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A SUBSPACE FRAMEWORK FOR H∞-NORM MINIMIZATION

NICAT ALIYEV∗, PETER BENNER†, EMRE MENGI‡ , AND MATTHIAS VOIGT§

Abstract. We deal with the minimization of the H∞-norm of the transfer function of a parameter-
dependent descriptor system over the set of admissible parameter values. Subspace frameworks are proposed
for such minimization problems where the involved systems are of large order. The proposed algorithms are
greedy interpolatory approaches inspired by our recent work [Aliyev et al., SIAM J. Matrix Anal. Appl.,
38(4):1496–1516, 2017] for the computation of the H∞-norm. In this work, we minimize the H∞-norm of a
reduced-order parameter-dependent system obtained by two-sided restrictions onto certain subspaces. Then
we expand the subspaces so that Hermite interpolation properties hold between the full and reduced-order
system at the optimal parameter value for the reduced order system. We formally establish the superlinear
convergence of the subspace frameworks under some smoothness assumptions. The fast convergence of the
proposed frameworks in practice is illustrated by several large-scale systems.

Key words. H∞-norm, large-scale, singular values, Hermite interpolation, descriptor systems, model
order reduction, greedy search, reduced basis.
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1. Introduction. In this work we are concerned with the minimization of the H∞-norm
of a parameter-dependent descriptor system of the form

d
dtE(µ)x(µ; t) = A(µ)x(µ; t) +B(µ)u(µ; t),

y(µ; t) = C(µ)x(µ; t).
(1.1)

Here, for an open and bounded set Ω ⊆ Rd, E, A : Ω→ Rn×n, B : Ω→ Rn×m, C : Ω→ Rp×n

are matrix-valued functions defined by

E(µ) := f1(µ)E1 + . . .+ fκE
(µ)EκE

,

A(µ) := g1(µ)A1 + . . .+ gκA
(µ)AκA

,

B(µ) := h1(µ)B1 + . . .+ hκB
(µ)BκB

,

C(µ) := k1(µ)C1 + . . .+ kκC
(µ)CκC

,

(1.2)

for given matrices E1, . . . , EκE
, A1, . . . , AκA

∈ Rn×n, B1, . . . , BκB
∈ Rn×m, C1, . . . , CκC

∈
Rp×n, and real-analytic functions f1, . . . , fκE

, g1 . . . , gκA
, h1, . . . , hκB

, k1, . . . , kκC
: Ω →

R. The functions x(µ; ·) : R → Rn, u(µ; ·) : R → Rm, and y(µ; ·) : R → Rp are called
(generalized) state, input, and output, respectively. If for a fixed µ ∈ Ω, the matrix pencil
sE(µ)−A(µ) is regular (that is, there exists a λ ∈ C with det(λE(µ)−A(µ)) 6= 0), we define
the transfer function of (1.1) by

H [µ](s) := C(µ)D(µ, s)−1B(µ) with D(µ, s) := sE(µ) −A(µ).

For a fixed µ, the function H [µ](s) is real-rational in the indeterminate s, consequently, we
use the notation H [µ](s) ∈ R(s)p×m. Observe that, since H [µ] is rational, it is analytic almost
everywhere in C.
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We define the following normed spaces of real-rational functions:

Lp×m
∞ :=

{
H(s) ∈ R(s)p×m

∣∣∣∣ sup
ω∈R

‖H(iω)‖2 <∞
}
,

Hp×m
∞ :=

{
H(s) ∈ R(s)p×m

∣∣∣∣ sup
λ∈C+

‖H(λ)‖2 <∞
}
,

where C+ := {λ ∈ C | Re(λ) > 0}. For H ∈ Lp×m
∞ , the L∞-norm is defined by

‖H‖L∞

:= sup
ω∈R

‖H(iω)‖2 = sup
ω∈R

σ(H(iω)),

where σ(·) denotes the largest singular value of its matrix argument. We assume throughout
this text that the functions under consideration are in Hp×m

∞ . For such a function H ∈ Hp×m
∞ ,

by employing the maximum principle for analytic functions, one can show that the H∞-norm
is equivalent to the L∞-norm, that is

‖H‖H∞

:= sup
s∈C+

‖H(s)‖2 = sup
s∈∂C+

‖H(s)‖2 = sup
ω∈R

σ(H(iω)).

In this work, we consider the problem of minimizing the H∞-norm of H [µ] over µ that
belongs to a compact subset Ω of Ω, but keeping the assumption that H [µ] ∈ Hp×m

∞ for every
µ ∈ Ω. The latter assumption holds for all of the examples that we consider later in this
paper; most of these examples arise from real applications. Formally, we aim to determine
µ∗ ∈ Ω such that

‖H [µ∗]‖H∞

= min
µ∈Ω
‖H [µ]‖H∞

.

Minimizing theH∞-norm of a parameter-dependent system is an important task in control
engineering. For example, the parameter vector µ may consist of the design variables of a
feedback controller. Then it is desirable to design an optimal H∞-controller that minimizes
the influence of a noisy input signal to the regulated output, which corresponds to minimizing
the H∞-norm of a closed-loop (parameter-dependent) transfer function, see, e. g., [19] and the
references therein. Note that in the latter application, it is normally further imposed that the
controller stabilizes the closed-loop system. This condition does not play a prominent role
here, but efficient stability checks would be needed for controller design. Other applications
for H∞-norm minimization arise in the optimization of dynamic flow networks [9], parameter
identification [18], and model reduction [17].

We focus on the large-scale setting, that is when n is large. We additionally impose the
condition that the numbers of inputs and outputs are relatively small, i. e., n ≫ m, p. Here
we present subspace frameworks that are inspired by our previous work [1]. The proposed
frameworks converge fast with respect to the subspace dimension. We provide a theoretical
analysis which explains this convergence behavior and confirm our theoretical findings in
practice by means of several numerical experiments.

Outline. The subspace frameworks are formally introduced in the next section. We
first provide a basic greedy framework for H∞-norm minimization in Algorithm 2.1. This
framework reduces the order of the full-order system by employing two-sided restrictions
to certain subspaces. It performs the H∞-norm minimization on the reduced system, then
expands the restriction subspaces so that Hermite interpolation properties hold between the
full and reduced-order system at the optimal parameter value for the reduced system. An
extension of the basic framework is proposed in Algorithm 2.2. There Hermite interpolation
properties do not only hold at the optimal parameter value for the reduced system, but also
at nearby points. In Section 3, we formally show that the basic subspace framework when
there is only one parameter, and the extended framework converge with a superlinear rate
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Algorithm 2.1 The basic greedy algorithm for H∞-norm minimization

Input: Matrices E1, . . . , EκE
∈ Rn×n, A1, . . . , AκA

∈ Rn×n, B1, . . . , BκB
∈ Rn×m,

C1, . . . , CκC
∈ Rp×n and functions f1, . . . , fκE

, g1, . . . , gκA
, h1, . . . , hκB

, k1, . . . , kκC

as in (1.2).
Output: Sequences

{
µ(k)

}
,
{
ω(k)

}
.

1: Choose initial subspace V0, W0 ⊆ Cn.
2: for k = 1, 2, . . . do
3: µ(k) ← argminµ∈Ω

∥∥HVk−1,Wk−1 [µ]
∥∥
H∞

.

4: ω(k) ← argmaxω∈R∪{∞} σ
(
µ(k), ω

)
.

5: if m = p then

6: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

7: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

8: else if m < p then

9: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

10: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
H
[
µ(k)

](
iω(k)

)
.

11: else
12: Ṽk ← D

(
µ(k), iω(k)

)−1
B
(
µ(k)

)
H
[
µ(k)

](
iω(k)

)∗

13: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

14: end if
15: Vk ← Vk−1 ⊕ Col

(
Ṽk

)
and Wk ←Wk−1 ⊕ Col

(
W̃k

)
.

16: end for

under some smoothness assumptions at the minimizer. The performance of proposed basic
subspace framework and its rate of convergence are illustrated for several examples in Section
4. As we report in the end, with the proposed subspace frameworks, only a few seconds are
required for the minimization of the H∞-norm of a parameter-dependent system of order 104,
in contrast to an approach that does not make use of reductions.

2. Subspace Frameworks. To deal with the large-scale problems described in the in-
troduction, we employ two-sided restrictions in the flavor of the practice we followed for
large-scale H∞-norm computation in [1]. We choose two subspaces V , W ⊆ Cn of the same
dimension, as well as matrices V, W ∈ C

n×k whose columns form orthonormal bases for these
subspaces, and define the reduced problem by

EV,W (µ) := f1(µ)W
∗E1V + . . .+ fκE

(µ)W ∗EκE
V,

AV,W (µ) := g1(µ)W
∗A1V + . . .+ gκA

(µ)W ∗AκA
V,

BW (µ) := h1(µ)W
∗B1 + . . .+ hκB

(µ)W ∗BκB
,

CV (µ) := k1(µ)C1V + . . .+ kκC
(µ)CκC

V.

Associated with this system, there is the reduced transfer function

HV,W [µ](s) := CV (µ)DV,W (µ, s)−1BW (µ) with DV,W (µ, s) := sEV,W (µ)−AV,W (µ)

which turns out to be independent of the particular choice of the bases for V andW . Our sub-
space frameworks are based on the repeated minimization of

∥∥HV,W(µ)
∥∥
H∞

for appropriate
choices of the subspaces V , W .

The basic greedy framework is given in Algorithm 2.1 and throughout the restof this
work, we use the short-hand notations

σ(µ, ω) := σ(H [µ](iω)) and σV,W(µ, ω) := σ
(
HV,W [µ](iω)

)
.

We will also make frequent use of certain partial derivatives of these functions, where we
denote the variables that we differentiate by subscripts, e. g., σω(·, ·) denotes the first partial
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derivative with respect to the argument ω, whereas σµ(·, ·) denotes the gradient with respect

to µ. Additionally, we reserve the notations σ2(µ, ω) and σV,W
2 (µ, ω) for the second largest

singular values of H [µ](iω) and HV,W [µ](iω), respectively. At every iteration, the basic frame-
work minimizes the H∞-norm of a reduced problem for a given pair of subspaces in line 3.
Then it first computes an ω such that ‖H [µ]‖H∞

= σ(ω, µ) in line 4 at the optimal µ value
for the reduced problem, and expands the subspaces so that the following Hermite interpo-
lation properties hold at the optimal µ, ω, which are immediate from [1, Theorem 2.1], [3,
Theorem 1].

Lemma 2.1. The following assertions hold regarding Algorithm 2.1 for each j = 1, . . . , k:

(i) It holds that
∥∥H

[
µ(j)

]∥∥
H∞

= σ
(
µ(j), ω(j)

)
= σVk,Wk

(
µ(j), ω(j)

)
.

(ii) It holds that σ2

(
µ(j), ω(j)

)
= σVk,Wk

2

(
µ(j), ω(j)

)
.

(iii) If the largest singular value σ
(
µ(j), ω(j)

)
of H [µ(j)](iω(j)) is simple, then

∇
∥∥H

[
µ(j)

]∥∥
H∞

= σµ

(
µ(j), ω(j)

)
= σVk,Wk

µ

(
µ(j), ω(j)

)
.

(iv) We have σω

(
µ(j), ω(j)

)
= σVk,Wk

ω

(
µ(j), ω(j)

)
= 0.

Note that in part (iv) of the lemma above σω

(
µ(j), ω(j)

)
= 0 holds even if σ

(
µ(j), ω(j)

)
is

not simple, since ω(j) is a maximizer of σ
(
µ(j), ·

)
. The equality σVk,Wk

ω

(
µ(j), ω(j)

)
= 0 follows

from the interpolation properties between H [µ](iω), HVk,Wk [µ](iω) and their first derivatives
at µ = µ(j), ω = ω(j).

We also propose an extended version of the basic greedy framework in Algorithm 2.2.
For its description we define erq := 1/

√
2(er + eq) if r 6= q and err := er, where er is the

r-th column of the d × d identity matrix. The description may look complicated at first,
but the only main difference is that it includes additional vectors in the subspaces in lines
16–35 to interpolate not only at the minimizers of the reduced problems, but also at nearby
points. The motivation for the inclusion of these additional vectors is to draw a theoretical
conclusion about the accuracy of the second derivatives of the reduced singular value functions
σVk,Wk(·, ·) in approximating σ(·, ·) in the multivariate case. In practice, we observe that both
Algorithm 2.1 and Algorithm 2.2 converge rapidly. But in the multivariate case, the inclusion
of the additional vectors in the subspaces in Algorithm 2.2 makes its rate of convergence
analysis neater. The interpolation properties of the extended framework are listed in the next
result. Once again, these properties are immediate from [1, Theorem 2.1].

Lemma 2.2. The iterates
{
µ(k)

}
,
{
ω(k)

}
by Algorithm 2.2 satisfy the assertions (i)–(iii)

of Lemma 2.1 for each j = 1, . . . , k. Additionally, for each j = 1, . . . , k, r = 1, . . . , d, and
q = r, . . . , d, we have the following:

(i) It holds that
∥∥H

[
µ(j,rq)

]∥∥
H∞

= σ
(
µ(j,rq), ω(j,rq)

)
= σVk,Wk

(
µ(j,rq), ω(j,rq)

)
.

(ii) If the largest singular value σ
(
µ(j,rq), ω(j,rq)

)
of H [µ(j,rq)](iω(j,rq)) is simple, then

∇
∥∥H

[
µ(j,rq)

]∥∥
H∞

= σµ

(
µ(j,rq), ω(j,rq)

)
= σVk,Wk

µ

(
µ(j,rq), ω(j,rq)

)
.

(iii) It holds that σω

(
µ(j,rq), ω(j,rq)

)
= σVk,Wk

ω

(
µ(j,rq), ω(j,rq)

)
= 0.

Before we start with the rate of convergence analysis, a few comments regarding the two
algorithms are in order.

Remark 2.3. (i) The distinctions of cases in lines 5–14 in Algorithm 2.1 and lines
5–14 and 22–31 are done such that the subspaces Vk andWk have the same dimension.
This is needed in order to obtain a regular reduced matrix pencil DVk,Wk

(
µ(k), s

)
and

a well-defined reduced transfer function HVk,Wk
[
µ(k)

]
(s). In practice, a regularization

procedure can be performed [11] to obtain a regular reduced matrix pencil, even if the
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Algorithm 2.2 The extended greedy algorithm for H∞-norm minimization

Input: Matrices E1, . . . , EκE
∈ Rn×n, A1, . . . , AκA

∈ Rn×n, B1, . . . , BκB
∈ Rn×m,

C1, . . . , CκC
∈ Rp×n and functions f1, . . . , fκE

, g1, . . . , gκA
, h1, . . . , hκB

, k1, . . . , kκC

as in (1.2).
Output: Sequences

{
µ(k)

}
,
{
ω(k)

}
.

1: Choose initial subspace V0,W0 ⊆ Cn.
2: for k = 1, 2, . . . do
3: µ(k) ← argminµ∈Ω

∥∥HVk−1,Wk−1 [µ]
∥∥
H∞

.

4: ω(k) ← argmaxω∈R∪{∞} σ
(
µ(k), ω

)
.

5: if m = p then

6: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

7: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

8: else if m < p then

9: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

10: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
H
[
µ(k)

](
iω(k)

)
.

11: else
12: Ṽk ← D

(
µ(k), iω(k)

)−1
B
(
µ(k)

)
H
[
µ(k)

](
iω(k)

)∗
.

13: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

14: end if
15: Vk ← Vk−1 ⊕ Col

(
Ṽk

)
and Wk ←Wk−1 ⊕ Col

(
W̃k

)
.

16: if k ≥ 2 then
17: h(k) ←

∥∥µ(k) − µ(k−1)
∥∥
2
.

18: for r = 1, 2, . . . , d do
19: for q = r, . . . , d do
20: µ(k,rq) ← µ(k) + h(k)erq.
21: ω(k,rq) ← argmaxω∈R∪{∞} σ

(
µ(k,rq), ω

)
.

22: if m = p then

23: Ṽ
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−1
B
(
µ(k,rq)

)
.

24: W̃
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−∗
C
(
µ(k,rq)

)∗
.

25: else if m < p then

26: Ṽ
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−1
B
(
µ(k,rq)

)
.

27: W̃
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−∗
C
(
µ(k,rq)

)∗
H
[
µ(k,rq)

](
iω(k,rq)

)
.

28: else
29: Ṽ

(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−1
B
(
µ(k,rq)

)
H
[
µ(k,rq)

](
iω(k,rq)

)∗
.

30: W̃
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−∗
C
(
µ(k,rq)

)∗
.

31: end if
32: Vk ← Vk ⊕ Col

(
Ṽ

(rq)
k

)
and Wk ←Wk ⊕ Col

(
W̃

(rq)
k

)
.

33: end for
34: end for
35: end if
36: end for

above distinctions of cases are not carried out. In the above algorithms we make the
silent assumption that the transfer functions HVk,Wk

[
µ(k)

]
(s) are well-defined and in

Lp×m
∞ for all k. Note that the reduced dynamical systems associated with the transfer

functions HVk,Wk
[
µ(k)

]
(s) are not necessarily asymptotically stable, so the transfer

functions are not necessarily in Hp×m
∞ . However, for the algorithm, the latter does

not lead to any problem.
(ii) In this paper, we only consider parameter-dependent linear time-invariant systems.
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Efficient algorithms for the computation of the L∞-norm however, have also been
recently considered for transfer functions of a more general class of systems [1, 15].
The results presented here can be transferred to this more general situation without
any changes in the algorithm description.

3. Rate of Convergence Analysis. In this section, we perform a rate of convergence
analysis for Algorithms 2.1 and 2.2. We view µ(k+1), µ(k), µ(k−1) as functions of µ(1). Letting
µ∗ be a local or a global minimizer of ‖H [·]‖H∞

, we assume µ(k+1), µ(k), µ(k−1) → µ∗ as
µ(1) → µ∗. Our main result is a superlinear convergence result, i. e., for all k ≥ 2 there exists
a constant C, independent of µ(1), such that

∥∥µ(k+1) − µ∗

∥∥
2
≤ C

(∥∥µ(k) − µ∗

∥∥
2
·max

{∥∥µ(k) − µ∗

∥∥
2
,
∥∥µ(k−1) − µ∗

∥∥
2

})

for all µ(1) sufficiently close to µ∗.
The analysis here addresses the smooth setting, that is, throughout this section we assume

the following:

Assumption 3.1 (Smoothness). (i) The supremum of σ(µ∗, ·) is attained uniquely, say
at ω∗, and (ii) σ(µ∗, ω∗) > 0 is a simple singular value of H [µ∗](iω∗).

Many of the results in this section are established uniformly over every µ(1) that is suf-
ficiently close to µ∗. The dependence of the reduced transfer function HVk,Wk [µ](s), as well

as the reduced singular value functions σVk,Wk(·, ·), σVk,Wk

2 (·, ·) on µ(1) is implicitly given
through the subspaces Vk, Wk or equivalently, the matrices Vk, Wk whose columns form or-
thonormal bases for these subspaces. We start with uniform Lipschitz continuity results for
these functions with respect to µ(1). Note that in this result and in the subsequent discussions,
σmin(·) denotes the smallest singular value of its matrix argument, whereas

B
(
µ̃, η

)
:=

{
µ ∈ R

d
∣∣ ∥∥µ− µ̃

∥∥
2
≤ η

}
and B

(
ω̃, η

)
:=

{
ω ∈ R

∣∣ ∣∣ω − ω̃
∣∣ ≤ η

}

for given µ̃ ∈ Rd, ω̃ ∈ R, and η > 0.

Lemma 3.2 (Uniform Lipschitz continuity). Suppose that, for some β > 0, the point µ(1)

is such that σmin

(
DVk,Wk(µ∗, iω∗)

)
≥ β. Then there exist constants ηµ, ηω, γ independent of

µ(1) such that

(i)
∥∥HVk,Wk

[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥
2

∀ µ̃, µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω);

(ii)
∥∥HVk,Wk [µ]

(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣

∀µ ∈ B(µ∗, ηµ), ∀ ω̃, ω ∈ B(ω∗, ηω);

(iii)
∣∣σVk,Wk

(
µ̃, ω

)
− σVk,Wk(µ, ω)

∣∣ ≤ γ
∥∥µ̃− µ

∥∥
2
,

∣∣σVk,Wk

2

(
µ̃, ω

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤ γ

∥∥µ̃− µ
∥∥
2

∀ µ̃, µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω),

(iv)
∣∣σVk,Wk

(
µ, ω̃

)
− σVk,Wk(µ, ω)

∣∣ ≤ γ
∣∣ω̃ − ω

∣∣,
∣∣σVk,Wk

2

(
µ, ω̃

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤ γ

∣∣ω̃ − ω
∣∣

∀µ ∈ B(µ∗, ηµ), ∀ ω̃, ω ∈ B(ω∗, ηω).

Proof. By Weyl’s theorem [8, Theorem 4.3.1], for every µ ∈ Ω and ω ∈ R we have

∣∣σmin

(
DVk,Wk(µ, ω)

)
− σmin

(
DVk,Wk(µ∗, ω∗)

)∣∣ ≤
∥∥DVk,Wk(µ, ω)−DVk,Wk(µ∗, ω∗)

∥∥
2

= ‖W ∗
k (D(µ, ω)−D(µ∗, ω∗))Vk‖2

≤ ‖D(µ, ω)−D(µ∗, ω∗)‖2
≤ ν(‖µ− µ∗‖2 + |ω − ω∗|)
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for some ν > 0, where the last inequality is due to the fact that D(·, ·) is continuously
differentiable in a neighborhood of Ω × R. This uniform Lipschitz continuity property of
σmin

(
DVk,Wk(·, ·)

)
, combined with σmin

(
DVk,Wk(µ∗, iω∗)

)
≥ β, implies the existence of ηµ, ηω

independent of µ(1) such that

σmin

(
DVk,Wk(µ, ω)

)
≥ β/2 ∀µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω).

It follows that (µ, ω) 7→ HVk,Wk [µ](iω) is differentiable ∀µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω).
(i) For every µ ∈ B(µ∗, ηµ) and ω ∈ B(ω∗, ηω), by the product and chain rule we obtain

∂HVk,Wk [µ](iω)

∂µj
=

∂CVk(µ)

∂µj
DVk,Wk(µ, iω)−1BWk(µ)+

CVk(µ)DVk,Wk(µ, iω)−1 ∂D
Vk,Wk(µ, iω)

∂µj
DVk,Wk(µ, iω)−1BWk(µ)+

CVk(µ)DVk ,Wk(µ, iω)−1 ∂B
Wk(µ)

∂µj

(3.1)

for j = 1, . . . , d. Setting

M ′
D,j := max

{∥∥∥∥
∂D(µ, iω)

∂µj

∥∥∥∥
2

∣∣∣∣ µ ∈ B(µ∗, ηµ), ω ∈ B(ω∗, ηω)

}

M ′
C,j := max

{∥∥∥∥
∂C(µ)

∂µj

∥∥∥∥
2

∣∣∣∣ µ ∈ B(µ∗, ηµ)

}
, MC := max

{
‖C(µ)‖2 | µ ∈ B(µ∗, ηµ)

}
,

M ′
B,j := max

{∥∥∥∥
∂B(µ)

∂µj

∥∥∥∥
2

∣∣∣∣ µ ∈ B(µ∗, ηµ)

}
, MB := max

{
‖B(µ)‖2 | µ ∈ B(µ∗, ηµ)

}
,

and exploiting

∥∥∥∥
∂D(µ, iω)

∂µj

∥∥∥∥
2

≥
∥∥∥∥
∂DVk,Wk(µ, iω)

∂µj

∥∥∥∥
2

, ‖C(µ)‖2 ≥
∥∥CVk(µ)

∥∥
2
,

‖B(µ)‖2 ≥
∥∥BWk(µ)

∥∥
2
,

∥∥∥∥
∂C(µ)

∂µj

∥∥∥∥
2

≥
∥∥∥∥
∂CVk(µ)

∂µj

∥∥∥∥
2

,

∥∥∥∥
∂B(µ)

∂µj

∥∥∥∥
2

≥
∥∥∥∥
∂BWk(µ)

∂µj

∥∥∥∥
2

,

as well as σmin

(
DVk,Wk(µ, ω)

)
≥ β/2, we deduce from (3.1) that

∥∥∥∥
∂HVk,Wk [µ](iω)

∂µj

∥∥∥∥
2

≤ 2
M ′

C,jMB

β
+ 4

MCM
′
D,jMB

β2
+ 2

MCM
′
B,j

β
=: Mj

for all µ ∈ B(µ∗, ηµ), ω ∈ B(ω∗, ηω) and j = 1, . . . , d, where Mj does not depend
on µ(1). This in particular implies

∣∣[∂HVk,Wk [µ](iω)/∂µj

]
kℓ

∣∣ ≤Mj for k = 1, . . . , p,

ℓ = 1, . . . , m. With M := max{Mj | j = 1, . . . , d}, for every µ̃, µ ∈ B(µ∗, ηµ), ω ∈
B(ω∗, ηω), by the mean value theorem we obtain

∣∣[HVk,Wk
[
µ̃
]
(iω)

]
kℓ
−
[
HVk,Wk [µ](iω)

]
kℓ

∣∣ ≤
∣∣∇µ[H

Vk,Wk [µ̂](iω)]Tkℓ
(
µ̃− µ

)∣∣

≤
d∑

j=1

Mj

∣∣µ̃j − µj

∣∣ ≤ dM
∥∥µ̃− µ

∥∥
2

for some µ̂ ∈ B(µ∗, ηµ), where ∇µ

[
HVk,Wk

[
µ̂
](
iω
)]

kℓ
denotes the gradient of µ 7→[

HVk,Wk [µ](iω)
]
kℓ

at µ̂. It follows that

∥∥HVk,Wk
[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ √pmdM

∥∥µ̃− µ
∥∥
2
,

where the Lipschitz constant
√
pmdM is independent of µ(1) as desired.
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(ii) A similar proof as in part (i) applies but now by differentiating the function (µ, ω) 7→
HVk,Wk [µ](iω) with respect to ω instead of µj .

(iii) By Weyl’s theorem [8, Theorem 4.3.1] and part (i) we have
∣∣σVk,Wk

(
µ̃, ω

)
− σVk,Wk(µ, ω)

∣∣ ≤
∥∥HVk,Wk

[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥
2
,

∣∣σVk,Wk

2

(
µ̃, ω

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤

∥∥HVk,Wk
[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥
2

for all µ̃, µ ∈ B(µ∗, ηµ) and ω ∈ B(ω∗, ηω), hence we get the result.
(iv) Weyl’s theorem and part (ii) combined imply

∣∣σVk,Wk
(
µ, ω̃

)
− σVk,Wk(µ, ω)

∣∣ ≤
∥∥HVk,Wk [µ]

(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣,

∣∣σVk,Wk

2

(
µ, ω̃

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤

∥∥HVk,Wk [µ]
(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣

for all µ ∈ B(µ∗, ηµ) and ω̃, ω ∈ B(ω∗, ηω) as claimed.

The lemma below asserts uniform upper bounds on the derivatives of the largest singular
value function for the reduced problem provided DVk,Wk(µ∗, ω∗) is away from singularity. Its
proof is inspired by [10, Proposition 2.9], and given in the appendix.

Lemma 3.3. Suppose that Assumption 3.1 holds and that ‖µ(1) − µ∗‖2 is small enough.
Additionally, assume that for some β > 0, the point µ(1) is such that

σmin(D(µ∗, iω∗)) ≥ β and σmin

(
DVk,Wk

(
µ∗, iω∗

))
≥ β.

Then there exist a U and constants ηµ, ηω > 0 independent of µ(1) such that

∣∣σVk,Wk
χ1

(µ, ω)
∣∣ ≤ U,

∣∣σVk,Wk
χ1χ2

(µ, ω)
∣∣ ≤ U,

∣∣σVk,Wk
χ1χ2χ3

(µ, ω)
∣∣ ≤ U

∀µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω)

for all χ1, χ2, χ3 ∈ {ω} ∪ {µj | j = 1, . . . , d}.
The next result draws two important conclusions. First, the maximizers of σ(µ, ·) and

σVk,Wk(µ, ·) can be expressed as smooth functions of µ in a neighborhood of µ∗. Second,
‖H [·]‖H∞

, as well as its reduced counter-parts generated by the algorithms are smooth locally
around µ∗.

Proposition 3.4. Suppose that Assumption 3.1 holds and that ‖µ(1) − µ∗‖2 is small
enough. Furthermore, assume for some δ < 0 and β > 0 that the point µ(1) is such that

(3.2) σωω(µ∗, ω∗) ≤ δ and σVk,Wk
ωω (µ∗, ω∗) ≤ δ,

as well as

σmin(D(µ∗, iω∗)) ≥ β and σmin

(
DVk,Wk

(
µ∗, iω∗

))
≥ β.

Then for some ηµ,0, ηω,0, ε > 0 independent of µ(1), the following assertions hold:
(i) There exists a unique continuous function ω : B(µ∗, ηµ,0) → B(ω∗.ηω,0) that is three

times continuously differentiable in the interior of B(µ∗, ηµ,0) such that

ω(µ∗) = ω∗ and σω(µ,ω(µ)) = 0 ∀µ ∈ B(µ∗, ηµ,0).

Furthermore, σωω(µ,ω(µ)) ≤ δ/2 for all µ ∈ B(µ∗, ηµ,0).
(ii) There exists a unique continuous function ω

Vk,Wk : B(µ∗, ηµ,0)→ B(ω∗, ηω,0) that is
three times continuously differentiable in the interior of B(µ∗, ηµ,0) such that

ω
Vk,Wk

(
µ(k)

)
= ω(k) and σVk,Wk

ω

(
µ,ωVk,Wk(µ)

)
= 0 ∀µ ∈ B(µ∗, ηµ,0).

Additionally, σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

)
≤ δ/2 for all µ ∈ B(µ∗, ηµ,0).
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(iii) We have
σ(µ,ω(µ))− σ2(µ,ω(µ)) ≥ ε,

and the unique global maximizer of σ(µ, ·) is given by ω(µ). In particular, for all
µ ∈ B(µ∗, ηµ,0) it holds that

σ(µ,ω(µ)) = ‖H [µ]‖H∞

.

(iv) We have

σVk,Wk
(
µ,ωVk,Wk(µ)

)
− σVk,Wk

2

(
µ,ωVk,Wk(µ)

)
≥ ε,

and the unique global maximizer and stationary point of σVk,Wk(µ, ·) in B(ω∗, ηω,0)
is ω

Vk,Wk(µ) for all µ ∈ B(µ∗, ηµ,0).

Proof. As argued in the opening of the proof of Lemma 3.3, we have

(3.3) σ(µ, ω)− σ2(µ, ω) ≥ ε̂ ∀(µ, ω) ∈ B(µ∗, η̂µ)× B(ω∗, η̂ω)

for some ε̂ > 0, η̂µ > 0, η̂ω > 0, and

(3.4) σVk,Wk(µ, ω)− σVk,Wk

2 (µ, ω) ≥ ε ∀(µ, ω) ∈ B(µ∗, η̃µ)× B(ω∗, η̃ω)

for some ε ∈ (0, ε̂), η̃µ > 0, η̃ω > 0. An important point here is that ε, η̃µ, η̃ω do not depend
on µ(1). The function σ(·, ·) is real analytic in the interior of B(µ∗, η̂µ) × B(ω∗, η̂ω), whereas
σVk,Wk(·, ·) is real analytic in the interior of B(µ∗, η̃µ)×B(ω∗, η̃ω). Moreover, by Lemma 3.3,

there exists a δ̃ > 0 such that

(3.5)
∣∣σVk,Wk

ωωω (µ, ω)
∣∣ ≤ δ̃

holds uniformly for all (µ, ω) in a neighborhood of (µ∗, ω∗), where δ̃ and the neighborhood
are independent of µ(1). Now we prove the four statements of the proposition:

(i) Since σ(·, ·) is real analytic with continuous second derivatives in a neighborhood
of (µ∗, ω∗), its second derivative σωω(·, ·) must be bounded from above by δ/2 in another
neighborhood of (µ∗, ω∗). Then the assertion follows immediately from the implicit function
theorem.

(ii) Due to (3.5) the condition σVk,Wk
ωω (µ, ω) ≤ δ/2 must hold in an open neighborhood N

of (µ∗, ω∗) independent of µ(1). Additionally, observe that ω(k) → ω∗, µ
(k) → µ∗ as µ(1) → µ∗

due to

σ(µ∗, ω∗) = ‖H [µ∗]‖H∞

= lim
µ(1)→µ∗

∥∥H
[
µ(k)

]∥∥
H∞

= lim
µ(1)→µ∗

σ
(
µ(k), ω(k)

)
,

as well as the uniqueness of ω∗ as the maximizer of σ(µ∗, ·) and the continuity of σ(·, ·). We as-
sume ‖µ(1) − µ∗‖2 is small enough so that

(
µ(k), ω(k)

)
∈ N , particularly σVk,Wk

ωω

(
µ(k), ω(k)

)
≤

δ/2 < 0. Now the assertion again follows from the implicit function theorem. The uniformity
of the radii ηµ,0, ηω,0 over all µ(1) (as long as ‖µ(1) − µ∗‖2 is small enough) follows from the
uniform upper bound δ/2 on the second derivatives.

(iii) Assume ηµ,0 ≤ η̂µ, ηω,0 ≤ η̂ω without loss of generality, where η̂µ, η̂ω are as in (3.3).
But then for µ ∈ B(µ∗, ηµ,0) ⊆ B(µ∗, η̂µ), we have ω(µ) ∈ B(ω∗, ηω,0) ⊆ B(ω∗, η̂ω). Hence,
(3.3) implies σ(µ,ω(µ)) − σ2(µ,ω(µ)) ≥ ε̂ > ε.

To show that ω(µ) is the unique global maximizer of σ(µ, ·) for all µ ∈ B(µ∗, ηµ,0), we
introduce

δ1(µ) := sup{σ(µ, ω) | ω ∈ B(ω∗, ηω,0)}, δ2(µ) := sup{σ(µ, ω) | ω ∈ R \ B(ω∗, ηω,0)},

and let δ∗ := δ1(µ∗) − δ2(µ∗) > 0. As argued at the beginning of the proof of Lemma 3.3,

there exists a neighborhood Ñ of (µ∗, ω∗) where the transfer function (µ, ω) 7→ H [µ](iω) is
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continuously differentiable. As a result, the largest singular value function σ(·, ·) is Lip-

schitz continuous, say with the Lipschitz constant ζ over Ñ which we assume contains
B(µ∗, ηµ,0) × B(ω∗, ηω,0) without loss of generality. The functions δ1(·) and δ2(·) are also
Lipschitz continuous with the Lipschitz constant ζ over B(µ∗, ηµ,0), see [12, Lemma 8 (ii)]
(that concerns the minimization of a smallest singular value rather than the maximization of
a largest singular value as in here, but the proof over there can be modified in a straightfor-
ward manner). We furthermore assume ηµ,0 < δ∗/(4ζ) without loss of generality (since we
can choose ηµ,0 as small as we wish), so

δ1(µ) ≥ δ1(µ∗)− δ∗/4 and δ2(µ∗) ≥ δ2(µ)− δ∗/4

for all µ ∈ B(µ∗, ηµ,0) by the Lipschitz continuity of δ1(·) and δ2(·). These inequalities
combined with δ1(µ∗)− δ2(µ∗) = δ∗ yield

δ1(µ)− δ2(µ) ≥ δ1(µ∗)− δ2(µ∗)− δ∗/2 = δ∗/2

for all µ ∈ B(µ∗, ηµ,0). This means that any global maximizer ω̃(µ) of σ(µ, ·) lies in the interior
of B(ω∗, ηω,0). Since σ(·, ·) is differentiable in a neighborhood of B(µ∗, ηµ,0)×B(ω∗, ηω,0), we
must have σω(µ, ω̃(µ)) = 0. We conclude from part (i) that ω̃(µ) = ω(µ) and that it is the
unique global maximizer of σ(µ, ·).

(iv) We assume without loss of generality that ηµ,0 ≤ η̃µ and ηω,0 ≤ η̃ω . Consequently,
ω

Vk,Wk(µ) ∈ B(ω∗, ηω,0) ⊆ B(ω∗, η̃ω) for all µ ∈ B(µ∗, ηµ,0) ⊆ B(µ∗, η̃µ), so (3.4) yields

σVk,Wk
(
µ,ωVk,Wk(µ)

)
− σVk,Wk

2

(
µ,ωVk,Wk(µ)

)
≥ ε for such µ. The uniqueness of ωVk,Wk(µ)

as the stationary point of σVk,Wk(µ, ·) in B(ω∗, ηω,0) is immediate from the implicit function
theorem. Additionally, without loss of generality, we can assume B(µ∗, ηµ,0)×B(ω∗, ηω,0) ⊆ N
where N is the neighborhood of (µ∗, ω∗) as in part (ii) over which σVk,Wk

ωω (µ, ω) ≤ δ/2 < 0.
This means σVk,Wk(µ, ·) is strictly concave in B(ω∗, ηω,0). Thus, the unique stationary point
ω

Vk,Wk(µ) must also be the unique global maximizer of σVk,Wk(µ, ·) in B(ω∗, ηω,0).

Remark 3.5. The second condition in (3.2) can be dropped in theory by including addi-
tional vectors in the subspaces and doubling the subspace dimensions as follows: The interpo-
lation property

σω

(
µ(k), ω(k−1)

)
= σVk,Wk

ω

(
µ(k), ω(k−1)

)

can be achieved, for instance, by the inclusions

Col

((
iω(k−1)E

(
µ(k)

)
−A

(
µ(k)

))−1

B
(
µ(k)

))
⊆ Vk,

Col

((
iω(k−1)E

(
µ(k)

)
−A

(
µ(k)

))−∗

C
(
µ(k)

)∗
)
⊆ Wk,

when m = p. By the mean value theorem, this would lead to

σωω

(
µ(k), ξ(k)

)
=

σω

(
µ(k), ω(k)

)
− σω

(
µ(k), ω(k−1)

)

ω(k) − ω(k−1)

=
σVk,Wk
ω

(
µ(k), ω(k)

)
− σVk,Wk

ω

(
µ(k), ω(k−1)

)

ω(k) − ω(k−1)
= σVk,Wk

ωω

(
µ(k), ξ̃(k)

)

for some ξ(k), ξ̃(k) in the open interval with the end-points ω(k−1), ω(k) so that
∣∣∣σωω

(
µ(k), ω(k)

)
− σVk,Wk

ωω

(
µ(k), ω(k)

)∣∣∣ = O
(∣∣ω(k) − ω(k−1)

∣∣
)
.

Hence, by the continuity of the second derivatives with respect to ω and
(
µ(k), ω(k)

)
→ (µ∗, ω∗),

the condition σωω(µ∗, ω∗) =: δ̂ < 0 would imply σVk,Wk
ωω (µ∗, ω∗) < δ̂/2 < 0 provided µ(1) is

chosen sufficiently close to µ∗.
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The main conclusion of the next result is that the higher-order derivatives of µ 7→
σVk,Wk

(
µ,ωVk,Wk(µ)

)
are uniformly bounded in absolute value by a constant.

Lemma 3.6 (Uniform boundedness of higher-order derivatives). Suppose that the as-
sumptions of Proposition 3.4 hold. Furthermore, let ηµ,0 and ω

Vk,Wk(µ) be as in Proposi-
tion 3.4, and let

(3.6) σ̃Vk,Wk(µ) := σVk,Wk(µ,ωVk,Wk(µ)).

Then for every η̂µ,0 ∈ (0, ηµ,0) there exists γ > 0 independent of µ(1) such that for all µ ∈
B(µ∗, η̂µ,0), we have

(i)

∣∣∣∣∣
∂2‖H [µ]‖H∞

∂µq∂µr

∣∣∣∣∣ ≤ γ and
∣∣∣σ̃Vk,Wk

µqµr
(µ)

∣∣∣ ≤ γ, q, r = 1, . . . , d,

(ii)

∣∣∣∣∣
∂3‖H [µ]‖H∞

∂µq∂µr∂µℓ

∣∣∣∣∣ ≤ γ and
∣∣∣σ̃Vk,Wk

µqµrµℓ
(µ)

∣∣∣ ≤ γ, q, r, ℓ = 1, . . . , d.

Proof. (i) By Proposition 3.4, the functions ‖H [·]‖H∞

and σ̃Vk,Wk(·) are three times

continuously differentiable in a neighborhood of B(µ∗, η̂µ,0). The first assertion, that is the
boundedness of the second derivatives of ‖H [·]‖H∞

in B(µ∗, η̂µ,0), is immediate. Let us prove
the existence of a uniform γ > 0 such that

(3.7)
∣∣∣σ̃Vk,Wk

µqµr
(µ)

∣∣∣ ≤ γ ∀µ ∈ B(µ∗, η̂µ,0)

for q, r = 1, . . . , d independent of µ(1). To this end, we first observe

(3.8) σ̃Vk,Wk
µqµr

(µ) = σVk,Wk
µqµr

(
µ,ωVk,Wk(µ)

)
+ σVk,Wk

µqω

(
µ,ωVk,Wk(µ)

)
ω

Vk,Wk
µr

(µ).

The function ω
Vk,Wk(·) is implicitly defined by the equation σVk,Wk

ω

(
µ,ωVk,Wk(µ)

)
= 0 for µ

near µ(k). Differentiating this equation with respect to µr yields

ω
Vk,Wk
µr

(µ) = −
σVk,Wk
µrω

(
µ,ωVk,Wk(µ)

)

σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

) ,

which we plug into (3.8) to obtain

(3.9) σ̃Vk,Wk
µqµr

(µ) = σVk,Wk
µqµr

(
µ,ωVk,Wk(µ)

)
−

σVk,Wk
µqω

(
µ,ωVk,Wk(µ)

)
σVk,Wk
µrω

(
µ,ωVk,Wk(µ)

)

σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

) .

By part (ii) of Proposition 3.4, we have σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

)
≤ δ/2 < 0 for all µ ∈

B(µ∗, ηµ,0) independent of µ(1). Additionally, by Lemma 3.3, all mixed second derivatives
of σVk,Wk(·, ·) are bounded from above in absolute value uniformly in B(µ∗, ηµ)×B(ω∗, ηω) ⊇
B(µ∗, ηµ,0) × B(ω∗, ηω,0) (to be precise we assume the inclusion without loss of generality as
we can choose ηµ,0, ηω,0 as small as we wish), where the upper bound is independent of µ(1).
Hence, we conclude with (3.7) as desired.

(ii) The boundedness of the third derivatives of ‖H [·]‖H∞

in B(µ∗, ηµ,0) is immediate

from three times continuous differentiability of ‖H [·]‖H∞

in a neighborhood of B(µ∗, ηµ,0).

The boundedness of the absolute values of the third derivatives of σ̃Vk,Wk(·) uniformly
by a constant independent of µ(1) can be established in a similar way as in part (i). Specif-
ically, by differentiating (3.9) with respect to µℓ, it can be seen that σ̃Vk,Wk

µqµrµℓ
(µ) is a ratio,

where the expression in the numerator is a sum of products of the mixed second deriva-
tives σVk,Wk

χ1,χ2

(
µ,ωVk,Wk(µ)

)
and third derivatives σVk,Wk

χ1,χ2χ3

(
µ,ωVk,Wk(µ)

)
for χ1, χ2, χ3 ∈
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{ω, µq, µr, µℓ}, while the expression in the denominator is σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

)3
. Hence,

once again, the conclusion

∣∣∣σ̃Vk,Wk
µqµrµℓ

(µ)
∣∣∣ ≤ γ ∀µ ∈ B(µ∗, η̂µ,0)

for q, r, ℓ = 1, . . . , d for some γ independent of µ(1) can be drawn from part (ii) of Proposi-
tion 3.4 and Lemma 3.3.

By Lemma 2.1 and Lemma 2.2, the reduced function σ̃Vk,Wk(·) Hermite interpolates the
original H∞ function ‖H [·]‖H∞

at µ = µ(k), µ(k−1). Indeed, for the extended algorithm

(Algorithm 2.2), these Hermite interpolation properties also hold at µ = µ(k,rq) for each
r = 1, . . . , d, q = r, . . . , d by Lemma 2.2. From these observations, by also employing
Lemma 3.6, it is possible to conclude with an upper bound on the gap between the second
derivatives of σ̃Vk,Wk(·) and ‖H [·]‖H∞

near µ∗, which we formally state and prove next.

Lemma 3.7 (Proximity of the second derivatives). Suppose that the assumptions of
Proposition 3.4 hold. Additionally, assume that ∇2‖H [µ∗]‖H∞

is invertible. Furthermore,

let ω
Vk,Wk(·) be as in Proposition 3.4, and σ̃Vk,Wk(·) be defined as in (3.6). Then there

exists a ζ > 0 such that the following statements hold for Algorithm 2.1 when d = 1 and for
Algorithm 2.2 independent of µ(1):

(i) We have
∥∥∥∇2

∥∥H
[
µ(k)

]∥∥
H∞

−∇2σ̃Vk,Wk
(
µ(k)

)∥∥∥
2
≤ ζ

∥∥µ(k) − µ(k−1)
∥∥
2
.

(ii) Both ∇2
∥∥H

[
µ(k)

]∥∥
H∞

and ∇2σ̃Vk,Wk
(
µ(k)

)
are invertible.

(iii) We have

∥∥∥∥
[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

−
[
∇2σ̃Vk,Wk

(
µ(k)

)]−1
∥∥∥∥
2

≤ ζ
∥∥µ(k) − µ(k−1)

∥∥
2
.

Proof. (i) We focus on Algorithm 2.2 only (the proof for Algorithm 2.1 with d = 1 pro-
ceeds similarly by defining h(k) := µ(k−1)−µ(k)). By parts (iii) and (iv) of Proposition 3.4, the
functions ‖H [·]‖H∞

and σ̃Vk,Wk(·) are three times differentiable in the interior of B(µ∗, ηµ,0)

independent of µ(1). Now choose µ(1) close enough to µ∗ so that B
(
µ(k), h(k)

)
⊂ B(µ∗, ηµ,0),

as well as ω(k), ω(k,rq) belong to the interior of B(ω∗, ηω,0) for r = 1, . . . , d and q = r, . . . , d
(observe that ω(k,rq) → ω∗ as µ(1) → µ∗ based on arguments similar to the ones for ω(k) → ω∗

as µ(1) → µ∗ given in the proof of part (ii) of Proposition 3.4).
It follows that the functions

ℓ : [0, 1]→ R, ℓ(α) :=
∥∥H

(
µ(k) + αh(k)erq

)∥∥
H∞

,

ℓ̃ : [0, 1]→ R, ℓ̃(α) := σ̃Vk,Wk
(
µ(k) + αh(k)erq

)

are continuous and three times differentiable in (0, 1). Additionally, Lemma 2.2 implies that
the following interpolation properties between these functions

(3.10) ℓ(0) = ℓ̃(0), ℓ′(0) = ℓ̃′(0) and ℓ(1) = ℓ̃(1)

are satisfied. To see the last equality at α = 1, we observe

0 = σω

(
µ(k,rq), ω(k,rq)

)
= σVk,Wk

ω

(
µ(k,rq), ω(k,rq)

)

by Lemma 2.2, so part (iv) of Proposition 3.4, in particular the uniqueness of the stationary
point ω

Vk,Wk(µ) of σVk,Wk(µ, ·) for all µ ∈ B(µ∗, ηµ,0), implies ω
Vk,Wk

(
µ(k,rq)

)
= ω(k,rq) (as

µ(k,rq) ∈ B(µ∗, ηµ,0) and ω(k,rq) ∈ B(ω∗, ηω,0)). Hence, again by Lemma 2.2, we have

ℓ(1) =
∥∥H

[
µ(k,pq)

]∥∥
H∞

= σVk,Wk
(
µ(k,rq), ω(k,rq)

)

= σVk,Wk
(
µ(k,rq),ωVk,Wk

(
µ(k,rq)

))
= ℓ̃(1).
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By employing the interpolation properties in (3.10) in the Taylor expansions

ℓ(1) = ℓ(0) + ℓ′(0) +
1

2
ℓ′′(0) +

1

6
ℓ′′′(ε),

ℓ̃(1) = ℓ̃(0) + ℓ̃′(0) +
1

2
ℓ̃′′(0) +

1

6
ℓ̃′′′(ε̃)

for some ε, ε̃ ∈ (0, 1), we obtain

[
h(k)

]2
eTrq

[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

−∇2σ̃Vk,Wk
(
µ(k)

)]
erq

= ℓ′′(0)− ℓ̃′′(0) =
1

3

(
ℓ̃′′′(ε̃)− ℓ′′′(ε)

)
= O

([
h(k)

]3)
,

(3.11)

where the constant hidden in the Landau symbol O is independent of µ(1) due to Lemma 3.6.
By considering particular values of r = 1, . . . , d and q = r, . . . , d in (3.11), we deduce

∣∣∣∣∣
∂2

∥∥H
[
µ(k)

]∥∥
H∞

∂µr∂µq
− ∂2σ̃Vk,Wk

(
µ(k)

)

∂µr∂µq

∣∣∣∣∣ = O
(
h(k)

)
.

Once again, the constant hidden in the Landau symbol O does not depend on µ(1) in the
latter equation.

(ii) By the continuity of ∇2‖H [·]‖H∞

in the interior of B(µ∗, ηµ,0), coupled with the

assumption µ(k) → µ∗ as µ(1) → µ∗, we have limµ(1)→µ∗

∇2
∥∥H

[
µ(k)

]∥∥
H∞

= ∇2‖H [µ∗]‖H∞

.

Consequently, ∇2
∥∥H

[
µ(k)

]∥∥
H∞

is invertible provided µ(1) is sufficiently close to µ∗. In addi-

tion, from part (i) we get

∇2‖H [µ∗]‖H∞

= lim
µ(1)→µ∗

∇2
∥∥H

[
µ(k)

]∥∥
H∞

= lim
µ(1)→µ∗

∇2σ̃Vk,Wk
(
µ(k)

)
,

implying also the invertibility of ∇2σ̃Vk,Wk
(
µ(k)

)
for µ(1) close to µ∗.

(iii) This statement follows from part (i) by employing the adjugate formulas for the in-
verses of ∇2

∥∥H
[
µ(k)

]∥∥
H∞

as well as ∇2σ̃Vk,Wk
(
µ(k)

)
. For details, we refer to [10, Lemma 2.8,

part (ii)].

Now we are ready for the main rate-of-convergence result.

Theorem 3.8 (Local superlinear convergence). Suppose that the assumptions of Propo-
sition 3.4 hold. In particular, let ω

Vk,Wk(·) be as in Proposition 3.4. Additionally, assume
that the matrix ∇2‖H [µ∗]‖H∞

is invertible, the point µ∗ is strictly in the interior of Ω,

and that the function σVk,Wk(µ(k+1), ·) has a unique global maximizer, say at ω̃(k+1), with
limµ(1)→µ∗

ω̃(k+1) = ω∗. Regarding Algorithm 2.1 when d = 1 and Algorithm 2.2, the follow-

ing statement holds: There exists a C > 0 independent of µ(1) such that

(3.12)

∥∥µ(k+1) − µ∗

∥∥
2∥∥µ(k) − µ∗

∥∥
2
max

{∥∥µ(k) − µ∗

∥∥
2
,
∥∥µ(k−1) − µ∗

∥∥
2

} ≤ C.

Proof. By Proposition 3.4, both ‖H [·]‖H∞

and σ̃Vk,Wk(·) defined by (3.6) are twice Lip-

schitz continuously differentiable in the interior of the ball B(µ∗, ηµ,0). Now suppose µ(1) is
close enough to µ∗ so that µ(k+1), µ(k), µ(k−1) lie in the interior of B(µ∗, ηµ,0), whereas ω̃(k+1)

belongs to the interior of B(ω∗, ηω,0), and
(1) B

(
µ(k), h(k)

)
⊂ B(µ∗, ηµ,0) where h(k) :=

∥∥µ(k) − µ(k−1)
∥∥
2

(recall that µ(k) → µ∗ and

h(k) → 0 as µ(1) → µ∗),
(2) ∇2

∥∥H
[
µ(k)

]∥∥
H∞

and ∇2σ̃Vk,Wk
(
µ(k)

)
are invertible (part (ii) of Lemma 3.7 ensures

this as µ(1) is chosen close to µ∗).
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By an application of Taylor’s theorem with integral remainder we obtain

0 = ∇‖H [µ∗]‖H∞

= ∇
∥∥H

[
µ(k)

]∥∥
H∞

+

∫ 1

0

∇2
∥∥H

[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞

(
µ∗ − µ(k)

)
dt,

which implies

0 =
[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

∇
∥∥H

[
µ(k)

]∥∥
H∞

+
(
µ∗ − µ(k)

)
+
[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

×
∫ 1

0

[
∇2

∥∥H
[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞

−∇2
∥∥H

[
µ(k)

]∥∥
H∞

] (
µ∗ − µ(k)

)
dt.

(3.13)

Now by exploiting the interpolation property, in particular part (iv) of Lemma 2.1, and
recalling ω

Vk,Wk
(
µ(k)

)
= ω(k) due to part (ii) of Proposition 3.4, we get

∇‖H(µ(k))‖H∞
= σVk,Wk

µ (µ(k), ω(k))

= σVk,Wk
µ (µ(k),ωVk,Wk

(
µ(k)

)
)

= σVk,Wk
µ (µ(k),ωVk,Wk

(
µ(k)

)
) + σVk,Wk

ω (µ(k),ωVk,Wk
(
µ(k)

)
)∇ωVk,Wk

(
µ(k)

)

= ∇σ̃Vk,Wk(µ(k)),

where we employ σVk,Wk
ω (µ(k),ωVk,Wk

(
µ(k)

)
) = 0 for the third equality. Hence, equation

(3.13) can be rearranged as

0 =
[
∇2σ̃Vk,Wk

(
µ(k)

)]−1

∇σ̃Vk,Wk
(
µ(k)

)
+
(
µ∗ − µ(k)

)
+

{[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

−
[
∇2σ̃Vk,Wk

(
µ(k)

)]−1
}
∇
∥∥H

[
µ(k)

]∥∥
H∞

+

[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

×
∫ 1

0

[
∇2

∥∥H
[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞

−∇2
∥∥H

[
µ(k)

]∥∥
H∞

] (
µ∗ − µ(k)

)
dt.

(3.14)

Throughout the rest of the proof, by manipulating (3.14), we bound ‖µ(k+1)−µ∗‖2 from
above in terms of ‖µ(k) − µ∗‖2 and ‖µ(k−1) − µ∗‖2. Since ω̃(k+1) ∈ B(ω∗, ηω,0) is assumed to
be the unique global maximizer of σVk,Wk

(
µ(k+1), ·

)
, we must have ω

Vk,Wk
(
µ(k+1)

)
= ω̃(k+1)

by part (iv) of Proposition 3.4. It follows that

∇σ̃Vk,Wk
(
µ(k+1)

)
= σVk,Wk

µ (µ(k+1), ω̃(k+1)) = ∇
∥∥HVk,Wk [µ(k+1)]

∥∥
H∞

= 0,

where we use the fact that µ(k+1) is a maximizer of
∥∥HVk,Wk [·]

∥∥
H∞

for the last equality.
Moreover, a Taylor expansion yields

0 = ∇σ̃Vk,Wk
(
µ(k+1)

)

= ∇σ̃Vk,Wk
(
µ(k)

)
+∇2σ̃Vk,Wk

(
µ(k)

)(
µ(k+1) − µ(k)

)
+O

(∥∥µ(k+1) − µ(k)
∥∥2
2

)
,

which in turn implies

(3.15)
[
∇2σ̃Vk,Wk

(
µ(k)

)]−1

∇σ̃Vk,Wk
(
µ(k)

)
=

(
µ(k) − µ(k+1)

)
+O

(∥∥µ(k+1) − µ(k)
∥∥2
2

)
.

Additionally, by another Taylor expansion,

0 = ∇
∥∥H

[
µ∗

]∥∥
H∞

= ∇
∥∥H

[
µ(k)

]∥∥
H∞

+∇2
∥∥H

[
µ(k)

]∥∥
H∞

(
µ∗ − µ(k)

)
+O

(∥∥µ(k) − µ∗

∥∥2
2

)
.
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Therefore, by using Lemma 3.7 and part (i) of Lemma 3.6, we see that

∥∥∥∥
{[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

−
[
∇2σ̃Vk,Wk

(
µ(k)

)]−1
}
· ∇

∥∥H
[
µ(k)

]∥∥
H∞

∥∥∥∥
2

≤ ζ
∥∥µ(k) − µ(k−1)

∥∥
2
·
∥∥∥∇

∥∥H
[
µ(k)

]∥∥
H∞

∥∥∥
2
= O

(∥∥µ(k) − µ(k−1)
∥∥
2
·
∥∥µ(k) − µ∗

∥∥
2

)
.

(3.16)

Finally, by exploiting the Lipschitz continuity of ∇2‖H [·]‖H∞

near µ∗, we obtain

∥∥∥∥
[
∇2

∥∥H
[
µ(k)

]∥∥
H∞

]−1

×
∫ 1

0

[
∇2

∥∥H
[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞

−∇2
∥∥H

[
µ(k)

]∥∥
H∞

] (
µ∗ − µ(k)

)
dt

∥∥∥∥
2

= O
(∥∥µ(k) − µ∗

∥∥2

2

)
.

(3.17)

Combining (3.14) with (3.15), (3.16), (3.17), and noting
∥∥µ(k) − µ(k−1)

∥∥
2
≤ 2max

{∥∥µ(k) −
µ∗

∥∥
2
,
∥∥µ(k−1) − µ∗

∥∥
2

}
, we finally obtain

∥∥µ(k+1) − µ∗

∥∥
2
≤ c1 max

{∥∥µ(k) − µ∗

∥∥
2
,
∥∥µ(k−1) − µ∗

∥∥
2

}∥∥µ(k) − µ∗

∥∥
2
+ c2

∥∥µ(k) − µ∗

∥∥2
2

for some constants c1, c2 independent of µ(1) from which (3.12) is immediate.

Remark 3.9. One important assumption for the rate of convergence result above is that
the global minimizer µ∗ is contained in the interior of Ω. Suppose Ω is a box, and µ∗ lies on
the boundary of this box. Then one or more of the box constraints are active for the full-order
problem at µ∗, and ‖H [·]‖H∞

is increasing in all directions pointing into the interior of Ω in a
ball B(µ∗, η) (as ‖H [·]‖H∞

is continuously differentiable in a neighborhood of µ∗). The same
property holds to be true for the reduced function σ̃Vk,Wk(·) in another ball B(µ∗, η̃) ⊆ B(µ∗, η),
due to the interpolation properties (specifically due to part (iii) of Lemma 2.1), and uniform
upper bounds on the derivatives of σVk,Wk(·, ·), σ̃Vk,Wk(·) (see in particular Lemma 3.3 and
3.6), provided µ(1) is close enough to µ∗. Consequently, the same active box constraints for
the original function ‖H [·]‖H∞

at µ∗ have to be active for the reduced function σ̃Vk,Wk(·) at
µ(k+1). This means that the rate of convergence analysis above, in particular the proof of
Theorem 3.8, is applicable by restricting µ to the variables that are not active at µ∗. If all of
the constraints are active at µ∗, then µ(k+1) = µ∗ in exact arithmetic.

The minimizers for the examples arising from real applications on which we perform
numerical experiments in the next section turn out to be on the boundary of the box, see, e. g.,
Example 4.1 where all of the three box constraints are active at the minimizer, or Example 4.3
where only one of the two box constraints is active, while the other is inactive. On the other
hand, the minimizer for the synthetic example in the next section is usually in the interior,
see Example 4.4.

4. Numerical Experiments. In this section, we present numerical results obtained by
our MATLAB implementation of Algorithm 2.1 that we made available for download. We
first discuss some important implementation details and the test setup in the next subsec-
tion. Then, we report the numerical results on several large-scale linear parameter-dependent
systems which we describe in detail. All test examples are taken from the Model Order Re-
duction Wiki (MOR Wiki) website1. Our numerical experiments have been performed on a

machine with an 4 Intel R© Core
TM

i5-4590 CPUs with 3.30GHz each and 16GB RAM using
Linux version 4.4.132-53-default and MATLAB version 9.4.0.813654 (R2018a).

1available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main_Page.

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main_Page
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4.1. Implementation Details and Test Setup. At each iteration of Algorithm 2.1,
the L∞-norm of the transfer function of a reduced parametrized system needs to be minimized.
We have implemented and tested two optimization techniques to solve this global non-convex
optimization problem:

• eigopt, a MATLAB implementation of the algorithm in [13], which is an adaptation
of the algorithm in [5] for eigenvalue optimization. This MATLAB package creates
a lower and an upper bound for the optimal value of a given eigenvalue function by
employing piece-wise quadratic support functions, and terminates when the difference
between these bounds is less than a prescribed tolerance. For reliability and efficiency,
one should supply an appropriate global lower bound γ on the minimum eigenvalue
of the Hessian of the eigenvalue function to be minimized to eigopt. This solver can
be slow, if there are many parameters or if γ is very small. For our tests we always
use γ = −10000.
• GRANSO [6], which is based on BFGS together with line searches ensuring the satis-

faction of the weak Wolfe conditions. GRANSO converges to a locally optimal solution,
that is not necessarily optimal globally, but works efficiently even when there are
several parameters.

Algorithm 2.1 is terminated in practice when the relative distance between µ(k) and µ(k−1)

is less than a prescribed tolerance for some k > 1, if the minimal L∞-norm values for the
reduced transfer functions at two consecutive iterations differ by less than a prescribed toler-
ance, or if the number of iterations exceeds a specified integer, more formally, we terminate,
if

k > kmax or
∥∥µ(k) − µ(k−1)

∥∥
2
< ε1 ·

1

2

∥∥µ(k) + µ(k−1)
∥∥
2

or
∣∣∣
∥∥HVk,Wk

[
µ(k+1)

]∥∥
H∞

−
∥∥HVk−1,Wk−1

[
µ(k)

]∥∥
H∞

∣∣∣ <

ε2 ·
1

2

{∥∥HVk,Wk
[
µ(k+1)

]∥∥
H∞

+
∥∥HVk−1,Wk−1

[
µ(k)

]∥∥
H∞

}
.

In our numerical experiments, we set ε1 = ε2 = 10−6 and kmax = 20.
The absolute termination tolerance for the accuracy of the global optimizer computed

by eigopt is 10−8, whereas the tolerance for reaching (approximate) stationarity in GRANSO

is set to 10−12. Apart from these we use default options in eigopt, GRANSO, as well as our
MATLAB routine linorm_subsp that implements the method from [1] for computing the
L∞-norm of the transfer function of a large-scale linear system. In linorm_subsp we call the
FORTRAN routine AB13HD.F via a mex file that implements the method of [4] to compute
the L∞-norm of small-scale reduced systems. The latter is often faster and more reliable than
the native MATLAB routine norm from the Control Systems Toolbox, that one could use for
small-scale L∞-norm computations as well. Our initial reduced order models are generated
by 10 interpolation points (which consist of pairs of parameter values µ and frequencies ω)
that are equidistantly aligned on a line in Ω× [0, ωmax) where ωmax is a problem-dependent
maximum frequency. Further details on the implementation can be inferred from the code
that we have made available for download.

4.2. Results for Real Examples. We first test our algorithm on the following four
parameter-dependent descriptor systems, all of which originate from real applications.

Example 4.1 (Thermal conduction (T2DAL_BCI), see [14]). Our first example is a ther-
mal conduction model in a chip production. For a compact and efficient model of thermal
conduction, one should take into account different configurations of the boundary conditions.
This gives the capability to the chip producers to assess how the change in the environment
influences the temperature in the chip. A mathematical model of the thermal conduction is
given by the heat equation where the heat exchange through the three device interfaces is mod-
eled by convection boundary conditions. These boundary conditions introduce the parameters
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µ1, µ2, µ3, called the film coefficients, to describe the change in the temperature on the three
device interfaces. After spatial discretization of the partial differential equation and by in-
corporating the boundary conditions one obtains a time-invariant linear system with transfer
function

H [µ1, µ2, µ3](s) = C(sE − (A0 + µ1A1 + µ2A2 + µ3A3))
−1B(4.1)

where E ∈ R4257×4257 and Ai ∈ R4257×4257, i = 1, 2, 3 are diagonal matrices arising from the
discretization of convection boundary conditions on the i-th interface and B ∈ R4257×1, C ∈
R7×4257 are the input and output matrices, respectively. The specified box for the parameter

µ :=
[ µ1
µ2
µ3

]
is

[
1, 104

]
×
[
1, 104

]
×
[
1, 104

]
.

We report on the results of Algorithm 2.1 on the T2DAL_BCI example for different setups in
Table 4.1.

Table 4.1: Numerical results for the T2DAL_BCI example.

setup niter (µ1,∗, µ2,∗, µ3,∗) ‖H [µ1,∗, µ2,∗, µ3,∗]‖H∞

time in s

eigopt 2 (1.0000e+4, 1.0000e+4, 1.0000e+4) 1.15429e+1 374.25
GRANSO 2 (1.0000e+4, 1.0000e+4, 1.0000e+4) 1.15429e+1 2.54

Example 4.2 (Anemometer (anemometer_1p and anemometer_3p), see [2]). An anemo-
meter is a device to measure heat flow which consists of a heater and temperature sensors
placed near the heater. The temperature field is affected by the flow and hence a tempera-
ture difference occurs between the sensors. The measured temperature difference determines
the velocity of the fluid flow. The mathematical model for the anemometer is given by the
convection-diffusion equation

ρc
∂T

∂t
= ∇(κ∇T )− ρcv∇T + q′,

where ρ denotes the mass density, c is the specific heat, κ is the thermal conductivity, v is
the fluid velocity, T is the temperature, and q′ is the heat flow. A spatial discretization of
the convection-diffusion equation above, for instance by the finite element method, yields a
parametric linear system with the transfer function

H [v](s) = C(sE − (A1 + v(A2 −A1)))
−1B

which depends on only the fluid velocity v ∈ [0, 1]; or a parametric system with the transfer
function

H [c, κ, v](s) = C(s(E1 + cE2)− (A1 + κA2 + cvA3))
−1B

where three parameters c ∈ [0, 1], κ ∈ [1, 2], v ∈ [0.1, 2] appear. The input and output matrices
B and C above result from separating the spatial variables in q′. We refer to these one
parameter and three parameter examples as anemometer_1p and anemometer_3p, respectively.
In both cases, the order of the state space is 29008, there is a single input and a single output.

We report on the results of Algorithm 2.1 on the anemometer_1p and anemometer_3p exam-
ples for different setups in Tables 4.2 and 4.3, respectively.

Example 4.3 (Scanning electrochemical microscopy (SECM), see [7]). Scanning elec-
trochemical microscopy is a technique to analyze the electrochemical behavior of species (in
different states of matter) at their interface. This example considers the chemical reaction
between two species on an electrode. The species transport is described by the second Fick’s
law which leads to two partial diffusion equations with appropriate boundary conditions. A
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Table 4.2: Numerical results for the anemometer_1p example.

setup niter v∗ ‖H [v∗]‖H∞

time in s

eigopt 6 0.0000 1.32274e–2 32.68
GRANSO 6 -0.0000 1.32274e–2 30.91

Table 4.3: Numerical results for the anemometer_3p example.

setup niter (c∗, κ∗, v∗) ‖H [c∗, κ∗, v∗]‖H∞

time in s

eigopt 4 (0.0000, 2.0000, 1.0000e–1) 1.64723e–3 766.06
GRANSO 3 (0.0000, 2.0000, 8.3855e–1) 1.64723e–3 40.93

spatial discretization together with a boundary control then leads to a linear-time invariant
system whose transfer function is

H [h1, h2](s) = C(sE − (h1A1 + h2D2 −A3))
−1B,

where E, A1, A2, A3 ∈ R16912×16912, B ∈ R16912×1, and C ∈ R5×16912 and h1, h2 are the
parameters of the problem. The experiment is performed in the box

[
1, e2

]
×
[
1, e2

]
.

The results for the SECM example are summarized in Table 4.4

Table 4.4: Numerical results for the SECM example.

setup niter (h1,∗, h2,∗) ‖H [h1,∗, h2,∗]‖H∞

time in s

eigopt 5 (1.0000, 4.1944) 1.85588 180.01
GRANSO 5 (1.0000, 4.2882) 1.85583 20.51

In all examples, we observe superliner convergence in the final iterations. Specifically, for
the SECM example, we report the errors with respect to the iteration number in Table 4.5.
Four additional iterations after the construction of the initial reduced model suffice to find
the minimal H∞-norm with the specified relative tolerances. For most examples, in particular
the ones with more than one parameter, using GRANSO is significantly faster than eigopt. On
the other hand, in contrast to GRANSO, eigopt returns the global minimizer for the reduced
problems and thus sometimes yields more reliable results. In particular, due to the local
convergence issue with GRANSO, rarely the subspace framework equipped with GRANSO does
not converge to the global minimizer of the full problem, while the one with eigopt does
converge to the global minimizer of the full problem. This can for example be seen in the
synthetic example discussed below.

To our knowledge, there is no reliable and efficient algorithm for large-scale H∞-norm
minimization in the literature which we can use for comparison purposes and verify the
correctness of the results obtained. Instead, for each example above, we have computed the
H∞-norm of the system for various values of µ near the computed optimal parameter value
µ∗. According to these computations, the optimal parameter values listed above seem to be
at least locally optimal. For three of the examples, the plots of the H∞-norm as a function
of µ are illustrated in Figure 4.1

4.3. Results for Synthetic Examples. Next, we test our approach on synthetic ex-
amples of various orders taken from the MOR Wiki.

Example 4.4 (Synthetic example). We consider parametric single-input, single-output
systems of order n = 2q with transfer functions of the form

(4.2) H [µ](s) = C(sIn − µA1 −A0)
−1B,
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Table 4.5: The minimizers for the reduced problems as well as the errors of the iterates of
Algorithm 2.1 and the corresponding errors in the H∞-norms are listed for the SECM example
by using GRANSO for optimization. Here, the short-hands f (k) :=

∥∥HVk,Wk [µ(k+1)]
∥∥
L∞

and

f∗ := ‖H [µ∗]‖H∞

are used.

k µ(k+1)
∥∥µ(k+1) − µ∗

∥∥
2

∣∣f (k) − f∗
∣∣

0 (1.0000, 1.2088) 3.08 2.61e–1
1 (1.6579, 7.3891) 3.17 2.72e–4
2 (1.4761, 6.3522) 2.12 1.51e–4
3 (1.0000, 4.2882) 1.55e–9 1.24e–12
4 (1.0000, 4.2882) < 1e–12 < 1e–12

where the matrices A1, A0 ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are given by

A1 =



A1,1

. . .

A1,m


 , A0 =



A0,1

. . .

A0,m


 , B =



B1

...
Bm


 , C =

[
C1 . . . Cm

]

with

A1,i =

[
ai 0
0 ai

]
, A0,i =

[
0 bi
−bi 0

]
, Bi =

[
2
0

]
, Ci =

[
1 0

]
, i = 1, . . . , m.

The numbers ai and bi are chosen equidistantly in the intervals [−103,−10] and [10, 103],
respectively. The parameter µ is constrained to lie in the interval [0.02, 1].

We perform our experiments on this synthetic example for several values of n varying
in 102, . . . , 106. For smaller values of n, a comparison of Algorithm 2.1 and the MATLAB
package eigopt (for the unreduced problems) is provided in Table 4.7. This table indicates
that with or without reduction we retrieve exactly the same optimal H∞-norm values up to
the prescribed tolerance ε2 = 10−6, yet the proposed subspace framework leads to speed-ups
on the order of 103, indeed the ratios of the runtimes increase quickly with respect to n.

Larger examples are considered in Table 4.8, but only using the proposed subspace frame-
work. It does not seem possible to solve these larger H∞-norm minimization problems in a
reasonable time without employing reductions. Even the examples of order 106 can be solved
very fast. All examples up to order 105 can be solved with just two to four iterations, only
for very large examples up to 9 iterations may be needed. Moreover, the largest fraction of
the computation time is spent for solving large-scale linear systems.

Note that we have used eigopt for the optimization of the the small subproblems here
which is guaranteed to return a global minimizer. We observe in practice that when the
reduced problems are solved by a locally convergent algorithm, convergence to µ = 1, a
locally optimal solution, sometimes occurs. This is in particular the case for some values of
n when the reduced problems are solved with GRANSO. Also note that for the computation of
the L∞-norm in this example we make use of the native MATLAB function norm, since the
periodic QZ algorithm used for the eigenvalue computation in AB13HD.f does not converge
always. Further, we have set γ = −1000 in eigopt – otherwise, the runtimes would be higher.

Finally, the progress of the subspace framework is displayed in Figure 4.2 on this synthetic
example for n = 500. After one subspace iteration, the L∞-norm of the reduced problem
already closely resembles the one for the original problem around the minimizer. After two
subspace iterations, it is even hard to distinguish the L∞-norm functions for the reduced and
original problems around the minimizer, except for a thin peak that occurs in the reduced
problem. The progress of the iteration is further summarized in Table 4.6.
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Fig. 4.1: The H∞-norms for the different examples, where the computed minimal norm value
is marked by a red circle. Note that in the captions and legends of (a)–(f), µ∗,j denotes the
jth component of µ∗ for j = 1, 2, or 3.

5. Concluding Remarks. In this work we have developed new subspace restriction
techniques to minimize the H∞-norm of transfer functions of large-scale parameter-dependent
linear systems. We have given a detailed analysis of the rate of convergence of these methods,
demonstrated the validity of the deduced rate of convergence results in practice by various
numerical examples, which could all be solved very efficiently. The methods presented here
make the design of optimal H∞-controllers for large-scale systems partly feasible. A fully
feasible method to design optimal H∞-controllers for large-scale systems should also take
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Table 4.6: The minimizers for the reduced problems as well as the errors of the iterates of
Algorithm 2.1 and the corresponding errors in the H∞-norms are listed for the synthetic

example for n = 500 by using eigopt for optimization. Here, again the short-hands f (k) :=∥∥HVk,Wk [µ(k+1)]
∥∥
L∞

and f∗ := ‖H [µ∗]‖H∞

are used.

k µ(k+1)
∣∣µ(k+1) − µ∗

∣∣
2

∣∣f (k) − f∗
∣∣

0 0.5100 2.74e–1 0.12e–1
1 0.2354 2.94e–4 5.01e–7
2 0.2357 < 1e–12 < 1e–12

Table 4.7: Results of the numerical experiments on Example 4.4 for smaller values of n, where
we list the number of subspace iterations niter, the optimal parameter values by Algorithm 2.1
and eigopt, and the corresponding minimal H∞-norms, as well as the runtimes are listed.
The optimal H∞-norm values returned by Algorithm 2.1 are the same with those returned
by eigopt at least up to six decimal digits.

µ∗ ‖H [µ∗]‖H∞

runtime in s
n niter Alg. 2.1 eigopt Alg. 2.1 eigopt Alg. 2.1 eigopt

100 2 1.000000 1.000000 0.317092 0.317092 1.33 6.98
200 2 1.000000 1.000000 0.549800 0.549800 0.82 52.33
400 3 0.270587 0.270549 0.969289 0.969289 3.85 455.07
600 4 0.212279 0.212255 1.337220 1.337219 3.06 1563.83
800 2 0.181492 0.181501 1.706940 1.706940 1.65 2635.76

stability considerations into account. We intend to address stability issues in future.

Code Availability. The MATLAB implementation of our algorithm and the computa-
tional results are publicly available under the URL http://www.tu-berlin.de/?202212&L=1.

Appendix A. Proof of Lemma 3.3. By the continuity of (µ, ω) 7→ σmin(D(µ, ω)),

there exists a neighborhood Ñ of (µ∗, ω∗) such that σmin(D(µ, ω)) ≥ β/2 for all (µ, ω) ∈ Ñ .
Consequently, the mapping (µ, ω) 7→ H [µ](iω) is continuously differentiable and σ(·, ·), σ2(·, ·)
are continuous in Ñ . The continuity of σ(·, ·), σ2(·, ·) implies that σ(µ, ω) remains a simple

singular value of H [µ](iω), hence it is bounded away from zero in a neighborhood N ⊆ Ñ of
(µ∗, ω∗). Formally,

(A.1) σ(µ, ω)− σ2(µ, ω) ≥ ε̂ ∀(µ, ω) ∈ N

for some ε̂ > 0.
Moreover, by employing the interpolation properties

σVk,Wk
(
µ(k), ω(k)

)
= σ

(
µ(k), ω(k)

)
and σVk,Wk

2

(
µ(k), ω(k)

)
= σ2

(
µ(k), ω(k)

)
,

as well as the uniform Lipschitz continuity of σVk,Wk(·, ·), σVk,Wk

2 (·, ·) (i. e., parts (iii) and
(iv) of Lemma 3.2), there exists a region B(µ∗, η̃µ) × B(ω∗, η̃ω) in which σVk,Wk(µ, ω) is a
simple, hence also a positive singular value of HVk,Wk [µ](iω). More precisely, we have

(A.2) σVk,Wk(µ, ω)− σVk,Wk

2 (µ, ω) ≥ ε ∀(µ, ω) ∈ B(µ∗, η̃µ)× B(ω∗, η̃ω)

for some ε ∈ (0, ε̂), where the constants ε, η̃µ, η̃ω do not depend on µ(1). However, here it is
assumed that ‖µ(1) − µ∗‖2 is small enough in order to ensure ‖µ(k) − µ∗‖2 ≪ ε̂.

http://www.tu-berlin.de/?202212&L=1
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Table 4.8: The performance of Algorithm 2.1 on Example 4.4 for larger values of n, where we
have used eigopt for the optimization of the reduced subproblems.

n niter µ∗ ‖H [µ∗]‖H∞

runtime in s

1000 4 0.157222 2.08316 3.61
2000 4 0.115748 4.08243 4.68
5000 2 0.113064 10.1718 2.15
10000 2 0.112964 20.3321 1.64
20000 2 0.113009 40.6554 1.37
50000 2 0.113066 101.628 1.70
100000 2 0.113090 203.248 2.69
200000 2 0.113102 406.490 5.04
500000 2 0.113111 1016.22 12.53
1000000 2 0.113113 2032.43 26.11
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Fig. 4.2: The plots of the full function ‖H [·]‖H∞

, as well as the reduced functions∥∥HV0,W0 [·]
∥∥
L∞

,
∥∥HV1,W1 [·]

∥∥
L∞

, and
∥∥HV2,W2 [·]

∥∥
L∞

in the interval [0.1, 0.4] for Example 4.4
with n = 500.

Let us now prove that |σω(·, ·)| and |σωµ1 (·, ·)| are bounded from above uniformly in a
neighborhood of (µ∗, ω∗). Our approach is based on the analytic continuation of the mapping

(µ, s) 7→
[

0 HVk,Wk [µ](s)

HVk,Wk
∗ [µ](s) 0

]
=: MVk,Wk [µ](s)

into the complex plane for (µ, s) ∈ Cd × C near (µ∗, iω∗), where

HVk,Wk
∗ [µ](s) := BWk

∗ (µ)DVk,Wk
∗ (µ, s)−1CVk

∗ (µ) with

DVk,Wk
∗ (µ, s) := −sEVk,Wk

∗ (µ)−AVk,Wk
∗ (µ),
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and

EVk,Wk
∗ (µ) := f1(µ)(W

∗
kE1Vk)

∗ + . . .+ fκE
(µ)(W ∗

kEκE
Vk)

∗,

AVk,Wk
∗ (µ) := g1(µ)(W

∗
kA1Vk)

∗ + . . .+ gκA
(µ)(W ∗

kAκA
Vk)

∗,

BWk
∗ (µ) := h1(µ)(W

∗
kB1)

∗ + . . .+ hκB
(µ)(W ∗

kBκB
)∗,

CVk
∗ (µ) := k1(µ)(C1Vk)

∗ + . . .+ kκC
(µ)(CκC

Vk)
∗.

Note that σVk,Wk(µ, ω) and σVk,Wk

2 (µ, ω) correspond to the largest and second largest eigen-

values of MVk,Wk [µ](iω) for real ω, as indeed HVk,Wk
∗ [µ](iω) =

{
HVk,Wk [µ](iω)

}∗
. These

Hermiticity properties are lost, when we replace fj, gj , hj, kj with their analytic continu-

ations f̂j , ĝj, ĥj , k̂j or if we choose s 6∈ iR := {iω | ω ∈ R}. Let us denote the resulting

extensions of HVk,Wk , HVk,Wk
∗ , MVk,Wk with ĤVk,Wk , ĤVk,Wk

∗ , M̂Vk,Wk . As the subsequent
arguments are for these complex continuations, in the rest of the proof BC(µ∗, η) := {µ ∈
Cd | ‖µ− µ∗‖2 ≤ η} and BC(iω∗, η) := {s ∈ C | |s− iω∗| ≤ η} now denote the balls in the
complex Euclidean spaces for a given radius η > 0. It is straightforward to verify that the
uniform Lipschitz continuity of (µ, ω) 7→ HVk,Wk [µ](iω) established in parts (i) and (ii) of
Lemma 3.2 extend to its complex counter-part, in particular, there exist γ, η̂µ, η̂ω which are
independent of µ(1) such that

∥∥ĤVk,Wk
[
µ̃
](
s̃
)
− ĤVk,Wk [µ](s)

∥∥
2

≤
∥∥ĤVk,Wk

[
µ̃
](
s̃
)
− ĤVk,Wk [µ]

(
s̃
)∥∥

2
+
∥∥ĤVk,Wk [µ]

(
s̃
)
− ĤVk,Wk [µ](s)

∥∥
2

≤ γ
(∥∥s̃− s

∥∥
2
+
∣∣ω̃ − ω

∣∣)

for all µ̃, µ ∈ BC(µ∗, η̂µ) ⊂ Cd, and for all s̃, s ∈ BC(iω∗, η̂ω) ⊂ C. Analogous uniform

Lipschitz continuity assertion also holds for ĤVk,Wk
∗ . Consequently, there exist γ, η̂µ, η̂ω

which are independent of µ(1) such that

(A.3)
∥∥M̂Vk,Wk

[
µ̃
](
s̃
)
− M̂Vk,Wk [µ](s)

∥∥
2
≤ γ

(∥∥µ̃− µ
∥∥
2
+
∣∣s̃− s

∣∣)

∀ µ̃, µ ∈ BC(µ∗, η̂µ) ⊂ C
d, ∀ s̃, s ∈ BC(iω∗, η̂ω) ⊂ C.

Now, for (µ, s) ∈ BC(µ∗, η̂ω) × BC(iω∗, η̂ω), let us consider the eigenvalue σ̂Vk,Wk(µ, s)

of M̂Vk,Wk [µ](s) corresponding to the eigenvalue σVk,Wk(µ, ω) of MVk,Wk [µ](iω), that is,
σ̂Vk,Wk(·, ·) is obtained by the analytic continuation of σVk,Wk(·, ·) into the complex plane.

This eigenvalue function is no more real-valued, since M̂Vk,Wk [µ](s) is not necessarily a Her-
mitian matrix. However, by (A.2) and (A.3), as well as Theorem 5.1 in [16, Chapter 4], there
exist ηµ,m ≤ min

{
η̃µ, η̂µ

}
and ηω,m ≤ min

{
η̃ω, η̂ω

}
such that the eigenvalue σ̂Vk,Wk(µ, s)

remains simple for all µ ∈ BC(µ∗, ηµ,m) and all s ∈ BC(iω∗, ηω,m). We remark that ηµ,m and
ηω,m are independent of Vk, Wk and hence are independent of µ(1). Now let us consider any
ηµ ∈ (0, ηµ,m) and any ηω ∈ (0, ηω,m). By the analyticity of σ̂Vk,Wk(·, ·) in the interior of
BC(µ∗, ηµ,m)× BC(iω∗, ηω,m), for a given µ̃ ∈ BC(µ∗, ηµ) and s̃ ∈ BC(iω∗, ηω/2), by Cauchy’s
integral formula we have

(A.4) σ̂Vk,Wk
s (µ̃, s̃) =

1

2πi

∮
∣∣s−s̃

∣∣=ηω/2

σ̂Vk,Wk(µ̃, s)

(s− s̃)2
ds.

We claim that the term σ̂Vk,Wk(µ̃, s) inside the integral in modulus is uniformly bounded from

above. To this end, as
∣∣σ̂Vk,Wk

(
µ̃, s

)∣∣ ≤
∥∥M̂Vk,Wk

[
µ̃
]
(s)

∥∥
2
, it suffices to show the uniform

boundedness of
∥∥M̂Vk,Wk [µ̃](s)

∥∥
2
. Letting β := σmin(D(µ∗, ω∗)) and following the arguments

at the beginning of the proof of Lemma 3.2, there exists a neighborhood N̂ ⊂ Cd × C of
(µ∗, iω∗) such that σmin

(
DVk,Wk(µ, s)

)
≥ β/2 for all (µ, s) ∈ N̂ . Without loss of generality,
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we assume N̂ = BC(µ∗, ηµ) × BC(iω∗, ηω) (as we can choose ηµ and ηω as small as we wish).
Hence,

∥∥ĤVk,Wk [µ](s)
∥∥
2
≤ 2

∥∥CVk(µ)
∥∥
2

∥∥BWk (µ)
∥∥
2

β
≤ 2

MCMB

β

∀µ ∈ BC(µ∗, ηµ), ∀ s ∈ BC(iω∗, ηω),

where MC := max
{
‖C(µ)‖2 | µ ∈ BC(µ∗, ηµ)

}
, MB := max

{
‖B(µ)‖2 | µ ∈ BC(µ∗, ηµ)

}
. In

an analogous fashion, the same upper bound also holds uniformly for
∥∥ĤVk,Wk

∗ [µ](s)
∥∥
2

for all

µ ∈ BC(µ∗, ηµ) and all s ∈ BC(iω∗, ηω), which gives rise to

∥∥M̂Vk,Wk [µ](s)
∥∥
2
≤ 2

MCMB

β
=: M ∀µ ∈ BC(µ∗, ηµ), ∀ s ∈ BC(iω∗, ηω).

We deduce from (A.4) that

∣∣σ̂Vk,Wk
s

(
µ̃, s̃

)∣∣ ≤ 1

2π



 max∣∣s−s̃

∣∣=ηω/2

∣∣σ̂Vk,Wk(µ̃, s)
∣∣




1

(ηω/2)2
(2πηω/2) ≤

2M

ηω

∀ µ̃ ∈ BC(µ∗, ηµ), ∀ s̃ ∈ BC(iω∗, ηω/2),

hence also
∣∣σVk,Wk

ω

(
µ̃, ω̃

)∣∣ ≤ 2M/ηω for all µ̃ ∈ B(µ∗, ηµ) and all ω̃ ∈ B(ω∗, ηω/2).

Now let us consider the mixed derivative σVk,Wk
sµ1

, specifically for a given µ̂ ∈ BC(µ∗, ηµ/2)

and ŝ ∈ BC(iω∗, ηω/2), we have

(A.5) σ̂Vk,Wk
sµ1

(
µ̂, ŝ

)
=

1

2πi

∮

C

σ̂Vk,Wk
s

(
µ, ŝ

)
(
µ1 − µ̂1

)2 dµ1,

where the contour integral is over C :=
{
µ ∈ Cd

∣∣ ∣∣µ1 − µ̂1

∣∣ = ηµ/2, µj = µ̂j , j = 2, . . . , d
}
.

Taking the modulus of both sides in (A.5) yields

∣∣σ̂Vk,Wk
sµ1

(µ̂, ŝ)
∣∣ ≤ 1

2π

{
max
µ∈C

∣∣σ̂Vk,Wk
s (µ, ŝ)

∣∣
}

1

(ηµ/2)2
(2πηµ/2) ≤

4M

ηµηω

∀ µ̂ ∈ BC(µ∗, ηµ/2), ∀ ŝ ∈ BC(iω∗, ηω/2).

The arguments above prove the uniform boundedness of
∣∣σVk,Wk

ω (·, ·)
∣∣,
∣∣σVk,Wk

ωµ1
(·, ·)

∣∣. The
uniform boundedness of all other first three derivatives can be proven similarly. �
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