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only a belief about a category's probabilistic attributes, but an
incorrect one. By definition, then, the effect of this belief was
harmful, and any influence it at all had was too much.

Base rates researchers started with normative models of deci-
sion making based on Bayesian theory and, in some cases, urn
models. As Koehler points out, a real world problem often glossed
over in research is how to define and then determine the base rate
that is relevant to a given decision. Typical experiments simply
presented this information in the protocol, as in Kahneman and
Tversky's (1973) famous bald statement that the target person
conies from a population of 30 engineers and 70 lawyers. The
information might as well come from God. It is treated in this
research (by the researchers if not by the subjects) as definitionally
true, so its effect on judgment can only be beneficial, and any
failure to use it full-strength can only harm accuracy.

This leads to a final question - Is it really good, as base rate
literature would have it, or bad, as stereotypes literature would
have it, to use one's preexisting beliefs about category attributes
when forming judgments about a member of a category? The
answer is neither. One should use this information when it is
accurate and not use it when it is inaccurate. Research to ascertain
the accuracy of stereotypes, or base rates, is outside the framework
of normative decision-making research as described by Koehler.

What is needed, in addition to the suggestions for more "ecolog-
ically valid" research (sect. 5; the Brunswikian term is "representa-
tive"), is research on the beliefs people hold about social (and
other) categories, as well as research that examines, through
converging evidence, the degree to which these beliefs are correct
or mistaken. For an example see the article by Swim (1994),
comparing popular beliefs about the attributes of men and women
with meta-analytic conclusions about actual gender differences.

Content-oriented research complements the process-oriented
research described by Koehler in an important way. It examines
not just how information is used, but is realistic accuracy (Funder,
in press, a). The effect of base rate, stereotypic, or any other kind
of information on judgmental accuracy, depends only in part on
how that information is used. It also depends on whether the
information was any good in the first place.
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Abstract: In contrast to traditional research on base-rate neglect, an
ecologically-oriented research program would analyze the correspon-
dence between cognitive algorithms and the nature of information in the
environment. Bayesian computations turn out to be simpler when infor-
mation is represented in frequency formats as opposed to the probability
formats used in previous research. Frequency formats often enable even
uninstructed subjects to perform Bayesian reasoning.

Some years ago I applied for an American green card. The U.S.
immigration office demanded an HIV test, and I was told that a
positive test (actually, a positive test confirmed by a second one)
would result in denial of the green card. The morning I drove to
the U.S. consulate in Frankfurt to take the test, I asked myself
what was the probability of having the virus if the test came out
positive. At that time I had the following information. About .02%
of German men have the HIV virus (base rate). If someone has the
virus, there is a 99% chance that the test will be positive (hit rate).
If someone does not have the virus, there is still a .5% chance that
the test will be positive (false alarm rate). Question - What is the
probability of having the vims if the test conies out positive?

One way to answer this question is to take a pencil and paper

and to compute the posterior probability with Bayes' theorem -
but I was driving. A less cumbersome method is to change the
representation of the information from probabilities (percent-
ages) into absolute frequencies (natural numbers), which can be
done while driving. Imagine a sample of 10,000 men. Two have the
virus (base rate), and these two will most likely test positive (hit
rate). Out of the 9,998 who do not have the virus, some 50 will also
test positive (false alarm rate). So we have 52 who test positive.
Question - How many of those who test positive actually have the
virus?

With this frequency representation, one does not need a pencil
and paper or a calculator. The answer can immediately be "seen."
About 2 out of the 52 men who test positive have the virus. This
figure corresponds to a .04 posterior probability. Note that the
information representations, probability and frequency, are math-
ematically equivalent: they can be mapped onto each other in a
one-to-one fashion. But what is equivalent for mathematics may
not be equivalent for the mind. Most people have no idea what to
do with such information when it is represented as probabilities or
percentages: many, however, show insight when the information
comes in natural numbers (for details see Gigerenzer & Hoffrage
1995).

Why do frequency formats improve Bayesian reasoning without
instruction? Bayesian computations are simpler with frequency
formats than with probabilities or percentages. Let the symbols H
and — H stand for the two hypotheses (virus or no virus), and D for
the potential data (positive HIV test). A Bayesian algorithm for
computing the posterior probability p(H\D) with the values given
in the probability version amounts to solving the following equa-
tion:

p(H | D) =
p(H)p(D | H)

p(H)p(D | H) + p(-W)p(D | -H)
(1)

In contrast, a Bayesian algorithm for computing the posterior
probability p(H | D)in the frequency version, requires solving the
following equation:

(2)

where a is the number of cases who have both the symptom and
the disease, and b is the number of cases having the symptom but
lacking the disease. Thus, when information is presented in
natural numbers, the Bayesian computations are much simpler
than with probabilities or percentages.

The general point is that algorithms need information, and
information needs to be represented. Thus, cognitive algorithms
ought to be studied in tandem with the external representations of
information on which they operate (Marr 1982). This psychologi-
cal point has been overlooked in most of the research on the so-
called base rate fallacy, where the external representation of
information has been a matter of convention, not theory. The link
between algorithm and external representation is just as important
for an electronic calculator. My pocket calculator has an algorithm
for multiplication, which is designed for Arabic numbers as input.
If I enter binary numbers, garbage comes out. But I cannot
conclude from the garbage that my calculator has no algorithm for
multiplication. Similarly, one cannot conclude, as has been done in
prior research on base rate neglect, that people who come up with
wild posterior probabilities do not have a Bayesian algorithm in
their mind.

What happens to people's reasoning when researchers use
frequency rather than probability representations for problems
used in previous research, such as the cab problem and the
mammography problem? In one of the largest studies ever done
on Bayesian inference (Gigerenzer & Hoffrage 1995; see also
Cosmides & Tooby, in press), we found that with frequency
representations, subjects arrived at the numerically exact estimate
using a Bayesian algorithm (including pictorial equivalents and
shortcuts) in about 50% of the cases.
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Koehler has rightly pointed out that research on statistical
thinking needs to move toward what he calls an ecologically valid
research program, and the above analysis of the role of external
representation in reasoning elaborates on this vision. A first step
toward ecologically minded research is to think about how infor-
mation has been represented and encountered by humans during
most of our history, and to look for cognitive algorithms that are
tuned to those representations. From such ecological consider-
ations we might expect cognitive algorithms to be designed for
absolute frequencies rather than for probabilities and percentages,
which depend on the development of literacy and numeracy
(Gigerenzer et al. 1989). An important consequence is that base
rates need not be attended to in natural sampling of frequencies
(Kleiter 1994). This can be seen from equation 2, in which the base
rates are already embodied in the two absolute frequencies. The
only information that needs to be monitored are these two frequen-
cies, for example, the number of cases with symptom and with
disease and the number of cases with symptom and no disease.

Representation of information in terms of frequencies improves
Bayesian inferences without instruction. More generally, fre-
quency representations make various "cognitive illusions" in statis-
tical reasoning largely disappear (for an overview see Gigerenzer
1991; 1994). These results are of course good news for those who
would like to believe in some sort of human rationality, for those
biologically minded people who wonder how a species so bad at
judgment under uncertainty could have survived so long, and for
those unfortunate souls charged with teaching undergraduate
statistics.

Koehler's target article on the base rate fallacy is timely. Re-
search on the use of base rates has been driven by the formal
theory of probability, which is mute about representation and
content (but see how Birnbaum, 1983, tailored statistical models
to the content of the cab problem). Research has also ignored the
problems with base rates that arise when Bayes' theorem is
applied to everyday life (e.g., Daston 1988; Earman 1992). For
example, while driving to the US consulate for my HIV test, I
wondered from which reference class to take the base rate, since I
am a member of several reference classes with different base rates.
Selecting a reference class introduces a source of subjectivity that
statisticians such as Fisher (1935) have held against the routine
application of Bayes' theorem.

Ironically, most researchers who hold subjects to Bayesian
standards do not themselves adhere to those standards in their
research. Experimenters habitually use Fisher's significance test-
ing, not Bayes' theorem, to infer whether subjects reason the
Bayesian way. Thus they accuse subjects of committing the base
rate fallacy at the same time that they neglect base rates. This is a
double standard that should make us suspicious of the mechanical
application of norms, Bayesian or otherwise, to evaluating human
inference.
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Abstract: The environment in which humans evolved is strongly and
positively autocorrelated in space and time. Probabilistic judgments based
on the assumption of independence may not yield evolutionarily adaptive
behavior. A number of "faults" of human reasoning are not faulty under
fuzzy arithmetic, a nonprobabilistic calculus of reasoning under uncer-
tainty that may be closer to that underlying human decision making.

Koehler questions whether Bayesian probability theory is the sole
correct normative standard against which human statistical judg-

ments should be compared. We think there are evolutionary
explanations of why humans might not generally reason by the
rules of probability theory. We review some of these and suggest
there is a distinct nonprobabilistic calculus that humans may have
evolved for making decisions under uncertainty.

Probability theory is almost paradoxically nonintuitive. Aside
from the heuristics and biases literature, there are also some
famous cases in which even experts have been fooled by seemingly
straightforward problems (e.g., the Monty Hall dilemma). Why
was probability theory not developed until the 1700s, centuries or
even millennia after the flowering of other mathematical subjects
that are arguably less germane to everyday decision making, such
as geometry and algebra?

In fact, probability theory arose in reaction to games of chance
involving artificial gambling devices, such as tossed coins and dice.
These devices exhibit dynamical chaos with extreme sensitivity to
initial conditions on the time scale of human perception. The
devices mimic well the idea of statistical independence, and that
explains their usefulness in gambling. In contrast, it is hard to think
of examples of independence in natural phenomena, where auto-
correlation and other dependencies are the rule. Strong positive
correlations are observed in most natural fluctuations of magni-
tude and time scale relevant to human evolution (Pimm & Red-
fearn 1988). For example, the best predictor of tomorrow's
weather is today's. Even negatively correlated phenomena such as
daily, seasonal, and yearly cycles generally reveal positive short-
term autocorrelations once the deterministic trend is extracted
and variability is expressed as deviations from the mean.

Spatial patterns in ecology also generally exhibit large positive
autocorrelation. Early humans would surely learn that a good
place to forage for food is near where food was found before.
Humans evolving in such autocorrelated landscapes would mainly
experience conditions characterized by strong interdependence
among events. It is no surprise, then, that human evolution has
created decision-making and behavioral patterns that are alien-
ated from probability theory. Similarly, in autocorrelated environ-
ments, the results of animal foraging theory can be counterintui-
tive (Stephens & Krebs 1986, pp. 81-90). Practical application of
probability theory virtually demands independence assumptions
at some level. Since independence is unusual in the natural world,
there may have been little selective pressure for humans to
become probabilists.

Arriving at good probabilistic decisions typically requires mak-
ing use of a bodyof empirical information. Yet humans seem to be
ill-equipped to process frequency information. For example, we
are notoriously difficult to educate about the relative risks of
environmental carcinogens (Graham 1989), despite the clear
importance of the information in daily life. Why should this be?
Given the range and depth of other cognitive skills in humans, this
inability might be considered surprising.

One possible reason that humans are not much better at
collecting, remembering, and using frequency information is that
these tasks require time, but indecision is often punished. Taking
too long to chose which food to eat may result in getting nothing
for dinner. Likewise, upon seeing a predator, one must decide
quickly whether to freeze, flee, or fight. The fitness cost of
indecision may often exceed the cost of a suboptimal, but quick,
decision.

Another possible reason that humans are not better at collect-
ing frequency information is that forgetfulness can be useful.
For example, optimality models of foraging suggest that in rap-
idly changing or patchy environments, food encounter rates
should be calculated only over the recent past, ignoring longer-
term information (Iwasa et al. 1981). In all realms of behavior,
in fact, invariant decisions are a maladaptive strategy when-
ever circumstances change (e.g., Maynard Smith 1982). In this
sense, forgetting the past is an essential component of adjusting
behavior to current conditions, which should be strongly favored
by evolution.

Despite arguments that probability theory is the only reason-

24 BEHAVIORAL AND BRAIN SCIENCES (1996) 19:1




