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Abstract:

This paper generalizes a Perfectly Matched Lay&dL(Ptechnique for emulating
radiation at infinity in finite difference or firet element simulations of time-harmonic
electromagnetic wave propagation in complex megkéending a previous work in Cartesian
coordinates[Jacquot2013] we formulate a PML as an artificial inhomogenedassy
medium, following the stretching into the complelare of a general system of three
orthogonal curvilinear coordinates. The partic@ases of cylindrical and toroidal geometries
illustrate the general method. As a test problemagsess the new formulation in gyrotropic
media, we analytically quantify the reflection oflindrical waves by a radial PML in
cylindrical geometry. The obtained reflection caaéint involves wave, PML and geometric
parameters at the PML location. The new coefficgareralizes the one obtained earlier with
Cartesian coordinates, and becomes equivalent winereffects of the local cylindrical
curvature at the PML (stretched) location can bglested. These curvature effects are
outlined and the limitations they impose on theperties of the PML are quantified as a
function of the relevant parameters. Finite elemmitulations of the test problem in two-
dimensional cylindrical geometry are exploited &vify these properties numerically.
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|. Introduction

This paper investigates the numerical simulatiortimie-harmonic electromagnetic
(EM) wave propagation in complex media such as colbnetized plasmas, featuring a
gyrotropic dielectric tensor. Gyrotropy introducdasvo different wave propagation
eigenmodes, referred to as Fast and Slow waveshen cbntext of plasma physics
[Swanson2003]in such problems the time-harmonic Maxwell’s gtures in the medium are
complemented with suitable boundary conditions.fimte difference or finite element
calculations of EM wave propagation, Perfectly Nhaid Layers (PMLs) aim at emulating
radiation at infinity inside a bounded simulaticonahin. In the literature PMLs were already
devised for the propagation of one eigenmode ofotgypic media, generally in two
dimensions (2D) transverse to the direction of @nipy, and described by a scalar
Helmholtz equatioVelasco2009] This result was recently extended in 3D for the t
eigenmodes, described by a vectorial time-harmamave equation[Gondarenko2004]
[Jacquot2013] ReferencelBécache2017]explored the transient EM pulse propagation in
uniaxial media using the Finite Difference Time Dmm(FDTD) method and PMLs adapted
for each eigenmode. Referenddacquot2013]implemented PMLs adapted for cold
magnetized plasmas at the edge of (flattened) toagnetic fusion devices in the Radio-
Frequency (RF) module of the COMSOL finite elemsalver[COMSOL]. In this latter
paper, PMLs were defined as atrtificial inhomogemselmssy dielectric and magnetic media,
where the standard equations of electrodynamicédcoe applied. This was achieved by
stretching the conventional Cartesian coordinatea flattened tokamak along prescribed
trajectories in the complex plane.

For many realistic applications however, using €adn coordinates appears to be a
limitation. Flattening a tokamak is an approximafitistorically intended to enable using
spectral methods of EM wave simulation. The linsitshis approxipation have been explored
both by modellingLouche2011] [Jacquot2015] [Milanesio201aild experiments in several
frequency rangefBilato2004], [Ekedahl2015]Cartesian PMLs can sometimes be kept in a
curved geometry if the plasma-PML boundary remdiat This is however not always
possible, and in practice it might be inefficiemt: uniaxial media for example, reference
[Bécache2017]showed it necessary to stretch space along direct@ther parallel or
perpendicular to the anisotropy. Otherwise propagdbrward and backward waves might
coexist, one of which cannot be damped by the PMLview of simulating cylindrical RF
plasma dischargese.g. Capacively coupled dischargéSaudot2015],helicon discharges
[Crombé2015], [Furno2017/Jion cyclotron-heated onegCrombé2015], [Gekelman201)]
toroidal devices (tokamaKdacquot2015]or even more complex geometries (stellarators) in
a more realistic way, it is therefore tempting teeteh the spatial coordinates along the
principal directions defined by the device geometdowever, over such change, the
differential operatorsot(.) and div(.) appearing in Maxwell's equations nfipdheir forms,
due to the local curvature of the new coordinatstesys[Angot1972] This calls for re-
formulating the PML.

One can also anticipate that curvature effects migbdify the wave-reflection
properties of the PML. A standard assessment aetiRML properties in Cartesian geometry
is to quantify the reflection of propagative or egacent plane waves in homogeneous media
as a function of the relevant simulation parametérbis was done extensively in
[Jacquot2013]for plane waves in gyrotropic media. Criteria ofvlaeflection could be
established for tuning the PML parameters. Linatasi were also outlined when propagative
forward and backward waves coexist in the PMLs. [é/piane waves are well suited for
PML benchmark in Cartesian geometry, they are gdliyanot adapted in curved coordinates,
and alternative test-problems should be lookedLfiverature on these subjects is scarce, even
for simple isotropic media.
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The present paper proposes to generalize in cuceeddinates the methodology
applied in [Jacquot2013]for Cartesian coordinates. Firstly a PML is foratell as an
artificial medium, following the stretching of arggal system of three orthogonal curvilinear
coordinates. Cylindrical and toroidal coordinatissirate the general method. Secondly, in
the particular case of cylindrical geometry, wether try to assess the PML properties:
analytical criteria are defined for low reflectiah waves by radial PMLs. We use for this
purpose cylindrical waves that play in cylindrigglometry an equivalent role as plane waves
in Cartesian coordinates. Cylindrical waves of ¢gwpic media are recalled when the
direction of anisotropy is along the axis of théinmjer. The PML reflection criteria involve
wave, PML and geometric parameters at the PML logaiThe new results generalize those
obtained earlier, and become equivalent when tfeetsfof the local cylindrical curvature at
the PML (stretched) location can be neglected. &ure effects are outlined and the
limitations they impose on the properties of the lPhte quantified as a function of the
relevant parameters. Finally, finite element caltiohs of the test problem in 2D cylindrical
geometry are exploited to quantify these propertigserically.

[I. PML formulation in curved coordinates as an artifidal lossy dielectric
medium
Throughout this paper we consider time-harmonic #ts oscillating in time as
exp(+iapt) at pulsationw. In the 3-dimensional (3D) Euclidian space, the #\ts E andH
evolve according to Maxwell’s equations in the freqcy domain
rote = -iwB
rotH =+iegpD +],,,
divD=p,,
divB=0

(I1.1)

In equationgll.1) the oscillating currentn:imposed on the antenna structures, as well
as the oscillating antenna space chaage were isolated from the self-consistent respotfise o
the medium toK,H), incorporated in the linear local constitutivéatens

D=g(w)E ; B=p(ab)H. (1.2)

Tensorsg(apy) and p(ap) can take very general forms. In referen¢®achs1995],
[Gedneyl1996],[Texeiral998],stretching the usual Cartesian coordinates intocthraplex
plane was found beneficial to emulate radiatingriofauy conditions in a PML for problem
(I.1). Besides,a formal analogy was outlined between the obtaiR&llLs matched to
isotropic media and an artificial medium with maekf dielectric and magnetic properties. In
[Gondarenko2004]Jacquot2013the analogy was extended to more complex media fuil
dielectric permittivitye and/or magnetic permeabilifytensorse.g.cold magnetized plasmas
[Swanson2003]In this section we would like to extend the tdage to formulate PMLs by
stretching the three principal directions defined & system of three curved coordinates
[Angot1972] So far the generalization appears tractable daty orthogonal sets and
stretching procedures that preserve this orthoggnal

A. Solving Maxwell’'s equations in stretched orthogonaturvilinear coordinates

In the 3D Euclidian space, we consider an orthogae of three curvilinear
coordinates ,v,w) such that Ou.Ov=0Ov.Ow=0Ow.Ou=0 everywhere. The system is
characterized locally by the elementary distasiedefined as:

ds? = h?(u,v,w)du? + h2(u,v, w)dv? + h2(u,v, w)dw? (1.3)
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In this system we envisage a vector figlfl,v,w), whose components along the three
orthogonal principal directions ak&(u,v,w), V\(u,v,w) V,(u,v,w). The differential operators
div(.) androt(.) appearing in Maxwell’s equatioii$.1) are then defined d8ngot1972]

i = 1 + +

dlv(V)—m[au(mhwvu) 9,(h,nv,)+0,(hhv,)] (11.4)
[0, (hV,)-0,(hV,)]/ hh, ],

rot(V)=|[9,,(hV.)-a.(hV, )]/ hhy | (I1.5)

[o.(hv) -0, (VI by |
In the PML the spatial coordinates,\(\w) are artificially stretched according to the
rulesu - t, (u) =U, +I: Sh(t)dt, V- tv(v) =V, +.[IV S,(t)dt , W tW(W) =W, +vav SN(t)dt. The

triplet (uo, Vo, Wo) as well as the stretching functior&((1), Si(v), S«(w)) are arbitrary and can
be chosen conveniently for the required applicatilon particular, the stretching can be
extended to the complex plane. The main differemtie Cartesian geometry is the directions
along which space is stretched. As for Cartesiamés it is essential th&t(u) depends only
on u, S(v) onv and S,(w) on w. Each coordinate is stretched “perpendicular ® dther
ones”: the stretched coordinate system remainsogotiel and a relation similar t@l.3)
applies, withdu=dt,(u)/S,(u) and metric elements evaluated at stretched mtasuch as
hy(tu(u), (V) tw(w))=hw(u,v,w). If the stretching extends to the complex plamg,hy, andhy,
might become complex, whereas they should be atipe before the stretching. Stretching
functions are equal to 1 in the main simulation demwhere the properties of the original
medium are preserved. In the PML, on the contragy/request that the new local EM fields
(EpmL, Hpmo) at location @,v,w) be the solutionsH, H) of the original wave problergil.1)
evaluated at stretched locatidgp(), t(v), tw(w)). To this end, probleril.1) is replaced with

a modified one

rot s(E PML (U’V’ W)) = —iayuH oy, (U!V’ W)
rot s(H PML ): | pEE oy + ] ant

div,[eEpy | = Oun
diVS[uH PML ] =0

(11.6)

whererotg(.) and diy.) denote the differential operatqis4) and(Il.5) with respect
to the stretched curved coordinates. The modififdrdntial operatorsoty(.) and diy.) are
obtained from formula@l.4) and(11.5) upon the substitution

1 1 1
0, > —7~0,. ; 0, >—~0, ; 0, > —7—0,.
s ) sv) S.(w)
h(uv,w) - h(uv,w) ;5 h -h, 5 h, —h,

Let us now introduce matric&gu,v,w) andA(u,v,w) as
Sh,/h, 0 0 >

u u

Z(u,v,W)E 0 Sh,/h, 0 , =
0 0  Sh./h,].

(I1.7)

0 0],
0 5, 0/, (18)
0 0 3,

w
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22z, 0O 0 |,
A(u,v, W) = 0 22, 0 |, (1.9)
0 0 ZJZ2 |,

SinceS§, depends only on, and similarly forS, andS,, the operatoroty(.) (evaluated
at point ¢,(u), t,(v), ty(w))) is related to operataot(.) (evaluated at pointifv,w)) by

Arots.=rot(Z.) (1.10)
And similarly
det@)divg(.)=div(A.) (1.11)

Using(11.10) and(ll.11) one can reformulate the modified EM probl@i6) as
rot (ZEPML ) =i, AuZ_l)(ZH PML (U’V’ W))
rot (ZH PML ) =+, Aaz_l)(ZEPML )+ A an

(Aex )2,y )|= dez)o,,
APZ_l)(ZH PML ) =0

iy (1.12)
div[

Relations (11.12) can be interpreted as follows. They appear as dhginal
electromagnetic problen(ll.1), with the original differential operatorot(.) and div(.).
However the original EM field&(u,v,w) andH(u,v,w) were replaced respectively with the
artificial EM fields @Epm.)(u,v,.W) and EHpm )(u,v,W. The original and artificial EM fields
coincide inside the main simulation domain, wh&rel (the identity tensorjand (Epwm,
Hpmi)=(E, H). Similarly the source termgan and janx Were replaced respectively with
det@) .t andAjan. The original tensors andp were replaced respectively with the tensors
epmL =(AeZ™Y) and upMLE(AuZ'l) adapted to the stretched coordinates. Origindl aatapted
tensors coincide in the main simulation domain, net®s=1 and A=1. Also if tensorp is
diagonal then the three matricdsp and=™ commute. For the general dielectric tersone
obtains.

EUUZVZW / Zu gquW EUV\ZV u
gy SAEL = £,2, &2l Z, Enze |y (1.13)
gWuZV EWVZU EWWZ UZV / ZW w

and similarly forppm.. Result (11.13) is formally analogous to that in Cartesian
coordinates X, y, 2) [Texeiral998] where the stretching functioB(x) was replaced with
>,4(u,v,w), and similarly with the other matrix components.

B. Implementation in particular geometries.

Implementation of the PML is formally similar in @asian and curved geometries.
However the number of sub-cases is more importamt.example in the case of isotropic
media, one type of PML needs to be defined in Gamte geometry, independent of the
direction where waves need to be attenuated. Iargef types of PMLs need to be defined in
each direction. For anisotropic media the propertiethe PML depend on both the type of
coordinates and on the orientation of the directtbranisotropy. Some of these cases are
investigated below. Equatidiii.13) also shows that, in curved geometry, the impleatert
of a PML depends on its spatial locatianv(w) via the stretched coordinatggu), t,(v) and
tw(w) appearing explicitly igppm. . This reflects curvature effects in the new geoyet
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We now treat more explicitly four concrete examptédscoordinate systems. For
reference we recall the standard Cartesianxggr)( One of the simplest systems exhibiting
curvature is the cylindrical geometry. It is themef useful for numerical tests, but also for
simulating cylindrical plasma devices. The cylimaticoordinatesR, ¢, Z) are defined as

X = Rcosp
y=Rsing (1.14)
z=Z7

For more realistic applications in tokamaks, weaddtice a system of coordinates
(r,@,6 associated to nested toric magnetic flux surfaséil concentric circular cross-
sections.

x:[F?O+rcosé?]cos¢
y:[F\’0 +rcos€]sin¢ (11.15)
z=rsin@d

Finally we consider axisymmetric tokamak magnetaikbria with more arbitrarily
shaped nested magnetic surfaces. For simplicityasgeime that we know some conformal
transformationR+iZ=F(¢) in the cross-sectiog=constant, such that the magnetic surfaces
correspond to the images Byof circles £]=r in the complex plane. Properties of conformal
transforms are presentexg. in [Angotl972] The existence of(¢) is demonstrated. In
magnetic fusion, conformal maps were constructed dssess numerically the
magnetohydrodynamic stability of shaped toric plasftcoedbloed1981] [Goedbloed1982]
The coordinates ( ¢, 6) form a convenient system to locate the points éntttkkamak, using

R+iZ=F[r exp(i9)] (11.16)

The conformal nature df ensures that the original orthogonal coordinattesy is
transformed into another orthogonal system. Thasglielementary distance reads

de? = ‘%M‘z(drz +1°d6)+ Re(F[r exli )] dg (11.17)

The nested circular flux surfaces correspond tottheslationF(§)=¢+Ry. Table 1
summarizes the metric elements of the four cootdisgstems. In the non-trivial cases, some
of these elements can go to zero, leading to wellaAkn singularities in the coordinate
systems. Even when they lie outside the physicalisition domain, these singular points can
be reached over the stretching process and therdéserve special attention.

Name u v w h(u,v,w) h,(u,v,w) hw(u,v,w)
Cartesian X y z 1 1 1
Cylindrical R @ Z 1 R 1
Toroidal r ¢ (2 1 Rotrcosd r

Conformal r ¢ 12 [dF/dé] ReF) r|dF/déd]

Table 1 metric elements for four coordinate systems.

lll.  Test problem to assess PML behaviour in cylindricatjeometry.

Artificially stretching the Cartesian coordinateso the complex plane transforms
propagative plane waves into evanescent ones inPMe [Sachs1995], [Gedneyl1996],
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[Texeiral998] It therefore introduces artificial damping in ghregion, thus emulating
radiation at infinity inside a finite simulation uh@in. Inpart Il we stretched other sets of
coordinates, assuming that this property might t@sgrved in curved geometries. However
this remains to be assessed. Cylindrical geometaywell suited test case.

A standard assessment of the PML formulation int€S&an geometry is to quantify
the reflection of propagative or evanescent plas&es in homogeneous media (seg.
[Jacquot2013] In cylindrical coordinates some equivalents obgagating or evanescent
plane waves exist in terms of Bessel functionsthin context of plasma-filled waveguides,
these cylindrical waves were derived in details dgrotropic media ifBers1963] These
results are briefly summarized section IlIl.A in the case of longitudinal anisotropy. Using
these tools we then propose a test problem to &eelly quantify the reflection of cylindrical
waves by radial PMLs in cylindrical geometry, inepence of a homogeneous gyrotropic
medium. We investigate in particular how the radialvature of the cylinder affects the PML
properties compared to the Cartesian case.

A. Cylindrical waves in gyrotropic medium with longitudinal anisotropy.

From now on we seek particular solutions of theavaguationgll.1), without source
term in volume featuring a separable form in the cylindrical cooates R, ¢, Z). The EM
guantities are requested to oscillate ER)exp(+iwt-ik,Z-img@), with k, a longitudinal
wavevectorm (integer) an azimuthal mode number, &tR) a radial structure function to be
determined. For gyrotropic media these cylindriwaves can only be well defined when the
direction of anisotropy is alongor ¢ [Bers1963] For convenience we summarize here Bers’
treatment in the homogeneous medium with longitidiranisotropy (see also
[Swanson2003] This geometry is well suited for magnetized rghical plasma devices, in
conditions when longitudinal invariance can be as=ii In this configuratiop(ay)=Lol in
formula (1.2) while the dielectric tens@(w) takes the formiSwanson2003]

eilw) +ielw) 0 g
=|-ielw) eflw) 0 |, (11.2)

0 0 gla),

In this configuration all the EM field componeiiis(R) andH+(R) transverse td can
be expressed as a function of the longitudinal BNt fcomponent&;(R) andHz(R) using
Maxwell-Ampére and Maxwell-Faraday equatiof3efs1963] eq. 9.21)

[ET(R) kT
Hr(R)] (e, —n2)? — &2

&)

VriE; |
[—inz(& —n3) Zyex Nzéex +iZy(e, —n2)|| VrHz |
~Zg'njex  —ing(eL —nf) —iZy'(ef — ek —nfey) Nzx o VTEZJ
ey X VTHZ

(11.2)

In the above expression we have introduce[(;uofo]'1’2 the speed of light in vacuum,

ko=ap/c the wave-vector in vacuumpz=kik, the longitudinal refractive index and
Zo=(tol &)*? the impedance of vacuum. In our cylindrical geamtte relevant 2D transverse

_ O |r im/R|g . _
operator istl;.=| . so thate, x[;.= . Substituting(l11.2) into Maxwell's
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equations, the two scalar fiel&#s(R) andHz(R) are then related to each other by two coupled
second-order partial differential equatidfBers1963] eq. 9.157 and 9.158)

EZ 2 EZ —
A{Hj+koK{Hj—O (111.3)

In this expressiodyr. is the Laplace operator transverse to anisotvapie matrix K
takes the form

(111.4)

g,(1—nj/e)) —iZonges/e;
ingege, /2o, € —ek/e —n5

Eigenmodes of the gyrotropic medium are the eigetove of matrixK, associated
with eigenvaluesi?, a squared refractive index transvers&tdhe dispersion relation for
cylindrical waves writes

det(K - nél): n’ —tr(K )né +detK =0 (111.5)

Two separate roots;> generally fulfil equatior{lil.5). Below we will investigate only
media without losses in volume, for which the thdesectric constants i(ll.1) are real, but

without restriction of sign. In these conditionse teigenvalues\? are also real. When

n,&/&=0 matrix K is diagonal and the EM fields can be explicitlyitspito transverse-
electric (TE) and transverse-magnetic (TM) eigenesodith respect to directich

2 — — 2
n° =K,=g (1— n; /ED)
2 =K,=¢,—&le, -1’

OoTE

(111.6)

In our numerical tests we will also investigate EMves for magneto-plasmas in the
lon Cyclotron Range of Frequencies (ICRE)vanson2003]Such waves satisfy the ordering
len|>>kl, ||, nZ. A scale separation generally applies, allowingegturbative resolution of
(I11.5). To leading order in the ordering the refractindices are

Nry = det) /tr(K) = [(fu —nf - 53]/(‘% -rg) (I1.7)
New=tr(K)=¢,{L-nZ /&,

Scale separation fails close ng=&,. Within the above ordering, the polarization of
the first mode (Fast Wave or FW in ICRF) is quaBi-T

EZ,FW _ K12 . Nnze&x (I” 8)

Hzrw Ki1-n%p O/ (e1-n3)

The polarization of the alternative eigenmode (SWave or SW) is to leading order

~

— ~ 1
Ezrw Kyp—nig Zo(e1—n%)

HZ,FW — K21 . Nnzé&x (I” 9)

For eigenmodes the two equatidfit3) simplify into two scalar Helmholtz equations
AH,(R)+k*H,(R)=0 ; k?=k2n? (111.10)

and similarly for ExR). In our cylindrical coordinatesir.=R'9gRdg.-m?/R? and
(11.10) is a Bessel equation. When? is real positive, solutions dfll.10) with radiation
conditions at infinity are found as Hankel functdti,\’(k-R) andHy,?(ksR) [Abramowitz]
For kaR[>>1, HnP(koR)~[2/(TkaR)] Y 2exp(+koR-iTv4-immv2), i.e. taking ko real positive this
wave behaves asymptotically as a plane wave proipggaadially inwards. Similarly
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Hn?(koR)~[2/(TkcR)] Y2exp(-k-R-iTv4-imm/2)  propagates in the outward direction.
Evanescent waves with real negativ@ can be treated similarly by replacing/H and H,®
with respectively the modified Bessel functiopsahd K, of argumenti;|R [Abramowitz].

OnceEz(R) andHz(R) are determined for each eigenmode, the transyense of their
EM field polarizations are deduced frofil.2). Finally, the full solution of the initial EM
problem(ll.1) is a linear combination of the two eigenmodes reiteed by the source terms
and boundary conditions. If a cylindrical Perfettdfric Conductor (PEC) is presentRaRy,
the two EM field component&z(R:) and E4(R;) tangent to this boundary should vanish
simultaneously. In the general case treate{Brrs1963] a mix of the two eigenmodes is
needed to fulfil the PEC boundary conditions, lagdio mode conversion upon wave
reflection. However in the case of pure TE or TMd®s, solutions exist involving only one
of the two eigenmodes. This is also approximatedydase for the FW at leading order in the
above ordering. For our test problem we will stickhese simple cases.

B. Reflection of propagative cylindrical TE Waves in aRadial PML.

To assess the behaviour of radial
— T PMLs in cylindrical geometry, we study the
artificial damping of an incoming
i ] propagative cylindrical TE wave in the
dielectric tensor g central part of a homogeneous gyrotropic
medium with longitudinal aniosotropy. This
situation mimics the complete absorption of
a TE wave launched from the periphery of a
cylindrical magnetized plasma device. The
geometry of our test problem is summarized
onfigure 1 An incident cylindrical TE wave
R is launched fromR- +o towardsR=0. To
_)IR(R) A e - .. .
. /1 attenuate artificially this incoming wave
H,H, 2k R) E/E near the centre of the cylinder, a radial PML
" P e is placed in a cylindrical shell betweRsR;
. prescribed  andR=R=R+dR. Inside the PML the radial
coordinate R is stretched into tr(R).
Figure 1: sketch of TE wave reflection problem to Although this choice is non-restrictive, we
assess the radial PML. will discuss below the particular case of

polynomial stretching functions, for easier comgamn with earlier work in Cartesian
coordinategJacquot2013]Specifically

e

“Gyrotropic medium

Zi0” "m

\H, H (kR)

R(R)=1-(S+i S")[| R-Ry|/R]®, R<R, (1.11)
From this one can defirntg(R) explicitly as
s on _ p+l
R—>tR(R):R+S'+IS,[R° Rj R (111.12)
p+1 R

The other two cylindrical coordinates,(Z) are not stretched. From the above
calculations, and assuming hérge>>0, the radial structure of the incoming longitwadiEM
magnetic field in the PML takes the form

Hzipmi (R)1=HzioHm ™ [Keretr(R)] (11.13)

where the (complex) stretched radial coordina{® was substituted to the (real)
radiusR. The coordinate stretch preserves the TE polasizdor the artificial EM electric
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field EpvL. A PEC is placed ilR=R;<R,. Other boundary conditions are possible therg.(
Perfect Magnetic Conductor would be convenientTit modes). At this radius the total
tangential EM electric field should vanish. In tbase of the TE moddszpy =0 and one
should cancel only the azimuthal componé&gbui(R:). This can be fulfilled with only
incident and reflected TE waves sharing the sdgen], so that the alternative eigenmode is
absent from the problem. The reflected TE wave edapadial structure function of the form

Hzrem(R)=HzioHm[Keretr(R)] (111.14)
Fromequation (I11.2) Egem(R1)=0 means
HZrO _ —__ B rnngr(T})[thR(Ri)] + (glj - n; )thR(Ri)H:Tgl)[thR(Ri)] (|”15)

Hao " “mg Ok ta(R)]+ (e, — n2 K ta(R)F@ [k ta(R)]

In this expression the primes denote the derivatitehe Hankel functions with
respect to their arguments, and subscript TE wappdd. Equation(lll.15) defines an
amplitude reflection coefficienweo for the TE modes, whose magnitude can be used as a
figure of merit for assessing the PML. In the alegeaf coordinate stretchingr(R)=R) the
PML is replaced with an equivalent layer of gyrpicomaterial andrgned=1. The coordinate
stretching in the PML aims at reducinghdd as much as possible.

Nheo depends on the wave characteristlgsn, m), the dielectric tensor elements, the
PML characteristicsS, S’, AR, p) as well as the PEC radial locati®. The situation is
therefore more complex than in Cartesian geométowever only three independent non-
dimensional parameters appear in form(la1l5): the complex argumeritg(R;) in the
Hankel functions,the ratio me/(&-n?) and the azimuthal mode number Coordinate
stretching only influences the first parameter. Sheed light into the PML properties, we
therefore investigate below the quantitiegy|3Hm  [ktr(R)/HnP[katr(Ry)]|  and
1721=Hm ®[ketr(R)]/Hm @ [ketr(Ry)]|. They correspond taphed for respectively very large or
very small values ofne./(&:-n7%). For increasingn, figures 2plot || and k| versus the two
non-dimensional real paramete¥ey., YpmL) appearing in the Hankel functions:

{XPML =Rk tx(R)] =k [R + RS /(p+1)]

Yo = Ik to(R)] =k,0F" /(p +1) (I11.16)

ParameterYpy is similar to the one characterizing the efficieraf the Cartesian
PML for propagating plane wavgdacquot2013]where in this context subscriptmeans
normal to the plasma/PML interface.

Mfhed=1 for Yemi=0 andXem>0. Since B[ Xemi-i Yem]=Hm [ Xemi+iYem]™ (Where
" denotes complex conjugat@leo is transformed into Biheo WhenYpm — -YemL. Concretely
this means that the PML cannot be tuned to attensiatultaneously EM waves with real
positive and real negativie;. As discussed ifJacquot2013]Bécache2017}his might be
problematic in some anisotropic media where profpagdorward and backward waves can
coexist.Figures 2plot only the half-plan&py >0.

Taking Ypm >0 generally reducesyjed, but not always: contrary to the equivalent
Cartesian PML/}med can exceed 1 and reach very high values foripesity,. This arises
when Egpv(Ry)=0 for the reflected wavern reaches very high values near the complex
zeros of H®, and similarly for 4,| near the complex zeros of £f. Form=0 these zeros all
lie in the half-planeXpy <0. Asm increases some zeros are progressively displaveards
Xpm>0. It is therefore important to turgeso that this zone of the complex space is avoided
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Figure 2: 2D Contour plots ofg| (left panels) andrj,| (right panels) in logarithmic scale versugy and
YpmL, fromformula (111.16), for increasing azimuthal mode number m. One aarltoe every 2.5dB. First solid
contour line corresponds tap|=1.

Unlike the Cartesian case, the PML properties fayppgative cylindrical waves
depend onXpy. This parameter can be seen as a normalized rpdstion of the PEC
boundary in the stretched coordinatésy, can change either by moving physically the PEC
radiusR, or by acting on the stretching parametd®S/(p+1). The second method amounts
to artificially displacing the PEC radial positidsowards a region of different radius (even
possibly negative!). The dependencergko on Xpy can be interpreted in terms of local
curvature effects at the stretched PML location.

In the limit of large XemLt+1Ypmi| With positiveXpy one findgAbramowitz]

|Hm(1)[Xp|v||_+ tiML]/H m(z)[xPML"' iYPML] |~
[Hin O [Xemt i YomdHm @[ Xemc+ i Yemu] |~eXxp(-2Yem) =l 7card (11.17)

i.e|m|, and jp|, and thereforesihed as well, converge to the same valueaj|,
independent of Xpm, M) and characteristic of Cartesian PMUsicquot2013]However the
minimal Ypy. to reach this asymptotic regime depends X#u(, m): the higherm and the
lower XpmL, the higherYpy should be.

The parametric region aroungy +iYpm =0 appears unfavourable for low wave
reflection by the PML. Low values dfpy. and Ypy. are reached for lowk{dR), i.e. for
waves propagating nearly parallel to the plasma/Riviérface, similar to the Cartesian case
[Jacquot2013] The size of the unfavourable region gets largemasmcreases: for given
(XemL Yemo), a critical value ofm always exists above which the PML loses efficiency
Figures 3map as a function ofXgwi,Ypm) the lowest value o for which the amplitude
ratio exceeds 0.1. Ifigures 3this value ism=0 for Ypy.<1.2. The criticaim value increases
with both Xpym andYpy. It can therefore be made arbitrarily high by mopPML tuning. In
practical applications, only a finite number oframthal harmonics need to be resolved. The
PML can always be tuned so that it remains efficigm to this maximumm. In particular
stretching the real part & can be beneficial if it moves artificially the PHatation towards
regions of lower curvature. Larger coordinate strigtg however produces larger radial
variations ofepm (R) and therefore imposes a finer discretizatiornefPML region.
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Lowest m for which || >0.1 Lowest m for which |, | >0.1
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Figure 3: lowest value of azimuthal mode numbeonwhich the amplitude ratios exceeds 0.1, versus
(Xpm, Yemo)- @) 171[>0.1, b) 7./>0.1.

C. Reflection of evanescent cylindrical waves in a raal PML.

Whenk-? is real negative for the TE mode, a similar arialgs before can be made
for waves that are evanescent inwaras,waves growing radially as expk#R) for largeR.
In formula (111.15) functions K and H,® should be respectively replaced withand Kx
[Abramowitz]. In the absence of coordinate stretching, the vedemt of r7; writes
Kmn(X)/Im(X1), where X;=|kg|R; is a real normalized radius at PEC location. Aftee
stretching, argumenX; should be transformed inXa+ AXpm+i Ypu Where

éXPML = |kD|5FS /(p +1)
[11.18
{avm = k&R /(p-+1) (11-18)
Figures 4 therefore plot the ratio

|775]=|Km(Xa+ Xemi+i OYpm )/ Im(Xa+ OXpmi+i OYem) Ml m(X)/Km(X1) — versus  (IXpwi, OYpmL)-
Only positive dYpw. are shown since negativdpm. produce a similar resultd is 1 for
(XpmL,OYpm)=(0,0) and should be ideally as low as possibte. diven oYpy, Xpm>0 is
always beneficial for attenuating the reflected &va@ompared taXpm =0, while dXpm <0
might be very detrimental, especially closed¥py =-X1. For positivedXpni, addingdYpw. IS
generally beneficial but not always. For large pesi X, |Kn(X+iY)/In(X+1Y)|~exp(-
2X)/2]X+iY| and one recovers a result similar to the Canesase.
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Figure 4: 2D contour plots of amplitude ratigs| (in logarithmic scale) versugXpm,dYpm) from (111.18) for
X;=2.0 and for the first four values of azimuthal reatumber m. One contour line every 2.5dB. Firgtisol
contour line corresponds tapj|=1.

IV. Numerical tests of radial PML with gyrotropic media using 2D finite
elements.

The test problem for propagative cylindrical TE wavproposed irpart Il was
implemented with finite elements in two dimensio2d), and the wave reflection was
guantified from the simulation output. This alloassessing numerically the analytical figure
of merit ineo from (111-15). Simulations also illustrate specific features &nudtations of the
PML in cylindrical geometry and outline practicgdds for PML tuning.

A. Simulation and post-processing protocols

Using the COMSOL finite element solM&@OMSOL], the test problem was simulated
numerically in the 2D (radial, azimuthal) geomgfRy@) sketched ofigure 1, with EM fields
assumed to vary as ex{4) in the out-of-plane longitudinal directich COMSOL includes
a built-in module to simulate the standard EM peaobl(ll.1) with standard boundary
conditions and any user-defined material of t{§h&), possibly inhomogeneous in space. All
over the main simulation domain, the homogeneoustgpic dielectric tensoflll.1) was
applied. A PML was implemented in the inner parttloé simulation domain. When not
precised, the artificial inhomogeneous tengpgs (R) andppue (R) from (11.13) were applied
there, whereg is still from (lll.1) and the radial coordinate was stretched according to
formula (111.12) Fromtable 1, matrix Z(R) in formula (I1.8)takes the form
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R
¢ (IV.1)
Z

Sz(R) 0 0
0 tg(R)/R 0
0 0 1

It differs from a Cartesian-like PML formulation laynon-trivial termZ4R)=tr(R)/R
in the azimuthal direction. The PML medium featucesnplex dielectric tensor elements,
introducing artificial losses in PML volume. Bessdéhe three diagonal elementsegi (R)
are different from each other apgyw. (R) becomes non-trivial. A PEC was implemented at
the inner radial boundary of the simulation domdnom equation (I1.12)this boundary
condition applies to the EM fielBEpm. computed in the PML. Since mat@XR) is diagonal

in (IV.1), this amounts to cancelling bdHev. andEzpm all over the inner radial boundary.
Several simulation series, summarizedtamble 2,scanned the plasma and PML
parameters identified as importantiection Iil

2(R)=

f - b
# | bz | M1 m | & | & | S | S | p | RmM | Rm]
1.0
1| 50 0 0 | 400 00 -2q 32| 2 05 05
2 50 0 o | 400 00 +20 30 2 0.5 01'025
10.0
3| 50 0 0 | 21| 00 | +20| 15| 2 05 | 05
25.0
a| 201 o 0o | 400| 00| -40 15 2 05| 05
5| 50 0 109 400| 00| +20/ 10/ 2 05| 05
2.0
6| 50 0 6 | 400 00 50| 112] 2 05 05
0.0
70 100 | 5% | 7 | 400 00| 30| 20 2 05| 05
0.05
8 | 100 00 | 4| 40 00 00 05 2 O 05
9| 100 00 | 4| 400 007832 055 2| 023 o5
. . 925 o . .

10| 50 00| ol 400 00 20 2 g 0.5 05

11| 50 0.0 0| 750. '75’5 20 | 15| 2 0.5 0.5
672

12| 50 300 | 0 |1500| %% 20 | 15| 2 0.5 0.5
740

13| 50 00 | 3| 7504 70 20| 15| 2 0.5 05
-680

14| 50 300 | 4 |1500 52 20 | 15| 2 0.5 0.5

Table 2 overview of parametric space explored over tmeusations. Scanned parameters are highlighted in
green. In series 1-1%,=-10° was used but should not play any role. In simatatieries #12 and #14
highlighted in grey the TE polarization is only appimate. Series 12 was performed usifg-10° and g,=-
10". Series 13 and 14 were performed wifh-10° and g,=-10°.
Only cases with propagative cylindrical waves wengisaged. The cases considered
also features.=0 or highly negativeg,, so that the EM probleril.12) involves only (or
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mainly) the TE mode. TE wave polarization is exémt all series except #12 and #14
highlighted in grey, where it is approximate sitkggz 0. Consistent with this assumption the
longitudinal EM electric fieldez; was imposed null at the outer boundary of the Etran
domain, except on series #12 and #14, where th@xippateformula(lll.8) was used for the
FW polarization. The prescribed azimuthal EM electfield at this location was
E4(R ¢)=Eoexp(-img) to select the proper azimuthal mode number. Therdoundary of the
simulation domain was always located 1 m outside RIMIL outer radius. For the sake of
comparison, series #1 tdble 2was also repeated using a Cartesian-like PML féatiaun,
where 24R)=1 was imposed inlV.1), i.e. the effect of the cylindrical curvature was
artificially suppressedoth the main simulation domain and the PML wesitized using
an unstructured mesh of quadratic triangular fimkements, with typical size 1cm. Up to
843474 elements were necessary to mesh the lasiestation domains, corresponding to
5908342 degrees of freedom. Calculations relietherdirect solver MUMPS.

In order to numerically assess the reflection apggating cylindrical waves by the
PML, the azimuthal average Bif(R,@)exp(img) was extracted from the 2D simulation output
in the main simulation domain. Using a least-squamecedure, the radial variation of this
quantity was fitted with a linear combination of,H(k-R) and H\?(k;R), with respective
complex weightsHzo sim and Hzio_sim In the argument of the Hankel functions, dispmersi
relations(111.6) or (I11.7) were used to determirlg, from the input parameters. Finally the
magnitude of the simulated amplitude rafig.—=Hzo sinfHzio_simServed as a figure of merit to
guantify the PML reflection in the numerical testée fitting procedure implicitly assumes
that only the TE mode with corregtis present in the simulation. In practice numeénase
is always superimposed to the ideal results, akagethe other eigenmode of the gyrotropic
medium, especially in the cases where the TE palhon is only an approached input.
Besides, dispersion relatighl.7) is only approximate. All this introduces uncertags in the
numerical determination Gfsin,

B. Comparison with analytical figure of merit.

Over the simulation databadéigures 5compare the numerical reflection coefficient
Nsim With theoretical expectatione, from formula (111.15) An important restriction to the
allowed parametric space will be discussedrigure 6and is excluded herez|,| values well
above 1 could be reached, indicating that the ctfte wave can be amplified by the PML
instead of being attenuated. This situation is wiegn the imaginary pa&’ of the stretching
is negative, like in the Cartesian case. For pasH, this might also be the case for some
values ofXpy. in formula (111.16), a specificity of the cylindrical geometry prodogithe
peaks onfigures 2 7sim agrees well with/meo Over eight orders of magnitude down to
reflection levels of 18, when the precision of the simulation gets limibgdeither the mesh
size or the fitting procedure. The relative diffece betweemysim and e roughly scales as
1/min(V7ined, |/7theo|‘1). This relative difference is significantly enhadd@ simulation series
#12 and #14 withks# 0. We speculate this is not due to the PML but bseave used
approximated boundary conditions for the quasi-Dlapzation: while the simulation points
with g=-10" or g=-10° appear in the ballpark of the other seriedigare 5. the runs with
g=-10° are well above.

Figures 5also show a repeat of series #1dhle 2 using a Cartesian-like formulation
of the PML. In this serieg)dir]=1 forS'=0, as it should for energetic reasons. For soaleas
of S, the Cartesian-like PML behaves better than tlgkndrical one. This is however
observed over a limited window in parametric spacel it is hardly predictable in advance.
For largeS’, the simulated amplitude reflection coefficieraches an asymptotic value above
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102, while the cylindrical PML achieve$dr|<10°. This illustrates the merits of the new
PML formulation in curved coordinates.

10

3 Fit H,(R,$)exp(im¢) averaged over ¢
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Figure 5.a) numerical amplitude reflection coefficient

[7sin] Versus theoretical valuep},.d expected from
formula(lll.15), over simulation series #1-#14 from
table 2 Last series: same as series #1, using a
Cartesian PML-like PML formulatiorwith Z4R)=1
artificially imposed in formuldlV.1)

C. Peculiarities of the cylindrical PML
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Figure 5.b) Same database digure 5.3 relative

difference |1Hsin Mined, VS Vined from formula(lll.15).
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Figures 6 to 8llustrate specific properties of the cylindricaametry that have hardly

any equivalent with Cartesian coordinates.
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Figure 6 Simulated amplitude reflection coefficient
| 7siml VS Re@(Ry))- Numerical scan of Rvith S'=0,
scan of S’ with R=0.23m and predictions,ed from
formula (111.15). Horizontal dashed line: amplitude
reflection coefficientjc,| fromformula (111.17)
Simulation series #8 and #9 fraable 2

Figure 6shows a scan of the radial position
R, for the inner PEC boundary of the
simulation domain, with S=0. Unlike
expression /jcary from (111.17), the
cylindrical reflection coefficient/jned from
(111.15) depends oiRy. For given simulation
parameters, a minimum value Bf exists
below which the PML becomes inefficient.
The variation of Asim| with Ry is non-
monotonic. This corresponds to the crossing
of peaks in the 2D diagrams déigures 2
The maximal value of the reflection
coefficient can exceed 1. For larg® the
cylindrical curvature decreases at the PML
location and /sim| reaches an asymptotic
value corresponding t@ydar|-

Figure 6also shows that an effect
similar to the change @, is obtained by

stretching the real part d®, through a scan of at fixed R;. From formula (111.16) the

relevant parameter to plot the results istgB{))=R;+S R/(p+1). Negative values of this
parameter can be reached, wiigeremains positive. Howevetigure 6shows that in these
cases the PML fails to attenuate the incoming dylocal wave, even wheformula (l11.15)

predicts low #imed. This behavior may be linked with the crossingadfingular point of the
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coordinate system inside the PML. One should tbeeefvoid this parametric domain. The
related simulation points were deliberately exctifftem Figures 5.
Figure 7 plots the simulated

OF.it Hy(R.$)exp(im¢) averaged over ¢ reflection coefficients versus wavevector
10 :: korw from dispersion relation (111.8)over a
10 RN scan ofs with m#0 (series #14 ofable 2.
102 RN As for plane waves in Cartesian coordinates,
- g low levels of reflection are observed for
= 107}[e ® .. c -0 large kopw While the PML loses efficiency
10" * :,% ’ for cylindrical waves propagating nearly
107 fhias 20 ’nu parallel to the plasma/PML interface.
. Meurt e Howeverwhen m#0 cylindrical waves with
1005 10 15 20 25 30 positive and negatives. exhibit different
kypw [m™] |77sim| despite equakgrw. [7siml values can

_ _ N differ by a factor of more than two. This
Figure 7 reflection coefficient over a scan &f, vs specificity of the cylindrical geometry was
normal wavevector k- fromequation (I11.8) Data anticipated fronformula (111.15), where two
points with positive and negatig are plotted with t . th ) t d
different symbols. Also shown are expressigpsd| derms ) appear Inf h'eh _numera ‘?r ?n

from formula (I11.15)and Jjcard fromformula (I1.17) ~ dénominator, one of which is proportional to

Series #14 fromable 2with &=-10° mé&.. Largest ratios are obtained for medium

values ofkopw. For lowkorw, |7siml becomes
1 whatsoever. For largerw the reflection
® * Vim coefficients converge t@¢ar| from formula

Neheo (111.17) that does not depend on the sign of
* * 1 &. In all casesrjned is larger thansicar.
Figure 8 shows a scan of the azimuthal
mode numbem. Good agreement ofidn| is
found with pned from formula(lll.15). The
variation of psim| with m is nhon-monotonic.
This corresponds to the crossing of peaks in
0 5 0 15 20 25 the 2D diagrams oRigures 2 The maximal

m value of the reflection coefficient can exceed

1. For largem, |/7sim| reaches an asymptotic
value of 1. A critical value ofm is
evidenced, above which the PML becomes
inefficient.

Fit H,(R,¢)exp(im¢) averaged over ¢

10°

bl

107

Figure 8 Numerical reflection coefficients;.,, and
prediction r7neofromformula (111-15) vs azimuthal mode
number m. Simulation series #5 froable 2

V. Conclusions and prospects.

This paper formulated Perfectly Matched Layers (BMLfor time-harmonic
electromagnetic (EM) wave propagation in curved ngetoy. PMLs were obtained by
artificially stretching a general set of three aipates along complex trajectories. Major
simplifications occurred since the original cooatm system was assumed orthogonal and we
requested that the applied stretching preserveotti®gonality. Generalisation to coordinate
systems with off-diagonal metric elements and/ar-aghogonal stretching presently appears
more delicate. PMLs were defined as artificial jogshomogeneous materials that can be
implemented in standard full-wave solvers for Makiweequations in the frequency-domain.
In the adapted dielectric tensors and in the PMiperties, not only the stretching functions
but also the stretched coordinates appear, accgufdr the local curvature of the coordinate
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system. Specific formulae were given in cylindrieadd toroidal geometries. Other sets of
orthogonal coordinates could be treated similanlyhie futuree.g.spherical coordinates for
geophysical and astrophysical plasmas. Extensidnatsient EM pulse propagation would
also be beneficial.

Stretching any system of coordinates does not sadgsensure good PML properties
in all cases. In cylindrical geometry the new fotation was assessed in a gyrotropic medium
without losses, using an analytic reflection caseéint /1,e, fOr propagative and evanescent
cylindrical waves that play a role similar to thlame waves of Cartesian geometry. For
simplicity this quantification was restricted heceradial PMLs and longitudinal anisotropy,
in situations when only Transverse Electric modiethe medium play a role. PMLs in the
longitudinal direction of our test problem behaueslin Cartesian geometry. The exercise
remains to be extended to PMLs in the azimuthalation, azimuthal anisotropy, and/or more
complex EM field polarizations, where incident aeflected waves from the two eigenmodes
of the medium are coupled by the boundary conditidine PML is expected to behave well
if all the relevant eigenmodes are sufficientlyeattated before reaching the innermost
boundary of the simulation domain. Indeed the bampdonditions only play a minor role in
this situation. Analytical quantification of cylindal TE wave reflection was complemented
by finite-element simulations, showing better bebaw for the new PML formulation
compared a Cartesian-like one artificially appliedylindrical geometry.

In cylindrical geometry, like in Cartesian one, thwposed radial PML cannot be
tuned to simultaneously attenuate forward and baokwaves, a limitation inherent to our
formulation. ReferencfBécache2017gxplored ways to overcome this limitation, in wgh
media and with Cartesian PMLs. As far as possieradial extentR of the PML should be
large, at the expense of larger simulation domaiftee PML behaves better for large
wavevectorky normal to the PML and exhibits limitations for icyrical waves propagating
nearly parallel to the plasma/PML interface. Conrignthe results for propagative and
evanescent waves one can see that for dgivéR, large positive values f@ and S’ provide
a better behaviour for the radial PML. The courderps a larger radial variation of the
dielectric properties of the adapted material. P&L region therefore requires finer radial
discretization. Similar results were obtained int€sian geometry fo§’ with propagative
waves and fo§ with evanescent wavdgdacquot2013]

Contrary to Cartesian PMLs, the real part of thdialacoordinate stretch affects the
reflection of propagative waves. This was intemaetis an artificial displacement of the
radial locationR; for the innermost PEC boundary towards regionslifi€rent cylindrical
curvature. In practical applications, the geomethyhe simulation domain often constrains
the value ofR;. StretchingR; usingS can therefore be used to attenuate potential radve
effects of the local curvature, at the expenseebhed mesh inside the PML. This method is
also beneficial to better attenuate the evaneseaves, like in the Cartesian case. In
numerical simulations, the PML loses efficiency whbe real part of the stretched radius
becomes negative. This behaviour was not predicyethe analytical figure of merifineo
This may be related with the crossing of a singplaint of the coordinate system inside the
PML domain.

For given plasma and fixed settings of the PMLriaacal azimuthal mode numben
always exists above which the PML loses efficienthie criticalm value can be made
arbitrarily high by increasing the real or imagiwatretching, so that ath values relevant for
a realistic simulation behave correctly. The assed numerical cost in terms of refined
radial discretization depends on the requiremdntsitethe azimuthal resolution.

In referencgJacquot2015the new PML formulation was applied for the fitishe in
realistic full-wave simulations of ion cyclotron wa propagation in the cold magnetized
plasma at the periphery of a tokamak. The geomety a 2D radial-toroidal cut into the
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toroidal machine, in presence of toroidal curvatule was described by cylindrical
coordinates with azimuthal anisotropy of the plasiftee simulation domain was restricted to
the vicinity of the wave launcher. Radial and azimal PMLs were applied at both the inner
radial boundary and the two toroidal extremitieshas domain.
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