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ABSTRACT
In the nonequilibrium Green’s function approach, the approximation of the correlation self-energy at the second-Born level is of particular
interest, since it allows for a maximal speed-up in computational scaling when used together with the generalized Kadanoff-Baym ansatz
for the Green’s function. The present day numerical time-propagation algorithms for the Green’s function are able to tackle first principles
simulations of atoms and molecules, but they are limited to relatively small systems due to unfavorable scaling of self-energy diagrams with
respect to the basis size. We propose an efficient computation of the self-energy diagrams by using tensor-contraction operations to transform
the internal summations into functions of external low-level linear algebra libraries. We discuss the achieved computational speed-up in
transient electron dynamics in selected molecular systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121820., s

I. INTRODUCTION

A state-of-the-art computational method for
out-of-equilibrium many-body physics is the nonequilibrium
Green’s function (NEGF) approach.1–6 Mostly due to the lack
of computational capabilities, the nonlinear integrodifferential
Kadanoff-Baym equations (KBE) for the NEGF from the 1960s
remained fairly elusive until their first numerical solutions were
presented in 1984 by Danielewicz7 and further numerical imple-
mentations at the turn of the century.8–10 During the past 20 years,
a considerable amount of progress has been achieved in various
fields of physics employing the NEGF approach: from subatomic
nuclear reactions11,12 to atomic and molecular scales,13–22 further to
condensed phase23–33 and mesoscopic systems,34–39 and even to the
descriptions of high-energy particle physics in cosmology.40–42

However, combining the KBE with ab initio descriptions of
realistic materials still remains a computational challenge. This chal-
lenge results from the double-time structure of the KBE, making
the method very expensive for both computing time and storing the
objects in RAM. The Generalized Kadanoff–Baym Ansatz (GKBA)
offers a simplification by reducing the two-time-propagation of the
Green’s function to the time-propagation of a time-local density

matrix.43 The computational complexity of the time-propagation of
the GKBA equations scales as the number of time steps squared
instead of the cubic scaling in the double-time KBE.44 When a
simulation to reach longer time scales is desired, this difference in
computational speed becomes immense. However, this speed-up in
computational scaling is only possible for the correlation self-energy
approximation at the second-Born (2B) level. The 2B approximation
goes beyond the mean-field description at the Hartree-Fock (HF)
level, but it includes the bare interaction only up to second order, i.e.,
higher order correlations and screening effects are neglected, like in
the higher order T-matrix or GW approximations.45,46 However, the
viability of the 2B approximation has been assessed for a large set of
systems with up to moderate interaction strength.47,48

Even though the above implementations of the NEGF method
have been successfully applied in many contexts, the computation of
the self-energy still remains a numerical bottleneck. For larger sys-
tems to be studied, the scaling with respect to the basis size in the
self-energy diagrams may be very unfavorable, making first prin-
ciples simulations numerically expensive, at least in naïve imple-
mentations when looping over the full basis. Recently, a dissection
algorithm has been proposed and implemented49,50 for identify-
ing and utilizing the sparsity of many-body interactions. In this
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paper, we propose to transform the summation expressions in the
self-energy diagrams using tensor-contraction operations and to fur-
ther employ external linear algebra libraries (e.g., low-level C or
Fortran) taking into account, e.g., memory availability, communica-
tion costs, loop fusion, and ordering.51–53 [Here, we consider tensors
simply as multidimensional objects without deeper (differential-)
geometric interpretation.] With benchmark simulations in selected
molecular systems, we present an efficient way to compute the 2B
self-energy applicable either in full time-propagation of the KBE or
in the numerically less expensive GKBA variant.

II. MODEL AND METHOD
We consider a finite and quantum-correlated electronic system

described by a time-dependent Hamiltonian

Ĥ(t) = ∑
ij
hij(t)ĉ†i ĉj +

1
2∑ijkl

vijkl(t)ĉ
†
i ĉ

†
j ĉkĉl, (1)

where i, j, k, l label a complete set of one-particle states {φ(r)}
and ĉ(†) are the annihilation (creation) operators for electrons
from (to) these states. Although we assume, for simplicity, spin-
compensated electrons and invariance under spin rotations, the
whole consideration could easily be generalized to include also
spin degrees of freedom.47,54–57 The objects henceforth described
will be diagonal in spin space. The one-body contribution to the
Hamiltonian,

hij(t) = ∫ drφ∗i (r)h(r, t)φj(r), (2)

may have an explicit time dependence, describing, e.g., pump-
probe spectroscopies or voltage pulses. These would enter in
h(r, t) = − 1

2∇
2 +w(r, t)−μ as external fields w. We also introduced

the chemical potential μ and we absorbed it into the equilibrium
description of the one-body part of the Hamiltonian. Atomic units,
h̵ = m = e = 1, are used throughout. The two-body part accounts for
interactions between the electrons with the standard two-electron
Coulomb integrals

vijkl = ∫ dr∫ dr′
φ∗i (r)φ∗j (r′)φk(r′)φl(r)

∣r − r′∣
. (3)

Even though the Coulomb interaction itself is instantaneous, in
Eq. (1), we allow the strength of the two-body part to be time-
dependent to describe, e.g., interaction quenches or adiabatic
switching. For real-valued basis functions φ, the Coulomb integrals
in Eq. (3) follow 8-point permutation symmetry

vijkl = vjilk = vklij = vlkji = vikjl = vljki = vkilj = vjlik, (4)

which can be verified by permuting dummy integration variables
and by complex conjugation. The following discussion is not lim-
ited to this choice, however, and also, complex and spin-dependent
basis functions could be used.

To calculate time-dependent nonequilibrium quantities, we use
the equations of motion for the one-particle Green’s function on the
Keldysh contour γ.4–6 This object is defined as

Gij(z, z′) = −i⟨Tγ[ĉi(z)ĉ†j (z
′
)]⟩, (5)

where Tγ is the contour ordering operator and the variables z,
z′ specify the location of the Heisenberg-picture operators ĉ on
the Keldysh contour. The contour has a forward and a backward
branch on the real-time axis, [t0, ∞[, and also a vertical branch
on the imaginary axis, [t0, t0 − iβ], with inverse temperature β.
The Green’s function includes detailed information about parti-
cle propagation, and important physical quantities such as elec-
tric currents or photoemission spectra can be extracted from it.
The Green’s function G satisfies the integrodifferential equations of
motion5

[i∂z − h(z)]G(z, z′) = δ(z, z′) + ∫
γ

dz̄Σ(z, z̄)G(z̄, z′), (6)

G(z, z′)[−i
←
∂ z′ −h(z

′
)] = δ(z, z′) + ∫

γ
dz̄G(z, z̄)Σ(z̄, z′), (7)

where all objects are matrices with respect to the basis of one-
particle states {φ(r)}. The self-energy Σ accounts for the electronic
interactions. While some two-particle quantities, such as interaction
energies and double occupancies, can also be computed from this
picture,58,59 the introduction of the self-energy transforms the many-
body problem to an effective quasiparticle picture, and higher order
correlations, such as the pair distribution function, are not directly
accessible.60,61 Depending on the arguments z, z′, the Green’s func-
tion, G(z, z′), and the self-energy, Σ(z, z′), defined on the time con-
tour have components lesser (<), greater (>), retarded (R), advanced
(A), left (⌈ ), right ( ⌉), and Matsubara (M).5 Typically, one concen-
trates on the particle and hole propagation in terms of G<(t, t′) and
G>(t, t′), where the time arguments t and t′ refer to the (real) times
when a particle is added or removed from the system. Furthermore,
the one-particle reduced density matrix (1RDM) is ρ(t) ≡ −iG<(t, t)
from which one could compute the expectation value of any one-
body operator. Taking the equal-time limit (t′ → t+), one obtains
from Eqs. (6) and (7),

i
d
dt
G<(t, t) = [h(t) + ΣHF(t),G<(t, t)] + I(t), (8)

where we defined the collision integral

I(t) = ∫
t

t0
dt[Σ>c (t, t̄)G

<
(t̄, t) − Σ<c (t, t̄)G

>
(t̄, t)

+ G<(t, t̄)Σ>c (t̄, t) −G
>
(t, t̄)Σ<c (t̄, t)]. (9)

In addition, in Eq. (8), we separated the time-local and time-non-
local contributions to the self-energy as Σ = ΣHF + Σc, the for-
mer being referred to as the Hartree-Fock (HF) self-energy and
the latter the correlation self-energy; see Fig. 1. This allows for the
extraction of a time-local effective single-particle Hamiltonian, h(t)
+ ΣHF(t). The collision integrals therefore incorporate only the cor-
relation self-energies Σc. Importantly, the self-energies depend on
the Green’s functions themselves, Σ[G], and therefore, the equation
of motion needs to be solved self-consistently. The correlation self-
energies are typically obtained by a diagrammatic expansion, where
terms can be systematically summed up to infinite order. In this
work, we concentrate on the second-Born self-energy, Σc = Σ2B (see
Fig. 1), but the consideration can be extended to other (higher order)
diagrams as well.
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FIG. 1. Diagrammatic representations of the Hartree-Fock (a) and the second-Born
(b) correlation self-energies. The straight lines denote electronic Green’s functions,
whereas the wiggly lines denote the electronic interactions. The internal indices are
summed over. Each diagram comes with a prefactor (−1)Nloop iNint , where Nloop is
the number of loops and Nint is the number of interaction lines.5 The direct terms
with a loop furthermore take an overall spin-degeneracy factor ξ, which in this case
is ξ = 2.58,62

Although we reduced the considered information to the
description of a single-time object ρ, the double-time nature of the
full equations of motion is still present in the collision integral,
which requires the double-time history of Σ≶ and G≶ to be stored.
In order to obtain a closed equation for ρ, it is customary to use the
GKBA,43

G≶(t, t′) ≈ i[GR
(t, t′)G≶(t′, t′) −G≶(t, t)GA

(t, t′)], (10)

and an approximation to the double-time propagators GR/A at the
HF level,6

GR/A
(t, t′) ≈ ∓iθ[±(t − t′)]Te−i ∫ t

t′ dt̄[h(t̄)+ΣHF(t̄)], (11)

where T is the chronological time-ordering operator.5 The HF self-
energy, being time-local, can be evaluated from the 1RDM as (see
Fig. 1)

(ΣHF)ij(t) = ∑
kl
(2viklj − vikjl)ρlk(t). (12)

The lesser Green’s function or the 1RDM can then be solved from
Eq. (8) by a numerical time-stepping algorithm and using the sym-
metry property G>(t, t) = −i + G<(t, t).33,44,56

In principle, the collision integral on the vertical branch of the
Keldysh contour, Iic

(t) = −i ∫ β0 dτΣ ⌉c (t, τ)G⌈ (τ, t), should also be
taken into consideration. However, using the GKBA, the initial cor-
relations collision integral, Iic, is usually neglected due to the lack of
a GKBA-like expression for the mixed components G ⌉,⌈ and Σ ⌉,⌈c .
The correlated initial state therefore needs to be prepared by start-
ing with an uncorrelated (or HF) system and slowly switching on
the interaction (the adiabatic switching procedure).33,44,56,63 How-
ever, the inclusion of the initial correlations has been shown to be
possible also within GKBA.64–66

III. SECOND-BORN SELF-ENERGY
For the time-propagation of Eq. (8), we are only concerned

with the lesser and greater components of the Green’s function and

self-energy. For the sake of notational simplicity, we then write
G ≡ G≶(t, t′), Ḡ ≡ G≷(t′, t), and Σ ≡ Σ≶c (t, t′). In the second-Born
approximation (2B), the correlation self-energy takes the form49,56

(see Fig. 1)

Σij = 2∑
mn
pq
rs

virpnvmqsjGnmḠsrGpq − ∑
mn
pq
rs

virpnvmqsjGnqḠsrGpm. (13)

As can be seen from Eq. (13), computing the full self-energy matrix
by direct looping takes N8

b operations, where Nb is the size of the
basis. However, it is possible to reduce this scaling to∝ N5

b by group-
ing and reorganizing the objects in Eq. (13).49,65,67–70 We address this
more thoroughly in Sec. III C. It should also be noted that the 2B
self-energy is nonlocal in time, i.e., this computation needs to be per-
formed for two times t and t′, and it is important to keep track of
the correct time arguments in the objects v, G, and Ḡ. While the 2B
approximation together with the GKBA allows for a maximal speed-
up in computational scaling compared to the full two-time KBE (T2

vs T3, T being the total propagation time), GKBA simulations with
GW and T-matrix approximations to the self-energy have also been
performed.71,72

We note that the NEGF method using the 2B self-energy, some-
times referred as second-order Green’s function (GF2),19,48,69,73 can
be related to the second-order Møller-Plesset perturbative expansion
(MP2).74 The construction of the MP2 correction is similar to the 2B
self-energy, although in the NEGF approach, the self-energy enters
nonlinearly into an updated Green’s function, and this procedure
is continued until convergence is reached, whereas the MP2 can be
related to the first step of this iteration.69,73,75

Next, we consider three different cases for the interaction
vertex: (1) diagonal basis where the Coulomb integrals take the
Hubbard-like form vijkl = U iδijδikδil; (2) symmetric basis where the
Coulomb integrals allow for nondiagonal or long-range interactions
vijkl = V ijδilδjk, but the 4-point vertex is symmetric (density-density
type interaction); and (3) the general basis of the full Coulomb inte-
gral vijkl. From the resulting structures of the internal summations
in the self-energy diagrams, we identify matrix or tensor opera-
tions. Instead of simply looping over the basis indices, employing
well-established linear algebra libraries for the matrix and tensor
operations51–53 may speed up the construction of the self-energy.

We denote matrix multiplication by “×” and entrywise mul-
tiplication (Hadamard or Schur product) by “○.” For example,
in Fortran and Mathematica, the entrywise products are done
through simple multiplication operator “∗” whereas the matrix
product is done through the “matmul” or “⋅” operators. In C++
with the Armadillo library,76 the symbol “%” is used for entry-
wise products whereas “∗” is a matrix product. In Python with
the NumPy (np) numerical library,77 the entrywise product can be
done with the function “np.multiply” whereas the matrix or more
general tensor multiplication can be done via the “np.dot” or the
“np.einsum” functions.

A. Diagonal basis
For a diagonal basis, vijkl = U iδijδikδil, Eq. (13) is simplified as

Σij = UiUjGijḠjiGij, (14)
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and the computational cost of constructing the full matrix there-
fore scales as N2

b . In this simple case, there are no further contrac-
tions to perform as the internal summations were already explic-
itly resolved due to the Kronecker δ’s in the interaction vertex.
Because in many practical implementations entrywise multiplica-
tion between two objects is only possible when they have the same
dimension, we rewrite the on-site interaction U i instead as the diag-
onal part V ii of a matrix. The resulting expression can then be
recasted in matrix form as an entrywise product

Σ = diag(V) ○ diag(V) ○G ○ ḠT
○G. (15)

We anticipate that this is a faster construction for the whole self-
energy matrix instead of looping over the basis indices i, j in Eq. (14)
when passing the matrix operations in Eq. (15) to an external linear
algebra library.

B. Symmetric basis
For a symmetric basis, vijkl = V ijδilδjk, Eq. (13) is simplified as

Σij = 2∑
kl
VikVjlGijḠlkGkl −∑

kl
VikVjlGilḠlkGkj. (16)

We first consider the first term of Eq. (16), i.e., the second-order
bubble diagram, and visualize the contraction path for efficient
computation. The expression can be manipulated as

Σb
ij = 2∑

kl
VikVjlGij(ḠT

)klGkl

= 2∑
kl
VikVjlGij(ḠT

○G)kl

= 2∑
l
VjlGij∑

k
Vik(Ḡ

T
○G)kl

= 2∑
l
VjlGij[V × (ḠT

○G)]il

= 2∑
l
VjlGij{[V × (ḠT

○G)]T}li

= 2Gij∑
l
Vjl{[V × (Ḡ

T
○G)]T}li

= 2Gij(V × {[V × (ḠT
○G)]T})ji

= 2Gij[(V × {[V × (ḠT
○G)]T})T

]ij

= 2{G ○ [(V × {[V × (ḠT
○G)]T})T

]}ij, (17)

where we identified matrix transposes, entrywise products, and
matrix multiplications. The procedure outlined above, unfortu-
nately, makes the final expressions less readable, but in the end the
full self-energy matrix (for the bubble diagram part) may be con-
structed as a one-liner Σb

= 2G ○ [(V × {[V × (ḠT
○ G)]T})T

].
However, as mentioned earlier, one must keep track of the time
arguments, i.e., reading from left, the first V is evaluated at t′ and
the second V is evaluated at t.

Contractions on the internal summations in the self-energy dia-
grams do not always yield a favorable path. If we take the second
term in Eq. (16), i.e., the second-order exchange diagram, obtain-
ing an expression similar to Eq. (17) is not possible for the full
self-energy matrix. However, for the diagonal part of the exchange

diagram, we obtain

Σx
ii = −∑

kl
VikVilGilḠlkGki

= −∑
l
(V ○G)il∑

k
Ḡlk(V

T
○G)ki

= −∑
l
(V ○G)il[Ḡ × (V

T
○G)]li

= −{(V ○G) × [Ḡ × (VT
○G)]}ii. (18)

The off-diagonal parts would still need to be evaluated by explicit
looping as in Eq. (16), but the above contraction path may also
be combined with, e.g., the dissection algorithm of Ref. 49 where
chosen pairs of the Coulomb integral matrix elements (according
to some cut-off energy) would be used. This further reduces the
requirement for looping over the basis indices.

C. General basis
For a general basis, all vijkl are nonvanishing. In this case, the

multi-index summations in the self-energy diagrams and their con-
sequent contractions are not always easy to see, but this task can be
automatized using, e.g., the np.einsum_path function in Python.
The information obtained for an optimal sequence of contractions
may further be combined with the symmetry properties (4) and with
a predetermined subset of nonzero Coulomb integrals.49

Manipulating Eq. (13) gives

Σij = 2∑
np
qs

Gpq∑
m
vmqsjGnm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡T(1)

nqsj

∑
r
virpnḠsr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡T(2)

ispn

− ∑
mn
ps

Gpm∑
q

=vqmjs
¬
vmqsj Gnq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=T(1)

nmjs

∑
r
virpnḠsr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=T(2)

ispn

= 2∑
nqs

T(1)nqsj∑
p
GpqT(2)ispn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡T(3)

isqn

−∑
mns

T(1)nmjs∑
p
GpmT(2)ispn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=T(3)

ismn

= ∑
nqs
(2T(1)nqsjT

(3)
isqn − T

(1)
qnjsT

(3)
isnq), (19)

FIG. 2. Contraction paths for the computation of the self-energy in Eq. (19). The
dots denote tensor-contraction operations that could be implemented, e.g., using
the np.einsum function in Python that includes (from version 1.14 onward)
optimized ordering and dispatching many operations to canonical BLAS rou-
tines.78
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where we defined tensor contractions T(1,2,3) and permuted indices
with the help of Eq. (4), identifying similar contractions conse-
quently. We see from the last line of Eq. (19) that for constructing
the full self-energy matrix the scaling over the basis is reduced from
N8

b to∝ N5
b .49,68–70

As before, the readability of the self-energy in Eq. (19) suffers a
bit compared to Fig. 1 or Eq. (13). However, Eq. (19) is visualized
in Fig. 2, and for the sake of efficient computation the contrac-
tion operations can be grouped together and executed essentially as

a single command, where the lower-level loop fusions and order-
ings of operations are handled by the underlying numerical library.
We emphasize that while the reorganizations of the summations in
Eq. (13) to arrive at Eq. (19) have already been considered to some
degree in Refs. 49, 68, and 70, here, we concentrate on the prac-
tical computation of the self-energy by employing efficient tensor-
contraction operations with a possible contraction path shown in
Fig. 2. Alternative contraction paths than the one shown in Fig. 2 are
also possible.

FIG. 3. Time-dependent 1RDM elements for the three different systems studied: (a) diagonal basis with local interaction, (b) symmetric basis with local and long-range
interaction, and (c) general basis with the full Coulomb integrals. The insets show the relative difference between the two curves in the main plots.
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IV. NUMERICAL BENCHMARKS
For the three different cases presented in Sec. III, (1) diago-

nal, (2) symmetric, and (3) general bases, we now present sample
numerical simulations for the purpose of benchmarking and assess-
ing the validity and accuracy of the alternative implementations
of the 2B self-energy. For test cases, we choose molecular systems
falling into each of the categories: 1D Hubbard chains that can be
related to, e.g., conjugated polymers63,79–81 with local (1) and long-
range interactions (2). We set the hopping energy between nearest-
neighbors J = −1, the on-site electron-electron interaction U = 1,
and the long-range interaction between particles at atomic sites i

and j as in the Ohno model Vij = U/
√

1 + ∣i − j∣2.82,83 For the case
(3), we take a CH4 molecule with a general one-particle Kohn-
Sham (KS) basis obtained from density-functional theory (DFT)
using Octopus.84 Using this DFT calculation, the one- and two-
body matrix elements [Eqs. (2) and (3)] are then constructed in the
corresponding KS basis; a more detailed explanation can be found in
Ref. 50.

We implement the explicit loops over the basis indices
[Eqs. (14), (16), and (19)] in C++. In the cases (1) and (2), we
employ the matrix operations [Eqs. (15), (17), and (18)] using
the Armadillo library (version 9.200.5),76 and in the case (3), we
employ the tensor operations [Eq. (19) and Fig. 2] using the NumPy
library (version 1.15.1) in Python.77 We perform the comparisons
using a regular desktop computer with an Intel Core i5-4460 @ 3.2
GHz with 6 MB cache, running on 64-bit architecture using Ubuntu
18.04 operating system incorporating the Linux kernel 4.15.0 and the
GCC 7.3.0 compiler. The comparisons are done using only a single
core to better benchmark the computational cost.

We perform a time-propagation à la GKBA of Nt time steps
with length δ. For the sake of simpler computation, in this work,
we do not employ any predictor-corrector schemes. For the polymer
chain, we take Nb = 10 atomic sites and start the time-propagation
from an initial state where Nb/2 particles are trapped to the Nb/2
leftmost sites by applying a strong confinement potential.63 This
configuration relaxes once the time evolution is started. For the CH4
molecule, we represent the 4 electrons by Nb = 10 basis functions,
and we start the time-propagation from a HF initial state, which
can be obtained from a separate (time-independent) calculation, and
then suddenly switch on the many-body correlations in the 2B self-
energy. This sudden process can be interpreted as an interaction
quench introducing transient dynamics.

For the case (1), we take Nt = 5000 time steps of length δ = 0.01,
for the case (2), Nt = 2000 time steps of length δ = 0.025, and for the
case (3), we take Nt = 1000 time steps of length δ = 0.05. The rea-
son for the varying number of time steps between the investigated
cases is that a calculation with Nt = 1000 would be too fast to exe-
cute in case (1) for a meaningful comparison of runtimes, whereas
Nt > 1000 in case (3) would lead to unpractically long execution
times for the sake of the present study. Here, we are not too con-
cerned about the physical mechanisms taking place during the tran-
sient oscillations or how accurate the 2B self-energy is compared to
more sophisticated approximations, but our aim is simply to assess
the validity of the proposed computation scheme, and to compare
execution runtimes.

In Fig. 3, we show the transient dynamics of the three
cases discussed above. The execution runtimes for each of these

TABLE I. Comparison of serial runtimes (in seconds) of sample simulations of basis
size Nb = 10 when calculating the self-energy by looping over the basis indices or
employing tensor-contraction operations. The gain factor is defined as the ratio of the
runtimes (note that different number of time steps is taken for the different lines for
better comparison of the runtimes).

Basis Scaling Time (loop) Time (contr.) Gain

Diagonal N2
b 177 164 1.08

Symmetric N4
b 1213 731 1.66

General N5
b 1527 1333 1.15

simulations are shown in Table I. We confirm that within numer-
ical accuracy, both looping over the basis indices and employing
tensor-contraction operations, give the same result. Importantly,
the execution runtimes are brought down by employing the tensor-
contraction operations in the computation of the 2B self-energy.
Furthermore, we have checked by increasing the number of time
steps that the runtimes increase accordingly, i.e., the gain factors in
Table I remain roughly similar. For additional validation, we have
compared our data in Fig. 3(c) against the CHEERS code50 and we
find perfect agreement. We note in passing that an ill-advised loop-
ing over the full basis in Eq. (13) (∝ N8

b ) instead of the reduced loop-
ing in Eq. (19) (∝ N5

b ) would result in considerably higher execution
runtimes.

As the number of basis functions Nb = 10 was relatively small
in the previous calculations, we expect increase in the gain factors
when larger basis is used, due to profiting more from the opti-
mized underlying numerical libraries. In Fig. 4, we show the exe-
cution runtimes corresponding to Fig. 3(c) but with varying number
of basis functions. With explicit looping over the basis indices, we
observe ∝ N5

b behavior. For smaller basis sizes, the explicit loop-
ing is faster compared to the tensor-contraction operations done
on the NumPy arrays. However, for larger basis sizes, the runtimes

FIG. 4. Runtime scaling corresponding to Fig. 3(c) with increasing number of basis
functions Nb. Using tensor-contraction operations, we find a reduced scaling law
∼

∝ N4.3
b compared to the explicit looping over the basis (∝ N5

b ).

J. Chem. Phys. 151, 174110 (2019); doi: 10.1063/1.5121820 151, 174110-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

using the tensor-contraction operations are significantly smaller,
also following a power law behavior∝ Nα

b for which we empirically
find α ≈ 4.34 ± 0.17 (see Fig. 4). This exponent and its statistical
errors were extracted by performing a nonlinear least squares fit to
the flat part, Nb ∈ [14, 24], using gnuplot. This reduced scaling
could be related to the optimization of matrix multiplication using
the Strassen algorithm85 and to more advanced methods for tensor
contraction algorithms that can scale faster than the naïve looping
scheme.53

V. CONCLUSION
We presented an efficient way to compute the 2B self-energy

diagrams, in the NEGF approach, by using tensor-contraction oper-
ations. The apparent attraction for efficient computation of the 2B
self-energy, in particular, was due to the maximal speed-up in com-
putational scaling when used together with the GKBA. The inter-
nal summations in the self-energy calculations were transformed
into matrix and tensor operations to be performed by external
low-level linear algebra libraries, speeding up the computation.
We anticipate that the speedup may be even more advantageous
when the code is executed in parallel, taking full advantage of the
optimized underlying numerical libraries. Instead of looping over
the basis indices, utilizing efficiently optimized external numeri-
cal libraries for the tensor-contraction operations has the further
advantage of speeding up the computation if/when future imple-
mentations of the external libraries become faster and even more
efficient.53

There has been recent progress in reducing the computational
bottleneck of constructing various self-energy approximations by
using stochastic methods.69,86,87 Here, we mention the work of
Neuhauser, Baer, and Zgid69 who considered the 2B self-energy
in an equilibrium setting and achieved a much more favorable
quadratic scaling over the fifth power. While the reduced scaling
with respect to the basis size using these stochastic methods goes
beyond our findings, it is not straightforward to argue how the
accuracy of such a stochastic-sampling approach may affect con-
vergence or error propagation in an out-of-equilibrium setting. In
this case, one would have to sample not a single τ-axis (Matsubara)
self-energy but instead a new slice of ever-expanding self-energies
Σ≶c (t, t′) in the two-time plane. However, it would be a promising
venue to extend the stochastic methods also to real time in future
studies.88

The presented approach is not limited to the 2B self-energy only
but could be readily used for other correlation self-energies, such
as GW or T-matrix. In addition, many other similar multi-index
operations, such as evaluating the initial correlations collision inte-
gral in Ref. 65, might become computationally more accessible by
using the tensor-contraction representations. In the present work,
we considered only the GKBA with Hartree-Fock propagators, but
extensions to correlated approximations to the propagator56 are also
directly applicable in our approach. The presented simulations in
selected molecular systems provided concrete evidence of the accu-
racy and applicability of the tensor-contraction operations. With
reasonable and precise implementations or variations of the present
study, we expect this procedure to allow for considerably larger basis
sizes to be possible to address in forthcoming NEGF+first principles
simulations.

Note added in proof : Applying the stochastic approach to real
time Green’s functions has recently been discussed in Ref. 89.
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