas in confinement.

Detailed balance. A fundamental principle of equilibrium statistical mechanics, which states that at equilibrium each forward

process is equilibrated by its reverse.

Critical point. The value of a control parameter at which some observable system property changes qualitatively.
Thus, the macroscopic dynamics, which describe transitions

between functional cell types, are formally a stochastic process

with ‘‘memory’’ (see Figure 5 for a schematic, and STAR

Methods for details of the equations describing the macroscopic

dynamics). During differentiation, this memory is important since

it allows individual cells to keep a record of their progress and

provides a simple mechanism by which cells can consolidate a

particular functional identity before progressing onto the next.

In our view, the interplay between microstates and macrostates

and the resulting non-Markovian nature of the macroscopic dy-

namics are central to the regulation of differentiation.

For example, the number of microstates along the differentia-

tion chain has an important role in regulating its output. In the

case of differentiation of mouse ESCs along the neuronal line-

age, we estimate that there are 20–21 states in the chain (Fig-

ure 3B). Thus, while each transition from one microstate to the

next is inherently stochastic, a large number of these transitions

must occur in order for the cell to differentiate fully.

In stochastic analysis, it is well known that the output of such a

chain of stochastic events becomes less variable as the length of

the chain increases, a result that is known as the law of large

numbers (Gardiner, 1985). In our model, this means that the

length of time it takes for an individual cell to complete the differ-

entiation trajectory becomes less variable as the number of

microstates on the trajectory increases. The large number of

microstates we estimate in the chain between the ESC and the

NPC states therefore serves to regularize an inherently stochas-

tic process and ensure that differentiation occurs in a reliable and

reproducible way.

Although themodel that we propose describes the data well, a

number of unresolved questions remain.

Firstly, while our current framework is deliberately agnostic

regarding the molecular processes that drive differentiation, we

observed remarkable consistency between cell lines suggesting

that, although inherently stochastic, differentiation is a precisely

regulated dynamical process at the single-cell level. In principle,

the details of single-cell differentiation dynamics should be
Figure 5. Schematic of Model Framework

Cells transition at a constant rate through a chain of hidden microstates, which

are not directly observed but rather group together into observable macro-

states and act to time transitions between macrostates. While the underlying

dynamics are Markovian, the observable dynamics are non-Markovian, and

may therefore be thought of as a stochastic process with memory.
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amenable to further analysis. As methods for live-cell tracking

and analysis develop, we are hopeful that specifics will added

to our sketch. Ultimately, a consolidated model of differentiation

at the individual cell level will require detailed understanding of

the stochastic dynamics of underlying molecular regulatory net-

works and will necessarily draw upon techniques from a range of

different areas, including stochastic analysis and dynamical sys-

tems theory (Furusawa and Kaneko, 2012).

Secondly, while our model seeks to examine how cell-cell vari-

ability develops within an initially homogeneous population, it is

likely that at least some of the variation seen during the differen-

tiation process is due to deterministic propagation of initial cell-

cell variability. Indeed, we found that such a conveyor-belt-like

process is also able to explain our datawell, albeit at the expense

of a larger number of free parameters (see Box 1 and Figures 4D

and 4E). However, since in this model the variation present in the

population remains constant (by construction), it cannot account

for the transient increase in cell-cell variability during differentia-

tion that we observed (see Figures 2G and 2H).

By contrast, a transient increase in cell-cell variability is

inherent to the hidden Markov model that we propose. This

may be seen directly from Equation 10 or informally by noting

that in this model the cell population starts and ends in a homo-

geneous state (initially all cells are in the first microstate and the

final NPC-associated microstate is absorbing), yet each cell tra-

verses the chain of microstates stochastically, thereby gener-

ating transient heterogeneity in the population.

In practice, it is likely that the dynamic cell-cell variation that

we observe during differentiation results from a range of different

interacting mechanisms, including uncertainty in initial condi-

tions. Dissecting these interactions should provide fruitful work

for the coming years.

In summary, our analysis indicates stem cell differentiation is a

highly regulated stochastic process that is amenable to analysis

using the tools of statistical mechanics. We anticipate that some

of the most exciting future advances in stem cell science will

combine new experimental techniques with further theoretical

developments in the physics of living matter.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Routine Cell Culture

B Neuronal Differentiation



d METHOD DETAILS

B Isolation of mRNA

B Global Gene Expression Microarrays

B Single Cell Gene Expression Arrays

B Immunofluorescence Staining

B Cell Cycle Time Analysis

B Experimental Design

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Machine Learning of Cell Identities

B Clustering and Dimensionality Reduction

B Regulatory Network Inference

B Identification of Modules in Regulatory Networks

B Network Analysis

B Estimation of Dispersion and Entropy

B Model Fitting

B Paracrine Feedback Model

B Hidden Markov Model with Reversibility

B Conveyor Belt Model

B Macroscopic Dynamics for Hidden Markov Model

d DATA AND SOFTWARE AVAILABILITY

B Fluidigm Dynamic Arrays

B Microarrays

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and four tables and can be

found with this article online at http://dx.doi.org/10.1016/j.cels.2017.08.009.

AUTHOR CONTRIBUTIONS

Conceptualization, P.S.S., F.-J.M., and B.D.M.; Methodology, P.S.S., A.B.,

T.E.C., M.P.H.S., B.D.M., C.P.P., and S.D.H.; Formal Analysis, P.S.S., M.L.,

A.S., A.B., T.E.C., M.P.H.S., and B.D.M.; Investigation, P.S.S., R.C.G.S., and

F.A.; Resources, B.D.M.; Data Curation, P.S.S.; Writing – Original Draft,

P.S.S., A.B., B.D.M.; Writing – Review and Editing, all authors; Visualization,

P.S.S. and B.D.M.; Supervision, B.D.M.; Project Administration, P.S.S. and

B.D.M.; Funding Acquisition, B.D.M.

ACKNOWLEDGMENTS

This research was funded by the Biotechnology and Biological Sciences

Research Council, United Kingdom, grant number BB/L000512/1 and by the

Medical Research Council, United Kingdom, grant number MC_PC_15078.

Received: January 19, 2017

Revised: June 21, 2017

Accepted: August 7, 2017

Published: September 27, 2017

REFERENCES

Abranches, E., Guedes, A.M.V., Moravec, M., Maamar, H., Svoboda, P., Raj,

A., and Henrique, D. (2014). Stochastic NANOG fluctuations allow mouse em-

bryonic stem cells to explore pluripotency. Development 141, 2770–2779.

Abranches, E., Silva, M., Pradier, L., Schulz, H., Hummel, O., Henrique, D., and

Bekman, E. (2009). Neural differentiation of embryonic stem cells in vitro:

a road map to neurogenesis in the embryo. PLoS One 4, e6286.

Acampora, D., Di Giovannantonio, L.G., and Simeone, A. (2013). Otx2 is an

intrinsic determinant of the embryonic stem cell state and is required for tran-

sition to a stable epiblast stem cell condition. Development 140, 43–55.

Bain, G., Ray, W.J., Yao, M., and Gottlieb, D.I. (1996). Retinoic acid promotes

neural and represses mesodermal gene expression in mouse embryonic stem

cells in culture. Biochem. Biophys. Res. Commun. 223, 691–694.
Bedzhov, I., and Zernicka-Goetz, M. (2014). Self-organizing properties of

mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156,

1032–1044.

Betschinger, J., Nichols, J., Dietmann, S., Corrin, P.D., Paddison, P.J., and

Smith, A. (2013). Exit from pluripotency is gated by intracellular redistribution

of the bHLH transcription factor Tfe3. Cell 153, 335–347.

Boroviak, T., Loos, R., Bertone, P., Smith, A., and Nichols, J. (2014). The ability

of inner-cell-mass cells to self-renew as embryonic stem cells is acquired

following epiblast specification. Nat. Cell Biol. 16, 516–528.

Broccoli, V., Boncinelli, E., and Wurst, W. (1999). The caudal limit of Otx2

expression positions the isthmic organizer. Nature 401, 164–168.

Cell Systems. (2017). What is your conceptual definition of ‘‘cell type’’ in the

context of a mature organism? Cell Syst. 4, 255–259.

Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M.,

Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007). Nanog safeguards

pluripotency and mediates germline development. Nature 450, 1230–1234.

Chan, T.E., Stumpf, M., and Babtie, A.C. (2017). Network inference and

hypotheses-generation from single-cell transcriptomic data using multivariate

information measures. Cell Syst. 5, this issue, 251–267.

Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., and Huang, S. (2008).

Transcriptome-wide noise controls lineage choice in mammalian progenitor

cells. Nature 453, 544–547.

Delvenne, J.C., Yaliraki, S.N., and Barahona, M. (2010). Stability of graph com-

munities across time scales. Proc. Natl. Acad. Sci. USA 107, 12755–12760.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Oct-3/4 Antibody (C-10) Santa Cruz sc-5279; RRID: AB_628051

anti-Nanog Antibody abcam ab80892; RRID: AB_2150114

anti-Sox2 Antibody Santa Cruz sc-17320; RRID: AB_2286684

anti-Sox1 Antibody (H-85) abcam ab87775; RRID: AB_2616563

anti-Sox17 Antibody R&D AF1924; RRID: AB_355060

anti-betaIII Tubulin Antibody (2G10) abcam ab78078; RRID: AB_2256751

Goat anti-Mouse IgG (H+L) Antibody life technologies A-11017; RRID: AB_143160

Donkey anti-Rabbit IgG (H+L) Antibody Pierce Antibodies SA5-10040; RRID: AB_2556620

Biological Samples

Mouse embryonic fibroblasts Prepared in house N/A

Chemicals, Peptides, and Recombinant Proteins

SUPERase, In� RNase Inhibitor life technologies AM2694

Leukemia inhibitory factor (LIF) produced in house N/A

MEK inhibitor (PD0325901) Tocris bioscience 4192

GSK-3 inhibitor (CHIR99021) Reagents Direct 27-H76

Paraformaldehyde Sigma Aldrich P6148

Triton-X-100 Sigma Aldrich X100

Fetal bovine serum life technologies 10270106

4’,6- diamidino-2-phenylindole Sigma Aldrich D9542

DMEM life technologies 31053-028

KnockOut serum replacement life technologies 35050-038

non-essential amino acids life technologies 11140-050

GlutaMax life technologies 10828-010

DMEM/F12 medium life technologies 21041025

Neurobasal medium life technologies 12348017

B27 supplement life technologies 17504044

N2 supplement life technologies 17502048

Trypsin/EDTA PAA L11-003

Penicillin/Streptomycin PAA P11-10

Gelatine Sigma Aldrich G1890

2-mercaptoethanol Sigma Aldrich M6250

Critical Commercial Assays

CellsDirect One-Step qRT-PCR Kit life technologies 11753

AllPrep DNA/RNA Mini Kit Quiagen 80204

Fluidigm 96x96 Dynamic Array kit Fluidigm BMK-M10-96.96

MouseWG-6 v2.0 Expression BeadChip Microarrays Illumina BD-201-0602

Deposited Data

Single cell qPCR data This paper http://dx.doi.org/10.17632/g2md5gbhz7.1

Microarray data This paper ArrayExpress: E-MTAB-5861

Microarray data used for similarity score. see Table S1 see Table S1

(Continued on next page)

Cell Systems 5, 268–282.e1–e7, September 27, 2017 e1

http://dx.doi.org/10.17632/g2md5gbhz7.1


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

ES-E14tg2a Gift from Neil Smyth,

University of Southampton

N/A

ES-R1 Gift from Neil Smyth,

University of Southampton

N/A

Oligonucleotides

A full list of oligonucleotides used in this study is

provided as Table S4.

see Table S4

Software and Algorithms

NIS elements v4.3 software Nikon UK

Matlab (version 8.5 or later) MathWorks https://www.mathworks.com

R (version 3.1.2 or later) https://www.r-project.org

lumi Du et al. (2008) 24(13):

1547-1548. Bioinformatics.

http://bioconductor.org/packages/release/

bioc/html/lumi.html

Affymetrix Power Tools Affymetrix http://www.affymetrix.com/estore/

partners_programs/programs/developer/

tools/powertools.affx

Bayesian Blocks Algorithm Scargle et al. (2013)

Regulatory network inference Chan et al. (2017)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Ben D. MacArthur (bdm@soton.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Routine Cell Culture
Pluripotent mouse embryonic stem cell lines R1 (Nagy et al., 1993) and E14tg2a (Kuehn et al., 1987; Doetschman et al., 1987) were

obtained from Neil Smyth, Southampton University, Southampton, UK. Cells were cultivated in Dulbecco’s Modified Eagle Medium

(DMEM; life technologies, Paisley, UK, #31053-028) with 1%Penicillin/Streptomycin (PAA, Yeovil, UK, #P11-10) that was further sup-

plemented with 15% KnockOut serum replacement, 1x MEM non-essential amino acids, 1x GlutaMax (all from life technologies,

Paisley, UK, #10828-010, #11140-050 and #35050-038), 50 mM 2-mercaptoethanol (Sigma Aldrich, Gillingham, UK, #M6250).

Leukaemia inhibitory factor (LIF), produced in house, was added at a saturating dilution of 1:1000. Cells were seeded on 0.1% gela-

tine (Sigma-Aldrich, Gillingham, UK, Cat. No. G1890) coated tissue culture plates pre-seeded with g-irradiated MEF for routine cul-

ture. Throughout four subsequent passages prior to the start of the experiment, cells were cultivated in 0.1% gelatine coated tissue

culture plates without additional MEF, and medium was additionally supplemented with a combination of 1 mM PD0325901 (Tocris

bioscience, #4192) and 10 mM CHIR99021 (Reagents Direct, #27-H76). Cells were maintained at 37�C and 5% CO2 and routinely

passaged every other day using Trypsin/EDTA (PAA, Yeovil, UK, #L11-003). Medium was replaced on a daily basis.

Neuronal Differentiation
Neuronal differentiationmedium (N2B27) was prepared according as previously described (Ying et al., 2003) and contained amixture

of Neurobasal and DMEM/F12 media, supplemented with B27 and N2 supplements (Thermo Fisher, Cat.No. 12348017, 21041025,

17504044 and 17502048).

METHOD DETAILS

Isolation of mRNA
Total mRNA was isolated from cell lysates according to manufacturer’s instructions using the AllPrep DNA/RNA Mini Kit (Quiagen,

Crawley, UK, Cat.No. 80204).

Global Gene Expression Microarrays
For global gene expression, total mRNA isolated from ensemble cells was processed and hybridized toMouseWG-6 v2.0 Expression

BeadChip mircoarrays by CGS genomics, Cambridge, UK. Pre-processing of raw expression data was performed in R (version 3.1.2
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or later) using the lumi package (Du et al., 2008) and the robust spline normalization method. Differentially expressed genes (DEG)

were identified based on total expression changes relative to 0h across all time points, denoted as cumulative relative expression

(CRE). A gene was considered a DEG when it’s CRE surpassed a threshold of 3 times the interquartile range above (below) the

75 percentile (25 percentile) based on the entirety of CREs.

Single Cell Gene Expression Arrays
Individual cells were sorted using a BD FACS Aria II flow cytometer into 96-well round bottom multi-well plates (both Becton-Dick-

inson, Oxford, UK). Single cells were de-posited directly into 5 ml of reaction mix containing reagents for cell lysis, reverse transcrip-

tion, as well as the polymerase and reaction buffers for RT-PCR. The reaction mix consisted of 0.1 ml Superscript III RT/Platinum Taq

Mix, 0.05 ml Ambion’s SUPERase12-In, 1.85 ml DEPC-treated water (all part of CellsDirect One-Step qRT-PCR Kit, life technologies,

Paisley, UK, Cat. No. 11753) and 0.0125 ml of 96 different TaqMan assays (probe IDs included in Table S4) for multiplex pre-ampli-

fication. The reverse transcription and pre-amplification was performed on a Veriti thermal cycler (life technologies, Paisley, UK) with

the following temperature cycles: 15min, 50�C; 2min, 95�C followed by 22 cycles of 15 s at 95�C alternating with 1min at 60�C. Thus,
pre-amplified cDNA was diluted with 20 ml of DEPC-treated water and stored at -80�C until further processing. Readout was per-

formed using Fluidigm 96x96 Dynamic Array in combination with the Biomark HD system (both Fluidigm, San Francisco, USA)

according to manufacturers instructions. Cycling threshold (CT) valuesR 28 were considered absent. Raw CT values were normal-

ized using the median CT values of loading controls (Actb and Gapdh) for each array. Normalised CT values were then transformed

linearly to expression threshold (ET) values ranging from 0 (absent) to 28 (maximum expression). Cells with low readings for loading

controls (CT > 15), and low or high overall expression (ET <Q1� 2I, and ET >Q3 + 2I, whereQi is the ith quartile and I is the interquartile

range) were excluded.

Immunofluorescence Staining
Cells were fixed for 20 min at room temperature (RT) using 4%Paraformaldehyde (Sigma-Aldrich, Gillingham, UK, #P6148) in PBS-/-

(PAA, Yeovil, UK, #H15-002) andwashed three timeswith PBS-/-. Intracellular epitopesweremade accessible by permeabilisation of

the cell and nuclear membranes using a 0.2%Triton-X-100 (Sigma-Aldrich, Gillingham, UK, #X100) solution in PBS-/-for 10min at RT.

Unspecific binding sites were blocked for 45min at RTwith 0.1% Triton-X-100 and 10% fetal bovine serum (life technologies, Paisley,

UK, #10270106) in PBS-/-, washed threemore times before re-suspension in blocking buffer and either primary antibody ormatching

isotype controls and incubation over night at 4�C under slow, continuous agitation. Cells were subsequently washed three times

using blocking solution and re-suspended in blocking solution and secondary antibodies for incubation under continuous agitation

for 1 h at RT. Samples were washed three times in blocking solution and nuclei were stained at RT for 10 min using 4’,6- diamidino-2-

phenylindole (DAPI; Sigma-Aldrich, Gillingham, UK, #D9542) at a concentration of 10 mg/ml. Following a final wash in PBS-/-, cells

were imaged using an AxioVert 200 microscope (Carl Zeiss, Cambridge, UK).

Cell Cycle Time Analysis
Bright field images of cells grown at 37�C and 5% CO2 in either in 2i+LIF culture medium or N2B27 medium were taken in 15 min

intervals using an Eclipse-Ti microscope and NIS elements v4.3 software (both Nikon UK, Kingston Upon Thames, UK). Cell cycle

time was measured manually by tracking the number of frames between two subsequent cell division events.

Experimental Design
Experimental data were acquired for two biological replicates (embryonic stem cell lines E14tg2a and R1).

Strategy for randomization and/or stratification: not applicable.

Blinding at any stage of the study: not applicable.

Sample-size estimation and statistical method of computation: not applicable.

Inclusion and exclusion criteria of any data or subjects: individual samples in the single-cell expression data were filtered as

described in the section on Single cell gene expression arrays above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Machine Learning of Cell Identities
To determine how the expression patterns of the cells in our time-course related to known tissues and cell types, we collated a data-

base of 161 tissue/cell type specific expression patterns (Table S1). Raw data sets were downloaded from the Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database and pre-processed as a single set using the robust multi-array average

(RMA) normalization method in the Affymetrix Power Tools software (http://www.affymetrix.com/estore/partners_programs/

programs/developer/tools/powertools.affx). The annotation of samples into tissue/cell types was performed manually based on

the experimental descriptions in the GEO database. Our experimental data collected at 24h, 48h, 72h, 120h, and 168h from both

cell lines (E14 and R1) were compared to the undifferentiated (0h) samples of the respective cell line and expression differences

were projected onto the training set as described in (Lenz et al., 2013). Briefly, for each comparison of time points, two gene sets

consisting of the top 5% of upregulated genes and top 5% of downregulated genes were defined, and their expression values in

each of the 161 tissue/cell type specific expression patterns were compared using a Wilcoxon rank sum test. This resulted in 161
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tissue/cell type specific scores per time point for each cell line (signed log10 p values of Wilcoxon test), which summarize the sim-

ilarity of the observed gene expression pattern with each of the 161 tissue/cell line samples we collated. Overall these evolving scores

describe the differentiation dynamics in a genome-wide expression space with physiologically relevant signatures.

Clustering and Dimensionality Reduction
All clustering and dimensionality reduction was performed in R (version 3.1.2 or later) and Matlab (version 8.5 or later) using standard

routines. We found that a more robust clustering was obtained from the single cell data by taking a binary representation of the data

(i.e. retaining only information on whether each gene is expressed or not) and performing PCA, retaining the first 2 components, prior

to classification using k-means clustering. PCA is a well-established method for data de-noising (Hastie et al., 2001) and discretiza-

tion of gene expression data has been shown to improve the robustness of subsequent analysis algorithms (Tuna andNiranjan, 2010).

Here, these de-noising steps make the subsequent analyses more stable but do not affect any of the conclusions of the paper. The

changes in the proportions of cells in eachmacrostate over timewere determined by calculating the fraction of cells in each cluster at

each time point. Confidence intervals on proportions were obtained by Bootstrap resampling.

Regulatory Network Inference
Normalized single-cell data for each gene were discretized independently using the Bayesian Blocks algorithm, a method designed

to find an optimal binning for a set of values without enforcing uniform bin width (Scargle et al., 2013). Data from both cell types (R1

and E14) were combined for this discretization step. There were 22 genes with no detected expression in greater than 80% of cells;

data from these genes were removed, leaving 74 genes for all subsequent analyses.

To infer statistical dependencies between genes from the time-series data we developed an information-theoretic network infer-

ence algorithm. Many network inference algorithms exist that use the mutual information between pairs of variables as a measure of

statistical dependency (McMahon et al., 2014). Here, we adapted these methods to calculate a score between pairs of genes that

takes into account the context of the wider network, by considering the multivariate relationships of each pair of genes with every

other gene in the network. This method highlights the strongest relationships for each gene, rather than simply the strongest relation-

ships within the whole network. We find that this methods performs better than or comparably to existing information theoretic based

inference methods. Full details of this algorithm, along with bench-marking against alternative methods, may be found in an accom-

panying paper (Chan et al., 2017).

Briefly, wemake use of the partial information decomposition (PID) (Timme et al., 2014) to calculate a set of multivariate information

measures that encode the statistical relationships between triplets of genes, by decomposing mutual information into synergistic,

redundant, and unique contributions. Specifically, if we consider the information provided by a set of genes, e.g. A = {X,Y}, about

another target variable, e.g. Z, the mutual information I(X,Y;Z) between the set A and Z is equal to the sum of four partial information

terms,

I(X,Y;Z) = Synergy(Z;X,Y) + Unique(Z;X) + Unique(Z;Y) + Redundancy(Z;X,Y)

The mutual information between a single gene (X, say) in A and the target comprises a unique and redundant contribution,

I(X;Z) = UniqueY(Z;X) + Redundancy(Z;X,Y).

For any pair of genes, X and Z, this mutual information, I(X;Z), is constant regardless of the choice of the third variable, Y, but the

unique contribution to this information varies with Y. Higher ratios of unique information to mutual information indicate a stronger de-

pendency between X and Z (Chan et al., 2017). Our inference algorithm defines a measure uX,Z, based on these ratios, which we call

the proportional unique contribution,

uX;Z =
X

Y˛SyfX;Zg

UniqueYðX;ZÞ
IðX;ZÞ +

X
Y˛SyfX;Zg

UniqueY ðZ;XÞ
IðX;ZÞ ;

and uses thismetric to assess the strength of the relationship between the pair of genes X andZ, in the context of all the other genes in

the network, Y˛SyfX;Zg (where S is the complete set of genes). These proportional unique contributions are then used to calculate

a confidence score c, which we call the PID score, between each pair of genes,

c = FX(uX,Y) + FY(uX,Y),

where FX(,) is a cumulative distribution function estimated using all the proportional unique contribution scores involving gene X. The

PID scores are then used as edge weights in the (un-directed) inferred network. Edges were retained in the network if they were in the

top 5 % of PID scores.

To identify molecular regulatory mechanisms active at different stages of differentiation we inferred networks from the early part of

the time-course (using expression patterns from cells identified as being in the ESC or EPI states) and from the late part of the time-

course (using expression patterns from cells identified as being in the EPI or NPC state).
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Identification of Modules in Regulatory Networks
In order to identify modules within the inferred networks that show coordinated changes in gene expression, we used a community

detection method based on the evolution of a Markov process on a network, as described previously (Delvenne et al., 2010). We

scanned for stable partitions at 200 Markov times from 10�2 to 102, and selected as stable partitions those in which the number

of modules remained constant for at least 10 time points, and that corresponded to a minimum in the variation of information.

Network Analysis
Let Aij = Aji be the adjacency matrix for the network G. The degree of node i is given by

P
j

Aij. The betweenness centrality of node i is

given by
P

jsisk

sjkðiÞ=sjk , where sjk is total number of shortest paths between nodes j and k and sjkðiÞ is the total number of shortest

paths from nodes j to k that pass through node i (Newman, 2010).

Estimation of Dispersion and Entropy
To the ith cell in the population we associate a gene expression vectorGi = ðgi1; gi2;.;gi96Þ˛R96, which records its expression status

with respect to the 96 genes we measured. Assuming that there are n cells in the population, the mediancentre is that point

M= ðm1;m2;.;m96Þ˛R96 such thatD=
Pn

i = 1dðGi;MÞ is minimum, where dðx; yÞ=P96
j =1

��xj � yj
�� is the L1-distance. Themediancentre

is a multivariate generalization of the univariate median (Gower, 1974). The dispersion of each cell is its distance to mediancentre

d(Gi,M), and the dispersion of the population is the minimized value of D. The dispersion is a simple statistic that can be used in hy-

pothesis testing to compare the multivariate variability in different populations.

To estimate gene expression entropy, normalized single-cell data for each genewere discretized independently using the Bayesian

Blocks algorithm, a method designed to find an optimal binning for a set of values without enforcing uniform bin width (Scargle et al.,

2013). The Shannon entropy, H= �P
i

Pi log2Pi, where Pi is the probability of observing gene expression in bin i, was then calculated

directly.

Model Fitting
For all fits model parameters were estimated by minimizing the residual sum of squares between the data and the model. For contin-

uous problems fitting was performed using the Levenberg-Marquardt algorithm. Since the hidden Markov model has both integer

and real parameters optimization for this problem was performed using a pattern search algorithm, implemented in MATLAB (The

MathWorks, Natick, MA, 2016) as part of the Global Optimization Toolbox. Models with a large number of microstates generally fitted

the data better than those with a small number of microstates, since they effectively introduce more parameters into the model. To

avoid over-fitting we therefore penalizing models with large numbers of microstates. Thus, we solved

min
nA ;nB ;q

jjy � f jj2 + lðnA + nBÞ;

where y is the data and f is the model. The regularization parameter l was selected using the L-curve method (Lawson and Han-

son, 1995).

Paracrine Feedback Model
To account for paracrine feedback we allow residual ESCs in the population to inhibit further differentiation. A simple model to ac-

count for this mechanism is:

dpA

dt
= � q1pA; (Equation 11)
dpB

dt
=q1pA � q2K

h

Kh +ph
A

pB; (Equation 12)
dpC

dt
=

q2K
h

Kh +ph
A

pB: (Equation 13)

This model has four free parameters. Assuming non-cooperative dynamics (h = 1) or ultrasensitive dynamics (h/N, in which case

the q2K
hpB=ðKh +ph

AÞ/q2pBHðK � pAÞ, where H is the Heaviside step function) reduces the number of parameters to three. None of

these variations fit the data well (see Figures 4A–4C) suggesting that paracrine feedback mechanisms are not primarily responsible

for the deviation from first order kinetics that we see.

Hidden Markov Model with Reversibility
The dynamics along a chain of microstates in which both forward and reverse transitions are allowed are given by

dp0

dt
= � qfp0 +qbp1; (Equation 14)
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dpn

dt
=qfðpn�1 � pnÞ+qbðpn+ 1 � pnÞ for n= 1.N� 1; (Equation 15)
dpN

dt
=qfpN�1: (Equation 16)

where qf is the forward transition probability per unit time, and qb is the backward transition probability per unit time, with pn(0) = dn0,

where d is the Kronecker delta function (i.e. all cells start in the first microstate).

Assuming that microstates 0, 1, 2,., nA identify with the ESC state, microstates nA + 1, nA + 2,., nB identify with the EPI state, and

microstates nB + 1, nB + 2,., N identify with the NPC state, the observed probabilities are then

pAðtÞ=
XnA
n= 0

pnðtÞ; pBðtÞ=
XnB

n= nA + 1

pnðtÞ; pCðtÞ=
XN

n=nB + 1

pnðtÞ: (Equation 17)

Conveyor Belt Model
The hidden Markov model that we present in the main text assumes an initially homogeneous population and allows cell-cell vari-

ability to develop due to the inherently stochastic nature of the differentiation process. Although 2i conditions are known to produce

a relatively pure population of robustly pluripotent cells, and we observe a general increase in cell-cell variability during differentiation

(Figures 2G and 2H), it is possible that at least some of the variation seen during the differentiation process is due to deterministic

propagation of initial cell-cell variability in ‘conveyor belt’-like process.

To model this we assume that differentiation progresses along a continuous one dimensional reaction coordinate x˛[�L,L] with

initial population variability given by the probability density function f0(x). As differentiation progresses this initial variability propagates

forward along the reaction coordinate x at constant speed c. The distribution of cell states at time t during the differentiation process

is therefore given by ft = f0(x + ct).

To account for the observed dynamics, we allow all cells at positions x˛A = [�L,a] to emit the ESC state, all cells at positions

x˛B = [a,b] to emit the EPI state, and all cells at positions x˛C = [b,L] to emit the NPC state, where �L %a <b % L are constants.

The observed ESC, EPI and NPC probabilities are then,

pAðtÞ=FtðaÞ; pBðtÞ=FtðaÞ � FtðbÞ; pCðtÞ= 1� FtðbÞ; (Equation 18)

where Ft(x) is the cumulative distribution function for ft(x).

To complete this model, we require a form for f0(x). There are two natural choices:

1. The initial variability is uniform on A. This is the equilibrium solution for diffusion of a Brownian particle on a bounded domain.

Informally, this model assumes that when held in the naı̈ve pluripotent state each cell takes an unbiased randomwalk on A and

therefore no state within A is preferred. In this case, f0(x) = 1/(a + L) for x˛A and zero elsewhere, and the model has four free

parameters: a, b, c and L.

2. The initial variability is Gaussian distributed on the domain [�N,N]. This is the equilibrium solution for an Ornstein-Uhlenbeck,

or mean-reverting, process (i.e. diffusion of a Brownian particle on an infinite domain constrained by a quadratic potential).

While the first variation assumes that there are no preferred states within the ESC state, the second model assumes that

when held in the naı̈ve pluripotent state individual cells are free tomove randomly along the reaction coordinate, yet are contin-

ually drawn back to a ‘preferred’ configuration associated with the naı̈ve ESC identity. In this case, f0ðxÞ= ð2ps2Þ�1
2expð�½x�

m�2=2s2Þ and the model has five free parameters: m, s, a, b and c.

The first variation of this model predicts linear loss from the ESC and EPI states and so does not fit the data well (see Figure 4D).

However, the second variation allows for the sigmoidal kinetics we observe and so provides a good fit to the data, albeit at the

expense of a larger number of free parameters (Figure 4E).

Macroscopic Dynamics for Hidden Markov Model
To describe the macroscopic dynamics of our hidden Markov model we introduce the probability densities rA(t,t), rB(t,t), and rC(t,t),

where t is a cell-intrinsic variable that records the length of time that an individual cell has spent in each macrostate. The observed

proportion of cells in each state at experimental time t may then be obtained by integrating over these internal times. Thus,

pAðtÞ=
Z t

0

rAðt; tÞdt; pBðtÞ=
Z t

0

rBðt; tÞdt; pCðtÞ=
Z t

0

rCðt; tÞdt: (Equation 19)

The dynamics of rA, rB and rC are given by the following set of partial differential equations,

vrA
vt

+
vrA
vt

= � q�1mAðtÞrA with rAð0; tÞ= dðtÞ; (Equation 20)
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vrB
vt

+
vrB
vt

= � q�1mBðtÞrB with rBðt; 0Þ=q�1

Z t

0

mAðtÞrAdt; (Equation 21)
vrC
vt

+
vrC
vt

= 0 with rCðt; 0Þ=q�1

Z t

0

mBðtÞrBdt; (Equation 22)

where mA(t) and mB(t) are the cumulative distribution functions for the wait times in the ESC and EPI macrostates respectively. In this

case, sincemicroscopic dynamics are given by a homogeneous Poisson process, the wait times in the ESC and EPI states are Erlang

distributed and

mAðtÞ= 1� 1

GðnAÞgðnA;qtÞ; (Equation 23)
mBðtÞ= 1� 1

GðnB � nAÞgðnB � nA;qtÞ; (Equation 24)

where G is the Gamma function and g is the incomplete Gamma function. The terms on the left hand sides of Equations 20–22 ac-

count for cellular aging in each of the macrostates, while the right hand sides and boundary conditions account for transitions be-

tween macrostates. In the case that nA = 0, and nB = 1, the microstates and macrostates are coincident and the model reduces

to Equations 1–3.

DATA AND SOFTWARE AVAILABILITY

Fluidigm Dynamic Arrays
Single cell gene expression data reported in this paper is available on Mendeley Data (http://dx.doi.org/10.17632/g2md5gbhz7.1).

Microarrays
Microarray data reported in this paper is available from ArrayExpress under accession number E-MTAB-5861.
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