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A SUBSPACE FRAMEWORK FOR H∞-NORM MINIMIZATION∗
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Abstract. We deal with the minimization of the H∞-norm of the transfer function of a
parameter-dependent descriptor system over the set of admissible parameter values. Subspace frame-
works are proposed for such minimization problems where the involved systems are of large order.
The proposed algorithms are greedy interpolatary approaches inspired by our recent work [Aliyev et
al., SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1496–1516] for the computation of the H∞-norm.
In this work, we minimize the H∞-norm of a reduced-order parameter-dependent system obtained
by two-sided restrictions onto certain subspaces. Then we expand the subspaces so that Hermite
interpolation properties hold between the full and reduced-order system at the optimal parameter
value for the reduced-order system. We formally establish the superlinear convergence of the sub-
space frameworks under some smoothness and nondegeneracy assumptions. The fast convergence of
the proposed frameworks in practice is illustrated by several large-scale systems.
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1. Introduction. In this work we are concerned with the minimization of the
H∞-norm of a parameter-dependent descriptor system of the form

d
dtE(µ)x(t;µ) = A(µ)x(t;µ) +B(µ)u(t;µ),

y(t;µ) = C(µ)x(t;µ).
(1.1)

Here, for an open and bounded set Ω ⊆ Rd, E, A : Ω → Rn×n, B : Ω → Rn×m,
C : Ω→ Rp×n are matrix-valued functions in the parameter-affine representation (cf.
[2]) defined by

E(µ) := f1(µ)E1 + · · ·+ fκE
(µ)EκE

,

A(µ) := g1(µ)A1 + · · ·+ gκA
(µ)AκA

,

B(µ) := h1(µ)B1 + · · ·+ hκB
(µ)BκB

,

C(µ) := k1(µ)C1 + · · ·+ kκC
(µ)CκC

(1.2)

for given matrices E1, . . . , EκE
, A1, . . . , AκA

∈ Rn×n, B1, . . . , BκB
∈ Rn×m,

C1, . . . , CκC
∈ Rp×n, and real-analytic functions f1, . . . , fκE

, g1, . . . , gκA
, h1, . . . ,
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H-INFINITY-NORM MINIMIZATION 929

hκB
, k1, . . . , kκC

: Ω → R. The functions x(·;µ) : R → Rn, u(·;µ) : R → Rm, and
y(·;µ) : R→ Rp are called (generalized) state, input, and output, respectively. If for
a fixed µ ∈ Ω, the matrix pencil sE(µ)−A(µ) is regular (that is, there exists a λ ∈ C
with det(λE(µ)−A(µ)) 6= 0), we define the transfer function of (1.1) by

H[µ](s) := C(µ)D(µ, s)−1B(µ) with D(µ, s) := sE(µ)−A(µ).

For fixed µ, the function H[µ](s) is real-rational in the indeterminate s, consequently,
we use the notation H[µ](s) ∈ R(s)p×m. Observe that, since H[µ] is rational, it is
analytic almost everywhere in C.

We define the following normed spaces of real-rational functions:

Lp×m
∞ :=

{
H(s) ∈ R(s)p×m

∣∣∣∣ sup
ω∈R
‖H(iω)‖2 <∞

}
,

Hp×m
∞ :=

{
H(s) ∈ R(s)p×m

∣∣∣∣ sup
λ∈C+

‖H(λ)‖2 <∞
}
,

where C+ := {λ ∈ C | Re(λ) > 0}. For H ∈ Lp×m
∞ , the L∞-norm is defined by

‖H‖L∞ := sup
ω∈R
‖H(iω)‖2 = sup

ω∈R
σ(H(iω)),

where σ(·) denotes the largest singular value of its matrix argument. We assume
throughout this text that the functions under consideration are in the Hardy space
Hp×m
∞ . For such a function H ∈ Hp×m

∞ , by employing the maximum principle for
analytic functions, one can show that the H∞-norm is equivalent to the L∞-norm,
that is,

‖H‖H∞ := sup
s∈C+

‖H(s)‖2 = sup
s∈∂C+

‖H(s)‖2 = sup
ω∈R

σ(H(iω)).

In this work, we consider the problem of minimizing the H∞-norm of H[µ] over
µ that belongs to a compact subset Ω of Ω, but keeping the assumption that H[µ] ∈
Hp×m
∞ for every µ ∈ Ω. The latter assumption holds for all of the examples that

we consider later in this paper; most of these examples arise from real applications.
Formally, we aim to determine µ∗ ∈ Ω such that

‖H[µ∗]‖H∞ = min
µ∈Ω
‖H[µ]‖H∞ .

Minimizing the H∞-norm of a parameter-dependent system is an important task
in control engineering. For example, the parameter vector µ may consist of the de-
sign variables of a feedback controller. Then it is desirable to design an optimal
H∞-controller that minimizes the influence of a noisy input signal to the regulated
output, which corresponds to minimizing the H∞-norm of a closed-loop (parameter-
dependent) transfer function; see, e.g., [21] and the references therein. Note that in
the latter application, it is normally further imposed that the controller stabilizes the
closed-loop system. This condition does not play a prominent role here, but efficient
stability checks would be needed for controller design. Other applications for H∞-
norm minimization arise in the optimization of dynamic flow networks [11], parameter
identification [20], and model reduction [19].

We focus on the large-scale setting, that is, when n is large. We additionally
impose the condition that the numbers of inputs and outputs are relatively small, i.e.,
n � m, p. Here, we present subspace frameworks that are inspired by our previous
work [1]. The proposed frameworks converge rapidly with respect to the subspace
dimension. We provide a theoretical analysis which explains this convergence behav-
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930 N. ALIYEV, P. BENNER, E. MENGI, AND M. VOIGT

ior and confirm our theoretical findings in practice by means of several numerical
experiments.

Outline. The subspace frameworks are formally introduced in the next sec-
tion. We first provide a basic greedy framework for H∞-norm minimization in Algo-
rithm 2.1. This framework reduces the order of the full-order system by employing
two-sided restrictions to certain subspaces. It performs the H∞-norm minimization
on the reduced system, then expands the restriction subspaces so that Hermite inter-
polation properties hold between the full- and reduced-order system at the optimal
parameter value for the reduced system. An extension of the basic framework is pro-
posed in Algorithm 2.2. There, Hermite interpolation properties do hold not only at
the optimal parameter value for the reduced system, but also at nearby points. In
section 3, we formally show that the basic subspace framework when there is only one
parameter, and the extended framework, converge with a superlinear rate under some
smoothness and nondegeneracy assumptions at the minimizer. The performance of
the proposed basic subspace framework and its rate of convergence are illustrated for
several examples in section 4. As we report in the end, with the proposed subspace
frameworks, only a few seconds are required for the minimization of the H∞-norm of
a parameter-dependent system of order 104, in contrast to an approach that does not
make use of reductions.

2. Subspace frameworks. To deal with the large-scale problems described
in the introduction, we employ two-sided restrictions in the flavor of the practice
we followed for large-scale H∞-norm computation in [1]. We choose two subspaces
V, W ⊆ Cn of the same dimension, as well as matrices V, W ∈ Cn×k whose columns
form orthonormal bases for these subspaces, and define the reduced system in terms
of the matrix-valued functions

EV,W (µ) := f1(µ)W ∗E1V + · · ·+ fκE
(µ)W ∗EκE

V,

AV,W (µ) := g1(µ)W ∗A1V + · · ·+ gκA
(µ)W ∗AκA

V,

BW (µ) := h1(µ)W ∗B1 + · · ·+ hκB
(µ)W ∗BκB

,

CV (µ) := k1(µ)C1V + · · ·+ kκC
(µ)CκC

V.

Associated with this system, there is the reduced transfer function

HV,W [µ](s) := CV (µ)DV,W (µ, s)−1BW (µ) with DV,W (µ, s) := sEV,W (µ)−AV,W (µ)

which turns out to be independent of the particular choice of the bases for V and W.
Our subspace frameworks are based on the repeated minimization of

∥∥HV,W [µ]
∥∥
H∞

for appropriate choices of the subspaces V, W.
The basic greedy framework is given in Algorithm 2.1 where, and throughout the

rest of this work, we use the shorthand notations

σ(µ, ω) := σ(H[µ](iω)) and σV,W(µ, ω) := σ
(
HV,W [µ](iω)

)
.

We will also make frequent use of certain partial derivatives of these functions, where
we denote the variables that we differentiate by subscripts, e.g., σω(·, ·) denotes the
first partial derivative with respect to the argument ω, whereas σµ(·, ·) denotes the gra-

dient with respect to µ. Additionally, we reserve the notations σ2(µ, ω) and σV,W2 (µ, ω)
for the second largest singular values of H[µ](iω) and HV,W [µ](iω), respectively. At
every iteration, the basic framework minimizes the H∞-norm of a reduced prob-
lem for a given pair of subspaces in line 3. Then it first computes an ω such that
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Algorithm 2.1 The basic greedy algorithm for H∞-norm minimization.

Input: Matrices E1, . . . , EκE
∈ Rn×n, A1, . . . , AκA

∈ Rn×n, B1, . . . , BκB
∈ Rn×m,

C1, . . . , CκC
∈ Rp×n and functions f1, . . . , fκE

, g1, . . . , gκA
, h1, . . . , hκB

, k1, . . . ,
kκC

as in (1.2).
Output: Sequences

{
µ(k)

}
,
{
ω(k)

}
.

1: Choose initial subspace V0, W0 ⊆ Cn.
2: for k = 1, 2, . . . do
3: µ(k) ← arg minµ∈Ω

∥∥HVk−1,Wk−1 [µ]
∥∥
H∞ .

4: ω(k) ← arg maxω∈R∪{∞} σ
(
µ(k), ω

)
.

5: if m = p then

6: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

7: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

8: else if m < p then

9: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

10: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
H
[
µ(k)

](
iω(k)

)
.

11: else
12: Ṽk ← D

(
µ(k), iω(k)

)−1
B
(
µ(k)

)
H
[
µ(k)

](
iω(k)

)∗

13: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

14: end if
15: Vk ← Vk−1 ⊕ Col

(
Ṽk
)

and Wk ←Wk−1 ⊕ Col
(
W̃k

)
.

16: end for

‖H[µ]‖H∞ = σ(ω, µ) in line 4 at the optimal µ value for the reduced problem, and
expands the subspaces so that the following Hermite interpolation properties hold at
the optimal µ, ω, which are immediate from [1, Theorem 2.1], [4, Theorem 1].

Lemma 2.1 (interpolation properties for the basic algorithm). The following
assertions hold regarding Algorithm 2.1 for each j = 1, . . . , k:

(i) It holds that
∥∥H
[
µ(j)

]∥∥
H∞ = σ

(
µ(j), ω(j)

)
= σVk,Wk

(
µ(j), ω(j)

)
.

(ii) It holds that σ2

(
µ(j), ω(j)

)
= σVk,Wk

2

(
µ(j), ω(j)

)
.

(iii) If the largest singular value σ
(
µ(j), ω(j)

)
of H[µ(j)](iω(j)) is simple, then

∇
∥∥H
[
µ(j)

]∥∥
H∞ = σµ

(
µ(j), ω(j)

)
= σVk,Wk

µ

(
µ(j), ω(j)

)
.

(iv) We have σω
(
µ(j), ω(j)

)
= σVk,Wk

ω

(
µ(j), ω(j)

)
= 0.

Note that in part (iv) of the lemma above σω
(
µ(j), ω(j)

)
= 0 holds even if

σ
(
µ(j), ω(j)

)
is not simple, since ω(j) is a maximizer of σ

(
µ(j), ·

)
, and as a result

σ
(
µ(j), ·

)
is differentiable at ω(j) regardless of its multiplicity (see, for instance, the

arguments right before Theorem 2.3 in [6]). The equality σVk,Wk
ω

(
µ(j), ω(j)

)
= 0 fol-

lows from the interpolation properties between H[µ](iω), HVk,Wk [µ](iω) and their first
derivatives at µ = µ(j), ω = ω(j).

We also propose an extended version of the basic greedy framework in Algo-
rithm 2.2. For its description we define erq := 1/

√
2(er + eq) if r 6= q and err := er,

where er is the rth column of the d × d identity matrix. The description may look
complicated at first, but the only main difference is that it includes additional vec-
tors in the subspaces in lines 16–35 to interpolate not only at the minimizers of the
reduced problems, but also at nearby points. The motivation for the inclusion of these

D
ow

nl
oa

de
d 

06
/2

2/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

932 N. ALIYEV, P. BENNER, E. MENGI, AND M. VOIGT

Algorithm 2.2 The extended greedy algorithm for H∞-norm minimization.

Input: Matrices E1, . . . , EκE
∈ Rn×n, A1, . . . , AκA

∈ Rn×n, B1, . . . , BκB
∈ Rn×m,

C1, . . . , CκC
∈ Rp×n and functions f1, . . . , fκE

, g1, . . . , gκA
, h1, . . . , hκB

, k1, . . . ,
kκC

as in (1.2).
Output: Sequences

{
µ(k)

}
,
{
ω(k)

}
.

1: Choose initial subspace V0,W0 ⊆ Cn.
2: for k = 1, 2, . . . do
3: µ(k) ← arg minµ∈Ω

∥∥HVk−1,Wk−1 [µ]
∥∥
H∞ .

4: ω(k) ← arg maxω∈R∪{∞} σ
(
µ(k), ω

)
.

5: if m = p then

6: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

7: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

8: else if m < p then

9: Ṽk ← D
(
µ(k), iω(k)

)−1
B
(
µ(k)

)
.

10: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
H
[
µ(k)

](
iω(k)

)
.

11: else
12: Ṽk ← D

(
µ(k), iω(k)

)−1
B
(
µ(k)

)
H
[
µ(k)

](
iω(k)

)∗
.

13: W̃k ← D
(
µ(k), iω(k)

)−∗
C
(
µ(k)

)∗
.

14: end if
15: Vk ← Vk−1 ⊕ Col

(
Ṽk
)

and Wk ←Wk−1 ⊕ Col
(
W̃k

)
.

16: if k ≥ 2 then
17: h(k) ←

∥∥µ(k) − µ(k−1)
∥∥

2
.

18: for r = 1, 2, . . . , d do
19: for q = r, . . . , d do
20: µ(k,rq) ← µ(k) + h(k)erq.
21: ω(k,rq) ← arg maxω∈R∪{∞} σ

(
µ(k,rq), ω

)
.

22: if m = p then

23: Ṽ
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−1
B
(
µ(k,rq)

)
.

24: W̃
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−∗
C
(
µ(k,rq)

)∗
.

25: else if m < p then

26: Ṽ
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−1
B
(
µ(k,rq)

)
.

27: W̃
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−∗
C
(
µ(k,rq)

)∗
H
[
µ(k,rq)

](
iω(k,rq)

)
.

28: else
29: Ṽ

(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−1
B
(
µ(k,rq)

)
H
[
µ(k,rq)

](
iω(k,rq)

)∗
.

30: W̃
(rq)
k ← D

(
µ(k,rq), iω(k,rq)

)−∗
C
(
µ(k,rq)

)∗
.

31: end if
32: Vk ← Vk ⊕ Col

(
Ṽ

(rq)
k

)
and Wk ←Wk ⊕ Col

(
W̃

(rq)
k

)
.

33: end for
34: end for
35: end if
36: end for

additional vectors is to draw a theoretical conclusion about the accuracy of the sec-
ond derivatives of the reduced singular value functions σVk,Wk(·, ·) in approximating
σ(·, ·) in the multivariate case. In practice, we observe that both Algorithm 2.1 and
Algorithm 2.2 converge rapidly. But in the multivariate case, the inclusion of the
additional vectors in the subspaces in Algorithm 2.2 makes its rate of convergence
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analysis neater. The interpolation properties of the extended framework are listed in
the next result. Once again, these properties are immediate from [1, Theorem 2.1].

Lemma 2.2 (interpolation properties for the extended algorithm). The iterates{
µ(k)

}
,
{
ω(k)

}
by Algorithm 2.2 satisfy the assertions (i)–(iv) of Lemma 2.1 for each

j = 1, . . . , k. Additionally, for each j = 1, . . . , k, r = 1, . . . , d, and q = r, . . . , d, we
have the following:

(i) It holds that
∥∥H
[
µ(j,rq)

]∥∥
H∞ = σ

(
µ(j,rq), ω(j,rq)

)
= σVk,Wk

(
µ(j,rq), ω(j,rq)

)
.

(ii) If the largest singular value σ
(
µ(j,rq), ω(j,rq)

)
of H[µ(j,rq)](iω(j,rq)) is simple,

then

∇
∥∥H
[
µ(j,rq)

]∥∥
H∞ = σµ

(
µ(j,rq), ω(j,rq)

)
= σVk,Wk

µ

(
µ(j,rq), ω(j,rq)

)
.

(iii) It holds that σω
(
µ(j,rq), ω(j,rq)

)
= σVk,Wk

ω

(
µ(j,rq), ω(j,rq)

)
= 0.

Before we start with the rate of convergence analysis, a few comments regarding
the two algorithms are in order.

Remark 2.3.
(i) The distinctions of cases in lines 5–14 in Algorithm 2.1 and lines 5–14 and

22–31 in Algorithm 2.2 are done such that the subspaces Vk andWk have the
same dimension (otherwise, the subspace of lower dimension must be extended
by additional basis vectors to achieve this condition). This is needed in order
to obtain a regular reduced matrix pencil DVk,Wk

(
µ(k), s

)
and a well-defined

reduced transfer function HVk,Wk
[
µ(k)

]
(s). In practice, a regularization pro-

cedure can be performed [13] to obtain a regular reduced matrix pencil. In the
above algorithms, we make the silent assumption that the transfer functions
HVk,Wk

[
µ(k)

]
(s) are well-defined and in Lp×m

∞ for all k. Note that the reduced

dynamical systems associated with the transfer functions HVk,Wk
[
µ
]
(s) are

not necessarily asymptotically stable, so the transfer functions are not neces-
sarily in Hp×m

∞ . However, for the algorithms, the latter does not lead to any
problem.

(ii) In this paper, we only consider parameter-dependent linear time-invariant
systems. Efficient algorithms for the computation of the L∞-norm, however,
have also been recently considered for transfer functions of a more general
class of systems [1, 17]. The results presented here can be transferred to this
more general situation without any changes in the algorithm description.

3. Rate of convergence analysis. In this section, we perform a rate of con-
vergence analysis for Algorithms 2.1 and 2.2. Section 3.2 below introduces functions
associated with the reduced systems that interpolate ‖H[·]‖H∞ , and presents their
essential differentiability properties. We include a proper derivation of these differen-
tiability properties in Appendix A, as the derivation involves technicalities. Section
3.3 establishes the main superlinear convergence result by exploiting the interpola-
tion properties, in particular by making an analogy with quasi-Newton methods for
unconstrained optimization.

Throughout the rest of this text, σmin(·) denotes the smallest singular value of its
matrix argument, whereas

B
(
µ̃, η
)

:=
{
µ ∈ Rd

∣∣ ∥∥µ− µ̃
∥∥

2
≤ η

}
and B

(
ω̃, η

)
:=
{
ω ∈ R

∣∣ ∣∣ω − ω̃
∣∣ ≤ η

}

for given µ̃ ∈ Rd, ω̃ ∈ R, and η > 0.
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3.1. Assumptions and a summary of the main result. It is assumed
throughout the section that we have three consecutive iterates of the algorithms
µ(k+1), µ(k), µ(k−1) at hand, and they are sufficiently close to a local or a global min-
imizer µ∗ of ‖H[·]‖H∞ , where the following smoothness assumptions hold.

Assumption 3.1 (smoothness). (i) The supremum of σ(µ∗, ·) is attained uniquely,
say at ω∗, and (ii) σ(µ∗, ω∗) > 0 is a simple singular value of H[µ∗](iω∗).

Results are proven uniformly over all subspaces and orthonormal bases for them
as long as they satisfy the following nondegeneracy conditions.

Assumption 3.2 (nondegeneracy). For given real numbers δ < 0 and β > 0, we
have

σωω(µ∗, ω∗) ≤ δ and σmin

(
D
(
µ∗, iω∗

))
≥ β,

and the subspaces Vk,Wk as well as the matrices Vk,Wk satisfy

(3.1) σVk,Wk
ωω (µ∗, ω∗) ≤ δ and σmin

(
DVk,Wk

(
µ∗, iω∗

))
≥ β.

Our main result is a superlinear convergence result, i.e., there exists a constant
C such that

∥∥µ(k+1) − µ∗
∥∥

2
≤ C

(∥∥µ(k) − µ∗
∥∥

2
·max

{∥∥µ(k) − µ∗
∥∥

2
,
∥∥µ(k−1) − µ∗

∥∥
2

})
.

By a constant, here and throughout the section, we mean that it may depend only on
quantities related to the full problem, and is independent of µ(k+1), µ(k), µ(k−1). In
particular, it is independent of the subspaces Vk,Wk and orthonormal bases for them
as long as they satisfy Assumption 3.2.

3.2. Locally defined reduced interpolating functions. The analysis that
we present makes use of the interpolation properties between the H∞-norm function
‖H[·]‖H∞ , and a counterpart associated with a reduced system. An immediate candi-

date as a reduced counterpart is
∥∥HVk,Wk [·]

∥∥
L∞ , but this candidate fails to satisfy the

interpolation properties, e.g., even the equalities
∥∥H
[
µ(j)

]∥∥
H∞ =

∥∥HVk,Wk
[
µ(j)

]∥∥
L∞

for j = 1, . . . , k do not necessarily hold as the definitions of L∞-norm functions in-
volve global maximizations over all ω. Instead, we introduce the following reduced
functions.

Definition 3.3 (reduced interpolating functions). We call the function

(3.2) σ̃Vk,Wk(µ) := σVk,Wk
(
µ,ωVk,Wk(µ)

)

the reduced interpolating function with respect to the subspaces Vk, Wk, where the
function ωVk,Wk is implicitly defined locally around µ∗ through the equations

(3.3) ωVk,Wk
(
µ(k)

)
= ω(k) and σVk,Wk

ω

(
µ,ωVk,Wk(µ)

)
= 0 ∀µ ∈ B(µ∗, ηµ,0)

for some ηµ,0 > 0.

Well-posedness of a function ωVk,Wk(·) as in (3.3), and hence of the function
σ̃Vk,Wk(·) as in (3.2), follows from the next result. For a proof, we refer to Appendix
A.2.

Proposition 3.4 (local well-posedness of reduced interpolating functions). Sup-
pose that Assumptions 3.1 and 3.2 hold.
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(i) There exist constants η̃µ,0, η̃ω,0 > 0 such that both σ(µ, ω) and σVk,Wk(µ, ω)
are simple, hence, real analytic, for all µ and ω in the interior of B(µ∗, η̃µ,0)
and B(ω∗, η̃ω,0).

(ii) There exists a unique continuous function ωVk,Wk : B(µ∗, ηµ,0)→ B(ω∗, ηω,0)
for some constants ηµ,0 ∈ (0, η̃µ,0), ηω,0 ∈ (0, η̃ω,0) that satisfies (3.3).

(iii) For µ ∈ B(µ∗, ηµ,0), we have ωVk,Wk(µ) as the unique stationary point of
ω 7→ σVk,Wk(µ, ω) over all ω ∈ B(ω∗, ηω,0).

Our approach depends on the interpolation of not only the L∞-norm functions,
but also their gradients, as well as the approximation of their second derivatives. To
this end, we next present a result concerning the smoothness properties of ‖H[·]‖H∞
and σ̃Vk,Wk(·), whose proof is given in Appendix A.3.

Proposition 3.5 (uniform boundedness of higher-order derivatives). Suppose
that Assumptions 3.1 and 3.2 hold.

(i) Both ‖H[·]‖H∞ and σ̃Vk,Wk(·) are at least three times continuously differen-

tiable in the interior of B(µ∗, ηµ,0), where ηµ,0 is as in Proposition 3.4.
(ii) For every η̂µ,0 ∈ (0, ηµ,0) there exists a constant γ > 0 such that for all

µ ∈ B(µ∗, η̂µ,0), we have

(a)

∣∣∣∣∣
∂2‖H[µ]‖H∞
∂µq∂µr

∣∣∣∣∣ ≤ γ and
∣∣∣σ̃Vk,Wk
µqµr

(µ)
∣∣∣ ≤ γ, q, r = 1, . . . , d,

(b)

∣∣∣∣∣
∂3‖H[µ]‖H∞
∂µq∂µr∂µ`

∣∣∣∣∣ ≤ γ and
∣∣∣σ̃Vk,Wk
µqµrµ`

(µ)
∣∣∣ ≤ γ, q, r, ` = 1, . . . , d.

Several interpolation properties between ‖H[·]‖H∞ and σ̃Vk,Wk(·) are immediate
from Lemmas 2.1 and 2.2. At this point, we especially remark

(3.4)∥∥H
[
µ(k)

]∥∥
H∞ = σVk,Wk

(
µ(k), ω(k)

)
= σVk,Wk

(
µ(k),ω(µ(k))

)
= σ̃Vk,Wk

(
µ(k)

)
and

(3.5)

∇
∥∥H
[
µ(k)

]∥∥
H∞ = σVk,Wk

µ

(
µ(k), ω(k)

)
= σVk,Wk

µ

(
µ(k),ω(µ(k))

)
= ∇σ̃Vk,Wk

(
µ(k)

)
,

where the first equality in the first line is due to part (i) of Lemma 2.1, while the first
and third equalities in the second line are due to parts (iii) and (iv) of Lemma 2.1,
respectively.

3.3. Main superlinear convergence result. We consider σ̃Vk,Wk(·) as a local
model constructed for the minimization of ‖H[·]‖H∞ , analogous to the local quadratic
models constructed by quasi-Newton methods for unconstrained optimization. Recall
that a quadratic model by a quasi-Newton method interpolates the function to be
minimized and its gradient at a given estimate for the minimizer. It then redefines
the estimate as the minimizer of the quadratic model function.

Even though σ̃Vk,Wk(·) is not quadratic, it still interpolates ‖H[·]‖H∞ and its

gradient at µ(k); see (3.4) and (3.5) above. Moreover, as we shall soon see, under mild
assumptions, µ(k+1) is a stationary point of σ̃Vk,Wk(·). Recalling that the superlinear
convergence is achieved for a quasi-Newton method if the Hessian of the quadratic
model converges to the Hessian of the objective function at the minimizer in certain
directions, we next relate the Hessians of σ̃Vk,Wk(·) and ‖H[·]‖H∞ .

Lemma 3.6 (proximity of the Hessians). Suppose that Assumptions 3.1 and 3.2
hold. Additionally, assume that ∇2

∥∥H[µ∗]
∥∥
H∞ is invertible. There exists a constant
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ζ > 0 such that the following statements hold for Algorithm 2.1 when d = 1 and for
Algorithm 2.2:

(i) We have
∥∥∥∇2

∥∥H
[
µ(k)

]∥∥
H∞ −∇

2σ̃Vk,Wk
(
µ(k)

)∥∥∥
2
≤ ζ
∥∥µ(k) − µ(k−1)

∥∥
2
.

(ii) Both ∇2
∥∥H
[
µ(k)

]∥∥
H∞ and ∇2σ̃Vk,Wk

(
µ(k)

)
are invertible.

(iii) We have

∥∥∥∥
[
∇2
∥∥H
[
µ(k)

]∥∥
H∞

]−1

−
[
∇2σ̃Vk,Wk

(
µ(k)

)]−1
∥∥∥∥

2

≤ ζ
∥∥µ(k)−µ(k−1)

∥∥
2
.

Proof. (i) We focus on Algorithm 2.2 only. The proof for Algorithm 2.1 with d = 1
proceeds similarly by defining h(k) := µ(k−1) − µ(k). By part (i) of Proposition 3.5,
the functions ‖H[·]‖H∞ and σ̃Vk,Wk(·) are three times differentiable in the interior of

B(µ∗, ηµ,0). Now suppose, without loss of generality, µ(k) and µ(k−1) are close enough
to µ∗ so that B

(
µ(k), h(k)

)
⊂ B(µ∗, ηµ,0), as well as ω(k), ω(k,rq) belong to the interior

of B(ω∗, ηω,0) for r = 1, . . . , d and q = r, . . . , d. (Here we note ω(k), ω(k,rq) → ω∗ as
µ(k) → µ∗ due to the assumption that ω∗ is the unique global maximizer of σ(µ∗, ·);
see, for instance, the beginning of the proof of Proposition A.3 in the appendix.)

It follows that the functions

` : [0, 1]→ R, `(α) :=
∥∥H
(
µ(k) + αh(k)erq

)∥∥
H∞ ,

˜̀ : [0, 1]→ R, ˜̀(α) := σ̃Vk,Wk
(
µ(k) + αh(k)erq

)

are continuous and three times differentiable in (0, 1). Additionally, we have

(3.6) `(0) = ˜̀(0), `′(0) = ˜̀′(0), and `(1) = ˜̀(1).

The first two of the equalities in (3.6) are immediate from (3.4) and (3.5). To see the
last equality in (3.6) at α = 1, we observe

0 = σω
(
µ(k,rq), ω(k,rq)

)
= σVk,Wk

ω

(
µ(k,rq), ω(k,rq)

)

by Lemma 2.2. Because of the inclusions µ(k,rq) ∈ B(µ∗, ηµ,0) and ω(k,rq) ∈ B(ω∗, ηω,0),
as well as the uniqueness of ωVk,Wk

(
µ(k,rq)

)
as the stationary point of σVk,Wk(µ(k,rq), ·)

over all ω ∈ B(ω∗, ηω,0) (see Proposition 3.4), we must have ωVk,Wk
(
µ(k,rq)

)
= ω(k,rq).

Hence, by employing Lemma 2.2 once again, we deduce

`(1) =
∥∥H
[
µ(k,rq)

]∥∥
H∞ = σVk,Wk

(
µ(k,rq), ω(k,rq)

)

= σVk,Wk
(
µ(k,rq),ωVk,Wk

(
µ(k,rq)

))
= ˜̀(1).

Next, by exploiting the interpolation properties in (3.6) in the Taylor expansions

`(1) = `(0) + `′(0) +
1

2
`′′(0) +

1

6
`′′′(ε),

˜̀(1) = ˜̀(0) + ˜̀′(0) +
1

2
˜̀′′(0) +

1

6
˜̀′′′(ε̃)

for some ε, ε̃ ∈ (0, 1), we obtain

[
h(k)

]2
eTrq

[
∇2
∥∥H
[
µ(k)

]∥∥
H∞ −∇

2σ̃Vk,Wk
(
µ(k)

)]
erq

= `′′(0)− ˜̀′′(0) =
1

3

(
˜̀′′′(ε̃)− `′′′(ε)

)
= O

([
h(k)

]3)
,

(3.7)
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where the constant hidden in the Landau symbol O is independent of the subspaces
due to part (ii) of Proposition 3.5. By considering particular values of r = 1, . . . , d
and q = r, . . . , d in (3.7), we deduce

∣∣∣∣∣
∂2
∥∥H
[
µ(k)

]∥∥
H∞

∂µr∂µq
− ∂2σ̃Vk,Wk

(
µ(k)

)

∂µr∂µq

∣∣∣∣∣ = O
(
h(k)

)
.

Once again, the constant hidden in the Landau symbol O does not depend on the
subspaces Vk,Wk in the latter equation.

(ii) By the continuity of ∇2‖H[·]‖H∞ in the interior of B(µ∗, ηµ,0), it is imme-

diate that limµ(k)→µ∗ ∇2
∥∥H
[
µ(k)

]∥∥
H∞ = ∇2‖H[µ∗]‖H∞ . Consequently, we suppose,

without loss of generality, µ(k) to be sufficiently close to µ∗ so that ∇2
∥∥H
[
µ(k)

]∥∥
H∞

is invertible. In addition, from part (i), we get

∇2‖H[µ∗]‖H∞ = lim
µ(k)→µ∗

∇2
∥∥H
[
µ(k)

]∥∥
H∞ = lim

µ(k),µ(k−1)→µ∗
∇2σ̃Vk,Wk

(
µ(k)

)
,

implying also the invertibility of∇2σ̃Vk,Wk
(
µ(k)

)
under the supposition that µ(k), µ(k−1)

are close enough to µ∗.
(iii) This follows from part (i) by employing the adjugate formulas for the inverses

of ∇2
∥∥H
[
µ(k)

]∥∥
H∞ and ∇2σ̃Vk,Wk

(
µ(k)

)
. For details, we refer to [12, Lemma 2.8, part

(ii)].

Now we are ready for the main superlinear convergence result.

Theorem 3.7 (superlinear convergence to a local minimizer). Suppose that As-
sumptions 3.1 and 3.2 hold. In addition, assume that

• the matrix ∇2‖H[µ∗]‖H∞ is invertible,
• the point µ∗ is strictly in the interior of Ω, and
• the function σVk,Wk(µ(k+1), ·) has a unique global maximizer,

say ω̃(k+1), with ω̃(k+1) ∈ B(ω∗, ηω,0).
For both Algorithm 2.1 when d = 1 and Algorithm 2.2, there exists a constant C > 0
such that

(3.8)

∥∥µ(k+1) − µ∗
∥∥

2∥∥µ(k) − µ∗
∥∥

2
max

{∥∥µ(k) − µ∗
∥∥

2
,
∥∥µ(k−1) − µ∗

∥∥
2

} ≤ C.

Proof. By part (i) of Proposition 3.5, both ‖H[·]‖H∞ and σ̃Vk,Wk(·) defined
by (3.2) are twice Lipschitz continuously differentiable in the interior of the ball
B(µ∗, ηµ,0). Additionally, suppose, without loss of generality, µ(k), µ(k−1) lie in the
interior of B(µ∗, ηµ,0), and µ(k), µ(k−1) are close enough to µ∗ so that

• B
(
µ(k), h(k)

)
⊂ B(µ∗, ηµ,0), where h(k) :=

∥∥µ(k) − µ(k−1)
∥∥

2
, as well as

• ∇2
∥∥H
[
µ(k)

]∥∥
H∞ and∇2σ̃Vk,Wk

(
µ(k)

)
are invertible (see part (ii) of Lemma 3.6).

By an application of Taylor’s theorem with integral remainder we obtain

0 = ∇‖H[µ∗]‖H∞ = ∇
∥∥H
[
µ(k)

]∥∥
H∞+

∫ 1

0

∇2
∥∥H
[
µ(k)+t

(
µ∗−µ(k)

)]∥∥
H∞
(
µ∗−µ(k)

)
dt,
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which implies

0 =
(
∇2
∥∥H
[
µ(k)

]∥∥
H∞

)−1

∇
∥∥H
[
µ(k)

]∥∥
H∞ +

(
µ∗ − µ(k)

)
+
(
∇2
∥∥H
[
µ(k)

]∥∥
H∞

)−1

×
∫ 1

0

(
∇2
∥∥H
[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞ −∇

2
∥∥H
[
µ(k)

]∥∥
H∞

) (
µ∗ − µ(k)

)
dt.

(3.9)

Now, by exploiting ∇‖H(µ(k))‖H∞ = ∇σ̃Vk,Wk(µ(k)) (due to (3.5)), (3.9) can be
rearranged as

0 =
(
∇2σ̃Vk,Wk

(
µ(k)

))−1

∇σ̃Vk,Wk
(
µ(k)

)
+
(
µ∗ − µ(k)

)

+

[(
∇2
∥∥H
[
µ(k)

]∥∥
H∞

)−1

−
(
∇2σ̃Vk,Wk

(
µ(k)

))−1
]
∇
∥∥H
[
µ(k)

]∥∥
H∞

+
(
∇2
∥∥H
[
µ(k)

]∥∥
H∞

)−1

×
∫ 1

0

(
∇2
∥∥H
[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞ −∇

2
∥∥H
[
µ(k)

]∥∥
H∞

) (
µ∗ − µ(k)

)
dt.

(3.10)

Throughout the rest of the proof, by manipulating (3.10), we bound ‖µ(k+1) − µ∗‖2
from above in terms of ‖µ(k) − µ∗‖2 and ‖µ(k−1) − µ∗‖2.

We first focus on the first term on the right-hand side of (3.10). Since ω̃(k+1) ∈
B(ω∗, ηω,0) is assumed to be the unique global maximizer of σVk,Wk

(
µ(k+1), ·

)
, we

obtain ωVk,Wk
(
µ(k+1)

)
= ω̃(k+1) by Proposition 3.4, in particular, by the uniqueness

of ωVk,Wk
(
µ(k+1)

)
as the stationary point of σVk,Wk

(
µ(k+1), ·

)
over ω ∈ B(ω∗, ηω,0).

It follows that

∇σ̃Vk,Wk
(
µ(k+1)

)
= σVk,Wk

µ (µ(k+1), ω̃(k+1)) = ∇
∥∥HVk,Wk [µ(k+1)]

∥∥
H∞ = 0,

where we use the fact that µ(k+1) is a minimizer of
∥∥HVk,Wk [·]

∥∥
H∞ for the last equality.

Moreover, recalling Proposition 3.5(i), a Taylor expansion yields

0 = ∇σ̃Vk,Wk
(
µ(k+1)

)

= ∇σ̃Vk,Wk
(
µ(k)

)
+∇2σ̃Vk,Wk

(
µ(k)

)(
µ(k+1) − µ(k)

)
+O

(∥∥µ(k+1) − µ(k)
∥∥2

2

)
,

which in turn implies
(3.11)(
∇2σ̃Vk,Wk

(
µ(k)

))−1

∇σ̃Vk,Wk
(
µ(k)

)
=
(
µ(k) − µ(k+1)

)
+O

(∥∥µ(k+1) − µ(k)
∥∥2

2

)
.

As for the second to last terms on the right-hand side of (3.10), by another Taylor
expansion and again Proposition 3.5(i),

0 = ∇
∥∥H
[
µ∗
]∥∥
H∞

= ∇
∥∥H
[
µ(k)

]∥∥
H∞ +∇2

∥∥H
[
µ(k)

]∥∥
H∞
(
µ∗ − µ(k)

)
+O

(∥∥µ(k) − µ∗
∥∥2

2

)
.
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Therefore, by using part (iii) of Lemma 3.6 and part (ii) of Proposition 3.5, we see
that

∥∥∥∥
[(
∇2
∥∥H
[
µ(k)

]∥∥
H∞

)−1

−
(
∇2σ̃Vk,Wk

(
µ(k)

))−1
]
· ∇
∥∥H
[
µ(k)

]∥∥
H∞

∥∥∥∥
2

≤ ζ
∥∥µ(k) − µ(k−1)

∥∥
2
·
∥∥∥∇
∥∥H
[
µ(k)

]∥∥
H∞

∥∥∥
2

= O
(∥∥µ(k) − µ(k−1)

∥∥
2
·
∥∥µ(k) − µ∗

∥∥
2

)
.

(3.12)

Finally, for the last term on the right-hand side of (3.10), we exploit the Lipschitz
continuity of ∇2‖H[·]‖H∞ near µ∗ to deduce

∥∥∥∥
(
∇2
∥∥H
[
µ(k)

]∥∥
H∞

)−1

×
∫ 1

0

(
∇2
∥∥H
[
µ(k) + t

(
µ∗ − µ(k)

)]∥∥
H∞ −∇

2
∥∥H
[
µ(k)

]∥∥
H∞

) (
µ∗ − µ(k)

)
dt

∥∥∥∥
2

= O
(∥∥µ(k) − µ∗

∥∥2

2

)
.

(3.13)

Combining (3.10) with (3.11), (3.12), (3.13), and noting

∥∥µ(k) − µ(k−1)
∥∥

2
≤ 2 max

{∥∥µ(k) − µ∗
∥∥

2
,
∥∥µ(k−1) − µ∗

∥∥
2

}
,

lead us to

∥∥µ(k+1)−µ∗
∥∥

2
≤ c1 max

{∥∥µ(k)−µ∗
∥∥

2
,
∥∥µ(k−1)−µ∗

∥∥
2

}∥∥µ(k)−µ∗
∥∥

2
+ c2

∥∥µ(k)−µ∗
∥∥2

2

for some constants c1, c2 from which (3.8) is immediate.

Remark 3.8. One important assumption for the rate of convergence result above is
that the global minimizer µ∗ is contained in the interior of Ω. Suppose Ω is a box, and
µ∗ lies on the boundary of this box. Then one or more of the box constraints are active
for the full-order problem at µ∗, and ‖H[·]‖H∞ is increasing in all directions pointing
into the interior of Ω in a ball B(µ∗, η) (as ‖H[·]‖H∞ is continuously differentiable in
a neighborhood of µ∗). The same property holds to be true for the reduced function
σ̃Vk,Wk(·) in another ball B(µ∗, η̃) ⊆ B(µ∗, η), due to the interpolation properties
(specifically due to (3.5)), and uniform upper bounds on the derivatives of σ̃Vk,Wk(·)
(see, in particular, part (ii) of Proposition 3.5). Consequently, the same active box
constraints for the original function ‖H[·]‖H∞ at µ∗ have to be active for the reduced
function σ̃Vk,Wk(·) at µ(k+1). This means that the rate of convergence analysis above,
in particular, the proof of Theorem 3.7, is applicable by restricting µ to the variables
that are not active at µ∗. If all of the constraints are active at µ∗, then µ(k+1) = µ∗
in exact arithmetic.

The minimizers for the examples arising from real applications on which we per-
form numerical experiments in the next section turn out to be on the boundary of
the box; see, e.g., Example 4.1 where all of the three box constraints are active at the
minimizer, or Example 4.3 where only one of the two box constraints is active, while
the other is inactive. On the other hand, the minimizer for the synthetic example in
the next section is usually in the interior; see Example 4.4.
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4. Numerical experiments. In this section, we present numerical results ob-
tained by our MATLAB implementation of Algorithm 2.1 that we made available for
download. We first discuss some important implementation details and the test setup
in the next subsection. Then, we report the numerical results on several large-scale
linear parameter-dependent systems which we describe in detail. All test examples
are taken from the Model Order Reduction Wiki (MOR Wiki) website.1 Our numer-

ical experiments have been performed on a machine with 4 Intel R© Core
TM

i5-4590
CPUs with 3.30 GHz each and 16 GB RAM using Linux version 4.4.132-53-default
and MATLAB version 9.4.0.813654 (R2018a).

4.1. Implementation details and test setup. At each iteration of Algo-
rithm 2.1, the L∞-norm of the transfer function of a reduced parametrized system
needs to be minimized. We have implemented and tested two optimization techniques
to solve this global nonconvex optimization problem:

• eigopt, a MATLAB implementation of the algorithm in [15], which is
an adaptation of the algorithm in [7] for eigenvalue optimization. This
MATLAB package creates a lower and an upper bound for the optimal value
of a given eigenvalue function by employing piecewise quadratic support func-
tions, and terminates when the difference between these bounds is less than
a prescribed tolerance. For reliability and efficiency, one should supply an
appropriate global lower bound γ on the minimum eigenvalue of the Hessian
of the eigenvalue function to be minimized to eigopt. This solver can be
slow, if there are many parameters or if γ is very small. For our tests we
always use γ = −10000.

• GRANSO [8], which is based on BFGS together with line searches ensuring
the satisfaction of the weak Wolfe conditions. GRANSO converges to a locally
optimal solution, that is not necessarily optimal globally, but works efficiently
even when there are several parameters.

Algorithm 2.1 is terminated in practice when the relative distance between µ(k)

and µ(k−1) is less than a prescribed tolerance for some k > 1, if the minimal L∞-norm
values for the reduced transfer functions at two consecutive iterations differ by less
than a prescribed tolerance, or if the number of iterations exceeds a specified integer.
More formally, we terminate if

k > kmax or
∥∥µ(k) − µ(k−1)

∥∥
2
< ε1 ·

1

2

∥∥µ(k) + µ(k−1)
∥∥

2
or

∣∣∣
∥∥HVk,Wk

[
µ(k+1)

]∥∥
L∞ −

∥∥HVk−1,Wk−1
[
µ(k)

]∥∥
L∞

∣∣∣

< ε2 ·
1

2

{∥∥HVk,Wk
[
µ(k+1)

]∥∥
L∞ +

∥∥HVk−1,Wk−1
[
µ(k)

]∥∥
L∞

}
.

In our numerical experiments, we set ε1 = ε2 = 10−6 and kmax = 20.
The absolute termination tolerance for the accuracy of the global optimizer com-

puted by eigopt is 10−8, whereas the tolerance for reaching (approximate) station-
arity in GRANSO is set to 10−12. Apart from these, we use default options in eigopt,
GRANSO, as well as our MATLAB routine linorm subsp that implements the method
from [1] for computing the L∞-norm of the transfer function of a large-scale linear
system. In linorm subsp, we call the FORTRAN routine AB13HD.F via a mex file
that implements the method of [5] to compute the L∞-norm of small-scale reduced

1WiKi is available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main Page.
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systems. The latter is often faster and more reliable than the native MATLAB routine
norm from the Control Systems Toolbox, that one could use for small-scale L∞-norm
computations as well. Our initial reduced-order models are generated by 10 interpo-
lation points (which consist of pairs of parameter values µ and frequencies ω) that are
equidistantly aligned on a line in Ω × [0, ωmax), where ωmax is a problem-dependent
maximum frequency. Further details on the implementation can be inferred from the
code that we have made available for download.

4.2. Results for real examples. We first test our algorithm on the following
four parameter-dependent descriptor systems, all of which originate from real appli-
cations.

Example 4.1 (thermal conduction (T2DAL BCI); see [16]). Our first example is a
thermal conduction model in chip production. For a compact and efficient model
of thermal conduction, one should take into account different configurations of the
boundary conditions. This gives the chip producers the capability to assess how
the change in the environment influences the temperature in the chip. A mathe-
matical model of the thermal conduction is given by the heat equation where the
heat exchange through the three device interfaces is modeled by convection boundary
conditions. These boundary conditions introduce the parameters µ1, µ2, µ3, called
the film coefficients, to describe the change in the temperature on the three device
interfaces. After spatial discretization of the partial differential equation and by in-
corporating the boundary conditions, one obtains a time-invariant linear system with
transfer function,

H[µ1, µ2, µ3](s) = C(sE − (A0 + µ1A1 + µ2A2 + µ3A3))−1B,(4.1)

where E ∈ R4257×4257 and Ai ∈ R4257×4257, i = 1, 2, 3, are diagonal matrices arising
from the discretization of convection boundary conditions on the ith interface and
B ∈ R4257×1, C ∈ R7×4257 are the input and output matrices, respectively. The

specified box for the parameter µ :=
[ µ1
µ2
µ3

]
is
[
1, 104

]
×
[
1, 104

]
×
[
1, 104

]
.

We report on the results of Algorithm 2.1 applied to the T2DAL BCI example for
different setups in Table 4.1.

Table 4.1
Numerical results for the T2DAL BCI example.

Setup niter (µ1,∗, µ2,∗, µ3,∗) ‖H[µ1,∗, µ2,∗, µ3,∗]‖H∞ Time in s

eigopt 2 (1.0000e+4, 1.0000e+4, 1.0000e+4) 1.15429e+1 374.25

GRANSO 2 (1.0000e+4, 1.0000e+4, 1.0000e+4) 1.15429e+1 2.54

Example 4.2 (anemometer (anemometer 1p and anemometer 3p); see [3]). An
anemometer is a device to measure heat flow which consists of a heater and tem-
perature sensors placed near the heater. The temperature field is affected by the
flow and, hence, a temperature difference occurs between the sensors. The measured
temperature difference determines the velocity of the fluid flow. The mathematical
model for the anemometer is given by the convection-diffusion equation

ρc
∂T

∂t
= ∇(κ∇T )− ρcv∇T + q′,

where ρ denotes the mass density, c is the specific heat, κ is the thermal conductivity,
v is the fluid velocity, T is the temperature, and q′ is the heat flow. A spatial

D
ow

nl
oa

de
d 

06
/2

2/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

942 N. ALIYEV, P. BENNER, E. MENGI, AND M. VOIGT

discretization of the convection-diffusion equation above, for instance, by the finite
element method, yields a parametric linear system with the transfer function,

H[v](s) = C(sE − (A1 + v(A2 −A1)))−1B

which depends only on the fluid velocity v ∈ [0, 1]; or a parametric system with the
transfer function

H[c, κ, v](s) = C(s(E1 + cE2)− (A1 + κA2 + cvA3))−1B

where three parameters c ∈ [0, 1], κ ∈ [1, 2], v ∈ [0.1, 2] appear. The input and
output matrices B and C above result from separating the spatial variables in q′. We
refer to these one parameter and three parameter examples as anemometer 1p and
anemometer 3p, respectively. In both cases, the order of the state space is 29008;
there is a single input and a single output.

We report on the results of Algorithm 2.1 on the anemometer 1p and anemometer 3p

examples for different setups in Tables 4.2 and 4.3, respectively.

Table 4.2
Numerical results for the anemometer 1p example.

Setup niter v∗ ‖H[v∗]‖H∞ Time in s

eigopt 6 0 1.32274e–2 32.68

GRANSO 6 -6.5276e–14 1.32274e–2 30.91

Table 4.3
Numerical results for the anemometer 3p example.

Setup niter (c∗, κ∗, v∗) ‖H[c∗, κ∗, v∗]‖H∞ Time in s

eigopt 4 (0.0000, 2.0000, 1.0000e–1) 1.64723e–3 766.06

GRANSO 3 (0.0000, 2.0000, 8.3855e–1) 1.64723e–3 40.93

Example 4.3 (scanning electrochemical microscopy (SECM); see [9]). SECM is a
technique to analyze the electrochemical behavior of species (in different states of
matter) at their interface. This example considers the chemical reaction between
two species on an electrode. The species transport is described by Fick’s second law
which leads to two partial diffusion equations with appropriate boundary conditions.
A spatial discretization together with a boundary control then leads to a linear-time
invariant system whose transfer function is

H[h1, h2](s) = C(sE − (h1A1 + h2A2 −A3))−1B,

where E, A1, A2, A3 ∈ R16912×16912, B ∈ R16912×1, C ∈ R5×16912, and h1, h2 are the
parameters of the problem. The experiment is performed in the box

[
1, e2

]
×
[
1, e2

]
.

The results for the SECM example are summarized in Table 4.4.
In all examples, we observe superliner convergence in the final iterations. Specif-

ically, for the SECM example, we report the errors when GRANSO is used for the sub-
problems with respect to the iteration number in Table 4.5. Four additional iterations
after the construction of the initial reduced model suffice to find the minimal H∞-
norm with the specified relative tolerances. For most examples, in particular the ones
with more than one parameter, using GRANSO is significantly faster than eigopt. On
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Table 4.4
Numerical results for the SECM example.

Setup niter (h1,∗, h2,∗) ‖H[h1,∗, h2,∗]‖H∞ Time in s

eigopt 5 (1.0000, 4.1944) 1.85588 180.01

GRANSO 5 (1.0000, 4.2882) 1.85583 20.51

Table 4.5
The minimizers for the reduced problems as well as the errors of the iterates of Algorithm 2.1

and the corresponding errors in the L∞-norms are listed for the SECM example by using GRANSO for
optimization. Here, the short-hands f (k) :=

∥∥HVk,Wk [µ(k+1)]
∥∥
L∞ and f∗ := ‖H[µ∗]‖H∞ are used.

k µ(k+1)
∥∥µ(k+1) − µ∗

∥∥
2

∣∣f (k) − f∗∣∣
0 (1.000000, 1.208804) 3.08 2.61e–1

1 (1.657869, 7.389056) 3.17 2.72e–4

2 (1.476130, 6.352188) 2.12 1.51e–4

3 (1.000000, 4.288178) 1.55e–9 1.24e–12

4 (1.000000, 4.288178) < 1e–12 < 1e–12

the other hand, in contrast to GRANSO, eigopt returns the global minimizer for the
reduced problems and thus sometimes yields more reliable results. In particular, due
to the local optimality issue with GRANSO, the subspace framework equipped with
GRANSO rarely does not converge to the global minimizer of the full problem, while
the one with eigopt does converge to the global minimizer of the full problem. This
can, for example, be seen in the synthetic example discussed below.

To our knowledge, there is no reliable and efficient algorithm for large-scale H∞-
norm minimization providing an optimality certificate available in the literature which
we can use for comparison purposes and verify the correctness of the results obtained.
Instead, for each example above, we have computed the H∞-norm of the system for
various values of µ near the computed optimal parameter value µ∗. According to
these computations, the optimal parameter values listed above seem to be at least
locally optimal. For three of the examples, the plots of the H∞-norm as a function of
µ are illustrated in Figure 4.1.

4.3. Results for synthetic examples. Next, we test our approach on synthetic
examples of various orders taken from the MOR Wiki.

Example 4.4 (synthetic example). We consider parametric single-input, single-
output systems of order n = 2q with transfer functions of the form

(4.2) H[µ](s) = C(sIn − µA1 −A0)−1B,

where the matrices A1, A0 ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are given by

A1 =



A1,1

. . .

A1,q


 , A0 =



A0,1

. . .

A0,q


 , B =



B1

...
Bq


 , C =

[
C1 . . . Cq

]

with

A1,i =

[
ai 0
0 ai

]
, A0,i =

[
0 bi
−bi 0

]
, Bi =

[
2
0

]
, Ci =

[
1 0

]
, i = 1, . . . , q.

The numbers ai and bi are chosen equidistantly in the intervals [−103,−10] and
[10, 103], respectively. The parameter µ is constrained to lie in the interval [0.02, 1].
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(a) Graph of µ1 7→ ‖H[µ1, µ∗,2, µ∗,3]‖H∞ for the
T2DAL_BCI example.
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(b) Graph of µ2 7→ ‖H[µ∗,1, µ2, µ∗,3]‖H∞ for the
T2DAL_BCI example.
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(c) Graph of v 7→ ‖H[v]‖H∞ for the anemometer_1p
example.
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(d) Graph of (µ1, µ2) 7→ ‖H[µ1, µ2]‖H∞ for the SECM
example.
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(e) Graph of µ1 7→ ‖H[µ1, µ∗,2]‖H∞ for the SECM
example.
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(f) Graph of µ2 7→ ‖H[µ∗,1, µ2]‖H∞ for the SECM
example.

Fig. 4.1: The H∞-norms for the different examples, where the computed minimal norm value
is marked by a red circle. Note that in the captions and legends of (a)–(f), µ∗,j denotes the
jth component of µ∗ for j = 1, 2, or 3.

where the matrices A1, A0 ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are given by

A1 =



A1,1

. . .
A1,q


 , A0 =



A0,1

. . .
A0,q


 , B =



B1

...
Bq


 , C =

[
C1 . . . Cq

]

Fig. 4.1. The H∞-norms for the different examples, where the computed minimal norm value
is marked by a red circle. Note that in the captions and legends of (a)–(f), µ∗,j denotes the jth
component of µ∗ for j = 1, 2, or 3.

We perform our experiments on this synthetic example for several values of n
varying in 102, . . . , 106. For smaller values of n, a comparison of Algorithm 2.1 and
the MATLAB package eigopt (for the unreduced problems) is provided in Table 4.6.
This table indicates that, with or without reduction, we retrieve exactly the same
optimal H∞-norm values up to the prescribed tolerance ε2 = 10−6, yet the proposed
subspace framework leads to speedups on the order of 103; indeed, the ratios of the
runtimes increase quickly with respect to n.

Larger examples are considered in Table 4.7, but only using the proposed subspace
framework. It does not seem possible to solve these larger H∞-norm minimization
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Table 4.6
Results of the numerical experiments on Example 4.4 for smaller values of n, where we list the

number of subspace iterations niter, the optimal parameter values µ∗ by Algorithm 2.1 and eigopt,
the corresponding minimal H∞-norms, as well as the runtimes in seconds (s). The optimal H∞-
norm values returned by Algorithm 2.1 are the same as those returned by eigopt at least up to six
decimal digits. Note that we have set γ = −1000 in eigopt for the unreduced problems—otherwise,
the runtimes would be even higher.

µ∗ ‖H[µ∗]‖H∞ Runtime in s

n niter Alg. 2.1 eigopt Alg. 2.1 eigopt Alg. 2.1 eigopt

100 2 1.000000 1.000000 0.317092 0.317092 1.33 6.98

200 2 1.000000 1.000000 0.549800 0.549800 0.82 52.33

400 3 0.270587 0.270549 0.969289 0.969289 3.85 455.07

600 4 0.212279 0.212255 1.337220 1.337219 3.06 1563.83

800 2 0.181492 0.181501 1.706940 1.706940 1.65 2635.76

Table 4.7
The performance of Algorithm 2.1 on Example 4.4 for larger values of n, where we have used

eigopt for the optimization of the reduced subproblems.

n niter µ∗ ‖H[µ∗]‖H∞ Runtime in s

1000 4 0.157222 2.08316 3.61

2000 4 0.115748 4.08243 4.68

5000 2 0.113064 10.1718 2.15

10000 2 0.112964 20.3321 1.64

20000 2 0.113009 40.6554 1.37

50000 2 0.113066 101.628 1.70

100000 2 0.113090 203.248 2.69

200000 2 0.113102 406.490 5.04

500000 2 0.113111 1016.22 12.53

1000000 2 0.113113 2032.43 26.11

problems in a reasonable time without employing reductions. Even the examples of
order 106 can be solved very fast. All examples can be solved with just two to four
iterations. Moreover, the largest fraction of the computation time is spent for solving
large-scale linear systems.

Note that we have used eigopt for the optimization of the the small subproblems
here, which is guaranteed to return a global minimizer provided γ is chosen sufficiently
small. We observe in practice that when the reduced problems are solved by an
algorithm that converges only to a local minimizer, convergence to µ = 1, a locally
(but not globally) optimal solution sometimes occurs. This is in particular the case
for some values of n when the reduced problems are solved with GRANSO. Also note
that for the small-scale computation of the L∞-norm in the reduced problems in this
example we make use of the native MATLAB function norm, since the periodic QZ
algorithm used for the eigenvalue computation in AB13HD.f does not always converge.

Finally, the progress of the subspace framework is displayed in Figure 4.2 on this
synthetic example for n = 500. After one subspace iteration, the L∞-norm of the
reduced problem already closely resembles the one for the original problem around
the minimizer. After two subspace iterations, it is even hard to distinguish the L∞-
norm functions for the reduced and original problems around the minimizer, except
for a thin peak that occurs in the reduced problem. The progress in the iterates is
further summarized in Table 4.8.
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‖H[µ]‖H∞∥∥HV0,W0 [µ]
∥∥
L∞∥∥HV1,W1 [µ]
∥∥
L∞∥∥HV2,W2 [µ]
∥∥
L∞

Fig. 4.2: The plots of the full function ‖H[·]‖H∞ , as well as the reduced functions∥∥HV0,W0 [·]
∥∥
L∞ ,

∥∥HV1,W1 [·]
∥∥
L∞ , and

∥∥HV2,W2 [·]
∥∥
L∞ in the interval [0.1, 0.4] for Example 4.4

with n = 500.

there exist constants ηµ, ηω, γ such that

(i)
∥∥HVk,Wk

[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥

2

∀ µ̃, µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω),

(ii)
∥∥HVk,Wk [µ]

(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣

∀µ ∈ B(µ∗, ηµ), ∀ ω̃, ω ∈ B(ω∗, ηω),

(iii)
∣∣σVk,Wk

(
µ̃, ω

)
− σVk,Wk(µ, ω)

∣∣ ≤ γ
∥∥µ̃− µ

∥∥
2
,

∣∣σVk,Wk

2

(
µ̃, ω

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤ γ

∥∥µ̃− µ
∥∥

2
∀ µ̃, µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω),

(iv)
∣∣σVk,Wk

(
µ, ω̃

)
− σVk,Wk(µ, ω)

∣∣ ≤ γ
∣∣ω̃ − ω

∣∣,
∣∣σVk,Wk

2

(
µ, ω̃

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤ γ

∣∣ω̃ − ω
∣∣ ∀µ ∈ B(µ∗, ηµ), ∀ ω̃, ω ∈ B(ω∗, ηω).

Proof. Letting Vk, Wk denote matrices with columns forming orthonormal bases for Vk,
Wk, by Weyl’s theorem [10, Theorem 4.3.1], for every µ ∈ Ω and ω ∈ R we have
∣∣σmin

(
DVk,Wk(µ, iω)

)
− σmin

(
DVk,Wk(µ∗, iω∗)

)∣∣ ≤
∥∥DVk,Wk(µ, iω)−DVk,Wk(µ∗, iω∗)

∥∥
2

= ‖W ∗k (D(µ, iω)−D(µ∗, iω∗))Vk‖2
≤ ‖D(µ, iω)−D(µ∗, iω∗)‖2
≤ ν(‖µ− µ∗‖2 + |ω − ω∗|)

for some constant ν > 0, where the last inequality is due to the fact that (µ, ω) 7→ D(µ, iω)
is continuously differentiable in a neighborhood of Ω× R. This uniform Lipschitz continuity
property of (µ, ω) 7→ σmin

(
DVk,Wk(µ, iω)

)
, combined with σmin

(
DVk,Wk(µ∗, iω∗)

)
≥ β, implies

the existence of constants ηµ > 0, ηω > 0 such that

σmin

(
DVk,Wk(µ, iω)

)
≥ β/2 ∀µ ∈ B(µ∗, ηµ), ∀ω ∈ B(ω∗, ηω).

Fig. 4.2. The plots of the full function ‖H[·]‖H∞ , as well as the reduced functions∥∥HV0,W0 [·]
∥∥
L∞ ,

∥∥HV1,W1 [·]
∥∥
L∞ , and

∥∥HV2,W2 [·]
∥∥
L∞ in the interval [0.1, 0.4] for Example 4.4

with n = 500.

Table 4.8
The minimizers for the reduced problems, as well as the errors of the iterates of Algorithm 2.1,

and the corresponding errors in the L∞-norms are listed for the synthetic example for n = 500
by using eigopt for the optimization of the reduced systems. Here, again the shorthands f (k) :=∥∥HVk,Wk [µ(k+1)]

∥∥
L∞ and f∗ := ‖H[µ∗]‖H∞ are used.

k µ(k+1)
∣∣µ(k+1) − µ∗

∣∣
2

∣∣f (k) − f∗∣∣
0 0.226862 8.86e–1 4.80e–4

1 0.235710 7.85e–6 3.12e–10

2 0.235718 < 1e–12 < 1e–12

5. Concluding remarks. In this work, we have developed new subspace re-
striction techniques to minimize the H∞-norm of transfer functions of large-scale
parameter-dependent linear systems. We have given a detailed analysis of the rate
of convergence of these methods, and demonstrated the validity of the deduced rate
of convergence results in practice by various numerical examples, which could all be
solved very efficiently. The methods presented here make the design of optimal H∞-
controllers for large-scale systems partly feasible. A fully feasible method to design
optimal H∞-controllers for large-scale systems should also take stability considera-
tions into account. We intend to address stability issues in the future.

Appendix A. Derivation and analyses of reduced interpolating func-
tions. The purpose of this section is twofold. First, in section A.2, we show the
well-posedness of the reduced interpolating function σ̃Vk,Wk(·) defined by (3.2) and
(3.3). Then we establish uniform upper bounds on the higher-order derivatives of
‖H[·]‖H∞ and σ̃Vk,Wk(·) independent of the subspaces in section A.3.

Our approaches in sections A.2 and A.3 rely on uniform bounds on the derivatives
of the full and reduced singular value functions, which are proven next in section A.1.

A.1. Uniform boundedness of the derivatives of the singular value func-
tions. The main result of this subsection (Lemma A.2) concerns the existence of
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a positive real number that bounds the second and third derivatives of σ(·, ·) and
σVk,Wk(·, ·) in absolute value from above for all choices of subspaces Vk,Wk.

We start with an auxiliary result that establishes the uniform Lipschitz continuity
of HVk,Wk [·](i·), σVk,Wk(·, ·), and σVk,Wk

2 (·, ·) independent of the subspaces.

Lemma A.1 (uniform Lipschitz continuity). Suppose that Assumption 3.2 holds.
Then there exist constants ηµ, ηω, γ such that

(i)
∥∥HVk,Wk

[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥

2

∀ µ̃, µ ∈ B(µ∗, ηµ) ∀ω ∈ B(ω∗, ηω);

(ii)
∥∥HVk,Wk [µ]

(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣

∀µ ∈ B(µ∗, ηµ) ∀ ω̃, ω ∈ B(ω∗, ηω);

(iii)
∣∣σVk,Wk

(
µ̃, ω

)
− σVk,Wk(µ, ω)

∣∣ ≤ γ
∥∥µ̃− µ

∥∥
2
,

∣∣σVk,Wk

2

(
µ̃, ω

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤ γ

∥∥µ̃− µ
∥∥

2

∀ µ̃, µ ∈ B(µ∗, ηµ) ∀ω ∈ B(ω∗, ηω);

(iv)
∣∣σVk,Wk

(
µ, ω̃

)
− σVk,Wk(µ, ω)

∣∣ ≤ γ
∣∣ω̃ − ω

∣∣,
∣∣σVk,Wk

2

(
µ, ω̃

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤ γ

∣∣ω̃ − ω
∣∣

∀µ ∈ B(µ∗, ηµ) ∀ ω̃, ω ∈ B(ω∗, ηω).

Proof. Letting Vk, Wk denote matrices with columns forming orthonormal bases
for Vk, Wk, by Weyl’s theorem [10, Theorem 4.3.1] for every µ ∈ Ω and ω ∈ R we
have
∣∣σmin

(
DVk,Wk(µ, iω)

)
− σmin

(
DVk,Wk(µ∗, iω∗)

)∣∣ ≤
∥∥DVk,Wk(µ, iω)−DVk,Wk(µ∗, iω∗)

∥∥
2

= ‖W ∗k (D(µ, iω)−D(µ∗, iω∗))Vk‖2
≤ ‖D(µ, iω)−D(µ∗, iω∗)‖2
≤ ν(‖µ− µ∗‖2 + |ω − ω∗|)

for some constant ν > 0, where the last inequality is due to the fact that (µ, ω) 7→
D(µ, iω) is continuously differentiable in a neighborhood of Ω×R. This uniform Lip-
schitz continuity property of (µ, ω) 7→ σmin

(
DVk,Wk(µ, iω)

)
, combined with

σmin

(
DVk,Wk(µ∗, iω∗)

)
≥ β, implies the existence of constants ηµ > 0, ηω > 0 such

that

σmin

(
DVk,Wk(µ, iω)

)
≥ β/2 ∀µ ∈ B(µ∗, ηµ) ∀ω ∈ B(ω∗, ηω).

It follows that (µ, ω) 7→ HVk,Wk [µ](iω) is differentiable ∀µ ∈ B(µ∗, ηµ) ∀ω ∈ B(ω∗, ηω).
(i) For every µ ∈ B(µ∗, ηµ) and ω ∈ B(ω∗, ηω), by the product and chain rule we

obtain

∂HVk,Wk [µ](iω)

∂µj
=
∂CVk(µ)

∂µj
DVk,Wk(µ, iω)−1BWk(µ)

+ CVk(µ)DVk,Wk(µ, iω)−1 ∂D
Vk,Wk(µ, iω)

∂µj
DVk,Wk(µ, iω)−1BWk(µ)

+ CVk(µ)DVk,Wk(µ, iω)−1 ∂B
Wk(µ)

∂µj

(A.1)

D
ow

nl
oa

de
d 

06
/2

2/
20

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

948 N. ALIYEV, P. BENNER, E. MENGI, AND M. VOIGT

for j = 1, . . . , d. Setting

M ′D,j := max

{∥∥∥∥
∂D(µ, iω)

∂µj

∥∥∥∥
2

∣∣∣∣ µ ∈ B(µ∗, ηµ), ω ∈ B(ω∗, ηω)

}
,

M ′C,j := max

{∥∥∥∥
∂C(µ)

∂µj

∥∥∥∥
2

∣∣∣∣ µ ∈ B(µ∗, ηµ)

}
, MC := max

{
‖C(µ)‖2 | µ ∈ B(µ∗, ηµ)

}
,

M ′B,j := max

{∥∥∥∥
∂B(µ)

∂µj

∥∥∥∥
2

∣∣∣∣ µ ∈ B(µ∗, ηµ)

}
, MB := max

{
‖B(µ)‖2 | µ ∈ B(µ∗, ηµ)

}
,

and exploiting

∥∥∥∥
∂D(µ, iω)

∂µj

∥∥∥∥
2

≥
∥∥∥∥
∂DVk,Wk(µ, iω)

∂µj

∥∥∥∥
2

, ‖C(µ)‖2 ≥
∥∥CVk(µ)

∥∥
2
,

‖B(µ)‖2 ≥
∥∥BWk(µ)

∥∥
2
,

∥∥∥∥
∂C(µ)

∂µj

∥∥∥∥
2

≥
∥∥∥∥
∂CVk(µ)

∂µj

∥∥∥∥
2

,

∥∥∥∥
∂B(µ)

∂µj

∥∥∥∥
2

≥
∥∥∥∥
∂BWk(µ)

∂µj

∥∥∥∥
2

,

as well as σmin

(
DVk,Wk(µ, iω)

)
≥ β/2, we deduce from (A.1) that

∥∥∥∥
∂HVk,Wk [µ](iω)

∂µj

∥∥∥∥
2

≤ 2
M ′C,jMB

β
+ 4

MCM
′
D,jMB

β2
+ 2

MCM
′
B,j

β
=: Mj

for all µ ∈ B(µ∗, ηµ), ω ∈ B(ω∗, ηω) and j = 1, . . . , d. This implies
∣∣[∂HVk,Wk [µ](iω)/∂µj

]
k`

∣∣ ≤Mj

for k = 1, . . . , p, ` = 1, . . . , m. Setting M := max{Mj | j = 1, . . . , d}, for every
µ̃, µ ∈ B(µ∗, ηµ), ω ∈ B(ω∗, ηω), by the mean value theorem we obtain

∣∣[HVk,Wk
[
µ̃
]
(iω)

]
k`
−
[
HVk,Wk [µ](iω)

]
k`

∣∣ ≤
∣∣∇µ[HVk,Wk [µ̂](iω)]Tk`

(
µ̃− µ

)∣∣

≤
d∑

j=1

Mj

∣∣µ̃j − µj
∣∣ ≤ dM

∥∥µ̃− µ
∥∥

2

for some µ̂ ∈ B(µ∗, ηµ), where ∇µ
[
HVk,Wk

[
µ̂
](

iω
)]
k`

denotes the gradient of the map

µ 7→
[
HVk,Wk [µ](iω)

]
k`

at µ̂. It follows that
∥∥HVk,Wk

[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ √pmdM

∥∥µ̃− µ
∥∥

2
,

as desired.
(ii) A similar proof as in part (i) applies but now by differentiating the function

(µ, ω) 7→ HVk,Wk [µ](iω) with respect to ω instead of µj .
(iii) By Weyl’s theorem [10, Theorem 4.3.1] and part (i) we have

∣∣σVk,Wk
(
µ̃, ω

)
− σVk,Wk(µ, ω)

∣∣ ≤
∥∥HVk,Wk

[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥

2
,

∣∣σVk,Wk

2

(
µ̃, ω

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤

∥∥HVk,Wk
[
µ̃
]
(iω)−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∥∥µ̃− µ
∥∥

2

for all µ̃, µ ∈ B(µ∗, ηµ), and ω ∈ B(ω∗, ηω), hence, we get the result.
(iv) Weyl’s theorem and part (ii) combined imply

∣∣σVk,Wk
(
µ, ω̃

)
− σVk,Wk(µ, ω)

∣∣ ≤
∥∥HVk,Wk [µ]

(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣,

∣∣σVk,Wk

2

(
µ, ω̃

)
− σVk,Wk

2 (µ, ω)
∣∣ ≤

∥∥HVk,Wk [µ]
(
iω̃
)
−HVk,Wk [µ](iω)

∥∥
2
≤ γ

∣∣ω̃ − ω
∣∣

for all µ ∈ B(µ∗, ηµ) and ω̃, ω ∈ B(ω∗, ηω) as claimed.
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Now we are ready to assert uniform upper bounds on the derivatives of the largest
singular value function for the reduced problem in the next lemma. Its proof is inspired
from [12, Proposition 2.9].

Lemma A.2. Suppose that Assumptions 3.1 and 3.2 hold.
(i) The singular value functions σ(µ, ω) and σVk,Wk(µ, ω) both are simple, hence,

real analytic, for all µ and ω in the interior of B(µ∗, η̃µ) and the interior of
B(ω∗, η̃ω), respectively, for some constants η̃µ, η̃ω > 0.

(ii) There exist constants U > 0, ηµ ∈ (0, η̃µ), ηω ∈ (0, η̃ω) such that

∣∣σVk,Wk
χ1

(µ, ω)
∣∣ ≤ U,

∣∣σVk,Wk
χ1χ2

(µ, ω)
∣∣ ≤ U,

∣∣σVk,Wk
χ1χ2χ3

(µ, ω)
∣∣ ≤ U

∀µ ∈ B(µ∗, ηµ) ∀ω ∈ B(ω∗, ηω)

for all χ1, χ2, χ3 ∈ {ω} ∪ {µj | j = 1, . . . , d}.
Proof. (i) By the continuity of (µ, ω) 7→ σmin(D(µ, iω)), there exists a neighbor-

hood Ñ of (µ∗, ω∗) such that σmin(D(µ, iω)) ≥ β/2 for all (µ, ω) ∈ Ñ . Consequently,
the mapping (µ, ω) 7→ H[µ](iω) is continuously differentiable and σ(·, ·), σ2(·, ·) are

continuous in Ñ . The continuity of σ(·, ·), σ2(·, ·), combined with Assumption 3.1 (in
particular the assumption that σ(µ∗, ω∗) is simple), implies that σ(µ, ω) remains a
simple singular value of H[µ](iω), hence, it is bounded away from zero, in a neighbor-

hood N ⊆ Ñ of (µ∗, ω∗). Formally,

(A.2) σ(µ, ω)− σ2(µ, ω) ≥ ε̂ ∀(µ, ω) ∈ N

for some ε̂ > 0.
Moreover, by employing the interpolation properties

σVk,Wk
(
µ(k), ω(k)

)
= σ

(
µ(k), ω(k)

)
and σVk,Wk

2

(
µ(k), ω(k)

)
= σ2

(
µ(k), ω(k)

)
,

as well as the uniform Lipschitz continuity of σVk,Wk(·, ·), σVk,Wk

2 (·, ·) (i.e., parts (iii)
and (iv) of Lemma A.1), there exists a region B(µ∗, η̃µ) × B(ω∗, η̃ω) ⊆ N in which
σVk,Wk(µ, ω) is simple, hence, also a positive singular value of HVk,Wk [µ](iω). More
precisely, we have

(A.3) σVk,Wk(µ, ω)− σVk,Wk

2 (µ, ω) ≥ ε ∀(µ, ω) ∈ B(µ∗, η̃µ)× B(ω∗, η̃ω)

for some constants ε ∈ (0, ε̂), η̃µ > 0, η̃ω > 0. Note that here ‖µ(k) − µ∗‖2 � ε̂
is assumed. It follows from the simplicity of σ(·, ·) and σVk,Wk(·, ·) in B(µ∗, η̃µ) ×
B(ω∗, η̃ω) that these singular value functions are real analytic in the interior of this
region.

(ii) Let us prove that |σω(·, ·)| and |σωµ1
(·, ·)| are bounded from above uniformly

in a neighborhood of (µ∗, ω∗). Our approach is based on the mapping

(µ, s) 7→
[

0 HVk,Wk [µ](s)

HVk,Wk∗ [µ](s) 0

]
=: MVk,Wk [µ](s)

for (µ, s) ∈ Cd × C near (µ∗, iω∗), where

HVk,Wk
∗ [µ](s) := BWk

∗ (µ)DVk,Wk
∗ (µ, s)−1CVk

∗ (µ) with

DVk,Wk
∗ (µ, s) := −sEVk,Wk

∗ (µ)−AVk,Wk
∗ (µ)
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and

EVk,Wk
∗ (µ) := f1(µ)(W ∗kE1Vk)∗ + · · ·+ fκE

(µ)(W ∗kEκE
Vk)∗,

AVk,Wk
∗ (µ) := g1(µ)(W ∗kA1Vk)∗ + · · ·+ gκA

(µ)(W ∗kAκA
Vk)∗,

BWk
∗ (µ) := h1(µ)(W ∗kB1)∗ + · · ·+ hκB

(µ)(W ∗kBκB
)∗,

CVk
∗ (µ) := k1(µ)(C1Vk)∗ + · · ·+ kκC

(µ)(CκC
Vk)∗.

Note that σVk,Wk(µ, ω) and σVk,Wk

2 (µ, ω) correspond to the largest and second largest

eigenvalues of MVk,Wk [µ](iω) for real µ and real ω, as indeed HVk,Wk∗ [µ](iω) ={
HVk,Wk [µ](iω)

}∗
. These Hermiticity properties are lost when we replace fj , gj , hj , kj

with their analytic continuations f̂j , ĝj , ĥj , k̂j or if we choose s 6∈ iR := {iω | ω ∈ R}.
Let us denote the resulting extensions of HVk,Wk , HVk,Wk∗ , MVk,Wk with ĤVk,Wk ,
ĤVk,Wk∗ , M̂Vk,Wk . As the subsequent arguments are for these complex continuations,
in the rest of the proof

BC(µ∗, η) := {µ ∈ Cd | ‖µ− µ∗‖2 ≤ η} and BC(iω∗, η) := {s ∈ C | |s− iω∗| ≤ η}

now denote the balls in the complex Euclidean spaces for a given radius η > 0.
It is straightforward to verify that the uniform Lipschitz continuity of (µ, ω) 7→
HVk,Wk [µ](iω) established in parts (i) and (ii) of Lemma A.1 extend to its complex
counterpart. In particular, there exist constants γ, η̂µ, η̂ω such that

∥∥ĤVk,Wk
[
µ̃
](
s̃
)
− ĤVk,Wk [µ](s)

∥∥
2

≤
∥∥ĤVk,Wk

[
µ̃
](
s̃
)
− ĤVk,Wk [µ]

(
s̃
)∥∥

2
+
∥∥ĤVk,Wk [µ]

(
s̃
)
− ĤVk,Wk [µ](s)

∥∥
2

≤ γ
(∥∥µ̃− µ

∥∥
2

+
∣∣s̃− s

∣∣)

for all µ̃, µ ∈ BC(µ∗, η̂µ) ⊂ Cd, and for all s̃, s ∈ BC(iω∗, η̂ω) ⊂ C. An analogous

uniform Lipschitz continuity assertion also holds for ĤVk,Wk∗ . Consequently, there
exist constants γ, η̂µ, η̂ω such that

(A.4)
∥∥M̂Vk,Wk

[
µ̃
](
s̃
)
− M̂Vk,Wk [µ](s)

∥∥
2
≤ γ

(∥∥µ̃− µ
∥∥

2
+
∣∣s̃− s

∣∣)

∀ µ̃, µ ∈ BC(µ∗, η̂µ) ⊂ Cd ∀ s̃, s ∈ BC(iω∗, η̂ω) ⊂ C.

Now, for (µ, s) ∈ BC(µ∗, η̂ω)×BC(iω∗, η̂ω), consider the eigenvalue σ̂Vk,Wk(µ, s) of

the analytic extension M̂Vk,Wk [µ](s) (i.e., σ̂Vk,Wk(·, ·) is the extension of the eigenvalue
σVk,Wk(·, ·) of MVk,Wk [·](i·)). This eigenvalue function is no longer real valued, since

M̂Vk,Wk [µ](s) is not necessarily a Hermitian matrix. However, by (A.3) and (A.4),
as well as Theorem 5.1 in [18, Chapter 4], there exist constants ηµ,m ≤ min

{
η̃µ, η̂µ

}

and ηω,m ≤ min
{
η̃ω, η̂ω

}
such that the eigenvalue σ̂Vk,Wk(µ, s) remains simple for

all µ ∈ BC(µ∗, ηµ,m) and all s ∈ BC(iω∗, ηω,m). We remark that ηµ,m and ηω,m are
independent of Vk, Wk. Now let us consider any ηµ ∈ (0, ηµ,m) and any ηω ∈ (0, ηω,m).
By the analyticity of σ̂Vk,Wk(·, ·) in the interior of BC(µ∗, ηµ,m)×BC(iω∗, ηω,m), for a
given µ̃ ∈ BC(µ∗, ηµ) and s̃ ∈ BC(iω∗, ηω/2), by Cauchy’s integral formula we have

(A.5) σ̂Vk,Wk
s (µ̃, s̃) =

1

2πi

∮
∣∣s−s̃

∣∣=ηω/2
σ̂Vk,Wk(µ̃, s)

(s− s̃)2
ds.
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We claim that the term σ̂Vk,Wk(µ̃, s) inside the integral in modulus is uniformly

bounded from above. To this end, as
∣∣σ̂Vk,Wk

(
µ̃, s
)∣∣ ≤

∥∥M̂Vk,Wk
[
µ̃
]
(s)
∥∥

2
, it suffices

to show the uniform boundedness of
∥∥M̂Vk,Wk [µ̃](s)

∥∥
2
. Letting β := σmin(D(µ∗, iω∗))

and following the arguments at the beginning of the proof of Lemma A.1, there exists
a neighborhood N̂ ⊂ Cd × C of (µ∗, iω∗) such that σmin

(
DVk,Wk(µ, s)

)
≥ β/2 for all

(µ, s) ∈ N̂ . Without loss of generality, we assume N̂ = BC(µ∗, ηµ) × BC(iω∗, ηω) (as
we can choose ηµ and ηω as small as we wish). Hence,

∥∥ĤVk,Wk [µ](s)
∥∥

2
≤ 2

∥∥CVk(µ)
∥∥

2

∥∥BWk(µ)
∥∥

2

β
≤ 2

MC,CMC,B

β

∀µ ∈ BC(µ∗, ηµ) ∀ s ∈ BC(iω∗, ηω),

where

MC,C := max
{
‖C(µ)‖2 | µ ∈ BC(µ∗, ηµ)

}
,MC,B := max

{
‖B(µ)‖2 | µ ∈ BC(µ∗, ηµ)

}
.

In an analogous fashion, the same upper bound also holds uniformly for
‖ĤVk,Wk∗ [µ](s)‖2 for all µ ∈ BC(µ∗, ηµ) and all s ∈ BC(iω∗, ηω), which gives rise
to

∥∥M̂Vk,Wk [µ](s)
∥∥

2
≤ 2

MC,CMC,B

β
=: MC ∀µ ∈ BC(µ∗, ηµ) ∀ s ∈ BC(iω∗, ηω).

We deduce from (A.5) that

(A.6)
∣∣σ̂Vk,Wk
s

(
µ̃, s̃
)∣∣ ≤ 1

2π

{
max∣∣s−s̃
∣∣=ηω/2

∣∣σ̂Vk,Wk(µ̃, s)
∣∣
}

1

(ηω/2)2
(2πηω/2) ≤ 2MC

ηω

∀ µ̃ ∈ BC(µ∗, ηµ) ∀ s̃ ∈ BC(iω∗, ηω/2),

hence, also
∣∣σVk,Wk
ω

(
µ̃, ω̃

)∣∣ ≤ 2MC/ηω for all µ̃ ∈ B(µ∗, ηµ) and all ω̃ ∈ B(ω∗, ηω/2).

Now let us consider the mixed derivative σVk,Wk
sµ1

(µ̂, ŝ) at a given µ̂ ∈ BC(µ∗, ηµ/2)

and ŝ ∈ BC(iω∗, ηω/2); in particular, consider

(A.7) σ̂Vk,Wk
sµ1

(
µ̂, ŝ
)

=
1

2πi

∮

C

σ̂Vk,Wk
s

(
µ, ŝ
)

(
µ1 − µ̂1

)2 dµ1,

where the contour integral is over

C :=
{
µ ∈ Cd

∣∣ ∣∣µ1 − µ̂1

∣∣ = ηµ/2, µj = µ̂j , j = 2, . . . , d
}
.

Taking the modulus of both sides in (A.7) and using (A.6) yield

∣∣σ̂Vk,Wk
sµ1

(µ̂, ŝ)
∣∣ ≤ 1

2π

{
max
µ∈C

∣∣σ̂Vk,Wk
s (µ, ŝ)

∣∣
}

1

(ηµ/2)2
(2πηµ/2) ≤ 4MC

ηµηω

∀ µ̂ ∈ BC(µ∗, ηµ/2) ∀ ŝ ∈ BC(iω∗, ηω/2).

The arguments above prove the uniform boundedness of
∣∣σVk,Wk
ω (·, ·)

∣∣,
∣∣σVk,Wk
ωµ1

(·, ·)
∣∣.

The uniform boundedness of all other first three derivatives can be proven similarly.
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A.2. Well-posedness of the reduced interpolating functions. We deduce
the well-posedness of σ̃Vk,Wk(·) by analyzing the dependence of the maximizer of the
mapping ω 7→ σVk,Wk(µ, ω) on µ. To this end, the next result draws the important
conclusion that the maximizer of ω 7→ σVk,Wk(µ, ω) can be expressed as a smooth
function of µ in a uniform neighborhood of µ∗ independent of the subspaces.

Proposition A.3. Under Assumptions 3.1 and 3.2, the following assertions hold
for some constants ηµ,0, ηω,0, ε > 0:

(i) There exists a unique continuous function ω : B(µ∗, ηµ,0) → B(ω∗.ηω,0) that
is three times continuously differentiable in the interior of B(µ∗, ηµ,0) such
that

ω(µ∗) = ω∗ and σω(µ,ω(µ)) = 0 ∀µ ∈ B(µ∗, ηµ,0).

Furthermore, σωω(µ,ω(µ)) ≤ δ/2 for all µ ∈ B(µ∗, ηµ,0), where δ < 0 is as
in Assumption 3.2.

(ii) There exists a unique continuous function ωVk,Wk : B(µ∗, ηµ,0)→ B(ω∗, ηω,0)
that is three times continuously differentiable in the interior of B(µ∗, ηµ,0)
such that

ωVk,Wk
(
µ(k)

)
= ω(k) and σVk,Wk

ω

(
µ,ωVk,Wk(µ)

)
= 0 ∀µ ∈ B(µ∗, ηµ,0).

Additionally, σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

)
≤ δ/2 for all µ ∈ B(µ∗, ηµ,0).

(iii) We have
σ(µ,ω(µ))− σ2(µ,ω(µ)) ≥ ε,

and the unique global maximizer of ω 7→ σ(µ, ω) is given by ω(µ) for all
µ ∈ B(µ∗, ηµ,0). In particular, for all µ ∈ B(µ∗, ηµ,0) it holds that

σ(µ,ω(µ)) = ‖H[µ]‖H∞ .

(iv) We have

σVk,Wk
(
µ,ωVk,Wk(µ)

)
− σVk,Wk

2

(
µ,ωVk,Wk(µ)

)
≥ ε,

moreover, the unique global maximizer and stationary point of ω 7→
σVk,Wk(µ, ω) in B(ω∗, ηω,0) is ωVk,Wk(µ) for all µ ∈ B(µ∗, ηµ,0).

Proof. As argued in the opening of the proof of Lemma A.2, we have

(A.8) σ(µ, ω)− σ2(µ, ω) ≥ ε̂ ∀(µ, ω) ∈ B(µ∗, η̂µ)× B(ω∗, η̂ω)

for some ε̂ > 0, η̂µ > 0, η̂ω > 0, and

(A.9) σVk,Wk(µ, ω)− σVk,Wk

2 (µ, ω) ≥ ε ∀(µ, ω) ∈ B(µ∗, η̃µ)× B(ω∗, η̃ω)

for some constants ε ∈ (0, ε̂), η̃µ > 0, η̃ω > 0.
The function σ(·, ·) is real analytic in the interior of B(µ∗, η̂µ)×B(ω∗, η̂ω), whereas

σVk,Wk(·, ·) is real analytic in the interior of B(µ∗, η̃µ) × B(ω∗, η̃ω). Moreover, by

Lemma A.2, there exists a constant δ̃ > 0 such that

(A.10)
∣∣σVk,Wk
ωωω (µ, ω)

∣∣ ≤ δ̃

holds uniformly for all (µ, ω) in a neighborhood of (µ∗, ω∗), where δ̃ and the neigh-
borhood are independent of the subspaces Vk,Wk as long as they satisfy Assumption
3.2. Now we prove the four statements of the proposition:
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(i) Since σ(·, ·) is real analytic with continuous second derivatives in a neighbor-
hood of (µ∗, ω∗), its second derivative σωω(·, ·) must be bounded from above by δ/2
in another neighborhood of (µ∗, ω∗). Then the assertion follows immediately from the
implicit function theorem.

(ii) Due to Assumption 3.2 and (A.10), the condition σVk,Wk
ωω (µ, ω) ≤ δ/2 must

hold in an open neighborhood N of (µ∗, ω∗). Additionally, we must have ω(k) → ω∗
as µ(k) → µ∗ due to

σ(µ∗, ω∗) = ‖H[µ∗]‖H∞ = lim
µ(k)→µ∗

∥∥H
[
µ(k)

]∥∥
H∞ = lim

µ(k)→µ∗
σ
(
µ(k), ω(k)

)
,

as well as the uniqueness of ω∗ as the maximizer of σ(µ∗, ·) and the continuity of σ(·, ·).
Hence, consider µ(k) sufficiently close to µ∗ so that

(
µ(k), ω(k)

)
∈ N , in particular,

σVk,Wk
ωω

(
µ(k), ω(k)

)
≤ δ/2 < 0. Now the assertion again follows from the implicit

function theorem. The uniformity of the radii ηµ,0, ηω,0 over the subspaces follows
from the uniform upper bound δ/2 on the second derivatives.

(iii) Assume ηµ,0 ∈ (0, η̂µ), ηω,0 ∈ (0, η̂ω) without loss of generality, where
η̂µ, η̂ω are as in (A.8). But then for µ ∈ B(µ∗, ηµ,0) ⊂ B(µ∗, η̂µ), we have ω(µ) ∈
B(ω∗, ηω,0) ⊂ B(ω∗, η̂ω). Hence, (A.8) implies σ(µ,ω(µ))−σ2(µ,ω(µ)) ≥ ε̂ > ε for all
µ ∈ B(µ∗, ηµ,0).

To show that ω(µ) is the unique global maximizer of σ(µ, ·) for all µ ∈ B(µ∗, ηµ,0),
we introduce

δ1(µ) := sup{σ(µ, ω) | ω ∈ B(ω∗, ηω,0)}, δ2(µ) := sup{σ(µ, ω) | ω ∈ R\B(ω∗, ηω,0)},

and let δ∗ := δ1(µ∗) − δ2(µ∗) > 0. As argued at the beginning of the proof of

Lemma A.2, there exists a neighborhood Ñ of (µ∗, ω∗) where the transfer function
(µ, ω) 7→ H[µ](iω) is continuously differentiable. As a result, the largest singular
value function σ(·, ·) is Lipschitz continuous, say with the Lipschitz constant ζ over

Ñ which we assume contains B(µ∗, ηµ,0)×B(ω∗, ηω,0) without loss of generality. The
functions δ1(·) and δ2(·) are also Lipschitz continuous with the Lipschitz constant ζ
over B(µ∗, ηµ,0) (see [14, Lemma 8 (ii)] that concerns the minimization of a smallest
singular value rather than the maximization of a largest singular value as in here, but
the proof over there can be modified in a straightforward manner). We furthermore
assume ηµ,0 < δ∗/(4ζ) without loss of generality (since we can choose ηµ,0 as small as
we wish), so

δ1(µ) ≥ δ1(µ∗)− δ∗/4 and δ2(µ∗) ≥ δ2(µ)− δ∗/4

for all µ ∈ B(µ∗, ηµ,0) by the Lipschitz continuity of δ1(·) and δ2(·). These inequalities
combined with δ1(µ∗)− δ2(µ∗) = δ∗ yield

δ1(µ)− δ2(µ) ≥ δ1(µ∗)− δ2(µ∗)− δ∗/2 = δ∗/2

for all µ ∈ B(µ∗, ηµ,0). This means that any global maximizer ω̃(µ) of σ(µ, ·) lies in the
interior of B(ω∗, ηω,0). Since σ(·, ·) is differentiable in a neighborhood of B(µ∗, ηµ,0)×
B(ω∗, ηω,0), we must have σω(µ, ω̃(µ)) = 0. The fact that ω(µ) as in part (i) is
the unique point in B(ω∗, ηω,0) satisfying σω(µ,ω(µ)) = 0 is implied by the implicit
function theorem. Hence, we must have ω̃(µ) = ω(µ), so ω(µ) is the unique global
maximizer of σ(µ, ·).

(iv) We assume without loss of generality that ηµ,0 ∈ (0, η̃µ) and ηω,0 ∈ (0, η̃ω).
Consequently, ωVk,Wk(µ) ∈ B(ω∗, ηω,0) ⊂ B(ω∗, η̃ω) for all µ ∈ B(µ∗, ηµ,0) ⊂ B(µ∗, η̃µ),

so (A.9) yields σVk,Wk
(
µ,ωVk,Wk(µ)

)
− σVk,Wk

2

(
µ,ωVk,Wk(µ)

)
≥ ε for such µ.
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The uniqueness of ωVk,Wk(µ) as the stationary point of σVk,Wk(µ, ·) in B(ω∗, ηω,0)
is immediate from the implicit function theorem. Additionally, without loss of gener-
ality, we can assume B(µ∗, ηµ,0) × B(ω∗, ηω,0) ⊆ N where N is the neighborhood of
(µ∗, ω∗) as in part (ii) over which σVk,Wk

ωω (µ, ω) ≤ δ/2 < 0. This means σVk,Wk(µ, ·)
is strictly concave in B(ω∗, ηω,0). Thus, the unique stationary point ωVk,Wk(µ) must
also be the unique global maximizer of σVk,Wk(µ, ·) in B(ω∗, ηω,0).

Now the well-posedness of σ̃Vk,Wk(·), that is Proposition 3.4, is a simple corollary
of Proposition A.3 combined with Lemma A.2.

Proof of Proposition 3.4. Part (i) is a restatement of part (i) of Lemma A.2, while
parts (ii) and (iii) of Proposition 3.4 are immediately implied by parts (ii) and (iv) of
Proposition A.3, respectively.

A.3. Derivatives of the H∞-norm and the reduced interpolating func-
tions. The smoothness of ‖H[·]‖H∞ and σ̃Vk,Wk(·) around µ∗ is implied by Proposi-
tion A.3. With a little more effort, below we extend the uniform upper bounds on the
derivatives of σVk,Wk(·, ·) in Lemma A.2 to the derivatives of σ̃Vk,Wk(·), and deduce
Proposition 3.5.

Proof of Proposition 3.5. (i) The assertion that ‖H[·]‖H∞ is three times contin-
uous differentiable in the interior of B(µ∗, ηµ,0) is a simple corollary of parts (i) and
(iii) of Proposition A.3, since ‖H[µ]‖H∞ = σ(µ,ω(µ)), where σ(µ,ω(µ)) is simple and
ω(µ) is three times continuously differentiable for all µ in the interior of B(µ∗, ηµ,0).

Similarly, three times continuous differentiability of σ̃Vk,Wk(µ) in the interior of
B(µ∗, ηµ,0) is a corollary of parts (ii) and (iv) of Proposition A.3.

(ii) As for part (a), the first assertion, that is the boundedness of the second
derivatives of ‖H[·]‖H∞ in B(µ∗, η̂µ,0) is immediate. Let us prove the existence of a
constant γ > 0 such that

(A.11)
∣∣∣σ̃Vk,Wk
µqµr

(µ)
∣∣∣ ≤ γ ∀µ ∈ B(µ∗, η̂µ,0)

for q, r = 1, . . . , d independent of the subspaces. To this end, we first observe

(A.12) σ̃Vk,Wk
µqµr

(µ) = σVk,Wk
µqµr

(
µ,ωVk,Wk(µ)

)
+ σVk,Wk

µqω

(
µ,ωVk,Wk(µ)

)
ωVk,Wk
µr

(µ).

The function ωVk,Wk(·) is implicitly defined by the equation σVk,Wk
ω

(
µ,ωVk,Wk(µ)

)
=

0 for µ near µ(k). Differentiating this equation with respect to µr yields

ωVk,Wk
µr

(µ) = −σ
Vk,Wk
µrω

(
µ,ωVk,Wk(µ)

)

σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

) ,

which we plug into (A.12) to obtain
(A.13)

σ̃Vk,Wk
µqµr

(µ) = σVk,Wk
µqµr

(
µ,ωVk,Wk(µ)

)
−
σVk,Wk
µqω

(
µ,ωVk,Wk(µ)

)
σVk,Wk
µrω

(
µ,ωVk,Wk(µ)

)

σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

) .

By part (ii) of Proposition A.3, we have σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

)
≤ δ/2 < 0 for

all µ ∈ B(µ∗, ηµ,0). Moreover, by Lemma A.2, all second derivatives of σVk,Wk(·, ·)
are bounded from above in absolute value uniformly in B(µ∗, ηµ) × B(ω∗, ηω) ⊇
B(µ∗, ηµ,0)×B(ω∗, ηω,0) (to be precise we assume the inclusion without loss of gener-
ality as we can choose ηµ,0, ηω,0 as small as we wish). Hence, we conclude with (A.11)
as desired.
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As for part (b), the boundedness of the third derivatives of ‖H[·]‖H∞ in B(µ∗, η̂µ,0)
is also immediate from its three times continuous differentiability. The boundedness
of the absolute values of the third derivatives of σ̃Vk,Wk(·) uniformly by a constant
independent of the subspaces can be established in a similar way by extending the
approach in the previous two paragraphs for the second derivatives. Specifically, by
differentiating (A.13) with respect to µ`, it can be seen that σ̃Vk,Wk

µqµrµ`
(µ) is a ratio,

where the expression in the numerator is a sum of products of the second derivatives
σVk,Wk
χ1,χ2

(
µ,ωVk,Wk(µ)

)
and third derivatives σVk,Wk

χ1,χ2χ3

(
µ,ωVk,Wk(µ)

)
for χ1, χ2, χ3 ∈

{ω, µq, µr, µ`}, while the expression in the denominator is σVk,Wk
ωω

(
µ,ωVk,Wk(µ)

)3
.

Hence, once again, the conclusion

∣∣∣σ̃Vk,Wk
µqµrµ`

(µ)
∣∣∣ ≤ γ ∀µ ∈ B(µ∗, η̂µ,0)

for q, r, ` = 1, . . . , d for some constant γ can be drawn from part (ii) of Proposi-
tion A.3 and Lemma A.2.

Code availability. The MATLAB implementation of our algorithm, test data
as well as the computational results are publicly available under the DOI 10.5281/
zenodo.3533086.
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