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Imagine that you want to improve future business trips 
by ordering noise-canceling headphones online. You 
narrow your options down to two. Will you order the 
pair that could be delivered tomorrow, or will you wait 
2 weeks for your favorite pair to arrive? Standard eco-
nomic models of such intertemporal choices suggest 
that you should choose as if the value of each option 
is discounted as a function of its delay. However, 
choices between options with delayed outcomes are 
rarely this straightforward. Seldom does one know pre-
cisely when the outcome will materialize. For instance, 
if your preferred headphones need to be shipped to 
Germany from the United States via DHL, the average 
delivery time is 4.9 days, but the actual waiting period 
varies.1 There is an 86.3% chance that the package will 
arrive within a week, a 9.8% chance that it will take 7 
to 15 days, and a 2% chance that it will take 16 to 30 

days. This decision is thus made under timing risk, in 
which the probability of each possible delay is known 
(e.g., Chesson & Viscusi, 2003).

But even decisions involving timing risk are likely 
to represent only a small proportion of the intertempo-
ral choices people face. Instead, in most choices—such 
as a decision to bide one’s time in an unsatisfying job 
in the hope of getting promoted—the possible delays, 
let alone their probability of occurring, are likely to be 
vaguely known at best. To make these choices, people 
not only have to somehow consider the likelihoods of 
the delays—they must also learn about the possible 
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delays and their probabilities in the first place. These 
decisions are made under timing uncertainty.

How do people make intertemporal choices when 
facing timing uncertainty? In this pair of studies, we 
investigated this question by studying intertemporal 
choice from experience, in which people learned about 
the probabilities of different delays from experiential 
sampling (the delays themselves were not experienced). 
We first showed that intertemporal choice from descrip-
tion (involving timing risk with a stated probability dis-
tribution of possible delays) and from experience 
(involving timing uncertainty and thus requiring learning 
from sampled information) led to qualitatively different 
preferences. Second, we demonstrated that this new 
manifestation of a description–experience gap (Hertwig 
& Erev, 2009) was accompanied by distinct probability-
weighting patterns in the description and experience 
conditions. Third, we showed that these results challenge 
assumptions in current theories of intertemporal choice 
under temporal uncertainty.2 Note that in this research 
we examined stated, rather than experienced, delays 
under both timing risk and timing uncertainty.

Intertemporal Choice With Temporal 
Uncertainty

The normative economic model for intertemporal 
choices under temporal certainty is the discounted-
utility model (Samuelson, 1937). Standard economic 
theory (von Neumann & Morgenstern, 1947) suggests 
that in the face of temporal uncertainty, this model is 
modified to the discounted-expected-utility (DEU) 
model (e.g., Andreoni & Sprenger, 2012b; Chesson & 
Viscusi, 2003). According to the DEU model, when peo-
ple face options with different possible delays, they 
behave as if they maximize the weighted average dis-
counted utility of the chosen option, with the probability 
of occurrence of the relevant delays serving as the 
weights. For instance, consider the choice between a 
timing lottery that offers €160 and a sure-timing option 
offering the same amount of money. The timing lottery 
will deliver the money either in 1 month with a probabil-
ity of .8 or in 11 months with a probability of .2; in 
contrast, the sure-timing option will deliver the money 
in 3 months for sure. According to the DEU model, the 
value or weighted average discounted utility of the sure-
timing (ST) option is simply its discounted utility,

V u dST 16 3= ×( ) ( ),0

where u(x) is a utility function specifying the subjective 
value of the possible reward x and d(t) is a discount 
function that determines the degree of discounting 

produced by a delay t. The value of the timing lottery 
(TL) is its weighted average discounted utility,

V u d u dTL = × + ×. ( ) ( ) . ( ) ( ).8 160 1 2 160 11

According to the DEU model, one would prefer the 
sure-timing option if VST were greater than VTL and 
would prefer the timing lottery if VST were less than VTL. 
But is this model a good descriptive account of people’s 
actual choices? A close inspection reveals a notable 
prediction of the DEU model: With a convex discount 
function (e.g., an exponential or a hyperbolic function), 
the model always predicts a preference for the timing 
lottery if the lottery has the same reward and expected 
delay as the sure-timing option (for a proof, see Onay 
& Öncüler, 2007; see also the Supplemental Material 
available online). Yet people do not always prefer tim-
ing risk. Instead, when the longer delay in the lottery 
option is less probable than the shorter delay, people 
tend to be risk averse, choosing the sure-timing option. 
In contrast, when the timing lottery is modified such 
that the longer delay is more probable than the shorter 
delay, people tend to prefer the timing lottery and thus 
are risk seeking (Onay & Öncüler, 2007).

To account for this choice pattern, Onay and Öncüler 
(2007) proposed a rank-dependent discounted-utility 
(RDDU) model. According to this model, people make 
intertemporal choices involving timing risk as if they 
weighted the discounted utility at each delay such that 
rare delays were overweighted, giving them more 
impact than they deserve (relative to the delays’ stated 
probability). The RDDU model thus closely aligns with 
cumulative-prospect theory’s account of risky choice 
(Tversky & Kahneman, 1992) and its assumed probability-
weighting pattern. As we explain next, this commonality 
raises the key question of whether timing risk and tim-
ing uncertainty will prompt systematically different 
intertemporal choices akin to the description–experience 
gap in risky choice.

A Description–Experience Gap  
in Intertemporal Choice?

Risky choice involves a trade-off between two or more 
options with uncertain payoffs. In studies on risky 
choice, payoffs and probabilities have traditionally been 
explicitly stated, thus requiring people to make deci-
sions from these descriptions. In decisions from experi-
ence, in contrast, these properties must be learned—for 
instance, by sampling from the payoff distributions. 
Numerous studies of risky choice have revealed a sys-
tematic gap between decisions from description and 
decisions from experience (for reviews, see Hertwig, 
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2015; Rakow & Newell, 2010). The description–experience 
gap refers to the finding that, for example, when offered 
a choice between a sure option (e.g., €3) and a risky 
option involving a rare gain (e.g., winning €32 with a 
probability of .1 and otherwise nothing), people are more 
likely to choose the sure option in the experience than 
in the description condition. This difference between 
description and experience, obtained in choices involv-
ing a risky and a safe option, reverses when the risky 
option involves a likely gain.

The description–experience gap results partly from 
sampling error caused by limited exploration in deci-
sions from experience (see Wulff, Mergenthaler-Canseco, 
& Hertwig, 2018, for this and other contributors). Con-
sequently, payoffs’ objective probabilities might differ 
systematically from the relative frequencies that people 
actually experienced, especially for rare events, which 
tend to occur even less frequently in small samples. 
Furthermore, modeling analyses suggest that descrip-
tion and experience evoke distinct patterns of probabil-
ity weighting: Rare events tend to be weighted differently 
between description and experience, no matter whether 
the weight analysis in experience is premised on the objec-
tive probabilities (Hertwig & Pleskac, 2018; Regenwetter & 
Robinson, 2017) or on the experienced (sampled) relative 
frequencies (Kellen, Pachur, & Hertwig, 2016).

Might there also be a description–experience gap in 
intertemporal choice under temporal uncertainty? If so, 
is it caused by mechanisms similar to those in risky 
choice? Although some research suggests commonali-
ties between intertemporal and risky choices (e.g., 
Halevy, 2008; Luckman, Donkin, & Newell, 2018; Prelec 
& Loewenstein, 1991; Sozou, 1998; Takahashi, Ikeda, & 
Hasegawa, 2007; Walther, 2010), they also differ in 
important respects. For instance, Green, Myerson, and 
Ostaszewski (1999) found that reward size had opposite 
effects on the apparent discounting of delayed versus 
probabilistic (risky) outcomes, suggesting distinct deci-
sion mechanisms. Other economic analyses suggest 
distinct utility functions for risk and time preferences 
(Andreoni & Sprenger, 2012a, 2012b; Miao & Zhong, 
2015). In addition, intertemporal choice under temporal 
uncertainty is more complex than risky choice in that 
the former consists of three elements—payoffs, delays, 
and their probabilities—rather than only payoffs and 
probabilities. Therefore, it is currently unclear whether 
a description–experience gap would emerge in inter-
temporal choice with temporal uncertainty and, if it 
did, what its causes would be.

Study 1

In Study 1, we sought to establish the existence of a 
description–experience gap in intertemporal choice. To 

this end, we adapted Onay and Öncüler’s (2007) design, 
which focused on intertemporal choice with timing risk, 
and expanded it to timing uncertainty. This new design 
also allowed us to directly contrast choices from descrip-
tion (risk) and from experience (uncertainty) and to 
examine the extent to which sampling error and distinct 
patterns of probability weighting contributed to a pos-
sible gap. Finally, we varied the reward size to investi-
gate its impact on choice in each condition.

Method

Participants.  We recruited 124 adults (76 women; 
mean age = 25.31 years, SD = 3.90 years) from a subject 
pool of the Max Planck Institute for Human Develop-
ment in Berlin, Germany. Half of the participants (n = 62) 
were randomly assigned to the description condition (40 
women; mean age = 25.06 years, SD = 3.63 years) and 
the other half to the experience condition (36 women; 
mean age = 25.56 years, SD = 4.17 years). Because we 
aimed to extend previous findings of Onay and Öncüler 
(2007), we chose a slightly larger sample size—60 for 
each condition, for a total of 120 participants compared 
with their 50 participants for a single description condi-
tion. The recruitment process stopped when the planned 
sample size was reached and when all participants pres-
ent on the final day of testing had completed the study. 
Participants signed a consent form approved by the insti-
tute’s ethical review board before starting the study and 
were paid €7 for participation.

Materials and procedure.  In the description condi-
tion, we implemented the same setup as in Onay and 
Öncüler (2007). Figure 1a presents a screenshot from the 
choice task (translated from German). At the beginning 
of the study, participants were asked to imagine that they 
had won some prize money and had to choose between 
different payout schedules. On each trial, participants 
were asked to choose between a sure-timing option and a 
timing lottery, with the two possible delays for the latter 
being set at 1 and 11 months, respectively. The probability 
of the longer delay was set at .1, .5, or .8, and the delay of 
the sure-timing option was set to be equal to the expected 
delay of the timing lottery (i.e., 2, 6, or 9 months). Partici-
pants were told that if they chose the timing lottery, the 
temporal uncertainty would be resolved immediately after 
they had made their choices. In addition, we used three 
reward sizes—€60, €300, and €1,500—to investigate the 
impact of reward magnitude on choices. Both options in 
each choice problem offered the same fixed (hypothetical) 
reward. Overall, each participant was asked to choose 
between nine pairs of options in a 3 (expected delay) × 3 
(reward size) within-subjects design. The positions of the 
sure-timing option and the timing lottery on the screen 
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were randomized across trials. Finally, we elicited partici-
pants’ present values and certain timing equivalents of the 
various options (these responses were not considered fur-
ther; see the Supplemental Material for a detailed explana-
tion). Participants familiarized themselves with the choice 
task in a practice session with three example questions. 
The reward sizes and probabilities in the practice trials dif-
fered from those in the test trials. The order of test trials 
was randomized for each participant.

In the experience condition, the choice options were 
the same as in the description condition in terms of 
reward sizes and objective probabilities, but partici-
pants had to learn about the reward size and possible 
delays of each option, as well as the probabilities of 
the delays, via experiential sampling (Hertwig & Erev, 
2009). Before making a choice, participants were 
instructed to sample from each option as often as they 
wanted. Each sample revealed the reward and a single 
possible delay, which was drawn randomly using the 
objective probabilities. Each trial started with a fixation 
cross displayed at the center of the screen for 1 s before 
two blank boxes (with option labels) were shown. The 
participant could then sample from either the left or 
the right option by pressing the “Q” or “P” key, respec-
tively. Each sample was visible for 1 s, after which 
another sample could be drawn. Figure 1b presents a 
screenshot from the sampling phase in this condition. 
The positions of the sure-timing option and the timing 
lottery on the screen were randomized across trials. In 
a practice phase, participants had to sample at least 

five times from each option in order to familiarize them-
selves with the probabilistic nature of the sampling 
process. In the subsequent test trials, this constraint 
was relaxed, and each option had to be sampled at least 
once. When participants felt confident enough to make 
a final choice, they pressed the space bar to proceed 
to a choice interface, where they indicated their selec-
tion. As in the description condition, we also elicited 
present values and certain timing equivalents of the 
various options (which we again did not consider 
further).

Data analysis.  To test for a description–experience gap 
in intertemporal choice, we first ran a mixed-effects logis-
tic regression predicting the choice of the sure-timing 
option, with learning mode (description vs. experience) 
as a fixed effect and participant as a random effect.3 We 
further included as fixed effects the main effect of the 
probability of the longer delay as well as the interaction 
between this factor and learning mode, in order to test 
whether the size and direction of a potential choice gap 
between description and experience would depend on 
the type of rare delay (i.e., longer or shorter) in the tim-
ing lottery. Furthermore, we included as fixed effects the 
terms for the main effect of reward size and the corre-
sponding interaction terms with learning mode.4

Because a description–experience gap could be pro-
duced (at least to some extent) by sampling error in the 
experience condition (e.g., because participants under-
sample the rare delay), we tested for such a possible 

a

b

Option L

Option ROption L

Option R

Value: 60 euros
Payment date:
    in 2 months with a probability of 100%

Value: 60 euros
Payment date:
    in 2 months

Value: 60 euros
Payment date:
    in 1 month with a probability of 90%
    in 11 months with a probability of 10%

Fig. 1.  Screenshots from the choice task in Study 1 (translated from German). In the description 
condition (a), participants were asked to imagine that they had won some prize money and to 
choose between two payout schedules (Option L or Option R). In the experience condition (b), 
the reward sizes and probabilities of delays were the same as in the description condition, but 
participants had to learn about them via experiential sampling. In the example shown here, the 
participant has clicked the right box, so information only for Option R is shown.
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effect in our data. To control for the impact of sampling 
error in the logistic regression, we conducted an addi-
tional analysis involving only (a) description trials with 
rare delays and (b) experience trials with rare delays and 
with relative frequencies that matched the objective prob-
abilities. Because of the low number of experience trials 
for each combination of reward size and expected delay, 
trials with different reward sizes and expected delays were 
pooled; in this analysis, we used the choice of the option 
favored by the overweighting of rare delays as a depen-
dent variable to compare choices in the two learning-
mode conditions.

All analyses were conducted using a Bayesian 
approach, and most of them were implemented using 
the R package rstanarm (Gabry & Goodrich, 2016). In 
Bayesian analysis, when a 95% credible interval (CI) 
for a parameter excludes zero, the null hypothesis that 
the respective effect is absent is interpreted as not cred-
ible (see the Supplemental Material for details of the 
Bayesian analysis).

Finally, to examine whether a possible description–
experience gap in choice was accompanied by distinct 
patterns of probability weighting, we applied a modi-
fied version of the RDDU model proposed by Onay and 
Öncüler (2007), implemented within a hierarchical 
Bayesian approach (e.g., Lee & Wagenmakers, 2013; 
Scheibehenne & Pachur, 2015). The modified version 
assumes a power-utility function, u x x( ) = α (Tversky & 
Kahneman, 1992); an additive combination of utility 
and discount functions for discounted utility, du x t u x d t u x kt( , ) ( ) ( ) ( )= + = −

du x t u x d t u x kt( , ) ( ) ( ) ( )= + = −  (Killeen, 2009); and a two-
parameter probability-weighting function, w( ) /( ( )p p p p= + −δ δγ γ γ1

w( ) /( ( )p p p p= + −δ δγ γ γ1  (Goldstein & Einhorn, 1987). The 
parameter γ of the probability-weighting function mainly 
controls the curvature of the function (or sensitivity to 
probability differences), and the parameter δ mainly 
controls the elevation of the function (or optimism to 
risk and uncertainty).

We adopted an additive rather than the more tradi-
tional multiplicative combination rule for the discounted 
utility for two main reasons. First, the multiplicative 
combination rule, together with convex discount func-
tions such as exponential or hyperbolic functions, pre-
dicts a preference for timing lotteries and is thus 
inconsistent with the empirical results of timing-risk 
aversion found in Onay and Öncüler (2007). Conse-
quently, the estimated probability-weighting function 
might be distorted. The additive combination rule, by 
contrast, is neutral regarding its prediction on the pref-
erence for temporal uncertainty, making a distorted 
estimation of the probability-weighting function less 
likely. The fact that the additive combination rule does 
not necessarily predict a preference for the timing lot-
tery means that this function provides a more appropri-
ate tool for testing whether the description–experience 

gap is accompanied by differences in probability 
weighting. Second, the additive combination rule out-
performed the multiplicative rule in a hierarchical, 
Bayesian model-comparison analysis. It therefore 
appears appropriate to adopt the additive combina-
tion rule for the current analysis. Hereafter, we refer to 
the resulting model as the additive RDDU model. See 
the Supplemental Material for details of the model com-
parison and parameter estimation.

According to the additive RDDU model, the valuation 
of a sure-timing option providing a reward of amount 
x at a delay of t is given by

	 V x t u x d t( , ) ( ) ( ),= + 	 (1)

and the valuation of a timing lottery providing a reward 
of amount x at either a shorter delay of s with a prob-
ability (or experienced relative frequency) of p or a 
longer delay of l with a probability (or experienced 
relative frequency) of q (= 1 – p) is given by

	 V x s p x l p u x
w p d s

w p d l
( , , ; , , ) ( )

( ) ( )

( ( )) ( )
.1

1
− = +

+
−











×
×

	 (2)

Finally, a logistic choice function (with a sensitivity 
parameter φ) was used to map the difference in valua-
tion onto predicted choice probabilities. The probability 
of choosing option A over option B is given by

P A A B
V B V A

( |{ , })
exp ( ( ) ( ))

.=
+ −[ ]

1

1 ϕ

In total, the additive RDDU model has five param-
eters: α for reward sensitivity, k for discount rate, γ for 
the shape of the probability-weighting function, δ for 
the elevation of the probability-weighting function, and 
ϕ for choice sensitivity. However, because each pair of 
options involved in our studies had the same payoff, 
the utility function would be canceled out in the expres-
sion of difference in valuation and thus the predicted 
choice probabilities. Therefore, only four parameters 
of the additive RDDU model needed to be estimated: 
k, δ, γ, and ϕ. A hierarchical Bayesian analysis was 
conducted to estimate the model parameters at both 
the individual and group levels. A graphical illustration 
of the model is shown in Figure 2 (see the Supplemen-
tal Material for details). See https://osf.io/k5b7a/ for 
raw data and analysis code for this study.

Results

Figure 3 shows the proportion of choices of the sure-
timing option, separately for the description and experi-
ence conditions and types of rare delay. As can be seen, 
there was a pronounced description–experience gap in 
choice problems involving a rare delay. In the description 

https://osf.io/k5b7a/
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condition, participants chose the sure-timing option more 
frequently when the longer delay was rare than when 
the shorter delay was rare. In the experience condition, 
this pattern was reversed: The sure-timing option was 
chosen more frequently when the shorter delay, rather 
than the longer delay, was rare (Table 1). A mixed-
effects logistic regression corroborated an interaction 
between learning mode and the probability of the lon-
ger delay (and thus type of rare delay) and the simple 
effects of learning mode given particular types of rare 
delay. The regression analysis also revealed an interac-
tion between reward size and learning mode (Table 
1): Participants in the description condition chose the 
sure-timing option more frequently when the reward 
size was larger than when it was smaller. In the experi-
ence condition, reward size had no credible impact on 
the choices.

Participants in the experience condition sampled, on 
average (per option, across choice problems), 6.27 
times from the delay distributions before making a 
choice (Mdn = 6, SD = 3.69). It is no surprise, then, that 
sampling errors emerged and that the experienced rela-
tive frequencies of the rare delays tended to be lower 
than the objective probabilities. To illustrate, for an 
objective probability of .1 (regarding the longer delay 
of 11 months), the median experienced relative fre-
quency was .061, and for an objective probability of .2 
(regarding the shorter delay of 1 month), the median 
experienced relative frequency was .167. Overall, the 
rare delay was more likely to be underexperienced than 
overexperienced (95% CI of the probability of under-
experiencing = [0.55, 0.66]). A mixed-effects Poisson 
regression predicting sample size with option type 
(sure-timing option vs. timing lottery), reward size, and 

Trial j

Participant i

µk ~ Gaussian (0,1)

σk ~ Uniform (0,1)

ζk
i ~ Gaussian (µk,σk )

ki  ← Φ(ζk
i ) × 5

µγ ~ Gaussian (0,1)

σγ ~ Uniform (0,1)

ζγ
i ~ Gaussian (µγ,σγ)

γi  ← Φ(ζγ
i ) × 5

µδ ~ Gaussian (0,1)

σδ ~ Uniform (0,1)

ζδ
i  ~ Gaussian (µδ,σδ)

δi  ← Φ(ζδ
i ) × 5

µϕ ~ Gaussian (0,1)

σϕ ~ Uniform (0,1)

ζϕ
i  ~ Gaussian (µϕ,σϕ)

ϕi  ← Φ(ζϕ
i) × 5

θi,j  ← RDDU (ki,γi,δi,ϕi,tj ,sj ,lj ,pj )

ri,j ~ Bernoulli (θi,j )

ki γi δi ϕi

t j

s j

l j

p j

θi,j

ri,j

ζ i
k ζ i

γ ζ i
δ ζ i

ϕ

σϕµγ µϕµδσk σδσγµk

Fig. 2.  Graphical illustration of the Bayesian implementation of the additive rank-dependent discounted-utility (RDDU) model. In the 
model, choice of the timing lottery (ri,j) is a Bernoulli random variable governed by the probability of choosing the timing lottery θi,j. 
This probability is partly determined by the delay of the sure-timing option (tj), the shorter delay of the timing lottery (sj), the longer 
delay of the timing lottery (lj), and the probability of the shorter delay (pj) in the timing lottery (objective in the description condition 
and relative frequency in the experience condition). The choice probability θi,j is also determined by the discount function, the weight-
ing function, and the choice rule. Each of these is governed by their respective parameters, which are ultimately drawn from group-level 
distributions. Φ is the standard normal cumulative distribution function.
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the probability of the longer delay as fixed effects also 
revealed credible effects of option type and reward size. 
Specifically, participants sampled more frequently from 
the timing lotteries than from the sure-timing options 
(95% CI of the slope for the dummy variable regarding 
option type = [–0.097, –0.017]), and they also sampled 
more frequently from options with larger rewards than 
from options with smaller rewards (95% CI of the slope 
for reward size = [0.000020, 0.000083]). See the Supple-
mental Material for more details.

What is the role of sampling error in the observed 
description–experience gap? Figure 4 shows the pro-
portion of choices of the option favored by an over-
weighting of the rare delay, both with and without 
controlling for sampling error. The figure compares 
trials in the description condition that had rare delays 
with trials in the experience condition that had rare 
delays whose experienced frequencies matched the 
objective probabilities (thus controlling for sampling 
error), as well as to all experience trials with rare 
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Fig. 3.  Box-and-whisker plots showing the distribution (across participants) of the proportion of choices of the sure-timing option in 
Study 1, separately for the two learning-mode conditions at each type of rare delay. Open circles indicate individual data points. For 
each plot, the error bar (to the right) shows the 95% credible interval derived from the posterior prediction of the mixed-effects logistic 
regression. The solid dot to the right of each plot shows the posterior predictive check (i.e., mean choice probability of the sure-timing 
option derived from the posterior distribution) of the additive rank-dependent discounted-utility (RDDU) model for that distribution.

Table 1.  Results of the Mixed-Effects Logistic Regression in Study 1: Interaction and 
Simple Effects of Learning Mode, Reward Size, and Expected Delay on Choices of the 
Sure-Timing Option

Effect
Posterior 

mean 95% credible interval

Probability of the Longer Delay × Learning Mode 3.69 [2.75, 4.65]
Reward Size × Learning Mode –0.00050 [–0.00093, –0.000080]
Probability of the longer delay in description condition –1.37 [–2.05, –0.69]
Probability of the longer delay in experience condition 2.33 [1.68, 3.00]
Reward size in description condition 0.00063 [0.00032, 0.00096]
Reward size in experience condition 0.00011 [–0.00017, 0.00039]

Note: When a 95% credible interval for a parameter excludes zero, the null hypothesis that it is zero is 
interpreted as being not credible.
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delays. As can be seen, there was a description–experi-
ence gap even when sampling error was taken into 
account. Specifically, pooled across the three reward 
sizes and two types of rare delay, the data showed that 
participants chose the option suggested by an over-
weighting of rare events more often in the description 
than in the experience condition (95% CI for the term 
of learning mode in the corresponding logistic regres-
sion = [–1.86, –0.10]).

Finally, to examine the role of probability weighting 
for the observed description–experience gap, we fitted 

the additive RDDU model to our data. As input for 
estimating the probability-weighting function, we used 
the stated probabilities in the description condition and 
the experienced relative frequencies in the experience 
condition, thus controlling for sampling error. The addi-
tive RDDU model was implemented using a Bayesian 
hierarchical approach.

Figure 5 shows the estimated individual- and group-
level probability-weighting functions, using the means 
of the posterior distributions of the parameters obtained 
from the Bayesian modeling analysis. In the description 
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Fig. 4.  Observed proportion of choices of the option suggested by overweighting of rare events 
in Study 1. Results are shown separately for the description condition, the experience condition 
when sampling error was taken into account (middle bar), and the experience condition when 
sampling error was not taken into account (right-hand bar). The error bar for the latter condi-
tion shows the 95% credible interval derived from the mixed-effects logistic regression. The 
error bars for the other two conditions show 95% credible intervals derived from the pooled 
logistic regression with learning mode as the only predictor.
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condition, the obtained parameters indicate an inverse-
S-shaped probability-weighting function, consistent with 
an overweighting of rare events (as is commonly 
observed in risky choice). In the experience condition, 
in contrast, the obtained parameters indicate an S-shaped 
probability-weighting function, consistent with an 
underweighting of rare events. Overall, rare delays were 
assigned a lower decision weight in the experience than 
in the description condition. Table 2 reports the group-
level means and 95% CIs for each parameter of the 
additive RDDU model from the hierarchical Bayesian 
analysis, separately for the two learning-mode condi-
tions. The group-level curvature parameter (i.e., γ) of 
the probability-weighting function for the description 
condition was credibly lower than 1; in the experience 
condition, the same parameter was slightly higher than 
1, though not credibly so. The difference between the 
two conditions was credibly larger than zero, suggest-
ing distinct patterns of probability weighting. Finally, 
the dots in Figure 4 show the posterior prediction of 
the additive RDDU model; as can be seen, the model 
captures the description–experience gap rather well, 
verifying the validity of the model.

Summary

Study 1 established a fourfold pattern of preferences in 
intertemporal choices with temporal uncertainty. When 
the shorter delay in the lottery was rare, people preferred 
a timing lottery more often in the description condition 
(risk) than in the experience condition (uncertainty). 
When the longer delay in the lottery was rare, this pat-
tern was reversed: People preferred a timing lottery more 
often in the experience than in the description condition. 
Neither the influence of the type of delay nor that of 
learning mode is predicted by the standard DEU model. 
This new description–experience gap in intertemporal 
choice can be partly attributed to an underexperiencing 
of rare delays. Computational modeling that controlled 
for sampling error also established that the gap in peo-
ple’s choices was accompanied by distinct patterns of 

probability weighting. In Study 2, we sought to replicate 
this description–experience gap over a larger space of 
options and to examine it in a new condition that con-
trolled for sampling error experimentally (rather than 
statistically, as in Study 1).

Study 2

In Study 1, we adopted Onay and Öncüler’s (2007) 
intertemporal-choice stimuli to contrast timing risk and 
timing uncertainty. One potential drawback of the stim-
uli, however, was that they involved only two extreme 
probabilities, one small and one large, for the shorter 
delay in the timing lotteries. This is not ideal for reliably 
estimating the shape of the probability-weighting func-
tion. The modeling analysis was further constrained by 
the fact that shorter and longer delays in the timing 
lotteries were fixed across options and that the certain 
delays in the sure-timing options always equaled the 
expected delays of the timing lotteries. In Study 2, we 
addressed these shortcomings by implementing a larger 
number of probability levels and possible delays for 
the timing lotteries, each of which was paired with 
several sure-timing options with different delays. We 
also introduced a fixed-sampling condition to investigate 
the description–experience gap while experimentally 
removing any mismatch between objective probabilities 
and experienced relative frequencies. This study was 
preregistered as a replication and extension of Study 1 
(see https://osf.io/k5b7a/).

Method

Participants.  We recruited 180 adults (102 women; 
mean age = 25.82 years, SD = 4.38 years) from a subject 
pool of the Max Planck Institute for Human Development 
in Berlin, Germany. A third of the participants (n = 60) 
were randomly assigned to the description condition (34 
women; mean age = 26.05 years, SD = 4.68 years); another 
third to a sampling condition, which corresponded to the 
experience condition in Study 1 (36 women; mean age = 

Table 2.  Posterior Group-Level Means for the Rank-Dependent Discounted-Utility 
(RDDU) Parameters and the Differences Between the Learning-Mode Conditions in 
Study 1

RDDU parameter
Description 
condition

Experience 
condition

Difference  
(experience – description)

k (delay discounting) 1.31 [0.09, 4.55] 1.51 [0.27, 4.49] 0.20 [–3.58, 3.71]
δ (elevation) 0.57 [0.30, 0.84] 0.71 [0.51, 0.93] 0.14 [–0.20, 0.48]
γ (curvature) 0.59 [0.24, 0.93] 1.19 [0.84, 1.63] 0.60 [0.10, 1.15]
ϕ (choice sensitivity) 1.67 [0.11, 4.71] 1.62 [0.27, 4.48] −0.05 [–3.81, 3.56]

Note: Values in brackets are 95% credible intervals.

https://osf.io/k5b7a/
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25.47 years, SD = 3.88 years); and the remaining third to 
a fixed-sampling condition (32 women; mean age = 25.93 
years, SD = 4.58 years). We aimed for the same sample 
size (i.e., 60) for each condition in Study 2 as in Study 1, 
because the latter demonstrated a description–experience 
gap with this sample size. Each participant signed a consent 
form approved by the institute’s ethical review board before 
starting the study and was paid €15 for participation.

Materials and procedure.  Three conditions were 
tested in this study: description, sampling, and fixed sam-
pling. The description condition was implemented in the 
same way as in Study 1, but with a more informative 
design matrix regarding possible delays and associated 
probabilities for estimating the probability-weighting 
function (Table 3). First, we adopted two small probabili-
ties (.1 and .2) and two large probabilities (.8 and .9) for the 
shorter delay in the timing lottery so that more points on the 
probability-weighting function were involved in the estima-
tion. Each of the probabilities was coupled with a slightly 
different pair of shorter and longer delays to generate a 
delay distribution for the timing lottery. Second, for each 
timing lottery, we created five sure-timing options with dis-
tinct certain delays that varied around the expected delay of 
the timing lottery in order to render possible a more precise 

estimation of the probability-weighting function. Finally, for 
each pair of delay distributions (one sure and one risky), we 
used three possible hypothetical rewards (€60, €300, and 
€1,500) to generate three choice problems. In total, 60 choice 
problems (4 Probability × 5 Certain Delay × 3 Reward 
Amount) were generated for each participant. All other set-
tings were the same as in Study 1, except that neither present 
values nor certain timing equivalents were elicited in Study 2.

In the sampling condition, the choice options were 
the same as in the description condition in terms of 
reward sizes, delay lengths, and objective probabilities, 
and the learning mode was the same as in the experi-
ence condition of Study 1. Neither current values nor 
certain timing equivalents were elicited. Finally, the 
fixed-sampling condition was identical to the sampling 
condition except that in both the practice and test trials 
of Study 2, participants were required to draw 10 sam-
ples from each option; the experienced relative fre-
quencies of possible delays were fixed to be the same 
as the objective probabilities. Consequently, any gap 
between this and the description condition must be due 
to causes other than sampling error.

Data analysis.  In order to test for a description–expe-
rience gap in intertemporal choice, we first conducted a 

Table 3.  Design Matrix of Study 2 Regarding Possible Delays and Associated 
Probabilities

Shorter delay 
in timing 
lottery

Probability 
of shorter 

delay

Longer delay 
in timing 
lottery

Probability 
of longer 

delay

Expected 
delay of 

timing lottery

Certain delay 
of sure-timing 

option

1 .9 30 .1 3.9 2
1 .9 30 .1 3.9 3
1 .9 30 .1 3.9 4
1 .9 30 .1 3.9 5
1 .9 30 .1 3.9 6
3 .8 28 .2 8 4
3 .8 28 .2 8 6
3 .8 28 .2 8 8
3 .8 28 .2 8 10
3 .8 28 .2 8 12
4 .2 27 .8 22.4 18
4 .2 27 .8 22.4 20
4 .2 27 .8 22.4 22
4 .2 27 .8 22.4 24
4 .2 27 .8 22.4 26
2 .1 29 .9 26.3 24
2 .1 29 .9 26.3 25
2 .1 29 .9 26.3 26
2 .1 29 .9 26.3 27
2 .1 29 .9 26.3 28

Note: Values in the delay columns are given in months.
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mixed-effects logistic regression predicting the choice of 
the sure-timing option with learning mode as a fixed 
effect (description vs. sampling vs. fixed sampling). 
Because the direction of the gap might depend on the 
type of rare delay (which was a function of the probabil-
ity of the longer delay) in the timing lottery, we also 
included an interaction term between learning mode and 
probability of the longer delay (as well as a term for the 
main effect of the probability of the longer delay). Fur-
thermore, to examine the potential impact of reward size 
on choice and its interaction with learning mode, we 
included terms for the main effect of reward size and cor-
responding interaction terms as fixed effects.5 Finally, we 
also included a term for the difference in expected delay 
between the timing lottery and the sure-timing option as 
well as its interaction term with learning mode. The addi-
tional terms were required because, in contrast to Study 
1, this difference now varied across problems.

As in Study 1, we tested for sampling error in the 
sampling condition. In addition, we ran a comparison 
between the description condition and the sampling 
condition while controlling for sampling error; we did 
this by including those experience trials with rare 
delays in which experienced relative frequencies 
matched the objective probabilities. As in Study 1, 
we compared choice proportions of the option that 
would be more attractive under overweighting of the 

rare delay between the description and experience 
conditions. Finally, we applied the additive RDDU 
model to examine differences in probability weighting 
among the three learning modes. See https://osf.io/
k5b7a/ for raw data and analysis code for this study.

Results

Figure 6 shows the proportion of choices of the sure-
timing option, separately for the different learning 
modes and types of rare delay. When a rare delay was 
relatively long (i.e., the probability of the longer delay 
was either .1 or .2), participants chose the sure-timing 
option over the timing lottery most frequently in the 
description condition, less frequently in the fixed-
sampling condition, and least frequently in the sam-
pling condition. When a rare delay was relatively short 
(i.e., the probability of the longer delay was either .8 
or .9), participants instead chose the sure-timing option 
least frequently in the description condition, more fre-
quently in the fixed-sampling condition, and most fre-
quently in the sampling condition. The same patterns 
occurred when problems with different probabilities of 
the longer delay were analyzed separately. This interac-
tion between learning mode and type of rare delay (as 
represented by the probability of the longer delay) and 
the simple effects of learning mode given different 
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Fig. 6.  Box-and-whisker plots showing the distribution (across participants) of the proportion of choices of the sure-timing option 
in Study 2, separately for the three learning-mode conditions at each type of rare delay. Open circles indicate individual data points. 
For each plot, the error bar (to the right) shows the 95% credible interval derived from the posterior prediction of the mixed-effects 
logistic regression. The solid dot to the right of each plot shows the posterior predictive check (i.e., mean choice probability of the 
sure-timing option derived from the posterior distribution) of the additive rank-dependent discounted-utility (RDDU) model for that 
distribution.

https://osf.io/k5b7a/
https://osf.io/k5b7a/
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types of rare delay were corroborated by the results of 
the mixed-effects logistic regression (Table 4). Note that 
the description–experience gap emerged irrespective 
of whether sampling was fixed so that the experienced 
relative frequencies perfectly matched the objective 
probabilities. The regression analysis also revealed a 
similar interaction between reward size and learning 
mode on choices (Table 4): Participants in the descrip-
tion condition chose the sure-timing option more fre-
quently when the reward size was larger, whereas 
reward size did not have a credible impact on choices 
in either the sampling or fixed-sampling conditions.

Participants in the sampling condition sampled, on 
average, 6.25 times from the uncertain option (Mdn = 
5, SD = 4.72), almost exactly replicating the number of 
samples observed in Study 1. Again, there was sampling 
error, and the experienced relative frequencies of the 
rare delays tended to be lower than their objective 
probabilities: For an objective probability of .1, the 
median experienced relative frequency was 0, whereas 
for an objective probability of .2, the median experi-
enced relative frequency was .167. For both probabili-
ties, the rare delay was credibly more likely to be 
underexperienced than overexperienced (95% CIs for 
the probability of underexperiencing were [0.59, 0.64] 
and [0.54, 0.59], respectively). Finally, a mixed-effects 
Poisson regression on sample size with option type 
(sure-timing option vs. timing lottery) and reward size 
as fixed effects also revealed credible effects of the two 

predictors. Participants sampled more frequently from 
the timing lotteries than from the sure-timing options 
(95% CI of the slope for the dummy variable regarding 
option type = [–0.154, –0.116]), and they also sampled 
more frequently from options with larger rewards than 
from options with smaller rewards (95% CI of the slope 
for reward size = [0.0000023, 0.000032]). See the Supple-
mental Material for more details.

Finally, in order to examine the role of probability 
weighting in the description–experience gap, we fitted 
the additive RDDU model to the data separately for the 
three conditions. Figure 7 shows the individual- and 
group-level probability-weighting patterns for the tim-
ing information, using the means of the posterior dis-
tributions of the parameters obtained from the Bayesian 
modeling analysis. The probability-weighting patterns 
for the description and sampling conditions were simi-
lar to those in Study 1 (Fig. 5): an inverse-S-shaped 
function in the former and an S-shaped function in the 
latter. The pattern for the fixed-sampling condition was 
in between, assuming an approximately linear weight-
ing function. This is consistent with the results on the 
observed choice proportions, where the fixed-sampling 
condition fell between the other two conditions. As in 
Study 1, rare delays were generally assigned a lower 
decision weight in the experience (sampling and fixed-
sampling) than in the description conditions. Table 5 
reports the group-level means and 95% CIs for each 
parameter from the hierarchical Bayesian analysis, 

Table 4.  Results of the Mixed-Effects Logistic Regression in Study 2: Interactions and Simple Effects of 
Learning Mode, Reward Size, Type of Delay, and Difference in Expected Delay on Choices of the Sure-
Timing Option

Effect
Posterior 

mean
95% credible 

interval

Type of Delay × Sampling Condition 3.81 [3.50, 4.13]
Type of Delay × Fixed-Sampling Condition 2.11 [1.79, 2.43]
Reward Size × Sampling Condition −0.00029 [–0.00046, –0.00012]
Reward Size × Fixed-Sampling Condition −0.00033 [−0.00050, −0.00016]
Difference in Expected Delay × Sampling Condition −0.20 [−0.25, −0.15]
Difference in Expected Delay × Fixed-Sampling Condition −0.041 [−0.094, 0.012]
Description condition vs. sampling condition at longer rare delay −1.57 [−2.10, −1.02]
Description condition vs. fixed-sampling condition at longer rare delay −0.61 [−1.15, −0.06]
Description condition vs. sampling condition at shorter rare delay 1.41 [0.81, 2.01]
Description condition vs. fixed-sampling condition at shorter rare delay 1.03 [0.42, 1.63]
Reward size in description condition 0.00036 [0.00023, 0.00048]
Reward size in sampling condition 0.00006 [–0.00005, 0.00018]
Reward size in fixed-sampling condition 0.00002 [−0.00009, 0.00014]
Difference in expected delay in description condition 0.40 [0.36, 0.44]
Difference in expected delay in sampling condition 0.18 [0.15, 0.21]
Difference in expected delay in fixed-sampling condition 0.35 [0.31, 0.39]

Note: When the 95% credible interval for a regression coefficient excludes zero, the null hypothesis that it is zero (i.e., that 
there is no effect) is interpreted as being not credible.
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separately for the three conditions. In the description 
condition, the curvature parameter (i.e., γ) of the prob-
ability-weighting function was credibly lower than 1. 
In the sampling condition, by contrast, this parameter 
was likely to be higher than 1, though not credibly so; 
the credible interval for the fixed-sampling condition 
was approximately symmetric around 1. Table 6 shows 
the means and credible intervals for the differences 
between the three conditions on the group-level param-
eters. For the curvature parameter, the differences 
between the description condition on the one hand and 
the two experience conditions on the other hand were 
credibly lower than zero, suggesting distinct patterns 
of probability weighting. By contrast, the difference 
between the two experience conditions was not cred-
ible. Finally, the solid dots in Figure 6 show the means 
of the posterior predictive distribution of the additive 
RDDU model. Again, the model captured the data rather 
well, verifying the validity of the model.

Summary

Replicating Study 1, Study 2 found a description–
experience gap in intertemporal choice. When sampling 
error was not controlled for in the sampling condition, 
the underexperiencing of rare delays and the diverging 

patterns of probability weighting accompanied the gap. 
When sampling error was fully controlled for in the 
fixed-sampling condition, the gap persisted and was cap-
tured by different patterns in probability weighting.

General Discussion

It is difficult to think of intertemporal choices devoid 
of temporal uncertainty (McGuire & Kable, 2013). Will 
an online purchase be delivered on time? Will lunch be 
served quickly enough to get back to the meeting? Will 
the 4-year college degree take 4, 5, or 6 years? Never-
theless, many lab studies on intertemporal choice have 
removed not only timing risk but also, crucially, timing 
uncertainty from the stimuli.

In two studies, we compared intertemporal choice 
involving timing risk (known probabilities of delay) with 
intertemporal choice involving timing uncertainty 
(imprecise knowledge of the probabilities), leading us 
to draw three key conclusions. First, in contrast to the 
standard economic assumption embodied in the DEU 
model, people do not evaluate timing lotteries by taking 
the stated probabilities or experienced relative frequen-
cies at face value. Instead, these values enter choices in 
a nonlinear fashion, consistent with Onay and Öncüler’s 
(2007) findings about timing risk. Second, there is a 
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Fig. 7.  Probability-weighting, or w(p), functions based on individual- and group-level parameters (solid lines in gray and 
black, respectively) in Study 2. The dashed line marks the diagonal.

Table 5.  Group-Level Means for the Posterior Distributions of the Parameters 
of the Additive Rank-Dependent Discounted-Utility (RDDU) Model

RDDU parameter
Description 
condition

Sampling 
condition

Fixed-sampling 
condition

k (delay discounting) 0.61 [0.11, 2.97] 2.35 [0.36, 4.88] 0.80 [0.11, 3.80]
δ (elevation) 0.89 [0.73, 1.06] 1.09 [0.87, 1.33] 0.93 [0.75, 1.14]
γ (curvature) 0.69 [0.58, 0.80] 1.12 [0.83, 1.45] 1.00 [0.88, 1.13]
ϕ (choice sensitivity) 1.80 [0.18, 4.72] 0.65 [0.16, 2.41] 1.50 [0.13, 4.34]

Note: Values in brackets are 95% credible intervals.
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description-experience gap: Intertemporal choices 
under temporal uncertainty systematically depend on 
how people learn about the possible delays and their 
likelihoods. A timing lottery with a shorter rare delay 
was chosen more often against a sure-timing option 
when timing information was communicated via descrip-
tion rather than via experiential sampling (where timing 
information was more uncertain). This pattern was 
reversed when the longer delay in the timing lottery was 
rare, creating a fourfold pattern of preferences for inter-
temporal choices with temporal uncertainty. This brings 
us to our third key finding, which concerns the pro-
cesses underlying this description–experience gap. Our 
analyses show that while the gap is in part due to sam-
pling error in the experience conditions (Figs. 4 and 6), 
a gap remained even after we controlled for sampling 
error. Computational modeling indicated that this aspect 
of the gap is reflected in differences in the nonlinear 
weighing of stated probabilities versus learned relative 
frequencies. Specifically, rare delays receive greater sub-
jective weight in description than in experience (Tables 
2 and 6; see also Figs. 5 and 7), suggesting that people 
respond to timing risk and timing uncertainty in differ-
ent ways.6 In the sampling condition, the weighting 
function was even S-shaped. These findings raise ques-
tions about the adequacy of the conventional DEU 
approach to modeling intertemporal choice under tem-
poral uncertainty; they also challenge the generality of 
the inverse-S-shaped probability-weighting pattern 
assumed in the RDDU model (Onay & Öncüler, 2007).

What mechanisms might lead to divergent probabil-
ity weighting in the description and experience condi-
tions? First, it is possible that this finding reflects 
differential attention policies (see also Pachur, Schulte-
Mecklenbeck, Murphy, & Hertwig, 2018). In the descrip-
tion condition, comparable amounts of attention might 
be paid to different delays irrespective of their probabil-
ity, leading to the inverse-S-shaped weighting pattern 
observed in this condition; in the experience condition, 
by contrast, people may instead treat the delays more 
categorically, classifying rare delays as impossible and 

more frequent delays as possible, leading to an S-shaped 
weighting pattern. Second, in the experience condition, 
memory limitations might reduce the effective influence 
of rarely experienced delays relative to what their expe-
rienced relative frequencies imply. Still another possibil-
ity is that decision makers rely on different heuristics 
in description and experience, which in risky choice 
has been shown to lead to different kinds of nonlinear 
probability weighting (Pachur & Hertwig, 2019; Pachur, 
Suter, & Hertwig, 2017).

Finally, we want to emphasize that in intertemporal 
choice, experiential learning can occur in various ways 
(e.g., Ashby & Gonzalez, 2017). The sampling approach 
implemented here captures only one form of experien-
tial learning—for instance, asking friends how long they 
waited in line to get into a popular club or searching 
one’s memory for waiting times at the general practi-
tioner when pondering whether to find another doctor. 
In other intertemporal-choice situations, it is the delays 
themselves that are experienced before a decision is 
made (e.g., Jimura, Myerson, Hilgard, Braver, & Green, 
2009). For example, one may decide not to wait in line 
at a favorite restaurant because the previous experience 
of a long wait was very unpleasant. In the former case, 
experiential learning involves the experience of stated 
delays, whereas in the latter case, the person is dealing 
with experienced delays. In real-world situations, both 
types of experiential learning might occur simultane-
ously (for a discussion, see Dai, Pachur, Pleskac, & 
Hertwig, 2019). In future work, researchers could 
implement and investigate different types of experience 
to obtain a better understanding of realistic intertem-
poral choices under temporal uncertainty.
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Notes

1. The delivery statistics given here were obtained from www 
.trackingmore.com.
2. We use the terms temporal uncertainty (as in McGuire & 
Kable, 2012, 2013) to describe the general problem that people 
often do not know how long it will take for a future outcome 
to materialize, timing risk (as in Onay & Öncüler, 2007) to refer 
to situations in which possible delays and their probabilities are 
known, and timing uncertainty to refer to situations in which 
possible delays and their probabilities are only vaguely known 
or unknown.
3. By-participants random slopes could, in principle, also be 
included in the mixed-effects regression. In this research, 
however, we adopted a different approach (i.e., hierarchical 

Bayesian analysis with the RDDU model reported later in this 
section) to examine potential individual differences in the 
effects of relevant predictors on choice.
4. We also tested the full factorial model with all interaction 
terms. It emerged that neither the three-way interaction among 
learning mode, reward size, and the probability of the longer 
delay nor the two-way interaction between learning mode and 
reward size was credible. We also performed the same analy-
ses with the probability of the longer delay and reward size as 
ordinal instead of interval variables. The results were virtually 
the same. In the Results sections, we therefore report the results 
of the simpler model.
5. As in Study 1, more complex models with higher-order inter-
actions or ordinal predictors were tested; again, we obtained 
the same results.
6. Mapping results from risky choice on intertemporal choice 
would suggest that the direction of the gap and the underlying 
difference in probability weighting may change when the safe 
option is also replaced by a timing lottery (Glöckner, Hilbig, 
Henninger, & Fiedler, 2016; Kellen, Pachur, & Hertwig, 2016).
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