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We present a first proof-of-principle study for using deep neural networks (DNNs) as a novel
search method for continuous gravitational waves (CWs) from unknown spinning neutron stars.
The sensitivity of current wide-parameter-space CW searches is limited by the available computing
power, which makes neural networks an interesting alternative to investigate, as they are extremely
fast once trained and have recently been shown to rival the sensitivity of matched filtering for
black-hole merger signals [1, 2]. We train a convolutional neural network with residual (short-cut)
connections and compare its detection power to that of a fully-coherent matched-filtering search
using the Weave pipeline. As test benchmarks we consider two types of all-sky searches over the
frequency range from 20 Hz to 1000 Hz: an “easy” search using T = 105 s of data, and a “harder”
search using T = 106 s. Detection probability pdet is measured on a signal population for which
matched filtering achieves pdet = 90% in Gaussian noise. In the easiest test case (T = 105 s
at 20 Hz) the DNN achieves pdet ∼ 88%, corresponding to a loss in sensitivity depth of ∼ 5%
versus coherent matched filtering. However, at higher-frequencies and longer observation time the
DNN detection power decreases, until pdet ∼ 13% and a loss of ∼ 66% in sensitivity depth in the
hardest case (T = 106 s at 1000 Hz). We study the DNN generalization ability by testing on signals
of different frequencies, spindowns and signal strengths than they were trained on. We observe
excellent generalization: only five networks, each trained at a different frequency, would be able to
cover the whole frequency range of the search.

I. INTRODUCTION

Gravitational waves from binary mergers are now be-
ing observed routinely [3–6] by the Advanced LIGO [7]
and Virgo [8] detectors. In contrast, the much weaker
and longer-lasting (days–months) narrow-band continu-
ous gravitational waves (CWs) from spinning deformed
neutron stars are yet to be detected, despite a multitude
of searches over the past decade (see [9–11] for reviews)
and continuing improvements in search methods (e.g. see
[12] for a recent overview).

A key limitation of current search methods for CWs
with unknown parameters is the “exploding computing
cost problem”: give that a putative signal would be very
weak, one needs to integrate as much data as possible in
order to increase the signal-to-noise ratio (SNR). How-
ever, for a fully-coherent matched-filtering search (which
is close to statistically optimal [13]), the corresponding
computing cost grows as a high power ∼ Tn of the data
timespan T , with n & 5. This typically limits the longest
coherent duration to days–weeks before the computing
cost would become infeasible.

Therefore the class of semi-coherent methods has been
developed, producing computationally cheaper searches.
They allow the analysis of more data, typically result-
ing in better sensitivity than a corresponding coherent
search at fixed computing cost (e.g. see [14, 15]). Such
methods combined with massive amounts of computing
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power, either via local compute clusters or via the dis-
tributed public computing platform Einstein@Home [16],
currently yield the best state-of-the-art sensitivity to CW
signals (e.g. see [17–19] for recent examples).

In this work we investigate deep neural networks
(DNNs) [20–22] as a novel search method for CWs. The
field of DNNs, also referred to as Deep Learning, has
emerged as one of the most successful machine-learning
paradigms in the last decade, dominating wide-ranging
fields [22] such as image recognition, speech recognition
and language translation, as well as certain board [23]
and video games [24, 25].

More recently DNNs have started to draw attention in
the field of gravitational-wave searches: (i) as a classi-
fier for non-Gaussian detector transients (glitches) [26–
29], (ii) as a search method for unmodelled burst signals
[30, 31] in time-frequency images produced by coherent
WaveBurst [32], and (iii) as a direct detection method
for black-hole merger signals in gravitational-wave strain
data [1, 2, 33–36].

This last approach (iii) is of particular interest to us,
as [1, 2] have illustrated for the first time that DNNs can
achieve a detection power comparable to that of (near-
optimal) matched filtering, at a fraction of the search
time. This is relevant for CW searches: while semi-
coherent methods for wide-parameter-space searches are
the most sensitive approach currently known, they are by
design less sensitive than the statistical optimum achiev-
able according to the Neyman-Pearson-Searle lemma
[37].

With DNNs the computationally expensive step is
shifted to the preparation stage of the search: the archi-
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tecture tuning and “learning” of optimal network weights
(i.e. the training), while the execution time on given in-
put vectors is very short (typically fractions of a second).
Determination of the noise-distribution (for estimation
of the false alarm level pfa) and measurement of upper
limits require many repeated searches over different input
data sets, with and without injected signals. The relative
search speed advantage of DNNs compared to traditional
search methods therefore accumulates dramatically over
these operations allowing very fast and flexible search
characterizations.

The plan of this paper is as follows: In section II we de-
fine and characterize our test benchmarks. In section III
we describe our deep-learning approach to searching for
continuous gravitational waves: explaining the network
architecture and how it was trained. In section IV we
characterize the performance our DNN achieves on the
test benchmarks in comparison to the matched-filtering
performance and how it generalizes beyond the bench-
marks’ search parameters. And finally we discuss these
results in section V.

II. COMPARISON TEST BENCHMARKS

A. Benchmark definitions

In order to characterize the detection power of the
DNN that we introduce in the next section, we define
two benchmark search setups and measure the corre-
sponding sensitivity achieved on them with a classical
(near-optimal) matched-filter search method described in
Sec. II B.

We compare the sensitivity in the Neyman-Pearson
sense, also known as the receiver-operator characteris-
tic (ROC), using the “upper limit” conventions used in
most CW searches (cf. [12]): measure the detection prob-
ability pdet at a chosen false-alarm level pfa for a signal
population of fixed amplitude h0, with all other signal
parameters (i.e. polarization, sky-position, frequency and
spindown) drawn randomly from their priors. In order to
characterize the signal strength in noise, we use sensitiv-
ity depth D [12, 38], defined as

D ≡
√
Sn

h0
, (1)

where Sn is the power-spectral density (PSD) of the
(Gaussian) noise at the signal frequency, and h0 is the
signal amplitude. In particular we are interested in the
sensitivity depth D90% that corresponds to the signal am-
plitude h90%0 at which the search yields a detection prob-
ability of pdet = 90% at a fixed false-alarm level, which
here is chosen as pfa = 1% per 50 mHz frequency band.

We consider two all-sky searches (parameters summa-
rized in Table. I) over a range in frequency f and first-

order spindown ḟ , one using T = 105 s ∼ 1.2 days, and
one using T = 106 s ∼ 12 days of data assuming a single

data span T = 105 s / T = 106 s

detectors LIGO Hanford
noise stationary, white, Gaussian

sky-region all-sky
frequency band f ∈ [20, 1000] Hz

spin-down range ḟ ∈ [−10−10, 0] Hz/s

TABLE I. Definition of the two benchmark searches.

detector (chosen as LIGO Hanford). These two searches
could realistically be performed with coherent matched
filtering. The required computing cost for the search and
its characterization (upper limits, false alarm level) how-
ever would still require a large cluster of, say, O (1000)
cores for over a month or so (see Table. II). There-
fore actually performing these two full searches only
for the purpose of characterizing the matched-filtering
sensitivity would be infeasible. Instead we characterize
the matched-filter search on only five narrow frequency
bands of width ∆f = 50 mHz starting at frequencies
f0 = 20, 100, 200, 500 and 1000 Hz, yielding a total of ten
representative test cases.

B. Weave matched-filtering sensitivity

For the matched-filter search we use the recently-
developed Weave code [39], which implements a state-
of-the-art CW search algorithm [40] based on summing
coherent F-statistics [41, 42] over semi-coherent segments
on optimal lattice-based template banks [43, 44]. This
code can also perform fully-coherent (i.e. single-segment)
F-statistic searches, which we use for the present proof-
of-principle study. The benchmark search definitions in
Table I are chosen in such a way that a fully-coherent
search is still computationally feasible. This yields a sim-
pler and cleaner comparison than using a semi-coherent
search setup, as we can easily design near-optimal search
setups (by using relatively fine template banks) with-
out the extra complication of requiring costly sensitivity-
optimization at fixed computing cost [15, 40, 45].

The Weave template banks are characterized by a
maximal-mismatch parameter m, which controls how fine
the templates are spaced in parameter space. These are
chosen as m = 0.1 and m = 0.2 for the two searches with
T = 105 s and T = 106 s, respectively. The reason for
choosing the larger mismatch value (i.e. coarser template
bank) in the T = 106 s case is to keep the computing cost
of the corresponding test-cases still practically manage-
able, as the coherent cost scales with mismatch param-
eter as ∝ m2 for a four-dimensional template bank (e.g.
see Eq.(24) in [43]).

By repeated injections of signals in the data and recov-
ery of the loudest F-statistic candidate in the template
bank, one can measure the relative SNR-loss µ compared
to a perfectly-matched template. The resulting measured
average mismatch 〈µ〉 quantifies in some sense how close



3

to “optimal” the matched-filter sensitivity will be (com-
pared to an infinite-computing cost search with m = 0),
and is found as 〈µ〉 ∼ 5% and 〈µ〉 ∼ 11%, respectively
for the two searches.

Using the template-counting and timing models [39,
46, 47] for Weave and the resampling F-statistic, we
can estimate the total number of templates and the corre-
sponding total runtime for these two benchmark searches
as ∼ 78 days and ∼ 45 000 days on a single CPU core, re-
spectively. Table. II provides a summary of the Weave
search parameters and characteristics.

name T = 105 s T = 106 s

mismatch parameter m 0.1 0.2

average SNR loss 〈µ〉 5% 11%
Number of templates N 4× 1011 3× 1014

Search time [single CPU core] 6.7× 106 s 3.9× 109 s

TABLE II. Weave parameters and characteristics for the two
searches.

In order to estimate the sensitivity for the ten test cases
defined in the previous section (i.e. five frequency slices of
∆f = 50 mHz for each search of T = 105 s and T = 106 s,
respectively), we first determine the corresponding de-
tection thresholds Fth on the F-statistic corresponding
to a false-alarm level of pfa = 1% for each case. This is
done by repeatedly (105 times for T = 105 s, and ∼ 104

times for T = 106 s, respectively) performing each search
over Gaussian noise and thereby recording the distribu-
tion of the loudest candidate, which yields the relation-
ship between threshold and false-alarm level. The cor-
responding detection probability pdet for any given sig-
nal population of fixed D is obtained by injecting signals
into Gaussian noise data and measuring how many times
the loudest candidate exceeds the detection threshold.
By varying the injected D we can eventually find D90%

for the desired pdet = 90% (e.g. see [12] for more details
and discussion of this standard “upper limit” procedure).
By a final injection+recovery Monte-Carlo we can verify
that the achieved Weave detection probability for the
quoted thresholds and signal strengths D90% in Table. III
is pdet ∼ 90%−91%, which is sufficiently accurate for our
present purposes.

The sky template resolution grows as ∝ f2 as a func-
tion of frequency f , resulting in a corresponding increase
in the number of templates at higher frequency. This
increases the number of “trials” in noise at the higher-
frequency slices, which results in a corresponding in-
creased false-alarm threshold (chosen in order to keep
the false-alarm level at pfa = 1%) as well as an increased
computing cost, shown in Table. III.

f0 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s

N∆f 5× 105 1× 107 5× 107 3× 108 1× 109

CPU∆f [s] 0.1 4.9 19 2.3× 102 1.7× 103

Fth(pfa) 20.6 23.6 25.1 27.0 28.6

T = 106 s

N∆f 3× 108 8× 109 3× 1010 2× 1011 8× 1011

CPU∆f [s] 45 3× 103 1.4× 104 1.6× 105 6.9× 105

Fth(pfa) 27.5 31.1 32.5 34.2 36.2

TABLE III. Weave characteristics for the ten test cases, each
covering a frequency “slice” of ∆f = 50 mHz, starting at f0, of
the full searches defined in Table. I. The detection thresholds
Fth correspond to a false-alarm level of pfa = 1% over the
band ∆f . CPU∆f denotes the search time in seconds for the
respective ∆f band on a single CPU core.

D90% [Hz−1/2] f0 = 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s 11.4 10.8 10.4 9.9 9.7
T = 106 s 29.3 28.2 27.6 26.8 26.0

TABLE IV. Measured Weave “upper limit” sensitivity D90%

at false-alarm level of pfa = 1%.

III. DEEP-LEARNING CWS

Our general approach is similar to that of [1, 2] in that
we directly use the detector strain data as our network in-
put, and train a simple classifier with two output neurons
for the classes “noise” and “signal (in noise)”. However,
given that CW signals are long in duration and narrow in
frequency, instead of using the time-series input it makes
more sense in our case to use the frequency-domain repre-
sentation of that data. We therefore provide the real- and
imaginary parts of the fast Fourier transform (FFT) of
the data as a two-dimensional input vector over frequency
bins, using the native FFT resolution of 1/T . We chose
the network input size to be sufficiently large to contain
the widest signal (signals get stretched in frequency do-

main by spindown ḟ and Doppler shifts) twice, so that we
can slide the network along the frequency axis in steps
of half the network input width, guaranteeing that one
input window will always contain the full signal.

A. Network architecture

We started experimenting with DNN architectures
similar to those described in [1, 2], but eventually by
trial and error converged on a ResNet architecture [48],
which showed better performance for our problem cases.

We have chosen slightly different networks for the two
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Stem Block

Endblock

Residual Block

Residual Block

n times

FIG. 1. Illustration of the general network architecture used
in this study.

searches (T = 105 s and T = 106 s) of Table. I, as these
correspond to signals with rather different width in fre-
quency domain: the network in the T = 105 s cases
contains six instances of a residual block, while in the
T = 106 s cases the network uses twelve.

The network layers can be separated into three parts:
the stem block, a block of multiple residual blocks, and
an end-block, see Fig 1. The stem block consists of a
standard convolutional layer, while each of the residual
blocks is built according to [48]. The endblock contains
a dense softmax layer with two final output neurons, cor-
responding to the estimated probability psignal that the
input contains a signal, and pnoise = 1 − psignal for pure
noise sample. The DNNs are implemented in the Keras
framework[49] on top of a Tensorflow[50] backend.

B. DNN training and validation

Training the network is performed on a synthesized
data-set of input vectors, where half contain pure Gaus-
sian noise, and half contain a signal added to the noise.
One full pass through this training set is commonly re-
ferred to as a training epoch. Using a pre-computed set
of 10 000 signals, each signal is added to 24 dynamically-
generated noise realizations, which are also used as pure-
noise inputs. The number of signals in the training set
was determined empirically, as using more signals gives
diminishing performance improvements (see figure 2).

The signals are scaled to a fixed depth D90%
training for each

test case and randomly shifted in frequency within the
network input window. These training depths were es-
timated semi-analytically using the method of [12, 47],
and differ slightly from the final measured values D90%

of Table. IV, which had not yet been available at the
time of training. When testing the network on signals of
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FIG. 2. Validation detection probability for T =
105 s, f0 = 1000 Hz for training with training sets containing
10, 100, 1000, 10000 and 50000 signals.

different depths, the detection probability behaves as ex-
pected, see Sec. IV D. Furthermore, we found that using
a different choice of training depth did not significantly
affect training success.

Every few epochs of training, we perform a validation
step, where the detection probability of the network is
measured on an independent data set. This validation
set contains another 20 000 input vectors, half containing
signals in noise (of fixed depth D90%), and half containing
noise only.

In order to compute the network’s detection probabil-
ity pDNN

det , we treat the output neuron psignal as a statistic,
and follow the usual “upper limit” procedure described
in Sec. II B: we repeatedly run the network on Gaussian
noise inputs in order to determine the pfa = 1% detection
threshold. We then run the network on the signal set and
measure for what fraction of signals the statistic exceeds
that threshold.

The evolution of the detection probability as a function
of training epoch (or similarly, as a function of training
time) is presented in Fig. 3, illustrating the progress of
learning. In order to test the variability and dependence
of the learning success on the random initialization of
the network, we train a “cloud” of ∼ 100 differently-
initialized network instances. We use the network at its
point of best validation performance from each test case
for the further test results presented in the next sections.

Most of the training was performed on Nvidia GTX
750 GPUs. We see in Fig. 3 that for most cases the im-
provements in detection probability seem to have leveled
off after the training time (about one day in the T = 105 s
cases, and about 10 days in the T = 106 s cases). How-
ever, in the case of T = 106 s, f0 = 1000 Hz seen in Fig.3d
(and also for T = 106 s, f0 = 500 Hz, not shown), there
still seems to be a slowly increasing trend in detection
probability at the end of training time. Therefore we
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(c) T = 106 s, f0 = 20Hz
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FIG. 3. Validation detection probability pDNN
det of the DNN versus training time (or mean trained epoch) for 100 different network

instances trained for each of four test cases: (a) T = 105 s, f0 = 20 Hz, (b) T = 105 s, f0 = 1000 Hz, (c) T = 106 s, f0 = 20 Hz
and (d) T = 106 s, f0 = 1000 Hz, all trained on Nvidia GTX 750. The solid horizontal line denotes the matched-filtering
detection performance of pdet = 90%.

trained a single network instance for these two cases again
on a more powerful Nvidia TITAN V GPU for many more
epochs, until the validation detection probability seemed
to level off, which is shown in Fig. 4.

Overall we observe an dramatic increase in “difficulty”
the DNN has in learning the different test cases along
the direction of increasing data span T and frequency
f , also seen clearly in Table. V. In the easiest case of
T = 105 s, f0 = 20 Hz the DNN achieves a detection
probability of pDNN

det ∼ 88%, nearly rivalling matched-

filtering performance, while in the hardest case of T =
106 s, f0 = 1000 Hz it only manages pdet ∼ 13% (also see
Table. V). This may not be very surprising, given that the
cases become increasingly more compute-intensive (more
templates) along the same axis for matched filtering, as
seen in Table. III. In the frequency-domain input vectors
of the DNN, this would manifest by the signals being
more widely spread-out due to increased frequency drift
ḟ T and Doppler stretching.
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FIG. 4. Validation detection probability pDNN
det of the DNN

versus training time for a single network trained on Nvidia
TITAN V for the case T = 106 s, f0 = 1000 Hz.

IV. TESTING DNN PERFORMANCE

After the training and validation steps, we perform a
series of tests on the best DNN found for each test case
(i.e. with the highest pDNN

det over all validation steps), in
order to more fully characterize its performance as a CW
detection method. In these tests we simulate the signals
and noise directly for any given depth using the standard
CWLALSuite[51] machinery, in order to independently
verify the network performance. Hence we are not using a
traditionally fixed testing set but generate it on demand.

A. Verifying detection probabilities

As a sanity check we measure again the detection prob-
ability pDNN

det at pfa = 1% for the ten cases over the re-
spective frequency bands for a signal population at the
matched-filtering D90% of Table. IV. The resulting DNN
test results obtained with the independent test-pipeline
are given in Table. V. These results usually agree to ∼ 2

p90 %
det f0 = 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s 87.6+0.7
−0.6 85.4+0.7

−0.7 84.1+0.7
−0.7 80.2+0.8

−0.8 73.0+0.9
−0.9

T = 106 s 68.8+0.9
−0.9 50.0+1.0

−1.0 38.7+0.9
−1.0 25.4+0.8

−0.9 13.1+0.6
−0.7

TABLE V. Detection probabilities in % of the best networks
for each case at false alarm level pfa = 1 % and 90 % matched-
filtering depth.

percentage points in detection probability with the corre-

sponding best pDNN
det originally observed in the validation

step, seen in Figs. 3,4.

A second interesting question is how the detection
probability depends on the false-alarm level pfa (com-
monly referred to as ROC curve) for a fixed signal pop-
ulation. This is shown in Fig. 5 in comparison to the
matched-filter ROC.

B. Generalization in frequency f

If we want to perform a search over the whole frequency
range (e.g. as defined in Table. I) using DNNs, we would
need to determine how many different networks we have
to train in order to cover this range with a reasonable
overall sensitivity. Alternatively we can also train a single
DNN with signals drawn from the full frequency range of
the search and compare its performance.

The results of these tests are shown in Fig. 6, which
show how the five DNNs, trained at their respective fre-
quencies f0, perform over the full frequency range of the
search. In addition we show the performance of another
network that has been trained directly over the full fre-
quency range.

We see that the “specific” networks trained only on a
narrow frequency range still perform reasonably well over
a fairly broad range of frequencies, and especially that
networks trained at higher frequencies generalize well to
lower frequencies. This result shows that a small number
of networks O (5) would be able to cover the whole fre-
quency range at a similar detection performance that was
obtained on the individual training frequencies. Further-
more, for the T = 105 s search, it seems quite feasible
to train a single network over the full frequency range
directly, achieving similar (albeit lower) performance to
the “specialized” networks trained at narrow frequency
bands. On the contrary for the T = 106 s search the
detection probability of the “full-range” network drops
up to 20 percentage points against the “specialized” net-
works.

C. Generalization in spin-down ḟ

A further interesting aspect to consider is how far in
spindown ḟ the performance network extends beyond the
range that it was trained on, i.e. ḟ ∈ [−10−10, 0] Hz/s
as given in Table. I. This is shown in Fig. 7. We see
that the DNN detection probability remains high even
for spindowns that are 1-2 orders of magnitude larger
than the training range. In particular, networks trained
at higher frequencies seem to have a wider generalization
range in spindown, which makes sense as they would have
learned to recognize signal shapes with larger Doppler
broadening, a qualitatively similar effect to having more
spindown.
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FIG. 5. ROC-curve: Detection probability pdet versus pfa for the 105 s search (left) and the 106 s search (right). The solid red
lines indicate the measured ROC curves for matched filtering.
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FIG. 6. Detection probability pdet versus injection frequency f for networks trained at five different frequencies and for a
network trained with signals drawn from the full frequency range (solid black line). The dashed vertical lines mark the
respective training frequencies for the five “specialized” networks. The horizontal dashed line represents the coherent matched
filtering detection performance.

D. Generalization in signal strength

Another important issue is how well the DNN general-
izes for signals of different strength D, given that we only
trained each network at one specific depth D90%

training, an
estimate of the matched filtering depth. The results of
this test are shown in the efficiency plots of Fig. 8. We see
that generally the dependence of pdet(D) for the DNNs
seems to be quite similar to that of matched filtering, but
shifted to its overall (lower) performance level.

Conversely we also calculated the “upper limit” sen-
sitivity depth D90%

DNN where the network achieves 90%
detection probablity (see Table VI). These values cor-
respond to a sensitivity loss of 5% − 21% (as a function
of frequency) for the T = 105 s search, and 26% − 66%
for the T = 106 s search.
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FIG. 7. Detection probability pdet versus injected spin-down ḟ for networks trained at give different frequencies. The green
shade in the middle marks the 10−10 Hz/s wide spin-down band the networks were trained on. The x-axis is plotted as a

symmetric logarithm, i.e. logarithmical for the larger negative values, linear for |ḟ | < −10−10 Hz/s and logarithmical for the
larger positive values. The red shades at the edges illustrates where we start losing SNR purely by the network input window
being smaller than the widest signals.

D90 %
DNN[Hz−1/2] f0 = 20 Hz 100 Hz 200 Hz 500 Hz 1000 Hz

T = 105 s 10.8 10.0 9.5 8.6 7.7
T = 106 s 21.6 16.5 14.3 11.1 8.9

TABLE VI. Sensitivity depths D90%
DNN at false-alarm level of

pfa = 1% achieved by the network for the ten test cases. The
respective matched filter depths can be found in Table IV.

E. Timing

The total amount of computational resources needed,
is another interesting point of comparison to a matched
filter search. The total search times for using the
matched-filter Weave method on the two benchmark
searches can be found in Table. II.

For the DNN the total computation time consists of
two parts: Training time and prediction time (i.e. cal-
culating one output statistic psignal for one input data
vector). The training time for the two network architec-
tures is ∼ 1 d and ∼ 10 d per network for the T = 105 s
and T = 106 s cases, respectively. Only part of this time
is actually spent on training the network, another part is
calculating the detection probability of the network every
few epochs in order to monitor the progress of training.

The prediction time in comparison is almost negligi-
ble. The smaller networks for the T = 105 s cases require
∼ 3 ms for processing one input window. The larger net-
works for the T = 106 s cases need ∼ 10 ms per predic-
tion. Each search requires a different number of sliding

input windows to cover the whole frequency range, and
the total search time can be found in table VII.

An important detail to note in a direct comparison
between matched filtering and a pure classifier “signal”
vs “noise” DNN search is that matched filtering yields
far more information on outlier candidates that cross
the threshold. In particular, its signal parameters will
be well constrained already, allowing a follow-up search
to be performed in a small region of parameter space.
The DNN classifier, on the other hand, would flag in-
put windows (of width ∆fIW) in frequency as outliers
to be followed up. Assuming we follow up two input
windows per candidate, one can estimate the total ex-
pected follow-up cost (using matched-filtering) as a frac-
tion 2 (∆fIW/∆f) pfa of the total matched-filtering cost
(see Table II), where pfa = 1% is the false-alarm proba-
bility per ∆f = 50 mHz band.

Cost [s] Training Search Follow-up Total

T = 105 s 4.3× 105 58.8 2.2× 104 4.5× 105

T = 106 s 4.3× 106 196 6.5× 107 6.9× 107

TABLE VII. DNN computing cost (in seconds) for training,
search and follow-up (using matched-filtering). The respec-
tive matched-filtering cost can be found in Table II

Therefore even including all the training time and as-
suming a matched-filter follow-up, the DNN search would
still seem to be requiring less computing power. At the
present stage, however, we cannot realise this potential
benefit given that our DNN search so far is far less sen-
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FIG. 8. Detection probability pdet versus injection depth D for networks trained on the respective matched-filtering depth
D90% (indicated by the vertical solid line with the diamond at 90 %). The second vertical line with the star at 90 % gives the
sensitivity depth for the DNN at 90 % detection probability

sitive overall.

V. DISCUSSION

In this work we have shown that Deep Learning (DNN)
can in principle be used to directly search for CW sig-
nals in data, at substantially faster search times than
matched filtering. For the hand-optimized network archi-
tecture studied here, the DNN detection probability (at
fixed false alarm) is found to be somewhat competitive
(88%− 73% over the full frequency range) with matched
filtering (90%) for short data-spans of T ∼ 1 day, while
the detection performance falls short (69% − 13%) for
a longer data span of T ∼ 12 days. On the plus side,

the DNN search shows a surprising ability to extend fur-
ther in frequency and spindown than it was trained for,
and is generally much faster in search performance than
matched filtering.

Overall we find that Deep Learning has potential to
become a useful CW search tool, but probably a lot
more work and effort is required to achieve this. A
few immediate ideas we are planning to pursue next in
this project are: automated large-scale architecture op-
timization, training for parameter-estimation in addition
to pure classification, extending it to a multi-detector
search, and investigating performance on non-Gaussian
detector noise.
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