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ence of a positive cosmological constant and an electromagnetic field, without any exotic

matter. The solutions are distinguished by being spatially inhomogeneous in one direction,

while they can also contain non-trivial electromagnetic field lines. The inhomogeneity may

be substantial, for instance there can be one bounce in one region of the universe, and two

bounces elsewhere. Since the bounces are followed by a phase of accelerated expansion, the

metrics described here also permit the study of (geodesically complete) models of inflation

with inhomogeneous “initial” conditions. Our solutions admit two Killing vectors, and

may be re-interpreted as the pathology-free interior regions of Kerr-de Sitter black holes

with non-trivial NUT charge. Remarkably enough, within this cosmological context the

NUT parameter does not introduce any string singularity nor closed timelike curves but

renders the geometry everywhere regular, eliminating the Big-Bang singularity by means

of a bounce.
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1 Introduction

A hundred years ago, the discovery of the expansion of our universe brought with it a

complete paradigm shift, in that it implied that our universe is not unchanging, but evolv-

ing. The most puzzling consequence of the expansion has been the realisation that, in

our past, there must have been a phase of enormous density, called the big bang, which

currently represents a true frontier of our knowledge. In the context of general relativity,

which provides the framework for interpreting the expansion in the first place, the singu-

larity theorems of Penrose and Hawking [1] imply that under rather general conditions the

big bang must have been a curvature singularity, at which point general relativity itself

breaks down. One may then expect quantum gravitational effects to become of preemi-

nent importance, offering a way to describe the emergence of spacetime out of a quantum

state (possibilities that have been put forward include for instance string gas cosmology [2]

or the no-boundary state [3]). But there do exist exceptions to the singularity theorems,

which may allow for a classical resolution of the big bang in the form of a non-singular

bounce. Much studied in recent times have been exotic matter models that allow for vi-

olations of the null energy condition while being carefully constructed to avoid a myriad

of potential pathologies, such as ghosts, gradient instabilities and causality violations, see

e.g. [4–9]. However, there exists a simple manner in which the singularity theorems may

also be avoided, namely by having a spatially closed universe and matter violating only the

strong energy condition [10]. This is in no way exotic, as dark energy is known to have a

pressure that is equal to minus its energy density to better than 10 percent accuracy [11],

in clear violation of the strong energy condition. Moreover, although the spatial sections of
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our current universe are measured to be nearly flat, this is not inconsistent with the early

universe having had a significant positive spatial curvature, as long as there is a mecha-

nism that can dissipate the curvature at later times. Inflation is one possibility for such a

mechanism, and we will further comment on this below.

Examples of non-singular yet anisotropic bounces in the presence of a cosmological

constant were recently studied analytically in [12], and numerically in [13] (using the full

Bianchi IX metric, and including a scalar field), where the link of such solutions with the

singular and chaotic mixmaster/BKL approach to a big bang were pointed out. Here will

extend these studies to inhomogeneous solutions, which moreover can contain electromag-

netic fields. Not only do these solutions arise in the presence of known matter types, but

they also have the great advantage of being exact solutions of general relativity. The so-

lutions possess two Killing vectors, and we will describe their link with the Taub-NUT

spacetime [14, 15], with black holes with NUT charge [16], and more generally how they fit

into the Plebański-Demiańksi (PD) class of solutions of the Einstein-Maxwell system [17].

The trouble with such large classes of solutions as the PD class is that the physics they

describe remains obscure until one focusses on specific examples and specifies the topology

of the spacetime. Thus, even though the solutions that we explore have been known locally

for a while, the realisation that the PD class (which is usually regarded as a pathologi-

cal generalisation of black hole metrics) contains physically sensible inhomogeneous and

anisotropic non-singular bounce solutions is to our knowledge novel. Indeed, although less

common these days, new interpretations to well-known solutions of the Einstein equations

have already occurred several times, see for instance [18–20].

We could start by giving the final form of the solutions, but because of the reasons just

stated we find it more illuminating to build up the full solution by starting from simple

examples, and increasing the complexity step by step. This is useful in appreciating the

physical significance of the solutions, and points the way towards a number of applications

that we will briefly mention. Clearly, one application of the bounce solutions is as a non-

singular replacement of the big bang. But the fact that they may contain electromagnetic

field lines also means that they could be useful in addressing the observational problem of

early magnetic fields [21]. Finally, because the bounces automatically lead into a phase of

accelerated expansion, our solutions may be useful in characterising inflationary models in

the presence of anisotropies and inhomogeneities. The conventions of our article article are

such that the speed of light and the Planck constant are set to 1.

2 Anisotropic bounces

The simplest example of a metric that admits a non-singular bounce is pure de Sitter space

written in closed coordinates. The metric is then given by1

ds2 = −dt2 + `2 cosh

(
t

`

)2

dΩ2
3 , (2.1)

1Indeed, in the case of pure de Sitter spacetime the bounce is an artefact of the coordinates. The de

Sitter spacetime is completely homogenous and isotropic. Namely, all the points on the manifold can be

reached by means of a isometry. Hence, the location of the bounce is coordinate dependent.
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and it solves Einstein’s equations in the presence of a cosmological constant Λ = 3`−2,

Rµν =
3

`2
gµν . (2.2)

The spatial sections of the metric above consist of 3-spheres with line element dΩ2
3, and a

first generalisation is to deform these spheres. Let us therefore consider the metric

ds2 = − dt2

N(t)
+ g(t)σ2

1 + h(t)σ2
2 + f(t)σ2

3 , (2.3)

where the differential forms on a three-sphere are given by

σ1 = cos(ψ)dθ + sin(ψ) sin(θ)dφ , (2.4)

σ2 = sin(ψ)dθ − cos(ψ) sin(θ)dφ , (2.5)

σ3 = dψ + cos(θ)dφ , (2.6)

with the coordinate ranges 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π. This metric is known as the

Bianchi IX spacetime, and it reduces to the closed Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric when all scale factors are equal. There is an exact analytic cosmology

satisfying the Einstein equations with h(t) = g(t), N(t) = σ2

4`4
f(t) and

f(t) =
4`2

σ2

t4 + (6− σ)t2 + µt+ σ − 3

t2 + 1
, (2.7)

g(t) =
`2

σ
(t2 + 1) . (2.8)

The function f(t) never vanishes provided

12 > σ > 3 , |µ| < 2

3
√

3
(12− σ)

√
σ − 3 , (2.9)

and with these inequalities satisfied the solution describes a non-singular bounce. The

parameter µ may be interpreted as the time asymmetry of the metric, which asymptotically

approaches de Sitter space as t → ±∞. This bouncing spacetime, with two scale factors

being equal, belongs to the class of metrics known as biaxial Bianchi IX. It was obtained

in [12] by analytic continuation from a wormhole solution in asymptotic Anti-de Sitter

space. Meanwhile, more general anisotropic bounces in the Bianchi IX class were studied

numerically in [13].

2.1 Adding an electromagnetic field

In order to include an electromagnetic field we may add a gauge vector of the form

A = q(t)σ3 ,

bearing in mind the symmetries of the metric. Then we need to solve the familiar Einstein-

Maxwell system of equations

Rµν −
1

2
gµνR+ Λgµν = κTµν , (2.10)

∇µFµν = 0 , (2.11)
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where

Tµν = FµσF
σ
ν −

1

4
gµνFρσF

ρσ ,

and

Fµν = ∂µAν − ∂νAµ

is the anti-symmetric field-strength corresponding to A. Maxwell’s equations for this gauge

vector and metric ansatz reduce to a single equation,

q̈ +
ġ

g
q̇ + 4

`4

σ2

q

g2
= 0 ,

which admits the solution

q(t) =
2
√

2√
κ

(
q1t

t2 + 1
+

q2

t2 + 1
− q2

2

)
,

with two integration constants q1, q2. The Einstein equations are solved provided

g(t) =
`2

σ
(t2 + 1) (2.12)

f(t) = 4
`2

σ2

t4 + (6− σ)t2 + µt+ σ − 3

t2 + 1
− 4

q2
1 + q2

2

t2 + 1
. (2.13)

To eliminate the magnetic monopoles at large t is necessary to set q2 = 0 — we will get

back to this case later in the paper. Note that there are new constraints on the allowed

parameters now, if we want to avoid reaching a singularity near t = 0. The absence of a

curvature singularity now implies the inequalities

| µ |<
√

2

3
√

3

6σ
(√

1−X + 4
)
− σ2

(
1 +X +

√
1−X

)
− 72√

σ
(
1 +
√

1−X
)
− 6

.

and σ+ > σ > σ− with

σ± = 3
4 + (1± 3)

√
1−X

1 +X +
√

1−X
, X =

12(q2
1 + q2

2)

`2
< 1 ,

where the bound of σ can be found by demanding that the numerator of the bound on µ

never vanishes. An interesting feature of this solution is that the gauge field is non-trivial

even though there is no singularity in the metric nor in the gauge field, i.e. there is no source.

In fact it is the geometry alone that supports the electromagnetic field lines, and we will

explore this aspect in more detail below when discussing the inhomogeneous solution. Here

we simply note that the gauge potential grows in the approach to the bounce, and decays

again as the universe expands, allowing electromagnetic fields to pass through the bounce.

2.2 Asymptotics and scale of the bounce for the homogenous case

It is interesting to analyse the scale of the bounce and the asymptotics because they are

possible sources to rule out these cosmological models. From the form of the metric func-

tions we find that the coordinate t and the integration constants σ and µ are dimensionless.
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Figure 1. The minimum size at the bounce as a function of σ for various values of the asymmetry

parameter µ = 0, 3/2, 2. For the plot we have taken ` = 1. In the time symmetric case (µ = 0),

the maximal value of π2/4 is reached for σ = 4, which is the de Sitter solution. Note that the

corresponding curve contains a kink, which is due to the fact that there are two different times at

which the universe bounces, see also the example in section 5 for illustration. Adding non-trivial

q1,2 would lower all the curves in accordance with eq. (2.15).

The integration constants q1 and q2 have the dimensions of length. The volume of the t = tb
section at the bounce is the minimum of the function

V ol
(
S3
tb

)
= 2π2g(tb)

√
f(tb) (2.14)

= 4π2 `
2

σ

√
(t2b + 1)

(
`2

σ2

(
t4b + (6− σ)t2b + µtb + σ − 3

)
− q2

1 − q2
2

)
(2.15)

where the 2π2 factor arises from an integration over the angles. The overall scale of the

minimum volume is given by the scale ` associated with the cosmological constant, bu the

other parameters also have a significant effect on the minimum size. In figure 1 one can

see that the spatial size at the bounce can be as close to zero as desired, by adjusting

the combination of parameters σ, µ, q1, q2. Even when σ = 4 one may obtain an arbitrarily

small bounce volume by having µ and/or q1,2 large enough. The solution with σ = 4 is

important because it is smoothly connected to the everywhere homogeneous and isotropic

FLRW. Indeed, when we set σ = 4 and introduce the change of coordinates t = eτ/` we

find that

ds2
τ→∞ = −dτ2 +

`2

4
e2τ/`

[
σ2

1 + σ2
2 + σ2

3

]
+O(1) , (2.16)

which is the standard model of the universe with the observed accelerated expansion pro-

duced by the cosmological constant. So, for large times the electromagnetic parameters q1

and q2 and the time asymmetry µ are washed out due to the expansion of the universe.
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3 Inhomogeneous and anisotropic bounces

Extending from the metric considered thus far, the cosmological solution can be generalised

as follows,

ds2 = `2
(
t2 + (αy + 1)2

)(
− dt2

∆(t)
+

dy2

G(y)

)
+

4`2

σ2

∆(t) + α2G(y)

t2 + (αy + 1)2
dψ2

+
4`2

σ2

y (αy + 2) ∆(t)− α
(
t2 + 1

)
G(y)

t2 + (αy + 1)2
dψdφ

+
`2

σ2

(
t2 + 1

)2
G(y) + y2 (αy + 2)2 ∆(t)

t2 + (αy + 1)2
dφ2 , (3.1)

where

∆(t) = t4 + (6 + α2 − σ)t2 + µt+ (σ − 3)
(
1− α2

)
, (3.2)

G(y) =
(
1− y2

) (
α2y2 + 4αy + σ

)
. (3.3)

The homogeneous solutions of the previous section are recovered when α = 0. The range of

the new coordinate is cos (θ) = y ∈ [−1, 1]. The condition α2 < 1 is necessary for regularity

of the metric. Indeed, the would be singularity is at t = 0 and y = − 1
α , however this region

can never be reached as long as α2 < 1. Once again we have bounds on the anisotropy

parameters we are allowed to take. The effect of α on these is essentially a reduction of

the parameter space to obtain non-singular solutions. We shall give the bounds on µ and

σ below when discussing the charged solution. The uncharged case can be retrieved by

setting the charge to zero.

This solution is a new type of everywhere regular bouncing cosmology when the range

of the parameters is such that ∆(t) never vanishes. When ∆(t) has zeroes there exist

black hole and cosmological horizons and the solution is Kerr-Taub-NUT-de Sitter with the

standard pathological interpretation of the NUT parameter. We will comment more on this

correspondence below. But when the parameters are chosen such that ∆(t) remains positive

throughout, these solutions describe pathology-free non-singular bounce cosmologies. The

parameter α determines the amount of inhomogeneity in the y direction.

3.1 Adding an electromagnetic field

We may once again add an electromagnetic field. The metric retains the same form as

in (3.1), though the function ∆ gets augmented by a term,

∆(t) = t4 + (6 + α2 − σ)t2 + µt+ (σ − 3)
(
1− α2

)
− σ2`−2

(
q2

1 + q2
2

)
. (3.4)

Regularity requires again that α2 < 1. ∆(t) must remain positive throughout if we want a

singularity-free metric. This condition translates into the following requirement for µ

|µ |<− 1

3
√

6

(12(12−4σ−σ
√

1−X̃) + 2σ2(1+X̃+
√

1−X̃) + α2(α2−23σ+σ
√

1−X̃+84))√
−6− α2 + σ(1 +

√
1− X̃)

,

(3.5)
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while σ must reside in the range

σ+ > σ > σ− , (3.6)

with

σ± =
3

4

16 + 4(1− X̃)1/2 ± Ξ1/2

1 + (1− X̃)1/2 + X̃
− 1

4

(1− X̃)1/2 − 23

1 + (1− X̃)1/2 + X̃
α2 , (3.7)

Ξ =144(1− X̃) + 168α2 − 24α2(1− X̃)1/2 − 72α2X̃ + 58α4 − 6α4(1− X̃)1/2 − α4X̃ ,

(3.8)

and X̃ must satisfy

1 ≥ X̃ =
12(q2

1 + q2
2)

`2
− α2(48 + α2 − 14σ)

σ2
, (3.9)

where the last condition yields a bound on the charge. The vector potential is generalised to

A =
2
√

2

(t2+(αy+1)2)

([q2

2

(
1+y2α2−t2

)
− q1t

]
dψ − y

2

[
q2

(
t2−1−yα

)
+ q1t (2+αy)

]
dφ
)
,

(3.10)

where q1 and q2 are again the integration constants describing the electromagnetic field.

In order to interpret the gauge potential as giving rise to electric and magnetic fields,

we should first shift the description to a local tangent frame. For this we need the vielbeine,

which for the metric (3.1) are given by

e0̄
t =

`

∆(t)1/2

(
t2 + (αy + 1)2

)1/2
e1̄
y =

`

G(y)1/2

(
t2 + (αy + 1)2

)1/2
(3.11)

e2̄
φ =

`

σ
y(αy + 2)

(
∆(t)

t2 + (αy + 1)2

)1/2

e2̄
ψ = 2

`

σ

(
∆(t)

t2 + (αy + 1)2

)1/2

(3.12)

e3̄
φ =

`

σ
(t2 + 1)

(
G(y)

t2 + (αy + 1)2

)1/2

e3̄
ψ = −2α

`

σ

(
G(y)

t2 + (αy + 1)2

)1/2

(3.13)

and all other components are zero. Now we can define the electric and magnetic fields as

they would be measured by a local free-falling observer,

Eā = F 0̄
ā , Bā =

1

2
εābcF

bc . (3.14)

Curiously in local coordinates both the electric and the magnetic fields only point in a

single spatial direction,

E2̄ = −
√

2σ
(
q1

(
t2 − (αy + 1)2

)
− 2q2t(αy + 1)

)
`2 (t2 + (αy + 1)2)2 , (3.15)

B2̄ =

√
2σ
(
q2

(
t2 − (αy + 1)2

)
+ 2q1t(αy + 1)

)
`2 (t2 + (αy + 1)2)2 , (3.16)
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Figure 2. The local electric (in orange) and magnetic (in blue) fields for σ = 4, α = 1/2, �2 = 3,

q1 = −1/10 and q2 = 0. For α > 0, the growth of the fields in the approach of the bounce is largest

near y = −1.

and all other terms are zero. The Maxwell equations are nevertheless satisfied because the

geometry provides the additional terms required. Thus the geometry supports the electric

and magnetic fields, which exist without the presence of a source. The general structure

of the E and B fields is that they grow in the approach of the bounce, and decay again

afterwards. The integration constant q1 corresponds to a time-symmetric electric field and

an odd magnetic field (vanishing at t = 0), while for q2 this correspondence is reversed.

An example is shown in figure 2.

3.2 Asymptotics and scale of the bounce for the inhomogenous case

The inhomogeneous metric is much more complicated. To understand the asymptotic

region it is necessary to introduce a change of coordinates

t (x, τ) =

2∑
n=0

An(x)τ
1−n , y (x, τ) =

2∑
n=0

Bn(x)τ
−n , (3.17)

where the functions An and Bn are rather complicated but can be chosen requiring that

asymptotically the metric goes to pure de Sitter

ds2τ→∞ = −dτ2 +
�2

4
e2τ/�

[
σ2
1 + σ2

2 + σ2
3

]
+O(1) . (3.18)

We have verified that this is indeed possible provided that σ = 4 − α2. Therefore, all

the inhomogeneities and anisotropies are washed out at large times. By the same token

as before, this is again independent of the scale of the bounce, which is a function of

the parameters of the metric. Indeed, the scale of the bounce depends on the integration

constants of the solution, in analogy to the scale of the horizon for a Kerr black hole.

In particular, the scale of the bounce now depends on the spatial location within the

spacetime, due to the inhomogeneity parameterised by α. We will discuss the scale of the

bounce in much more detail with the use of several concrete examples in section 5.

– 8 –
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4 A black hole-bounce correspondence

In order to appreciate how cosmological and black hole metrics sometimes happen to be

related to each other, it is instructive to start with the example of the familiar Schwarzschild

black hole metric with mass M [22],

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2
2 . (4.1)

Outside the horizon, r ≥ 2M, the spacetime is static with the curvature depending solely

on the distance to the horizon. But in the interior of the black hole, r < 2M, the coefficients

of dt2 and dr2 switch sign, so that these coordinates exchange their roles — t becomes a

space direction, and r a time direction. Near r = 0, the metric can be approximated as

ds2 ≈ +
2M

r
dt2 − r

2M
dr2 + r2dΩ2

2 . (4.2)

Now we can redefine r ≡ T 2/3 and call t ≡ R, with the consequence that up to some trivial

re-scalings the metric becomes

ds2 ≈ −dT 2 + T−2/3dR2 + T 4/3dΩ2
2 . (4.3)

This shows that in the black hole interior the metric is of Kantowski-Sachs type [23], i.e.

it has the topology R2 × S2. Near the centre of the Schwarzschild black hole, at T = 0,

the metric is of approximate Kasner form with exponents
(
−1

3 ,
2
3 ,

2
3

)
. In other words, the

interior of the Schwarzschild black hole is a time-dependent contracting universe ending in

a big crunch singularity at T = 0. From the point of view of classical general relativity, this

interior solution is not particularly useful (although one may speculate what the fate of the

crunch may end up being in quantum gravity). But for more general black hole metrics,

the interior region can be considerably more interesting.

We will be particularly interested in the Kerr-Newman-NUT-deSitter solution in Boyer-

Lindquist coordinates [24],

ds2 =− Q

ρ2

[
dt−

(
a sin2 θ + 4n sin2 1

2
θ

)
dφ

]2

+
P

ρ2
sin2 θ

[
adt−

(
r2 + (a+ n)2

)
dφ
]2

+
ρ2

Q
dr2 +

ρ2

P
dθ2 (4.4)

with

ρ2 = r2 + (n+ a cos θ)2 , (4.5)

P = 1 +
4

3
Λan cos θ +

1

3
Λa2 cos2 θ , (4.6)

Q = (a2 − n2 + e2 + g2)− 2mr + r2 − Λ

[
(a2 − n2)n2 +

(
1

3
a2 + 2n2

)
r2 +

1

3
r4

]
, (4.7)
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where m is the mass, e and g are the electric and magnetic charges, n is the NUT parameter,

a is the spin and Λ is the cosmological constant. Horizons are located at zeroes of Q.

Meanwhile the corresponding vector potential is given by

A =
2
√

6√
κΛ

1

ρ2n2

(
dψ [gn(n+ a cos θ)− enr]

+
cos θ

2
dφ
[
g
(
n2r2 − 1− a cos θ

)
+ e (2n+ a cos θ)

])
(4.8)

From here we make the following coordinate transformations and redefinitions

r = t

√
`2

σ
, cos θ = y , t = ψ , (4.9)

a = α

√
`2

σ
, n =

√
`2

σ
, m =

1

2
µ`σ−3/2, Λ =

3

`2
, e =

`

σ
q1, g =

`

σ
q2 , (4.10)

which precisely recover the inhomogeneous/anisotropic non-singular bounce solution (3.1)

we have used above. Horizons would be located at zeroes of Q, but we have chosen param-

eters and coordinate ranges such that for the bouncing solution Q < 0 everywhere. This

means that one should think of the bouncing cosmology as the smooth joining of the region

outside the cosmological horizon with the region inside the event horizon of the Kerr-NUT-

de Sitter black hole. The fact that the cosmological constant is positive is in fact crucial

for this to be possible, as can be seen from eq. (4.7). Note also that a curvature singularity

is reached at ρ = 0. But from eq. (4.5) we can see that if the NUT parameter n is larger

than the rotation a, then ρ can never be zero. In our notation this translates into the

requirement α2 < 1, so that we can see that a sufficiently large NUT charge is required to

change the big bang into a non-singular bounce. In the stationary region of the black hole,

the NUT charge is considered pathological, as it leads to the appearance of closed timelike

curves, but in the interior region it takes on the new role of preventing a singularity. When

the cosmological constant is positive this interior region can be extended to a geodesically

complete spacetime representing the bouncing cosmologies we discuss here.

Note also that the switch between spacelike and timelike directions means that the

mixed time-space component of the metric morphs into a mixed spatial component only,

and, together with the definite sign of all metric coefficients, this is the reason why no

closed timelike curves can appear in the interior region. Related to this is the fact that

a no longer characterises the rotation/angular momentum of the black hole, and in fact

comes to parameterise the spatial inhomogeneity α of the bounce. Finally, we note that

the mass m of the black hole ends up simply parameterising the time asymmetry µ of

the bouncing solution. Thus there is a complete re-shuffle of the physical significances of

the various parameters, the most important one being that the NUT charge n looses its

stigma. In the cosmological setting the NUT parameter is controlled by σ, which measures

the amount of anisotropy that the metric has at large times. When σ = 4 the anisotropic

cosmology evolves towards the closed FLRW metric with a round sphere.
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Figure 3. Plots of the average local scale factor (cubed) as a function of y and t. The solutions can

be significantly inhomogeneous: for instance there can be one bounce near y = −1 and two bounces

near y = +1 (left panel, with α = 1/2, σ = 10, q1 = q2 = 0) or two bounces on one side and three

on the other (right panel, with α = 1/2, σ = 11, q1 = q2 = 0). All our plots have �2 = 3, µ = 3.

5 Examples

In order to highlight the non-trivial features of the non-singular bounce solutions that

we have described so far, it is useful to present a few representative examples. These

examples may also point to several directions of research that will be worthwhile exploring

in more detail in the future. We will characterise the solutions by looking at the size of

the spatial hypersurfaces at fixed times, and at the contributions of the various forms of

gravitational and matter energy densities that determine the contraction/expansion history

of the solutions.

The solutions that we are describing are both anisotropic and inhomogeneous. Never-

theless, we can define a local scale factor A(t, y) which averages over the anisotropies, but

shows the inhomogeneity and the dependence on time, by making use of the determinant

of the metric γij on constant t slices (the integral of which would yield the volume),

A(t, y)3 ≡ √
γ =

2�3

σ2

[
(t2 + (αy + 1)2)∆(t)

]1/2
. (5.1)

This allows us to highlight an interesting feature of the bounces: there are solutions for

which the inhomogeneity is so large that the number of bounces a local observer experiences

depends on the location in y, see figure 3. As the figure shows, there exist solutions where

one region of the universe bounces once, while far away regions bounce twice. Likewise,

there are solutions containing two or three bounces depending on location. Three bounces

is however the maximum possible number, since the equation Ȧ = 0 contains five real

roots at most, corresponding to three bounces separated by two occurrences of re-collapse.

Asymptotically however, as t → ±∞, the metric becomes independent of α and the inho-

mogeneity is diluted — hence it is only near the bounce(s) that the inhomogeneity is really

pronounced.

Another useful way to characterise the inhomogeneity as well as other features of the

solutions is to look at the contributions of the different forms of stress energy: gravitational,
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vacuum and of electromagnetic type. For this, it is convenient to decompose the metric (3.1)

into a 3 + 1 split [25],

g00 = −N(t, y)2 , g0i = 0 , gij = γij , (5.2)

where we note that for our metric the shift is equal to zero (here we use Roman letters

for spatial indices and Greek ones for spacetime indices). The three dimensional hypersur-

faces have extrinsic curvature Kij arising from their embedding into the four-dimensional

spacetime,

Kij = − 1

2N
∂tγij . (5.3)

Then the time-time component of the Einstein equations, usually referred to as the Fried-

man equation in a cosmological context, reads

1

2

(
K2 −KijK

ij + (3)R
)

= T 0
0 =

3

`2
+
σ2

`4

(
q2

1 + q2
2

)
[t2 + (αy + 1)2]2

. (5.4)

On the right hand side of eq. (5.4) we have contributions both from the cosmological

constant and from the stress-energy of the electromagnetic field. The left hand side, given

in terms of the extrinsic curvature and the three-curvature, reads more explicitly

K2−KijK
ij =

2t
(

∆̇
(
t2 + (αy + 1)2

)
− t∆− α2tG

)
`2 (t2 + (αy + 1)2)3 , (5.5)

(3)R =−
2(αy+1)2(∆+α2G)+

(
t2+(αy+1)2

)(
G′′
(
t2+(αy+1)2

)
−2α(αy+1)G′

)
`2 (t2 + (αy + 1)2)3 .

(5.6)

In a FLRW context the extrinsic curvature term (5.5) would simply have been 3H2 (where

H denotes the Hubble rate), while the spatial curvature term would have been 3k
a2

for spatial

slices that are closed (k = 1), flat (k = 0) or open (k = −1). In such a FLRW context a

positive curvature term is needed in order to obtain a non-singular bounce. Meanwhile, in

the present inhomogeneous context, all these terms, apart from the cosmological constant

term, can have a strong spatial and temporal dependence.

As a first example, consider figure 4. This provides an example of a highly inhomo-

geneous solution, with α = 9/10. We are plotting various contributions to the Friedman

equation: in blue, the stress-energy from the electromagnetic field, in orange that of the

cosmological constant (set to Λ = 1 here) and in green we are showing (3)R. Both the

electromagnetic energy density and the 3-curvature are growing towards the bounce, and

then decaying again. Near y = −1 the growth is by far the strongest, and in this region

the 3-curvature can become a full three orders of magnitude larger in magnitude than the

cosmological constant. The right panel shows that this growth is far less pronounced at

larger y.

This solution is also interesting in the context of inflation. An unresolved open problem

of all inflationary models is how to explain the initial conditions that are required for

– 12 –



J
H
E
P
0
9
(
2
0
1
9
)
0
9
6

-2 -1 1 2
t

200

400

600

800

1000

ρrΛ
(3)R

Figure 4. An example with large spatial curvature. In blue is shown the energy density of the

electromagnetic field, in orange that of the cosmological constant (equal to Λ = 1), while the green

curve/surface shows the 3-curvature. The parameter values are σ = 8, α = 9/10, q1 = 1/20, q2 = 0.

Left panel: y = −1. Right panel: −1 ≤ y ≤ −0.7.

inflation to begin.2 But it remains an open issue in and of itself to understand in general

what the range of allowable initial conditions is (for recent work see e.g. [31]). An intuitive

expectation would be to require a Hubble sized region to be roughly homogeneous and

isotropic, with inflationary potential energy dominating over the kinetic energy. Recently,

numerical studies have largely confirmed these expectations, but have also indicated that

a larger inhomogeneity may in fact be tolerable (while still assuming the inflaton kinetic

energy to be very small) [32, 33]. Our explicit analytic bounce solutions are interesting

in this regard, as they all link to a phase of accelerated/inflationary expansion, albeit one

induced by a cosmological constant, where the issues with kinetic energy do not arise. Our

solutions demonstrate that the inhomogeneity can indeed be surprisingly large, while still

allowing accelerated expansion to take place afterwards. Nevertheless, one should note

that in the present case the regions of large curvature are surrounded by regions of small

curvature at larger y, so that it may also be the case that these low curvature regions are

pulling the large curvature regions along into the ensuing phase of accelerated expansion.

It would certainly be interesting to study these questions numerically for initial conditions

that are obtained as deformations of the exact solutions presented here, to verify the

robustness of the comments above.

If the present bounce model is thought of as a pre-history to inflation, then inflation will

dilute all memory of the inhomogeneities, unless the duration of inflation is finely tuned to

last the exact minimum amount required to address the flatness problem. In that case the

(currently) largest scales in the sky would retain a memory of the earlier inhomogeneities,

and one would expect to see a preferred direction in the sky. The CMB does indeed have

a few anomalies (less overall power in the southern hemisphere, low quadrupole mode,

special alignment of several modes), but these are at a low significance level of 2−3 sigma,

so that it cannot be ascertained how seriously one can take this hint. Unless one can find

2Quantum cosmology may offer a setting where this question can be addressed. In particular, this is

the aim of the no-boundary [3] and tunnelling proposals [26]. For recent progress in this direction, see [27],

and for implications in the context of bouncing cosmologies see [28–30].

– 13 –



J
H
E
P
0
9
(
2
0
1
9
)
0
9
6

-2 -1 1 2
t

5

10 ρrΛ
(3)R

Figure 5. An example where the spatial curvature changes sign in some regions, just before and

after the bounce, which occurs at t = 0. In blue is shown the energy density of the electromagnetic

field, in orange that of the cosmological constant (equal to Λ = 1), while the green curve/surface

shows the 3-curvature. The parameter values are σ = 4, α = 4/5, q1 = 1/20, q2 = 0. Left panel:

y = −1. Right panel: −1 ≤ y ≤ +1.

convincing links between different instances of inhomogeneity, it will be difficult to obtain

observational confirmation or disproof of any large-scale inhomogeneity, as ufortunately

only observations in the very distant future will reveal further large-scale modes, long after

our lifetimes.

Another example of interest is presented in figure 5. Here a different, though equally

surprising effect takes place. As discussed in the introduction, it is the combination of

vacuum energy and positive 3-curvature that allows the singularity theorems to be evaded.

Thus we know that at the bounce the 3-curvature is necessarily positive. However, for a

significant range of parameters, the 3-curvature switches sign and becomes negative right

before/after the bounce, again in the region of the largest inhomogeneity, near y = −1.

This is interesting again in the context of “initial” conditions, in particular regarding the

flatness problem [34]. From the fact that current observations provide a stringent upper

bound on the homogeneous spatial curvature today, we can infer that at the onset of the

hot big bang phase the relative importance of the 3-curvature must have been extremely

tiny. Considering that non-singular bounces (without exotic matter that can violate the

null energy condition) require a significant positive spatial curvature then seems to be in

direct conflict with observations, unless there exists a mechanism that dilutes this curvature

after the bounce. Of course, inflation could potentially provide such a mechanism [35]. But

here we see that the case against pure curvature-induced bounces is perhaps less watertight

than assumed so far: the fact that the 3-curvature can change sign right after the bounce

also implies that it will vanish or nearly vanish in some regions. It would be a strong use

of the anthropic principle to simply postulate that we might live in such a region, and we

do not want to pursue this line of reasoning here. However, we simply wish to point out

that it might be interesting to investigate this question further, and to see under what

conditions the dynamics might cause large regions of the universe to become flat or nearly

flat in the aftermath of a non-singular bounce.
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6 Discussion

Exact solutions of general relativity, in the presence of well-understood matter sources,

have played a leading role not only in understanding the structure of relativity itself,

but also in understanding its physical consequences for the universe. The most obvious

examples that come to mind are the Schwarzschild solution describing the simplest black

holes, and the Friedman-Lemâıtre-Robertson-Walker solutions describing the evolution of

the universe on the largest scales. In the present paper we have morphed a generalised exact

black hole solution, namely the Kerr-NUT-de Sitter solution, into a cosmological solution,

by focussing on the matching of the interior region of the black hole to the asymptotic

region by eliminating the event horizon. This solution, which exists in the presence of a

cosmological constant and (optionally) an electromagnetic field, is distinguished by being

both anisotropic and inhomogeneous while describing a non-singular bouncing universe.

Could this solution describe the interior of actual black holes? And could such a non-

singular bounce lead into a new expanding universe on the “other” side of the black hole,

as has been suggested in some scenarios of cosmic evolution [36]? Unfortunately this seems

unlikely, as the black holes in question are known to lead to closed timelike curves outside of

their horizon due to the presence of the NUT charge, implying that this class of black holes

is unlikely to be physically realistic. However, on the inside of these black holes, the various

parameters describing the solution take on entirely different meanings, and it is precisely

the NUT parameter that pushes the would-be big bang singularity out into an unphysical

coordinate range, thus rendering the solution everywhere regular. Meanwhile, the rotation

parameter of the black hole ends up describing the inhomogeneity of the bouncing universe

solution. The end result is that the bouncing solution is entirely non-pathological.

Could the bouncing solution describe our universe? This remains too early to tell.

We do however foresee a number of applications of this solution: for instance, as an exact

inhomogeneous solution, it may well have applications in terms of understanding the av-

eraging problem in cosmology better [37]. And since the bounce is followed by a period

of accelerated expansion, these solutions may be useful in understanding the initial con-

ditions required for phases of accelerated expansion, i.e. for inflation. Indeed, the issue

of how much inhomogeneity is tolerable while still allowing for inflation to get started re-

mains incompletely understood. Most of the recent work in this direction has focussed on

numerical techniques, but exact solutions certainly have a role to play in this context, not

only to check the accuracy of numerical codes, but also to understand and perhaps uncover

qualitatively new effects.

From the purely classical point of view the existence of these solutions is quite satis-

factory. Indeed, given a classical field theory it is necessary to find solutions that represent

the physics one is trying to describe. Therefore, any singularity of the field should be ruled

out in the description of the origin of the universe. The existence of a singularity implies

that the solution is not a good model of the region of interest. Indeed, it is likely that the

final understanding of the origin of the universe shall require a quantum theory of gravity.

However, it is natural to expect perturbation theory around a state where observables are

infinite to be ill-defined. Hence, if one expects the existence of a regime where the putative
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theory yields quantum “corrections” it is necessary to have at hand configurations where

the gravitational field is bounded.

It remains an open question then how such non-singular bounces might fit into a more

complete cosmological model [38]. However, the mere fact that they can occur in the

presence of known matter sources already motivates their study. Somewhere, sometime,

the conditions may have been (or will be) just right for them to actually take place. But,

perhaps most intriguingly, they display some features that seem worth further exploration:

they support electromagnetic fields simply due to their intricate geometry, and these fields

grow in the approach to the bounce. It would be interesting to see if there can be any

connection with the magnetic fields that are speculated to have been present already in

the early universe. Also, the fact that the 3-curvature can vary widely from place to place,

and even switch sign in some regions, offers new avenues of inquiry. The usual objections

to non-singular curvature-induced bounces, namely that they require highly homogeneous

initial conditions, and that the required spatial curvature is eventually at odds with current

bounds on the curvature, though not evaded are at the very least relativised by the existence

of these solutions. After all, in an inhomogeneous universe not all regions are the same,

and some neighbourhoods may be much more interesting than others.
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