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Abstract 

Objective: Lateralized dysfunction has been suggested in Obsessive-Compulsive Disorder (OCD). 

However, it is currently unclear whether OCD is characterized by abnormal patterns of structural brain 

asymmetry.  Here we carried out by far the largest study of brain structural asymmetry in OCD. 

Method: We studied a collection of 16 pediatric datasets (501 OCD patients and 439 healthy controls), 

as well as 30 adult datasets (1777 patients and 1654 controls) from the OCD Working Group within 

the ENIGMA (Enhancing Neuro-Imaging Genetics through Meta-Analysis) consortium. Asymmetries 

of the volumes of subcortical structures, and of regional cortical thickness and surface area measures, 

were assessed based on T1-weighted MRI scans, using harmonized image analysis and quality control 

protocols. We investigated possible alterations of brain asymmetry in OCD patients. We also explored 

potential associations of asymmetry with specific aspects of the disorder and medication status.   

Results: In the pediatric datasets, the largest case-control differences were observed for volume 

asymmetry of the thalamus (more leftward; Cohen’s d = 0.19) and the pallidum (less leftward; d = -

0.21). Additional analyses suggested putative links between these asymmetry patterns and medication 

status, OCD severity, and/or anxiety and depression comorbidities. No significant case-control 

differences were found in the adult datasets.  

Conclusions: The results suggest subtle changes of the average asymmetry of subcortical structures in 

pediatric OCD, which are not detectable in adults with the disorder. These findings may reflect altered 

neurodevelopmental processes in OCD.  

 

Keywords: laterality; brain asymmetry; obsessive-compulsive disorder; thalamus; pallidum; mega-

analysis 
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Brain structural asymmetry alterations in patients with OCD were investigated.  

This study was performed with a large sample size via the ENIGMA Consortium.  

The largest case-control mean differences were found in the thalamus and pallidum in pediatric OCD 

patients.  

Alterations of structural asymmetry in OCD were subtle and restricted to pediatric cases.  
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Introduction 

Obsessive-Compulsive Disorder (OCD) is a psychiatric disorder with a lifetime prevalence of 

approximately 2% (1-4). OCD involves persistent, intrusive and unwanted thoughts (obsessions) as 

well as repetitive behaviors which might be accompanied by mental acts (compulsions) (4). As a 

heterogeneous neuropsychiatric condition with considerable heritability of roughly 40% (5), OCD has 

significant genetic and non-genetic determinants (4), but the pathophysiology of this complex disorder 

remains unclear.  

Left-right asymmetry is an important aspect of human brain organization for multiple functions (6). 

For example visual-spatial processing and emotions that elicit withdrawal behaviors are usually right-

lateralized in healthy people (7-10), whereas language-related processes, hand motor dominance, and 

emotions that elicit approach behaviors tend to be left-lateralized in the brain (11, 12). Alterations of 

asymmetry have been reported in various psychiatric and neurocognitive conditions, including 

schizophrenia (13, 14), autism (15) and dyslexia (16). Altered functional laterality has also been 

investigated in OCD (17, 18), partly due to observations of psychometric deficits within the visual-

spatial domain (19-21), as well as altered emotional processing (22-25). For example, a behavioral 

study found reduced functional asymmetry for spatial attention in OCD patients, and also that less 

typical asymmetry was correlated with more serious obsessions (20). Several studies found greater 

impairment in visual-spatial memory compared with verbal memory in OCD, suggestive of right-sided 

dysfunction (17, 18, 26). Increased left-right asymmetry of electroencephalographic (EEG) activity at 

rest, or reduced activity in the right hemisphere linked to approach/avoidance motivation, has also 

been reported in OCD compared to healthy controls (19, 22). However, left-sided dysfunction has also 

been suggested in OCD, on the basis of neuropsychological data (23) as well as neuroimaging studies 

(27-29). Reduced right-ear advantage, which can indicate left-hemisphere dysfunction, was reported in 

OCD for certain tasks (23). In addition, hyper-responsiveness was observed in the left hemisphere 

based on event-related potentials (27, 30). More recently, left lateralized differences in functional 

connectivity of the amygdala were reported in OCD versus controls, using task fMRI (31). Studies 

with animal models of OCD (32), and transcranial magnetic stimulation (TMS) in treatment-resistant 
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OCD patients (33) have suggested that left-lateralized stimulation is more effective compared to right. 

Therefore, overall, the literature suggests altered hemispheric functional balance in OCD, but does not 

point consistently to one of the hemispheres as being the primary site of disruption.  

Importantly, any structural basis linked to altered functional laterality in OCD is still unclear. Two 

previous studies explored brain structural asymmetry in OCD as a specific outcome of interest, but 

with low sample sizes. In one of these studies, with 16 OCD patients, leftward asymmetry (i.e., left > 

right) of cortical thickness in the anterior cingulate region was found in OCD patients and their 

siblings but not in matched controls, and this was claimed to present a potential endophenotype linked 

to increased hereditary risk for OCD (34). In the other study, with 32 patients, significant differences 

of frontal white matter volume asymmetry were found in both medicated (N = 19) and non-medicated 

(N = 13) patients, as compared with healthy controls (35). Unfortunately, small sample sizes tend to 

limit the reliability of findings in human neuroscience (36), and the extent of any association between 

OCD and structural brain asymmetry remains uncertain. 

The OCD working group within the Enhancing Neuro-Imaging Genetics through Meta-Analysis 

(ENIGMA) consortium (37) recently achieved more highly powered analyses of brain changes in 

OCD, based on a sample size of over 1500 OCD individuals and a similar number of controls (38). 

They reported several regional case-control differences in cerebral cortical measures which involved 

only one hemisphere (38). However, these analyses did not examine whether effect sizes were 

significantly different on the left and right sides, and asymmetry was not quantitatively characterized. 

Unilateral patterns in this and other studies may arise from small but uniform bilateral effect sizes; the 

fact that statistical significance was achieved on one side, but not on the other, does not necessarily 

indicate a significant change in asymmetry. Furthermore, a post-hoc statistical comparison of the left 

and right-sided effect sizes as reported by the previous ENIGMA study (38) would not yield the same 

level of statistical power as can be provided by utilizing the individual-level, paired left and right data, 

to analyze asymmetry alterations in OCD. In addition, a previous ENIGMA study of subcortical 

volumes in OCD only reported combined left and right volumes (39). 
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Here, we used the latest data for both subcortical and cortical structures from the ENIGMA OCD 

Working Group, and targeted hemispheric structural asymmetry across subcortical and cortical 

measures, as assessed by subject-specific asymmetry indexes, AI = (Left-Right)/((Left+Right)/2) (40). 

The AI is a widely used approach in studies of brain asymmetry (e.g., (41, 42)). Our primary interest 

was to compare structural asymmetries between patients and healthy controls, but we also performed 

post-hoc analyses to investigate possible associations of brain asymmetries with medication status, age 

at disease onset, disease duration, OCD severity, and presence of anxiety and depression comorbidities. 

As the recent studies from the ENIGMA OCD working group had indicated distinct alterations in 

pediatric and adult patients (38, 39), and because asymmetries of both cortical and subcortical 

structures are also known to change subtly with age in the healthy population (40, 43), we carried out 

all analyses for the pediatric (<18 year old) and adult (>=18 year old) data separately (see also (44)). 

 

Materials and Methods 

See Supplementary Materials for detailed methods.  

Datasets. The datasets used in this study were provided by members of the OCD Working Group 

within the ENIGMA Consortium (37). There were 46 independent datasets from 16 countries: 16 

pediatric datasets comprising 501 OCD patients and 439 healthy controls, and 30 adult datasets 

comprising 1777 OCD patients and 1654 healthy controls (Table 1, Figure S1-2 and Table S1).  All 

local institutional reviews boards permitted the use of extracted measures from their anonymized data. 

In addition, we leveraged publicly available summary statistics which describe the average form of 

brain regional asymmetries, based on our previous larger studies of healthy individuals (40, 43). 

--Table 1-- 

Table 1. Information on participant numbers, age, sex and clinical characteristics in the ENIGMA OCD datasets.  
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Image Acquisition and Processing. Structural T1-weighted MRI scans were acquired and processed 

locally at each collection site. Images were acquired at different field strengths (1.5 T and 3T). All 

images were analyzed using one automated and validated pipeline, i.e. “recon-all” as implemented in 

FreeSurfer. For each subject, surface area and mean thickness was extracted for each of the 68 cortical 

regions (34 per hemisphere) in the Desikan-Killiany parcellation scheme (45), as well as total 

hemispheric surface area, and the average mean thickness over each hemisphere. In addition, volumes 

of eight subcortical regions of interest, including seven subcortical structures (nucleus accumbens, 

amygdala, caudate, hippocampus, pallidum, putamen, and thalamus), and the lateral ventricle volume, 

were calculated.  

Asymmetry indexes. The aim of this study was to investigate differences in subcortical and cortical 

asymmetry related to OCD. To this end, for each participant, and each subcortical or cortical measure, 

an Asymmetry Index (AI) was defined as (L-R)/((L+R)/2), where L and R represent the corresponding 

left and right volume measures (from subcortical regions), or thickness and surface area measures 

(from cortical regions). This AI formula has been widely used in previous brain asymmetry studies (41, 

42, 46), including our own (8, 40, 43).  

Case-control analyses. Separately for the pediatric and adult data, and for each AI, we pooled data 

from all available individuals from each dataset, and used a mega-analytical framework to investigate 

the case-control effects. Specifically, for each AI, we used a linear mixed-effect model (using lme4 R 

package), with AI as the outcome variable, and a binary indicator of diagnosis (0=controls, 1=OCD 

patients) as the predictor of interest. In each model, a binary variable for sex, and a continuous 

measure for age (in years at time of scan) were included as confounding factors, and the categorical 

variable ‘dataset’ as a random-effect term. 

Separately for thickness and surface area, we additionally calculated an overall ‘typicality score’ per 

subject, which indexed how much a given subject deviated from the population mean asymmetry 

profile, when considered simultaneously across all 34 cortical regions. A lower typicality score 

indicates more deviation from the mean asymmetry profile in the population.  
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OCD case-only analyses of clinical characteristics. For AIs which were potentially associated with 

OCD in the main analysis (see Results), we further investigated, within cases only, whether the AIs 

were associated with specific aspects of the disorder and medication status. 

 

Results 

An overview of the datasets is provided in Table 1, Figure S1-2, and Table S1.  

Pediatric data. The results for both subcortical and cortical AIs in the pediatric data, including the 

effect size estimates for diagnosis on each AI, are presented in Figure 1 and Tables S2-S4.  

The largest effects of diagnosis in pediatric cases were more leftward asymmetry of the thalamus (t = 

2.84, p = 0.0047, d = 0.19; Figure 1-2), and less leftward asymmetry of the pallidum volume (t = -3.17, 

p = 0.0016, d = -0.21; Figure 1-2). These two findings were significant when controlling the FDR at 

0.05 (see Materials and Methods). Post hoc analyses showed that these case-control differences were 

mainly due to a left thalamus which was relatively larger in OCD patients than controls (Left: t = 4.08, 

p = 4.89e-05, d = 0.27; Right: t = 2.12, p = 0.034, d = 0.14), and a left pallidum which was relatively 

smaller in OCD patients than controls (Left: t = -1.98, p = 0.048, d = -0.13; Right: t <1.0, p = 0.35, d = 

0.062) (see also Figure 2B for distribution and group differences of each unilateral volume measure). 

In addition, we confirmed that the effects remained when excluding possible outliers in each AI per 

dataset (see Methods) (pediatric thalamus volume asymmetry: t = 2.90, p = 0.0038, d = 0.19; pediatric 

pallidum volume asymmetry: t = -3.16, p = 0.0016, d = -0.21). 

<Fig. 1> 

In terms of cortical asymmetries in the pediatric data, no significant case-control differences in the 

global hemispheric AI for either cortical thickness or surface area were found (ps >0.40). Regionally, 

only one AI showed a nominally significant effect (i.e. prior to multiple testing correction) of 

diagnosis, which was for thickness asymmetry of the lateral occipital cortex (greater rightward 

asymmetry in OCD patients; t = -2.08, p = 0.038, d = -0.14; Figure 2). This did not survive multiple 
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testing correction. No other AIs in case-control comparisons within the pediatric data showed 

significant effects (uncorrected ps >0.05). 

<Fig. 2> 

Within pediatric patients only, there were no differences of the thalamus or pallidum AIs between 

medicated and unmedicated subjects (uncorrected ps >0.20), nor with respect to current anxiety or 

depression comorbidity (ps >0.20), or age at disease onset or disease duration (ps >0.05). In terms of 

OCD symptom, the pallidum AI showed significant association with two of the 5 major Y-BOCS 

symptom components: hoarding (t = -2.37, p = 0.0065) and cleaning/contamination (t = -2.29, p = 

0.014), such that cases with these symptoms had reduced leftward asymmetry of the pallidum 

compared to cases without these symptoms. No significant associations of symptom severity were 

observed with the thalamus AI, within the pediatric cases (ps >0.10).  

When repeating the main analysis including age2 in the model, in case of substantial non-linear effects 

of age on AIs, all of the Cohen’s d for the effects of diagnosis remained within 0.005 of their values 

before having included age2, and the same two AIs (thalamus volume AI, pallidum volume AI) 

remained significant after FDR correction. None of the AIs showed significant scanner effects in the 

pediatric data (ps >0.05), and the significant effects of diagnosis remained when adding scanner field 

strength as a predictor variable to the main analysis models (pediatric thalamus volume asymmetry: t = 

2.81, p = 0.0050, d = 0.19; pediatric pallidum volume asymmetry: t = -3.02, p = 0.0025, d = -0.20). 

We calculated per-subject ‘typicality scores’ (see Methods), and compared the typicality scores 

between patients and controls. However, no significant differences were found in the pediatric data for 

either thickness or surface area asymmetries (ps >0.15). This analysis might have been sensitive to 

multi-regional disruptions of laterality that are not consistent in direction, as could conceivably arise 

from generally increased developmental instability. 

Adult data. The results for both subcortical and cortical AIs in the adult data, including the effect size 

estimates for diagnosis on each AI, are presented in Figure 1 and Tables S5-S7. All effects were subtle 

(Cohen’s d between -0.086 and 0.066), and not as strong as found in the pediatric data.  
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The largest effect in adults was a case-control difference in the AI of global hemispheric surface area 

(t = -2.48, p = 0.013, d = -0.086), indicating that adult OCD was associated with slightly more 

rightward overall asymmetry in surface area, compared with controls. However, this did not survive 

multiple testing correction when accounting for all regional surface area AI comparisons. Post hoc 

analyses showed that this difference was mainly due to relatively smaller surface area in the left 

hemisphere (Left: t = -2.80, p = 0.0051, d = -0.098; Right: t = -2.18, p = 0.029, d = -0.076) in adult 

OCD patients than controls. The effect on this AI remained after excluding potential outliers (see 

Methods) (t = -3.03, p = 0.0025, d = -0.10). No significant case-control difference in the total average 

asymmetry of cortical thickness was found (p =0.35). No significant differences were found in 

regional asymmetries after multiple testing correction (Supplementary Materials).   

Although the observed effect of diagnosis on the AI of global hemispheric surface area did not survive 

multiple testing correction, we were interested to explore associations of this AI with case-only 

variables, as it is a global rather than regional measure. Within the adult OCD patients, there was a 

trend towards unmedicated cases showing a mean AI difference compared to medicated cases (t = -

1.77, p = 0.077, d =-0.086; i.e., more rightward asymmetry in medicated cases). Adult cases with 

current depression showed a mean AI difference compared to those without (t = -2.15, p = 0.032, d = -

0.17; i.e., more rightward asymmetry in cases with current depression), while no effect of current 

anxiety comorbidity was observed (p =0.48). There was no correlation of this AI with the age at 

disease onset (t <1.0, p = 0.53) or the disease duration (t = -1.03, p =0.30). In terms of OCD severity 

measures, no significant associations were found with either the severity in total score or the 

subcomponent variables (ps >0.10).  

Including age2 or scanner field strength did not change the main results (Supplementary Materials). 

Typicality scores (see Methods) showed no case-control differences in the adult data, for either 

thickness or surface area asymmetry (ps >0.15). 

The effect sizes of the AI case-control differences in the pediatric and adult data were found to be 

uncorrelated across the 34 cortical regions, for either thickness AIs or surface area AIs (ps >0.40). 
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Discussion 

In this study we aimed to map differences in brain asymmetry between OCD patients and healthy 

controls, by leveraging a collection of 16 pediatric datasets and 30 adult datasets, via the ENIGMA 

Consortium. Using by far the largest sample size to address this issue to date, the results revealed a 

small number of asymmetry differences in OCD patients. The largest effects were in the pediatric 

patients for the volume asymmetry of the thalamus and the pallidum. These effects both had Cohen’s d 

values of around 0.2, which indicates their subtlety and suggests that altered structural brain 

asymmetry alone is unlikely to be a clinically useful predictor of OCD. Nonetheless, these effect sizes 

were comparable to those reported by previous large-scale studies of disorder-related changes in brain 

structure, in which asymmetry was not studied, including studies of OCD as well as major depression, 

schizophrenia, and autism (e.g., (38, 39, 47-51)). Given that the effect sizes in the present study were 

estimated based on large sample sizes, relatively accurate estimations of the true effects were possible, 

whether they were statistically significant or not. As such, the effects are informative to share with the 

field. 

Our finding of subtle changes in thalamus asymmetry in pediatric patients is broadly in accordance 

with previous disease models for OCD as regards the cortico-striato-thalamo-cortical (CSTC) circuitry, 

which is involved in a wide range of cognitive, motivational and emotional processes (44). Boedhoe et 

al. (39) observed a mean increase in bilateral thalamus volume (left plus right) in pediatric OCD 

patients versus controls, while in the present study, with a larger collection of 16 datasets (including 

10 datasets used by Boedhoe et al.), we found that this OCD-related volume alteration was largely 

left-lateralized and resulted in altered thalamus asymmetry. It is not clear what pathophysiological 

mechanisms might link altered thalamus asymmetry to OCD. Within OCD individuals, we found no 

associations of thalamus asymmetry with medication status, age at a disease onset, disease duration, 

current anxiety and depression comorbidity, or disease symptoms, which might have given some 

insights into the observed differences. The thalamus is involved in diverse interactions among cortical, 

subcortical, and brainstem nuclei, and many of its functions are asymmetrical in normal subjects (52). 
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In addition, the thalamus is subdivided into cytoarchitectonically distinct nuclei with different 

functions (53). Future studies using higher resolution mapping of internal thalamus subsegments’ 

structure and function may therefore be informative in pediatric OCD.  

For the pallidum, no total volume change (left plus right) was reported by Boedhoe et al. in pediatric 

OCD patients, while here, with a larger collection of 16 pediatric datasets (including 10 used by 

Boedhoe et al.), we found an asymmetry difference of the pallidum which was largely driven by a 

significantly reduced left-sided volume in pediatric OCD patients. Boedhoe et al. also reported that 

adult OCD patients showed a larger pallidum (again left plus right) than controls, driven by patients 

with a childhood-onset of disease (39). We saw no significant effect on pallidum asymmetry in adult 

patients, in either the subgroups of early- or late-onset of disease (Supplemental Materials). This 

overall pattern of results suggests that disease chronicity, cumulative treatment effects and/or late 

adolescent volumetric changes in patients are linked to a bilateral increase in pallidum volume, but 

that reduced left sided volume in pediatric patients reflects a different, earlier developmental process. 

Moreover, pallidum asymmetry in the pediatric patients showed associations with symptom 

components “hoarding” and “cleaning/contamination”. Although recently “hoarding disorder” was 

suggested as a separate diagnostic entity (54), in the present data there was only 1 case with hoarding 

behavior in the absence of other symptoms. Thus, we do not consider this tentative effect on 

asymmetry to relate to hoarding disorder specifically.  

The pallidum, linking with the striatum and the thalamus within the CSTC circuitry (44), has roles in 

reward and motivation, as well as broader cognitive, affective and sensorimotor processes (44, 55). 

Further studies on specific functions of the (left) pallidum in compulsive symptoms, 

cleaning/contamination behaviors specifically, are needed. While it is not clear why lateralized 

changes in particular should be involved, in general terms our findings in pediatric cases help to 

characterize the brain structural changes in this disorder, and suggest altered subcortical 

neurodevelopment affecting the cortico-striato-thalamo-cortical circuitry. Further research will be 

needed to clarify any potential functional relevance of asymmetrical alterations in particular. 
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In terms of cortical measures in the pediatric data, we found no significant case-control differences in 

the asymmetry of regional or global measures of cortical thickness or surface area. This indicates that 

none of the cortical case-control differences reported by the previous large-scale ENIGMA study (38) 

are significantly lateralized, even when they might have been reported with respect to only one side. 

We also used a multivariable measure to describe the ‘typicality’ of each subject’s asymmetry pattern 

over all cortical regions with respect to a healthy and general population database (40). However, no 

case-control differences in this measure were found. Together these analyses indicate that alterations 

of cerebral cortical anatomical asymmetry are not notable features of pediatric OCD.  

In the adult data, there was no evidence for case-control differences of regional asymmetries, for either 

subcortical or cortical measures. The strongest cortical effect in adults was at the total hemispheric 

level, whereby cases showed slightly more rightward asymmetry of total surface area, mainly due to 

having a relatively smaller surface area in the left hemisphere than controls. However, this very small 

effect, with Cohen’s d of 0.086, was not significant in the context of multiple testing, so that further 

studies with even larger sample sizes will be needed to confirm or refute this result. The effect was 

more pronounced in cases with comorbid depression, although this observation also remains tentative 

in the context of multiple testing.  

Consistently with the previous findings of distinct alterations between pediatric and adult patients by 

the ENIGMA OCD Working Group (38, 39), the present study of structural asymmetry also showed 

different OCD-related effects between pediatric and adult data. There was also no correlation of case-

control asymmetry differences between pediatric and adult data across the 34 cortical regions, which 

further supported the distinct OCD-related effects between pediatric and adult patients. Nonetheless, it 

is intriguing that the most notable effects in the pediatric and adult data all involved predominantly 

left-hemisphere alterations, which might support previous models of left-hemisphere dysfunction in 

OCD, as have been suggested by some functional imaging and neuropsychological findings (see 

Introduction) (23, 27-29). However, it will be important for future functional imaging studies to avoid 

reporting lateralized dysfunction on the basis that only one of the two hemispheres shows significant 
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case-control differences. This is because, as noted in the Introduction, a hemispheric difference of 

significance does not necessarily indicate a significant difference of effects between hemispheres. 

OCD is a heterogeneous neuropsychiatric condition with a heritability of roughly 40%, as has been 

observed using both twin/family based estimation and SNP-based estimation (5, 56). A recent study 

showed that genetic variation across the genome, which impacts risk for OCD, also includes variation 

which affects the volumes of the nucleus accumbens and putamen (57). The structural brain 

asymmetries which showed the strongest associations with OCD in the present study have been shown 

to have significant heritability: 23% for the volume asymmetry of the thalamus, 15% for the volume 

asymmetry of the pallidum (43), and 17% for the total hemispheric asymmetry of cerebral cortical 

surface area (40). It may therefore be useful in future studies to assess the genetic correlation between 

these aspects of brain asymmetry and OCD, which might lead towards genome-wide association 

studies (58) to identify individual genetic loci that are involved in OCD-related asymmetry 

abnormalities.  

This study has several limitations. First, the cross-sectional study design limits the interpretation of the 

results particularly with respect to age-related changes. Further work using longitudinal studies, and 

incorporating genetic and environmental variables, may be useful to understand the mechanisms 

underlying the potential associations reported here. Second, while the region-based approach used in 

this study is feasible for large-scale, collaborative projects, it is necessarily limited in terms of spatial 

resolution, and this might have contributed to some of the null results for regional cortical or 

subcortical regions. Investigation with more fined definition of regions (e.g., sub-regions of the 

thalamus (59)) or a vertex-wise approach combined with cross-hemispheric registration methods will 

be likely to be useful for future cortical asymmetry studies (60, 61). Third, the symptoms of OCD are 

heterogeneous (4). Identifying potential subtypes of OCD could therefore provide further insights into 

the pathophysiology.  

In summary, we mapped structural brain asymmetry in pediatric and adult OCD as compared to 

controls, using by far the largest sample size to date. Effects were small overall, and most pronounced 

in the thalamus and the pallidum in pediatric patients, which also showed potential links with 
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medication status, disorder severity, and/or anxiety and depression comorbidities. Our study adds to 

literature implicating the thalamus in the pathophysiology of pediatric OCD, and additionally 

implicates the pallidum in pediatric cases. The full set of results from this study is available in the SI 

Tables and online for easy access (https://conxz.github.io/AsymOCD/). 
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Table 1. Summary information on the case-control datasets included in the present study. 

Group Site Field 

Strength 

Age in Years Male (%) N 

Controls  

N 

OCD 

Total 

N 
Controls OCD Controls OCD 

Pediatri

c 

James 1.5 T 16.63 (1.23) 16.3 (1.42) 58 54 12 13 25 

 Lazaro 1.5 T 14.63 (2.3) 14.61 (2.04) 47 58 32 31 63 

 Buitelaar 1.5 T 10.93 (1.04) 10.57 (1.41) 72 64 61 22 83 

 Fitzgerald 3 T 12.96 (2.73) 14.17 (2.59) 51 48 59 62 121 

 Gruner 3 T 14.19 (2.21) 14.33 (2.09) 52 57 23 23 46 

 Arnold 3 T 12.3 (2.19) 12.86 (2.35) 54 61 13 36 49 

 Hoexter 3 T 12 (2.42) 12.61 (2.45) 57 61 28 28 56 

 Huyser 3 T 13.32 (2.55) 13.59 (2.47) 36 37 25 27 52 

 Stewart 3 T 14.02 (3.48) 15.04 (2.68) 40 39 30 28 58 

 Lazaro 3 T 14.57 (2.1) 14.57 (2.04) 55 60 44 58 102 

 Nurmi 3 T 13.3 (2.49) 12.53 (2.84) 50 54 36 59 95 

 Walitza 3 T 14.64 (1.34) 15.68 (1.45) 50 81 20 16 36 

 Reddy 3 T 13.07 (2.06) 14.56 (1.98) 50 56 14 18 32 

 Marsh 3 T 9.14 (2.48) 12.12 (3.4) 57 52 14 25 39 

 Hirano 3 T 15.33 (1.03) 14 (2.18) 67 65 6 20 26 

 Soreni 3 T 11.09 (3.02) 13.09 (2.47) 50 37 22 35 57 

          

Pediatric Samples Combined 13.06 (2.77) 13.67 (2.65) 53 54 439 501 940 

          

Adult Menchon 1.5 T 33.06 

(10.19) 

34.83 (9.17) 45 50 66 117 183 

 Cheng 1.5 T 31.43 (7.96) 30.63 

(10.21) 

33 38 40 24 64 

 KwonNMC 1.5 T 24.05 (3.63) 24.76 (5.36) 56 76 104 45 149 

 KwonSNU 1.5 T 24.89 (5.35) 28.1 (6.71) 64 63 45 41 86 

 Nakamae 1.5 T 30.44 (7.9) 31.61 (9.15) 46 48 48 82 130 

 Morgado 1.5 T 27.58 (6.23) 27.69 (7.4) 38 47 53 59 112 

 Mataix_Col

s 

1.5 T 36.12 

(11.26) 

38.68 (10.9) 36 43 33 44 77 

 Reddy 1.5 T 27.22 (6.45) 27.45 (6.31) 74 59 46 44 90 

 Hoexter 1.5 T 27.62 (7.75) 31.46 

(10.06) 

35 44 37 50 87 

 van den 

Heuvel 

1.5 T 31.57 (7.67) 33.54 (9.19) 39 30 49 54 103 

 Beucke 1.5 T 31.92 (9.5) 32.41 (9.74) 49 50 104 92 196 

 Cheng 3 T 26.19 (4.18) 32.89 

(10.57) 

28 55 95 56 151 

 Nakamae 3 T 29.57 (7.27) 32.82 (9.74) 45 35 42 34 76 

 Brennan 3 T 32.38 

(12.14) 

28.84 (9.99) 45 56 29 98 127 

 van den 

Heuvel 

3 T 39.61 

(11.37) 

38.32 

(10.07) 

47 48 38 42 80 

 Denys 3 T 39.64 

(10.32) 

35.26 (9.17) 44 26 25 31 56 

 Kwon 3 T 26.26 (6.9) 26.7 (7.28) 61 62 89 90 179 

 Benedetti 3 T 33.98 35.02 73 71 62 66 128 
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(12.35) (10.39) 

 Hirano 3 T 30.95 (8.36) 33.11 (7.82) 45 36 44 47 91 

 Koch 3 T 30.27 (9.04) 30.91 (9.55) 39 37 74 76 150 

 Stein 3 T 30.59 

(10.76) 

30.48 

(10.63) 

38 48 29 23 52 

 Tolin 3 T 48 (11.87) 32.11 

(12.04) 

22 67 32 27 59 

 Simpson 3 T 28.27 (8.04) 29.62 (7.98) 52 52 33 33 66 

 Nakao 3 T 39.34 

(12.99) 

36.6 (10.02) 39 42 41 81 122 

 Spalletta 3 T 36.52 

(10.55) 

36.67 

(11.56) 

59 67 128 84 212 

 Stern 3 T 28.17 (7.15) 27.87 (6.9) 44 33 18 15 33 

 Wang 3 T 26.24 (7.55) 29.47 (9.33) 54 55 37 53 90 

 Nurmi 3 T 30.76 

(11.77) 

33.31 

(11.04) 

56 51 25 49 74 

 Walitza 3 T 32.89 (9.21) 30.72 (7.76) 28 47 18 17 35 

 Reddy 3 T 26.59 (4.88) 29.5 (6.74) 64 53 170 203 373 

          

Adult Samples Combined 30.55 (9.73) 31.74 (9.66) 50 51 1654 1777 3431 

 

Site indicate the representative author of each dataset; Numbers in parenthesis indicate the standard deviation of 
age. 

 

Figure 1. Effect size (Cohen’s d) distributions for diagnosis on regional AIs in the pediatric (left) and adult (right) data.  

Figure 2. Subcortical structures showing altered volumetric asymmetry in pediatric OCD patients: the thalamus and 

the pallidum. The violin plots show the distributions and group differences of the volume asymmetry (A) and the lateral 

volume measures (in mm3) in each hemisphere (B) for the thalamus and the pallidum. Note that the main analyses were based 

on linear mixed-effect modelling with ‘dataset’ as a random-effect term, whereas data are plotted here without correction for 

the ‘dataset’ variable, for display purposes only.  
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Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive 
Disorder: Findings From the ENIGMA Consortium 

Supplement 1 
 
 
Supplemental Methods and Materials  

Datasets. The datasets used in this study were provided by members of the OCD Working Group within 

the ENIGMA Consortium (1). There were 46 independent datasets from 16 countries (Brazil, Canada, 

China, Germany, India, Italy, Japan, the Netherlands, Portugal, Republic of Korea, Sweden, South-

Africa, Spain, Switzerland, United Kingdom, and United States of America). Data comprised both 

subcortical and cortical measures from a total of 2278 patients with OCD and 2093 healthy control 

subjects (16 pediatric datasets comprising 501 OCD patients and 439 healthy controls, and 30 adult 

datasets comprising 1777 OCD patients and 1654 healthy controls). Thirty-five and thirty-eight of these 

datasets were identical to those included in the previous ENIGMA subcortical (2) and cortical (3) studies 

respectively. Handedness information was not extensive within these datasets, but previous large-scale 

analyses in datasets of over 15,000 healthy subjects have indicated that handedness is of little relevance 

to the structural brain asymmetry measures analyzed here (4, 5). Basic demographic and clinical 

information are summarized in Table 1 and Figure S1-2; more details of the contributing datasets can 

be found in Table S1. All local institutional reviews boards permitted the use of extracted measures from 

their anonymized data. In addition, we leveraged publicly available summary statistics which describe 

the average form of brain regional asymmetries, based on our previous larger studies of healthy 

individuals (http://conxz.github.io/neurohemi; (4, 5)). 

 

Image Acquisition and Processing. Structural T1-weighted MRI scans were acquired and processed 

locally at each collection site. Images were acquired at different field strengths (1.5 T and 3T). All 

images were analyzed using one automated and validated pipeline, i.e. “recon-all” as implemented in 

FreeSurfer (version 5.3). Briefly, the main stages of the processing pipeline include normalization of 

brain signal intensity, skull-stripping, white matter and gray matter segmentation, and delineation of the 

http://conxz.github.io/neurohemi
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gray-white interface (inner surface) and the pial surface (outer surface). Next, the surface is divided into 

separate cortical regions using an automated labeling approach, where not only location information 

based on a probabilistic surface-based atlas, but also local curvature and contextual information (e.g., 

sulcal and gyral geometry) of subject-specific surface are taken into consideration. Finally, for each 

subject, surface area and mean thickness was extracted for each of the 68 cortical regions (34 per 

hemisphere) in the Desikan-Killiany parcellation scheme (6), as well as total hemispheric surface area, 

and the average mean thickness over each hemisphere. We chose this parcellation scheme because it is 

well-established in the surface space, has been widely used in brain structure studies including previous 

ENIGMA consortium studies, and is feasible for large collaborative projects (see e.g. (5)). For more 

details on the image processing and data collection, please refer to (2, 3, 6). In addition, volumes of eight 

subcortical regions of interest, including seven subcortical structures (nucleus accumbens, amygdala, 

caudate, hippocampus, pallidum, putamen, and thalamus), and the lateral ventricle volume, were 

calculated. This segmentation is also part of the pipeline ‘recon-all’, and based on an atlas containing 

probabilistic information on the location of structures (7). All calculations were made in each subject’s 

native space. Further processing and quality control for all datasets was then performed following 

standardized ENIGMA protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/), which 

include, briefly, extracting cortical and subcortical measures from FreeSurfer outputs, outlier detection, 

and visual quality checking. Finally, each dataset was prepared based on a unified table format, and 

shared with the central analysis team for this study.  

 

Asymmetry Indexes. The main aim of this study was to investigate differences in subcortical and 

cortical asymmetry related to OCD. To this end, for each participant, and each subcortical or cortical 

measure, an Asymmetry Index (AI) was defined as (L-R)/((L+R)/2), where L and R represent the 

corresponding left and right volume measures (from subcortical regions), or thickness and surface area 

measures (from cortical regions). Thus, positive and negative AI values indicate leftward and rightward 

asymmetry, respectively, for a given left-right paired measure. This AI formula has been widely used in 

previous brain asymmetry studies (8-10), including our own (4, 5, 11). In addition, it is important to 

note that in the definition of the AI, the difference (i.e., L-R) was normalized by use of the bilateral 

http://enigma.ini.usc.edu/protocols/imaging-protocols/
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measures as denominator (i.e., L+R), such that the measure does not scale with the overall magnitude 

of L and R. For this reason, we also did not adjust for intracranial volume (ICV) in our analyses. We 

previously showed that there are subtle associations between ICV and regional brain asymmetries in the 

general population (5). However, here we wished to capture the full extent of any OCD-asymmetry 

associations, regardless of whether underlying causal influences might also affect ICV. Therefore, we 

did not adjust for ICV in our main analysis. Nonetheless, we also repeated our analyses including ICV 

as a covariate effect, to confirm that results did not depend on this choice (Results are shown below).  

In our main analyses, we did not exclude any data points in addition to those already excluded by the 

quality control procedures included in the ENIGMA protocols (see (2, 3) for further details on quality 

checking). However, we also repeated our analyses after excluding possible outliers on each AI, within 

each dataset and each diagnosis group, with a threshold of 2.5SD from the mean, in order to confirm 

that findings from the main analysis were not driven by extreme data points.  

 

Case-control Analyses. Separately for the pediatric and adult data, and for each subcortical or cortical 

AI, we pooled data from all available individuals from each dataset, and used a mega-analytical 

framework to investigate the case-control effects. Specifically, for each AI, we used a linear mixed-

effect model (using lme4 R package, version 1.1-12), with AI as the outcome variable, and a binary 

indicator of diagnosis (0=healthy controls, 1=OCD patients) as the predictor of interest. In each model, 

a binary variable for sex, and a continuous measure for age (in years at time of scan) were included as 

confounding factors, and the categorical variable ‘dataset’ as a random-effect term. Model fit was 

checked visually by inspection of the plot of residuals versus fitted values, and the histogram and 

quantile-quantile (Q-Q) plots for the residual values. Condition number (i.e., Kappa) and variance 

inflation factor (VIF) were calculated in order to assess collinearity (troubling collinearity is indicated 

by Kappa values of 30, and/or VIF values of 5 or above). Coefficients of “Estimate”, “Std. Error”, and 

“t value” for the predictor of interest (i.e., diagnosis) were extracted from the model outputs, while 

significance (i.e., p value) was assessed using likelihood ratio tests to compare models with and without 

the predictor (using function anova from stats R package, version 3.2.5). Separately within each age 
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group (pediatric or adult), and separately for each type of asymmetry measure, i.e. 8 tests for subcortical 

volume AIs, 35 tests for cortical thickness AIs, 35 tests for cortical surface area AIs, the false-discovery-

rate (FDR) correction procedure (q <= 0.05) was used to correct for multiple comparisons. Cohen’s d, 

as effect size, was calculated for each effect based on its t value and the sample sizes (i.e., N1 and N2) 

of each group, with the formula t*sqrt(1/N1+1/N2) (12). To investigate whether the effect sizes of 

diagnosis on cortical AIs were related between the pediatric and adult data, we calculated the 

correlations between the Cohen’s d across all 34 cortical regions, separately for cortical thickness and 

surface area AIs.  

We repeated the main analysis by additionally including age2 as a confounding factor, in case of 

substantial non-linear effects on AIs (but this had very little effect, see Results). We also repeated the 

main analyses with regard to potential influences of MRI scanner field strength. In this analysis, in 

addition to sex and age, an additional binary predictor variable of scanner field strength (1.5T scanners 

versus 3T scanners) was included. We were interested in whether 1) scanner effects on the AIs were 

significant, and 2) whether any significant effects of diagnosis on AIs remained after controlling for 

effects related to differences in scanner field strength. 

Separately for thickness and surface area, we additionally calculated an overall ‘typicality score’ per 

subject, which indexed how much a given subject deviated from the population mean asymmetry profile, 

when considered simultaneously across all 34 cortical regions. The typicality score for a given subject 

was calculated as the Spearman correlation coefficient between that the subject’s AIs and the population 

mean AIs, across all 34 regions. Population data were based on summary statistics from more than 

17,000 subjects drawn from the general population or healthy control datasets, which were available 

online (http://conxz.github.io/neurohemi; (5)). A lower typicality score indicates more deviation from 

the mean asymmetry profile in the population. We compared the typicality scores between OCD patients 

and controls, using the same linear mixed-effect model as used in the main analyses (i.e. correcting for 

sex, age and dataset), except that the outcome variable was now the typicality score. The hypothesis was 

that the overall asymmetry profile in OCD, as considered across multiple regions, might deviate from 

http://conxz.github.io/neurohemi
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the typical pattern more than for the control subjects in this study. No multiple testing correction was 

performed, as this was intended as an exploratory analysis.  

 

OCD Case-only Analyses of Clinical Characteristics. For AIs which were potentially associated with 

OCD in the main analysis (see Results), we further investigated, within cases only, whether the 

following predictors were associated with the AIs: medication status (medication-free OCD cases vs. 

medicated cases), age at disease onset (in years), disease duration (in years), current anxiety comorbidity 

(categorical yes/no) and current depression comorbidity (categorical yes/no). In addition, we also tested 

these AIs in relation to OCD severity measures, which were the total score based on the Yale-Brown 

Obsessive Compulsive Scale (Y-BOCS) or Children’s Yale-Brown Obsessive Compulsive Scale (CY-

BOCS), and the absence or presence of 5 previously identified symptom dimensions derived from the 

Y-BOCS (or CY-BOCS) symptom checklist: aggression/checking; cleaning/contamination; 

sexual/religion; hoarding; ordering/symmetry (13-15). For more details of this scheme, please refer to 

(2, 3). Data for these case-only variables were available for the majority of cases (see Supplementary 

Table S1 for the available sample sizes within each dataset). The same linear mixed-effect model was 

used as the main analysis, again with AI as the outcome variable, except that the predictor variable 

‘diagnosis’ was now replaced by one of the within-case predictor variables per model (e.g. 

medicated/unmedicated as a binary variable, age of onset as a continuous variable etc.). All case-only 

analyses were performed separately for each age groups (pediatric and adult). These post-hoc analyses 

were intended as purely exploratory, and no correction for multiple testing was applied. 

 

Supplemental Results 

Main Results for Adult Data. Regionally, only the postcentral gyrus showed a nominally significant 

AI difference between patients and controls, which involved both its thickness AI (t = -2.10, p = 0.036, 

d = -0.073) and surface area AI (t = -2.12, p = 0.034, d = -0.074), but these effects could not survive 

correction for multiple testing. No other case-control comparisons of either subcortical or cortical AIs 

showed significant effects in the adult data (uncorrected ps >0.05). 
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When repeating the main analysis including age2 additionally in the model, all of the Cohen’s d for the 

effects of diagnosis remained within 0.005 of their values before having included age2, and the same AI 

(adult global surface area) remained significant after FDR correction. None of the AIs showed 

significant scanner effects in the adult data (ps >0.05), and the effect of diagnosis on the global surface 

area AI remained when adding scanner field strength as a predictor variable to the model (diagnosis t = 

-2.44, p = 0.015, d = -0.085).  

 

Additional Analyses. Our previous large-scale study has shown significant relationships between ICV 

and brain asymmetries, although the effect sizes are subtle (5). We repeated our analyses after 

additionally adjusting for ICV. Results showed that the main results remained: pediatric thalamus 

volume asymmetry: t = 2.85, p = 0.0045, d = 0.19; pediatric pallidum volume asymmetry: t = -3.07, p = 

0.0022, d = -0.20; adult global hemispheric surface area asymmetry: t = -2.43, p = 0.015, d = -0.85). 

These findings suggest that adjusting for ICV had little impact on OCD case-control differences in brain 

asymmetries. 

Regarding the adult OCD patients, the previous study showed a larger pallidum (again left plus right) 

than controls, driven by patients with a childhood-onset of disease (2). But we saw no significant effects 

on the asymmetry of this structure in the adult patients. We repeated our analyses with data for each 

subgroup of age of onset of disease: early-onset (i.e., before 18 years old) and late-onset patients (i.e., 

after 18 years old). No significant differences were found in either subgroup. Specifically, in the early-

onset subgroup, neither asymmetry of the thalamus or pallidum showed significant differences 

(thalamus: t = 1.37, p = 0.17; pallidum: t = -0.028, p = 0.98). Similar null results were found in the late-

onset subgroup (thalamus: t = 1.82, p = 0.07; pallidum: t = -0.48, p = 0.63). We further compared the 

effects between two subgroups, and found no significant differences (thalamus: t = 1.56, p = 0.12; 

pallidum: t = -0.088, p = 0.93).  

 

Supplemental Tables 

All supplemental tables (Tables S1-S7) are available in a separate Excel file.  
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Supplemental Figures 

 

 
Figure S1. Age distributions of participants in each pediatric dataset. 
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Figure S2. Age distributions of participants in each adult dataset. 
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Group Site Country Field Strength (T)Age (years), Healthy ControlsAge (years), OCD PatientsMale (%), Healthy ControlsMale (%), OCD PatientsHeathy Controls (N)OCD Patients (N)Total (N) MedicatedNYBOCSMeanYBOCSSD YBOCSN AgeOnsetMeanAgeOnsetSDAgeOnsetNComorbidAnxiAnxiN ComorbidDeprDeprN

2_pediatricPediatric CohortsJames UK 1.5 16.63 (1.23)16.3 (1.42) 58 54 12 13 25 13 13.84615 13 5.857277 11.45385 13 2.773871 0.384615 13 0.384615 13

2_pediatric Lazaro Spain 1.5 14.63 (2.3) 14.61 (2.04) 47 58 32 31 63 31 22.22581 31 5.964951 12.41935 31 2.17216 0.16129 31 0.032258 31

2_pediatric Buitelaar Netherlands 1.5 10.93 (1.04)10.57 (1.41) 72 64 61 22 83 10 NA 0 NA NA 0 NA 0 0 0 0

2_pediatric Fitzgerald USA 3 12.96 (2.73)14.17 (2.59) 51 48 59 62 121 62 19.10484 62 8.190927 9.886177 62 3.145974 0.5 62 0.064516 62

2_pediatric Gruner USA 3 14.19 (2.21)14.33 (2.09) 52 57 23 23 46 23 26.86957 23 4.475228 NA 0 NA 0.434783 23 0.391304 23

2_pediatric Arnold Canada 3 12.3 (2.19) 12.86 (2.35) 54 61 13 36 49 34 20.92424 33 7.818369 8.666667 33 2.569857 0.277778 35 0.194444 34

2_pediatric Hoexter Brazil 3 12 (2.42) 12.61 (2.45) 57 61 28 28 56 28 26.92857 28 5.429198 7.178571 28 3.019119 0.75 28 0.214286 28

2_pediatric Huyser Netherlands 3 13.32 (2.55)13.59 (2.47) 36 37 25 27 52 27 25.11111 27 5.048483 10.92481 27 2.808279 0.481481 27 0.259259 27

2_pediatric Stewart Canada 3 14.02 (3.48)15.04 (2.68) 40 39 30 28 58 28 13.39286 27 6.712836 9.24 25 3.058867 0.357143 28 0.071429 28

2_pediatric Lazaro Spain 3 14.57 (2.1) 14.57 (2.04) 55 60 44 58 102 58 18.58621 58 7.358095 12.01724 58 2.431456 0.275862 58 0.051724 58

2_pediatric Nurmi USA 3 13.3 (2.49) 12.53 (2.84) 50 54 36 59 95 59 24.05085 59 3.980226 NA 0 NA 0.033898 57 0.016949 57

2_pediatric Walitza Switzerland 3 14.64 (1.34)15.68 (1.45) 50 81 20 16 36 16 14.6875 14 10.39691 11.0625 16 2.205108 0.5 16 0.0625 16

2_pediatric Reddy India 3 13.07 (2.06)14.56 (1.98) 50 56 14 18 32 18 22.55556 18 7.342241 13.11111 18 2.111283 0.222222 18 0.055556 18

2_pediatric Marsh USA 3 9.14 (2.48) 12.12 (3.4) 57 52 14 25 39 25 24.4 25 4.890467 9.32 25 3.448671 0.72 25 0 25

2_pediatric Hirano Japan 3 15.33 (1.03)14 (2.18) 67 65 6 20 26 20 26.89474 19 6.244062 11.9 20 2.35975 0.1 20 0 20

2_pediatric Soreni Canada 3 11.09 (3.02)13.09 (2.47) 50 37 22 35 57 34 21.67647 33 5.563521 NA 0 NA 0.171429 8 0 28

 

1_adult Adult CohortsMenchon 1.5 33.06 (10.19)34.83 (9.17) 45 50 66 117 183 117 25.49573 117 5.839261 21.4359 117 8.476524 0.205128 117 0.188034 117

1_adult Cheng China 1.5 31.43 (7.96)30.63 (10.21) 33 38 40 24 64 24 31 24 6.072031 26.83333 24 10.39509 0.5 24 0.166667 24

1_adult KwonNMC Republic of Korea 1.5 24.05 (3.63)24.76 (5.36) 56 76 104 45 149 45 20.22222 45 6.037342 17.44444 45 5.159085 0 45 0 45

1_adult KwonSNU Republic of Korea 1.5 24.89 (5.35)28.1 (6.71) 64 63 45 41 86 41 23.47222 36 6.652545 18.12195 41 7.032763 0 41 0.02439 41

1_adult Nakamae Japan 1.5 30.44 (7.9) 31.61 (9.15) 46 48 48 82 130 82 24.82927 82 6.537272 24.73171 82 8.836022 0.097561 82 0.231707 82

1_adult Morgado Portugal 1.5 27.58 (6.23)27.69 (7.4) 38 47 53 59 112 59 25.94643 56 5.788451 NA 0 NA 0 0 0 0

1_adult Mataix_ColsSweden 1.5 36.12 (11.26)38.68 (10.9) 36 43 33 44 77 32 25.85714 21 7.702504 18.39394 33 9.175168 0.272727 24 0.340909 38

1_adult Reddy India 1.5 27.22 (6.45)27.45 (6.31) 74 59 46 44 90 44 25.75 44 7.28849 21.65909 44 7.498661 0.159091 37 0.181818 43

1_adult Hoexter Brazil 1.5 27.62 (7.75)31.46 (10.06) 35 44 37 50 87 50 27.2 50 6.094494 13.1 50 7.028368 0.62 50 0.54 50

1_adult van den HeuvelNetherlands 1.5 31.57 (7.67)33.54 (9.19) 39 30 49 54 103 54 22.70588 51 6.132843 14.41176 51 7.702406 0.203704 34 0.333333 38

1_adult Beucke Germany 1.5 31.92 (9.5) 32.41 (9.74) 49 50 104 92 196 92 20.06977 86 7.064061 17.1791 67 7.808165 0.119565 92 0.184783 92

1_adult Cheng China 3 26.19 (4.18)32.89 (10.57) 28 55 95 56 151 56 28.21429 56 6.320858 27.23214 56 10.70088 0.892857 56 0.285714 56

1_adult Nakamae Japan 3 29.57 (7.27)32.82 (9.74) 45 35 42 34 76 34 22.05882 34 6.564095 25.05882 34 8.841847 0.088235 32 0.205882 32

1_adult Brennan USA 3 32.38 (12.14)28.84 (9.99) 45 56 29 98 127 98 NA 0 NA NA 0 NA 0 0 0 0

1_adult van den HeuvelNetherlands 3 39.61 (11.37)38.32 (10.07) 47 48 38 42 80 42 21.47619 42 6.141574 15.48718 39 6.866669 0.404762 42 0.52381 42

1_adult Denys Netherlands 3 39.64 (10.32)35.26 (9.17) 44 26 25 31 56 30 27.48276 29 6.367443 18.16667 30 6.475861 0.032258 31 0.451613 31

1_adult Kwon Republic of Korea 3 26.26 (6.9) 26.7 (7.28) 61 62 89 90 179 90 26.66667 90 6.606092 19.04444 90 6.463225 0.011111 90 0.022222 90

1_adult Benedetti Italy 3 33.98 (12.35)35.02 (10.39) 73 71 62 66 128 66 30.89394 66 5.563974 16.01515 66 6.059938 0.015152 66 0.106061 66

1_adult Hirano Japan 3 30.95 (8.36)33.11 (7.82) 45 36 44 47 91 47 26.29787 47 3.838676 22.74468 47 7.971329 0.085106 47 0.170213 47

1_adult Koch Germany 3 30.27 (9.04)30.91 (9.55) 39 37 74 76 150 76 20.77333 75 6.079592 16.97222 72 6.7427 0 0 0 0

1_adult Stein South-Africa 3 30.59 (10.76)30.48 (10.63) 38 48 29 23 52 23 23.08696 23 4.144142 14 23 6.775625 0 23 0 23

1_adult Tolin USA 3 48 (11.87) 32.11 (12.04) 22 67 32 27 59 25 22.74074 27 4.760354 NA 0 NA 0.444444 27 0.407407 27

1_adult Simpson USA 3 28.27 (8.04)29.62 (7.98) 52 52 33 33 66 33 25.54545 33 3.691975 15.0303 33 7.042216 0.212121 33 0.30303 33

1_adult Nakao Japan 3 39.34 (12.99)36.6 (10.02) 39 42 41 81 122 81 22.48052 77 5.609227 24.61728 81 9.466478 0 0 0.358025 72

1_adult Spalletta Italy 3 36.52 (10.55)36.67 (11.56) 59 67 128 84 212 79 23.4375 80 8.99767 18.90123 81 10.922 0.095238 83 0.095238 83

1_adult Stern USA 3 28.17 (7.15)27.87 (6.9) 44 33 18 15 33 15 18.8 15 4.161044 12.4 15 5.877317 0.466667 15 0.133333 15

1_adult Wang China 3 26.24 (7.55)29.47 (9.33) 54 55 37 53 90 53 25.33962 53 5.003627 23.18868 53 10.41644 0 53 0 53

1_adult Nurmi USA 3 30.76 (11.77)33.31 (11.04) 56 51 25 49 74 48 24.61224 49 4.334053 10.85417 48 4.345404 0.346939 48 0.183673 48

1_adult Walitza Switzerland 3 32.89 (9.21)30.72 (7.76) 28 47 18 17 35 16 17.11765 17 9.942851 16.71429 14 7.79969 0.470588 16 0.470588 16

1_adult Reddy India 3 26.59 (4.88)29.5 (6.74) 64 53 170 203 373 203 25.87192 203 6.289497 22.08867 203 7.58725 0.073892 203 0.152709 203



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Asy Estimate SE tvalue Chisq ChiDf pval modelKappaMaxVIF Nobs Ngrp Cohensd

Asy_LatVent -0.0063 0.01911 -0.3299 0.108434 1 0.741934 9.857069 1.011682 907 16 -0.02178

Asy_thal 0.010833 0.003818 2.837204 8.010514 1 0.004651 9.85345 1.012242 874 16 0.187314

Asy_caud -0.00462 0.00368 -1.25456 1.571685 1 0.209963 9.929375 1.00766 877 16 -0.08283

Asy_put -0.00253 0.00438 -0.57663 0.332405 1 0.564247 9.728497 1.010341 854 16 -0.03807

Asy_pal -0.02439 0.007687 -3.17271 9.998788 1 0.001566 9.687887 1.010574 803 16 -0.20946

Asy_hippo -0.00453 0.005691 -0.79659 0.631577 1 0.426777 9.98058 1.012132 880 16 -0.05259

Asy_amyg 0.002868 0.007929 0.361693 0.130785 1 0.71762 10.05577 1.011015 836 16 0.023879

Asy_accumb0.012355 0.010246 1.205911 1.452763 1 0.228085 9.878027 1.009809 884 16 0.079615



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Asy Estimate SE tvalue Chisq ChiDf pval modelKappaMaxVIF Nobs Ngrp Cohensd

Asy_bankssts_thickavg-0.00396 0.005698 -0.69487 0.482662 1 0.487219 10.15751 1.005441 822 16 -0.04576

Asy_caudalanteriorcingulate_thickavg0.00112 0.007332 0.1527 0.023316 1 0.878639 10.08108 1.009679 883 16 0.010056

Asy_caudalmiddlefrontal_thickavg0.004047 0.003817 1.060338 1.123451 1 0.289177 9.914128 1.010459 901 16 0.069827

Asy_cuneus_thickavg-0.00157 0.004674 -0.33653 0.112499 1 0.737317 9.945658 1.00989 907 16 -0.02216

Asy_entorhinal_thickavg-0.00193 0.009044 -0.21343 0.045381 1 0.831306 9.940295 1.011281 787 16 -0.01405

Asy_fusiform_thickavg-0.00139 0.00313 -0.44361 0.19666 1 0.65743 10.00826 1.010127 894 16 -0.02921

Asy_inferiorparietal_thickavg-0.00366 0.00322 -1.13773 1.293326 1 0.255436 9.932306 1.010238 857 16 -0.07492

Asy_inferiortemporal_thickavg0.001606 0.004181 0.384069 0.147486 1 0.70095 10.03775 1.011345 895 16 0.025292

Asy_isthmuscingulate_thickavg-0.00784 0.005552 -1.41283 1.992334 1 0.158097 10.00024 1.009062 902 16 -0.09304

Asy_lateraloccipital_thickavg-0.00687 0.003302 -2.08126 4.321256 1 0.037639 10.13388 1.008183 899 16 -0.13706

Asy_lateralorbitofrontal_thickavg0.002169 0.004131 0.525008 0.275414 1 0.599723 9.984136 1.009805 915 16 0.034574

Asy_lingual_thickavg-0.00376 0.003413 -1.10267 1.213328 1 0.270674 9.95034 1.009414 913 16 -0.07261

Asy_medialorbitofrontal_thickavg-0.0066 0.005312 -1.24284 1.542851 1 0.214194 9.995089 1.008689 894 16 -0.08185

Asy_middletemporal_thickavg0.001371 0.003943 0.34779 0.120903 1 0.728057 9.941047 1.008475 863 16 0.022903

Asy_parahippocampal_thickavg0.007026 0.006579 1.067873 1.132033 1 0.287342 9.964504 1.010479 891 16 0.070323

Asy_paracentral_thickavg-0.0012 0.003632 -0.32921 0.108118 1 0.742298 9.932681 1.009699 910 16 -0.02168

Asy_parsopercularis_thickavg0.001335 0.004201 0.317709 0.100884 1 0.750771 9.999529 1.009139 896 16 0.020922

Asy_parsorbitalis_thickavg-0.00404 0.006612 -0.61105 0.37262 1 0.54158 9.973953 1.010218 911 16 -0.04024

Asy_parstriangularis_thickavg0.003975 0.004659 0.853124 0.727043 1 0.393843 9.975982 1.008743 909 16 0.056181

Asy_pericalcarine_thickavg-0.00523 0.005254 -0.99495 0.986119 1 0.320693 9.942551 1.008402 907 16 -0.06552

Asy_postcentral_thickavg0.001675 0.003408 0.49152 0.241518 1 0.623112 9.865235 1.010055 876 16 0.032368

Asy_posteriorcingulate_thickavg-0.00099 0.004329 -0.22881 0.05235 1 0.819024 10.01366 1.009695 903 16 -0.01507

Asy_precentral_thickavg0.0023 0.002847 0.807927 0.652319 1 0.419285 9.969332 1.010921 884 16 0.053205

Asy_precuneus_thickavg-0.00304 0.002815 -1.07933 1.164028 1 0.280632 9.98606 1.009357 908 16 -0.07108

Asy_rostralanteriorcingulate_thickavg0.00741 0.006479 1.143778 1.304816 1 0.253335 10.12114 1.007834 879 16 0.075322

Asy_rostralmiddlefrontal_thickavg0.001656 0.003541 0.467796 0.218746 1 0.639997 9.924277 1.009199 910 16 0.030806

Asy_superiorfrontal_thickavg-0.00158 0.002593 -0.61057 0.37266 1 0.541558 9.988786 1.008948 883 16 -0.04021

Asy_superiorparietal_thickavg0.002053 0.002618 0.7841 0.614499 1 0.433099 10.0552 1.010093 901 16 0.051636

Asy_superiortemporal_thickavg0.003257 0.003392 0.960125 0.921029 1 0.337205 10.12563 1.00681 842 16 0.063227

Asy_supramarginal_thickavg-0.00441 0.003652 -1.20862 1.45942 1 0.227022 10.07103 1.009655 844 16 -0.07959

Asy_frontalpole_thickavg-0.00973 0.00919 -1.05823 1.115013 1 0.290995 9.961991 1.009524 911 16 -0.06969

Asy_temporalpole_thickavg0.002393 0.008466 0.282601 0.079859 1 0.777488 9.978551 1.010806 903 16 0.01861
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Asy_transversetemporal_thickavg-0.00684 0.006466 -1.05746 1.115633 1 0.290861 9.977537 1.008229 910 16 -0.06964

Asy_insula_thickavg0.002479 0.003566 0.695157 0.482858 1 0.48713 9.854359 1.008494 878 16 0.045778

Asy_Thickness-0.00013 0.001139 -0.11325 0.012808 1 0.909893 9.954367 1.009411 921 16 -0.00746
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Asy Estimate SE tvalue Chisq ChiDf pval modelKappaMaxVIF Nobs Ngrp Cohensd

Asy_bankssts_surfavg-0.01016 0.012033 -0.8447 0.713086 1 0.398421 10.17504 1.005496 819 16 -0.05563

Asy_caudalanteriorcingulate_surfavg-0.01708 0.016022 -1.06631 1.135711 1 0.28656 10.08108 1.010339 883 16 -0.07022

Asy_caudalmiddlefrontal_surfavg-0.00583 0.010253 -0.56882 0.322662 1 0.570012 9.918312 1.010409 900 16 -0.03746

Asy_cuneus_surfavg0.008555 0.008994 0.951234 0.904029 1 0.341704 9.944461 1.009852 906 16 0.062642

Asy_entorhinal_surfavg-0.02096 0.017526 -1.19596 1.42844 1 0.232019 9.945843 1.011246 786 16 -0.07876

Asy_fusiform_surfavg0.008899 0.0069 1.289724 1.66082 1 0.197493 10.01745 1.009945 894 16 0.084933

Asy_inferiorparietal_surfavg-0.00487 0.00728 -0.66911 0.447473 1 0.503538 9.945049 1.0102 855 16 -0.04406

Asy_inferiortemporal_surfavg-0.00332 0.007664 -0.43333 0.186145 1 0.666145 10.03127 1.010757 893 16 -0.02854

Asy_isthmuscingulate_surfavg0.013572 0.010416 1.303011 1.696225 1 0.192782 10.00914 1.009362 901 16 0.085808

Asy_lateraloccipital_surfavg0.006456 0.006677 0.966837 0.934289 1 0.333751 10.13388 1.010817 899 16 0.06367

Asy_lateralorbitofrontal_surfavg-0.0071 0.005801 -1.22326 1.495048 1 0.221435 9.984136 1.009871 915 16 -0.08056

Asy_lingual_surfavg0.004649 0.006584 0.706162 0.49786 1 0.480442 9.940009 1.009689 911 16 0.046503

Asy_medialorbitofrontal_surfavg-0.0008 0.008226 -0.09783 0.00957 1 0.92207 9.995089 1.008611 894 16 -0.00644

Asy_middletemporal_surfavg-0.00666 0.006379 -1.04467 1.081865 1 0.298281 9.933859 1.009098 862 16 -0.06879

Asy_parahippocampal_surfavg0.01364 0.010493 1.299986 1.683169 1 0.194504 9.972792 1.010335 889 16 0.085608

Asy_paracentral_surfavg0.01089 0.009004 1.20947 1.461643 1 0.226669 9.932681 1.012243 910 16 0.079648

Asy_parsopercularis_surfavg0.002621 0.010742 0.244039 0.057491 1 0.810506 9.999529 1.00955 896 16 0.016071

Asy_parsorbitalis_surfavg-0.00095 0.008842 -0.10734 0.011511 1 0.914561 9.973953 1.0103 911 16 -0.00707

Asy_parstriangularis_surfavg0.0175 0.010416 1.680083 2.811898 1 0.093568 9.975982 1.009466 909 16 0.110639

Asy_pericalcarine_surfavg-0.00625 0.007987 -0.78229 0.611579 1 0.434194 9.93031 1.008302 906 16 -0.05152

Asy_postcentral_surfavg-0.00324 0.006661 -0.48713 0.237248 1 0.626201 9.880203 1.00981 876 16 -0.03208

Asy_posteriorcingulate_surfavg-0.00629 0.010211 -0.61633 0.3796 1 0.537817 10.02426 1.009778 902 16 -0.04059

Asy_precentral_surfavg-0.00675 0.005123 -1.31732 1.712211 1 0.190699 9.975064 1.011688 884 16 -0.08675

Asy_precuneus_surfavg-0.00199 0.005613 -0.35535 0.12208 1 0.72679 9.98606 1.010689 908 16 -0.0234

Asy_rostralanteriorcingulate_surfavg-0.01515 0.01423 -1.06465 1.132328 1 0.287279 10.09018 1.008475 880 16 -0.07011

Asy_rostralmiddlefrontal_surfavg-0.00575 0.005594 -1.0282 1.056195 1 0.304085 9.924277 1.010275 910 16 -0.06771

Asy_superiorfrontal_surfavg0.00504 0.004555 1.10665 1.214148 1 0.270512 9.988786 1.010904 883 16 0.072877

Asy_superiorparietal_surfavg0.00106 0.005905 0.179475 0.032123 1 0.857759 10.0552 1.010637 901 16 0.011819

Asy_superiortemporal_surfavg0.005293 0.005972 0.88626 0.784916 1 0.375642 10.08724 1.007462 837 16 0.058363

Asy_supramarginal_surfavg0.002744 0.009007 0.304657 0.092791 1 0.760658 10.06199 1.010346 841 16 0.020063

Asy_frontalpole_surfavg-0.02173 0.012362 -1.75741 3.077073 1 0.079403 9.955838 1.009423 911 16 -0.11573

Asy_temporalpole_surfavg0.016321 0.011577 1.40978 1.984868 1 0.158879 9.977947 1.010862 902 16 0.092839
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Asy_transversetemporal_surfavg-0.00256 0.011151 -0.22942 0.05248 1 0.818802 9.977537 1.00821 910 16 -0.01511

Asy_insula_surfavg-0.0026 0.006075 -0.42776 0.18296 1 0.668842 9.844243 1.007902 877 16 -0.02817

Asy_SurfArea0.000895 0.001189 0.752936 0.565673 1 0.451983 9.954367 1.009507 921 16 0.049583
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Asy Estimate SE tvalue Chisq ChiDf pval modelKappaMaxVIF Nobs Ngrp Cohensd

Asy_LatVent0.008776 0.008761 1.001739 1.002323 1 0.316749 6.519114 1.006996 3393 30 0.034353

Asy_thal 0.003074 0.002475 1.241878 1.54184 1 0.214344 6.536999 1.004978 3200 30 0.042588

Asy_caud 0.001766 0.002092 0.843837 0.711985 1 0.398786 6.478008 1.005814 3299 30 0.028938

Asy_put -0.0005 0.002557 -0.19423 0.037708 1 0.84603 6.495542 1.006012 3134 30 -0.00666

Asy_pal 0.008872 0.005072 1.749399 3.058806 1 0.080301 6.492306 1.005229 3083 30 0.059993

Asy_hippo -0.0038 0.00215 -1.76881 3.127126 1 0.076999 6.472522 1.006001 3319 30 -0.06066

Asy_amyg -0.00303 0.003693 -0.82074 0.67324 1 0.411924 6.479848 1.005388 3303 30 -0.02815

Asy_accumb -0.01153 0.006031 -1.91201 3.651221 1 0.056028 6.515889 1.005721 3348 30 -0.06557
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Asy Estimate SE tvalue Chisq ChiDf pval modelKappaMaxVIF Nobs Ngrp Cohensd

Asy_bankssts_thickavg-0.00061 0.002934 -0.20821 0.043352 1 0.835064 6.599419 1.008297 2830 30 -0.00726

Asy_caudalanteriorcingulate_thickavg0.003437 0.004064 0.845685 0.713716 1 0.398213 6.556573 1.007117 3209 30 0.029494

Asy_caudalmiddlefrontal_thickavg-0.00115 0.001835 -0.62496 0.390485 1 0.532045 6.578132 1.00691 3242 30 -0.0218

Asy_cuneus_thickavg0.001632 0.002339 0.697553 0.486399 1 0.485538 6.579057 1.007314 3182 30 0.024328

Asy_entorhinal_thickavg-0.0082 0.004516 -1.81521 3.29256 1 0.069594 6.49113 1.007412 2798 30 -0.06331

Asy_fusiform_thickavg-0.00054 0.001613 -0.33332 0.111041 1 0.738962 6.523245 1.006473 3229 30 -0.01163

Asy_inferiorparietal_thickavg0.000647 0.001557 0.415887 0.172897 1 0.67755 6.566631 1.007451 3071 30 0.014505

Asy_inferiortemporal_thickavg-0.00191 0.001932 -0.98632 0.972302 1 0.324107 6.532027 1.006727 3183 30 -0.0344

Asy_isthmuscingulate_thickavg-0.00119 0.002842 -0.41909 0.175622 1 0.675163 6.521665 1.006901 3277 30 -0.01462

Asy_lateraloccipital_thickavg-8.92E-05 0.001648 -0.05411 0.002927 1 0.956851 6.520692 1.006637 3234 30 -0.00189

Asy_lateralorbitofrontal_thickavg0.000571 0.001944 0.293806 0.086321 1 0.768908 6.552554 1.006511 3283 30 0.010247

Asy_lingual_thickavg-0.00092 0.001867 -0.4948 0.244731 1 0.62081 6.541362 1.006303 3272 30 -0.01726

Asy_medialorbitofrontal_thickavg0.000785 0.002421 0.324373 0.105129 1 0.745759 6.537873 1.006549 3260 30 0.011313

Asy_middletemporal_thickavg-0.00086 0.001835 -0.46912 0.220061 1 0.638993 6.588218 1.006576 2989 30 -0.01636

Asy_parahippocampal_thickavg-0.00033 0.003366 -0.09936 0.00983 1 0.921023 6.541253 1.007087 3249 30 -0.00347

Asy_paracentral_thickavg-0.00182 0.001841 -0.98641 0.972855 1 0.323969 6.543491 1.006626 3274 30 -0.0344

Asy_parsopercularis_thickavg-0.00014 0.002122 -0.06527 0.00426 1 0.947961 6.566621 1.007016 3240 30 -0.00228

Asy_parsorbitalis_thickavg0.001076 0.003085 0.34879 0.121629 1 0.727274 6.544614 1.007491 3274 30 0.012164

Asy_parstriangularis_thickavg0.002345 0.002233 1.050074 1.102063 1 0.293814 6.545042 1.006376 3236 30 0.036622

Asy_pericalcarine_thickavg-0.00186 0.00268 -0.69454 0.482021 1 0.487508 6.579378 1.006447 3213 30 -0.02422

Asy_postcentral_thickavg-0.00343 0.001637 -2.09513 4.386527 1 0.036224 6.568952 1.008696 3183 30 -0.07307

Asy_posteriorcingulate_thickavg-0.00299 0.002197 -1.36244 1.855697 1 0.173122 6.538804 1.006767 3268 30 -0.04752

Asy_precentral_thickavg3.38E-05 0.00147 0.023014 0.000529 1 0.981643 6.579372 1.007019 3175 30 0.000803

Asy_precuneus_thickavg0.000171 0.001439 0.119066 0.014176 1 0.905224 6.53858 1.006427 3268 30 0.004153

Asy_rostralanteriorcingulate_thickavg-0.00609 0.003373 -1.80539 3.248716 1 0.071479 6.563661 1.006129 3197 30 -0.06296

Asy_rostralmiddlefrontal_thickavg-0.00061 0.001511 -0.40395 0.16312 1 0.6863 6.552892 1.006029 3259 30 -0.01409

Asy_superiorfrontal_thickavg-0.00119 0.001088 -1.09798 1.205156 1 0.272294 6.540721 1.006556 3160 30 -0.03829

Asy_superiorparietal_thickavg-0.00014 0.001252 -0.11216 0.012579 1 0.9107 6.539568 1.007226 3205 30 -0.00391

Asy_superiortemporal_thickavg9.18E-05 0.00172 0.053341 0.002845 1 0.957461 6.593004 1.006111 2801 30 0.00186

Asy_supramarginal_thickavg-0.00194 0.001722 -1.1261 1.267778 1 0.260184 6.615561 1.007538 2863 30 -0.03927

Asy_frontalpole_thickavg-0.00492 0.004327 -1.13811 1.28527 1 0.256922 6.533115 1.007892 3279 30 -0.03969

Asy_temporalpole_thickavg0.003824 0.003793 1.008105 1.016082 1 0.31345 6.519806 1.006194 3246 30 0.035159
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Asy_transversetemporal_thickavg0.001634 0.003393 0.481524 0.231837 1 0.630165 6.553961 1.009711 3282 30 0.016794

Asy_insula_thickavg-0.00065 0.001748 -0.3698 0.136747 1 0.711537 6.562418 1.006633 3195 30 -0.0129

Asy_Thickness-0.0005 0.000549 -0.91344 0.833926 1 0.36114 6.539374 1.006995 3288 30 -0.03186
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Asy Estimate SE tvalue Chisq ChiDf pval modelKappaMaxVIF Nobs Ngrp Cohensd

Asy_bankssts_surfavg-0.00237 0.00578 -0.41004 0.168123 1 0.681785 6.598265 1.009983 2825 30 -0.0143

Asy_caudalanteriorcingulate_surfavg0.012354 0.008658 1.426878 2.027754 1 0.154449 6.556573 1.009838 3209 30 0.049764

Asy_caudalmiddlefrontal_surfavg-0.00139 0.00522 -0.26613 0.070525 1 0.790573 6.578132 1.008447 3242 30 -0.00928

Asy_cuneus_surfavg0.002542 0.004435 0.573159 0.328491 1 0.566549 6.579057 1.007564 3182 30 0.01999

Asy_entorhinal_surfavg0.00052 0.008666 0.059958 0.003595 1 0.952191 6.485991 1.007691 2795 30 0.002091

Asy_fusiform_surfavg0.002167 0.003609 0.600342 0.352807 1 0.552528 6.523245 1.008521 3229 30 0.020938

Asy_inferiorparietal_surfavg-0.0021 0.003671 -0.57315 0.328167 1 0.56674 6.558291 1.008405 3069 30 -0.01999

Asy_inferiortemporal_surfavg-0.00487 0.004062 -1.19896 1.435216 1 0.230915 6.532027 1.008021 3183 30 -0.04181

Asy_isthmuscingulate_surfavg0.001208 0.005114 0.236135 0.055743 1 0.813356 6.521665 1.007514 3277 30 0.008235

Asy_lateraloccipital_surfavg-0.00117 0.003408 -0.34439 0.1186 1 0.730557 6.520692 1.009953 3234 30 -0.01201

Asy_lateralorbitofrontal_surfavg-0.00274 0.002652 -1.0337 1.068291 1 0.301332 6.552554 1.006652 3283 30 -0.03605

Asy_lingual_surfavg-0.00167 0.003539 -0.47167 0.222246 1 0.637334 6.541362 1.006668 3272 30 -0.01645

Asy_medialorbitofrontal_surfavg-0.00276 0.00393 -0.70257 0.493564 1 0.482342 6.537873 1.006608 3260 30 -0.0245

Asy_middletemporal_surfavg0.003865 0.003274 1.180436 1.393105 1 0.237881 6.58786 1.008325 2988 30 0.041169

Asy_parahippocampal_surfavg0.00219 0.00473 0.462913 0.21416 1 0.643526 6.542536 1.008238 3249 30 0.016145

Asy_paracentral_surfavg-0.00525 0.004518 -1.16261 1.349825 1 0.245309 6.543491 1.009328 3274 30 -0.04055

Asy_parsopercularis_surfavg-0.00486 0.005671 -0.85649 0.730894 1 0.392594 6.566621 1.008865 3240 30 -0.02987

Asy_parsorbitalis_surfavg-0.00319 0.004275 -0.74672 0.553486 1 0.456897 6.544614 1.008852 3274 30 -0.02604

Asy_parstriangularis_surfavg-0.00635 0.005128 -1.23749 1.526421 1 0.21665 6.545042 1.008077 3236 30 -0.04316

Asy_pericalcarine_surfavg0.002941 0.003994 0.736326 0.541984 1 0.461612 6.579378 1.006423 3213 30 0.02568

Asy_postcentral_surfavg-0.00684 0.003226 -2.11924 4.480988 1 0.034274 6.568276 1.009736 3180 30 -0.07391

Asy_posteriorcingulate_surfavg0.007827 0.005261 1.487809 2.210368 1 0.137086 6.538804 1.009191 3268 30 0.051889

Asy_precentral_surfavg-0.00061 0.00285 -0.21307 0.045314 1 0.831428 6.579127 1.008675 3173 30 -0.00743

Asy_precuneus_surfavg0.003155 0.002744 1.14972 1.319884 1 0.250613 6.53858 1.00883 3268 30 0.040098

Asy_rostralanteriorcingulate_surfavg0.010981 0.007568 1.450937 2.103009 1 0.14701 6.563661 1.009235 3197 30 0.050603

Asy_rostralmiddlefrontal_surfavg-0.00271 0.002769 -0.97838 0.955859 1 0.328232 6.552892 1.007681 3259 30 -0.03412

Asy_superiorfrontal_surfavg-0.00173 0.002427 -0.71115 0.5048 1 0.477399 6.540721 1.010053 3160 30 -0.0248

Asy_superiorparietal_surfavg-0.00013 0.003136 -0.04091 0.001674 1 0.967369 6.539568 1.009122 3205 30 -0.00143

Asy_superiortemporal_surfavg0.000359 0.002924 0.122767 0.014942 1 0.902712 6.589159 1.008673 2792 30 0.004282

Asy_supramarginal_surfavg-0.00043 0.004441 -0.09768 0.009531 1 0.922227 6.610771 1.009265 2855 30 -0.00341

Asy_frontalpole_surfavg-0.00839 0.006484 -1.29479 1.67309 1 0.195845 6.533115 1.008282 3279 30 -0.04516

Asy_temporalpole_surfavg-0.00495 0.005547 -0.89249 0.796297 1 0.372203 6.519806 1.00683 3246 30 -0.03113
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Asy_transversetemporal_surfavg-0.00945 0.005574 -1.69461 2.870415 1 0.090222 6.553961 1.007473 3282 30 -0.0591

Asy_insula_surfavg-0.00131 0.002965 -0.44325 0.196417 1 0.657628 6.566534 1.00665 3200 30 -0.01546

Asy_SurfArea-0.00127 0.000513 -2.47964 6.125434 1 0.013325 6.542183 1.007607 3291 30 -0.08648


