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Abstract

The paper extends equilibrium theory of ion exchange chromatography to ac-

count for variable solution normality and steric hindrance. Both effects are

crucial for many separations including the separation of proteins. Analytical

solutions are given for a full chromatographic cycle consisting of the loading

of an empty bed equilibrated at different salt concentrations followed by a re-

generation step. Special emphasis is on selectivity reversals. It is shown that

additional reversals may occur due to a change in solution normality. Results

are illustrated step by step and relation to ion exchange chromatography with

constant solution normality and/or mass action equilibrium without steric hin-

drance is discussed. Theoretical findings are validated by comparison with nu-

merical simulation.

Keywords: Ion Exchange, Chromatography, Solution Normality, Steric

Hindrance, Equilibrium Theory, Selectivity Reversal

1. Introduction

Equilibrium theory is a powerful method for understanding and designing

chromatographic processes [1, 2, 3, 4, 5]. It assumes thermodynamic equilibrium
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between the solid and the fluid phase leading to a system of first order partial

differential equations, which admits analytical insight into propagating concen-5

tration fronts and pulses in a chromatographic column. Patterns of behavior

crucially depend on the adsorption mechanism, which is represented by the ad-

sorption isotherm. An important class of processes is based on ion exchange

chromatography. Classical equilibrium theory for stoichiometric ion exchange is

for mixtures with equal valences leading to explicit adsorption isotherms similar10

to the well known Langmuir isotherm [1]. In contrast to this, unequal valences

lead to implicit adsorption isotherms that were studied by Tondeur [6, 7] with

special emphasis on selectivity reversals, which may occur for mixtures with un-

equal valences. A summary was given by Helffereich and Klein in [1]. Missing

aspects of the theory were added recently in [8] and an analytical solution of the15

full chromatographic cycle was given comprising the loading of an empty bed

followed by a subsequent regeneration. In this paper also a reformulation strat-

egy has been proposed to provide an efficient numerical solution using standard

methods for differential algebraic equation (DAE) systems.

All of these approaches assume constant ionic strength and neglect steric20

effects. However, variable ionic strength plays an important role in gradient

and displacement chromatography, which are frequently applied to enhance the

separation of molecules with similar properties [9, 10, 11]. Further, steric effects

play an important role for larger molecules such as proteins encountered in many

bio separations [12, 13]. Therefore, the objective of the present paper to extend25

equilibrium theory for stoichiometric ion exchange to processes with variable

ionic strength and to account for steric effects by using the well known steric

mass action law (SMA) [14]. Consequently, the extension in this paper inherits

also the limiting assumptions of the SMA, most notably the lack of accounting

for a variation in pH or a variable exchanger capacity based on the dissociation30

of weak acid functional groups in the solid phase. Contributions that provide a

local equilibrium model for these cases, which are not considered here, are for

example [15] and [16], respectively.

Past attempts to apply the method of characteristics in ion exchange chro-
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matography using the SMA were performed in [9] for binary mixtures and iso-35

cratic elution as well as in [17] for binary mixtures and linear salt gradients.

Further extensions of the equilibrium theory to ternary systems for monovalent

species [18] or related to step gradient conditions [19] for binary mixtures were

also presented. However, past contributions do not provide the rigorous appli-

cation of the equilibrium theory to arbitrary N component systems using the40

SMA with variable solution normality.

In the following, the theory is developed step by step, and the relation to the

previous findings for systems with constant solution normality and mass action

equilibria without steric hindrance is established. For illustration purposes of the

different effects, three different application examples are considered afterwards.45

Analytical results are validated through comparison with numerical simulation.

2. Model Equations

The following is based on the well-known ideal model of chromatography

∂

∂t
(c+ Fq(c)) +

∂c

∂z
= 0, c,q ∈ RN . (1)

It assumes isothermal operation, thermodynamic equilibrium between the ad-

sorbed and the fluid phase, a constant interstitial velocity u of the fluid phase,50

a constant void fraction ǫ, and it neglects axial dispersion. The parameter

F = (1−ǫ)/ǫ denotes the phase ratio, and the variables t = t∗u/L and z = z∗/L

denote the dimensionless time and space coordinate, respectively, where L is the

length of the column. Note that the corresponding dimensionless interstitial ve-

locity in (1) has a value of one. In these model equations, c represents the55

concentrations of the N adsorbable components in the fluid phase and q(c)

the corresponding concentrations in the adsorbed phase, which follow from the

adsorption equilibrium.

For constant solution normality in system (1) only N − 1 concentrations

are independent, and (1) can be reduced to a system of N − 1 equations by60
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introducing dimensionless concentration measures (see e.g. [8]). For variable

solution normality, all N concentrations are independent and the full set of

equations (1) has to be considered. Therefore a conversion to dimensionless

concentration measures is not used in this paper.

The adsorption isotherm of stoichiometric ion exchange follows from the65

mass action law according to

KiN =

(

qi
ci

)νi ( cN
qN

)νN

= const., i = 1, . . . , N − 1. (2)

Following the notation in [8], νi is the reciprocal of the characteristic charge of

ion ’i’, and component ’N’ is a suitable reference component. The characteristic

charge is assumed to be constant and determines the the multi-pointed binding

of larger molecules [14, 20] without accounting for variations in the pH, which70

is assumed to be constant throughout this paper.

In general component ’N ’ is usually a simple ionic component. However

it can be any kind of reference ion. In order to emphasize its special role

in the present paper, component ’N ’ is denoted as the salt, which is used to

change the adsorption behavior of all other components. For constant solution75

normality c̃tot the salt concentration is not independent anymore but follows

from cN = c̃tot −
∑N−1

i=1
ci
νi

, which is not the case in this contribution. Thus,

the solution normality can change. Typically, νN is equal to one. However, for

generality the following development is not restricted to this case. Accordingly,

qN is the salt load of the solid phase or the free accessible salt load of the solid80

phase in case of steric hindrance by the other molecules. For fixed ion exchanger

capacity qtot, the salt load qN follows from

qtot =

N
∑

i=1

ξiqi, (3)

ξi =
1

νi
+ pi, (4)

where pi accounts for steric effects. For negligible steric effects pi = 0, the cor-

responding generalized factor ξi reduces to ξi = 1/νi. This applies in particular
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to the salt, i.e. pN = 0, also in the presence of steric hindrance by the other85

molecules. Moreover, the electroneutrality condition is also accounted for by

Eq. (3) [14].

In the general case of unequal characteristic charges of the different ions,

Eqs. (2), (3) represent a system of implicit algebraic equations, which will be

denoted

0 = fi(q, c) =
1

KiN

·

(

qi
ci

)νi (cN
qN

)νN

− 1, ∀i = 1, . . . , N − 1,

0 = fN (q) =
N
∑

i=1

ξiqi − qtot

(5)

in the following. Additional assumptions required for the SMA are as follows.

Equilibrium constants and steric hindrance are also assumed to be constant [14].

Further, the effect of co-ions is neglected based on the assumptions in [20].90

For an efficient numerical solution of the model equations we use equations

(1) and (5) in combination with the solution strategy introduced in [8] and its

extension to the SMA in [21]. This strategy comprises a reformulation of the

model equations by introducing variable v = c + Fq(c), a discretization of

the resulting equations using a method of lines approach [22] with finite differ-95

ences and a subsequent simultaneous solution of the resulting system of ordinary

differential equation applying standard DAE numerics. For demonstration pur-

poses, simple first order backward differences are used based on an equidistant

grid with Nz = 1000 spatial grid points. The resulting DAE system is solved

with ODE15s in MATLAB R© [23].100

Utilizing the same line of arguments as introduced in [8] and the spectral

properties to be discussed in the next section, it can be shown that the dif-

ferential index of the resulting DAE system is always equal to one [24], which

alleviates the numerical solution considerably. For a more detailed discussion

of the differential index of DAE systems the reader is also referred to [8] and105

further references therein.

Finally, it is important to note that instead of the N component material

balances of Eq. (1) we may also use only N − 1 component material balances

5



together with some sort of total material balance that is obtained through mul-

tiplication of the component material balances with factors ξi and summation110

over all components. Introducing

ctot =

N
∑

i=1

ξici, (6)

we find in view of Eq. (3)

∂ctot
∂t

+
∂ctot
∂z

= 0. (7)

It should be noted that ctot is not the total solution normality, which would be
∑N

i=1 ci/νi, but some formal equivalent to qtot in Eq. (3). In the remainder

ctot is called the modified solution normality. Modification is due to factors pi115

as in (3) accounting for steric hindrance. If this steric hindrance is absent, the

modified solution normality coincides with the total solution normality, i.e. the

latter is simply a special case included in the modified solution normality.

Eq. (7) represents a linear transport equation with constant transport veloc-

ity, which is equal to one. Since Eq. (7) is decoupled from the component mate-120

rial balances (1), ctot depends only on the given boundary and initial conditions

but not the component material balances. In contrast to this, the component

material balances depend on the value of ctot through the equilibrium relations

(5), because of

cN =
ctot −

∑N−1

i=1
ξici

ξN
. (8)

The alternative model formulation (7) provides useful insight into the solution125

structures to be discussed in the next section. In view of Eqs. (1) and (7),

we find that any step change of the concentrations at the inlet is resolved into

N − 1 transitions with ctot = const. and a single transition ’N ’ with variable

ctot. In other words the kth transitions with k < N takes place on a specific ctot

hyperplane defined by (6). Further details will be discussed in the next section.130

6



3. Equilibrium Theory

The system of quasilinear partial differential equations of first order (1) can

be solved analytically for piecewise constant initial and boundary (Riemann)

conditions using the method of characteristics. For this purpose Eqs. (1) are

rewritten in the following form135

∂c

∂t
+

(

IN + F
∂q

∂c

)−1
∂c

∂z
= 0, (9)

where IN denotes the N ×N identity matrix.

Solutions of (9) with Riemann boundary and initial conditions consist of

smooth and non-smooth transitions. Non-smooth transitions are either shock

waves or contact discontinuities [2, 25]. In the following, it will be shown that

contact discontinuities are either related to a selectivity reversal or a change of140

the solution normality.

The characteristic velocity σk of a smooth transition follows from the eigen-

values of matrix (IN−1 + F ∂q
∂c

)−1 in (9) according to

σk =
1

1 + Fλk

. (10)

Therein, the λk’s are the eigenvalues of the Jacobian matrix ∂q
∂c

. By implicit

differentiation of Eq. (5) we find145

∂q

∂c
= −

(

∂f

∂q

)−1
∂f

∂c
, (11)

with
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−
∂f

∂q
=

















diagN−1

(

−νi
qi

)

νN
qN

...

νN
qN

−ξ1 −ξ2 . . . −ξN−1 −ξN

















, (12)

−
∂f

∂c
=

















diagN−1

(

νi
ci

) − νN
cN
...

− νN
cN

0 . . . . . . . . . 0

















, (13)

where diagN−1 denotes a (N − 1)× (N − 1) dimensional diagonal matrix with

index i = 1, . . . , N − 1. Hence, the eigenvalues λk follow from the characteristic

equation

0 = det

(

∂q

∂c
− λkIN−1

)

(14)

= det

(

−
∂f

∂c
− λk

∂f

∂q

)

(15)

= det

































diagN−1

(

νi
ci
− λk

νi
qi

) − νN
cN

+ λk
νN
qN

...

− νN
cN

+ λk
νN
qN

−λkξ1 −λkξ2 . . . −λkξN−1 −λkξN

































(16)

For λk 6= qi
ci

, the characteristic equation yields150

0 =





N−1
∏

j=1

νj
cj

− λk

νj
qj





(

−λkξN −
N−1
∑

i=1

−
λkξi

νi
ci

− λk
νi
qi

(

−
νN
cN

+ λk

νN
qN

)

)

(17)

or equivalently

0 = λk

N
∑

i=1

ξi
νi
ci

− λk
νi
qi

, (18)
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which has N non-negative and distinct roots

q1
c1

> λ1 >
q2
c2

> ... >
qk
ck

> λk >
qk+1

ck+1

> ... >
qN−1

cN−1

> λN−1 >
qN
cN

> λN = 0.

(19)

In (19), the components are ordered in decreasing affinity to the solid phase.

Note, the selectivity order in (19) is valid only until the occurrence of a so-called

reversal, which is discussed next.155

For λk = qi
ci

, we find from Eq. (16) in view of the ordering introduced in Eq.

(19) that λk also has to be equal to qi+1

ci+1
corresponding to a selectivity reversal

qi
ci

= qi+1

ci+1
for any i = 1, ...N − 1. The existence and topology of such selectivity

reversals in stoichiometric ion exchange with constant solution normality was

studied intensively in [6, 1, 8]. In this paper results will be extended to variable160

solution normality and/ or ion exchange with steric hindrance. In particular

it is shown that changes in the modified solution normality may also introduce

selectivity reversals.

Along the selectivity reversal, the characteristic velocity is constant accord-

ing to165

λk =
qk
ck

=
qk+1

ck+1

= K
1

νk−νk+1

k,k+1
, (20)

corresponding to a contact discontinuity. From (20) it is clear that νk 6= νk+1

is a necessary condition for the existence of a selectivity reversal.

Another contact discontinuity occurs along the Nth characteristic field cor-

responding to λN = 0, i.e. σN = 1. According to the discussion in the previous

section regarding (7), we find that the modified solution normality will only170

change along the Nth characteristic field but stays constant along the others.

Changes of the modified solution normality propagate with the normalized inter-

stitial velocity of one prior to all other transitions. In contrast, concentrations

c1, . . . , cN can change along each characteristic field.
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The image of the smooth transitions in the concentration phase space for175

fluid phase concentrations ci is given by the corresponding eigenvectors rk. For

λk 6= qk
ck

the eigenvectors follow from

0 =

(

νi
ci

− λk

νi
qi

)

rk,i +

(

−
νN
cN

+ λk

νN
qN

)

rk,N ,

0 = −λk

N
∑

i=1

ξirk,i.

(21)

Recalling the characteristic equations (15), Eq. (21) is readily satisfied for

rk =

[

1
ν1
c1

− λk
ν1
q1

, . . . . . . ,
1

νN
cN

− λk
νN
qN

]T

. (22)

Using the characteristic equation (18) for λk, equilibrium formulation (5) and

(22) for rk, it can be proven that the characteristic velocity σk along the k-th180

characteristic is monotonically increasing for λk 6= qk
ck

and k < N because of the

genuine non-linearity [26]

∇λkrk < 0. (23)

Details can be found in Appendix A.

A transition with increasing σk (decreasing λk) corresponds to a spreading

wave. Transitions in the opposite direction correspond to shock waves. The185

shock velocity sk follows from the integral material balances across the shock

also known as the Rankine Hugoniot conditions, which are in similar form to

Eq. (10)

sk =
1

1 + F ∆qi
∆ci

, ∀i = 1, . . . , N. (24)

These equations also define the image of the shock waves in the concentration

phase space. If νi 6= νj for some i 6= j the image of the shock waves in the190

concentration phase space is curved and tangent at the beginning to the integral
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curves, which are defined by the eigenvectors rk [25]. For λk = qk
ck

= const.,

k < N or k = N we find

∇λkrk = 0 (25)

corresponding to a contact discontinuity. According to (20) λk = qk
ck

corresponds

to a selectivity reversal. Based on Eq. (21), the related eigenvector is195

rk =
[

0, ..., 0, rk,k = ξ−1
k , rk,k+1 = −ξ−1

k+1
, 0, ..., 0

]T
, k < N. (26)

This represents a straight line in the concentration phase space. Due to the

tangency mentioned above, the jump conditions of the corresponding contact

discontinuity are also satisfied along this line and therefore it coincides with

the corresponding shock curve. Remember, all previously investigated types of

transitions (k < N) take place on some ctot hyperplane (6).200

In contrast, ctot changes along the remaining Nth transition. The image of

the contact discontinuity of the Nth characteristic field follows from the jump

conditions (24) for sk = u, which results in

∆qi/∆ci = 0, (27)

and is equivalent to

qi = qi(c) = qi(c
∗) = q∗i . (28)

Therein, c∗ represent the states before the contact discontinuity occurs, and c205

represents the states after the contact discontinuity occurs. Since the contact

discontinuity corresponding to λN is always traveling first in time, the state

before as well as ctot before and after the occurrence of the contact discon-

tinuity follow from the given boundary and initial conditions. Depending on

these quantities the state after the occurrence of the contact discontinuity can210
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be calculated from the jump conditions (28) and the equilibrium relations (2)

according to

qi = ciK
1
νi

iN

(

qN
cN

)

νN
νi

= c∗iK
1
νi

iN

(

q∗N
c∗N

)

νN
νi

= q∗i .

ci

(

qN
cN

)

νN
νi

= c∗i

(

qN
c∗N

)

νN
νi

,

(29)

ci = c∗i

(

cN
c∗N

)

νN
νi

. (30)

The unknown variable cN in the curves (30) for ci depend on ctot. For any given

ctot value, (30) reduces to a point due to the intersection with the corresponding

ctot hyperplane (6), which results in215

0 = Φ(cN ) =
N
∑

i=1

ξic
∗
i

(

cN
c∗N

)

νN
νi

− ctot. (31)

Thus, the remaining components ci can be obtained from (30).

It is worth noting that the representation of the jump conditions of the con-

tact discontinuity (28) in the concentration phase space are curved but coincide

with the integral curves of the corresponding spreading wave solution, which is

shown in the following. The relation between integral curves and eigenvectors220

corresponding to λN is

dci
dcN

=
rN,i

rN,N

=
νN
νi

ci
cN

. (32)

Eq. (32) can be easily integrated between two states c∗, c reversing the chain

rule of differentiation, thus separating the variables ci and cN

νi

∫ ci

c∗
i

dc̃i
c̃i

= νN

∫ ci

c∗
i

dc̃N
c̃N

,

νi ln

(

ci
c∗i

)

= νN ln

(

cN
c∗N

)

,

→֒ ci = c∗i

(

cN
c∗N

)

νN
νi

,

(33)

12



which is identical to the curves in (30).

4. Selectivity reversals225

One of the most significant features of the adsorption based on the stoichio-

metric mass action law is the possible existence of selectivity reversals, which

were first investigated in detail by Tondeur [6] and Helfferich & Klein [1] for

constant solution normality and no steric hindrance. Focus in [1, 6] was on

loading behavior. More recently, the role of selectivity reversals for chromato-230

graphic cycles and pulse development was discussed in [8]. Since the SMA is an

extension of stoichiometric mass action law, the question arises how this exten-

sion affects the properties of the selectivity reversals. Based on the results for

the equilibrium theory in Section 3, the spectral results of the SMA related to

a selectivity reversal235

λj =
qj
cj

=
qk
ck

, (34)

are similar to the ones for the stoichiometric mass action law in [8]. In partic-

ular, the related contact discontinuity is described by a straight line parallel to

the eigenvector rj of the form (26), where only the two reversal participating

components ’j’ and ’k’ change. However if steric factors pi are non-zero, they

readily affect (26) through (4). Note, the components ’j’ and ’k’ do not nec-240

essarily need to satisfy |j − k| = 1 since the possibility that another selectivity

reversal has already occurred changes the initial order in (19) accordingly.

In the following, we derive a topological representation of the selectivity

reversals accounting for steric effects and the variable solution normality. For

this purpose, Eq. (34) is assumed to be satisfied in conjunction with Eqs. (5).245

Together they form a set of N equations allowing for the elimination of N

variables qi in (3). Hence, the corresponding region in the concentration phase

space is represented by the ’jk’ reversal hyperplane
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0 =
∑

i6=j,k

ξici

(

KijK

νj

νj−νk

jk

)

1
νi

+ (ξjcj + ξkck)K
1

νj−νk

jk − qtot, (35)

or equivalently

0 =
N
∑

i=1

ξici

(

KijK

νj

νj−νk

jk

)

1
νi

− qtot, (36)

using Kjj = 1 and Kkj = K−1

jk . Compared to the selectivity reversal described250

in [1], the dimension of the reversal hyperplane is increased by one to N − 1,

which is a direct consequence of the missing closing condition for the fluid phase

concentrations due to the variability of the solution normality. Furthermore, the

reversal hyperplane (35,36) depends not only on the parameters qtot, Kij , Kjk

and νi but also on ξi, which can contain non-vanishing steric factors pi.255

Physically meaningful results are obtained from equation (36) if the ’jk’

hyperplane intersects exclusively the edges of the positive orthant, i.e. ci > 0

for all i = 1, . . . , N . In other words, these intersections define the condition of

the existence of the ’jk’ reversal hyperplane, and they are characterized by the

fact that only a single component ci in (36) is non-zero. This gives rise to the260

following criteria for the existence of a ’jk’ reversal hyperplane

0 = ξici

(

KijK

νj

νj−νk

jk

)

1
νi

− qtot, ∀i = 1, . . . , N. (37)

Since all concentrations and parameters are greater than zero, both conditions

are satisfied for some ci > 0 independently of all qtot, Kij , Kjk and ξi parameter

values if and only if

νj 6= νk. (38)

Eq. (38) represents the only necessary and sufficient condition for the existence265

of a reversal hyperplane.
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It can be shown that reversal hyperplanes have no proper intersection but

can be identical. Details regarding both properties can be found in Appendix

B.

The classical selectivity reversal in [1, 7, 8] assumes a constant value for270

ctot as well as no steric hindrance since it is based on the stoichiometric mass

action law. Therefore, a classical ’jk’ selectivity reversal is the intersection of

the corresponding ctot hyperplane (6) and the ’jk’ reversal hyperplane (35,36)

with ξi =
1

νi
. The requirement of a constant solution normality is an additional

restriction, which explains the relaxed condition (38) compared to the conditions275

in [1].

The generalized intersection of a ’jk’ reversal hyperplane with a ctot hyper-

plane of constant modified solution normality is best represented rewriting (6)

into

ξjcj + ξkck = ctot −
∑

i6=k,j

ξici, (39)

and applying (39) to (35)280

0 =
∑

i6=j,k

ξici

[

(

KijK

νj

νj−νk

jk

)

1
νi

−K
1

νj−νk

jk

]

+K
1

νj−νk

jk ctot − qtot. (40)

Eq. (40) describes a N−2 dimensional reversal hyperplane with variables ci, i 6=

{j, k} and ctot. Moving along trajectories with ctot = const. and ci = const. for

all i 6= j, k, the right-hand side of Eq. (39) is constant, which is equivalent to

the result (26). Representation (40) describes the classical selectivity reversal

in [1, 7, 8] if additionally ξi = 1

νi
holds. Another crucial difference of (40)285

and its representation in [1] is the absence of the normalization factor ctot
qtot

in

the equilibrium constants, which are independent of ctot and qtot in the present

case.

In the next section, focus is on chromatographic cycles. They were also

discussed in [8] for a constant solution normality. A chromatographic cycle290
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consists of two phases, the loading and the regeneration. In case of Riemann

conditions and a variable (modified) solution normality, both phases allow for

two different ctot hyperplanes (6). Only one of these two ctot hyperplanes need

to intersect an arbitrary ’jk’ reversal hyperplane in order to admit a classical

’jk’ selectivity reversal. Thus, the likelihood of the chromatographic cycle to be295

affected by a selectivity reversal is increased compared to cycles in [8]. Moreover,

one of these two ctot hyperplanes does not require to assume a specific ctot value

but to be only in a certain interval, which further relaxes the conditions of the

chromatographic cycle to be affected by a selectivity reversal. For more details,

the reader is referred to Appendix C.300

In case of a variable (modified) solution normality, there is an additional

possibility for the intersection of a reversal hyperplane realized through the

contact discontinuity of the Nth characteristic field corresponding to λN = 0.

Such an intersection with an arbitrary ’jk’ reversal hyperplane exists if the

following equation305

0 =Ψ(cN )

=

N
∑

i=1

ξic
∗
i

((

cN
c∗N

)νN

KijK

νj

νj−νk

jk

)

1
νi

− qtot,
(41)

admits a physically meaningful solution cN > 0. In (41), the state c∗ denotes

the state before the occurrence of the contact discontinuity as in (28). Again,

all other components can be determined from Eq. (30). Further details can also

be found in Appendix C. Eq. (41) includes the special case of the stoichiometric

mass action law with ξi = 1

νi
. Hence, a variable solution normality increases310

the potential of a chromatographic cycle to be affected by a selectivity reversal

even further.

5. Application examples

In this section, the additional features of the steric mass action law compared

to the stoichiometric mass action law [8] are studied through simulations of a sin-315
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gle chromatographic column to verify the theoretical results of previous sections.

In particular, the effects of a variable solution normality and the steric factors

are considered separately in the first two subsections, respectively, whereas joint

effects and their relation to the first two cases are studied in a third subsection.

In all cases Riemann experiments are performed for three component systems320

with constant initial conditions and piecewise constant boundary conditions,

where two of components c1, c2 are target components. The third component

c3 (the ’salt’) can be used to affect the adsorption behavior of the other two

components, thus allowing for an additional degree of freedom in process design.

For a complete picture containing effects on the loading and regeneration be-325

havior, so called chromatographic cycles are considered. They are realized via

injection of pulses with a sufficient pulse width. The basic simulations param-

eters applied to any application example independently of the specific set-up

can be found in Tab.1. Simulation results are obtained through the approach

described in [8] and its extension in [21]. Note, the set-up specific parameters330

in the following subsections are chosen such that all significant features can be

illustrated step-by-step in a compact manner. However, for a proof of principle,

an example based on experimentally derived parameters is briefly presented in

Appendix E.

5.1. Effect of the variable solution normality335

Specific parameters are listed in Tab.2. First, we consider a classical stoi-

chiometric set-up without steric hindrance pi = 0 and with constant solution

normality ctot = 2. The column is equilibrated with cinit = [0, 0, 2]T mol
m3 , the

third component only. At time unit 0 starts the injection also of the two other

components with cload = [0.4, 0.6, 1.2] mol
m3 . After 10 time units the feed changes340

back to cinit = [0, 0, 2]T mol
m3 for regeneration purposes of the first two com-

ponents. The values of third component is specifically chosen to guarantee a

constant solution normality ctot. The results consisting of two shocks S1, S2

and two spreading waves R1, R2 are presented in Fig. 1. Note, no selectivity

reversal occurs.345
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In order to investigate the effect of the variable solution normality, a similar

set-up to the previous one is considered. In this case, a variable solution nor-

mality is realized through different initial conditions. In particular, a column

equilibrated with c3 only, i.e. cinit = [0, 0, 0.1]T mol
m3 is injected with the same

feed pulse of cload = [0.4, 0.6, 1.2] mol
m3 starting at t = 0 and ending at t = 10350

as in the previous set-up, which again introduces components c1 and c2 into

the column. After 10 time units the feed is changed to creg = [0, 0, 0.5] mol
m3 in

order ro regenerate the bed. The relevant topology is shown in Fig. 2a. There

are two ctot planes of interest corresponding to the values ctot = 0.5 mol
m3 and

ctot = 2 mol
m3 , respectively. Note, that the latter ctot value is identical to the355

one in Fig. 1a. There are also two reversal planes (gray), but only the interme-

diate one between ctot = 0.5 mol
m3 and ctot = 2 mol

m3 is relevant. Corresponding

numerical results are shown in Fig. 2b but are also plotted into Fig. 2a (black

dashed line) showing that only the two ctot planes and the two eigenvectors

corresponding to λ3 = 0 are relevant.360

Considering the two contact discontinuities CD1, CD2 regarding λN = 0,

their prediction based on the equilibrium theory (green) in Fig. 2a obviously

match the numerical results very well. These two transitions are also highlighted

in Fig. 2b. As mentioned in Section 3, ctot changes only along those contact dis-

continuities allowing for a second relevant ctot plane with ctot = 0.5 mol
m3 besides365

the one with ctot = 2 mol
m3 . This is clearly visible in Fig. 2. For the same reason

they are not present in Fig.1 with ctot = const. = 2 mol
m3 . Note, the initial load-

ing of the column corresponds to a ctot = 0.1 mol
m3 plane. As already explained

in Section 3, only c3 changes along the first contact discontinuity CD1 with

the trivial intersection [0, 0, 2] mol
m3 , which coincides with the initial condition370

in Fig. 1. Hence, the ctot = 0.1 mol
m3 plane does not provide more insight and

is neglected here. The intersection of the second contact discontinuity CD2,

however, has to be determined from (31) and (30) with c∗ = cload and yields

c = [0.1898, 0.1350, 0.2701]T mol
m3 .

Investigating the remaining transitions it is sufficient to consider the pro-375

jections of the two ctot planes in the c1, c2-space. The loading behavior on the
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ctot = 2 mol
m3 plane with two shocks S1, S2 in Fig. 3 for the two target components

c1, c2 is identical to the one in Fig. 1 since the ctot planes and initial conditions

on this plane are identical. The regeneration behavior on the ctot = 0.5 mol
m3

plane in Fig. 4a consists also of two spreading waves R1, R2 but it is obviously380

different from the regeneration in Fig. 1a. Neither of the two ctot planes Fig.

3a, Fig. 4a shows the existence of a selectivity reversal. However, in Fig. 4b

component c1 is obviously stronger adsorbing in the regeneration phase, whereas

in Fig. 1b the second component c2 is stronger adsorbing during the regenera-

tion of c1 and c2. This selectivity reversal can be easily explained by means of385

Fig. 2a. It shows that the contact discontinuity CD2 crosses the ’1, 2’ reversal

plane, which explains the reversed regeneration behavior on the ctot = 2 mol
m3

plane in Fig. 1 and on the ctot = 0.5 mol
m3 plane in Fig. 4. The intersection

can be calculated from (41), (30) and yields cR = [0.2829, 0.3001, 0.6002]T mol
m3 .

Since this contact discontinuity admits a change in ctot, this variability in ctot390

based on different initial conditions is directly connected to the presence of the

’1, 2’ selectivity reversal in the chromatographic cycle. Again, the two shocks

highlighted in Fig. 3b and two spreading waves highlighted in Fig. 4b are also

plotted (black dashed lines) into the respective c1, c2-space Fig. 3a, 4a, and

they are readily predicted by the equilibrium theory (green lines).395

A comparison of Fig. 3a and Fig. 4a shows that the monotonicity of the

eigenvalues on the red integral curves reversed but the watershed changed also its

position significantly from the c1-axis to the c2-axis. Hence, a variable solution

normality allows in general for significant topological changes of the path grid

on the ctot hyperplanes.400

The reversal zones introduced in Appendix C yield for this specific example

[cltot, c
u
tot]1,2 = 1

9
[6, 16] mol

m3 and [cltot, c
u
tot]1,3 = 1

32
[3, 8] mol

m3 . For the relevant ’1, 2’

reversal plane and the two cycle participating ctot planes holds c̄tot =
1

9
[4.5, 18]

and therefore [cltot, c
u
tot]1,2 ⊂ c̄tot, which by itself guarantees the ’1, 2’ selectivity

reversal to occur during the chromatographic cycle without further knowledge.405
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5.2. Effect of the steric factors

Parameters required for the examples in this section are listed in Tab.2 and 3.

In order to avoid any confusion with the effect of the variable solution normality,

the following set-ups are designed such that cItot = cIItot = ctot = const = 0.5 mol
m3

for a classical stoichiometric-based mass action law ’I’ and a steric-based mass410

action law ’II’. Thus, only the effect of the steric factors is considered, and it

also allows to consider the relevant projections into the c1,c2-space for a simpler

presentation.

Fig. 5 allows for an efficient comparison. Their quantitative difference is

apparent, but also their qualitative similarity can be conjectured, which is con-415

sistent with the results in Appendix D. Therein, a bijective coordinate trans-

formation is shown to exist between adsorption models differing only in their

steric factors if they are subject to an identical (modified) solution normality as

in the present case with ctot = const = 0.5 mol
m3 .

In order to quantify this similarity, a chromatographic cycle on the stoichio-420

metric ctot plane (Fig. 6) is compared with a chromatographic cycle having cor-

responding scaled initial and boundary conditions (Fig. 6) subject to (D.1). In

the stoichiometric case, the column is equilibrated with cinit = [0, 0, 0.5]T mol
m3 .

A pulse feed is injected at time unit 0 with cI,load = [0.3, 0.3, 0.05]T mol
m3 and

changed back to cregen = [0, 0, 0.5]T mol
m3 at 10 time units. In the steric case, the425

column is also equilibrated with cinit = [0, 0, 0.5]T mol
m3 . Similarly, a pulse feed

is injected at t = 0 with cII,load = [0.06, 0.15, 0.05]T mol
m3 and changed back to

cregen = [0, 0, 0.5]T mol
m3 at t = 10. Comparing the profiles in Fig. 6b and Fig.

7b, the quantitative difference is again evident as is their qualitative similarity.

Both showing two shocks S1, S2 and two spreading waves R1, R2 in the same430

order at identical time units. Moreover, the selectivity of the components is

identical. Applying the transformation (D.1) to the steric solution in 7b results

in concentration profiles identical to the stoichiometric ones in 6b. Hence, the

information of the stoichiometric and steric ctot plane are redundant. As shown

in Appendix D, the complete concentration phase space are redundant for both435

cases.
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The demonstrated example is representative for the general effect of steric

factors on all results derived in previous sections. Steric factors can have a

significant quantitative impact but do not affect any result qualitatively.

5.3. Joint effects of steric factors and variable solution normality440

The additionally required parameters related to this subsection are listed in

Tab.2 and 3. The following set-up considers again two ctot planes with different

values cItot 6= cIItot. Similar to the previous subsection, the classical stoichio-

metric case is considered (ξIi = 1

νi
) as well as a steric case (xiIIi = 1

νi
+ pi)

with the same change of steric factors from pI = [0, 0, 0]T to pII = [2, 1, 0]T ,445

while all other parameters are again identical. However, instead of scaling the

boundary and initial condition to keep the solution normality cItot and modi-

fied solution normality cIItot on both planes identical, the feed is kept constant

cI,load = cII,load = cload. This set-up reflects the situation of changing one or

more components with different steric factors while keeping all other experimen-450

tal conditions identical.

The stoichiometric case without steric hindrance and cItot = 0.5 mol
m3 and

the case with steric hindrance and cIItot = 1.2 mol
m3 are considered. Due to the

definition of the set-up with an identical feed cload, their intersection includes the

point cload = [0.2, 0.3, 0.1]T mol
m3 . As before steric factors effect positioning and455

orientation in the concentration phase space. Since their ctot values are different,

the transformation (D.1) does not exist. However, both ctot are constant realized

through an specific choice of c3 values, which again allows for a simplified and

effective comparison in the c1, c2-space in the remainder.

In the stoichiometric case, the column is equilibrated with cI,init = [0, 0, 0.5]T mol
m3 .460

A pulse that introduces components c1 and c2 starts with cload = [0.2, 0.3, 0.1]T mol
m3

at t = 0 and changes back to cI,regen = [0, 0, 0.5]T mol
m3 at t = 10 for the re-

generation of the first two components. The third component is changed such

that ctot = 0.5 mol
m3 is kept constant. The cItot plane including the validation of

numerical results (black dashed line) with equilibrium theory prediction (green465

and orange) as well as the numerically obtained profiles are shown in Fig. 8.
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These results can be compared with the corresponding ones on the cIItot

plane in Fig. 9. A similar pulse set-up was performed here starting with an

equilibrated column cII,init = [0, 0, 1.2]T mol
m3 and a pulse at time unit 0 with

the same cload = [0.2, 0.3, 0.1]T mol
m3 that is changed back at 10 time units to470

cII,regen = [0, 0, 1.2]T mol
m3 . The different ξIIi values in this case lead to the dif-

ferent cIItot = 1.2 mol
m3 and the corresponding adjustment of the third component

to keep it constant, i.e. different initial and regeneration conditions. Again,

numerical results and equilibrium theory prediction are in excellent agreement.

Comparing Fig. 8a and Fig. 9a, apart from the fact that both show two475

shocks S1, S2 during the loading and two spreading waves R1, R2 during the

regeneration, two apparent distinction can be seen. First, only in Fig. 9a a

selectivity reversal (gray) can be observed. Second, the chromatographic cycles

are reversed in the sense that in Fig. 8, component c1 is stronger adsorbing

during the loading phase of the pulse, whereas in Fig. 9 component c2 is stronger480

adsorbing in the same phase. A similar situation occurs if we operated on the

cIItot plane in Fig. 9a with a cload on different sites of the selectivity reversal,

which has been presented in [8].

For both adoption models ’I’ and ’II’, the fixed cload introduces a difference

in ctot values due to different steric factors. This results in significant topological485

differences between the two ctot planes in Fig. 8a and Fig. 9a that can be

predicted by the equilibrium theory only if applied to case ’I’ and ’II’ separately.

In the present case, we consider two chromatographic cycles separately. How-

ever, using the results from the preceding subsection, the concentration phase

space corresponding to ’II’ contains a c̃tot plane that is similar to the cItot plane490

in Fig. 8a in the sense of (D.1). If also cII,regen = cI,regen holds, the chromato-

graphic cycle for ’II’ will consist of the two relevant c̃tot and cIItot planes, which

are connected by a contact discontinuity corresponding to λ3 = 0. Thus, two

significantly different ctot planes are present in a single chromatic cycle, which

is then similar to the result in Subsection 5.1 with constant steric factors. In495

particular, if the inverse mapping of (D.1) is applied to the solution in Fig. 2,

a similar result with the same qualitative behavior in the concentrations phase
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space of ’II’ is obtained. Consequently, also in case of a variable solution nor-

mality, the effect of steric factors is quantitative only, which is consistent with

the results in Appendix D.500

Since it is a straight forward extension of the results in the previous subsec-

tion and does not yield any additional insight, the corresponding simulations in

a three dimensional concentration state space are omitted.

6. Conclusions

Equilibrium theory for ion exchange chromatography was extended to ac-505

count for variable solution normality and steric hindrance. Possible fields of

application are separation of proteins where often salt gradients are applied

and also amino acids [27, 28]. Important findings are: that variable solution

normality may introduce selectivity reversals and may thereby change the so-

lution qualitatively (order of elution, types of transitions etc.). It was proven510

that in contrast to this, steric hindrance affects the solution only quantitatively

(plateau values, propagation velocities etc.). The paper provides methods and

tools for the prediction of column dynamics and therefore builds an important

basis for future work on conceptional design and control of single- and multi-

column systems. Limitations for protein separations are due to the limitations515

of the SMA isotherm used in this paper. In particular, the assumption of a

constant pH. For Systems with variable pH additional effects may arise, which

are not covered by the present theory. For such systems, at the moment only a

numerical approach is possible [15].
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Notation

ci fluid phase concentration of component i [mol
m3 ]

ctot modified solution normality [mol
m3 ]

ǫ void fraction [−]

F phase ratio [−]

KiN equilibrium constant of component i and N [−]

L length of column [m]

λk k-th eigenvalue [−]

N number of components [−]

Nz number of spatial grid points [−]

µi characteristic charge of component i [−]

νi stoichiometric coefficient of component i [−]

pi steric factor of component i [−]

qi solid phase concentration of component i [mol
m3 ]

qtot exchanger capacity [mol
m3 ]

rk,i i-th entry of k-th eigenvector [mol
m3 ]

sk k-th shock velocity [m
s
]

σk k-th characteristic velocity [m
s
]

t normalized time coordinate [−]

t∗ time coordinate [s]

u interstitial velocity [m
s
]

ξi generalized ion exchange factor of component i [−]

z normalized space coordinate [−]

z∗ space coordinate [m]
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Appendix A. Genuine non-linearity600

The following considerations exclude λk = 0 and λk = qk
ck

for any k. Both

cases are shown to be linear degenerate in Section 3. In the remainder we show

that the k-th field is genuinely non-linear for a certain subset C of RN
+ according

to

∇λk(c)rk(c) 6= 0, ∀c ∈ C, (A.1)

holds. The gradient of λk can be obtained through implicit differentiation of605

α(c,q, λk) = 0 = λk

N
∑

i=1

ξi
νi

1

ci
− λk

1

qi

, (A.2)

which results in

∂λk

∂cj
= −

(

∂α

∂λk

)−1

c,q

(

(

∂α

∂cj

)

c\cj ,q,λk

+
∑

l=1

(

∂α

∂ql

)

c,q\ql,λk

∂ql
∂cj

)

. (A.3)

Hereafter, constant held variables will be omitted for clarity of presentation.

Results for the derivatives in (A.3) are summarized in the following

∂α

∂λk

= λk

N
∑

i=1

ξi
νi

1

qi
(

1

ci
− λk

1

qi

)2
,

∂α

∂cj
=

λk

c2j

ξj
νj

(

1

cj
− λk

1

qj

)2
,

∂α

∂ql
= −

λ2
k

q2l

ξl
νl

(

1

cl
− λk

1

ql

)2
,

∂ql
∂cj

=
νN
νl

ql
qN

(

∂qN
∂cj

−
qN
cN

δjN

)

+
qj
cj
δjl,

∀k, j, l.

(A.4)

Here, δ denotes the Kronecker delta. The last equation in (A.4) contains ∂qN
∂cj

,

which can also be obtained through implicit differentiation of
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β(c, qN ) = 0 = qtot −
N
∑

m=1

ξmcmK
1

νm

mN

(

qN
cN

)

νN
νm

, (A.5)

resulting in

∂qN
∂cj

= −

(

∂β

∂qN

)−1

c

(

∂β

∂cj

)

c\cj ,qN

,

= −
qN
νN

(

N
∑

m=1

ξm
νm

qm

)−1

ξj
qj
cj

+
qN
cN

δjN ,

(A.6)

which allows us to write610

∂ql
∂cj

= −
ql
νl

(

N
∑

m=1

ξm
νm

qm

)−1

ξj
qj
cj

+
qj
cj
δjl. (A.7)

Therefore, an element of the gradient of any λk can be written as follows

∂λk

∂cj
= −P (Qj +Rj)

P =







N
∑

i=1

ξi
νi

1

qi
(

1

ci
− λk

1

qi

)2







−1

> 0

Qj =

ξj
νj

1

cj
(

1

cj
− λk

1

qj

)

Rj = λk

N
∑

l=1

ξl
ν2
l

1

ql
(

1

cl
− λk

1

ql

)2

(

N
∑

m=1

ξm
νm

qm

)−1

ξj
qj
cj

= R ξj
qj
cj

> 0

∀k, j.

(A.8)

Having now a complete description of ∇λk and the definition of the correspond-

ing non-trivial eigenvector rk in (22), the following expression is obtained
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∇λk(c)rk(c) = −P (Q+RS) < 0,

Q =

N
∑

j=1

Q2
j

ξj
cj

> 0,

S =
N
∑

j=1

qj
cj

ξj
νj

1

cj
− λk

1

qj

> 0.

(A.9)

Since all parameters, concentrations and eigenvalues (λN = 0 already excluded)

are greater than zero, the inequalities for P, Q, R in (A.8,A.9) are obviously615

satisfied. The inequality for S in (A.9) is deduced from a lower bound that is

derived in the following

S = T + U,

T =

k
∑

j=1

qj
cj

ξj
νj

1

cj
− λk

1

qj

,
qj
cj

≥
qk
ck

> λk,

U =
N
∑

j=k+1

qj
cj

ξj
νj

1

cj
− λk

1

qj

,
qj
cj

< λk <
qk
ck

,

T ≥
qk
ck

k
∑

j=1

ξj
νj

1

cj
− λk

1

qj

,

U >
qk
ck

N
∑

j=k+1

ξj
νj

1

cj
− λk

1

qj

,

S >
qk
ck

N
∑

j=1

ξj
νj

1

cj
− λk

1

qj

= 0,

(A.10)

where the last in equality in (A.10) can be easily deduced from (18) for positive

eigenvalues. Hence, all characteristic fields of a family k < N and with λk 6= qk
ck

are genuinely non-linear for all c ∈ R
N
+ , i.e. no non-positive concentrations.620

Appendix B. Reversal intersections

In the following it is shown that different reversal hyperplanes do not in-

tersect each other. More precisely, the intersection of two arbitrary reversal
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hyperplanes are either the hyperplanes itself or empty but no proper intersec-

tion exists. For this purpose, two arbitrary reversal hyperplanes ’jk’ and ’mn’625

that differ in at least one of their indices are considered. From the respective

representation based on (36), their intersection is defined by

0 =

N
∑

i=1

ξiciωi,

ωi =

(

KijK

νj

νj−νk

jk

)

1
νi

−
(

KimK
νm

νm−νn
mn

)

1
νi

.

(B.1)

It can be deduced that the ωi’s have the same sign. In particular the following

relations hold

K

νj

νj−νk

jk > KjmK
νm

νm−νn
mn → ωi > 0,

K

νj

νj−νk

jk < KjmK
νm

νm−νn
mn → ωi < 0,

∀i = 1, . . . , N.

(B.2)

In case of any given ’jk’ and ’mn’ reversal hyperplane, the parameters in (B.2)630

are fixed for all ωi. Hence, either ωi > 0 or ωi < 0 holds. Since also all ξi are

positive, the first equation in (B.1) requires that the ci do not all have the same

sign. In other words, it is necessary that there exists at least a single component

’l’ with cl < 0. Therefore, a proper intersection does not exist in the positive

orthant, where ci > 0 for all i.635

For conditions (B.2), the intersection of two arbitrary reversal hyperplanes

for physically meaningful ci is always empty. However, if

K

νj

νj−νk

jk = KjmK
νm

νm−νn
mn → ωi = 0,

∀i = 1, . . . , N,

(B.3)

we can easily conclude that both reversal hyperplanes are identical. However,

the conditions in (B.3) are very specific, therefore this case is of little interest

at least from a piratical point of view.640
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Appendix C. Reversal zones

In this section, we define an interval for ctot, the so-called reversal zone, for

which the corresponding ctot hyperplane is guaranteed to intersect some ’jk’

reversal hyperplane for physically meaningful ci. For this purpose we consider

the equation for the intersection (40) of these two types of hyperplanes and645

apply the same reasoning as prior to Eq. (37). Eq. (40) can be reformulated

into

ctot − qtotK
− 1

νj−νk

jk =
∑

i6=j,k

ξici

(

K
1

νj−νk

jk −

(

KijK

νj

νj−νk

jk

)

1
νi

)

K
− 1

νj−νk

jk . (C.1)

Therefore, the conditions for solutions that satisfy ci > 0 yield

ctot − qtotK
− 1

νj−νk

jk = ξici

(

K
1

νj−νk

jk −

(

KijK

νj

νj−νk

jk

)

1
νi

)

K
− 1

νj−νk

jk ,

→֒ sign

(

ctot − qtotK
− 1

νj−νk

jk

)

= sign

(

K
1

νj−νk

jk −

(

KijK

νj

νj−νk

jk

)

1
νi

)

,

∀i 6= j, k.

(C.2)

There are two possible cases. First,

K
1

νj−νk

jk ≥

(

KijK

νj

νj−νk

jk

)

1
νi

,

K
− 1

νj−νk

jk ≤

(

KijK

νj

νj−νk

jk

)− 1
νi

,

∀i 6= j, k.

(C.3)

Based on (C.2)650

ctot ≥ qtotK
− 1

νj−νk

jk , (C.4)

has to be satisfied in this case, which defines a minimum value for ctot. If further
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ctot ≤ qtot min
i6=j,k

[

(

KijK

νj

νj−νk

jk

)− 1
νi

]

, (C.5)

holds, (C.3) is guaranteed to be satisfied due to (C.4). Thus, (C.5) defines a

maximum value for ctot. In this case the reversal zone in which all ctot planes

are guaranteed to intersect some ’jk’ reversal hyperplane is

ctot ∈
[

cltot, c
u
tot

]

= qtot

[

K
− 1

νj−νk

jk , min
i6=j,k

[

(

KijK

νj

νj−νk

jk

)− 1
νi

]]

. (C.6)

In contrast to the first case, the second one assumes655

K
1

νj−νk

jk ≤

(

KijK

νj

νj−νk

jk

)

1
νi

,

K
− 1

νj−νk

jk ≥

(

KijK

νj

νj−νk

jk

)

−1

νi

,

∀i 6= j, k.

(C.7)

By the same line of thought as in the first case, we readily obtain an analog

reversal zone with

ctot ∈
[

cltot, c
u
tot

]

= qtot

[

max
i6=j,k

[

(

KijK

νj

νj−νk

jk

)− 1
νi

]

,K
− 1

νj−νk

jk

]

. (C.8)

All ctot hyperplanes with ctot ∈ [cltot, c
u
tot] yield an intersection with the ’jk’

reversal hyperplane, i.e. the classical selectivity reversal (40).

Compared to [1] where a process requires to be operated on the same ctot660

hyperplane within the reversal zone described by (C.6) or (C.8). The chromato-

graphic cycle with variable ctot that is operated on two ctot hyperplanes requires

only one of them to be within the reversal zone in order to admit a classical ’jk’

reversal. However, if ctot 6∈ [cltot, c
u
tot] for all relevant ctot, no classical selectivity

reversal will be present on corresponding ctot hyperplanes.665
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The second type of interaction with any ’jk’ reversal hyperplane can be re-

alized through its intersection with a contact discontinuity corresponding to

λN . This transition connects ctot hyperplanes over a certain range c̄tot =

[c∗tot, ctot], see notation in (28). There are three possible scenarios. First, if

[cltot, c
u
tot] ∩ c̄tot = ∅, the Nth transition does not intersect the ’jk’ reversal670

hyperplane for physically meaningful ci and (41) admits definitely a solution

cN < 0. Second, if [cltot, c
u
tot] ∩ c̄tot 6= ∅, the contact discontinuity might inter-

sect the ’jk’ reversal hyperplane and (41) hast to be checked whether it admits

cN > 0 or cN < 0. Finally, they definitely intersect each other in the third case

if [cltot, c
u
tot] ⊆ c̄tot holds, and (41) is guaranteed to admit a solution cN > 0.675

Appendix D. Influence of steric hindrance

In order to understand the effect of the steric hindrance, two models are

considered that differ only in their respective steric factors. Without loss of

generality, we consider two cases with the adsorption equilibrium to be described

by the classical stoichiometric mass action law and by the steric mass action law,680

respectively. In case of model ’I’ pi = 0 holds for all i, i.e. ξIi = 1

νi
. In contrast,

model ’II’ satisfies pi > 0 for at least one i. Thus, the second model accounts

for the setric hindrance of at least one component with ξIIi = ξi. Note, that

all other parameters (KiN , νi and qtot) of the two models are identical. These

two models are investigated using two different adsorption set-ups on a single685

column.

In the first set-up, the feed and initial loading of the column are specifically

chosen to equate the solution normality of model ’I’ with the modified solution

normality of model ’II’, i.e. cItot = cIItot = ctot. In this case, there exists a simple

linear and bijective transformation from concentration phase space II into the690

concentration phase space I

cI = diagN(νiξi)c
II = diagN(1 + νipi)c

II ,

qI = diagN (νiξi)q
II = diagN(1 + νipi)q

II .
(D.1)
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Equation (D.1) can be derived from the corresponding equilibrium relation and

electro neutrality condition on the exchanger of each model

fi(q
I , cI) =

1

KiN

(

qIi
cIi

)νi (
cIN
qIN

)νN

− 1 = 0,

qtot =
N
∑

i=1

qIi
νi
, cItot =

N
∑

i=1

cIi
νi
,

(D.2)

fi(q
II , cII) =

1

KiN

(

qIIi
cIIi

)νi ( cIIN
qIIN

)νN

− 1 = 0,

qtot =

N
∑

i=1

ξiq
II
i , cIItot =

N
∑

i=1

ξcIIi .

(D.3)

Equation (D.2) can be readily transferred to Eq. (D.3) using (D.1) if and only

if cItot = cIItot = ctot holds, thus resulting in the same algebraic equations. After695

transformation, the Jacobian of model ’I’ is identical to the one of model ’II’.

Therefore, it is only necessary to obtain the concentration phase of one model

since the other one can be directly constructed using (D.1).

The second set-up uses the same Riemann conditions, i.e. the same feed cIF =

cIIF = cF and initial loading cIL = cIIL = cL for both models. The cItot and cIItot700

in (D.2,D.3) have obviously different weighting factors, while the components

cIi , c
II
i are subject to the initial and boundary condition. In particular, at least

at the beginning of the process and once the feed conditions are established

cIi = cIIi is satisfied for all i everywhere in the column. Due to the different

weighting factors705

1

νi
<

1

νi
+ pi = ξi, (D.4)

the corresponding solution normality and modified solution normality do not

coincide in general. If indeed cItot 6= cIItot holds, the above simple coordinate

transformation does not exist.

Note that in both set-ups the orientation and positioning of the cItot and cIItot

hyperplanes are different due to the different wighting factors already mentioned.710
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In both set-ups, for every cItot hyperplane in the complete concentration phase

space of ’I’ there exists a similar cIItot hyperplane with cIItot = cItot somewhere

in the concentration phase space of ’II’ based on the similarity in (D.2,D.3).

However, only in the in the first set-up, the boundary and initial conditions are

specifically scaled for both models so that all process participating cItot and cIItot715

hyperplanes are also similar in the sense of (D.1). In case of the second set-up,

the process participating cItot and cIItot hyperplanes can differ arbitrarily. Note,

this difference in solution normalities is introduced due different steric factors,

hence representing the case where a change in solution normality related to

different steric factors affect two separate processes. The most significant differ-720

ences can be the intersection with different reversal hyperplanes and different

types and/ or number of watershed points.

All results presented there account for steric hindrance. Consequently, the

results of the equilibrium theory as well as the results for selectivity reversals

including the the ones in Appendix A, B and C are affected by steric factors.725

However, the effect is of a quantitative but not a qualitative nature.

Appendix E. Proof of principle

In order to give a proof of principle, the basic analogy between the academic

example in Section 5 and an example based on experimentally determined SMA

parameters in this Appendix is established. The specific values of the considered730

Riemann set-up as well as parameter values, which are taken from [29], are

listed in Tab. 4. Note, we already verified our numerical approach in [21] by

reproducing partially the results from [29].

In this particular case we consider only two proteins α-Chymotrypsinogen A

and Cytochrome c. The strong cation-exchanger column is initially equilibrated735

with 30 mM sodium phosphate and the solution pH is assumed to be 6.0 at

all times. At time unit 0, a buffer with 0.2 mM of both proteins and 213 mM

sodium phosphate is injected for 3.114 dimensionless time units, which allows

for the development of the intermediate feed plateaus. Thereafter, the feed is

36



changed to contain again only sodium phosphate, but still containing a high740

concentration of 183 mM sodium phosphate for an efficient elution of the two

proteins, which especially compresses spreading wave R1.

As a result of this Riemann experiment, a chromatographic cycle in Fig.

10 is obtained similar to the one in Fig. 2. For clarity of presentation, Fig.

10a shows only the relevant integral curves in the concentration phase space745

that predict the numerical solution to illustrate the validity of the equilibrium

theory. The basic principles discussed in Section 5 can be immediately seen

in Fig. 10b. The first contact discontinuity CD1 only affects the sodium ion

concentration. Reaching then the value of ctot = 215.1 mM , two shocks S1 and

S2 follow affecting the two proteins and sodium ions but not ctot. Subsequently,750

another contact discontinuity CD2 follows affecting not only all components but

again the value of ctot = 183 mM . The elution of the two proteins proceeds

through two spreading waves. Again, these two transitions do not affect the

value of ctot. Consequently, the chromatographic cycle of this example operates

on two relevant ctot planes connected by CD2, and the analogy of the present755

real world example to the one discussed in Section 5 can be easily established.

The same analysis can be applied here. Note, the arrows in Fig. 10a point

in the direction of increasing characteristic velocity σ, therefore predicting the

type of transition correctly. In case of the shocks, the integral curves are almost

straight, thus nearly coinciding with the corresponding shock curves. For all760

other cases, the integral curves match the exact solution path in the concentra-

tion phase space. In this particular case, no selectivity reversal is present since

the order of elution in Fig. 10b is preserved during the complete cycle. This can

also be seen in from Fig. 10a, where the corresponding ’1, 2’ reversal plane is

below all transitions that follow after CD1. Based on this topological property765

it can be easily predicted that there is indeed no ’1, 2’ reversal involved between

the two relevant ctot values. This concludes the proof of principle.
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parameter value description

L [m] 5.0 column length

Nz [−] 1000 number of grid points

u [m
s
] 1.0 interstitial velocity

ε [−] 0.5 void fraction

qtot [
mol
m3 ] 2.0 exchanger capacity

K13 [−] 8.0 equilibrium constant

K23 [−] 2.67 equilibrium constant

Table 1: Basic parameters used in all example application studies of Section 5.

39



parameter value description

ν1 [−] 2 stoichiometric coefficient

ν2 [−] 1 stoichiometric coefficient

ν3 [−] 1 stoichiometric coefficient

p1 [−] 0 steric factor

p2 [−] 0 steric factor

p3 [−] 0 steric factor

Table 2: Specific parameters of the stoichiometric adsorption model.
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parameter value description

ν1 [−] 2 stoichiometric coefficient

ν2 [−] 1 stoichiometric coefficient

ν3 [−] 1 stoichiometric coefficient

p1 [−] 2 steric factor

p2 [−] 1 steric factor

p3 [−] 0 steric factor

Table 3: Specific parameters of the steric adsorption model.
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parameter value description

L [mm] 54.0 column length

Nz [−] 1000 number of grid points

u [mm
s

] 0.4244 interstitial velocity

ε [−] 0.73 void fraction

qtot [mM ] 525.0 exchanger capacity

K31 [−] 0.0135 equilibrium constant

K32 [−] 0.045 equilibrium constant

µ1 [−] 5.03 characteristic charge

µ2 [−] 5.67 characteristic charge

µ3 [−] 1.0 characteristic charge

p1 [−] 7.43 steric factor

p2 [−] 27.4 steric factor

p3 [−] 0.0 steric factor

Table 4: Riemann specifications and experimental parameters.
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Figure 1: (a) Chromatographic cycle in the concentration phase space realized by a pulse

experiment of the classical stoichiometric ion exchange with constant solution normality ctot.

Numerical results (black dashed line) overlap solution predicted by the equilibrium theory

(green and orange lines). (b) Corresponding elution profile ci(z) indicating two shocks S1, S2

and two spreading waves R1, R2.
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Figure 2: (a) Chromatographic cycle in the concentration phase space realized by a pulse

experiment of the classical stoichiometric ion exchange with variable solution normality ctot.

Gray planes indicate reversal planes ’1, 2’ and ’1, 3’. Numerical results (black dashed line)

overlap two contact discontinuities CD1, CD2 (solid green lines) while the remaining transi-

tions are located in two different planes ctot = 0.5 mol

m3 , ctot = 2 mol

m3 , which are all predicted

by the equilibrium theory. (b) Corresponding elution profile ci(z) indicating two additional

contact discontinuities CD1, CD2 compared to Fig. 1.
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Figure 3: (a) Projection of the loading phase of the chromatographic cycle on the ctot = 2 mol

m3

plane into the c1, c2 space. Numerical results (black dashed line) overlap the two shocks

predicted by the equilibrium theory (green lines) and are identical to the corresponding ones

in Fig. 1a. (b) Corresponding elution profile ci(t) indicating the two occurring shocks S1, S2

during the loading phase, which are identical to Fig. 1b.
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Figure 4: (a) Projection of the regeneration phase of the chromatographic cycle on the ctot =

0.5 mol

m3 plane into the c1, c2 space. Numerical results (black dashed line) overlap the two

spreading waves predicted by the equilibrium theory (orange lines). (b) Corresponding elution

profile ci(t) during regeneration indicating two occurring spreading waves R1, R2 that show

reversed selectivity compared to Fig. 1b.
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Figure 5: (a) Projection of the stoichiometric cI
tot

plane into the c1, c2 space, which is

identical to Fig. 4a. (b) Projection of the steric cII
tot

plane into the c1, c2 space using the same

domain as in (a).
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Figure 6: (a) Projection of the chromatographic cycle on the cI
tot

plane into the c1, c2 space

realized by a pulse experiment of the classical stoichiometric ion exchange with constant

solution normality cI
tot

. Numerical results (black dashed line) overlap solution predicted by the

equilibrium theory (green and orange lines). (b) Corresponding elution profile ci(z) indicating

two shocks S1, S2 and two spreading waves R1, R2.
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Figure 7: (a) Projection of the chromatographic cycle on the cII
tot

plane into the c1, c2 space

realized by a pulse experiment of the ion exchange with steric hindrance and constant modified

solution normality cII
tot

. Numerical results (black dashed line) overlap solution predicted by the

equilibrium theory (green and orange lines). (b) Corresponding elution profile ci(z) indicating

two shocks S1, S2 and two spreading waves R1, R2 qualitatively identical to Fig. 6b.
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Figure 8: (a) Projection of the chromatographic cycle on the cI
tot

= 0.5 mol

m3 plane into

the c1, c2 space realized by a pulse experiment of the classical stoichiometric ion exchange

with constant solution normality cI
tot

. Numerical results (black dashed line) overlap solution

predicted by the equilibrium theory (green and orange lines). (b) Corresponding elution profile

ci(z) indicating two shocks S1, S2 and two spreading waves R1, R2 similar to Fig. 6b.
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Figure 9: (b) Projection of the chromatographic cycle on the cII
tot

= 1.2 mol

m3 plane into the

c1, c2 space realized by a pulse experiment of the ion exchange with steric hindrance and

constant modified solution normality cII
tot

. The gray line indicates a 1, 2 selectivity reversal.

Numerical results (black dashed line) overlap solution predicted by the equilibrium theory

(green and orange lines). (d) Corresponding elution profile ci(z) indicating two shocks S1, S2

and two spreading waves R1, R2 with reversed selectivity of the two components compared

to Fig. 8b.
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Figure 10: (a) Chromatographic cycle in the concentration phase space realized by a pulse

experiment for two proteins (α-Chymotrypsinogen A, Cytochrome c) and sodium phosphate.

Gray plane indicates reversal plane ’1, 2’. Numerical results (gray dashed line) overlap two

contact discontinuities, two shock curves and two integral curves, which are all predicted

by the equilibrium theory (colored). (b) Corresponding elution profile ci(z) indicating that

shocks and spreading waves take place for different but constant ctot values. The values for

c3 and ctot are scaled by a factor of 1

950
.
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