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Abstract— Nanopore DNA sequencing enables the se-
quence determination of single DNA molecules up to 10,000
times longer than currently permitted by second-generation
sequencing platforms. Nanopore sequencing gives real-time
access to sequencing data and enables the detection of epigenet-
ic modifications. This unique feature set is poised to foster the
development of novel biomedical applications previously
deemed unfeasible.

Nanopore sequencing is based on picoampere scale meas-
urement of current modulated by DNA or RNA polymers trav-
eling through a nanometer opening between two compart-
ments. Each of the five canonical nucleobases (A, T, G, C, U)
has a characteristic electrical resistance, which ultimately
enables the determination of the precise base sequence. Howev-
er, a substantial computational effort is required to resolve the
underlying sequence from a time-warped and noisy stream of
digitized current measurements.

Recently, a wide range of digital signal analysis and ma-
chine learning methods have been developed for Nanopore
sequencing applications. Clinically relevant questions, such as
the quantification of short repetitive DNA sequences remain an
unresolved challenge to current generic, state-of-the-art na-
nopore data analysis methods. We believe realistic simulation
of the signal stream can be instrumental in the development of
tailored algorithms for such novel biomedical applications.

Based on our work with the Oxford Nanopore Technologies
MinlON and PromethION platform, we have developed Na-
nopore SimulatlON, a software package for the in silico gener-
ation of realistic, raw-signal-level data. Nanopore SimulatlON
starts from a reference genome in conjunction with a configu-
ration and model file derived from real-world nanopore se-
quencing experiments as input. To validate our algorithm, we
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have sequenced custom synthetic DNA, and in so doing have
generated a “ground-truth” data set potentially useful for
downstream algorithm development. Additionally, we demon-
strate Nanopore SimulatlON’s utility for method development
in typical clinical use cases.

Supplementary examples, raw data obtained from our syn-
thetic DNA sequencing experiments and the software are avail-
able under the open Mozilla Public license at
https://github.com/crohrandt/.
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L INTRODUCTION

DNA sequencing with nanopores has emerged as an ac-
cessible technology that can be deployed nearly every-
where[1]. Data generated with this method has characteristic
and systematic differences to that obtained with the short
read sequencing platforms (illumina/454/solid). The raw
nanopore signals derived from stretches of single DNA mol-
ecules (further referred to as ‘reads’) can span more than 2
million bases under optimized conditions[2] while second
generation technologies typically generate reads reflecting
only few hundred base pairs. Nanopore reads can also span
highly repetitive regions inaccessible to conventional se-
quencing approaches[3]. Nanopore sequencing has sparked
the development of new methods to enable DNA sequencing
applications, such as point-of-care testing of pathogens[4, 5],
real-time selective sequencing[6] or the exact quantification
of pathological short tandem repeat expansions[7].

In 2014 Oxford Nanopore Technologies (ONT) released
the MinION, a portable first to market product for nanopore
sequencing. It can be used for nanopore sequencing of DNA



and RNA molecules at a rate of currently up to 450 base
pairs per second (R9.4 or R.9.5 pore, DNA sequencing). A
MinION flow cell consists of a two-compartment chamber
with an encased application-specific integrated circuit
(ASIC) featuring a 512 channel analog-digital converter
(ADC) each channel of which addresses four nanopores in a
multiplexed fashion. A membrane separates the two com-
partments, and a single protein pore functions as the only
connection between the two chambers filled with an electro-
lyte solution. Across this membrane, a voltage of typically
180 millivolts is applied. As the electrically charged, single-
strand DNA nucleotide chain is traversing the pore, the three-
dimensional conformation of each nucleotide in the pore
influences the ionic current from one chamber into the other
through the nanopore. Each nanopore measurement currently
integrates the current across the pore modulated by six DNA
bases (6-mer) present in the pore at each point in time. This
current is in the range of picoampere, and the signal is
sampled by the ASIC with a frequency of typically 4 kHz for
DNA and 3 kHz for RNA. The resulting raw data consists of
those ADC measurements, which typically show an analyte
modulated amplitude between 20 — 40 pA with a step-wise
pattern with most steps reflecting a distinct DNA 6-mer (Fig.
4). The subsequent conversion of the raw signal into the
letters of the DNA alphabet commonly referred to as ‘base-
calling’, remains challenging[8], resulting in a typical se-
quencing error rate in the range of 15% for a base called
sequence of a single read[9].

Several features set nanopore sequencing apart from se-
quencing-by-synthesis approaches which currently are the
mainstay of the biomedical genome and transcriptome analy-
sis. The digital signal generated by each ADC (raw signal)
can be immediately processed at the same time it is generat-
ed. Loose et al., demonstrated that the signal could be
mapped online to a reference sequence as proof-of-principle.
The resulting information can be used to select reads for
further sequencing as a read can be ejected from the pore by
reverting the voltage across the two chambers, thus
effectively ending the sequencing of an individual DNA
strand. Predefined regions of interests in a given, larger
genome could be identified and only those DNA fragments
fully sequenced, which map to specific genomic regions
(referred to as “read until”)[6].

Notably, since the ionic current through a nanopore is
determined by the three-dimensional conformation of the
analyte, chemical DNA- and RNA-base modifications can
also be detected[10]. This ability provides an alternative to
whole genome bisulfite conversion, and subsequent sequenc-
ing of bisulfite converted DNA[11]. Real-time data analysis
and selective sequencing could enable rapid gene panel re-
sequencing in patients or the detection of cancer subtypes
based on dynamic sampling DNA variants and methylation.

II.

Advanced applications of nanopore sequencing such as
"read-until" or direct determination of base modification for
specific biological questions still pose complex optimization
problems. For the development of these and other novel
applications, increasingly sophisticated machine learning
approaches have been employed[12]. Machine learning
requires an abundantly sampled 'ground truth' in the form of
training and test datasets. Especially, the ground truth for
not well understood, currently ‘unsequenceable’ genomic
regions[13] is often only available from a simulation of the
sequencing process.

MOTIVATION

Table 1 lists several software solutions developed for
simulating nanopore sequencing. Most currently available
programs can only simulate nanopore reads on the already
abstracted base-space level after base calling, but cannot be
used to simulate raw nanopore signals as generated by the
ADC. ReadSim is a software tool capable of simulating
long-reads typical for Pacific Biosciences and Oxford Na-
nopore sequencers| 14]. Another simulator for these sequenc-
ing technologies is SiLiCo[15]. Both simulators statically
model the read characteristics, and no parameters may be
adopted from a real-world nanopore sequencing run. A
dynamically trainable model is provided by NanoSim[16]
and its fork NanoSim-H[17]. Both feature a training phase
where characteristics may be taken from real-world experi-
mentally generated fasta sequence files. Deep Simulator[18],
the first raw simulating software has been published in 2018.
Despite outputting raw data, this software only generates
idealized signal values without any noise characteristics
from a given reference genome. A comparison of the result-
ing accuracies of all simulation tools is shown in Table 2.

Hence, it is very likely that nanopore raw signal data
processing solutions optimized using existing data simula-
tion tools would perform poorly in real-world applications.
Our work attempts to fulfill the as yet unmet need for simu-
lation software capable of generating raw nanopore signals
with realistic and controllable noise characteristics.

Ideally, an optimal data simulation solution should inte-
grate into standard software toolchains already widely de-
ployed in the community and be adaptable to the rapidly
changing parameters of the sequencing technology. The
input of any reference genome and incorporation of muta-
tions or other biological properties in the simulated result is
highly relevant for supporting a wide range of use cases.
Sequencing parameter input should reflect those from a real-
world sequencing experiment, while also having the
flexibility to allow systematic variation of individual param-
eters to identify optimal conditions. For optimum usability,
the software should also be modular and easily modifiable.

Table 1. Comparison of nanopore read simulation software

Input reference file Model-based Training of Realistic ONT Generates raw fast5 Realistic Noise
simulation characteristics sequence output Model
ReadSim v v v
SiLiCo v v v
NanoSim v v v v
NanoSimH v v v v
Deep Simulator v v v v
Nanopore
SimulatlON v v v v v v

1537



III. SOFTWARE DEVELOPMENT

A. Design

Nanopore SimulatlON was developed with current, real-
world nanopore sequencing results as a template. Discrete
software modules simulate experimental parameters associat-
ed with experimental design decisions in the library prepara-
tion and sequencing methodology. Each module is realized as
a discrete python function, with standardized I/O interfaces
between them. The overall simulation workflow can be seen
as an ordered sequence of experimental steps paired with
their corresponding data simulation modules. Each module
alters or adds specific signal characteristics.

To provide an experimentally determined ground truth
dataset, we have designed and cloned a synthetic DNA se-
quence (called SynthXmer6). This sequence establishes a test
case, where the ground truth comprehensively reflects the
parameter space and is well defined. The SynthXmer6 se-
quence represents all possible 6-mers on the two strands
equally[19]. As a rather short sequence of the length of 2145
base pairs, it is typically sequenced as a single read. Conse-
quently, a very high and equally distributed coverage of the
synthetic sequence can be obtained with a single nanopore
sequencing experiment on a MinION flow cell.

Our simulation model was further optimized based on
this high coverage nanopore data set. The synthetic sequence
enabled a direct comparison of currents modulated by a near
ideal representation of all possible DNA 6-mers derived from
a very deeply sampled nanopore experiment with the results
of variable simulated noise models.

Fig. 1 shows the workflow of a real nanopore sequencing
experiment on the left side. The center column introduces
potential biological attributes that the DNA sample may
bring in. On the right side, the modular workflow of Na-
nopore SimulatlON is outlined. The overall process can be
divided into four general steps (Fig. 1: Labelled A, B, C, and
D.).

Part A covers the DNA extraction and fragmentation in
real-world nanopore sequencing experiments. At this step
DNA fragments of different sizes (10°-10° base pairs) are
available in the sample pool. For simulation purposes, the
only data required is a reference genome of a biological spe-
cies (e.g., H. sapiens or C. elegans). Fragment size distribu-
tions are introduced later in Nanopore SimulatlON.

Part B represents the library preparation. Here, adaptor
sequences attached to a motor protein are ligated to the DNA
fragments. Also, several samples may be sequenced in paral-
lel in one sequencing run. To multiplex, each sample is
labeled with a short “barcode” DNA oligomer. These adaptor
and barcode sequences may also be introduced into the simu-
lation process. The library preparation may cause additional
physicochemical DNA fragmentation; notably, after this step,
the fragment sizes are fixed.

Part C models the sequencing process itself. Here charac-
teristics of the nanopore sequencing technology, as well as
characteristics of different library preparation methods and
DNA sample properties, are combined. In a real-world se-
quencing experiment, all these parameters can only be ob-
served post-hoc from a completed sequencing experiment. In
our simulation process, each parameter may be altered indi-
vidually to systematically study the impact of experimental
variables on the outcome of an experiment. For ease of use,
all parameters are introduced in specific python class meth-
ods, which facilitate writing new python methods for addi-
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tional parameters that may influence the sequencing results,
e.g., when modified or novel library preparation methods are
introduced. The modular design will facilitate adapting to the
rapid evolution of nanopore sequencing technology.

Part D as the last module encapsulates the actual data
generation step. Nanopore SimulatlON was designed to be
fully compatible with the standard toolchain provided by
Oxford Nanopore Technologies and generates files in the
standard fast5 file format. It is therefore compatible with
ONT's basecaller Albacore and any other tool for nanopore
sequencing data working with the generic toolchain.

B. Implementation

Nanopore SimulatlON requires a reference genome, a
model file, a configuration file, a .ini file and a base model
file as input.

The reference genome is specified by a .fasta file. The
configuration file can be built with Nanopore SimulatlON by
extracting key parameters from an actual nanopore sequenc-
ing data set that has progressed past the basecalling stage. A
.ni file containing additional parameters has to be defined.
Each of the parameters may be manually modified in the
configuration file to modulate the simulation behavior. Addi-
tionally, a base model file is required. This file defines a raw
current model of each 6-mer and is distributed by Oxford
Nanopore Technologies. For triggering the simulation pro-
cess, the number of reads to be simulated as well as the out-
put location is specified at the command line of the applica-
tion.

First, a unique run-identification is generated and the start
time is saved as metadata of the simulated reads. Single-Read
metadata is saved to a queue so that each read can inde-
pendently be processed allowing parallel, threaded pro-

A. Sequencing Process Biological Process Simulation Process
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Profile

fasts

Fig. 1. Workflow of SimulatION in comparison to real
nanopore sequencing. See text for details.



cessing on multi-core compute hardware. Fragment size is
determined from a length distribution specified in the config-
uration file, and a read start position within the reference is
randomly sampled for each fragment. The next step is exe-
cuted via an extendable code structure enabling the simula-
tion of biochemical modifications to the reference based
DNA sequence. Several types of modifications may be
introduced to the reference sequence, such as adding barcode
adaptors, or single nucleotide polymorphisms (SNP). All
parameters for this step are defined in the .ini file. This way
the manipulation and optimization of parameters between
simulation runs are most straightforward to accomplish and
several parameter sets can be archived for later reproducibil-
ity. As output, the ‘biochemical’ API generates fragment
sequences in the base space.

The fragment sequences are then translated into current
mean values with a standard deviation specified in the model
file. Furthermore, as the DNA strand does not traverse the
pore with uniform velocity, the time any given 6-mer re-
mains in the pore, and a specific current can be measured, is
commonly referred to as idling or dwell time. Consequently,
a sampled distribution of idling time per simulated 6-mer is
employed to more realistically simulate the raw signal. For
the idling distribution, two options have been implemented.
The first option takes the distribution from the configuration
file. The other option takes the base of this distribution from
Scrappie[20]. Scrappie has an evolved base model that also
takes the dwell time into account. With this option a more
realistic simulation is possible.

In the next step, measurement error and an additional
noise term are added to the signal. Based on the standard
deviation, the mean current value and the number of samples,
the stream of current measurements is generated. The error
based on the standard deviation and the noise level can be
adjusted independently. Afterward, the raw current values are
transformed into the integer representation as generated by
the ADC. Furthermore, an offset individual to each fragment
and an amplitude range is taken from a distribution from the
configuration and applied to the transformation.

In the final step, the raw values are written to a fast5 file
with the metadata from the configuration file. This output

can be analyzed with any currently available standard na-
nopore software toolchain. The fast5 file format is based on
the HDF5 container format and can store different data in
one file[2]. Therefore, not only the simulated raw data is
stored in the fast5 file, but also a list of the original base
sequence is stored to have the ground truth alongside the
simulated data. This additional information can be used for
validation or training of neural networks.

IV. USE CASES AND SOFTWARE OPTIMIZATION

A.  Simulation vs. actual measurements of nanopore se-
quencing data

As a most common use case, we anticipate researchers to
simulate nanopore reads from already existing reference
genomes. These references may encompass plasmids or virus
genomes up to more complex mammalian or even larger
plant genomes. Fig. 2 shows the normalized and aligned raw
current values of a short stretch of a SynthXmer6 sequencing
experiment (upper) and the simulated values of the same
sequence (lower).

The nanopore sequencing of the synthetic DNA enabled
us to investigate the range of inherent nanopore workflow
signal characteristics. The high coverage of the synthetic
sequence enabled to comprehensively study the effects of
technical variability of the ADC measurements for each 6-
mer, namely amplitude drift, the spread of current measure-
ments per base or the noise that leads to errors in the base-
called sequence[21]. As a result, we further optimized model
generation and parameter selection with our large sample
pool of defined sequences. Plotting raw values aligned to the
corresponding base shows our underlying model produces
data visually very similar to measured data. As a rigorous
mean of comparing real data and simulated data, the data
already shown in Fig. 2 were aligned to each other using the
Dynamic Time-Warping (DTW) algorithm. A classical mul-
tidimensional scaling plot based on the DTW distances is
shown in Fig. 3, demonstrating that measured and simulated
raw signal data cluster together. Therefore we conclude the
simulated data can be applied in algorithm development for
nanopore sequencing data analysis software.
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Fig. 2. Aligned raw-sample data from real nanopore sequencing experiment compared to simulated data
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To further evaluate Nanopore SimulatlON in later steps
in the nanopore pipeline we basecalled the raw signals and
aligned them to the synthetic reference sequence. For
basecalling Nanopore SimulatlON and DeepSimulator out-
puts ONT albacore[22] 2.3.1 was used, the alignments for all
simulators was generated with minimap2[23] 2.11. We com-
pared the aligned output of Nanopore SimulatlON and other
simulators capable of simulating nanopore sequencing long
reads on the sequence level. The results are shown in Table
2. Base identity is the percentage of bases that match the
reference genome after alignment.

Table 2. Statistics for a real experiment in compari-
son to simulated data from all simulation tools

Base identity Insertions Deletions
Real data 86,75 % 1,14 % 8,53 %
ReadSim 93,98 % 2,46 % 2,60 %
SiLiCO 100,00 % 0,00 % 0,00 %
NanoSim-H 90,63 % 2,21 % 4,24 %
DeepSimulator 89,07 % 0,89 % 7,11 %
Nanopore SimulatlON 86,16 % 1,52 % 7,99 %

Based on this analysis Nanopore SimulatlON successful-
ly simulates raw nanopore signals, that produce alignment
statistics very close to real measurements and the sequence
results are competitive with the existing sequence and raw
nanopore sequencing data simulation tools.

{ « Simulated signals >
Measured signals

Coordinate 2
.

L‘noréunate 1
Fig. 3. Classical Multidimensional Scaling of the real
and simulated data

B. Simulation of repeat expansions

As the nanopore sequencing technology generates long
consecutive reads independent of DNA sequence, GC con-
tent or other features[24], nanopore reads can span very long,
highly repetitive DNA sequences. Such atypical sequences
cannot be reliably sequenced with conventional short-read
sequencing technology[3, 12]. Pathogenic expansions of so-
called Short Tandem Repeats (STRs) are an example for such
unusually structured DNA sequences, which are causally
linked to neuropsychiatric disorders such as intellectual disa-

bility, autism, dementia, movement disorders and epilep-
sy[25]. STRs consist of DNA sequences of three to six bases,
which are usually consecutively repeated in healthy individu-
al up to 20 times at a specific genomic position, but may
continuously expand to several thousand repeats in case of
some genetic disorders. Currently prevailing short-read se-
quencing technologies cannot resolve STR expansions satis-
factorily[26]. Expanded repeats are usually significantly
longer than the highly fragmented Illumina sequencing li-
braries. Because of the highly repetitive nature of the STRs,
an assembly of the expanded region is typically impossibly
beyond twice the read length and the maximum insert lengths
in the case of paired-end sequencing libraries[26]. Nanopore
sequencing might offer an obvious solution to the problem,
yet we found that the current standard nanopore base calling
workflows cannot reliably quantify expanded STRs above a
threshold of 200 repeats. Identification of the flanking se-
quence on the raw signal level before and after the repeat
may enable the precise repeat number quantification in na-
nopore reads spanning unaffected or expanded STRs with
signal level analysis methods. Fig. 4 displays a single read
raw current signal of a 50x “CGG” repeat in 5’ untranslated
region of the FMR1 gene. The vertical lines demarcate indi-
vidual CGGs. The signal is time variant, and one CGG can-
not satisfactorily be distinguished.

Fig. 5 shows a density plot of several different repeat
lengths called by both the sequence based repeat counter
RepeatHMM] 13] and a custom raw signal based repeat coun-
ter. In each experiment step 250 reads spanning the whole
repeat sequence were simulated with a defined length of 20,
50, 75, 100, 150, 200, 250 and 300 CGG repeats. All these
data sets were then analyzed with basecalling/RepeatHMM
and with an in-house signal based hidden markov model
(HMM) implementation. While our raw signal HMM model
has a straightforward training procedure with only four
states, it results in more precise repeat counting. We noted a
better accuracy and that the signal level method does not
degrade as much in performance with higher repeat lengths
when compared to the sequence based HMM. These results
highlight that in the case of STR quantification algorithms
based on the raw current signal outperform sequenced-based
methods due to basecalling errors introduced in the upstream
toolchain. We posit that Nanopore SimulatiON may enable
the development of clinical grade raw signal based STR
counters.
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Fig. 4. Simulated raw current signal of a tandem repeat
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Moreover, we anticipate that other nanopore raw signal
analysis methods will benefit from our approach to simulate
nanopore raw data with realistic noise characteristics. From a
practical perspective, procuring experimental nanopore data
from a large number of STR expansion disorders with in
some cases only very few patients with a specific disorder
worldwide will actively limit general and customized repeat
quantification method development. Here, a realistic simula-
tion of the anticipated data will be instrumental.

C. Variant calling and haplotype phasing

Single nucleotide polymorphisms (SNP) are among the
most common genetic causes underlying biological variabil-
ity. In the human genome, on average every 1000th base is
polymorphic between two individuals. As SNP often vary
between two alleles, this information may be used to deter-
mine if a specific gene variant originates from the maternal
or the paternal genome. This method is referred to as phas-
ing. Not in all cases, the originating genomes are known for
analysis, and a de novo allele reconstruction needs to be done
for the analysis. Nanopore sequencing is very well suited for
the reconstruction of genomic haplotypes as several allelic
SNPs may be covered with one long read, commonly re-
ferred to as “phasing”. Consequently, we next explored this
type of analysis with SimulatlON.

A 10° base pair section of the gene MHC on chromosome
6 was modified with sets of five SNP variants, which were
introduced randomly. With these two reference sequences,
representing the maternal and the paternal genome, several
coverage scenarios were contemplated. In ten rounds each

reference was simulated with Nanopore SimulatlON using a
real-world read length distribution with a defined number of
10, 15, 20, 25, 30, 40, 50 and 100 reads. All read sets were
base-called using Albacore and aligned to the chromosome 6
reference using minimap 2[23] as if they were sequenced
together. Afterward, the widely used nanopolish tool[27] was
used to detect SNPs in the dataset. A minimum number of 10
reads supporting a SNP was parameterized. The next step
used the experimental function phase-reads of nanopolish to
phase these SNPs, which means that an alignment is
compiled with only the SNP being differentiable. This
alignment is further analyzed in a custom python script,
which assigns each read to a specific allele by grouping reads
with several SNP in them, into clusters that form an allele
profile. Fig. 6 shows the results of phasing the simulated
data. The number of reads able to assign to an allele is shown
as a range over all ten runs from the eight sets of data simu-
lated, with the actual simulated number of reads per allele
denoted by a black diamond. Not every set gave a result for
each allele; therefore the number of sets that support the
number of reads covering the specific allele is printed in bold
numbers above the x-axis. As can be seen in the left half,
with low coverage, SNPs cannot be distinguished well
enough for enabling reliable haplotypic phasing. Coverages
of 50 and more are required for interpretable results.

D. Discussion

We have developed a modular software tool that is capa-
ble of simulating the raw electrical current values of na-
nopore sequencing reads. Moreover, we have successfully
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Fig. 6. Phased reads in a two allele scenario
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demonstrated that this type of simulation software can be
used for developing algorithms based on raw current values.
Based on several use cases, we highlight the potential ad-
vantages of methods for raw signal space analysis. We con-
clude that ground truth datasets based on our simulation of
nanopore sequencing experiments may greatly facilitate the
development of new analysis methods particularly in use
cases, where experimental data currently cannot be satisfac-
torily simulated with abstracted DNA sequences because of
still relevant error rate inherent to current state-of-the-art
basecalling methods. Additionally, Nanopore SimulatlON
enables to develop and optimize their algorithms without the
need of difficult to procure DNA samples, molecular labora-
tory staff, and equipment. Nanopore
SimulatlON may enable a more useful resource usage within
a research group and could shorten the question-to-answer
for hypothesis-driven, biological questions.

Based on our experience, the main challenge for answer-
ing research or clinical question with nanopore sequencing is
to find an optimal solution for cost/resource utilization and
custom library preparation method development.

For example, with the PromethION, human genomes can
be rapidly sequenced with very high coverage at a price point
of several thousand US$ comparable to Illumina whole ge-
nome sequencing. Methods for highly selective DNA frag-
ment enrichment methods could provide a specific result, e.g.
for the diagnosis of a defined set of repeat expansions disor-
ders with much less sequencing effort using consumables
amounting to less than $150. For such a tailored solution
involved molecular biology workflows with a large tunable
parameter set (e.g., fragment size, enrichment ratios, back-
ground noise, adaptor ligation efficiencies) need to be opti-
mized. In this example, Nanopore SimulatlON can predict
each quality metric or parameter in the library preparation
stage that needs to be controlled for a reliable diagnosis of a
repeat expansion disorder such as the Fragile X Syndrome.

We also believe, Nanopore SimulatlON will demon-
strate usability in the usage for the comprehensive validation
and stabilization of clinical, nanopore sequencing based
processes and toolchains. With its tunable library and noise
parameters, our software can effortlessly generate large
“challenge” datasets for the determination of the technical
limits of any future diagnostic molecular and/or software
workflow involving nanopore sequencing.

Further development of Nanopore SimulatlON will ad-
dress related biological questions like full-length direct RNA
sequencing, more involved tandem repeat detection and
further optimization of generic basecalling and/or sequence
alignment methods. In the field of modified DNA molecules,
it already gives basic support for the researchers as it enables
the simulation of methylation of single bases by using an
appropriate k-mer model. All these features will be relevant
in the future. Especially RNA sequencing and methylation
are such complex topics that they will be addressed in future
work. Homopolymers, subsequences only consisting of one
single character (A, C, G, T), still pose a difficulty for the
basecalling softwares[28]. As the nanopore sequencing tech-
nology delivers the information of the homopolymers only in
the time information of a quasi-stable raw signal, Nanopore
SimulatlON will be beneficial for the further basecaller de-
velopment. A comparison of homopolymeric real measured
data and simulated data is provided in the source code reposi-

tory.

Currently, the nanopore sequencing technology is rapidly
expanding its scale and use cases: The PromethION platform
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can generate multi-terabase scale datasets within few days at
genome centers. On the other end of the spectrum, the Flon-
gle/SmidgelON platform is marketed for kilobase-scale,
focused, point-of-care sequencing applications at the bedside.

In nearly every scenario, Nanopore SimulatlON can rap-
idly provide insights into which experimental scale and li-
brary preparation methods will result in an optimal readout
and the shortest time-to-answer.
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