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1. Introduction 

1.1 Host-microbiota symbiosis interactions 

Symbiosis is a common phenomenon that occurs in most animals. The term ‘symbiosis’ 

was initially defined by Anton de Bary in 1879 as "the living together of two unlike organisms" 

in which the interaction will benefit at least one of the partners (De Bary, 1879). Microbial 

symbioses can be categorized as parasitism, commensalism, and mutualism (Moya et al., 2008). 

Parasitism occurs when one partner gains the advantage while the other is negatively affected by 

the association. Commensalism occurs when the microbe is not harmful, but instead reaps the 

benefits from the host, and produces nothing in return (Dillon and Dillon, 2004). 

Humans and animals harbor microbiomes either on or within the body surfaces such as 

the gastrointestinal tracts and the skin. Vertebrates and invertebrates are ideal model organisms 

to study host-microbiome interplay through the identification of microbial-associated and host-

derived molecules that enable symbiosis. The popular host-microbe symbiosis is the 

relationships between the squid host Euprymna scolopes and its marine bacterium Vibrio 

fischeri. The squid normally feed at night in the presence of moonlight which can reveal its 

shadow, and thus alerts the predators. To prevent from predator detection, the squid camouflages 

by counter-illumination from light generated by its symbiont V. fischeri during colonization of 

the light organ. In return, the squid provides nutrients for its bacterial symbiont in the light organ 

(Nyholm and McFall-Ngai, 2003). The research on microbial pathogenesis and innate immunity 

has gained attention lately in the fruit fly Drosophila melanogaster (Dionne and Schneider, 

2008, O'Callaghan and Vergunst, 2010). The interaction between Drosophila and its gut 

symbiotic microbiota focuses primarily on mate selection. It was reported that Drosophila 

prefers to mate with flies possessing similar gut microbes (Sharon et al., 2010). To test this 
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hypothesis, the flies were treated with antibiotics and recolonized with specific microbiota. It 

was found that the symbiotic bacterium Lactobacillus plantarum contributes to the mating 

preference of Drosophila (Sharon et al., 2010).  

   

1.1.1 Insect-bacteria symbiosis interactions 

Insects are arguably the most diverse group of animals due to their abundance and 

adaptability to a wide range of habitat. They are associated with many microorganisms, 

including viruses, bacteria, fungi, and parasites (Dillon and Dillon, 2004). Early studies have 

focused mostly on insect defensive strategies against pathogens by the production of 

antimicrobial peptides or mechanisms to overcome bacterial infection (Brown and Hancock, 

2006, Lemaitre and Hoffmann, 2007, Lazzaro, 2008). In recent years, studies on symbiotic 

interaction between insect and bacteria have been growing at large scale. Symbiotic bacteria are 

found within the gut, tissues, and cells of the insects (Buchner, 1965). Some commensal 

microbes could be mutualists, for example, the insect gut microbiota that aid the host in food 

digestion, provide vitamins, and protect against harmful pathogens. Due to the changes in 

environmental conditions, pathogenic microbes such as chlamydia which initially act as 

pathogens but over time have evolved mechanisms to enable their own survival as well as the 

host (Horn et al., 2004). 

Bacterial symbionts are typically acquired by the host either horizontally from the 

environment or vertically from the parents or combination of both mechanisms (Bright and 

Bulgheresi, 2010). Symbiotic bacteria are acquired from the environment such as in squid-vibrio 

and plant legume-Rhizobium relationships (Nyholm and McFall-Ngai, 2004, Gage, 2004). 

Symbionts can be either horizontally transferred from food into the human gut (Ley et al., 2006) 
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or via "egg smearing", a phenomenon which female stinkbugs covering the surface of her eggs 

with symbiotic bacteria during oviposition (Funkhouser and Bordenstein, 2013). Apart from 

horizontal transfer, symbionts can be transmitted vertically through reproductive cells and larvae, 

for example in insects (Muller and Nebe-von-Caron, 2010), sponges (Webster et al., 2010) and 

ascidians (Kojima and Hirose, 2012). Another example of vertical transmission involves 

symbiosis between the pea aphid Acrythosiphon pisum and its endosymbiont Buchnera 

aphidicola (Baumann et al., 1995).  

 

1.2 Physiological conditions and stresses in the gut environment of insects 

Several factors, including the pH, redox potential, oxygen availability, nutrient, and 

immune system can shape the microbial composition of the gut of insects (Engel and Moran, 

2013). Many insects have the intestinal pH in the range of 6-8, and some lepidopteran larvae 

have higher pH of 11-12 in their midguts (Wieczorek et al., 2009, Funke et al., 2008).  

However, diet is one of the main determinants of the microbial gut composition in 

vertebrates and invertebrates (Lozupone et al., 2012). It has been shown that diet composition 

contributes to the microbial composition in the midgut of insects such as larval cotton bollworms 

(Xiang et al., 2006) and gypsy moths (Broderick et al., 2004).    

Host tissues are the source of complex stress environments that shape the composition of 

its microbiota. The host tissues produce chemical or physical stress (Cullen et al., 2015), nutrient 

(Pickard and Chervonsky, 2015), and various signaling molecules (Mullard, 2009). Animals 

secrete various stress products, such as urea, mucus, bile (Begley et al., 2005, Russell and 

Rychlik, 2001), and gastric acid that restrict microbial colonization. For example, the animal-

associated bacterium, Helicobacter pylori can overcome the highly acidic stomach by secreting 
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urease and coordinates its movement towards less acidic niche (Huang et al., 2015). In addition, 

the presence of microbes is easily detected by the host immune system (Figure 1.1). For 

example, the bacterial symbiont, Vibrio fischeri produces extracellular polymeric substances 

(EPS) as a strategy to escape from the immune response created by the squid’s light organ 

(Shibata et al., 2012, Brooks et al., 2014). In other case, the gut symbiont Bacteroides 

thetaiotataomicron survives from the antimicrobial peptide (AMP) secreted by the mouse 

immune system (Cullen et al., 2015).  

Apart from the host-associated stress, gut microbes produce bacteriocins (Kommineni et 

al., 2015), reactive oxygen species (Liu et al., 2012), antimicrobials (Schoenian et al., 2011), and 

bacteriophages (Barr et al., 2015) that can induce nutrient competition among them (Figure 1.1). 

The production of coproporphyrin III, a small molecule by Propionibacterium sp. stimulates EPS 

secretion by Staphylococcus aureus. This stimulation leads to the adherence of these two-

bacterial species together, which form biofilm (Wollenberg et al., 2014). It has been shown that 

the ability of E. mundtii to produce bacteriocin might be one of the mechanisms to control the 

pathogenic bacteria (Parekh et al., 2016). This antibiotic-killing ability supports the successful 

dominance of E. mundtii in the gut of S. littoralis. 
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Figure 1.1. Flow diagram shows different chemical and physical stresses of the host tissues. 

Stresses may derive from host-microbe or through microbe-microbe interactions. Adapted from 

(Schwartzman and Ruby, 2016).   

 

1.3 Contributions of the gut microbiome 

The gut microorganisms play important roles in enhancing the lifestyles of the host 

insects in many aspects by providing necessary nutrients (Moran et al., 2008), aid in food 

digestion, and protection against harmful pathogen (Douglas, 2011, Shao et al., 2017). However, 

our knowledge on microbial functions in the gut of insects is still limited due to enormous 

diversity of insect species. The endosymbionts harbor genes encode for the synthesis of essential 

amino acids (Baumann, 2005), chemosynthesis (Dubilier et al., 2008) or photosynthesis (Venn et 

al., 2008) clearly provide many metabolic benefits to the host insects by enabling them to adapt 

and live in certain environments. For example, the gut bacteria of some insects produce 
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compounds in the form of pheromones and kairomones which involve in intraspecific and 

interspecific communication. The gut bacterium, Pantoea agglomerans and other similar bacteria 

are known to convert the dietary components to the aggregation pheromone in the desert locus, 

Schistocerca gregaria (Dillon et al., 2002). Another example involves the production of 

kairomones by a gut inhabitant of aphids, Staphylococcus sciuri that attract the aphid predator, 

the hover fly females, Syrphidae (Leroy et al., 2011). Some gut bacteria of termites, ants, 

cockroaches, and beetles can convert nitrogenous waste products of the host into essential 

nutrients (Hongoh et al., 2008, Russell et al., 2009, Sabree et al., 2009, Alonso-Pernas et al., 

2017). It has been shown that the gut bacteria can breakdown toxins from the diet (Kikuchi et al., 

2012). The gut microbiota in the hindgut of termites can degrade high cellulolytic fibres into 

non-complex oligosaccharides (Warnecke et al., 2007). The commensal gut bacteria of D. 

melanogaster are involved in the renewal of gut epithelial cell and growth enhancement (Buchon 

et al., 2009, Storelli et al., 2011).                

 

1.4 Diversity of the gut microbiota in insects 

Most insects, including mosquitoes, Drosophila melanogaster, Galleria mellonella, and 

Spodoptera littoralis all display complete metamorphosis from larval to adult stages, which leads 

to the disturbance of exoskeletal lining of the gut (Truman and Riddiford, 1999). It has been 

reported that insects from the order Lepidoptera and Diptera maintain their gut bacteria during 

metamorphosis (Wong et al., 2011, Hammer et al., 2014) and the same phenomenon also occurs 

in Coleoptera (Delalibera et al., 2007) and Hymenoptera (Brucker and Bordenstein, 2012) as 

well.  
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It is known that herbivorous insects harbor microbial communities of relatively few taxa 

(Jones et al., 2013) compared with the mammalian guts, which are colonized by bacteria of about 

500-1000 taxa (Nemergut et al., 2011). For example, Drosophila species only possess about 30 

operational taxonomic units (OTUs) on average (Chandler et al., 2011). In terms of the number 

of bacteria, the human microbiome possesses approximately 1014 bacteria compared with 105 

bacterial cells in Drosophila (Ley et al., 2006). The different feeding habits of insects dictate the 

diversity of its gut microbiome. The xylophagous insects harbor among the highest bacterial 

communities (103 OTUs per sample), followed by leaf-feeders (38 OTUs per sample), and sap-

feeders (3-7 OTUs per sample) (Colman et al., 2012, Russell et al., 2013, Jing et al., 2014).    

The gut microbiota of insects differs among taxa, mostly dominated by Proteobacteria, 

Firmicutes, and Protists, whereas the bacteria in most mammals are mainly Bacteroidetes and 

Firmicutes (Dillon and Dillon, 2004, Morales-Jimenez et al., 2009). Several factors that can 

shape the composition of the gut microbiota, including diet, sex, physiological conditions, 

developmental stage, and genotype (Sharon et al., 2010). It has been shown that the gut 

microbiome composition of laboratory-reared larvae of the lepidopteran S. littoralis and 

Helicoverpa armigera is influenced by diet, but displayed a rather stable microbial community, 

largely consists of Enterococci, Clostridia, and Lactobacilli (Figure 1.2) (Tang et al., 2012). A 

core microbiome of honeybees was found to be conserved regardless of regions worldwide 

(Hamdi et al., 2011). In contrast, a highly variable gut bacterial community was recorded from 

H. armigera obtained from different field locations and host plants (Priya et al., 2012). The 

dominant bacterial taxa of Drosophila also differ among laboratories and are influenced by diet. 

For example, a laboratory study showed that the bacterial communities of D. melanogaster are 

largely composed of Enterococcus (Firmicutes) and Acetobacteraceae or of Enterobacter 
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(Gammaproteobacteria), but less Lactobacillus (Cox and Gilmore, 2007). While another study 

showed that members of Enterobacteriaceae and Acetobacteraceae dominate, whereas low 

numbers of Lactobacillus or no Enterococcus could be detected (Chandler et al., 2011). 

 

 

             

 

Figure 1.2. Different gut bacterial community compositions in S. littoralis larvae feeding on 

artificial diet. The chart shows the Clostridium sp. (green) and E. mundtii (orange) are the 

predominant bacteria towards the late instar larvae. Adapted from (Tang et al., 2012). 

 

The intracellular gut symbionts of insects choose to live in specialized cells called 

bacteriocytes. Some of the insects that have these cells, include cockroaches, lice, hemipterans, 

some beetles, ants, and flies (Douglas, 2007). 
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1.5 Model organism: Spodoptera littoralis  

The polyphagous cotton leaf worm, S. littoralis is one of the most important pests of 

vegetables and fruits including the cotton plant, tobacco, soybean, and corn. Each year, the 

agricultural industry suffers major economic losses due to the attack of the larvae of the insect on 

important crops. All my works reported in this PhD thesis are based on the model insect, S. 

littoralis. 

The S. littoralis (Lepidoptera: Noctuidae) is a native to Africa and can be found 

worldwide especially in Middle East, Asia and the Mediterranean Europe. The life cycle of this 

insect is divided into several stages, including the eggs, six larval instars, pupae, and adults 

(Figure 1.3). In recent years, extensive works have focused on characterizing the gut microbial 

compositions of this polyphagous insect. Unfortunately, nothing much has been known about the 

co-evolution of the core bacterial symbiont with each of the development stage of the insect host. 

Therefore, in this thesis, I have reported the key findings with specific focus on E. mundtii, a 

bacterium that co-developed together with S. littoralis (Article I).  
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Figure 1.3. Life cycle of S. littoralis. A complete developmental cycle of this generalist insect 

requires between four and five weeks.  

      

1.6 The physiology of lactic acid bacteria 

Humans, insects, and animals harbor lactic acid bacteria (LAB) as part of their 

microbiomes. Most of the food fermentation depends on lactic acid fermentation performed by 

LAB or ethanol fermentation performed by the yeast Saccharomyces cerevisiae (Papadimitriou 

et al., 2015). Orla-Jansen defined LAB as Gram positive, non-sporulating, and non-motile cocci 

or bacilli that were capable to catabolize sugars into lactic acid. Among the core LAB genera 

including Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Leuconostoc, Pediococcus, 

Weissella, Carnobacterium, Oenococcus, and Tetragenococcus. All the LAB genera form the 

order Lactobacillales in the class Bacilli of the phylum Firmicutes (Makarova et al., 2006). In 
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recent years, stress physiology of LAB has been studied intensively due to its applications in the 

food industry. 

LAB help to maintain the microbiomes by acidifying the environment which can be 

important in human health and diseases (Borges et al., 2014). In addition, LAB are known to 

produce antimicrobial substances in the form of hydrogen peroxide, organic acids, and 

antimicrobial peptides (De Vuyst and Vandamme, 1994). Several LAB are used as probiotic 

bacteria to improve human health (FAO/WHO, 2002). In contrast, LAB can turn into pathogens 

such as Group A streptococci (GAS), group B streptococci (GBS), and Streptococcus pneumonia 

which can cause severe infections, while Enterococcus faecalis and Enterococcus faecium are 

agents of nosocomial infections (Fischetti et al., 2006). While LAB are well studied in human, 

however, little is known about its association with invertebrates.  

 

1.6.1 General characteristics of enterococci 

Enterococci are common inhabitants of the gastrointestinal tracts of human and animals 

and in the guts of insects. They can also be found in the environments, including soil, water, and 

plants. The Enterococcaceae family consists of genus Enterococcus, Catellicoccus, 

Melissococcus, Bavariicoccus, Pilibacter, Vagococcus, and Tetragenococcus (Ludwig et al., 

2009). Members of Enterococci belong to a low GC content of Gram positive bacteria. In the 

1940’s, Enterococci were placed in group D streptococci (Sherman, 1937). In 1984, the names of 

Streptococcus faecalis and Streptococcus faecium were changed to E. faecalis and E. faecium, 

respectively (Schleifer and Kilpper-Balz, 1984).  

According to Schleifer and Kilpper-Bälz (1984), members of the genus Enterococcus are 

Gram positive, ovoid, and occurs mostly as single, pairs or short chains cells (Figure 1.4). The 
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cells may be motile and contain no endospores. They are facultative anaerobic chemo-

organotrophs, capable of fermenting glucose into lactic acid, without production of gas (Klein, 

2003). All species of Enterococci possess the lysine-D-asparagine of peptidoglycan, except in E. 

faecalis, which has a lysine-alanine2-3 type. They grow at a temperature ranging from 10 to 45ºC 

and reach optimum growth temperature at 35ºC (Sherman, 1937). 

 

  

                                     

 

Figure 1.4. Morphology of E. mundtii showing cocci structure either in the form of chains or in 

pairs (diplococci).      

                   

More than 30 species of enterococci have been identified to date (Figure 1.5). Among 

them, E. sanguinicola, E. pallens, E. gilvus, E. canintestini, E. faecalis, and E. faecium have 

been known to cause human infection (Carvalho Mda et al., 2008, Tan et al., 2010, Tyrrell et al., 

2002). Enterococci have been known to cause the spread of antibiotic resistance and virulence 
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genes in the environment through transfer of plasmids and transposons (Nallapareddy et al., 

2005, Mundy et al., 2000).  

 

                     

    

Figure 1.5. Dendrogram of the genus Enterococcus. The dendrogram was constructed based on 

the 16S rRNA gene sequences for members of the Enterococcus genus using the Geneious 

software (Biomatters Ltd) using the neighbor- joining algorithm. The 16S sequence of 

Tetragenococcus solitarius was used as outgroup. Adapted from (Gilmore et al., 2013).  
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1.7 Colonization of enterococci in insects 

Insects for examples, beetles, termites, ants, flies and bees have been known to harbor 

enterococci as their gut microbiota. The most common bacteria, including E. faecalis, E. 

faecium, and E. casseliflavus were found in a wide range of insect orders, especially wild insects 

from 37 different taxa (Martin and Mundt, 1972). Enterococci are found in the Lepidopteran 

insects, such as the larva of gypsy moth (Lymantria dispar) and cotton bollworm (H. armigera) 

(Broderick et al., 2004, Priya et al., 2012). The GI tract of Drosophila has almost parallel 

anatomy to that of humans, such that both systems carry an alimentary canal that connects the 

esophagus to a ventriculus (stomach), extends to the intestine, reaches the rectum, and ends at the 

anus (Figure 1.6). The similar GI structure also can be found in the larva of S. littoralis (Figure 

1.7). Enterococci live in a wide range of pH, a characteristic that allows their survival in the 

intestinal tract of insects, such as Drosophila, which consists of acidic crops, alkaline midguts, 

and acidic to neutral hindguts (Clark, 1999). 
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Figure 1.6. Schematic diagram of the enterococcal colonization of Drosophila gastrointestinal 

tract (GI). Red indicates the gut region colonized by Enterococcus. Ph, pharynx; Sg, salivary 

gland; Es, esophagus; Cr, crop; Ve, proventriculus; In, intestine; Mal, Malpighian tubule; Re, 

rectum. Adapted from (Hartenstein, 1993).     

 

 

                        

 

Figure 1.7. Schematic diagram of the alimentary canal of the larva of S. littoralis. The digestive 

tract is divided into foregut, midgut, and hindgut. Adapted from (Tang et al., 2012). 
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1.8 Applications of symbiotic bacteria in insect control 

Due to the devastating effects on crops, robust and effective pest management is a 

prerequisite to control S. littoralis. In Turkey, chemical insecticides, including lufenuron, 

fenpropathrin, mephospholan, and cyfluthrin are used intensively in pest control. Humans, 

plants, and animals (predators of pests) are under threat from the negative side effects of these 

pesticides. The emergence of resistance populations of S. littoralis towards insecticides have 

been reported (Mosallanejad and Smagghe, 2009, El-Guindy et al., 1983). Therefore, other 

biological safe method involved microbial-based approach has been introduced in pest control. 

Some viruses, nematodes, fungi, and entomopathogenic bacteria (Bacillus thuringiensis) have 

been used as agent to control S. littoralis.   

One of the ways to control insect pests is by manipulating its bacterial symbionts. It has 

been suggested to treat the insects with antibiotics to reduce its endosymbionts in vitro, however, 

this approach is not suitable to control pest in natural environments. Therefore, other bioactive 

compounds are necessary for pest management (Douglas, 2007). A new strategy through para-

transgenesis has been used to genetically modify the symbionts to alter the insect fitness. This 

approach is successful to control the spread of parasite in insect vectors. For example, the 

parasitic protozoan Trypanosoma cruzi causing the Chagas disease is spread by the blood-

sucking insect Rhodnius prolixus. Researchers modify its endosymbiont Rhodococcus rhodnii to 

express the antitrypanosomal gene in the insect gut, thus producing the insect incapable of 

transmitting the disease (Beard et al., 2002).      

Wolbachia has been used to introduce transposable elements through germline 

transformation to disrupt parasite transmission in mosquitoes, for example, Aedes aegypti 

(Coates et al., 1998) and Anopheles gambiae (Grossman et al., 2001). We believe that a thorough 



17 

 

study of the core microbiome (E. mundtii) of S. littoralis will enhance our understanding into its 

ability in controlling the insect, and thus the bacterium could serve as a potential therapeutic 

target for pest management in the future.       

 

1.9 Aims of this study 

The gut microbiota of S. littoralis is well studied lately. Research has been carried out to 

investigate the diversity and composition of the microbial composition, which lead to the 

identification of the so-called ‘core microbiome’, which present constantly and abundantly in 

different parts of the intestinal tract of the host insect. Although the 16S rRNA gene marker 

identification have identified a plethora of gut bacteria in S. littoralis, yet how well and stable 

this core microbiome colonize the gut environment remains poorly understood, and requires 

further investigations to gain more insights into its survival mechanisms. It has been repeatedly 

shown in several papers that bacteria of the genus Enterococcus have co-evolved with several 

host insects, e.g. S. littoralis, D. melanogaster, and human (Tang et al., 2012, Liu et al., 2017, 

Franz et al., 1999). Many of the gut bacterial symbionts are commensal and exert benefits on the 

insects. It is therefore beneficial for us to further investigate this bacterial genus to better 

understand its mechanisms to control the gut microbial community as well as the insect host. 

Recent data show that E. mundtii, part of the core microbiome of Spodoptera can control other 

gut inhabitants with its antimicrobial toxic peptide. Together with several unresolved questions 

in mind, we would like to investigate the development, control, and adaptation of the gut 

microbiome to the insect host. To this end, this study has the following aims: 
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Specific aim 1: How does an indigenous bacterium colonize the gut? 

Presently, it is unknown whether E. mundtii could survive in the stressful alkaline gut 

environment of S. littoralis. Where are the locations in the gut that the bacterium colonizes? The 

gut microbiome changes according to the insect’s developmental stage. A GFP-tagged E. mundtii 

is an ideal reporting organism to monitor the developmentally changes in the microbiome of S. 

littoralis. In this study, GFP plasmids were transformed into the bacterial cells by 

electroporation. The transmission of fluorescent E. mundtii was monitored in the foregut, midgut, 

and hindgut, and bacterial CFU counts were performed. The fluorescent E. mundtii was 

integrated into the gut community and their presence can be monitored in all gut areas of the 

larvae and at developmental stages such as the pupa and the adult. Labeling bacteria with green 

fluorescent protein (GFP) is a powerful method to be used for live cell imaging, and beneficial 

for downstream process, for example sorting live cells with fluorescence-activated cell sorting 

(FACS). The concept of using a fluorescent reporter organism will provide insights into the 

adaptation strategies used by the microbes to survive harsh gut conditions.  The patterns of the 

colonization of the fluorescent bacteria will be reported in the article I of this thesis.  

 

Specific aim 2: Which gut microbes are metabolically active and how active are they? 

Information on the gut microbiota and their role in S. littoralis is scarce. Therefore, the microbial 

composition at full extent across the entire life cycle of S. littoralis was profiled using 16S rRNA 

amplicon sequencing approach. Previous studies only focused on characterizing the microbial 

diversity at the larval stage without other developmental stages, such as pupa and adult. Most of 

the metagenomics works are based on characterizing the bacterial communities at the 16S rDNA 

level, which may a caveat as DNA may represent either live or dead cells. Considering this 
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limitation, the 16S rRNA was reverse-transcribed into cDNA to characterize the metabolically 

active microbial communities across life stages. The 16S rRNA sequences will tell us about the 

diversity and activities of the gut microbes, all together serve as a platform to understand the 

cross-talk between the insect and microbes. This work will be reported in the article II. 

 

Specific aim 3: How does the indigenous gut bacterium survive the adverse gut conditions?                 

Several species of E. mundtii have been discovered to live in the intestinal tract of S. littoralis. 

One of the species was found to display the characteristic of suppressing the growth of other 

bacteria especially E. faecalis. An antimicrobial toxin is produced by the isolate, E. mundtii SL-

16. To further explore its other metabolic capabilities, therefore the genome of this bacterium 

was sequenced to better decode its strategies in colonizing the host gut. The genome findings 

will be reported in the article III. The data from the genome will be supported with the in vivo 

genome wide gene expression analysis of E. mundtii in response to the gut environment. The 

transcriptome data will be reported in the unpublished result II.   
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2. Thesis outline – List of articles and author’s contribution 

 

 

Article I 

 

Colonization of the Intestinal Tract of the Polyphagous Pest Spodoptera littoralis with the 

GFP-tagged Indigenous Gut Bacterium Enterococcus mundtii 

Beng-Soon Teh, Johanna Apel, Yongqi Shao, Wilhelm Boland 

Frontiers in Microbiology 7:928 (2016) 

 

This manuscript describes about the ability of an indigenous gut bacterium E. mundtii in 

colonizing the extreme alkaline environment of the intestinal tract of the insect pest S. littoralis. 

Genetic engineering technique by labeling the bacterium with plasmid-carried GFP under the 

control of three different promoters with different strengths was employed in this study. Further 

methods, including flow cytometry and Western Blot have identified the ermB as the strongest 

promoter in regulating GFP expression, therefore was used to label the bacterium. We observed 

that the integrated fluorescent E. mundtii could thrive in different parts of the gut tissues 

(foregut, midgut, and hindgut) and different stages of development of the insect (larvae, pupae, 

adults, and eggs), indicating its pivotal role as commensal gut symbiont. This interesting result 

serves as a platform for us to further identify the unknown mechanisms of successful bacterial 

gut colonization through transcriptomics approach.   
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This manuscript involves the study on profiling the 16S rRNA genes of the gut microbial 

communities across all developmental stages of S. littoralis. Although the bacterial communities 

in the larval stages have been well characterized years ago, yet microbial studies of other stages, 

particularly during pupation remain uncharacterized. Therefore, using the 16S rRNA derived 

from DNA and RNA through pyrosequencing, we have identified Proteobacteria and Firmicutes 

as the dominant phylum across the life cycle of the insect. Strikingly, enterococci were 

dominantly persisting through the pupal stage. Using PICRUSt software, we could predict the 

metabolic functions of microbes from phylogeny. Through the analysis, we found that gut 

microbes during the early-instar larval tend to be metabolically active in using carbohydrate as 

carbon source. In contrast, during the late-instar larval, gut bacteria change their behavior by 

investing in vitamin and amino acid metabolism. Genes involved in energy and nucleotide 

metabolism were abundant in pupae. The gut bacteria in female adult need more energy, while 

microbial genes associated with replication and repair pathway were enriched in male adult.   
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This manuscript describes the isolation, characterization, assembly, and sequencing of the 

genome of the gut bacterium Enterococcus mundtii SL 16. The availability of Enterococcus 

genome is important to gain insights into the mechanisms of its colonization in the gut of host 

insect. The size of the bacterial genome was approximately 3.3 Mbp with 2939 protein-coding 

genes (CDS), and 59 tRNA. Further analyses of the genome have identified genes involved in 

carbohydrate transport and metabolism. Some carbohydrate hydrolysis enzymes, for examples 

glycosyl hydrolases could be identified in the genome. The ability of E. mundtii to produce 

carbohydrate-active enzymes, implying the strategy to digest complex carbon sources 

(cellobiose, xylose, and sucrose) in the gut. Genes involved in the production of L-lactate, 

formate, and acetate as fermentation products were also found.  

 

Contributions: Designed experiments: YS (40%), WB (20%), BC (20%), and CS (20%); 
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The alkaline gut of Lepidopterans plays a crucial role in shaping communities of bacteria.

Enterococcusmundtii has emerged as one of the predominant gut microorganisms in the

gastrointestinal tract of the major agricultural pest, Spodoptera littoralis. Therefore, it was

selected as a model bacterium to study its adaptation to harsh alkaline gut conditions

in its host insect throughout different stages of development (larvae, pupae, adults, and

eggs). To date, the mechanism of bacterial survival in insects’ intestinal tract has been

unknown. Therefore, we have engineered a GFP-tagged species of bacteria, E. mundtii,

to track how it colonizes the intestine of S. littoralis. Three promoters of different strengths

were used to control the expression of GFP in E. mundtii. The promoter ermB was the

most effective, exhibiting the highest GFP fluorescence intensity, and hence was chosen

as our main construct. Our data show that the engineered fluorescent bacteria survived

and proliferated in the intestinal tract of the insect at all life stages for up to the second

generation following ingestion.

Keywords: Spodoptera littoralis, green fluorescent protein, promoter, lactic acid bacteria, Enterococcus mundtii,

intestinal tract

INTRODUCTION

Insects’ guts harbor a wide range of microbial communities. Intestinal gut microbes contribute
significantly to the development of their insect hosts by providing essential nutrients, aiding in
food digestion, and protecting against other harmful pathogens. However, the functions of these
microbes in the insect gut are still largely unknown due to the complexity and diversity of the
microbes. In recent years, the agricultural pest, Spodoptera littoralis (Lepidoptera, Noctuidae) has
been used as an experimental model insect to study gut microbiomes. The microbial composition
in the gut of S. littoralis has been well characterized (Tang et al., 2012), yet the factors controlling
its colonization are unknown.

Insect guts contain multiple compartments with different physicochemical conditions such
as pH and oxygen availability which enrich for certain species of bacteria. The gut of certain
lepidopteran, coleopteran, and dipteran is highly alkaline due to specific dietary preferences (Brune
and Kühl, 1996; Harrison, 2001). The lepidopteran insects which feed on tannin-rich leaves have
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alkaline midguts with pH as high as 11–12 (Appel and Martin,
1990; Harrison, 2001). A clear pH gradient occurs along the
lepidopteran midgut from highly alkaline (pH ∼ 10) anterior
end to almost neutral posterior ends (Funke et al., 2008).
The microbial community of S. littoralis (cotton leafworm)
is dominated by Pantoea and Citrobacter from the phylum
Proteobacteria in early-instar larvae (Shao et al., 2014). Bacteria
in this phylum have the ability to degrade polysaccharide in
insects (Anand et al., 2010; Adams et al., 2011; Engel et al., 2012).
As insects aged toward late-instar, more than 97% of the total
bacterial community shifted to Firmicutes, dominated mostly
by Enterococcus and Clostridium sp. (Tang et al., 2012; Shao
et al., 2014). The proliferation of Clostridia is linked to its role
in cellulose digestion and fermentation of sugars (Watanabe and
Tokuda, 2010). Interestingly, the alkaline midgut of gypsy moth
larva also harbors Enterococcus (Broderick et al., 2004) while
the Firmicutes dominates the midgut of the beetle Pachnoda
ephippiata (Egert et al., 2003). Some insects harbor similar
bacterial lineages in their alkaline guts.

To date, the genus Enterococcus is known to include more
than 33 species (Kohler, 2007). The members of this genus are
typically found in the intestinal tracts of humans and animals,
in dairy products, and also in the environment: for example, in
plant material, soil, and surface water (Giraffa, 2003; Ogier and
Serror, 2008). E. mundtii is part of this genus. It is a non-motile,
Gram-positive, facultative anaerobic organism that belongs to the
group of lactic acid bacteria (LAB). It forms either cocci or rods,
and is capable of producing lactic acid as a by-product of the
fermentation of carbohydrates. The biological role of E. mundtii
is still poorly understood, as most studies have focused on the
model bacteria Enterococcus faecalis and Enterococcus faecium,
which often cause human systemic infection (Arias and Murray,
2012).

Green fluorescent protein (GFP) originally isolated from
Aequorea victoria has been extensively used as a reporter for gene
expression in bacterial and mammalian cells (Yang et al., 1996;
Valdivia and Falkow, 1997; Hazelrigg et al., 1998; Rolls et al.,
1999). GFP is advantageous as it requires neither cofactors nor
a substrate to be expressed in its host cells. Different variants
of GFP, such as EGFP (enhanced green fluorescent protein)
have been developed to improve fluorescent intensity (Cormack
et al., 1996). The expression of GFP in several LAB has been
successfully demonstrated (Scott et al., 2000; Hansen et al., 2001;
Lun and Willson, 2004). In recent years GFP has been mostly
used to investigate Gram-negative bacteria, and, less often,
Gram-positive bacteria (Bubert et al., 1999; Freitag and Jacobs,
1999; Lewis and Marston, 1999; Fernandez de Palencia et al.,
2000). Increasingly, GFP has been used to track how and where
target bacterial species colonize the guts of several host insects
(Thimm et al., 1998; Mumcuoglu et al., 2001; Husseneder and
Grace, 2005; Kounatidis et al., 2009; McGaughey and Nayduch,
2009; Doud and Zurek, 2012).

In this work, we determine the fate of GFP-tagged E. mundtii
within the digestive tract of S. littoralis when administered
in vivo. In addition, we track the transmission route of the
bacteria through all stages of the life cycle of S. littoralis. In
fact, the incorporation of GFP-tagged E. mundtii provides a

non-invasive monitoring of its survival in the insect gut, but
still far from addressing the relationship between the insect and
the bacterial symbiont. We are interested to further explore
the underlying factors that drive this complex relationship by
analyzing the bacterial and insect gut epithelial transcriptomes
in future work. The transcriptome data will significantly expand
our understanding of the functional roles of indigenous bacteria
toward the development of the insect and other microbes. This
can easily be done by identifying the insect- or microbe-derived
compounds from the metabolic pathways resulted from the
transcriptome data.

MATERIALS AND METHODS

Maintenance of Egg and Larvae
The eggs of S. littoralis were purchased from Syngenta Crop
Protection Münchwilen AG (Münchwilen, Switzerland). Eggs
were hatched at 14◦C. Larvae were maintained at room
temperature (24◦C). Larvae were provided with sterile artificial
diet made of white bean and essential nutrients without
antibiotics and prepared based on Spiteller et al. (2000).

Bacterial Strains and Growth Conditions
Table 1 lists the bacterial strains and plasmids used in this
study. Escherichia coli strain DH5α was used to maintain
all GFP-containing plasmids. The plasmid pTRKH3-ermGFP
(Addgene plasmid # 27169), pTRKH3-slpGFP (Addgene plasmid
# 27168), and pTRKH3-ldhGFP (Addgene plasmid # 27167) were
gifts from Michela Lizier. E. mundtii strain KD251 (isolated
from the gut of S. littoralis at the Department of Bioorganic
Chemistry, Max Planck Institute for Chemical Ecology) was
used as the recipient of all plasmids (Shao unpublished). E.
coli DH5α and E. mundtii were grown at 37◦C with agitation
(220 rpm) in Luria-Bertani (LB) and Todd-Hewitt Bouillon,
THB (Roth, Karlsruhe, Germany) medium for both broth
and agar, respectively. Antibiotics were used at the following
concentrations: erythromycin, 50μg ml−1 (for E. coli) or 5μg
ml−1 (for E. mundtii). All plasmids were extracted from E.
coli using the GeneJet plasmid miniprep kit (Thermo Scientific,
Vilnius, Lithuania). All strains were kept in glycerol stocks at
−80◦C for preservation and long-term storage.

Plasmids
All GFP expression vectors were derived from pTRKH3, a
backbone shuttle vector for E. coli and various species of
LAB, including Streptococcus, Lactococcus, Enterococcus, and
Lactobacillus (O’Sullivan and Klaenhammer, 1993). The vector
carries a gene for erythromycin resistance which is highly
suitable for expression in Enterococcus. In addition, the vector
possesses a modified GFP 5 (mGFP5) that is controlled by
three constitutive promoters of different strengths. pTRKH3-
ermGFP harbors EGFP that is controlled by a strong enterococcal
erythromycin ribosomal methylase (ermB) promoter (Swinfield
et al., 1990). The Lactobacillus acidophilus lactate dehydrogenase
(ldhL) promoter (Kim et al., 1991) and surface layer protein
(slp) promoter (Boot and Pouwels, 1996) constitutively control
pTRKH3-ldhGFP and pTRKH3-slpGFP, respectively.
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TABLE 1 | Bacterial strains and plasmids used in this study.

Strain or plasmid Relevant properties Reference or source

STRAINS

E. mundtii KD251 Transformation host, isolated from the intestine of S. littoralis Laboratory collection

E. coli DH5α Transformed bacteria in stab cultures Addgene

PLASMIDS

pTRKH3 7.8 kB, E. coli-LAB shuttle vector, Emr, Tetr, pAMß1 origin, p15A origin O’Sullivan and

Klaenhammer, 1993

pTRKH3-ermGFP Emr, pAMß1 origin, p15A origin, pTRKH3 derivative containing egfp gene downstream of ermB promoter Addgene plasmid 27169

pTRKH3-ldhGFP Emr, pAMß1 origin, p15A origin, pTRKH3 derivative containing egfp gene downstream of ldhL promoter Addgene plasmid 27167

pTRKH3-slpGFP Emr, pAMß1 origin, p15A origin, pTRKH3 derivative containing egfp gene downstream of slp promoter Addgene plasmid 27168

Emr, erythromycin resistant; Tetr , tetracycline resistant.

Electroporation of Enterococcus mundtii
Electroporation was carried out based on the modified protocol
of E. coli (Dower et al., 1988). A single colony of E. mundtii was
grown at 37◦C in THB broth on a rotary shaker (Certomat BS-
1 Sartorius, Goettingen, Germany) with agitation (220 rpm). An
overnight culture was diluted 1:1000 in 100ml of THB medium
before being harvested by centrifugation at 4000 × g for 10min
(Sigma 3K18, Sigma, Germany) at 4◦C when growth reached the
exponential phase (A600 nm approximately 2.2). The cells were
washed with 100ml of ice-cold distilled water, centrifuged as
above and washed again with 50ml of ice-cold water before
being centrifuged again. The cells were then washed with 20ml
of 10% glycerol, centrifuged and finally suspended in 2ml of
10% glycerol. The suspension was divided into 50μl aliquots and
stored at -80◦C. Prior to electroporation, the frozen cells were
thawed on ice and mixed with plasmid for 15min before being
transferred into a chilled 0.2 cm gap cuvette. Electroporation was
performed by a single pulse at 1.8 kV (E = 9 kV/cm), 600 � and
10 μF, with a pulse length of 3.6ms in an electroporator 2510
(Eppendorf, Hamburg, Germany). The concentration of purified
plasmids used during electroporation was between 0.15 and
0.2μg. The pulsed cells were immediately suspended with 950μl
of THB broth and further incubated for 2 h at 37◦Cwith agitation
(220 rpm) before 100μl was plated on THB agar containing 5μg
ml−1 of erythromycin. The plates were incubated at 37◦C for
48 h. Bacterial transformants containing target plasmids were
verified by PCR screening.

Verification of Bacterial Identity by 16S

rRNA Sequencing
All bacterial transformants were checked for identity by
PCR to prevent contamination. Total DNA was extracted
from GFP-tagged bacteria of three different constructs from
overnight culture by using a MasterPure Complete DNA
and RNA purification kit (Epicentre, Madison, WI, USA)
according to the manufacturer’s protocol. The bacterial 16S
rRNA genes were amplified using universal primers, 27f
(5′- AGAGTTTGATCCTGGCTCAG-3′) and 1492r (5′-
GGTTACCTTGTTACGACTT-3′). PCR was performed in a
final volume of 50μl using 10μM of each primer, 10mM
concentration of deoxynucleoside triphosphates, 50mM MgCl2,
1 U of Taq polymerase and buffer (Invitrogen, Carlsbad, CA,
USA). Denaturation was performed at 95◦C for 2min, followed

by 30 cycles of 95◦C for 30 s, annealing at 54◦C for 30 s,
and 72◦C at 1min 30 s. The final extension was at 72◦C for
7min. PCR products were purified using the PureLink Quick
Gel Extraction and PCR Purification Combo Kit (Invitrogen,
Carlsbad, CA, USA). The purified PCR products were sent for
Sanger sequencing. DNA sequences were assembled with DNA
baser sequence assembly software (http://www.dnabaser.com).
The assembled sequences were used for blast searches at the
National Center for Biotechnology Information (http://www.
ncbi.nlm.nih.gov).

Feeding of S. littoralis Larvae with GFP

Bacteria
A total of 50 first-instar larvae were fed artificial diet
supplemented with antibiotics for 3 days in the following
final concentration: ampicillin (5.75μg ml−1) and erythromycin
(9.6μg ml−1). Each larva was fed small cubes (1 g) of artificial
diet inoculated with E. mundtii-harboring pTRKH3-ermGFP for
1 day starting at day 6, followed by food without bacteria starting
at day 7 until pupation. Control larvae were fed food without
bacteria continuously. A single colony of bacteria was grown
overnight in THB broth containing erythromycin (5μg ml−1)
and diluted 1:10 in the same broth before being fed. A total of
100μl from the 1:10 dilution broth (A600 nm approximately 0.65)
containing ∼4.7 × 107 CFUs of GFP bacteria was applied to
the food of the larvae. Every day, feces were removed to avoid
re-inoculating the GFP bacteria.

Quantification of Bacteria from the

Intestinal Tract
Larvae (n = 6 for each stage), adults or pupae (n = 3
for each stage), and a control (n = 1 for each stage) were
killed by freezing at −20◦C for 15min. Each individual was
surface sterilized in 70% ethanol and immediately rinsed in sterile
distilled water. Guts were dissected in sterile 1 × PBS (137mM
NaCl, 2.7mM KCl, 10mM Na2HPO4.7H20, and 2mM KH2PO4

[pH 7.4]), with sterile forceps under a stereomicroscope (Stemi
2000-C, Zeiss, Jena, Germany). Larval guts were excised into
three sections: foregut, midgut, and hindgut. Gut tissues were
aseptically homogenized in 100μl of PBS. A serial dilution of 10-
fold was performed by transferring 100μl of the homogenized
sample into 900μl sterile PBS, vortexing vigorously, and spread-
plating 100μl of each dilution onto THB agar supplemented with
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erythromycin (5μg ml−1). All plates were incubated at 37◦C for
48 h. Total bacterial cells were counted as colony forming units
(CFUs) for each intestinal tract region. Erythromycin resistance
was used as selection marker for picking bacterial colonies. In
addition, to verify the presence of plasmid-containing GFP, PCR
screening was performed.

Tissue Cross-Sectioning
The fresh gut tissues were cut into sections (foregut, midgut,
and hindgut) and frozen at −24◦C in mounting medium for
cryotomy (OCT compound, VWR, Leuven, Belgium) for 30min.
They were then cut with cryomicrotome (Microm Cryo-Star
HM560 Cryostat, Walldorf, Germany) into 14–100μm sections.

Fluorescence Microscopy
The cultures containing GFP-producing bacteria were harvested,
and the pellets were suspended in 1× PBS. Bacterial suspensions
of 20μl or slices of cross-sectioned tissue were mounted on
microscope slides (Superfrost Plus, Thermo Scientific). Live
cells were observed under an Axio Imager Z1 fluorescent
microscope equipped with an AxioCam MRm camera (Zeiss,
Jena, Germany). The GFP signal was detected using the filter
set 10 (Cy2/GFP). All images were captured with a 63X
magnification oil objective with an aperture of 1.4. The images
were analyzed using the Axio Vision Rel 4.8 software (Zeiss, Jena,
Germany). ImageJ, Fiji (Schindelin et al., 2012), an open-source
software, was used to process all fluorescent images.

DNA Extraction and PCR Amplification of

gfp Gene
Total DNA was extracted from larvae and pupae at all instars,
and from adults, by using a DNA kit as mentioned above. The
735 bp of gfp gene was amplified using a set of primers consisting
of GFP3fw (5′-TCGGAATTCATGAGTAAAGGAGAAGAA-3′)
and GFP3rev (5′- TCAGGATCCTTATTTGTATAGTTCATCC-
3′) (Lizier et al., 2010). An EcoRI and a BamHI site (underlined)
were introduced for forward and reverse primers, respectively.
The PCRs were performed in a final volume of 20μl using
10μM of each primer, 10mM concentration of deoxynucleoside
triphosphates, 50mM MgCl2, 1 U of Taq polymerase and buffer
(Invitrogen, CA, USA). The following PCR conditions were used:
3min at 94◦C, followed by 35 cycles of 45 s at 94◦C, 30 s at 60◦C,
and 2min at 72◦C, and final extension of 10min at 72◦C.

Western Blot
Bacterial cells were harvested from exponentially growing
cultures. The cells were suspended in TE buffer (10mM Tris-
HCl, pH 8.0; 1mM EDTA) containing 20% sucrose, lysozyme
(1mg ml−1), RNase (1μg ml−1), and DNase (1μg ml−1) and
further disrupted by repeating a freeze-thaw cycle. The protein
extracts were subjected to sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) on a 4–12% gel (Laemmli,
1970). The proteins were transferred onto a PVDF transfer
membrane, pore size 0.45μm (Thermo Scientific, Schwerte)
with an electroblotter (Trans-blot Turbo Transfer System, BIO-
RAD, Munich, Germany). The blots were blocked with 5% non-
fat skimmed milk (NFDM) in TBS-T (Tris-buffer saline with

Tween-20) for 1 h at room temperature. The membrane was
then incubated for 16 h at 4◦C with the mouse primary antibody
anti-GFP (Roche Applied Science, Rotkreuz, Switzerland) diluted
1:2000 in blocking buffer. After three washes in blocking buffer,
the membrane was incubated for 1 h at room temperature
with Anti-mouse lgG, HRP-linked Antibody (Cell Signaling
Technology, Cambridge, UK) diluted 1:5000 in blocking buffer.
The membrane was washed three times in blocking buffer
followed by incubation with the chemiluminescent reagent for
1min. In the dark room, the membrane was transferred onto
a foil, and X-ray film (CL-XPosure Film, Thermo Scientific,
Schwerte, Germany) was placed on top of it. The film was
developed after different exposure times (3 s–10min).

Flow Cytometry
Bacteria from overnight cultures were re-suspended and diluted
1:10,000 in 1 × PBS. Fluorescence was determined in a CyFlow
Space (Sysmex Partec, Görlitz, Germany). The data were analyzed
using the CyFlow Space Operating Software FloMax. A blue laser
(488 nm) was used for GFP fluorescence detection.

Statistical Analysis
Bacterial plate counts between 30 and 300 colonies were included
in the calculation. Samples with colonies above 300 may not
be distinguishable from one another on a plate count, whereas
those below 30may not be representative of the sample (Madigan
et al., 2009). The total number of fluorescent E. mundtii recovered
from each intestinal tract (foregut, midgut, and hindgut) across
different larval stages was analyzed using JMP R© 12.1.01. Counts
were analyzed using a one-way ANOVA test (P < 0.05). To
further understand the different survival rates of GFP-E. mundtii
at different larval stages, we compared themeans of the combined
three gut parts (foregut, midgut, and hindgut) as well as the
means of individual gut regions of each larva using the Tukey–
Kramer test (P < 0.05).

RESULTS

Comparison of Different GFP Constructs
Three different promoters, ermB, ldhL, and slp were used to
control the expression of GFP, using pTRKH3 as a backbone
shuttle vector. The strength of these GFP constructs was
tested in E. mundtii by electroporation. This method was
able to yield transformed colonies for all constructs. The
recombinant bacterial colonies were picked and grown in THB
at 37◦C overnight before GFP fluorescence was visualized by
epifluorescence microscopy. The highest fluorescence intensity
was detected for E. mundtii transformed with pTRKH3-ermGFP
(Figure 1A), followed by pTRKH3-ldhGFP (Figure 1B) and no
signal for pTRKH3-slpGFP (Figure 1C) as well as wild-type
E. mundtii (Figure 1D). The bacterial cultures were all grown
simultaneously for 24 h, equivalent to stationary phase. The GFP
content represents the same amount of cells which was measured
as OD600 nm.

We analyzed the total expressed GFP in E. coli DH5α and
E. mundtii. Western blot results showed that the GFP gene

1JMP R© Version 12.1.0. SAS Institute Inc., Cary, NC, USA, 2015.

Frontiers in Microbiology | www.frontiersin.org 4 June 2016 | Volume 7 | Article 928

26 

 



Teh et al. Survival of Enterococcus mundtii in the Gut of the Cotton Leafworm

FIGURE 1 | Fluorescence micrographs of different constructs of

GFP-expressing E. mundtii under the control of three constitutive

promoters. (A) Strain of E. mundtii/pTRKH3-ermGFP, (B) Strain of E.

mundtii/pTRKH3-ldhGFP, (C) Strain of E. mundtii/pTRKH3-slpGFP, (D)

E. mundtii wild type (control) grown in THB for 24 h. All recombinant bacterial

strains were grown in THB with erythromycin for 24 h. Scale bars: 10μm.

Magnification, 630X.

was expressed in large quantities in E. mundtii and E. coli
DH5α cells when the cells were transformed with pTRKH3-
ermGFP. A thick band associated with the production of large
amounts of GFP protein was observed in the immuno-blotting
gel for both bacterial cells transformed with pTRKH3-ldhGFP-
expressing plasmid. Low quantities of protein were produced by
the slp promoter controlling the GFP expression in both bacteria.
The wild-type bacteria did not express GFP protein as expected
(Figure 2).

Flow cytometry analysis confirmed the results obtained by
epifluorescence microscopy and western blot. As expected,
overnight cultures of E. mundtti cells with pTRKH3-ermGFP
were highly fluorescent (38.5%), whereas cultures of pTRKH3-
ldhGFP (21.7%) were slightly fluorescent and those of pTRKH3-
slpGFP (0.65%) showed almost no fluorescence (Figures 3A–C).
Due to the efficiency of pTRKH3-ermGFP, this construct was
chosen to transform E. mundtii and used for feeding experiments.

Colonization of the Intestinal Tract of

S. littoralis with Genetically Tagged

Bacteria
GFP-tagged E. mundtii were fed to larvae of S. littoralis to
visually monitor the persistence and fate of the bacteria within
the digestive tract of different stages in the life cycle. We
observed that fluorescent bacteria multiplied in the foregut,
midgut, and hindgut regions after early ingestion of fluorescent
bacteria. A high concentration of green fluorescent bacterial cells
could be visualized in the foregut and midgut, but decreasing

FIGURE 2 | Comparison of the level of recombinant GFP protein

expression in E. coli DH5α and E. mundtii strains by western blot.

Bacterial cell lysates from exponentially grown cultures were run through

western blot. As immunoblotting gel shows, a significant amount of GFP

protein is expressed by E. coli and E. mundtii strains harboring

pTRKH3-ermGFP and pTRKH3-ldhGFP plasmids, whereas less protein

expression can be detected for strains with pTRKH3-slpGFP, and no

expression is shown for the wild-type strain. Ec, E. coli; Em, E. mundtii; WT,

Wild type, and M, Page Ruler Prestained Protein Ladder. The molecular mass

of GFP protein is approximately 27 kDa.

amounts toward the hindgut region of the third-instar larvae
(data not shown). During this early stage of ingestion, the density
of bacteria was high in most parts of the gut tissues. GFP
bacteria were seen scattered in the foregut of the fourth-instar
larvae, around the peritrophic membrane as well as entering the
epithelium, adjacent to the hemocoel and fat body (Figure 4A).

In the early stages of ingestion the fluorescent bacteria
could be seen accumulating in the midgut of fifth-instar larvae
(Figure 4B) where they clumped together in the region of the
peritrophic membrane. GFP-tagged bacteria were seen starting
to double in larvae from fourth to fifth instars (data not
shown). In sixth-instar larvae, strikingly, bacteria were trapped
in the nodules of granular hemocytes, suggesting the occurrence
of phagocytosis (Figures 4C,D). The number of bacteria was
reduced significantly in sixth-instar larvae in most parts of the
gut. A sharp reduction in the density of fluorescent enterococci
occurred during pupation (Figure 4E). Bacteria went from
clusters to free-standing groups by attaching to the fat body of
pupae; at this stage there was no inner gut in the pupae to keep
them from moving around.

Viable fluorescent cells of E. mundtii were detected in the
tracheole of the adult insect (Figure 4F). This shows bacteria
were successfully transmitted from pupal to new adult gut tissue,
although there were few or no other bacteria found in the
tracheole. We also tested the transmission route of recombinant
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FIGURE 3 | Flow cytometry histograms of the GFP fluorescent

intensities produced by overnight cultures of fluorescent E. mundtii

cells harboring different promoter constructs with (A)

pTRKH3/ermGFP, (B) pTRKH3/ldhGFP, and (C) pTRKH3/slpGFP. The

intensities decrease from left to right, with the highest for contructs with erm

promoter (38.5%), ldh (21.7%), and slp (0.65%) as the least efficient promoter.

y-axis represents the number of bacterial counts and x-axis represents the

fluorescence intensity.

bacteria by allowing individual adults to mate. Remarkably, we
observed that a few bacteria were detected in the oocyte (Knorr
et al., 2015) and none in the chorion of the eggs (Figure 4G),
which proves GFP-tagged bacteria can survive after almost 30
days at various stages of the entire life cycle of S. littoralis. We also
showed that, after hatching, fluorescent bacteria were detected in
the muscular tissue of the first-instar larvae of second generation
offspring (Figure 4H).

Viable GFP Bacterial Cell Counts
Total fluorescent E. mundtii were recovered and counted from
individual gut regions (foregut, midgut, and hindgut) on selective
THB agar containing erythromycin. The mean of CFUs of
bacteria recovered from each gut region showed significant
difference between larval stages (F = 15.38; df = 2; P < 0.0001)
by one-way ANOVA test. Further pairwise comparison revealed
significant differences between the mean number of CFUs of
combined gut parts between larvae in the fourth and fifth instars
(likelihood ratio: 4.062; P < 0.0001) as well as the fifth and sixth
instars (likelihood ratio: 3.048; P = 0.0006) but not between
the fourth and sixth instars (likelihood ratio: 1.014; P = 0.3853;
Figure 5A).

The number of E. mundtii in the foregut region was relatively
low until to the fourth instar and transiently raised to 3.2± 1.9×
106 cells (P < 0.0001) during the fifth instar, followed by a
decrease to 9.2 ± 8.6 × 104 cells (P < 0.0053) during the
sixth instar. A sharp decrease by 97.1% occurred toward the

FIGURE 4 | Colonization of GFP-expressing E. mundtii in the

Spodoptera intestinal tract. (A) Fluorescent image of the foregut region of

fourth-instar larvae: bacteria are immobilized around the peritrophic membrane

and gut epithelium (arrowheads) located adjacent to the hemocoel and fat

body, scale bar = 20μm. (B) In fifth-instar larvae, large clumps of bacteria are

attached to the peritrophic membrane of the midgut tissue, scale bar =

10μm. (C,D) Histological sections show fluorescent bacteria (arrowheads) are

trapped within granular hemocytes containing nodules (black arrows) in the

hindgut and midgut, leading to phagocytosis at the end of larval life, the sixth

instar, scale bars = 10μm. (E) A few bacteria are attached (arrowheads) to the

fat body of pupae showing bacterial lysis occurs. (F) A single viable bacterial

cell is immobilized in the tracheole of the adult, scale bar = 5μm. (G) The

fluorescent E. mundtii (arrowhead) is detectable in the oocyte of the eggs,

scale bar = 10μm. (H) Clusters of fluorescent bacteria (arrowheads) are

scattered in the muscular tissue of the second generation first-instar offspring

after hatching, scale bar = 10μm. ch, chorion; ep, epithelium; fb, fat body; gh,

granular hemocyte; hc, hemocoel; lu, gut lumen; mu, musculature; oc, oocyte;

pm, peritrophic membrane; tr, tracheole. Magnification, (A–G), 630X; (H),

400X.

late-instar larval stage. The midgut CFU count rose during
the fourth instar from a mean of 1.0 ± 0.6 × 105 to 2.7 ±

2.1 × 107 at the end of the fifth instar, representing a significant
difference (P = 0.0425). In the sixth instar, bacterial counts
fell to 4.0 ± 3.7 × 106 and showed no significant difference
to larvae in the fifth and sixth instars (P = 0.1576). Also in
the hindgut region there was a transient increase of bacterial
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counts from 2.2 ± 1.0 × 105 (fourth instar) to 1.5 ± 1.2 ×

107 at the end of the fifth instar; this number fell by 94.5% to
2.2 ± 1.3 × 105 at the end of the sixth instar (P = 0.1087;
Figure 5B). The ± values represent the standard error (SE).
For some larvae, the hindgut region did not show any CFUs,
possibly due to the high variation in the feeding behavior of
individual larva. Overall, the number of bacteria in the intestinal
tissues steadily increased from fourth- to fifth-instar larvae,
but decreased tremendously during the sixth larval instar. The
number of mean CFUs remained low during early pupation and
slightly increased in the late pupation and adult stages (data not
shown). No CFUs of fluorescent E. mundtii were detected from
control larvae.

Tracking of Ingested GFP Bacteria by

Colony PCR
The gut content of different stages of development of the insect
was enumerated on selective agar plates. The bacterial colonies
grown on agar were picked for colony-PCR experiments to verify
the presence of GFP-containing plasmid.We were able to amplify
the gfp gene of around ∼735 bp from bacterial colonies at all

FIGURE 5 | Recovery of GFP-expressing E. mundtii in the foregut,

midgut and hindgut across larval stages of S. littoralis. (A) Bacterial

recoveries are based on the mean average of the combination of three gut

regions of six independent larvae (n = 18 per larval stage). (B) Bacterial counts

were determined in individual gut region within the same digestive tract of each

stage (n = 6 per gut region). Different letters above error bars (SEM) denote

significant differences between pairs (P < 0.05). CFUs = colony forming units.

stages of development (Figure 6). In addition, we could detect
the GFP amplicon in fecal samples of all stages (data not shown),
which confirmed that transgenic bacteria were present and could
colonize the intestinal tract of S. littoralis.

DISCUSSION

The GFP-expressing plasmids used in this study were derived
from a common backbone E. coli-enterococcal shuttle vector
(pTRKH3), which was controlled by three constitutive promoters
of different strengths. This vector contained moderate copy
numbers (30–40) in E. coli and a high copy number (45–
85) in Streptococcus and Lactococcus species (O’Sullivan and
Klaenhammer, 1993; Papagianni et al., 2007). Moreover, it was
stably maintained up to 25 generations without erythromycin
and lost <4% after transformation into Lactococcus lactis
(Papagianni et al., 2007). Our results showed that the strongest
GFP expression signal was derived from the ermB promoter,
which displayed the high fluorescence of recombinant bacteria
upon detection by epifluorescence microscopy, western blotting
and flow cytometry. This promoter is likely to be highly effective
in many Enterococcus species, as it is derived from the broad-
host range plasmid pAMß1 of E. faecalis (Swinfield et al., 1990).
In Staphylococcus aureus, erythromycin resistance is caused by
ribosome methylases encoded by ermA, ermB, and ermC genes
which are involved in the methylation of 23S rRNA (Leclercq,

FIGURE 6 | Colony PCR-amplification of enumerated colonies of

E. mundtii harboring GFP recovered from the intestinal tracts of larvae

at different life stages. The gfp gene was amplified from fourth-, fifth,- and

sixth-instar pupae and from adult insects. M, molecular weight marker (1-kb

Plus DNA ladder, Invitrogen); Lane 1, fourth instar; Lane 2, fifth instar; Lane 3,

sixth instar; Lane 4, pupa; Lane 5, adult; Lane 6, positive control (plasmid

pTRKH3-ermGFP); Lane 7, negative control. The size of gfp gene is ∼735bp.
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2002). The addition of erythromycin antibiotic as substrate may
increase the expression of ermB gene in E. mundtii, thus activates
the GFP expression. In addition, the pTRKH3 vector which
originates from pAMß1 may be suitable for replication in Gram-
positive bacteria. The strength of gfp gene expression controlled
by these promoters was similar to that reported in Lactobacillus
reuteri strains (Lizier et al., 2010).

The strength of promoter used to drive successful expression
of heterologous proteins depends on strain and vary within
LAB (McCracken and Timms, 1999). The constitutive ldh
promoter is highly efficient in Lactobacillus casei (Pouwels et al.,
2001) as well as in E. mundtii. It has been shown that the
ldh gene is highly active in the logarithmic phase, but its
expression decreases in the stationary phase in Lactobacillus
helveticus (Savijoki and Palva, 1997). The low GFP expression
signal from the slp promoter in our study may be due to
different rate of transcription and translation of S-protein genes.
In two Lactobacillus species, similar genes can be expressed
with different regulatory mechanism (Pouwels et al., 1998). In
some species of bacteria, the S-protein genes are controlled
by multiple promoters (Vidgren et al., 1992), and some are
preceded by a single promoter. The yield of mRNA controlled
by multiple promoters might be higher than the yield directed by
a single promoter. The regulation of S-protein gene expression
is still not very well-known and may be growth-dependent.
One of the five promoters upstream of S-protein gene in
Brevibacillus brevis is active during all growth phases, while
another promoter is only active during exponential growth
(Adachi et al., 1989). It has been shown that the half-life of
the S-protein mRNAs is different between bacterial species,
Aeromonas salmonicida (22min; Chu et al., 1993), Caulobacter
crescentus (10–15min; Fisher et al., 1988), and L. acidophilus
(15min; Boot et al., 1996). Another possible explanation of
low GFP expression directed by a single slp promoter might
be that E. mundtii do not synthesize S-layer protein which
was also reported in L. casei as well (Masuda and Kawata,
1983).

Expression of gfp has effect on the physiology and fitness of
the bacteria (Rang et al., 2003; Allison and Sattenstall, 2007). It
was reported that the growth of Salmonella was suppressed due
to constitutive expression of gfp (Oscar, 2003). In contrast, two
case studies using E. coli and other pathogenic bacteria showed
that the gfp expression did not affect bacterial survival (Leff and
Leff, 1996; Valdivia et al., 1996). The use of erythromycin as an
antibiotic selective marker has a number of drawbacks. It may
cause toxic effects on the host insect and other gut microbes. The
excessive use of antibiotics causes its spread in the environment
and thus produces many antibiotic resistant pathogenic bacteria
(Hamer and Gill, 2002; Livermore, 2007; Walsh and Fanning,
2008). Under laboratory conditions, it has been shown that the
antibiotic resistance genes via a plasmid can be transferred into
foodborne pathogenic bacteria by turning antibiotic sensitive
strains into resistant ones (Van Meervenne et al., 2012).

Researchers have found that indigenous bacteria derived
from the host insect could be reintroduced and could survive
in the native gut environment (Chapco and Kelln, 1994;
Dillon and Charnley, 1996; Martinez-Sanudo et al., 2011).

In previous experiments, we introduced GFP-tagged E. coli
into the gut of S. littoralis and were able to monitor the
bacteria for up to 4 days after which they disappeared
(Wallstein, 2014). Our observation was independently confirmed
by others (Thimm et al., 1998), who found that genetically
modified non-indigenous E. coli vanished within 1 day after
introduction into the gut of collembola. In contrast, the
indigenous Alcaligenes faecalis was able to colonize the intestinal
tract of Folsomia candida (Collembola) for about 2 months
(Thimm et al., 1998). In other studies, Husseneder and Grace
failed to produce a persistent population of transgenic E.
coli in the guts of termites (Husseneder and Grace, 2005).
However, they successfully introduced the genetically modified
indigenous Enterobacter cloacae in termite guts, where the
bacteria persisted for almost 3 months. The failure of non-
indigenous E. coli to establish a stable population in the
guts of termites may be due to resistance by the indigenous
gut bacteria (Dillon and Dillon, 2004), and the fact that
the non-indigenous bacteria might be outclassed by the
natural microbial flora (Chao and Feng, 1990; Leff and Leff,
1996).

Since it is of interest to study the mode of transmission of
GFP-labeled E. mundtii to the next generation, we also analyzed
the occurrence of GFP-labeled cells in pupae, and oocytes of
S. littoralis. The fluorescent bacteria were found, indeed, in
the oocytes and were transmitted to the second-generation
larvae. Recent examinations using fluorescent bacteria have
found the bacteria to be transmitted from the gut into the
eggs in T. castaneum (Knorr et al., 2015). In one hypothesis,
the egg-smearing mode of vertical transmission, the surface
of the eggs is contaminated with the environmental bacterial
symbionts, which the freshly hatched larvae acquire by feeding
on the eggshell (Douglas and Beard, 1997; de Vries et al.,
2001). Bakula showed that the methylene blue dye used to
stain the embryos of Drosophila was detected in the intestine
of hatched first-instar larvae, suggesting that the larvae had
ingested the embryos (Bakula, 1969). Transmission through
parents also occurs, either from the mother to the offspring or
from the father to mother and then to the offspring (Moran
and Dunbar, 2006; Damiani et al., 2008). Damiani et al. also
demonstrated that male-borne symbionts of the bacteria of
the genus Asaia were transferred to females during mating of
Anopheles stephensi mosquitoes (Damiani et al., 2008). These
bacteria were then further transmitted from the mother to
the offspring during sexual reproduction. In separate studies,
Moran and Dunbar also showed that it is possible, though
rare, for symbionts to be transferred from the father to the
offspring (paternal transfer) in aphids (Moran and Dunbar,
2006).

Several factors—for instance, pH and oxygen availability can
shape microbial colonization in different gut niches. It is known
that the pH inside the gut of Lepidoptera such as S. littoralis
is highly alkaline (pH ∼ 8.5–10) in the foregut and midgut,
and neutral (pH 7.0) in the hindgut (Funke et al., 2008). It has
been reported that there is relatively low diversity of bacteria
in the extremely alkaline guts of gypsy moth larvae, Lymantria
dispar (Broderick et al., 2004) and high bacterial density in
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the low-alkaline guts of larvae in beetles (Coleoptera), flies
(Diptera), or bees (Apoidea) (Kadavy et al., 1999; Egert et al.,
2003; Mohr and Tebbe, 2006). The survival of E. mundtii in
alkaline environment shows that it has developed adaptation
mechanisms.

It has been shown through FISH analyses that enterococci
can form a biofilm-like structure by attaching themselves to
the mucus layer of the gut epithelium (Koch and Schmid-
Hempel, 2011; Engel et al., 2012; Shao et al., 2014). In our
study, interestingly, most of the GFP-tagged bacteria did not
spread throughout the whole gut content but were confined
within the mucus layer of the peritrophic membrane. This
membrane prevents the bacteria from gut lumen from entering
the epithelium, as reported in the study of Bactrocera oleae
(Mazzon et al., 2008). The peritrophic membrane was shown
to have a defensive role against pathogens in Drosophila
melanogaster (Kuraishi et al., 2011) and to act as a barrier against
food particles and digestive enzymes (Lehane, 1997; Hegedus
et al., 2009). In addition, the membrane was able to protect the
bacteria from unfavorable gut conditions such as alkaline and
acidic pH (Crotti et al., 2009). In our case, we observed that
the fluorescent bacteria crossed the peritrophic membrane and
invaded the gut epithelium of the fourth-instar larvae.

The composition and density of microorganisms changed
as insects aged, for example in the case of the fruit fly, D.
melanogaster (Ren et al., 2007; Buchon et al., 2009; Storelli et al.,
2011; Wong et al., 2011). In our study, the number of fluorescent
bacteria increased throughout the larval stage, from fourth- to
fifth-instar larvae. This number was significantly higher in tissues
from the midgut than from those in the foregut and hindgut,
supporting the hypothesis that the midgut is a crucial region
for digestion. Beneficial bacteria may be needed to aid in the
metabolic activity of host insect. A strong decline of recombinant
bacteria was observed in the sixth-instar larvae. This reduction
prior to the pupal stage may be associated with the enhanced
expression of antimicrobial peptide genes which has been shown
in a few previous studies (Samakovlis et al., 1990; Tryselius et al.,
1992; Tzou et al., 2000).

Humoral responses, such as the production of antimicrobial
peptides, reactive oxygen species, and lysozymes, as well
as activation of the prophenoloxidase system, are noticed
when microorganisms invade (Jiang, 2008; Tsakas, 2010).
Antimicrobial peptides can be repressed by transcription factors,
including the homeobox gene caudal, in order to retain beneficial
gut bacteria in the host insect (Ryu et al., 2008). Remarkably,
we detected the encapsulation of fluorescent E. mundtii within

the nodules of granule hemocytes which leads to bacterial
lysis. The two most abundant hemocytes present in the
larvae of Lepidoptera are granular cells (granulocytes) and
plasmatocytes (Ratcliffe, 1993; Strand and Pech, 1995). The
processes of phagocytosis, nodulation and encapsulation are
hemocyte-mediated immune responses (Strand, 2008; Tsakas,
2010). Hemocytes encapsulate various cells ranging from bacteria
to yeast and even synthetic beads and particles of India ink
(Yokoo et al., 1995; Hernandez et al., 1999; Da Silva et al., 2000).
We observed that the fluorescent enterococci survived pupation
and became transmitted to the adults. Accordingly, the bacteria

can be successfully transmitted during metamorphosis escaping
the removal or reduction of midgut bacteria by colonizing sites
farther away from the meconium. Another explanation may be
that bacteria are resistant to the antimicrobial exuvial fluids
that are consumed as part of the ecdysial process (Moll et al.,
2001).

CONCLUSION

We have succeeded in tagging E. mundtii (strain KD251) with
the gfp gene. The recombinant strain that harbors the pTRKH3-
ermGFP plasmid was chosen to be reintroduced into S. littoralis.
Interestingly, the fluorescent bacterial cells were able to colonize
the intestinal tract of the host insect for nearly 30 days. These
bacteria were efficiently transmitted from larval stages to the
adult stage, where they survived up to the second generation.
Increased knowledge of the distribution and transmission route
of indigenous gut symbionts may lead us to better understand
their biological role in the host insect.
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Biodiversity and Activity of the Gut 
Microbiota across the Life History 
of the Insect Herbivore Spodoptera 
littoralis
Bosheng Chen ,*, Beng-Soon Teh , Chao Sun ,*, Sirui Hu , Xingmeng Lu , Wilhelm Boland  & 
Yongqi Shao

Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although 

little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and 
RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of 
Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate 
but undergo a structural “metamorphosis” in tandem with its host. Enterococcus, Pantoea and Citrobacter 
were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only 
enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, 
Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with 
PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility 
and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism 
increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult 
microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication 
and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-
associated microbial symbionts may assist the development of novel pest-management strategies.

Insects are colonized by various microorganisms, and with the development of next-generation sequencing 
(NGS) technologies, a rapidly growing body of work, particularly on bees, ants and flies, has shown that these 
symbiotic associates have important effects on host nutrition, development and pathogen defense1–5. For example, 
the prevalence of bacterial gut symbionts, Rhizobiales, is tightly linked with the evolution of herbivory of ants, 
which supply additional nitrogen to the host6. Abundant lactic acid bacteria, maintained in biofilms in the foregut 
of Western honeybees (Apis mellifera), work in a synergistic manner to inhibit the proliferation of pathogens7. 
The phytophagous Lepidopterans, including butterflies and moths, are one of the most widespread and diverse 
taxa of insects on our planet, containing about 160,000 described species in 47 superfamilies8, and are also major 
pests in agriculture; however, surprisingly, their associated microbial symbionts have not been studied much with 
modern molecular tools, making it difficult to identify the potential impacts that these microbes may have on 
host ecology and evolution.

Lepidopteran insects are holometabolous and develop through four life stages; each stage has its own morphol-
ogy. The egg hatches into a larva, which feeds, molts and grows larger, pupates, then emerges as an adult insect 
that looks completely different from the larva. Currently most studies of the lepidopteran microbiota focus on 
microorganisms associated with the larval gut, providing only a single snapshot of the community. For example, 
conventional culture-dependent techniques have identified several proteolytic bacteria, including Enterococcus 
spp. and Bacillus spp., from the gut of the velvetbean caterpillar Anticarsia gemmatalis9. Culture-independent tech-
niques have revealed a core microbial community in the larval gut of the cotton leafworm, Spodoptera littoralis10. 
In contrast, almost nothing is known about the diversity and composition of microbial communities inhabiting 
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other stages, in particular, the adult microbiota; nor it is known how microbial populations may change over 
metamorphosis11. To address these gaps in our knowledge, in the present study we used a high-throughput 
sequencing-based approach to compare the structure of the bacterial community in replicate egg masses, larvae, 
pupae and adults of S. littoralis, a highly polyphagous lepidopteran pest found worldwide and also an important 
model system used in a variety of biological research12. To our knowledge, this is the first systematic survey of 
bacterial communities across the full life cycle of a moth species, providing a foundation for future studies of 
microbial symbiosis in this important insect group.

In addition to investigating how the S. littoralis-associated microbial community varies with life stages, we 
also aimed to determine the metabolically active populations within the community. Despite a proliferation of 
studies that document the 16S rRNA gene profiles of gut communities, few address whether taxa that are detected 
in the DNA pool are actually active cells (DNA extracted from samples can include DNA from dead or dominant 
bacteria, and extracellular DNA from lysed or degraded cells, which in fact do not have any metabolic activity.). 
While 16S rRNA from the RNA pool represents protein synthesis potential and can be used as an indicator of 
active microbes, which directly contribute to the current function of the microbiota. Thus the 16S rRNA/rRNA 
gene phylotype ratio (RNA/DNA) is, in principle, a measure of relative activity. Many studies have employed 
this methodology to characterize the active moiety of a microbial community from diverse environments13–16. 
For instance, Reid et al. used this method to evaluate the diversity of metabolically active and inactive bacteria 
in the wood-feeding beetle larval gut15. A comparison of the 16S rRNA gene versus 16S rRNA-derived data sets 
revealed that Prochlorococcus spp. play a more important role in the food web of oligotrophic sea than expected16. 
Taking advantage of the NGS technology, here we fully assessed the S. littoralis microbiota by examining both 
the DNA-based 16S rRNA gene and the RNA (cDNA)-based 16S rRNA with pyrosequencing, an ideal tool for 
exploring the vast majority and often uncultivable microbes in complex microbial communities. The recently 
developed software package, Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt), was further used to delineate metabolic potentials of the organism represented by 16S rRNA 
sequence, based on the phylogenetic placement of that 16S rRNA sequence within a phylogeny of sequenced 
genomes, an approach demonstrated previously17. These comprehensive analyses of 16S rRNA sequences were 
expected to provide insights that have not been revealed by past studies into the total diversity and metabolic 
activity of Lepidoptera-associated microbial communities.

Results
Overview of Spodoptera littoralis microbiotas. Like all Lepidoptera, S. littoralis undergoes complete 
metamorphosis; larvae and adults are greatly differentiated in form and function (Fig. 1a). Larvae chew on plant 
leaves while adults often feed on nectar. Our study divided the relatively long larval stage into early-instar and 
late-instar stages; adults live for only a few days after eclosion. Neither culturing on nutrient agar plates nor PCR 
amplification using specific primers revealed any fungus or Archaea in any of our samples. While we found abun-
dant bacteria persisting in all developmental stages of S. littoralis, the colony-forming unit (CFU) counts in the 
larva, pupa and adult were 6.3 × 107, 1.02 × 104, and 2.81 × 105 per sample, respectively. However, the diversity 
and composition of the S. littoralis-associated bacterial community (designated as microbiota) varies substantially 
across host developmental stages.

The microbial community in the egg masses was more diverse (43 OTUs per sample, analyzed at a 3% dissim-
ilarity level) than the community identified in the early-instar larvae (34 OTUs per sample). Bacterial phylotype 
richness further decreased to 23 in late-instar larvae (Table 1). Pupae were associated with the lowest number of 
phylotypes, demonstrating an increasing reduction in the microbial diversity from egg to pupa. This trend was 
also true for Shannon diversity, phylotype evenness and phylogenetic diversity, all of which displayed similar 
patterns (Table 1 and Supplementary figure S1). In contrast, adults harbored high richness of bacteria with 73 and 
46 phylotypes in females and males, respectively. The gradually flattening rarefaction curves confirmed that the 
vast majority of microbial diversity was captured in all samples (Fig. 1b).

A taxonomic analysis of sequences obtained by pyrosequencing revealed that the most prevalent phylum in 
the microbial community associated with S. littoralis egg masses was Proteobacteria (ca. 95% of the sequences), 
whereas the most prevalent phylum in the larvae was Firmicutes (ca. 59% of the sequences in the early-instar 
vs. 97% in the late-instar) (Fig. 1c). Notably, through metamorphosis, pupae also harbored a bacterial com-
munity rich in Firmicutes (ca. 99% of sequences). After eclosion, we further observed a remarkable change in 
the composition of the bacterial community. Mature adults, especially males, exhibited a large decrease in the 
relative abundances of Firmicutes and showed an increased abundance of Proteobacteria (Fig. 1c). The adult 
male gut microbiota was dominated by Proteobacteria (ca. 93% of the sequences), together with Actinobacteria 
(5%), whereas the adult female gut microbiota consisted of 56% Proteobacteria and 42% Firmicutes, respec-
tively. Relative abundances of the most highly represented phyla including Proteobacteria, Firmicutes and 
Actinobacteria, changed significantly (p < 0.001) across life stages. The pattern of taxon distribution in each stage 
is described in detail in the following sections.

We compared community structures between samples using principal coordinate analysis (PCoA). Pairwise 
ecologic distances were calculated based on the β-diversity metrics of weighted and unweighted UniFrac, which 
takes into account both community membership and relatedness of community members18. After sequence jack-
knifing, these distances then were visualized by the Emperor PCoA plot, which displayed the similarity among 
communities (Fig. 2).

Variability of community composition within individuals. We first evaluated the variability of com-
munity composition among individuals by using denaturing gradient gel electrophoresis (DGGE) of amplified 
16S rRNA genes, a commonly used molecular technique for rapid fingerprint analysis of the microbial com-
munity. A cultured gut bacterium, Enterococcus mundtii, representing the most prevalent taxon isolated from 
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Figure 1. Changes in bacterial community diversity across life stages of S. littoralis. (a) Overview of 
development stages of the host. (b) Rarefaction curves depicted from randomly subsampled data sets with the 
same number of 16S sequences. The near saturated rarefaction curve indicates that the vastness of microbial 
diversity was retrieved from each sample. (c) Overview of the microbiota change during host development. 
Abundance of the 16S rRNA gene at each developmental stage at the phylum level. Relative abundances of the 
most dominant phyla including Proteobacteria, Firmicutes and Actinobacteria changed significantly (p < 0.001) 
across the life cycle.
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S. littoralis in our previous study, was used as a DGGE standard. The DGGE profile showed that there was little 
variation among different individuals of a laboratory population reared under identical environmental condi-
tions (Fig. 3a, larvae; b, adults). Similar DGGE band profiles indicated similar patterns of microbial community 
structure and diversity. The DGGE pattern of the larval gut microbiota was rather simple, consisting mostly of 
E. mundtii (the intense band, Fig. 3a). Likewise, similar DGGE band profiles were also observed among adults, 
both females and males. Although specific bacterial taxa existed in both populations, a more diverse microbial 
community was observed among females and a substantial difference was observed between female and male fin-
gerprints (Fig. 3b). The three dominant bands in the female samples were weaker or absent in the male samples. 
The clustering analysis of DGGE profiles clearly differentiated female from male samples (Fig. 3c). The results 
from PCR-DGGE analysis showed that larvae subjected to the same conditions at the same life stage harbored 
communities that were highly similar in structure and membership, whereas among adults, the communities 
differed between males and females. Massive parallel pyrosequencing of the 16S was subsequently used to provide 
detailed taxonomic information (Figs 4–8).

Egg microbiota. S. littoralis lays a batch of eggs, not single eggs, on the leaves of plants, where the eggs are 
exposed to a wide range of environmental microbes. Eggs are attached to each other tightly and are covered with 
hair-like scales derived from the tip of the abdomen of the female moth (Fig. 1a and Supplementary video S1). 
A complex community of bacteria, dominated by the Proteobacteria, was associated with the egg masses. Large 
number of 16S sequences that were obtained by pyrosequencing was classified to the genus taxonomic level. The 
bacterial taxa were largely members of the genus Pantoea (53.5%), Acinetobacter (23.4%) and Ralstonia (9.2%), all 
belonging to the Proteobacteria (Fig. 4a). Other phylotypes within this phylum, classified as Citrobacter, Klebsiella 
and Pseudomonas, were also observed in the egg mass. Only a minor fraction of sequences were identified as 
Enterococcus (2.9%) and Clostridium (0.8%) belonging to the Firmicutes. Bacteria from other phyla, such as the 
genus Sphingobacterium in the Bacteroidetes phylum, were discovered in the egg samples too, but many taxa were 
present in low proportions (less than 0.1%).

The results from the RNA (cDNA)-based 16S rRNA data reflected the metabolically active bacterial pop-
ulations, i.e., those with higher ribosomal content, suggesting candidates which may play key roles in situ. 
Pantoea occupied the highest relative abundance (71.1%) in the active microbial community (Fig. 4a). 

Sample
Species richness indices Species diversity indices
Observed PD tree Shannon Simpson

Eggs 43 3 3.10 0.78
Early instar larva 34 3 1.85 0.60
Late instar larva 23 3 1.46 0.50
Pupa 15 1 0.26 0.06
Adult
 Male 46 2 1.71 0.42
 Female 73 4 3.03 0.79

Table 1. Richness and diversity estimate of the 16S rRNA gene from the pyrosequencing analysis. PD, 
phylogenetic diversity.

Figure 2. Similarity analysis of microbial communities. (a) UPGMA clustering of samples at different 
developmental stages according to community composition and structure. (b) Principal coordinates analysis 
(PCoA) plot visualizing the data based on β-diversity metrics of UniFrac.

38 

 



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS

Citrobacter, Klebsiella and Pseudomonas were also more abundant in the RNA data set, implying their high 
activity. In contrast, Ralstonia dominated in the DNA data set (9.2%) but not in the RNA data set (0.4%), 
indicating low metabolic activity on the egg surface. Acinetobacter was also less abundant in the RNA data. 
Unsurprisingly, the strictly anaerobic Clostridia did not show activity since the egg was exposed to the air. 
These bacteria were present but not functioning in situ. The variation in bacterial composition between the 
DNA and RNA data sets was characterized using a Venn diagram (Fig. 4b). Overall, 35 OTUs were shared 
between groups. These shared OTUs represented the majority of sequences, indicating that the major phy-
lotypes were metabolically active. There were more unique OTUs in the RNA data set (26) than in the DNA 
data set (9). However, most of these phylotypes were rare members of the community, representing <0.01% 
sequences in the total data set.

We observed that before the neonate larvae hatch out from the egg, they have already started feeding inside 
and have to bite enough eggshell material to make a hole before they can escape from the egg case (Supplementary 
video S1). Thus the microbiota associated with egg mass represents the maternal and environmental sources of 
gut bacteria.

Larval microbiota. Upon hatching, the neonate larva starts feeding and develops. Most bacteria associ-
ated with the eggmass were also observed in the early-instar larval gut microbiota, indicating gut symbionts 
are acquired by newborn hosts from the mother via egg. However, relative abundances of bacterial taxa differed 
largely between the microbiota of starting egg mass and that of larval gut. The taxonomic composition of the gut 
microbiota of early 2nd instar revealed a relatively low abundance of Proteobacteria sequences (approximately 
38.9% of all sequences), in contrast to the higher level on the egg mass (95%). Pantoea decreased to just 23% in 
the larval gut (Fig. 5). Another dominant Proteobacteria that was closely related to Citrobacter comprised 15.6% 
of the community. In contrast, although only a minor fraction of Enterococcus was associated with the egg mass, 
it was particularly high in abundance (55.9%) in the larval gut. These major phylotypes were detected in both 
DNA and RNA data sets (Fig. 5). Although a low abundance of Clostridium was found in the DNA data set, it 
was one of dominant members of the RNA-derived fraction, indicating its high metabolic activity inside the gut. 

Figure 3. DGGE profiles of PCR-amplified 16S rRNA gene fragments of bacterial communities from S. 
littoralis larva and adult samples. (a) DGGE profile of the mature larval gut microbiota of different individuals 
(L = larva). (b) DGGE profile of the adult gut microbiota of different individuals (M = male adult and 
F = female adult). (c) Cluster analysis of the DGGE patterns of the male (M) and female (F) samples.
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The Firmicutes appeared to be replacing Proteobacteria as larvae developed. Taking advantage of PICRUSt, we 
predicted functional potentials of the microbial community associated with different developmental stages. The 
early-instar larval gut microbiome was more enriched for genes involved in cell motility, carbohydrate metabo-
lism and transport pathways (Fig. 9). From a functional standpoint, the enrichment of these pathways could have 
a number of implications.

The gut microbiota consistently changed with host development. Late-instar larvae harbored a community 
with largely lower species diversity than that in early-instars. The Firmicutes flourished within the larval gut. 

Figure 4. The microbiota associated with the egg mass of S. littoralis. (a) Relative abundance of major 
taxa (to genera level) in the DNA and RNA data sets. (b) Venn diagram showing overlaps of OTUs (at 97% 
similarity) between the DNA (purple circle) and RNA (red circle) data sets. Values are the numbers of OTUs 
calculated using the total data set.

Figure 5. The larval gut microbiota of S. littoralis. Relative abundance of major taxa (to genera level) in the 
DNA and RNA data sets of early-instar larvae (E-instar) and late-instar larvae (L-instar).
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Enterococcus was the most stable component in the microbiota, representing 62.1% of all sequences (Fig. 5). 
Similarly, a higher proportion (35.4%) of the gut bacterial community was found to belong to the Clostridium 
genus. On the contrary, members of the Proteobacteria phylum were significantly cleared from the larval gut 
microbiota; Pantoea was the exception, present in both stages. Each dominant genus also had a large fraction 
in the RNA-based data set. Functional differences were also observed in bacterial populations associated with 
different developmental stages. A relative increase in genes associated with amino acid, cofactor and vitamin 
metabolism pathways was observed in late-instar larvae (Fig. 9). Overall, despite the complex microbial diversity 
associated with the egg mass, the larval gut community became highly simplified through host development. The 
resulting gut communities were similar to each other within the population (Fig. 3a).

Metamorphosis. Each fully grown larva forms a cylindrical pupa (Fig. 1a). During metamorphosis, the 
overall body organization of the larva changes completely: most organs undergo deep remodeling or even com-
pletely degenerate, and differentiation processes are required to form the new body structure typical of the adult 
insect. The pupae show the presence of bacteria, and such bacterial populations seem to have no negative effect 
on traits related to the fitness of S. littoralis. However, the bacterial diversity in the pupal stage, indicated by the 
Shannon index, dropped to 0.26 from 1.46 in the late-larval stage, and 0.06 by the Simpson index (Table 1). Only 
enterococci dominated both RNA and DNA data sets, and they made up more than 97% of the sequences in both 
data sets (Fig. 6). Representative sequences of every Enterococcus OTU were separated from other sequences and 
compared with those available in the GenBank databases for more accurate identification. The representative of 
the most abundant OTU was identified as E. mundtii (Fig. 8). Several functional categories, such as those associ-
ated with carbohydrate metabolism, lipid metabolism, signal transduction, and membrane transport, diminished 
to 50% or more in the internal bacterial community of the pupa. Whereas genes involved in energy and nucleo-
tide metabolism, transcription and translation pathways were abundant in the pupa, indicating a greater ability of 
the bacterial population to extract energy for surviving inside. After sampling, all the pupae successfully emerged 
and developed into adults.

Adult microbiota. After eclosion, adult moths were maintained under identical conditions for mating and 
fed on sugar solution because of their usual nectivorous lifestyle. The mature adults successfully mated and pro-
duced a normal amount of eggs. In light of the difference between male and female adults in their reproductive 
physiology and degree of nectar feeding, the internal bacterial communities associated with mature adults of each 
sex were studied separately. Overall, significant recolonization of the gut had been observed in adults and the 
richness of microbial species was restored (Table 1). However, a clear structural change in bacterial community 

Figure 6. The microbiota associated with the pupae of S. littoralis. (a) Relative abundance of major taxa in 
the DNA and RNA data sets. (b) Venn diagram showing overlaps of OTUs (at 97% similarity) between the DNA 
(purple circle) and RNA (red circle) data sets.

41 

 



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS

was identified between larva and adult, although enterococci prevailed into adulthood through metamorphosis. 
Phylotypes belonging to the bacterial family Enterobacteriaceae were overrepresented in adults relative to larvae. 
Furthermore, female and male adult gut microbiotas differed greatly in terms of the relative proportion of the 
most abundant bacteria each harbored (Fig. 7).

The bacterial community in female adults had a greater diversity relative to that in male adults. Besides 
Enterococcus occupied a considerable proportion (34.3%), other Firmicutes, including Weissella, Pediococcus, 
Clostridium and Lactobacillus spp., were also found in female adults (Fig. 7a). Pantoea were also well established 
in the gut flora, representing 29.7% of all sequences, while only a small proportion of Citrobacter was identified. 
The Gram-negative bacterium Klebsiella sp. was another prominent enterobacteria in the DNA data set (23.8%) 
but not in the RNA data set (4.0%). Main active bacterial taxa included Pantoea, Enterococcus, and Citrobacter. 
Interestingly, these bacteria were also found in the microbiota associated with the eggmass, indicating that certain 
bacteria might be transmitted to the filial generation. Venn diagrams showed that there were more OTUs in the 
RNA data set (Fig. 7b and c), but these phylotypes represented a low proportion of the total amount (less than 
0.1%), indicating that rare phylotypes contributed to the metabolic processes in the gut.

Compared to female adults, male adults harbored a much higher proportion of microbes belonging to the 
familiar Enterobacteriaceae. Although Pantoea largely decreased in the male gut flora, Klebsiella sp. was particu-
larly abundant in the male sample, representing >88% of all sequences, with the remaining percentage being 
made up of Thermomonospora, Serratia and Citrobacter. A similar profile was observed in the RNA data set, 
revealing that most taxa were active inside the gut. However, the Firmicutes, like Enterococcus, were maintained 
at a very low level in the males compared to in the females.

Using PICRUSt, we identified significant differences between the functional potentials of the bacterial com-
munity compositions (Fig. 9). These functional categories, including energy metabolism, membrane transport, 
transcription and biosynthesis of secondary metabolites, were enriched in the female adults, whereas in the male 
adults, the replication and repair pathway and associated relative gene copy numbers were increased by approx-
imately 50%. The enrichment of several other pathways, including those for cell growth and death, and lipid 
metabolism, was observed in the male microbiome but not in the female.

Considering the robustness of enterococci across all stages of the host’s development, we further screened 
the field-collected S. littoralis insects with the Enterococcus-specific primer. Field populations of S. littoralis were 
frequently associated with E. mundtii (Table 2), reflecting the significant role played by E. mundtii in host biology.

Discussion
Although accumulating studies have described the microbial diversity in the insect gut, to date there have been 
few reports comparing metabolic activities in the microbial populations associated with successive life stages. 
In the present work, we not only conducted microbial inventories of S. littoralis across the full host life cycle by 

Figure 7. The adult gut microbiota of S. littoralis. (a) Relative abundance of major taxa (to genera level) in 
the DNA and RNA data sets of female and male adults. (b) Venn diagram showing overlaps of OTUs (at 97% 
similarity) between the DNA (purple circle) and RNA (red circle) data sets of male adult and female adult (c).
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sequencing the 16S rRNA gene, but we also systematically investigated metabolically active bacteria by evalu-
ating 16S rRNA contents, which provide new insights into metabolic potentials of moth-associated microbial 
communities.

In general, a large proportion of OTUs (87%, representing 95% of sequences) were active within samples, 
indicating the host gut is a “hot spot” for diverse microbial activities. This result concurs with a previous study 
on the gut flora of wood-feeding huhu beetles (Prionoplus reticularis, Cerambycidae) that showed many bacte-
rial phylotypes are active15. However, not all active bacteria could successfully colonize inside the host. Despite 
high diverse in starting egg mass, a significant reduction in bacterial diversity was observed during the devel-
opment of S. littoralis from egg to pupa, highlighting the control the host has over its gut microbiota (Fig. 1). In 
addition, individuals subjected to the standard rearing conditions at the same developmental stages harbored 
communities that were highly conserved in structure and membership (Fig. 3). Overall, the microbiota of S. 
littoralis exhibits low phylum-level diversity compared to the microbiota of the wood-feeding termite or of the 
beetle Odontotaenius disjunctus19,20. Only a few bacterial species, mainly belonging to the phyla Firmicutes and 
Proteobacteria, were detected from S. littoralis, yet it is consistent with previous reports describing the low species 
richness of the microbiota in other lepidopterans. For example, tobacco hornworm, Manduca sexta, harbored a 
rather simple gut microflora consisting mostly of phylotypes belonging to Enterococcus21. A similar midgut bac-
terial community was revealed in the larvae of the gypsy moth (Lymantria dispar L.) fed on different diets, and 
distinct from its foliar diet22. The physiological and biochemical conditions within the host insect’s alimentary 
tract appear to play an important role in structuring these communities. It is recognized that a straight alimen-
tary canal contains fewer microorganisms. The extremely high pH (>10) in the lepidopteran larval gut could 
also act as a distinct selection pressure on microbial composition23. Considering that Lepidoptera are highly 
phytophagous insects, and the larval stage is most devastating, ingesting large amounts of plant materials and 
other potentially harmful microbes associated with their food, it makes sense for the host to efficiently control 
its gut microbiota and quickly clear invading microbes from its habitat. Therefore, the lepidopteran larval gut is a 

Figure 8. Phylogenetic analysis of dominant taxa identified from microbiotas associated with S. littoralis. 
Maximum-likelihood tree constructed on the basis of 16S rRNA gene sequences. Bootstrap values were 
obtained from a search with 500 replicates. Strain and accession numbers are given behind the species names.
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strongly selective eco-environment for its microbiome, and it may be common for larvae to maintain a relatively 
simple gut microbiota.

Furthermore, a developmental change in the most abundant species, from Pantoea and Citrobacter 
(Proteobacteria) in young larvae to Enterococcus and Clostridium (Firmicutes) in matured larvae was identified. 
All these dominant taxa are frequently detected in lepidopteran species. In particular, the Enterococcus genus 
successfully occupied the ecological niche and stably colonized the larval gut, despite its numerical inferiority 
in the egg microbiota. Enterococci have been found to be the most common gut bacteria in Lepidoptera, both 
wild and laboratory-reared populations24–26. For instance, Enterococci have been identified in the tobacco horn-
worm (Lepidoptera: Sphingidae), the gypsy moth (Lepidoptera: Erebidae), as well as the velvetbean caterpillar 
(Lepidoptera: Noctuidae), suggesting these bacteria perform some conserved functions in this highly phytopha-
gous insect. Large amounts of Citrobacter, a genus within the Enterobacteriaceae family, occurred in the neonate 
larvae. Although this bacterium is known to form host associations with a variety of insects21, its biological rel-
evance remains unclear. Pantoea, another highly versatile and diverse enterobacteria, have been isolated from 

Stage of development n Ent. Positive Ent. Positive (%)
Egg mass 5 5 100
Larva 10 8 80
Pupa 8 6 75
Adult
 Male 7 5 71
 Female 9 8 89

Table 2.  The frequency of association of E. mundtii in the field-collected S. littoralis samples as revealed by 
diagnostic PCR (Ent. = E. mundtii).

Figure 9. Inferred functions of bacterial communities associated with S. littoralis. All of the predicted 
KEGG metabolic pathways are shown at the second hierarchical level and grouped by major functional 
categories.
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many environments27 and consist of taxa with known capacities for degrading and utilizing different types of 
plant materials. As such, Pantoea, are putatively helpful bacteria for herbivores. Clostridium emerged as dominant 
commensals only in the mature larval gut. In the late instar, the larval gut exhibits a prevailing anoxic atmosphere, 
which favors the development of anaerobic microorganisms, such as Clostridia, and facultative anaerobic entero-
cocci10. This might be the dominant force influencing the shift of gut microflora composition from Proteobacteria 
to Firmicutes.

This difference in taxonomic membership may reflect divergent functional roles across particular life stages. 
Analyses of metabolic activity, based on the RNA, suggested these taxa actively function in vivo (Fig. 5). PICRUSt 
builds a predictive understanding of the functions of these symbionts within the host (Fig. 9). The gut micro-
biome was significantly enriched for genes involved in the carbohydrate metabolism pathway. The dominant 
Gammaproteobacteria in the family Enterobacteriaceae are well equipped to degrade major structural components 
of plant materials. Pantoea spp. can produce diverse enzymes, including β-galactosidases (GH2), α-xylosidases 
(GH31), α-mannosidases (GH47), and α-rhamnosidases (GH78), as well as pectinesterases (CE8) involved in 
the plant polymer degradation28. It has been discovered that Citrobacter amalonaticus is capable of breaking 
down chitin, reflecting the metabolic diversity of Gammaproteobacteria. These Proteobacteria symbionts could 
play similar functions in S. littoralis and might be important nutrient providers for host insects in their early life 
stages. Much research in insects and other animals has shown that increases in the Firmicutes are related to an 
increased ability to harvest energy from the diet. Clostridia species such as C. thermocellum and C. ljungdahlii are 
known to have a robust capacity to degrade cellulose and hemicellulose, and to metabolize amino acids29. The 
presence of a large proportion of Clostridia is likely to be important for efficient biomass utilization. Therefore, 
those bacterial symbionts likely also play important roles in nutrition. Data from PICRUSt is further supported 
by previous work, which employed comparative genomic analysis of the microbiome of the cutworm Agrotis 
ipsilon (Lepidoptera: Noctuidae)30. The predominance of Enterococcus and its high metabolic activity suggest 
that this bacterium has a functional significance with regard to its host. As members of the gypsy moth gut flora, 
enterococci have been shown to prevent colonization by pathogens31. In this study, we found that genes involved 
in the metabolism of terpenoids and polyketides are consistently expressed in the S. littoralis microbiome (Fig. 9). 
The isolated E. mundtii symbionts also have the ability to produce antimicrobials. Thus the dominant E. mundtii 
bacteria are most likely to be defensive mutualists. Altogether, the characteristic gut microbiota found in S. litto-
ralis larvae may provide various benefits to the lepidopteran host ranging from nutrient supplementation to host 
defense.

Lepidopterans are holometabolous, and the transition from larvae to adult is a metabolically dynamic and 
complex process. The host gut microbiota also undergoes significant structural changes during metamorphosis 
and in the adult stage. Although the gut during the transition from larvae to adult is believed to undergo steri-
lization process and adults recruit new microbiota32, it is interesting to observe here that Enterococcus species, 
mostly E. mundtii, are able to survive the metamorphosis and be transmitted to the emerged adults (Figs 6 and 7). 
Genes involved in energy and nucleotide metabolism, transcription and translation pathways were enriched in 
this enterococcal population. However, their exact roles inside the pupa are not understood and warrant further 
investigation.

The adult lepidopteran microbiota remains largely unexplored. There have been no previous 
culture-independent studies of microbial communities associated with adult moths. Because of their nectivorous 
lifestyle, the adult moth typically has a small and morphologically distinct gut in contrast to that of the larva. We 
found that S. littoralis adults host relatively complex bacterial communities, and the microbial community struc-
ture of the female adult differs from that of the male (Fig. 7). Firmicutes, mostly enterococci, formed a significant 
proportion of the female adult gut microbiota, while those bacteria remained at low levels in male adults. Pantoea 
and Klebsiella were another dominant taxa in female adults, whereas only Klebsiella was observed in male adults. 
Both Pantoea and Klebsiella belong to the Proteobacteria family Enterobacteriaceae, which occur widely in the 
guts of Lepidoptera and other herbivores and are potentially beneficial, nonpathogenic microbes28,33. Using level 
2 KEGG predictions of ortholog function, differences between the functional potentials of the bacterial commu-
nities were also observed. The female adult microbiome was enriched for genes relevant to energy metabolism, 
while in the male adult, an increase in the replication and repair pathway was detected.

We know from studies on other holometabolous insect groups that adults may have similar microbiotas34, or 
different microbiotas as larvae35, or have sexually dimorphic microbiotas36. For example, the gut of adult cock-
chafer beetle Melolontha hippocastani housed the same microbial species that were present in the larval midgut, 
despite having metamorphosed from larva to beetle34. In contrast, a developmental change in the most abundant 
gut bacteria was identified in the fruitfly Drosophila melanogaster35. Notably, the bacterial composition of adult 
black flies Simulium spp. differed between males and females although they were collected from the same hab-
itat36. Similarly, Klebsiella sp. was demonstrated to be relatively high in adult males of Anopheles stephensi but 
was not found in larvae and pupae37. Sexually dimorphic phenomena of the associated bacterial communities 
have also been reported in other animals. For example, female Antarctic seals harbor more Firmicutes in the gut, 
while males have more Fusobacteria38. Although the reasons for this shift are not well understood, several factors, 
including the radical change of internal physicochemical conditions in the digestive tract, host immune responses 
and disturbance might underlie this difference.

Interestingly, major taxa associated with the female adult, such as Enterococcus, were also detected in the 
eggmass, and these taxa further colonized the larval gut, suggesting that some gut symbionts are probably ver-
tically transmitted. The maternal transmission of the core gut microbiota to the next generation might stabilize 
host-microbe interactions and facilitate co-evolution.

Recently, several comparative genomic and metagenomic studies of lepidopteran species have revealed 
an ancient and intimate relationship between bacteria and lepidopteran herbivores. It is reported that a gene 
encoding the enzyme that detoxifies plant-produced cyanide did not evolve in Lepidoptera but was horizontally 
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transferred from bacteria39. Clearly, the gut microbiota is an important source for diverse microbial activities and 
a “hot spot” for microbe-host interactions. A better understanding of the relationship of microbial symbionts to 
the lepidopteran host would lead to new concepts and approaches to control insect pests by manipulating their 
microbiota. Additionally, S. littoralis provides an attractive model for exploring complex microbial symbioses, as 
it has a simplified gut structure and microbial community, and is now genetically amenable40. The current study 
helps advance our understanding of ecological and evolutionary roles of gut symbionts in an important insect 
group.

Methods
S. littoralis larvae were hatched from eggs 

and reared on artificial diet as previously described41. Plastic cabinets with the diet and the larvae were kept at 
23–25 °C under a regime of 16 h illumination and a dark period of 8 h. The emerged adults were supplied with a 
sucrose solution. The field population was collected from a vegetable gardening area in the vicinity of Hangzhou, 
China, in August 2015. The egg masses, larvae, pupae and adults were transported to the laboratory in Petri dishes 
and kept at −20 °C prior to dissection. The eggs’ hatching process was recorded by a video camera.

For sample processing, all insects were first rinsed three times in sterile water, surface-sterilized in 70% etha-
nol for 30 s and rinsed again in sterile water. The whole gut tissue was dissected from each individual and homog-
enized for nucleic acid extraction, as previously described41. After dissection, the typical vitellogenic ovariole was 
observed in the mature female. The whole surface-sterilized pupa was used to investigate the internal bacteria. 
Egg masses were not surface-sterilized. The processed samples were first aseptically homogenized in 500 μL of 
sterile PBS. A serial dilution of 10-fold was performed by transferring 100 μL of the homogenized sample into 
900 μL PBS, vortexing vigorously, and spread-plating 100 μL of each dilution onto Brain-heart infusion agar plates 
(8130, BD). All plates were incubated at 37 °C for 48 h. Total bacterial cells were counted as colony forming units 
(CFUs) for each sample.

The dissected insect tissues (n = 6 at each stage) 
were first ground under liquid N2 with single-use, Eppendorf tube-adapted sterile pestles and then directly incu-
bated with nucleic acid extraction solution, according to the manufacturer’s protocols (MC85200, Epicentre) 
with minor modifications. An additional lysozyme incubation step (30 min at 37 °C) was included to break up 
Gram-positive bacterial cells. The quality of extracted total nucleic acid was checked on the agarose gel and quan-
tified using a NanoDrop 1000 (Thermo Scientific). DNA and RNA were further purified from the extracted total 
nucleic acid following manufacturer’s guidelines.

Extracted RNA was reverse-transcribed into cDNA using the QuantiTect Reverse Transcription kit (205311, 
Qiagen) according to the manufacturer’s guidelines. RNA was first treated with genomic DNA Wipeout buffer 
at 42 °C for 2 min to eliminate any trace of co-extracted DNA. A volume of 7 μL of the DNase-treated RNA was 
used for reverse transcription to cDNA in a total reaction volume of 10 μL using random primers. Two negative 
controls were performed, including 7 μL of DNase-treated RNA with all RT reagents except for the reverse tran-
scriptase and 7 μL of RT-PCR grade water instead of RNA.

PCR primers 
968F/1401R were used to amplify the V6-V8 portion of 16S rRNA genes as previously described26. Archaea- and 
fungus-specific primers were used to amplify archaeal 16S and fungus ITS genes, respectively (Supplementary 
table S1)42,43. DGGE analysis was performed using the Bio-Rad DCode system. Electrophoresis was done using 
a 16 × 16 cm, 1 mm thick gel that contained 8% polyacrylamide with a 20 to 80% denaturant gradient (100% 
denaturant was 7 M urea and 40% (v/v) deionized formamide). The gels were run at 100 V for 16 h at 60 °C in TAE 
buffer (40 mM Tris–acetate, 1 mM EDTA; pH 7.4). After electrophoresis, the gels were stained for 30 min in TAE 
buffer with SYBR-Gold nucleic acid gel stain (S-11494, Invitrogen) for photographing. Gels were scanned using 
a GS-800 calibrated densitometer (Bio-Rad). Analysis of DGGE profiles (band match and clustering) was carried 
out using Quantity One software (version 4. 6.1; Bio-Rad), as described previously44.

Pyrosequencing, data analysis and PCR screen. Bacterial tag-encoded FLX amplicon pyrosequencing 
(bTEFAP) was performed using a Roche 454 FLX instrument with Titanium reagents as described previously41. 
Basically, the hypervariable V1–V3 segment in the 16S rDNA was amplified using the fusion primer set Gray28F 
(5-GAGTTTGATCNTGGCTCAG-3) and Gray519r (5-GTNTTACNGCGGCKGCTG-3) extended with the 
respective primer Adaptor A/B and sample-specific multiplex identifiers (MID). The sequencing library was gen-
erated through one-step PCR with 30 cycles, using a Hot Start High Fidelity Taq Polymerase (Qiagen). Amplicons 
were sequenced based on the supplier protocol (Research and Testing Laboratory, Lubbock, TX, USA, http://
www.researchandtesting.com). The reads extended from the forward direction (Gray28F), and all low-quality 
reads (quality cut-off = 25) and sequences <200 bp in length were removed following sequencing (Supplementary 
table S2).

The software package Quantitative Insight into Microbial Ecology (QIIME, 1.6.0 version) was used to pro-
cess sequencing data and to calculate diversity45. Sequences first underwent quality control to remove potential 
artifacts and errors (the denoise_wrapper.py script in QIIME was used in our analysis) and trimmed of the part 
with low quality46. Chimera (detection method: ChimeraSlayer) and low abundance reads (<0.1%) were fur-
ther removed from analysis47. Cdhit and uclust with 97% similarity cut-offs were used in multiple OTU picking 
to cluster the high-quality reads into operational taxonomic units (OTUs). For each OTU, the most abundant 
sequence was extracted as a representative sequence for each OTU picked and aligned to the Greengenes core 
set (http://greengenes.lbl.gov/) using PyNAST with the minimum sequence identity percent set to 75%48. The 
RDP classifier was employed to determine the highest resolution of taxonomy based on the Ribosomal Database 
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Project (http://rdp.cme.msu.edu/). Finally, an OTU table was generated describing the occurrence of bacterial 
phylotypes within the sample. Representative sequences were aligned to reference sequences obtained from the 
NCBI nucleotide database using the ClustalW algorithm. UniFrac was used for microbial community compar-
ison according to Lozupone et. al18. Shared and unique OTUs are graphically represented in Venn diagrams 
described elsewhere15. The identification of OTUs that were significantly different in abundance was carried out 
in METASTATS using the nonparametric t-test against the taxonomic data extracted from QIIME49. The sig-
nificance level to threshold (P value) was set at 0.05. Phylogenetic trees were calculated using the Maximum 
Likelihood method (Tamura-Nei model) with 500 bootstrap replicates in MEGA550.

To generate a synthetic metagenome, the observed 16S rDNA sequences were clustered into a collection of 
OTUs using the pick closed reference otus.py script in QIIME. The resultant biom-formatted OTU table was first 
normalized with respect to inferred 16S rRNA gene copy numbers and then used to predict metagenomic func-
tional content based on the software package Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt)17. This computational approach exploits the relationship between phylogeny and 
function by combining 16s data with a database of reference genomes (Greengenes) to predict the presence of 
gene families. Functional predictions were exported as KEGG orthologs.

To show that E. mundtii is associated with the field population of S. littoralis, a primer specific for E. mundtii 
was utilized to screen for the symbiont using diagnostic PCR reactions (Table 2)51. PCR amplifications were con-
ducted on a Mastercycler Gradient Thermocycler (Eppendorf, Germany) using 20 μL reactions, including 1 μL of 
DNA template, 1 ×  PCR buffer [20 mM Tris-HCl (pH 8.4), 50 mM KCl ], 1.5 mM MgCl2, 200 μM dNTPs, 0.5 μM 
of each primer, and 0.1 μL of Taq DNA polymerase (18038, Invitrogen). The following cycle parameters were 
used: 3 min at 94 °C, followed by 35 cycles of 94 °C for 45 s, 60 °C for 30 s, and 72 °C for 1 min, and a final extension 
time of 10 min at 72 °C.

Deposition of nucleotide sequences. The sequences obtained in this study were deposited in the 
GenBank short-read archive (SRA), accession number SRR2886919 and 3260963.
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INTRODUCTION

Insects are the most abundant and diverse animal class on Earth, and they are associated with an
amazing variety of symbiotic microorganisms, which participate in many relationships with the
hosts (Douglas, 2015). For example, the fungal symbiont (Leucoagaricus gongylophorus) of leaf-
cutting ants produces diverse enzymes for the degradation of plant material (Kooij et al., 2016).
Similarly, Bacillus pumilus isolated from the gut of wood boring Mesomorphus sp. (Coleoptera:
Tenebrionidae) exhibits significant cellulolytic and xylose isomerase activities (Balsingh et al.,
2016).

The Lepidoptera, including moths and butterflies, is one of the most widespread and widely
recognizable insect orders in the world. Although butterflies and moths play an important role
in the natural ecosystem as pollinators and as food in the food chain, their leaf-chewing larvae
are often problematic in agriculture, as their main source of food is live plants (Mithöfer and
Boland, 2012). The leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) is a highly polyphagous
lepidopteran pest found worldwide and also an important model system used in a variety of
biological research. Recent extensive surveys of its microbiome reveal that Enterococcus mundtii
is one of the predominant gut microorganisms of S. littoralis and present at high frequency (Tang
et al., 2012; Chen et al., 2016; Teh et al., 2016). Particularly, a stable isotope labeling-based approach
suggested that this phylotype was also highly metabolically active inside the host across life history
of S. littoralis, indicating the significant role played by E. mundtii in host biology (Shao et al.,
2014). Therefore, the symbiotic E. mundtii probably constitutes a key factor for the success of this
generalist herbivore in adapting to different environments and food sources. The aim of this study
was to produce a genome sequence of the strain SL 16, which would assist in understanding of the
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coevolution of the microbe and the insect host. The dataset
has been submitted to NCBI Whole Genome Shotgun (WGS)
projects and is reported here, providing an overview of the
genome sequence and relevant features of gut symbiotic E.
mundtii.

MATERIALS AND METHODS

Isolation of the Bacterial Strain
E. mundtii strain SL 16 was isolated from the mature 5th
instar larva using standard microbiology methods. Briefly, the
normal larvae were washed and sedated on ice for at least
1 h to anesthetize them. Then the whole gut sections were
dissected from larvae using a fine Vannas scissor and forceps
under a binocular microscope (Shao et al., 2013). The fresh gut

FIGURE 1 | Images of E. mundtii from S. littoralis reveal bacterial gut localization and phenotypic characteristics. (A) Phase-contrast micrograph and (B)

FISH with a FITC-labeled Enterococcus-specific probe (green) show a high density of bacterial cells adhere on the mucus layer lining the gut epithelium. Star indicates

the gut lumen, arrowhead indicates the gut epithelium tissue, and arrow indicates bacteria. (C) Photomicrograph of source organism on Enterococcus selective agar.

2, 3, 5-Triphenyltetrazolium chloride (TTC) in the agar is reduced to insoluble formazan inside the bacterial cells, which gives pink or red coloration to colonies. (D)

Scanning electron micrograph of E. mundtii SL 16, showing cell division.

tissues were put into phosphate buffered saline (PBS: 137mM
NaCl, 10mM Na2HPO4, 2mM KH2PO4, and 2.7mM KCl) and
homogenized by hand with a sterile pestle. Bacterial isolates
were made by plating the homogenized gut tissues on the
Enterococcus Selective Agar (45183, Fluka). After incubation for
24 h at 30◦C, the growing bacterial colonies were sub-cultured
twice on the same agar medium. 2, 3, 5-Triphenyltetrazolium
chloride (TTC) in the medium is reduced to insoluble formazan
inside the bacterial cells, which gives pink or red coloration
to enterococcal colonies. These purified enterococcal colonies
were tested for key phenotypic traits including carbohydrate
fermentation capability, motility, and pigment production as
previously described (Manero and Blanch, 1999). Furthermore,
the taxonomy was validated by colony PCR and sequencing of
the amplified 16S rRNA gene. The representative E. mundtii
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isolate, designated strain SL 16, was selected for this WGS
project.

Fluorescence in situ Hybridization (FISH) was applied to
localize the dominant enterococci as previously described (Shao
et al., 2014). Shortly, FISH was performed on 5μm thin cross
sections of the cold polymerizing resin (Technovit 8100, Heraeus
Kulzer GmbH, Wehrheim, Germany) embedded gut tissue. The
specificity of probes was tested and hybridization condition
was achieved as described (Tang et al., 2012). The sample
was hybridized with 1.5mM FITC-labeled Enterococcus-specific
probe in hybridization buffer containing 900mM NaCl, 20mM
Tris-HCl (pH 8.0), 20% formamide, 1% SDS. And images were
taken with an Axio Imager Z1 microscope (Carl Zeiss, Jena,
Germany). For scanning electron microscopy (SEM), cells were
fixed in paraformaldehyde (1%), and glutaraldehyde (0.25%),
dehydrated by ascending alcohol series and dried. After coating
samples with gold, scanning electron micrographs were taken
with a LEO 1525 instrument (Carl Zeiss, Jena, Germany).

Genomic DNA Isolation, Library

Preparation and Sequencing
The genomic DNA was extracted from the cultured bacterium
according to Pospiech and Neumann (1995). DNA quality
was examined by 1% agarose gel electrophoresis and
quantified using a NanoDropTM spectrophotometer. The
DNA library was constructed using the TruSeqTM DNA
Sample Preparation Kit (Illumina Inc., San Diego, CA), and
5μg of pure genomic DNA was prepared for a standard
Illumina shotgun library construction. Briefly, genomic
DNA was first sheared to a size ranging between 400 and
500 bp using the Covaris M220 per the manufacturer’s
recommendations. The fragmented DNA sample was end-
repaired, dA-tailed, and ligated to multiplex adapters according
to the manufacturer’s instructions. The ligated products were
purified and further enriched using PCR. The quality of the
final amplified libraries were checked by running an aliquot
(1μL) on a high-sensitivity Bioanalyzer 2100 DNAChip (Agilent
Technologies). Paired-end sequencing was performed by using
an Illumina MiSeq platform (Illumina Inc., San Diego, CA) at
Majorbio Bio-pharm Technology Co., Ltd (Shanghai, China)
according to the manufacturer’s instructions (Zhang et al.,
2016).

Preprocessing and Genome Assembly
The quality of sequence reads was evaluated using the FastQC
tool as previously described (Balsingh et al., 2016). Reads with
>10% Ns and/or 25–35 bases of low quality (≤Q20) were filtered
out, and adapter and duplication contamination were removed
as well as read ends were trimmed off. The filtered reads were
assembled with Short Oligonucleotide Analysis Package (SOAP)
de novo version 2.04 using a range of k-mer sizes (Li et al., 2009).
Then GapCloser version 1.12 was used to close any internal gaps
in the optimal scaffolded assembly. Repeats were predicted by
RepeatMasker and Tandem Repeats Finder (TRF) tools (Rédou
et al., 2016). Barrnap version 0.4.2 and tRNAscan-SE version
1.3.1 were employed to predict rRNAs and tRNAs respectively.
The genome was annotated using Glimmer version 3.02

(Xu et al., 2014). The Clusters of Orthologous Groups of proteins
(COG) categories were assigned to the SL 16 genome annotation
using blastp (BLAST 2.2.28+) against the COG genes collection
(Von Mering et al., 2005). The translations of the identified
coding sequences (CDSs) were also used to search against the
Protein family (Pfam) database with E-value cut-off of 1-e5. The
metabolic pathway analysis was constructed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2014).

INTERPRETATION OF DATA SET

Whole Genome Sequencing of E. mundtii

SL 16
Large amounts of E. mundtii closely adhere to the mucosal
layer of S. littoralis gut epithelium, where they form a biofilm-
like structure (Figures 1A,B). Strain SL 16 displays characteristic
phenotypes of E. mundtii. It grows well on Slanetz and Bartley
medium (Slanetz and Bartley, 1957), producing smooth, circular,
glistening colonies (Figure 1C). The bacterial cells are 0.5–
1.0μm in diameter, and occur in the form of pairs (Figure 1D).
Strain SL 16 could utilize various carbon sources, including
xylose, cellobiose, and sucrose (Table 1).

Sequencing the genome of E. mundtii SL 16 produced a raw
data set of 1,764,821,160 total bases. During the quality control,
Illumina PCR adapter reads and low-quality reads were removed,
and a total of 3,469,570mate-pair reads (total bases 1,698,525,052
bp) were retained. The cleaned sequence reads were assembled
with a k-mer setting of 125, which was determined by the
optimal assembly result. The resulting genome sequence has an
estimated size of 3,296,585 bp and a G+C content of 38.36%.
43,977 bp were repeats as predicted by RepeatMasker and
TRF tools, which constituted 1.33% of the entire assembled
genome.

TABLE 1 | E. mundtii SL 16 genome resources and characteristics.

Name Genome

resources/characteristics

1 NCBI Bioproject ID PRJNA337899

2 NCBI Biosample ID SAMN05513637

3 NCBI Genome Accession Number MCRG00000000

4 Sequence type Illumina Miseq

5 Total number of Reads 3,515,580

6 Overall coverage >100x

7 Estimated genome size (bp) 3,296,585

8 GC content (%) 38.36

9 Average of gene length (bp) 889

10 Protein coding genes 2939

11 tRNA coding genes 59

12 Motility Non-motile

13 Cellobiose metabolism Positive

14 Xylose metabolism Positive

15 Arabinose metabolism Positive

16 Sucrose Positive
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A total of 3125 genes with sequence length of 2,780,928
bp were predicted, which account for 84.4% of the genome,
and 59 tRNA genes were identified by tRNAscan-SE. CDSs
were searched against the NR, GO, string, Swiss-Prot, COG,
and KEGG databases to analyze gene functions and metabolic
pathways. In all, 1493 CDSs were assigned to COG families
and 1411 CDSs were included in 154 pathways. Several
physiological traits that may explain the successful adaptation
of this bacterium to the environment of the gut have
been found. In particular, a large amount of the coding
capacity encountered in the genome of SL 16 (almost
12%) is dedicated to genes assigned to functions related to
carbohydrate transport and metabolism, which matches well
with the observed physiological characteristics of this strain
(Table 1). This feature is shared with other colonic inhabitants,
such as Bacteroides fragilis (Flint et al., 2008), and reflects
the ecological niche of the organism presented inside a
herbivore gut. The genome encodes several ABC-type sugar
transporters, sugar-binding proteins, and a rich suite of glycosyl
hydrolases, such as β-N-acetylhexosaminidase, α-galactosidase,
β-glucosidase, β-galactosidase, and α-glucosidase. Moreover, the
pyruvate dissipation pathways predicted for SL 16 include the
capacity to produce L-lactate and several other fermentation
metabolites, like short-chain fatty acids formate and acetate.
This metabolic flexibility is expected to aid in efficient digestion
and conversion of plant saccharides, thus promoting host
development.

In conclusion, here we report a 3.30 Mbp draft genome
sequence of E. mundtii strain SL 16, isolated from the generalist

herbivore S. littoralis. The final de novo assembly is based on 1765
Mbp of Illumina data which provides an average coverage of 535
×. Analysis of the genome shows high correlation between the
genotypes and the phenotypes.

Direct Link to Deposited Data and

Information to Users
The dataset submitted to NCBI include the assembled
consensus sequence of E. mundtii SL 16 in Fasta
format. The genome sequence can be accessed at
DDBJ/EMBL/GenBank under the accession no.MCRG00000000.
This paper describes the first version of the genome
(https://www.ncbi.nlm.nih.gov/nuccore/MCRG00000000).
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6. Unpublished results Part I 

Introduction 

The lactic acid bacteria (LAB) are potential organisms for metabolic engineering due to 

small genomes and relatively simple metabolisms. Insect guts are a common place for plasmid 

transfer and transconjugation between bacterial strains (Watanabe and Sato, 1998). It has been 

reported that plasmid transfer occurs between strains of B. thuringiensis in G. mellonella and S. 

littoralis (Jarrett and Stephenson, 1990).  

The allelic exchange is the usual method to generate chromosomal integration in LAB. 

The construction of flanking regions of homology is required for allelic exchange with the target 

gene on the chromosome. Several studies have shown successful integration of target genes in 

bacterial chromosomes through homologous recombination. A successful expression of gfp in 

bacteria requires the gene to be stably maintained. The expression of GFP using plasmids 

requires antibiotic as selection pressure which is quite cumbersome especially in in vivo 

applications. In addition to the construction of plasmid-borne GFP (Article I), I constructed a gfp 

gene cassette that was integrated into a target gene on the chromosome of E. mundtii by 

homologous recombination. The DNA-entry nuclease gene (nuc) was identified as potential 

target gene for integration without hampering the growth of E. mundtii.                         
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Results 

Construction of GFP expression vector by homologous recombination 

In this thesis, the shuttle vector pTRKH2 (O'Sullivan and Klaenhammer, 1993) was used 

as the cloning vector as illustrated in Figure 6.1. This plasmid is an E. coli-gram positive bacteria 

shuttle vector. It replicates through theta-mode of replication with a size of 6.7 kb. In addition, it 

contains a p15A origin of replication for E. coli and a pAMβ1 origin of replication for gram 

positive bacteria. It encodes an erythromycin resistance gene (Emr) as a selection marker.   

                                    

                                  

Figure 6.1. Map of the shuttle vector pTRKH2. The plasmid carries lacZα sequence containing a 

multiple cloning site (MCS) for target gene insertion.   
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Figure 6.2. Workflow on the construction of recombinant cloning vector containing target gene 

of interest. The target gene DNA entry nuclease (nuc) was ligated to the plasmid vector 

pTRKH2.   
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Figure 6.3. Integration of gfp gene flanked by upstream and downstream of nuc gene sequences 

on the chromosome of E. mundtii by homologous recombination.  

 

 All primers are listed in Table 6.2. The recombinant pTRKH2 containing nuc and gfp 

fragment was constructed as shown in Figure 6.2 and Figure 6.3. The entire PCP25-RBSII-

gfpmut3-T0-T1 terminator gene cassette (1.7 kb) was amplified from plasmid pCM18 (Hansen et 

al., 2001) by using primers ForCP25 and RevTT that contain the restriction sites SpeI, 
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respectively (Figure 6.4B). The target gene for homologous recombination was DNA-entry 

nuclease (nuc) as described (van Zyl et al., 2015). The nuc gene (0.72 kb) was amplified from 

genomic DNA of E. mundtii with primers ForEmuN and RevEmuN containing the restriction 

sites XbaI and BamHI, respectively (Figure 6.4A). Initially, the nuc gene was ligated to the 

pTRKH2 shuttle vector (Figure 6.2). The recombinant plasmid pTRKH2-nuc was transformed 

into Escherichia coli DH5α and erythromycin resistance transformants were isolated. The 

presence of target gene in the recombinant plasmid was screened by PCR with primers ForEmuN 

and RevEmuN. The nuc gene was successfully amplified showing the success of ligation at XbaI 

and BamHI sites of pTRKH2 plasmid.  

 Positive pTRKH2-nuc plasmid was digested at a single restriction site SpeI for gfpmut3 

gene cassette insertion which was digested with the same enzyme prior to ligation with T4 DNA 

ligase. The ligation mixture was introduced into electrocompetent E. coli DH5α and E. mundtii 

through electroporation. Bacterial transformants with erythromycin resistant phenotype was 

selected. Primers ForEmuN and RevTT were used to screen for integration of nuc-gfpmut3-nuc 

gene cassette in the chromosome of E. mundtii. I could visualize high fluorescence from 

transformants of E. coli (Figure 6.5A), however, no fluorescent from E. mundtii (Figure 6.5B) by 

fluorescence microscopy. Although no fluorescence could be detected for E. mundtii 

transformants, further screening by PCR has shown that partial nuc and gfpmut3 gene fragments 

were amplified (Figure 6.4C), suggesting the likelihood of gfpmut3 being inserted in a specific 

site of nuc gene. Sequencing is necessary to verify those PCR amplicons. It is likely that E. 

mundtii transformants could either contain the autonomous plasmids or integrated but 

recombined gfpmut3 gene cassette. To further confirm whether the PCP25-RBSII-gfpmut3-T0-T1  
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gene cassette was successfully integrated into E. mundtii chromosome, I screened for the 

presence of nuc gene. However, I could amplify a 720 bp fragment of nuc gene from genomic 

DNA. This shows that the nuc gene was not knocked out and no homologous recombination 

occurred. 

  

Table 6.1. Bacterial strains and plasmids 

Strain or plasmid Description Reference or source 

Strains 

 

Escherichia coli  

 

DH5α  

 

 

 

 

Host strain for subcloning 

 

 

 

 

 

Lab stock 

DH5α pTRKH2nuc Contains pTRKH2nuc plasmid 

 

This study 

Enterococcus mundtii 

 

KD251 

 

 

 

Isolated from the gut of S. littoralis 

 

 

Lab stock 

KD251 pTRKH2nucgfpmut3 Contains pTRKH2nucgfpmut3 plasmid; 

Emr 

This study 

Plasmids 

 

pCM18 

 

 

E. coli-LAB shuttle vector; Emr   

 

 

 

Hansen et al., 2001 

pTRKH2 6.7 kb; E. coli-LAB shuttle vector; Emr; 

p15A and pAMβ1 origin of replication 

O’Sullivan and 

Klaenhammer, 1993 

(Addgene # 71312) 

 

pTRKH2nuc Plasmid carrying E. mundtii KD251 DNA-

entry nuclease gene (nuc); Emr  

 

This study 

pTRKH2nucgfpmut3 E. coli-LAB shuttle vector with PCP25- 

RBSII-gfpmut3-T0-T1 terminator; Emr 

This study 
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Table 6.2. Primers used in this study 

Target Primer Sequence 5’ to 3’ Restriction 

sites 

Product 

size (bp) 

nuc ForEmuN 

 

RevEmuN 

TCATCTAGAACAAAAAAACAACCAAAACAATCATAG 

 

TCTGGATCCTTAGCTTGCCCCGTTTGATAG 

 

XbaI 

 

BamHI 

720 

PCP25-

RBSII-

gfpmut3

-T0-T1 

 

ForCP25 

 

RevTT 

TCAACTAGTCTTTGGCAGTTTATTCTTG 

 

GAACTAGTAGCGGCGGATTTGTCCT 

SpeI 

 

SpeI 

1700 

 

 

       

Figure 6.4. PCR amplification of several target genes. 1 kb Plus DNA ladder (Thermo Fisher 

Scientific) was used as marker. (A) nuc gene was amplified from genomic DNA of E. mundtii 

with primers ForEmuN and RevEmuN. (B) PCP25-RBSII-gfpmut3-T0-T1 gene cassette was 

amplified from pCM18 plasmid with primers ForCP25 and Rev TT. (C) Three fragments of 

various sizes (1.2 kb, 0.72 kb and 0.35 kb) were amplified with primers ForEmuN and RevTT, 

implying the insertion of gfpmut3 gene cassette within nuc gene on the plasmid in E. mundtii.     
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Figure 6.5. Fluorescence micrograph of bacteria harboring recombinant plasmid 

pTRKH2nucgfpmut3. (A) The recombinant E. coli DH5α was highly fluorescent, indicating the 

presence of gfpmut3 gene on the plasmid. (B) Although the same recombinant plasmid was 

electroporated into E. mundtii, however, no fluorescence was detected. Scale bars: 10 μm. 

Magnification, 400X.        
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7. Unpublished results Part II 

Introduction 

The gut bacteria of S. littoralis consists of a core microbial community predominated by 

E. mundtii across different life stages of the insect. However, the molecular mechanism of this 

successful colonization is unknown. The identification of bacterial diversity alone is not enough 

to decipher the ecological roles between gut symbionts and their host insect. Therefore, more 

powerful molecular approach notably the high throughput transcriptome sequencing, RNA-seq is 

necessary to gain better understanding of the bipartite symbiont-host interactions. Together with 

Tilottama Mazumdar, I analyzed the whole transcriptome of E. mundtii during interaction with 

the foregut and hindgut epithelial cells of the host insect. The GFP-tagged E. mundtii was 

integrated in the gut microbiome, and recovered using cell sorter (FACS). All results shown were 

based on two biological replicates for in vivo samples and three biological replicates for in vitro 

broth culture samples (control). 

 

Results         

Table 7.1. Number of Illumina reads aligned to the reference genome of E. mundtii QU25 using 

Tophat         

Sample Input (reads) Aligned pairs 

(reads) 

Aligned pairs (%) 

Foregut 1 (F1) 13949493 2419614 17.60 

Foregut 2 (F2) 10562548 6274715 59.40 

Hindgut 1 (H1) 9491522 2609448 27.50 

Hindgut 2 (H2) 9161970 4316215 47.10 

Control 1 (C1) 9386723 3904877 41.60 

Control 2 (C2) 9854743 3813786 38.70 

Control 3 (C3) 9733545 4691569 48.20 
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Figure 7.1. Differentially expressed genes of E. mundtii in the foregut and hindgut of S. 

littoralis. The fold-change (FC) values between control and in vivo samples were based on log2 

FC ≥ 2, p < 0.05.  

 

A total of 119 bacterial genes (83 up-regulated; 36 down-regulated) and 86 genes (72 up-

regulated; 14 down-regulated) were differentially expressed (DEGs) in the foregut and hindgut 

of S. littoralis, respectively (Figure 7.1). These genes were further enriched for COG annotation. 

COG analysis showed the DEGs were grouped in 20 pathways. The largest COG groups were 

‘carbohydrate transport and metabolism’ (283 genes), followed by ‘transcription’ (224 genes), 

‘replication, recombination and repair’ (160 genes), ‘translation, ribosomal structure and 

biogenesis’ (158 genes), ‘amino acid transport and metabolism’ (150 genes), and others (Table 

7.2). A striking up-regulation of genes was observed for several COG categories in the hindgut 

more than that of the foregut, including defense mechanisms, cell wall/membrane/envelope 

biogenesis, inorganic ion transport and metabolism, amino acid transport and metabolism, signal 

transduction mechanisms, and replication, recombination and repair. The induction of some of 

the bacterial genes in these pathways showed that the hindgut is a nutrient-limited environment. 
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 KEGG database was searched for metabolic pathways used by E. mundtii for adaptation 

to gut environment. Pathway analysis is essential to explore the biological function of the genes 

at transcriptome level. Among up-regulated pathways in the foregut and hindgut were starch and 

sucrose metabolism, phosphotransferase system (PTS), biosynthesis of secondary metabolites, 

pyrimidine metabolism, purine metabolism, fructose and mannose metabolism, quorum sensing, 

and ABC transporters. In contrast, down-regulated pathways involved biosynthesis of antibiotics, 

carbon metabolism, biosynthesis of amino acids, and fatty acid metabolism and biosynthesis 

(Figure 7.2). More details about the genes involved in the metabolic pathways can be found in 

the general discussion (section 8.5).        

 

Table 7.2. Number of genes that are differentially expressed based on Clusters of Orthologous 

Groups of protein (COG) classifications 
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Figure 7.2.  Comparison of KEGG pathways for the transcriptome sequences of E. mundtii in 

the foregut and hindgut of S. littoralis. (A) Up-regulated pathways. (B) Down-regulated 

pathways.   
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8. General discussion 

8.1 Construction of GFP reporter bacteria 

I constructed several strains of fluorescent E. mundtii, which were transformed with 

plasmid-containing gfp controlled by different promoters (Article I). I showed that the plasmid-

based approach could be electro-transformed easily into E. mundtii with stable GFP fluorescent 

detection during its integration in the gut of the insect host, S. littoralis. The selection of an 

appropriate promoter to achieve a high level of GFP expression is crucial. Therefore, the use of 

constitutive or native-based promoters would be favorable, as these promoters could ensure the 

constant production of the target protein, especially in the gut environment. Several studies using 

homologous promoters have been reported to achieve efficient gene expression as the 

transcriptional signal induced by native promoters is recognized by the host bacteria (Chouayekh 

et al., 2009, Fang et al., 2008). Bacteria with the gfp gene cloned downstream of a native 

constitutive promoter express GFP efficiently in the broth culture (Article I, Figure 1A).   

In addition, to reduce the use of antibiotic for plasmid maintenance in the bacterial cells, I 

have also constructed a gfp gene cassette integrated into a specific target gene on the 

chromosome of E. mundtii (Unpublished results part I). The construction of recombinant plasmid 

with a PCP25-RBSII-gfpmut3-T0-T1 gene cassette flanked by upstream and downstream of target 

gene sequence (nuc) was successfully constructed in E. coli DH5α, resulted a highly fluorescent 

recombinant bacterium (Figure 6.5A). The same plasmid construct was introduced into E. 

mundtii, however, did not result in any fluorescence (Figure 6.5B), implying failure of 

homologous recombination to occur on the chromosome. Insertion of foreign gene (gfp) could 

pose a toxic effect; therefore, a rejection mechanism is induced to safeguard the bacterial 

metabolism. However, partial sequences of gfp flanked by nuc gene were detected by PCR, 
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showing ligation was successful probably on the plasmid (Figure 6.4C). Perhaps, the pTRKH2 

shuttle vector or the promoter PCP25 or the gfp variant may work on other bacteria but not for E. 

mundtii.  

Fluorescence imaging based on GFP protein is an emerging method to monitor 

microorganisms in live organism. The development of fluorescent microorganisms is particularly 

important to allow live monitoring of its survival and persistence in the host organism. In vivo 

imaging is a popular non-invasive method to track bacterial proliferation in animals. This 

technique has been widely used in bacterial infection studies involving Salmonella typhimurium, 

Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus among others 

(Doyle et al., 2004).  

Apart from fluorescent protein imaging, fluorescence in situ hybridization (FISH) has 

also been used in microbial ecology, for example to monitor localization of bacteria within the 

intestinal mucus of the mouse (Johansson et al., 2008). FISH is developed based on the design of 

specific primers or probes to target the unique regions of the 16S rRNA gene of a bacterial 

species. Our lab also uses FISH to track the colonization of E. mundtii in the intestinal tract of S. 

littoralis (Shao et al., 2014, Tang et al., 2012). However, this method has a limitation in which 

the bacterial cells labeled with probes become non-viable, and thus are non-recoverable using 

flow cytometer (FACS). Therefore, molecular method of labelling the bacterial with GFP is 

more suitable for the next aim of my PhD thesis that is to identify the global gene expression of 

E. mundtii living within the gut of S. littoralis.      

Several methods have been used to introduce exogenous DNA into microbial cells; these 

include chemical treatment, electroporation, the use of a biolistic gun, ultrasound, polyethylene 

glycol, microwave and hydrogel (Singh et al., 2010). Of all the methods, electroporation is the 
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most efficient to transform many microorganisms. Electroporation is one of the transformation 

techniques for the rapid introduction of foreign DNA like plasmid into bacteria. The method uses 

an electric pulse that forms pores on the bacterial cell walls so that DNA can pass into the cell. In 

recent years, numerous lactic acid bacteria have been transformed using electroporation (Rixon 

and Warner, 2003). The success rate of electro-transformation depends on the permeability of the 

cell wall that allows sufficient DNA to enter the cell. In some cases, to improve electro-

transformation efficiency, the cell wall is weakened by chemicals such as pretreatments with 

lysozyme (Rodriguez et al., 2007), threonine (Dornan and Collins, 1990), penicillin G (Wei et 

al., 1995), ethanol (Assad-Garcia et al., 2008), and glycine (Thompson and Collins, 1996). The 

cell wall weakening chemicals are effective only for certain bacteria species and not others. The 

electro-transformation efficiency of Lactococcus lactis was affected by several parameters such 

as the growth phase and cell density, the medium, the plasmid concentration, and the electric 

field strength (McIntyre and Harlander, 1989). The outcomes are different depends on the 

adjustment of these parameters. Hence, the protocol of electro-transformation needs to be 

optimized. 

  

8.2 Niche-specific colonization of the gut microbiota 

The variation of insect gut with its extreme physicochemical conditions (oxygen, pH and 

redox potential), defensive compounds secreted by the immune system and constant change in 

gut contents due to molting and metamorphosis all can affect the colonization of 

microorganisms.  

It has been shown that the largest group of microorganisms is found in the hindgut in 

most insects. Microorganisms live in the hindgut benefit by the metabolites and ions transported 
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from the Malpighian tubules into the hindgut. The hindgut stores the nitrogenous waste and food 

waste possibly serve as nutrients for insect gut bacteria (Engel and Moran, 2013). The microbiota 

in the ileum of the hindgut of termites and scarab beetles metabolize plant polysaccharides into 

components that can be used by the insect (Brune and Kühl, 1996, Huang et al., 2010). In 

addition, some forms of structures like spines and plates of the hindgut are favorable for 

microbes to bind (Brune, 2006). In contrast to the hindgut, the midgut is more unfavorable for 

microorganisms to live in. Many antimicrobial peptides (Lemaitre and Miguel-Aliaga, 2013), 

dual oxidase enzyme (DUOX: NADPH oxidase) (Ha et al., 2005), and digestive enzymes 

(lysozymes) (Shanbhag and Tripathi, 2009) are secreted by the midgut epithelium cells of D. 

melanogaster.  

In some insects, the pH of the gut is highly acidic with pH < 3 or highly alkaline (pH 8-

12) for larval lepidopterans (Funke et al., 2008), which kills many microorganisms. The 

peritrophic matrix in the insect midgut is responsible to prevent the invasion of microorganisms. 

In some cases, microorganisms can penetrate the matrix with the help of chitinases (Dostalova 

and Volf, 2012). The presence of peritrophic matrix might explain why fluorescent E. mundtii 

cells are confined in that compartment, possibly the mechanism utilized by the insect to protect 

the gut epithelium from microorganisms (Article I, Figure 4). Some insects do not have a 

peritrophic matrix. 

Spatial and temporal distribution of fluorescent E. mundtii was observed across all 

developmental stages, as well as in the foregut, midgut, and hindgut of S. littoralis, indicating its 

symbiotic relationship with the insect host (Article I, Figure 4). Data from the colony forming 

units (CFUs) showed that the density of fluorescent E. mundtii colonizing the gut of S. littoralis 

is relatively low in the foregut compared to the midgut and hindgut (Article I, Figure 5). This 
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phenomenon can be explained such that the microorganisms in the crop of the foregut can be 

present at high density compared to other gut regions (Kohler et al., 2012), but extremely 

unstable due to constant removal of food at this site. For examples, a bacterium, Candidatus 

Erwinia dacicola choose to live in the cephalic bulb of the olive fly Bactrocera oleae and the 

pathogenic bacterium, Xylella fastidiosa inhabits the foregut of the leafhopper Graphocephala 

atropunctata.  

The gut of S. littoralis is relatively simple with a straight tube in the absence of 

specialized structures called bacteriomes that harbor endosymbionts, such as in aphids, 

whiteflies, and other insects. The questions of how S. littoralis houses E. mundtii remain 

unknown as no compartment structures exist to protect the bacterium, for example the gut in the 

pupa is totally removed. The number of CFU counts of fluorescent E. mundtii remains extremely 

low in the pupa (data not shown). Similarly, this phenomenon has been shown in article II 

(Figure 1B), such that the diversity of bacterial phylotypes also decreases in the pupa. Several 

mosquito species that undergo metamorphosis show complete elimination of gut bacteria, 

especially in newly emerged adults (Moll et al., 2001). In article I, the symbiotic Enterococcus 

has been shown to be transmitted to the second-generation progeny, suggesting it co-evolves 

together with the insect host. The question of how a bacterial symbiont is transmitted from one 

generation to the next remains poorly understood. The symbiont that co-evolves with the host 

has a great chance to secure vertical transmission, for example the symbiosis between the aphid 

and endosymbiont Buchnera. One interesting point to highlight is that E. mundtii was transmitted 

in the eggs as its presence was detected during the tissue cross-sectioning (Article I, Figure 4G). 

It is not surprising that Enterococcus was also active in the gut and eggs of Manduca sexta 

(Brinkmann et al., 2008). Fluorescent bacteria were transmitted from the gut to the eggs in 
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Tribolium castaneum (Knorr et al., 2015).  It has been shown that the bacterial symbiont, 

Ishikawaella capsulata is vertically transmitted through smearing of eggs by the female 

stinkbug. The newly hatched juveniles acquire the symbiont by ingesting the egg case (Fukatsu 

and Hosokawa, 2002). 

   

8.3 The core gut microbiome 

The host organism selects its own core microbes, which differ from one organism to 

another (Kostic et al., 2013). For example, the light organ of the Hawaiian bobtail squid, 

Euprymna scolopes is stably colonized only by a specific V. fischeri strain obtained from the 

environment and not from other organism such as fish (Kostic et al., 2013). The human-

associated strains of Lactobacillus reuteri failed while the rat-associated strains could colonize 

the mouse gut (Frese et al., 2011). The bacterial symbionts of honey bees were unable to persist 

in the gut of bumble bees (Kwong et al., 2014).  

Similarly, in our study, we failed to introduce the fluorescent E. coli strain in the gut of S. 

littoralis (Wallstein, 2014). This is most likely due to the presence of 1 mmol of iron chelator, 8-

hydoxyquinoline-2-carboxylic acid (8-HQA) in the gut environment that inhibits E. coli growth. 

It has been shown that host genetics play important role in shaping the composition of core gut 

microbiota in zebrafish, apes, bees, termites, and Drosophila (Wong et al., 2013). The gut 

microbiome of insect is influenced by the host life stage, host phylogeny, and diet (Engel and 

Moran, 2013). Although diet causes major changes in gut microbial communities, however, a 

core microbiome remains stable. The indigenous gut bacteria of termites can adapt and live well 

in the gut of host termites (Husseneder and Grace, 2005). This is likely to be the reason that 
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causes the indigenous bacterium E. mundtii to persist well in the gastro-intestinal tract of S. 

littoralis.  

 It is common to find enterococci in the intestinal tract of lepidopteran larvae and other 

insects. The constant presence of enterococci signifies the unknown roles it plays towards the 

benefit of the host organisms. Apart from Enterococcus species, Clostridium sp. contributed to a 

large proportion of the gut microbiome of cotton leafworm (Tang et al., 2012). Thus far, the 

existence of Clostridium sp. in the late instar larvae has been unknown, but some of its function 

linked to cellulose degradation to help the insect to digest plant materials. It would be interesting 

to find out the interaction between Enterococcus and Clostridium, which remains obscure. 

Possibly, interaction in exchange of metabolites could occur between these two species of 

bacteria. 

 

8.4 Mechanisms of gastro-intestinal colonization 

Enterococci are well adapted to a wide range of environmental conditions, which make 

them one of the most successful gut commensals. The adverse conditions include variations in 

pH, temperatures, desiccation, and osmotic stress. All these variations are found in the gastro-

intestinal tract of animals and insects. The normal gut microbiota competes with pathogenic 

bacteria for nutrients and attachment sites on the gut epithelium (Tasteyre et al., 2001) through a 

phenomenon known as colonization resistance. For example, commensal E. coli competes with 

pathogenic enterohaemorrhagic E. coli for nutrients in the form of amino acids and sugar 

(Momose et al., 2008, Fabich et al., 2008). It has been observed that E. mundtii forms biofilm on 

the mucus layer of the gut epithelium, suggesting a protection mechanism against pathogens 

(Teh et al., 2016, Shao et al., 2014).  
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Another possible defense mechanism of LAB strains is the production of antimicrobial 

peptides or bacteriocins against other bacteria (Shao et al., 2017, Caplice and Fitzgerald, 1999). 

For instance, the pupal midgut of M. sexta secretes a lot of antimicrobial compounds, which 

completely wipe out most microorganisms (Russell and Dunn, 1996). This could be one of the 

reasons that only few or no fluorescent bacterial cells were detected in the pupae of S. littoralis 

(Article I, Figure 4E). It remains unknown on how the insect host distinguishes between 

beneficial microorganisms and pathogens. The commensal symbionts might develop mechanism 

to suppress host immune system through the absence of peptidoglycan (PGN) structure on the 

bacterial surfaces. The insect host secretes the pattern recognition receptors (PRRs) that 

recognize the PGN structure of bacteria. For example, insects activate the Imd defense pathway, 

which produce antimicrobial peptides in response to PGN of Gram-negative bacteria. A good 

example to explain this selection is through the study of endosymbionts in tsetse flies, which 

involves the activation of antimicrobial responses against trypanosomes (Wang et al., 2009). The 

tsetse fly maintains homeostasis with its symbiotic bacterium Wigglesworthia through the 

peptidoglycan recognition protein LB (PGRP-LB) (Wang et al., 2009). The PGRP-LB could 

neutralize the antibacterial response towards Wigglesworthia. In contrast, PGRP-LB and other 

effectors control pathogenic microbes through activation of the IMD pathway (Wang et al., 

2009). 

It has been shown that commensal bacteria inhibit pathogen colonization by altering the 

host environmental conditions, such as pH. For example, bacteria of the genus Streptococci or 

Enterococci produce lactic acid to decrease the pH in the intestinal tract of L. dispar (Kodama 

and Nakasuji, 1971). Some commensal bacteria produce short chain fatty acids (SCFAs), which 

change the intestinal pH to inhibit pathogens (Shin et al., 2002).  
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8.5 Survival and adaptation strategies of E. mundtii  

Microorganisms face environmental stresses, particularly those within the gastro-

intestinal environment. The mechanisms these bacteria use to adapt to stress were explored by 

constructing the fluorescent reporter E. mundtii. The dominance and persistence of E. mundtii in 

the gut motivates us to look deeper into their gene expression system. Therefore, it is important 

to unravel the mechanisms used by microorganisms living within the gastro-intestinal 

environment. The fluorescence-activated cell sorting (FACS) enabled us to recover the GFP-

tagged E. mundtii from a mixture of insect and other bacterial cells. The transcriptome data and 

differential gene expression of metabolic pathways were analyzed (Unpublished results part II).  

 Several E. mundtii genes encoding general stress protein (EMQU_1453, Ohr), universal 

stress proteins (EMQU_0268-EMQU_0269, EMQU_1232), and NADH peroxidase 

(EMQU_0459) were up-regulated under in vivo conditions. The Ohr has been shown to be 

involved in oxidative stress resistance in E. faecalis (Rince et al., 2001). Bacteria living within 

the host cells are exposed to reactive oxygen species (ROS) such as superoxide radicals, 

hydrogen peroxide, and hydroxyl radicals. Organisms produce antioxidants and enzymes to 

reduce oxidative damage. A gene encodes for manganese catalase (EMQU_0568) was up-

regulated. Catalases catalyze hydrogen peroxide into water and oxygen to reduce the formation 

of hydroxyl radical. Another enzyme fumarate reductase (EMQU_2110) was induced, implying 

its role in superoxide production to overcome oxidative stress. The gls24 (EMQU_1475) 

corresponds to stress and starvation was also induced.  

Several genes involved in iron transport were up-regulated, involving a ferric ABC 

transporter binding protein (EMQU_0143), ABC transporter permease (EMQU_0140-0141), and 

fetC (EMQU_0142), a ferric ABC transporter. The expression of fetC was higher in the hindgut 
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compared to that of the foregut. These genes (EMQU_0140-0143) were up-regulated when E. 

faecalis cells were grown in broth with limited iron conditions (Lopez et al., 2012). Moreover, a 

ferric uptake regulator family Fur was upregulated in the foregut (EMQU_1067).  

Several genes of the phosphoenolpyruvate-dependent phosphotransferase (PTS) systems 

for cellobiose, mannose, and fructose were up-regulated. Starch and sucrose metabolism was 

induced as the larvae were fed with foods enriched with this carbohydrate (Figure 7.2A). The 

ABS sugar transporters were also up-regulated. Several carbohydrate-active enzymes (CAZy) 

were up-regulated more in the foregut than the hindgut. This suggests that the foregut is rich in 

different carbon sources, which require hydrolysis activity of CAZy. Most of the enzymes fall in 

the category of glycoside hydrolases (EMQU_0608, EMQU_0344, EMQU_0389, 

EMQU_1435). The genome of E. mundtii encodes numerous glycoside hydrolases to digest 

complex carbohydrates (Article III). Strikingly, two genes encoding a chitin-binding protein 

(EMQU_0940, EMQU_1285) were highly up-regulated more in the hindgut than the foregut. It 

has been shown that chitinases and chitin-binding proteins promote bacterial adherence to chitin-

like molecules on the surface of mammalian cells. The chitinases secreted by L. monocytogenes 

suppress host innate immunity (Chaudhuri et al., 2013).  

 Surface proteins are important for bacteria to interact with host cells. These proteins help 

bacteria to colonize and adhere to the gut epithelium of the host. A sortase enzyme 

(EMQU_2188) was up-regulated in the gut. Sortase enzymes function as cysteine transpeptidases 

that attach proteins on the cell surface or join proteins to form hair-like fibres called pili to 

promote bacterial adhesion (Hendrickx et al., 2011). Sortases are potential drug target candidates 

as many surface proteins they interact are possible virulence factors (Suree et al., 2007). 
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The production of antimicrobial substances from insects or their resident symbionts is a 

survival strategy to keep pathogens at bay. The dominant gut bacterium E. mundtii has been 

shown to up-regulate the expression of an antimicrobial peptide called mundticin KS immunity 

protein (EMQU_2392), which is a stable class IIa bacteriocin. It establishes a chemical barrier, 

which prevents colonization by other bacterial competitors.  

 E. mundtii showed down-regulation in the biosynthesis of amino acids and fatty acid 

metabolism and biosynthesis (Figure 7.2B). However, genes encode for peptidase 

(EMQU_2717) and ABC transporters to transport amino acids or oligopeptides (EMQU_0123, 

EMQU_0127) were up-regulated to compensate the need for amino acids. The down-regulation 

of fatty acid biosynthesis suggests that the insect supplies fatty acid to E. mundtii for cell wall 

biosynthesis.  

 In future works, transposon mutagenesis could be an alternative to transcriptomics in 

search for essential genes required for gut establishment. Also, the midgut is another potential 

site for studying bacterial adaptation due to robust metabolic activities to occur. 
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9. Summary 

Microbial symbionts are known to live in close associations with animals, plants, and insects. 

Insects harbor commensal microbes that provide the host with essential nutrients, aid in food 

digestion, and protection against pathogens. The cotton leafworm, Spodoptera littoralis 

(Lepidoptera: Noctuidae) is one of the most successful polyphagous insect pests that causes 

economic losses in agricultural industry. The gut microbial communities of S. littoralis are well 

characterized, and the insect is a popular model to study insect-microbe and microbe-microbe 

interactions. It is known that the gut of S. littoralis is predominated by Enterococcus mundtii and 

Clostridium sp. towards the late stage of larvae. However, the composition of gut microbiome of 

S. littoralis in other stages (eggs, pupae, and adults) was not defined in previous studies. The 16S 

rRNA amplicon sequencing based on DNA and cDNA levels has shown that E. mundtii was 

present in the eggs, pupae, and adults (Article II). Thus far, no study has been done to investigate 

the colonization of E. mundtii in the gut tissues across life stages of the host insect.  To gain 

better understanding of its survival strategies, GFP-tagged E. mundtii was constructed to track its 

colonization in the intestine throughout different stages of development (larvae, pupae, adults, 

and eggs). Fluorescent bacteria survived and proliferated in the intestinal tract of the insect for all 

life stages, eventually entering second generation offspring following ingestion (Article I). This 

shows that symbiotic bacterium was vertically transmitted from the mother to progeny. However, 

the adaptation mechanisms of symbiotic Enterococcus in the gut environment are unknown. 

Hence, we sequenced the genome of E. mundtii to better decode genes that are important for gut 

colonization (Article III). To better explore real-time metabolic activities, transcriptome analysis 

of bacteria isolated from the foregut and hindgut of the insect by RNA-sequencing was 

performed (Unpublished results part II). Our results showed that E. mundtii expressed some 
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genes involved in carbohydrate transport and metabolism, oxidative stress, cell adhesion, 

defense, and iron transport for adaptation to the gut environments. In the future, the mechanisms 

involved in the cross-talk between host and microbe will be investigated by analyzing the 

insect’s gut epithelium transcriptome. 
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10. Zusammenfassung 

Mikrobielle Symbionten leben in enger Gemeinschaft mit Tieren, Pflanzen und Insekten. 

Insekten beherbergen kommensalische Mikroben die den Wirt mit essenziellen Nährstoffen 

versorgen, beim Verdau von Nahrung behilflich sind und Schutz gegen Pathogene bieten. Der 

afrikanische Baumwollwurm, Spodoptera littoralis (Lepidoptera: Noctuidae), verursacht in Form 

polyphagischer Insektenplagen wirtschaftliche Verluste in der Agrarindustrie. Die mikrobiellen 

Gemeinschaften im Darmtrakt von S. littoralis sind gut charakterisiert, und das Insekt gilt als 

beliebter Modellorganismus um die Interaktionen zwischen Insekt und Mikroben und Mikroben 

untereinander zu studieren. Es ist bekannt dass die mikrobielle Gemeinschaft im Darm von S. 

littoralis im späten Larvenstadium von Enterococcus mundtii und Clostridium sp. dominiert 

wird. Die Zusammensetzung der Darmgemeinschaft während der restlichen Stadien (Ei, Puppe 

und Erwachsenenstadium) wurde bisher jedoch nicht untersucht. Im Rahmen dieser Arbeit ergab 

die Sequenzierung von 16S rRNA, basierend auf DNA- und cDNA-Amplicons, dass E. mundtii 

während der Stadien des Eis, der Puppe und im Erwachsenenstadium nachweisbar ist (Artikel 

II). Um einen besseren Einblick in die bisher unbekannten Überlebensstrategien dieser Spezies 

zu erlangen, wurden GFP-markierte E. mundtii-Bakterien eingesetzt um die Darmkolonisierung 

während der verschiedenen Entwicklungsstadien (Larve, Puppe, Erwachsenenstadium, Ei) zu 

verfolgen. Die fluoreszierenden Bakterien überlebten und kolonisierten den Darmtrakt des 

Insektes zu allen Entwicklungsstadien, und waren später in Nachfahren der Folgegeneration 

nachweisbar (Artikel I). Dies beweist dass der Symbiont vertikal von den Weibchen an die 

Nachfahren weitergegeben wurde. Der letzte Teil der vorliegenden Arbeit setzte sich mit den 

Mechanismen der Anpassung symbiontischer Enterococcus-spezies im Darmtrakt auseinander. 

Dazu wurde das Genom von E. mundtii mit dem Ziel sequenziert, die Gene, die an der 
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Kolonisierung mitwirken, zu identifizieren (Artikel III). Um die metabolische Aktivität in 

Echtzeit zu untersuchen wurde das Transkriptom von Bakterien die aus dem Vorder- und 

Enddarm isoliert wurden über RNA-Sequenzierung analysiert (nicht publizierte Ergebnisse Teil 

II). Die Untersuchung ergab dass an der Anpassung an den Darmtrakt Gene beteiligt und 

exprimiert werden, die in zahlreichen Stoffwechselwegen involviert sind, wie z. B. dem 

Transport und Stoffwechsel von Kohlenhydraten, oxidativem Stress, Zelladhäsion, Abwehr und 

Eisentransport. Folgearbeiten werden sich mit dem Mechanismus des Cross-Talks zwischen 

Insekt und Mikroben auseinandersetzen. Dies wird über die Analyse des Transkriptoms des 

Darmepithels des Insekts erfolgen. 
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