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Abstract: 
This paper generalizes a Perfectly Matched Layer (PML) technique for emulating 

radiation at infinity in finite difference or finite element simulations of time-harmonic 
electromagnetic wave propagation in complex media. Extending a previous work in Cartesian 
coordinates [Jacquot2013], we formulate a PML as an artificial inhomogeneous lossy 
medium, following the stretching into the complex plane of a general system of three 
orthogonal curvilinear coordinates. The particular cases of cylindrical and toroidal geometries 
illustrate the general method. As a test problem to assess the new formulation in gyrotropic 
media, we analytically quantify the reflection of cylindrical waves by a radial PML in 
cylindrical geometry. The obtained reflection coefficient involves wave, PML and geometric 
parameters at the PML location. The new coefficient generalizes the one obtained earlier with 
Cartesian coordinates, and becomes equivalent when the effects of the local cylindrical 
curvature at the PML (stretched) location can be neglected. These curvature effects are 
outlined and the limitations they impose on the properties of the PML are quantified as a 
function of the relevant parameters. Finite element calculations of the test problem in two-
dimensional cylindrical geometry are exploited to verify these properties numerically. 
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I. Introduction 
This paper investigates the numerical simulation of time-harmonic electromagnetic 

(EM) wave propagation in complex media such as cold magnetized plasmas, featuring a 
gyrotropic dielectric tensor. Gyrotropy introduces two different wave propagation 
eigenmodes, referred to as Fast and Slow waves in the context of plasma physics 
[Swanson2003]. In such problems the time-harmonic Maxwell’s equations in the medium are 
complemented with suitable boundary conditions. In finite difference or finite element 
calculations of EM wave propagation, Perfectly Matched Layers (PMLs) aim at emulating 
radiation at infinity inside a bounded simulation domain. In the literature PMLs were already 
devised for the propagation of one eigenmode of gyrotropic media, generally in two 
dimensions (2D) transverse to the direction of anisotropy, and described by a scalar 
Helmholtz equation [Velasco2009]. This result was recently extended in 3D for the two 
eigenmodes, described by a vectorial time-harmonic wave equation [Gondarenko2004] 
[Jacquot2013]. Reference [Bécache2017] explored the transient EM pulse propagation in 
uniaxial media using the Finite Difference Time Domain (FDTD) method and PMLs adapted 
for each eigenmode. Reference [Jacquot2013] implemented PMLs adapted for cold 
magnetized plasmas at the edge of (flattened) toric magnetic fusion devices in the Radio-
Frequency (RF) module of the COMSOL finite element solver [COMSOL]. In this latter 
paper, PMLs were defined as artificial inhomogeneous lossy dielectric and magnetic media, 
where the standard equations of electrodynamics could be applied. This was achieved by 
stretching the conventional Cartesian coordinates of a flattened tokamak along prescribed 
trajectories in the complex plane. 

For many realistic applications however, using Cartesian coordinates appears to be a 
limitation. Flattening a tokamak is an approximation, historically intended to enable using 
spectral methods of EM wave simulation. The limits of this approxipation have been explored 
both by modelling [Louche2011] [Jacquot2015] [Milanesio2017] and experiments in several 
frequency ranges [Bilato2004], [Ekedahl2015]. Cartesian PMLs can sometimes be kept in a 
curved geometry if the plasma-PML boundary remains flat. This is however not always 
possible, and in practice it might be inefficient: in uniaxial media for example, reference 
[Bécache2017] showed it necessary to stretch space along directions either parallel or 
perpendicular to the anisotropy. Otherwise propagative forward and backward waves might 
coexist, one of which cannot be damped by the PML. In view of simulating cylindrical RF 
plasma discharges (e.g. Capacively coupled discharges [Faudot2015], helicon discharges 
[Crombé2015], [Furno2017], ion cyclotron-heated ones [Crombé2015], [Gekelman2016]), 
toroidal devices (tokamaks [Jacquot2015]) or even more complex geometries (stellarators) in 
a more realistic way, it is therefore tempting to stretch the spatial coordinates along the 
principal directions defined by the device geometry. However, over such change, the 
differential operators rot (.) and div(.) appearing in Maxwell’s equations modify their forms, 
due to the local curvature of the new coordinate systems [Angot1972]. This calls for re-
formulating the PML. 

One can also anticipate that curvature effects might modify the wave-reflection 
properties of the PML. A standard assessment of these PML properties in Cartesian geometry 
is to quantify the reflection of propagative or evanescent plane waves in homogeneous media 
as a function of the relevant simulation parameters. This was done extensively in 
[Jacquot2013] for plane waves in gyrotropic media. Criteria of low reflection could be 
established for tuning the PML parameters. Limitations were also outlined when propagative 
forward and backward waves coexist in the PMLs. While plane waves are well suited for 
PML benchmark in Cartesian geometry, they are generally not adapted in curved coordinates, 
and alternative test-problems should be looked for. Literature on these subjects is scarce, even 
for simple isotropic media. 
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The present paper proposes to generalize in curved coordinates the methodology 
applied in [Jacquot2013] for Cartesian coordinates. Firstly a PML is formulated as an 
artificial medium, following the stretching of a general system of three orthogonal curvilinear 
coordinates. Cylindrical and toroidal coordinates illustrate the general method. Secondly, in 
the particular case of cylindrical geometry, we further try to assess the PML properties: 
analytical criteria are defined for low reflection of waves by radial PMLs. We use for this 
purpose cylindrical waves that play in cylindrical geometry an equivalent role as plane waves 
in Cartesian coordinates. Cylindrical waves of gyrotropic media are recalled when the 
direction of anisotropy is along the axis of the cylinder. The PML reflection criteria involve 
wave, PML and geometric parameters at the PML location. The new results generalize those 
obtained earlier, and become equivalent when the effects of the local cylindrical curvature at 
the PML (stretched) location can be neglected. Curvature effects are outlined and the 
limitations they impose on the properties of the PML are quantified as a function of the 
relevant parameters. Finally, finite element calculations of the test problem in 2D cylindrical 
geometry are exploited to quantify these properties numerically. 

II.  PML formulation in curved coordinates as an artificial lossy dielectric 
medium 

Throughout this paper we consider time-harmonic EM fields oscillating in time as 
exp(+iω0t) at pulsation ω0. In the 3-dimensional (3D) Euclidian space, the EM fields E and H 
evolve according to Maxwell’s equations in the frequency domain 
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In equations (II.1) the oscillating current jant imposed on the antenna structures, as well 
as the oscillating antenna space charge ρant, were isolated from the self-consistent response of 
the medium to (E,H), incorporated in the linear local constitutive relations  

D=εεεε(ω0)E ; B=µµµµ(ω0)H. (II.2) 

Tensors εεεε(ω0) and µµµµ(ω0) can take very general forms. In references [Sachs1995], 
[Gedney1996], [Texeira1998], stretching the usual Cartesian coordinates into the complex 
plane was found beneficial to emulate radiating boundary conditions in a PML for problem 
(II.1). Besides, a formal analogy was outlined between the obtained PMLs matched to 
isotropic media and an artificial medium with modified dielectric and magnetic properties. In 
[Gondarenko2004], [Jacquot2013] the analogy was extended to more complex media with full 
dielectric permittivity εεεε and/or magnetic permeability µµµµ tensors, e.g. cold magnetized plasmas 
[Swanson2003]. In this section we would like to extend the technique to formulate PMLs by 
stretching the three principal directions defined by a system of three curved coordinates 
[Angot1972]. So far the generalization appears tractable only for orthogonal sets and 
stretching procedures that preserve this orthogonality.  

A. Solving Maxwell’s equations in stretched orthogonal curvilinear coordinates 
In the 3D Euclidian space, we consider an orthogonal set of three curvilinear 

coordinates (u,v,w) such that ∇∇∇∇u.∇∇∇∇v=∇∇∇∇v.∇∇∇∇w=∇∇∇∇w.∇∇∇∇u=0 everywhere. The system is 
characterized locally by the elementary distance ds defined as: 

( ) ( ) ( ) 2222222 ,,,,,, dwwvuhdvwvuhduwvuhds wvu ++=  (II.3) 
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In this system we envisage a vector field V(u,v,w), whose components along the three 
orthogonal principal directions are Vu(u,v,w), Vv(u,v,w) Vw(u,v,w). The differential operators 
div(.) and rot (.) appearing  in Maxwell’s equations (II.1) are then defined as [Angot1972] 

( ) ( ) ( ) ( )[ ]wvuwvuwvuwvu
wvu

VhhVhhVhh
hhh

∂+∂+∂= 1
div V  (II.4) 
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In the PML the spatial coordinates (u,v,w) are artificially stretched according to the 

rules ( ) ( )∫+=→
u

u uu dttSuutu
0

0 , ( ) ( )∫+=→
v
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0 , ( ) ( )∫+=→
w

w ww dttSwwtw
0

0 . The 

triplet (u0, v0, w0) as well as the stretching functions (Su(u), Sv(v), Sw(w)) are arbitrary and can 
be chosen conveniently for the required application. In particular, the stretching can be 
extended to the complex plane. The main difference with Cartesian geometry is the directions 
along which space is stretched. As for Cartesian frames it is essential that Su(u) depends only 
on u, Sv(v) on v and Sw(w) on w. Each coordinate is stretched “perpendicular to the other 
ones”: the stretched coordinate system remains orthogonal and a relation similar to (II.3) 
applies, with du=dtu(u)/Su(u) and metric elements evaluated at stretched location, such as 
hu(tu(u),tv(v),tw(w))=htu(u,v,w). If the stretching extends to the complex plane, htu, htv and htw 
might become complex, whereas they should be real positive before the stretching. Stretching 
functions are equal to 1 in the main simulation domain, where the properties of the original 
medium are preserved. In the PML, on the contrary, we request that the new local EM fields 
(EPML , HPML ) at location (u,v,w) be the solutions (E, H) of the original wave problem (II.1) 
evaluated at stretched location (tu(u), tv(v), tw(w)). To this end, problem (II.1) is replaced with 
a modified one 
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where rot s(.) and divs(.) denote the differential operators (II.4) and (II.5) with respect 
to the stretched curved coordinates. The modified differential operators rot s(.) and divs(.) are 
obtained from formulae (II.4) and (II.5) upon the substitution 
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Let us now introduce matrices ΣΣΣΣ(u,v,w) and ΛΛΛΛ(u,v,w) as 
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Since Su depends only on u, and similarly for Sv and Sw, the operator rot s(.) (evaluated 
at point (tu(u), tv(v), tw(w))) is related to operator rot (.) (evaluated at point (u,v,w)) by 

ΛΛΛΛrot s.=rot (ΣΣΣΣ.) (II.10) 

And similarly 

det(ΣΣΣΣ)divs(.)=div(ΛΛΛΛ.) (II.11) 

Using (II.10) and (II.11) one can reformulate the modified EM problem (II.6) as 
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Relations (II.12) can be interpreted as follows. They appear as the original 
electromagnetic problem (II.1), with the original differential operators rot (.) and div(.). 
However the original EM fields E(u,v,w) and H(u,v,w)  were replaced respectively with the 
artificial EM fields (ΣΣΣΣEPML )(u,v,w) and (ΣΣΣΣHPML )(u,v,w). The original and artificial EM fields 
coincide inside the main simulation domain, where ΣΣΣΣ=1 (the identity tensor) and (EPML , 
HPML )=(E, H). Similarly the source terms ρant and jant were replaced respectively with 
det(ΣΣΣΣ)ρant and ΛΛΛΛjant. The original tensors εεεε and µµµµ were replaced respectively with the tensors 
εεεεPML ≡(ΛεΛεΛεΛεΣΣΣΣ-1) and µµµµPML ≡(ΛµΛµΛµΛµΣΣΣΣ-1) adapted to the stretched coordinates. Original and adapted 
tensors coincide in the main simulation domain, where ΣΣΣΣ=1 and ΛΛΛΛ=1. Also if tensor µµµµ is 
diagonal then the three matrices ΛΛΛΛ,    µµµµ and ΣΣΣΣ-1 commute. For the general dielectric tensor εεεε one 
obtains. 
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and similarly for µµµµPML . Result (II.13) is formally analogous to that in Cartesian 
coordinates (x, y, z) [Texeira1998], where the stretching function Sx(x) was replaced with 
Σu(u,v,w), and similarly with the other matrix components. 

B. Implementation in particular geometries. 
Implementation of the PML is formally similar in Cartesian and curved geometries. 

However the number of sub-cases is more important. For example in the case of isotropic 
media, one type of PML needs to be defined in Cartesian geometry, independent of the 
direction where waves need to be attenuated. In general 3 types of PMLs need to be defined in 
each direction. For anisotropic media the properties of the PML depend on both the type of 
coordinates and on the orientation of the direction of anisotropy. Some of these cases are 
investigated below. Equation (II.13) also shows that, in curved geometry, the implementation 
of a PML depends on its spatial location (u,v,w) via the stretched coordinates tu(u), tv(v) and 
tw(w) appearing explicitly in εεεεPML . This reflects curvature effects in the new geometry. 
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We now treat more explicitly four concrete examples of coordinate systems. For 
reference we recall the standard Cartesian set (x,y,z). One of the simplest systems exhibiting 
curvature is the cylindrical geometry. It is therefore useful for numerical tests, but also for 
simulating cylindrical plasma devices. The cylindrical coordinates (R, ϕ, Z) are defined as 
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 (II.14) 

For more realistic applications in tokamaks, we introduce a system of coordinates 
(r,ϕ,θ) associated to nested toric magnetic flux surfaces with concentric circular cross-
sections. 
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Finally we consider axisymmetric tokamak magnetic equilibria with more arbitrarily 
shaped nested magnetic surfaces. For simplicity, we assume that we know some conformal 
transformation R+iZ=F(ξ) in the cross-section ϕ=constant, such that the magnetic surfaces 
correspond to the images by F of circles |ξ|=r in the complex plane. Properties of conformal 
transforms are presented e.g. in [Angot1972]. The existence of F(ξ) is demonstrated. In 
magnetic fusion, conformal maps were constructed to assess numerically the 
magnetohydrodynamic stability of shaped toric plasmas [Goedbloed1981] [Goedbloed1982]. 
The coordinates (r, ϕ, θ) form a convenient system to locate the points in the tokamak, using 

R+iZ=F[r exp(iθ)] (II.16) 

The conformal nature of F ensures that the original orthogonal coordinate system is 
transformed into another orthogonal system. The squared elementary distance reads 

( )[ ] ( ) ( )[ ]( ) 22222

2

2 iexpRe
iexp ϕθθ

ξ
θ

drFdrdr
d

rdF
ds ++=  (II.17) 

The nested circular flux surfaces correspond to the translation F(ξ)=ξ+R0. Table 1 
summarizes the metric elements of the four coordinate systems. In the non-trivial cases, some 
of these elements can go to zero, leading to well-known singularities in the coordinate 
systems. Even when they lie outside the physical simulation domain, these singular points can 
be reached over the stretching process and therefore deserve special attention. 

 
Name u v w hu(u,v,w) hv(u,v,w) hw(u,v,w) 

Cartesian x y z 1 1 1 
Cylindrical R ϕ Z 1 R 1 
Toroidal r ϕ θ 1 R0+rcosθ r 

Conformal r ϕ θ |dF/dξ| Re(F) r|dF/dξ| 

Table 1: metric elements for four coordinate systems. 

III.  Test problem to assess PML behaviour in cylindrical geometry. 
Artificially stretching the Cartesian coordinates into the complex plane transforms 

propagative plane waves into evanescent ones in the PML [Sachs1995], [Gedney1996], 
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[Texeira1998]. It therefore introduces artificial damping in this region, thus emulating 
radiation at infinity inside a finite simulation domain. In part II we stretched other sets of 
coordinates, assuming that this property might be preserved in curved geometries. However 
this remains to be assessed. Cylindrical geometry is a well suited test case. 

A standard assessment of the PML formulation in Cartesian geometry is to quantify 
the reflection of propagative or evanescent plane waves in homogeneous media (see e.g. 
[Jacquot2013]). In cylindrical coordinates some equivalents of propagating or evanescent 
plane waves exist in terms of Bessel functions. In the context of plasma-filled waveguides, 
these cylindrical waves were derived in details for gyrotropic media in [Bers1963]. These 
results are briefly summarized in section III.A in the case of longitudinal anisotropy. Using 
these tools we then propose a test problem to analytically quantify the reflection of cylindrical 
waves by radial PMLs in cylindrical geometry, in presence of a homogeneous gyrotropic 
medium. We investigate in particular how the radial curvature of the cylinder affects the PML 
properties compared to the Cartesian case. 

A. Cylindrical waves in gyrotropic medium with longitudinal anisotropy. 
From now on we seek particular solutions of the wave equations (II.1), without source 

term in volume, featuring a separable form in the cylindrical coordinates (R, ϕ, Z). The EM 
quantities are requested to oscillate as F(R)exp(+iω0t-ikzZ-imϕ), with kz a longitudinal 
wavevector, m (integer) an azimuthal mode number, and F(R) a radial structure function to be 
determined. For gyrotropic media these cylindrical waves can only be well defined when the 
direction of anisotropy is along Z or ϕ [Bers1963]. For convenience we summarize here Bers’ 
treatment in the homogeneous medium with longitudinal anisotropy (see also 
[Swanson2003]). This geometry is well suited for magnetized cylindrical plasma devices, in 
conditions when longitudinal invariance can be assumed. In this configuration µµµµ(ω0)=µ01 in 
formula (II.2) while the dielectric tensor εεεε(ω0) takes the form [Swanson2003] 
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In this configuration all the EM field components ET(R) and HT(R) transverse to Z can 
be expressed as a function of the longitudinal EM field components EZ(R) and HZ(R) using 
Maxwell-Ampère and Maxwell-Faraday equations ([Bers1963], eq. 9.21) 
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In the above expression we have introduced c=[µ0ε0]
-1/2 the speed of light in vacuum, 

k0≡ω0/c the wave-vector in vacuum, nZ≡kZ/k0 the longitudinal refractive index and 
Z0=(µ0/ε0)

1/2 the impedance of vacuum. In our cylindrical geometry the relevant 2D transverse 
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equations, the two scalar fields EZ(R) and HZ(R) are then related to each other by two coupled 
second-order partial differential equations ([Bers1963], eq. 9.157 and 9.158) 
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In this expression ∆Τ. is the Laplace operator transverse to anisotropy while matrix K 
takes the form 

 & ≡ ��//�1 − ���/�⊥� −i�����×/�⊥i���×�///���⊥ �⊥ − �×�/�⊥ − ���� (III.4) 

Eigenmodes of the gyrotropic medium are the eigenvectors of matrix K, associated 
with eigenvalues n⊥

2, a squared refractive index transverse to Z. The dispersion relation for 
cylindrical waves writes 

( ) ( ) 0dettrdet 242 =+−=− ⊥⊥⊥ KK1K nnn  (III.5) 

Two separate roots n⊥
2 generally fulfil equation (III.5). Below we will investigate only 

media without losses in volume, for which the three dielectric constants in (III.1) are real, but 
without restriction of sign. In these conditions the eigenvalues n⊥

2 are also real. When 
nzε×/ε⊥=0 matrix K  is diagonal and the EM fields can be explicitly split into transverse-
electric (TE) and transverse-magnetic (TM) eigenmodes with respect to direction Z 

( )






−−==
−==

⊥×⊥

⊥

⊥

⊥
22

22
2

2
//11

2

/

/1

Z

Z

nKn

nKn

TE

TM

εεε
εε

 (III.6) 

In our numerical tests we will also investigate EM waves for magneto-plasmas in the 
Ion Cyclotron Range of Frequencies (ICRF) [Swanson2003]. Such waves satisfy the ordering 
|ε//|>>|ε⊥|, |ε×|, nZ

2. A scale separation generally applies, allowing a perturbative resolution of 
(III.5). To leading order in the ordering the refractive indices are 
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Scale separation fails close to nz
2=ε⊥. Within the above ordering, the polarization of 

the first mode (Fast Wave or FW in ICRF) is quasi-TE.  
*+,-./+,-. = − 012011�3⊥-2 ≈ i�� 3+5×5//65⊥�3+27 (III.8) 

The polarization of the alternative eigenmode (Slow Wave or SW) is to leading order 
/+,-.*+,-. = − 021022�3⊥82 ≈ i 3+5×�965⊥�3+27 (III.9) 

For eigenmodes the two equations (III.3) simplify into two scalar Helmholtz equations 

( ) ( ) 22
0

22 ;0 ⊥⊥⊥ ==+∆ nkkRHkRH ZZT  (III.10) 

and similarly for EZ(R). In our cylindrical coordinates, ∆Τ.=R-1∂RR∂R.-m2/R2 and 
(III.10) is a Bessel equation. When n⊥

2 is real positive, solutions of (III.10) with radiation 
conditions at infinity are found as Hankel functions Hm

(1)(k⊥R) and Hm
(2)(k⊥R) [Abramowitz]. 

For |k⊥R|>>1, Hm
(1)(k⊥R)~[2/(πk⊥R)]1/2exp(+ik⊥R-iπ/4-imπ/2), i.e. taking k⊥ real positive this 

wave behaves asymptotically as a plane wave propagating radially inwards. Similarly 
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Hm
(2)(k⊥R)~[2/(πk⊥R)]1/2exp(-ik⊥R-iπ/4-imπ/2) propagates in the outward direction. 

Evanescent waves with real negative n⊥
2 can be treated similarly by replacing Hm

(1) and Hm
(2) 

with respectively the modified Bessel functions Im and Km of argument |k⊥|R [Abramowitz]. 
Once EZ(R) and HZ(R) are determined for each eigenmode, the transverse parts of their 

EM field polarizations are deduced from (III.2). Finally, the full solution of the initial EM 
problem (II.1) is a linear combination of the two eigenmodes determined by the source terms 
and boundary conditions. If a cylindrical Perfect Electric Conductor (PEC) is present at R=R1, 
the two EM field components EZ(R1) and Eϕ(R1) tangent to this boundary should vanish 
simultaneously. In the general case treated in [Bers1963], a mix of the two eigenmodes is 
needed to fulfil the PEC boundary conditions, leading to mode conversion upon wave 
reflection. However in the case of pure TE or TM modes, solutions exist involving only one 
of the two eigenmodes. This is also approximately the case for the FW at leading order in the 
above ordering.  For our test problem we will stick to these simple cases. 

B. Reflection of propagative cylindrical TE Waves in a Radial PML. 

 
Figure 1: sketch of TE wave reflection problem to 

assess the radial PML. 

To assess the behaviour of radial 
PMLs in cylindrical geometry, we study the 
artificial damping of an incoming 
propagative cylindrical TE wave in the 
central part of a homogeneous gyrotropic 
medium with longitudinal aniosotropy. This 
situation mimics the complete absorption of 
a TE wave launched from the periphery of a 
cylindrical magnetized plasma device. The 
geometry of our test problem is summarized 
on figure 1. An incident cylindrical TE wave 
is launched from R→+∞ towards R=0. To 
attenuate artificially this incoming wave 
near the centre of the cylinder, a radial PML 
is placed in a cylindrical shell between R=R1 
and R=R0=R1+δR. Inside the PML the radial 
coordinate R is stretched into tR(R). 
Although this choice is non-restrictive, we 
will discuss below the particular case of  

polynomial stretching functions, for easier comparison with earlier work in Cartesian 
coordinates [Jacquot2013]. Specifically 

SR(R)=1-(S’+i S’’)[| R-R0|/δR]p, R<R0 (III.11) 

From this one can define tR(R) explicitly as 
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The other two cylindrical coordinates (ϕ, Z) are not stretched. From the above 
calculations, and assuming here k⊥TE

2>0, the radial structure of the incoming longitudinal EM 
magnetic field in the PML takes the form 

HZiPML(R)=HZi0Hm
(1)[k⊥TEtR(R)] (III.13) 

where the (complex) stretched radial coordinate tR(R) was substituted to the (real) 
radius R. The coordinate stretch preserves the TE polarization for the artificial EM electric 
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field EPML . A PEC is placed in R=R1<R0. Other boundary conditions are possible there (e.g. 
Perfect Magnetic Conductor would be convenient for TM modes). At this radius the total 
tangential EM electric field should vanish. In the case of the TE modes EZPML=0 and one 
should cancel only the azimuthal component EϕPML(R1). This can be fulfilled with only 
incident and reflected TE waves sharing the same (kz, m), so that the alternative eigenmode is 
absent from the problem. The reflected TE wave adopts a radial structure function of the form 

HZrPML(R)=HZr0Hm
(2)[k⊥TEtR(R)] (III.14) 

From equation (III.2), EϕPML(R1)=0 means  
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In this expression the primes denote the derivative of the Hankel functions with 
respect to their arguments, and subscript TE was dropped. Equation (III.15) defines an 
amplitude reflection coefficient ηtheo for the TE modes, whose magnitude can be used as a 
figure of merit for assessing the PML. In the absence of coordinate stretching (tR(R)=R) the 
PML is replaced with an equivalent layer of gyrotropic material and |ηtheo|=1. The coordinate 
stretching in the PML aims at reducing |ηtheo| as much as possible.  

ηtheo depends on the wave characteristics (k0, nz, m), the dielectric tensor elements, the 
PML characteristics (S’, S’’, δR, p) as well as the PEC radial location R1. The situation is 
therefore more complex than in Cartesian geometry. However only three independent non-
dimensional parameters appear in formula (III.15): the complex argument k⊥tR(R1) in the 
Hankel functions, the ratio mε×/(ε⊥-nZ

2) and the azimuthal mode number m. Coordinate 
stretching only influences the first parameter. To shed light into the PML properties, we 
therefore investigate below the quantities |η1|=|Hm

(1)[k⊥tR(R1)]/Hm
(2)[k⊥tR(R1)]| and 

|η2|=|Hm
‘(1)[k⊥tR(R1)]/Hm

‘(2)[k⊥tR(R1)]|. They correspond to |ηtheo| for respectively very large or 
very small values of mε×/(ε⊥-nZ

2). For increasing m, figures 2 plot |η1| and |η2| versus the two 
non-dimensional real parameters (XPML, YPML) appearing in the Hankel functions: 
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 (III.16) 

Parameter YPML is similar to the one characterizing the efficiency of the Cartesian 
PML for propagating plane waves [Jacquot2013], where in this context subscript ⊥ means 
normal to the plasma/PML interface. 

|ηtheo|=1 for YPML=0 and XPML>0. Since Hm
(1)[XPML-iYPML]=Hm

(2)[XPML+ iYPML]
* (where 

* denotes complex conjugate), ηtheo is transformed into 1/ηtheo
* when YPML→-YPML. Concretely 

this means that the PML cannot be tuned to attenuate simultaneously EM waves with real 
positive and real negative k⊥. As discussed in [Jacquot2013] [Bécache2017] this might be 
problematic in some anisotropic media where propagative forward and backward waves can 
coexist. Figures 2 plot only the half-plane YPML>0. 

Taking YPML>0 generally reduces |ηtheo|, but not always: contrary to the equivalent 
Cartesian PML |ηtheo| can exceed 1 and reach very high values for positive YPML. This arises 
when EϕPML(R1)=0 for the reflected wave. |η1| reaches very high values near the complex 
zeros of Hm

(2), and similarly for |η2| near the complex zeros of H’m
(2). For m=0 these zeros all 

lie in the half-plane XPML<0. As m increases some zeros are progressively displaced towards 
XPML>0. It is therefore important to tune S’ so that this zone of the complex space is avoided. 
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Figure 2: 2D Contour plots of |η1| (left panels) and |η2| (right panels) in logarithmic scale versus XPML and 
YPML, from formula (III.16), for increasing azimuthal mode number m. One contour line every 2.5dB. First solid 

contour line corresponds to |η|=1. 

Unlike the Cartesian case, the PML properties for propagative cylindrical waves 
depend on XPML. This parameter can be seen as a normalized radial position of the PEC 
boundary in the stretched coordinates. XPML can change either by moving physically the PEC 
radius R1 or by acting on the stretching parameters δRS’/(p+1). The second method amounts 
to artificially displacing the PEC radial position towards a region of different radius (even 
possibly negative!). The dependence of ηtheo on XPML can be interpreted in terms of local 
curvature effects at the stretched PML location. 

In the limit of large |XPML+ iYPML| with positive XPML one finds [Abramowitz] 

|Hm
(1)[XPML+ iYPML]/Hm

(2)[XPML+ iYPML]|~ 

|Hm
’(1)[XPML+ iYPML]/Hm

’(2)[XPML+ iYPML]|~exp(-2YPML)≡|ηCart|  (III.17) 

i.e.|η1|, and |η2|, and therefore |ηtheo| as well, converge to the same value |ηCart|, 
independent of (XPML, m) and characteristic of Cartesian PMLs [Jacquot2013]. However the 
minimal YPML to reach this asymptotic regime depends on (XPML, m): the higher m and the 
lower XPML, the higher YPML should be.  

The parametric region around XPML+ iYPML=0 appears unfavourable for low wave 
reflection by the PML. Low values of XPML and YPML are reached for low (k⊥δR), i.e. for 
waves propagating nearly parallel to the plasma/PML interface, similar to the Cartesian case 
[Jacquot2013]. The size of the unfavourable region gets larger as m increases: for given 
(XPML,YPML), a critical value of m always exists above which the PML loses efficiency. 
Figures 3 map as a function of (XPML,YPML) the lowest value of m for which the amplitude 
ratio exceeds 0.1. In figures 3 this value is m=0 for YPML<1.2. The critical m value increases 
with both XPML and YPML. It can therefore be made arbitrarily high by proper PML tuning. In 
practical applications, only a finite number of azimuthal harmonics need to be resolved. The 
PML can always be tuned so that it remains efficient up to this maximum m. In particular 
stretching the real part of R can be beneficial if it moves artificially the PEC location towards 
regions of lower curvature. Larger coordinate stretching however produces larger radial 
variations of εεεεPML (R) and therefore imposes a finer discretization of the PML region. 
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a)  b)  

Figure 3: lowest value of azimuthal mode number m for which the amplitude ratios exceeds 0.1, versus 
(XPML,YPML). a) |η1|>0.1, b) |η2|>0.1. 

C. Reflection of evanescent cylindrical waves in a radial PML. 

When k⊥
2 is real negative for the TE mode, a similar analysis as before can be made 

for waves that are evanescent inwards, i.e. waves growing radially as exp(+|k⊥|R) for large R. 
In formula (III.15) functions Hm

(1) and Hm
(2) should be respectively replaced with Im and Km 

[Abramowitz]. In the absence of coordinate stretching, the equivalent of η1 writes 
Km(X1)/Im(X1), where X1=|k⊥|R1 is a real normalized radius at PEC location. After the 
stretching, argument X1 should be transformed into X1+δXPML+iδYPML where  
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 (III.18) 

Figures 4 therefore plot the ratio 
|η3|=|Km(X1+δXPML+iδYPML)/Im(X1+δXPML+iδYPML)|*Im(X1)/Km(X1) versus (δXPML,δYPML). 
Only positive δYPML are shown since negative δYPML produce a similar result. |η3| is 1 for 
(δXPML,δYPML)=(0,0) and should be ideally as low as possible. For given δYPML, δXPML>0 is 
always beneficial for attenuating the reflected wave compared to δXPML=0, while δXPML<0 
might be very detrimental, especially close to δXPML=-X1. For positive δXPML, adding δYPML is 
generally beneficial but not always. For large positive X, |Km(X+iY)/Im(X+iY)|~exp(-
2X)/2|X+iY| and one recovers a result similar to the Cartesian case. 
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Figure 4: 2D contour plots of amplitude ratio |η3| (in logarithmic scale) versus (δXPML,δYPML) from (III.18) for 
X1=2.0 and for the first four values of azimuthal mode number m. One contour line every 2.5dB. First solid 

contour line corresponds to |η3|=1. 

IV.  Numerical tests of radial PML with gyrotropic media using 2D finite 
elements. 

The test problem for propagative cylindrical TE waves proposed in part III was 
implemented with finite elements in two dimensions (2D), and the wave reflection was 
quantified from the simulation output. This allows assessing numerically the analytical figure 
of merit ηtheo from (III-15). Simulations also illustrate specific features and limitations of the 
PML in cylindrical geometry and outline practical tips for PML tuning. 

A. Simulation and post-processing protocols 
Using the COMSOL finite element solver [COMSOL], the test problem was simulated 

numerically in the 2D (radial, azimuthal) geometry (R,ϕ) sketched on figure 1, with EM fields 
assumed to vary as exp(-ikzZ) in the out-of-plane longitudinal direction Z. COMSOL includes 
a built-in module to simulate the standard EM problem (II.1) with standard boundary 
conditions and any user-defined material of type (II.2), possibly inhomogeneous in space. All 
over the main simulation domain, the homogeneous gyrotropic dielectric tensor (III.1) was 
applied. A PML was implemented in the inner part of the simulation domain. When not 
precised, the artificial inhomogeneous tensors εεεεPML (R) and µµµµPML (R) from (II.13) were applied 
there, where εεεε is still from (III.1) and the radial coordinate R was stretched according to 
formula (III.12). From table 1, matrix ΣΣΣΣ(R) in formula (II.8) takes the form 
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ΣΣΣΣ(R)=:;<��� 0 00 ><���/� 00 0 1?
	<	@	�  (IV.1) 

It differs from a Cartesian-like PML formulation by a non-trivial term Σϕ(R)=tR(R)/R 
in the azimuthal direction. The PML medium features complex dielectric tensor elements, 
introducing artificial losses in PML volume. Besides, the three diagonal elements of εεεεPML (R) 
are different from each other and µµµµPML (R) becomes non-trivial. A PEC was implemented at 
the inner radial boundary of the simulation domain. From equation (II.12) this boundary 
condition applies to the EM field ΣΣΣΣEPML  computed in the PML. Since matrix ΣΣΣΣ(R) is diagonal 
in (IV.1), this amounts to cancelling both EϕPML and EZPML all over the inner radial boundary. 

Several simulation series, summarized in table 2, scanned the plasma and PML 
parameters identified as important in section III. 

 

# 
f0 

[MHz] 
kz [m

-1] m ε⊥ ε× S’ S” p R1 [m] δR [m] 

1 50 0 0 40.0 0.0 -2.0 
-1.0 
+7.0 

2 0.5 0.5 

2 50 0 0 40.0 0.0 +2.0 3.0 2 0.5 0.05 
1.2 

3 50 0 0 
10.0 
810 

0.0 +2.0 1.5 2 0.5 0.5 

4 
25.0 
225.0 

0 0 40.0 0.0 -4.0 1.5 2 0.5 0.5 

5 50 0 
0 
19 

40.0 0.0 +2.0 1.0 2 0.5 0.5 

6 50 0 6 40.0 0.0 
-4.0 
+2.0 

1.12 2 0.5 0.5 

7 100 
0.0 
12.0 

7 40.0 0.0 3.0 2.0 2 0.5 0.5 

8 100 0.0 4 40.0 0.0 0.0 0.55 2 
0.05 
1.5 

0.5 

9 100 0.0 4 40.0 0.0 
-6.39 
+6.12 

0.55 2 0.23 0.5 

10 50 0.0 0 40.0 0.0 2.0 2.0 
0 
5 

0.5 0.5 

11 50 0.0 0 750.0 
-735 

0 
2.0 1.5 2 0.5 0.5 

12 50 30.0 0 1500 
-672 

0 
2.0 1.5 2 0.5 0.5 

13 50 0.0 3 750.0 
-740 
+740 

2.0 1.5 2 0.5 0.5 

14 50 30.0 4 1500 
-680 
+680 

2.0 1.5 2 0.5 0.5 

Table 2: overview of parametric space explored over the simulations. Scanned parameters are highlighted in 
green. In series 1-11, ε//=-105 was used but should not play any role. In simulation series #12 and #14 

highlighted in grey the TE polarization is only approximate. Series 12 was performed using ε//=-106 and ε//=-
107. Series 13 and 14 were performed with ε//=-106 and ε//=-108. 

Only cases with propagative cylindrical waves were envisaged. The cases considered 
also feature ε×=0 or highly negative ε//, so that the EM problem (II.12) involves only (or 
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mainly) the TE mode. TE wave polarization is exact for all series except #12 and #14 
highlighted in grey, where it is approximate since kzε×≠ 0. Consistent with this assumption the 
longitudinal EM electric field EZ was imposed null at the outer boundary of the simulation 
domain, except on series #12 and #14, where the approximate formula (III.8) was used for the 
FW polarization. The prescribed azimuthal EM electric field at this location was 
Eϕ(R,ϕ)=E0exp(-imϕ) to select the proper azimuthal mode number. The outer boundary of the 
simulation domain was always located 1 m outside the PML outer radius. For the sake of 
comparison, series #1 of table 2 was also repeated using a Cartesian-like PML formulation, 
where Σϕ(R)=1 was imposed in (IV.1), i.e. the effect of the cylindrical curvature was 
artificially suppressed. Both the main simulation domain and the PML were discretized using 
an unstructured mesh of quadratic triangular finite elements, with typical size 1cm. Up to 
843474 elements were necessary to mesh the largest simulation domains, corresponding to 
5908342 degrees of freedom. Calculations relied on the direct solver MUMPS.  

In order to numerically assess the reflection of propagating cylindrical waves by the 
PML, the azimuthal average of HZ(R,ϕ)exp(imϕ) was extracted from the 2D simulation output 
in the main simulation domain. Using a least-square procedure, the radial variation of this 
quantity was fitted with a linear combination of Hm

(1)(k⊥R) and Hm
(2)(k⊥R), with respective 

complex weights HZi0_sim and HZr0_sim. In the argument of the Hankel functions, dispersion 
relations (III.6) or (III.7) were used to determine k⊥ from the input parameters. Finally the 
magnitude of the simulated amplitude ratio ηsim=HZr0_sim/HZi0_sim served as a figure of merit to 
quantify the PML reflection in the numerical tests. The fitting procedure implicitly assumes 
that only the TE mode with correct m is present in the simulation. In practice numerical noise 
is always superimposed to the ideal results, as well as the other eigenmode of the gyrotropic 
medium, especially in the cases where the TE polarization is only an approached input. 
Besides, dispersion relation (III.7) is only approximate. All this introduces uncertainties in the 
numerical determination of ηsim. 

B. Comparison with analytical figure of merit. 
Over the simulation database, Figures 5 compare the numerical reflection coefficient 

ηsim with theoretical expectation ηtheo from formula (III.15). An important restriction to the 
allowed parametric space will be discussed on Figure 6 and is excluded here. |ηsim| values well 
above 1 could be reached, indicating that the reflected wave can be amplified by the PML 
instead of being attenuated. This situation is met when the imaginary part S” of the stretching 
is negative, like in the Cartesian case. For positive S”, this might also be the case for some 
values of XPML in formula (III.16), a specificity of the cylindrical geometry producing the 
peaks on figures 2. ηsim agrees well with ηtheo over eight orders of magnitude down to 
reflection levels of 10-5, when the precision of the simulation gets limited by either the mesh 
size or the fitting procedure. The relative difference between ηsim and ηtheo roughly scales as 
1/min(|ηtheo|, |ηtheo|−1). This relative difference is significantly enhanced in simulation series 
#12 and #14 with kzε×≠ 0. We speculate this is not due to the PML but because we used 
approximated boundary conditions for the quasi-TE polarization: while the simulation points 
with ε//=-107 or ε//=-108 appear in the ballpark of the other series on figure 5.b, the runs with 
ε//=-106 are well above. 

Figures 5 also show a repeat of series #1 in table 2, using a Cartesian-like formulation 
of the PML. In this series |ηsim|=1 for S”=0, as it should for energetic reasons. For some values 
of S”, the Cartesian-like PML behaves better than the cylindrical one. This is however 
observed over a limited window in parametric space, and it is hardly predictable in advance. 
For large S”, the simulated amplitude reflection coefficient reaches an asymptotic value above 



 PMLs for time-harmonic EM wave propagation in curved gyrotropic media 
 

 L. COLAS et al. Submitted to Journal of Computational Physics 17/20 

10-2, while the cylindrical PML achieves |ηsim|<10-5. This illustrates the merits of the new 
PML formulation in curved coordinates. 

 

 
Figure 5.a): numerical amplitude reflection coefficient 

|ηsim| versus theoretical value |ηtheo| expected from 
formula (III.15), over simulation series #1-#14 from 

table 2. Last series: same as series #1, using a 
Cartesian PML-like PML formulation, with Σϕ(R)=1 

artificially imposed in formula (IV.1) 

 
Figure 5.b): Same database as figure 5.a, relative 

difference |1-ηsim/ηtheo|, vs |ηtheo| from formula (III.15). 
Tilted curves: y=10-6/x and y=10-6x 

C. Peculiarities of the cylindrical PML 
Figures 6 to 8 illustrate specific properties of the cylindrical geometry that have hardly 

any equivalent with Cartesian coordinates. 

 
Figure 6: Simulated amplitude reflection coefficient 
|ηsim| vs Re(tR(R1)). Numerical scan of R1 with S’=0, 
scan of S’ with R1=0.23m and predictions |ηtheo| from 
formula (III.15). Horizontal dashed line: amplitude 
reflection coefficient|ηCart| from formula (III.17). 

Simulation series #8 and #9 from table 2. 

Figure 6 shows a scan of the radial position 
R1 for the inner PEC boundary of the 
simulation domain, with S’=0. Unlike 
expression |ηCart| from (III.17), the 
cylindrical reflection coefficient |ηtheo| from 
(III.15) depends on R1. For given simulation 
parameters, a minimum value of R1 exists 
below which the PML becomes inefficient. 
The variation of |ηsim| with R1 is non-
monotonic. This corresponds to the crossing 
of peaks in the 2D diagrams on Figures 2. 
The maximal value of the reflection 
coefficient can exceed 1. For large R1 the 
cylindrical curvature decreases at the PML 
location and |ηsim| reaches an asymptotic 
value corresponding to |ηCart|. 

Figure 6 also shows that an effect 
similar to the change of R1 is obtained by  

stretching the real part of R, through a scan of S’ at fixed R1. From formula (III.16) the 
relevant parameter to plot the results is Re(tR(R1))=R1+S’δR/(p+1). Negative values of this 
parameter can be reached, while R1 remains positive. However Figure 6 shows that in these 
cases the PML fails to attenuate the incoming cylindrical wave, even when formula (III.15) 
predicts low |ηtheo|. This behavior may be linked with the crossing of a singular point of the 
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coordinate system inside the PML. One should therefore avoid this parametric domain. The 
related simulation points were deliberately excluded from Figures 5. 

 
Figure 7: reflection coefficient over a scan of ε×, vs 
normal wavevector k⊥,FW from equation (III.8). Data 
points with positive and negative ε× are plotted with 
different symbols. Also shown are expressions |ηtheo| 

from formula (III.15) and |ηCart| from formula (III.17). 
Series #14 from table 2 with ε//=-108 

Figure 7 plots the simulated 
reflection coefficients versus wavevector 
k⊥FW from dispersion relation (III.8), over a 
scan of ε× with m≠0 (series #14 of Table 2). 
As for plane waves in Cartesian coordinates, 
low levels of reflection are observed for 
large k⊥FW while the PML loses efficiency 
for cylindrical waves propagating nearly 
parallel to the plasma/PML interface. 
However when m≠0 cylindrical waves with 
positive and negative ε× exhibit different 
|ηsim| despite equal k⊥FW. |ηsim| values can 
differ by a factor of more than two. This 
specificity of the cylindrical geometry was 
anticipated from formula (III.15), where two 
terms appear in the numerator and 
denominator, one of which is proportional to 
mε×. Largest ratios are obtained for medium 

 
Figure 8: Numerical reflection coefficient ηsim, and 

prediction ηtheo from formula (III-15) vs azimuthal mode 
number m. Simulation series #5 from table 2. 

values of k⊥FW. For low k⊥FW, |ηsim| becomes 
1 whatsoever. For large k⊥FW the reflection 
coefficients converge to |ηCart| from formula 
(III.17) that does not depend on the sign of 
ε×. In all cases |ηtheo| is larger than |ηCart|. 
Figure 8 shows a scan of the azimuthal 
mode number m. Good agreement of |ηsim| is 
found with |ηtheo| from formula (III.15). The 
variation of |ηsim| with m is non-monotonic. 
This corresponds to the crossing of peaks in 
the 2D diagrams on Figures 2. The maximal 
value of the reflection coefficient can exceed 
1. For large m, |ηsim| reaches an asymptotic 
value of 1. A critical value of m is 
evidenced, above which the PML becomes 
inefficient.  

V. Conclusions and prospects. 
This paper formulated Perfectly Matched Layers (PMLs) for time-harmonic 

electromagnetic (EM) wave propagation in curved geometry. PMLs were obtained by 
artificially stretching a general set of three coordinates along complex trajectories. Major 
simplifications occurred since the original coordinate system was assumed orthogonal and we 
requested that the applied stretching preserve this orthogonality. Generalisation to coordinate 
systems with off-diagonal metric elements and/or non-orthogonal stretching presently appears 
more delicate. PMLs were defined as artificial lossy inhomogeneous materials that can be 
implemented in standard full-wave solvers for Maxwell’s equations in the frequency-domain. 
In the adapted dielectric tensors and in the PML properties, not only the stretching functions 
but also the stretched coordinates appear, accounting for the local curvature of the coordinate 
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system. Specific formulae were given in cylindrical and toroidal geometries. Other sets of 
orthogonal coordinates could be treated similarly in the future, e.g. spherical coordinates for 
geophysical and astrophysical plasmas. Extension to transient EM pulse propagation would 
also be beneficial. 

Stretching any system of coordinates does not necessarily ensure good PML properties 
in all cases. In cylindrical geometry the new formulation was assessed in a gyrotropic medium 
without losses, using an analytic reflection coefficient ηtheo for propagative and evanescent 
cylindrical waves that play a role similar to the plane waves of Cartesian geometry. For 
simplicity this quantification was restricted here to radial PMLs and longitudinal anisotropy, 
in situations when only Transverse Electric modes of the medium play a role. PMLs in the 
longitudinal direction of our test problem behave like in Cartesian geometry. The exercise 
remains to be extended to PMLs in the azimuthal direction, azimuthal anisotropy, and/or more 
complex EM field polarizations, where incident and reflected waves from the two eigenmodes 
of the medium are coupled by the boundary conditions. The PML is expected to behave well 
if all the relevant eigenmodes are sufficiently attenuated before reaching the innermost 
boundary of the simulation domain. Indeed the boundary conditions only play a minor role in 
this situation. Analytical quantification of cylindrical TE wave reflection was complemented 
by finite-element simulations, showing better behaviour for the new PML formulation 
compared a Cartesian-like one artificially applied in cylindrical geometry. 

In cylindrical geometry, like in Cartesian one, the proposed radial PML cannot be 
tuned to simultaneously attenuate forward and backward waves, a limitation inherent to our 
formulation. Reference [Bécache2017] explored ways to overcome this limitation, in uniaxial 
media and with Cartesian PMLs. As far as possible the radial extent δR of the PML should be 
large, at the expense of larger simulation domains. The PML behaves better for large 
wavevectors k⊥ normal to the PML and exhibits limitations for cylindrical waves propagating 
nearly parallel to the plasma/PML interface. Combining the results for propagative and 
evanescent waves one can see that for given k⊥δR, large positive values for S’ and S’’ provide 
a better behaviour for the radial PML. The counterpart is a larger radial variation of the 
dielectric properties of the adapted material. The PML region therefore requires finer radial 
discretization. Similar results were obtained in Cartesian geometry for S’’ with propagative 
waves and for S’ with evanescent waves [Jacquot2013]. 

Contrary to Cartesian PMLs, the real part of the radial coordinate stretch affects the 
reflection of propagative waves. This was interpreted as an artificial displacement of the 
radial location R1 for the innermost PEC boundary towards regions of different cylindrical 
curvature. In practical applications, the geometry of the simulation domain often constrains 
the value of R1. Stretching R1 using S’ can therefore be used to attenuate potential adverse 
effects of the local curvature, at the expense of refined mesh inside the PML. This method is 
also beneficial to better attenuate the evanescent waves, like in the Cartesian case. In 
numerical simulations, the PML loses efficiency when the real part of the stretched radius 
becomes negative. This behaviour was not predicted by the analytical figure of merit ηtheo. 
This may be related with the crossing of a singular point of the coordinate system inside the 
PML domain. 

For given plasma and fixed settings of the PML, a critical azimuthal mode number m 
always exists above which the PML loses efficiency. The critical m value can be made 
arbitrarily high by increasing the real or imaginary stretching, so that all m values relevant for 
a realistic simulation behave correctly. The associated numerical cost in terms of refined 
radial discretization depends on the requirements about the azimuthal resolution. 

In reference [Jacquot2015] the new PML formulation was applied for the first time in 
realistic full-wave simulations of ion cyclotron wave propagation in the cold magnetized 
plasma at the periphery of a tokamak. The geometry was a 2D radial-toroidal cut into the 
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toroidal machine, in presence of toroidal curvature. It was described by cylindrical 
coordinates with azimuthal anisotropy of the plasma. The simulation domain was restricted to 
the vicinity of the wave launcher. Radial and azimuthal PMLs were applied at both the inner 
radial boundary and the two toroidal extremities of this domain. 
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