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1. General Introduction 
Terrestrial root systems are dynamic regulators of plant shoot physiology, morphology, 

biochemistry, flowering and synthesis of metabolites, both directly and indirectly. The root 

system of a plant maintains a continuous conductivity link to the stem and leaves and is a good 

model organ to study interactions with environmental factors that play essential roles in plant 

development and growth, biomass production, survival, and reproduction. Roots are subjected to 

many changing environmental aspects, which are commonly categorized into two broad areas: 

abiotic factors (e.g. temperature, soil moisture, ecohydrology, soil fertility, etc.) and biotic factors 

(e.g. pathogens, rhizobia, mycorrhizae, herbivores, etc.). Roots evolved diversified mechanisms 

to cope with multifaceted environmental factors and the interactions among them. In the last few 

decades, the development of advanced techniques, particularly in molecular biology, has 

facilitated a better understanding of the mechanisms by which plants perceive environmental 

signals, transmit these signals to cellular machinery to activate adaptive responses, and 

ultimately coordinate responses in molecular, biochemical and physiological aspects.  

1.1. Root architecture formation and developmental regulation 

The growth of a plant root results from a continuous and sustainable cell division process 

localized in the root apical meristem (RAM). After a few rounds of cell proliferation, root 

meristematic cells will progress exit the cell cycle, transition to elongation phases, and then 

differentiate. These successive stages ultimately confer a longitudinal formation to the root 

(Figure 1). Close to the root tip is the stem cell niche (SCN) with a quiescent center (QC), where 

a small group of peripheral stem cells forming a circuit are located, referred to as the 

“initials” (or “founders”). A specific root cell file derives from a specifically determined initial. 

Differentiation of stem cells ahead of the QC in the root tip gives rise to columella cells 

containing statoliths that are crucial to gravity sensing. Laterally, stem cells alongside the QC 

divide and symmetrically differentiate into the lateral root cap. Other stem cells determined by 

their own initials ultimately develop into cell files of stele, pericycle, endodermis, cortex and 

epidermis cells radially from the center to the exterior. The number of cells in each cell file 

differs by plant species, but root radial organization into concentric circles is conserved in all 
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land plants. In Arabidopsis thaliana, a  model plant with extensively studied root structure, only 

one layer of endodermal and cortical cells are present, and a lateral slice of the root reveals that 

each root stele contains two protoxylem at opposing sides and two protophloem half way 

between the protoxylems, also on opposing sides. This radially organized primary root pattern is 

genetically inherited from embryogenesis and the cell specification and patterning are post-

embryonically maintained, usually by the SCN and the precise engagement of phytohormones, 

peptides and reactive oxygen species (ROS) regulation (Willemsen & Scheres, 2004; De Smet et 

al., 2008; Matsuzaki et al., 2010). Here we recapitulate the importance of ROS signals and 

phytohormones including auxin, cytokinin and gibberellins in root development and growth.  

 

Fig 1. The root structure of Nicotiana attenuata is similar to that of the model plant 

Arabidopsis thaliana.  

A. Fine root structure of N. attenuata in a seedling, 7 days post-germination. B. Cellular 

organization on a proximal-distal axis of an A. thaliana root. MZ: meristem zone; EZ: elongation 

zone; DZ: differentiation zone. Scheme is adapted from Overvoorde et al. (Overvoorde et al., 

2010).  

1.1.1. Auxin 
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Auxin has long been known to orchestrate nearly all aspects of plant growth and development, 

across all organs and throughout a plant’s lifespan.  Auxin regulates root architecture formation 

through downstream agents of auxin signaling which interact with root transportation, production 

and conjugate inactivation. 

Indole-3-acetic acid (IAA) is the most bioactive form of auxin in plants and is mainly 

biosynthesized in young leaves and cotyledons through proposed tryptophan (Trp)-independent 

and -dependent pathways (Mashiguchi et al., 2011; Won et al., 2011). Though auxin has been 

identified as a growth regulator over centuries, a clear auxin biosynthesis pathway has still not 

been fully unraveled. For the hypothesized Trp-dependent pathways, potential branches to define 

the biosynthesis network include: 1) the IPA (indole-3-pyruvic acid) pathway, 2) the TAM 

(tryptamine) pathway, 3) the IAM (indole-3-acetamide) pathway and one specialized in 

Brassicaceae species, 4) the IAOx (indole-3-acetaldoxime) pathway. In the potential Trp-

independent pathway, IAA is proposed to be initiated directly from indole as a substrate instead 

of from Trp via mostly unknown steps. However, the inactivation process of IAA is simpler: like 

most phytohormones, oxidative conjugation is the most common catabolic process to inactivate 

IAA.  

The process of acropetal auxin allocation generally originates from production sites such 

as young leaves and results in accumulation of auxin in the roots. A model for the transportation 

of auxin during this process has been widely accepted to be the combination of two types of 

machineries defined by allocation distance. Long-distance (also known as long-range) 

transportation is dependent on the mature phloem, and mobilizes auxin mainly from the 

synthesizing locations of young shoot tissues to roots, similar to the allocation of carbohydrates 

from “source” to “sink” tissue. The second transport machinery complements this long-distance 

vasculature translocation by unloading and loading auxin cargo from the phloem and distributing 

it to the nearby tissues (Swarup et al., 2001; Marchant et al., 2002). This is known as short-

distance (or short-range) transportation and is a cell-to-cell transport system crossing through 

plasma membranes via specialized transporters dynamically docked on the membranes. In A. 

thaliana, three main classes of transporters were identified: influx carriers such as AUX1 
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(AUXIN RESISTANCE 1) and LAX (LIKE AUX), efflux carriers including PINs (PIN 

FORMED), and ABCB/MDR/PGP carriers (ATP-binding cassette group B/ multi-drug 

resistance/P-glycoprotein -like). These carriers mediate both influx and efflux, which coordinate 

to form a short-range transport system, referred to as polar auxin transport (PAT) [reviewed in 

(Friml, 2003; Reinhardt et al., 2003)].  This sophisticated transport system organizes a 

directional auxin flux loop that has been metaphorically called “inverted fountains”, and 

eventually form an auxin gradient mainly depending on the type of cells in the immediate area 

(i.e. creating the highest concentration of auxin in the QC). Interactive tuning between 

biosynthesis and mobilization ultimately ensures the status of auxin homeostasis.  

 In plant cells, free IAA brings one of the several nuclear receptors TRANSPORT 

INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) and members of 

transcriptional repressors AUX/IAA together as molecular glue. As subunits of ubiquitin ligase 

complex SCFTIR1 , TIR1/AFB belonging to an F-box component interact with Skp1 via its F-box 

motif. Instead of inducing conformational changes inTIR1 or AFB, such interaction leads to the 

complete assembly of a complex with two other components (Cullin and RBX1), which transfers 

activated ubiquitin to targeted proteins, namely AUX/IAA. With the ubiquitination by the 

proteosome, AUX/IAA is degraded, and previously repressed AUXIN RESPONSE FACTOR 

(ARF) transcription factors are sequentially released, ultimately activating down-stream 

responsive genes [reviewed in (Leyser, 2017)].   

 In the root, local auxin biosynthesis coupled with PAT is clearly engaged in balancing 

cell proliferation and differentiation along the apical-basal axis. An output from the interplay 

between biosynthesis and mobilization of auxin is represented by the gradient of auxin around 

the QC, where the highest levels of IAA in the QC result in minimal mitotic activity, and slightly 

reduced auxin content in the SCN still produces only a compromised level of mitotic activity. In 

contrast, in the meristematic zone (MZ), lower auxin levels relative to that in the SCN are 

positively associated with rapid cell proliferation, and these levels progressively decrease toward 

the basal axis of the root until they reach their lowest level at the onset of the transition zone 
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(TZ). This decreasing gradient is inversely correlated with cell proliferation (Grieneisen et al., 

2007).  

Through new developments in biochemistry and analytical chemistry techniques and 

technologies, the discovery of auxin synthetic analogues (e.g. NAA, 2,4-D), synthesis inhibitors 

(Yucasin, Kyn),  transport inhibitors (NPA),  and PINs trafficking inhibitors (BFA) has been 

made possible [reviewed in (Kerr & Bennett, 2007)]. Advanced optical visualization techniques, 

coupled with specific staining dyes or trackable proteins with florescence, and also isotopic 

labeling equipped with ultra-high resolution quantification methodologies, have remarkably 

improved the understanding of auxin biosynthesis and its transport from different aspects. In 

addition, forward and reverse genetic manipulation strategies coupled with improved 

computational methods largely help current research to better mechanically reveal the 

importance of auxin in plant growth and development.  

1.1.2. Cytokinins 

Cytokinins (CKs) are crucial regulators involved in plant’s environmental responses, growth and 

development, such as in the differentiation of the root and shoot [reviewed (Sakakibara, 2006)].  

CKs were discovered in 1955 as a class of adenine derivatives mainly enriched in 

juvenile tissues like shoot apical meristems (SAM), immature seeds, and young leaves [reviewed 

in (Amasino, 2005)]. In A. thaliana, they are biochemically classified into 4 groups depending on 

their chemical properties, specifically, their side chains: aromatic, isopentenyladenine (iP)-type, 

cis-zeatin-type (cZ)-type and transzeatin-type (tZ)-type. Only the iP and tZ CKs are derived from 

iP hydroxylation and are thought to be bioactive.  CK biosynthesis initiates with a rate-limiting 

step delivering an isopentenyl moiety from dimethylallyldiphosphate (DMAPP) to an adenine 

nucleotide (iP nucleotide) by IPT (ATP/ ADP-ISOPENTYL-TRANSFERASE) (Miyawaki et al., 

2004; Takei et al., 2004). Inactive forms of biosynthesized iP nucleotides include iPRTP, iPRDP, 

and iPRMP, and these can be converted to tZ nucleotides by cytochrome P450 monooxygenase 

(CYP735A). However, they are still inactive. Inactive tZ/iP nucleotide forms, including iPRMP 

and tZRMP, can be either directly converted to the bioactive freebase by LONELY GUY (LOG) 

proteins with a one-step reaction or by an activation process through a two-step reactions 
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(Kyozuka, 2007). Metabolic CK’s inactivation process mostly relies on the catabolic activity of 

the CYTOKININ OXIDASE/DEHYDROGENASE (CKX) protein family (Werner et al., 2001; 

Werner et al., 2003).Though it’s hard to distinguish the functional specificities between iP-type 

and tZ-type CKs, both types can be translocated to other tissues by subsets of nucleoside 

transporters and purinepermeases (Gillissen et al., 2000; Bürkle et al., 2003; Hirose et al., 2005). 

CK signals transmit via a two-components signaling pathway that involves three independent  

histidine kinase receptors (AHK2/3/4) docking on the plasma membrane that triggered the 

cascade of phosphorylation to successively phosphorylates ARABIDOPSIS RESPONSE 

REGULATORS (ARR) and subsequently activates AP2 transcription factors to progressively 

complete signaling transduction and eventually activate target genes (Hwang et al., 2012).  

CKs attenuate the size of the RAM mainly by accelerating differentiation rate of 

meristematic cells. Exogenous supplementation of cytokinins to plant roots negatively regulates 

the root meristem size (Dello Ioio et al., 2007), and in contrast, CK-biosynthetic deficient 

mutants or over-expressing CKX plants, which inactivate bioactive forms of CK, exhibit longer 

roots with clear increases in the number of  meristematic cells (Werner et al., 2003). The external 

supplementation of CKs does not appear to modify stem cell niche (SCN) activity or cell 

division rate of meristematic cells in the root tip, whereas CKs definitely affect the cell 

differentiation rate when specifically added to the vascular tissue at the MZ/EZ transition zone in 

the presence of auxin, causing an acceleration in cell differentiation in the distal meristem to 

enter transition zone/elongation zone (TZ/EZ) (Dello Ioio et al., 2007). Root responses to CKs 

are not linear: a small decrease in CK content or in the sensitivity of CK signaling can lead to an 

increase in root size, while a reduction beyond this threshold - such as complete depletion of CK 

presence in root or thorough block signaling transduction (e.g., ahk2/3/4) - may lead to an 

obvious inhibition in root growth.   

1.1.3. Gibberellins 

Gibberellins (GAs) regulate multiple aspects of plant growth and development such as root 

elongation and size modification of the RAM. GAs are biosynthesized and act mainly in rapidly 

growing tissues such as the tips of shoots and roots, developing flowers and seeds (Silverstone et 
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al., 1997). GA biosynthesis initiates from geranylgeranyl diphosphate (GGDP) and successive 

synthesis and oxygenation steps ultimately form a large number of products, of which only a 

small portion of GAs are biologically active (e.g., in A. thaliana, GA1, GA3, GA4 are active; of 

those, GA7 and GA4 are the most active forms). Bioactive GAs bind to the GIBBERELLIN 

INSENSITIVE DWARF1 (GID1) receptor with high affinity, whereas inactive GAs have nearly 

no affinity for this receptor. This binding leads to the degradation of DELLA proteins, commonly 

accepted as repressors of down-stream transcription factors that mediate GA responses and the 

regulation of their associated target genes (Sun & Gubler, 2004). GAs regulate root growth and 

development mainly by controlling cell proliferation and elongation in an DELLA-dependent 

manner. A decrease in endogenous GA content in plants through biochemical or genetic 

approaches causes the formation of shorter roots with reduced RAM size. The gai mutant in A. 

thaliana, which has a gain-of-function mutation and produces a stabilized DELLA which is not 

degraded when GA binds, displays inhibited root growth. It has been shown that bioactive GAs 

increase the size of MZ via the promotion of cell proliferation without interfering with SCN 

specification or activity (Ubeda-Tomás et al., 2009). 

1.1.4. Reactive oxygen species (ROS) 

Reactive oxygen species (ROS) are important signaling molecules and not only play a role in 

response to biotic and abiotic stress but are also critical for root growth and development 

(Gapper & Dolan, 2006).  In plants, superoxide (O2- ) is produced by NADPH oxidases (RBOH), 

and converted into H2O2 by superoxide dismutases (SODs) and other enzymes including 

apoplastic oxalate oxidase, diamine oxidase and class III peroxidases. H2O2 can be enzymatically 

catabolized to H2O by catalase (CAT), glutathione peroxidase (GPX), and ascorbate peroxidase 

(APX), or non-enzymatically consumed by Fenton reactions when Fe2+ is available, a reaction 

highly dependent on pH and other indicators of subcellular reactivity [reviewed in (Apel & Hirt, 

2004)]. As demonstrated by mutants in A. thaliana, the main ROS species appear to have their 

own zones of accumulation, and their homeostasis is genetically regulated by a bHLH 

transcription factor UPBEAT (UPB1); upb1 mutation in A. thaliana caused a longer primary 

roots resulting from the increase of meristem cell numbers and the increase of cell length in TZ/
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EZ. Chip-Seq helped to find direct target genes of UPB1, and these included a large set of 

peroxidases which led to a focus on ROS. As a result, it was found that in upb1 mutants, 

superoxides accumulate in the meristematic zone during root growth, while H2O2 presence 

decreases in the elongation/differentiation zone (Tsukagoshi et al., 2010). Additional evidence 

corroborated that amounts of superoxides in the MZ are highly associated with the number of 

meristem cells, while H2O2 appears to be negatively correlated to these cell numbers. From the 

investigation with upb1, it was demonstrated that a UPB1-regulated ROS balance modified root 

morphology in an auxin-independent way. Another genetic research study in A. thaliana reported 

MED25/PFT1 as a mediator that controls root hair differentiation and primary root elongation by 

regulating redox-related gene expression, which critically alter the balance of H2O2 and O2- 

(Sundaravelpandian et al., 2013; Raya-González et al., 2014) 

1.2. Nicotiana attenuata: a model system to study physiologically adapted 
responses to comprehensive environmental factors 

Fires are one of the major drivers of vegetative diversity and have occurred on Earth since the 

beginning of land plant existence. It is to be expected that plants have aquired a myriad of 

responses to benefit from fires, and in extreme cases, some plant species depend on fires to 

complete their whole life cycle when, for instance, they have fire-activated germination. Fires 

provide plants with unique environmental factors by removing canopies and leaf litter, therefore 

changing the light availability in both quality and quantity, and further, fertilize the soil with 

extra nutrients and moisture, which may modify the structures and members of peripheral 

microbe communities. Fire is an exothermic chemical process of combustion to rapidly oxidize 

substances, releasing heat, light, and various reaction products, which consequently confer a 

unique condition to selectively shape many characteristically fire-promoted biomes around the 

word (Baldwin & Morse, 1994; Baldwin et al., 1994; Lynds & Baldwin, 1998).  

Nicotiana attenuata, an annual wild tobacco species native to the Great Basin Desert of 

the United States, exists mostly as ephemeral near-monoculture populations which occur most 

abundantly in post-fire habitats but also exist in smaller persistent groups found in washes 

(Bahulikar et al., 2004). Dormant N. attenuata seeds from long-lived seed banks usually 
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germinate in sagebrush and pinyon-juniper areas when fires both remove allelochemicals in litter 

which may inhibit their germination, and provide smoke-derived germination cues that are 

permeate into the soil (Baldwin & Morse, 1994; Baldwin et al., 1994). The elements of these 

germination cues are easily transported by floods or wind to areas nearby to the burned area, 

though they are still predominantly contained within the burned area. In 2004, the main bioactive 

compound to promote seed germination in smoke was isolated and identified: karrikin, a 

molecule new to science (Flematti et al., 2004). Fire may be one of nature’s most powerful 

forces to mold the vegetation landscape, but other abiotic and biotic factors also determine the 

final outcome (Fig 2). In this study, we probe into environmental factors occurring in our Utah 

Field Station, located in the Great Basin Desert in N. attenuata’s natural habitat, to evaluate their 

impact on the performance of these plants, and we test these factors in both glasshouse and field 

assays.  

 

General Introduction

9



Fig 2. The interaction complex in the soil of Utah desert and known factors for Nicotiana 

attenuata 

A. The potential interactions occurring in the soil with N. attenuata roots depend on abiotic 

factors such as pH, smoke cues, and soil fertility. In addition, they depend on biotic factors 

including microbes and insects in the soil. This figure is adapted from (Martin et al., 2017). B. 

Representative and observed interactions between N. attenuata’s plant roots and different 

environmental factors in the last 2 decades in its natural habitat at our field station (Great Basin 

Desert, UT, USA) include, from top to bottom, nutritional variance(Ferrieri et al., 2017), 

presence of smoke cues from burns (Wang et al., 2017), differences in soil pH (Wu et al., 2007), 

presence of a wilt-causing pathogen(Santhanam et al., 2015), mycorrhizal interactions (Groten et 

al., 2015a) and Bacillus sp. Infections (Meldau et al., 2012; Meldau et al., 2013). 

1.3. Abiotic environmental factors: critical impacts on root plasticity 

Nutritional products such as those which result from a fire’s combustion of old leaf and plant 

material have been intensely investigated since they are important to the whole lifespan of plants. 

Fires increase nitrogen soil content in the form of NO3-, as well as phosphorus (P), manganese 

(Mn), calcium (Ca) and magnesium (Mg), although such fire-elevated nutrients can be easily 

washed out with, for example, a flood, which in turn confers an ephemeral and highly 

heterogeneous nutrient distribution in burned areas (Baldwin & Morse, 1994; Baldwin et al., 

1994). Root architecture in such environments plastically adapts to these conditions. As reported, 

excavated N. attenuata roots of naturally growing populations in Utah consist of a single primary 

root and few, well developed lateral roots extending outward into the shallow layers of the soil. 

In contrast, root systems of glasshouse-grown plants under stable and homogenous growth 

conditions contain multiple, twisted primary and lateral roots. Bulk soil surrounding foraging 

lateral roots of N. attenuata plants were harvested for nutrient gradient estimation. Indeed, it was 

found that lateral root placement was associated with a higher concentration of soil micronutrient 

levels relative to root-free transects, and root foraging behavior was observed in Petri dish 

bioassays toward micronutrient patches in a concentration-dependent manner. By genetically 

manipulating N.attenuata plants, root chemotropic responses causing them to head to 
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nutritionally concentrated zones can be compromised. The N. attenuata lines which eliminated 

this specific root directional growth towards nutrients were deficient in jasmonates and ethylene. 

In sum, under natural growth conditions, nutrients in the soil, which result both directly and 

indirectly from fires in the area, are distributed unevenly,and phenotypic plasticity in root growth 

and development enables plants to adapt to such variation and effectively forage for nutrients 

that are critical to their survival in nature (Baldwin & Morse, 1994; Baldwin et al., 1994; Ferrieri 

et al., 2017) 

Another independent survey was performed in the Mediterranean Basin, where fire is 

also one of the major sculptors of vegetation diversity, to understand the underlying ecological 

roles of smoke cues in seedling emergence and establishment. Field plots received applications 

of liquid smoke, which is commonly used as replacement for fire smoke, and data were recorded 

mainly on seedling emergence and establishment, including community composition at the 

family and species level and plant types (annual or perennial). The results were that liquid smoke 

addition had a significantly positive effect on seedlings recruitment, hence increasing seedling 

emergence and seedling establishment at community level (Tormo et al., 2014). 

Given the positive effect of smoke cues on seed germination and seedling emergence and 

establishment, the persistence of smoke cues in soil for years is understandable. The question of 

how smoke cues mechanistically engage in the process of morphological plasticity has been 

addressed. However, particularly in a burned area, belowground roots emerge and also come into 

contact with these smoke cues in the rhizosphere. The hypothesis that these roots, while still 

hidden in the soil, are also immediately and inevitably influenced in growth and development by 

the omniscient presence of these smoke cues (derived from wildfire) has been proposed and 

investigated in manuscript I.  

pH is another notable factor that regulates root growth and development, and it is 

commonly known that higher pHs diminish plant growth. In our Utah field station, soil pH 

ranges from 6.5 to over 7.5 (Kratsch & Heflebower, 2013). It has long been reported that pH 

values in and around roots are not necessarily constant, and changes in pH are frequently 

observed. However, pH changes over physical ranges under extreme conditions will cause 
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irreversible damage, for instance, the effect of oxygen deprivation on flooding-intolerant plants 

is particularly severe when paired with an acidification of the cytoplasm that will further lead to 

cell death in this condition (Roberts et al., 1984a; Roberts et al., 1984b). Genetic evidence 

reveals how N. attenuata roots adapt to high pH growth conditions common to their natural 

habitat. NaRALF (rapid alkalinization factor) is a peptide consisting of 49 amino acids that was 

named after its activity consisting of fast alkalization of cultivated tobacco cell cultures (Pearce 

et al., 2001). Plants silenced in NaRALF transcripts display wild-type (WT)- like aerial parts, but 

deficient roots with enhanced root growth showing longer primary roots and flawed trichoblasts 

that led to a failure in the process of root hair formation. The abnormal root hair phenotype in 

irRALF was ascribed to the disturbance of apoplastic pH oscillations exhibiting a logy rhythm 

with lower frequency and higher amplitude, and resulted in an abnormally high pH status at the 

tips of trichoblasts. pH indicators illustrated that WT root progressively acidify the root 

surrounding area during growth, showing a yellowish color on the petri-dish, but irRALF did not 

make these similar pH changes as there were no petri-media color changes. The inhibition of root 

hair growth was partially suppressed by a low-pH-buffered growth medium, and such defects in 

root hair were phenocopied with a high-pH-buffered medium in WT plants. This suggests that 

the disruption of physical pH adjustment in irRALF mainly contributed to the hairless 

phenotype. On the other hand, as reported, reactive oxygen species (ROS) are critical regulators 

for root hair formation and growth, and the lack of ROS accumulation at the root hair initiation 

zone of irRALF appeared partially involved in root hair defects as well. Field assays were 

performed by planting irRALF and WT into the basic soils of N. attenuata’s native habitat, and 

irRALF plants displayed diminished fitness traits including smaller leaves, shorter stalks, and far 

less flowers and seed capsules than that of the WT control plants. This was mainly due to 

irRALF plants not being capable of acidifying the rhizosphere to accommodate root growth in 

basic soil. NaRALF is an indispensable regulator to control the transition from root hair initiation 

to tip growth by tuning the balance of root hair extracellular pH and the status of ROS, and 

provides plants with an adaptive strategy to better survive and reproduce when growing in basic 

soil (Wu et al., 2007). 
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1.4. Biotic environmental factors: friends and foes 

When seed germination occurs in a seed bank, the primary root will physically emerge and 

protrude into soil, and the peripheral root tissues will form a local complex microcosm that 

provides a broadly selective different habitats for the recruitment of a myriad of microorganisms 

such as bacteria including actinomycetes, as well as nematodes, microalgae, and fungi. With 

advances in sequencing and microbial culturing, the relationships of plants with microbial 

associates have been unraveled rapidly in the last decades. Plants provide associated microbes 

with food and shelter, while for plants, the best-characterized benefits from associating with a 

microbiome are generally classified into two groups: 1) growth promotion: plant growth-

promoting microbes, which promote growth by several direct or indirect means such as 

enhancement of nutrient acquisition or through increased drought tolerance; and 2) defense 

enhancement: microbes which trigger induced systemic resistance (ISR) by activating defensive 

signaling pathways including jasmonic acid (JA) and ethylene (ET) pathways, conferring hosts 

with a greater ability to endure disease (Newman, 1978; Leach et al., 2017).  

1.4.1. A native growth-promoting bacterial isolate, Bacillus sp. B55, can rescue 
defects in ethylene deficient plants. 
For the wild coyote tobacco Nicotiana attenuata, the strategic reshaping of its root system results 

from adaption to different associations with complex communities of microbes.  In turn, 

microbial consortium composition is influenced by the plant, for example via flavonoids and 

strigolactones in root exudates which may be used to recruit and stimulate mycorrhizae (Bais et 

al., 2006). From field assays, in four types of native soils that differed mainly in organic and 

mineral nutrients (carbon and nitrogen) bacterial endophytes were isolated and identified by 

sequencing from the cleaned roots of wild plants. The results indicated that the root-associated 

community composition was largely diverse in different type of soil of Utah and such 

composition in the same type of soil also differentiated with the specificity of root recruitment 

depending on root type, secretions, or metabolism. For example, plant ethylene emission has 

been corroborated to be one of the regulators that coordinate the bacterial endophyte composition 

after comparison of microbial taxonomy by using isogenic transformed plants either deficient in 
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ethylene (ET) production (ir-aco1) or perception (35S-etr1). Moreover, plants grown in organic 

(vs mineral) soils consisted of a more dynamic community composition, and plants flawed in the 

ethylene pathway exhibited less diversity in their root microbial composition than in that of wild-

type plants (Long et al., 2010). 

Among cultivable bacteria isolated from native N. attenuata roots, the impact of each on 

morphological traits were assessed, and one strain of Bacillus sp. B55 was isolated owing to its 

obvious promotion effect on plant growth and its potential ability to improve the survival of 

ethylene (ET) deficient plants in the field. An ET-perception impaired line, 35S-etr1, is severely 

defective in root growth and root hair development, displaying longer but hairless roots, and 

subsequently it has strongly reduced survivorship in field conditions compared to control plants 

(Meldau et al., 2012). However, inoculation with the isolated Bacillus sp. B55 strain caused the 

mortality of 35S-etr1 to remarkably decrease in two successive field season tests, and other 

fitness traits of these plants such as plant height and number of flowers were much better than 

that of the same genotype without the B55 strain. This effect was further studied to better 

understand how the Bacillus sp. B55 strain inoculation promotes N. attenuata seedling growth, 

including an increase in leaf surface area and number of lateral roots, though to a certain extent 

there was still a decrease in primary root growth. Firstly, auxin content and ethylene emission 

measurements were performed to exclude the potential roles of these two main root architects in 

this regulation; they were found to be the same with or without B55 inoculation. Through 

quantification of the content of phosphate in B55 inoculated and non-inoculated plants, barely 

any detectable differences were found and this reduced the possibility of nutritional aspects 

contributing (Meldau et al., 2012; Meldau et al., 2013), at least in the case of Pi deficiency. The 

following assay tested whether volatile organic compound (VOC) blends were the players 

involved in the morphological changes. A bipartite petri-dish culturing system was established to 

separate B55 and seedlings physically, while still allowing “dialogue” through the air. Indeed, the 

plant growth promoting effect was still clearly observed, and VOCs were focused on as the 

regulator engaged in this morphological manipulation. An elegant experiment was then designed 

to distinguish which compound in the VOC blend was active. B55 culturing resulted in a high 

abundance of the S-containing compound dimethyl disulfide (DMDS) by GC-MS detection after 
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a solid phase microextraction. Interestingly, the total amount of DMDS in the bipartite system 

negatively and significantly correlated with the number of inoculated seedlings (more plants 

inoculated, less DMDS, and vice versa), which provided evidence that plants may be able to 

absorb this compound. It is known that 35S-etr1 constitutively produces a far larger amount of 

ethylene at base level, ascribed to a negative feedback loop from not perceiving ethylene, and 

this comes at the cost of excessive consumption of substrates involved in ethylene biosynthesis 

including sulfur metabolites such as Methionine (Met). Though 35S-etr1 plants absorbed more 

sulfur (S) as observed through an isotope 35S labeling assay, continuous catabolism of S still 

kept plants in a the S-starvation status and exhibited a higher transcript levels of genes related to 

S metabolism. External sulfate or DMDS addition partially rescued morphological defects in 

35S-etr1 plants, indicating the abnormal S metabolism in this genetically modified line. This 

indicated sulfur supplementation as a mechanism for the effect of DMDS emitted by native 

isolate Bacillus sp. B55 in suppressing the defects in ethylene-deficient plants. Field assays then 

helped to better understand the ecological roles of native associates of Bacillus sp.B55 for N. 

attenuata plants grown in natural conditions, particularly in environments with a shortage of S 

(Meldau et al., 2013).  

1.4.2. Native bacterial consortiums enhance pathogenic resistance against 
sudden wilt disease 

Regarding the enhancement of disease resistance in plants, the machinery engaged in this 

resistance has been extensively characterized in wheat associated with a disease of its root 

caused by Gaeumannomyces graminis var Tritici infections, referred to as “take-all” disease. 

This investigation started with wheat cropping, successive cropping in the same field for many 

years with a few disease outbreaks, when suddenly such outbreaks waned. Apparently, with 

environmental stress selection, wheat evolved an adaptive strategy against disease invasion 

through renewal of its own defensive system to antagonize Pseudomonas spp (Weller et al., 

2002). Our group has used N. attenuata as a model species to perform field assays in its natural 

habitat in order to study interactions with natural environmental factors for over 20 years. Since 

1991, the field has had symptoms of a sudden wilt disease which was sporadically observed. 

Plants were observed to weather and die quickly if infected in the elongation stage, and 
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additionally the natural white roots of the plants became black. It is standard to diagnose such 

sudden wilt disease showing wilting and black roots symptoms together. Mortality characterized 

from this disease increased progressively since 1991 until it reached levels over 50% in 2012, 

and nearly wiped out all efforts in the 2012 field season (Santhanam et al., 2015).  

The occurrence of the sudden wilt disease is referred to as a common agricultural disease 

caused by many years of continuous cropping and the reemployment of the same plotting area 

for years, bringing on a quantitative accumulation of plant pathogens. To further understand the 

potential causal agents resulting in sudden wilt disease, roots of plants infected by this disease 

were analyzed for bacteria or fungus. From more than 100 cultivable isolates consisting of 

around 70 bacterial and 36 fungal isolates, the high abundance of Fusarium spp. and Alternaria 

spp. were eventually demonstrated to cause symptoms of this sudden wilt disease. To evade the 

damages resulting from sudden wilt disease, crop rotation is a general farming strategy, but it is 

not an easily applicable solution for our field station because of our research focus. Therefore a 

biocontrol strategy is an alternative, means of controlling antagonistic pathogen partners. Six 

native bacterial isolates from the healthy roots of N. attenuata plants in the same field location 

were tested as an inoculation mixture. Interestingly, in a 2013 field season test, plants planted 

with bacterial mixtures together exhibited a consistent decline of mortality with a statistically 

significant decrease compared with the non-inoculated plants without additional costs from other 

morphological traits such as plant biomass and reproductive output. Because of the disease 

resistance effect from the inoculation of bacterial mixture, the subgroups were tested in the 2014 

field season and they confirmed that the core consortium of bacteria is collectively needed to 

provide protection, rather than just a single dominant strain. These results indicate the complex 

interactions among pathogens, protective bacterial communities, and plants, and also provide an 

investigational platform to disentangle how Nicotiana attenuata plants cope with biotic stresses 

(Santhanam et al., 2015). 

1.4.3. Arbuscular mycorrhizal fungi, a mutualistic partner with N. attenuata in 
the field 
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One of the most widespread symbionts, ecotomycorrhizae, can establish association with about 

2% plants around the world of which most of these plants are trees. However, more than 80% of 

all terrestrial plant species, including crop plants, can establish symbiotic associations with 

arbuscular mycorrhizal fungi (AMF) (Brundrett & Tedersoo, 2018). In the AMF symbiotic 

process, plant root exudates such as flavonoids and strigolactones stimulate fungal spore 

germination and hyphal branching, and extraradical hyphae then penetrate the rhizodermis by 

initially anchoring hyphopodia on the root surface, then they transcellularly infect the roots of 

the plant. Eventually, a main trunk with highly branched intracellular structures named 

arbuscules is formed in the inner cortex to establish a mutualistic partnership with the host plants 

(Parniske, 2008). Arbuscules are formed as transient structures due to the branched structures 

shortly entering the stage of degradation, and are generally considered as the main location of 

nutrient exchange (Harrison, 2005). They are regarded as the “heart” structure of AMF. The 

fungus facilitates the more efficient uptake of nutrients, in particular phosphorous (Pi) and 

nitrogen for the plant, and in turn, the plant supplies the fungus with a carbon source (Helber et 

al., 2011; Bravo, Armando et al., 2017; Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 

2017; Rich et al., 2017).  

The interaction between host plants and AMF initiates with a binary negotiation prior to 

physical contact. Plant-derived secretions activates the life cycle of AMF by promoting spore 

germination. AMF release factors, referred to as mycorrhizal factors, which have been wildly 

accepted and confirmed to lipochitooligosaccharides (Myc-LCOs)(Maillet et al., 2011), and 

short-chain chitin oligomers (CO) (Genre et al., 2013) which are elicitors of a signaling cascade 

in the plant. During the complicated signal transmission process, a large set of regulatory core 

genes have been predicted and corroborated. Among them, some are implicated in both rhizobial 

symbioses and mycorrhizal symbioses, and encode for proteins which participate in the so called 

Common Symbiosis Signaling Pathway (CSSP) (Oldroyd, 2013). To trigger this pathway, 

released Myc-factors are recognized by putative plasma membrane-localized receptors, though 

these are still not fully deciphered, and it is speculated that specific LysM domain-containing 

receptor-like kinases (LysM-RLKs) play a critical role in this process. Interestingly, in rhizobial/

mycorrhizal model plant species such as Medicago truncatula, Lotus japonicum and Oryza 
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sativa,  MtLYK3/LjNFR1/OsCERK1 were required for a full AMF colonization and potentially 

encode proteins necessary for Myc-factor (Myc-LCOs or COs)  perception. The sequential 

calcium spiking in root cells (mainly epidermal), is mediated by a plasma membrane LRR 

(leucine-rich-repeat) receptor kinase (MtDMI2/LjSYMRK) (Endre et al., 2002; Stracke et al., 

2002) and a potassium channel located at the nuclear envelope (MtDMI1, LjCASTOR and 

LjPOLLUX) (Ané et al., 2004; Imaizumi- Anraku et al., 2005; Peiter et al., 2007; Riely et al., 

2007). These calcium oscillations are successfully transduced into nuclei and perceived by a 

calcium-calmodulin-dependent kinase (LjCCaMK/MtDMI3) which can directly interact with the 

transcription factor MtIPD3/LjCYCLOPS  to relay downstream signaling and finally activate 

target genes related to the symbiosis with AMF (Oldroyd, 2013).  

The interactions occurring between AMF and host plants are overall beneficial for  plant 

growth (Rooney et al., 2009; Adolfsson et al., 2015) and improve the resistance of plants to 

various abiotic and biotic stresses (Pineda et al., 2010; Vannette et al., 2013; Chitarra et al., 

2016; Sharma et al., 2017). Besides the aforementioned adverse biotic stress in the natural 

habitat of N. attenuata, within its dynamic microbe compositions, mutualistic associates with 

arbuscular mycorrhizal fungi (AMF) are also observed. The isolates from roots excavated from 

the field site contain AMF species of Rhizophagus irregulars and Funelliformis mosseae, 

identified by sequencing. The heart structure of the symbiosis, the arbuscule, was clearly 

observed in field samples of N. attenuata roots, showing that N.attenuata is one of the host 

species with AMF symbionts in natural growth conditions. These findings allow us to investigate 

such mutualistic interactions between N. attenuata and AMF.  

To test the ecological consequences from impaired symbiotic relationship establishment 

in the field, the NaCCaMK gene (Calcium- and calmodulin-dependent protein kinase) was 

silenced by RNAi to cause an incomplete establishment of a mutualistic relationship with AMF. 

Through tests in the glasshouse and field, three independent lines were screened and showed no 

infection with R. irregularis or native fungal inoculum. Comparisons between these three lines 

with empty vector (EV) plants revealed similar growth and fitness traits in the glasshouse and in 

field growth conditions between irCCaMK and EV. Also, the basal levels of jasmonates (JA), 
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salicylic acid (SA) and abscisic acid (ABA) was nearly the same in the transgenic lines as in 

controls, and the inducibility of these phytohormones after herbivore attack did not differ, 

indicating that activation of these canonical defense pathways is not dependent on the CCaMK 

protein. Despite these similarities, there were still some differences in other traits, such as 

bacterial community recruitment differences by alpha-diversity parameters of bacterial OTUs, 

though overall fungal community recruitment did not differ significantly between EV and 

irCCaMK plants under field conditions (Groten et al., 2015a). 

In addition to ecological and genetic advances, progress in metabolic research regarding 

AMF interactions took a big step forward with, for example, the discovery of Myc-LCO and CO 

elicitors that trigger AMF-inoculation related signal transduction. There still remain major 

questions however, as it is well known that AMF interactions influence whole-plant performance 

(i.e., plant growth is commonly impacted by AMF colonization (Rooney et al., 2009)) and thus 

systemic metabolic responses  are to be expected, and yet, no common AMF-specific responses 

have been found in systemic tissues. Although AMF colonization morphologically takes places 

only in the roots, the search continues for potential responses in other tissues, and related 

questions continue to be interesting (Schweiger et al., 2014a; Schweiger et al., 2014b; Aliferis et 

al., 2015; Gerlach et al., 2015; Schweiger & Muller, 2015; Desalegn et al., 2016). 

Studies in this direction have being approached for years. Several studies revealed 

changes in leaf primary metabolites, consisting of carbohydrates, proteins, and amino acids, after 

AMF inoculation. Moreover, hypotheses that AMF-mediated symbiosis increases the content of 

secondary metabolites was demonstrated with the findings of higher concentrations of gallic 

acid, anthraquinone derivatives, phenolic acids, iridoid glycosides and various alkaloids in AMF-

inoculated leaves. These studies mainly implement targeted approaches to quantify particular 

chemical compounds, but the lack of consistent evidence of these changes in even detecting such 

limited numbers of compounds among different plant species largely motivates researchers to 

search for a common metabolic response in systemic tissues, and related ecological functions are 

expected.  
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Another motivation behind this work is to identify AMF-indicative chemical makers in 

shoots which are indicators of root colonization. Technically, quantification of root colonization 

has been achieved in several ways. Complete or partial destructive root harvesting is always the 

first step; the sequential steps of staining and microscopic examination follow to document the 

structures of hyphae, arbuscules and vesicles within the stained roots. From Phillips and 

Hayman’s proposed staining method in 1970 through the heating of roots in KOH and staining of 

fungal cell walls with trypan blue, to McGonigle’s standardized quantification method in 1990, 

along with the development of fluorescence dyes for staining and advanced optical microscopy 

for observing,  efficiency and accuracy of quantification has largely improved. However, 

characterization of AMF-associations is still laborious and time-consuming. The chase for a 

shoot AMF-indicative marker is on (Phillips & Hayman, 1970). 

However, challenges remain to target AMF-specific compounds within systemic tissues. 

AMF generally has a plant growth-promoting effect, and discrepancies in plant developmental 

stages thus often occur under AMF presence versus absence.  Besides, differences in abundance 

of metabolites among below- and above-ground tissues and inconsistence of inducibility of 

AMF-mediated compounds across plant species (or across plants subject to different species of 

AMF inoculum) exacerbates the difficulties of disentangling ubiquitous metabolic changes. 

Notably, such putative compounds generally produce structural modifications among plant 

species, which makes finding a pattern much harder. To more precisely target these metabolic 

changes, a few recent studies started to implement comprehensive metabolic approaches to 

investigate the effects of AMF on a wide range of metabolites (the metabolome) in both targeted 

and untargeted ways.  

These tools provided much broader insights in quantitative AMF-mediated changes. 

Many more metabolite classes were successfully discovered, and systemic responses of leaf 

compounds were found in various plant species. Schweiger and co-workers performed a 

comparative study on AMF effects on the polar leaf metabolomes of five plant species inoculated 

with one AMF species (Rhizophagus irregularis), and plenty of AMF-mediated changes were 

detected in the leaves of the five plant species such as succinate and ribonate (Schweiger et al., 
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2014a; Schweiger et al., 2014b). However, only very few metabolites in leaves were commonly 

modulated with similar trends by AMF inoculation in most species, though all plant species 

shared at least 850 metabolic features. Interestingly, there was a significant decline in 

concentrations of several organic acids of the citrate cycle in most species, which may be the 

universal pattern as AMF-indicative makers reflecting AMF colonization in roots. However, a 

lack of statistical correlation between the amount of such metabolites in leaves and root 

colonization in these studies is not enough to clearly claim the robustness as AMF-indicative 

markers.  

1.5. Scope of this thesis 

The overall scope of this thesis is to combine multiple toolboxes including those for 

transcriptomics, metabolomics, and plant transformation, in order to perform environmental 

factor-plant interaction studies. Nicotiana attenuata, an annual wild tobacco species native to the 

Great Basin Desert of United States, was developed as a model plant to investigate plant growth 

and development, species evolution, and various types of plant interactions with abiotic or biotic 

factors. Fire is a natural, ancient force which has sculpted the Earth’s landscape of vegetation for 

millions of years. Some fire-acquired traits have been evolutionarily seared into a plant’s 

genome, leading to the development of a set of fire responses such as the promotion of its seeds 

to germinate by smoke cues. Another ancient player that has served to evolutionary sculpt N. 

attenuata is arbuscular mycorrhizae, which largely ecologically benefits plants by increasing 

their phosphate acquisition and stress tolerance.  Roots are the primary locus in nearly all below-

ground interactions of plants, but the roots do maintain a continuous conductivity link to aerial 

tissues and so these interactions without a doubt effect plant performance as a whole. In order to 

better understand root-environmental factor interactions, we explore concise and specific 

questions addressing N.attenuata’s  root performance under smoke or mycorrhizae saturated 

growth conditions, and provide answers for these questions in the manuscripts of this thesis. 

        Manuscript I:  What are root responses to smoke cues? What are the active compounds in 

smoke cues that reshape root morphology? Are these smoke-cued root responses triggered by the 

General Introduction

21



same components in smoke that enhance seed germination? What is the potential mechanism 

behind smoke causing root morphological changes?  

        Manuscript II:  Within a mesocosm saturated with AMF, similar to a natural, communal, 

competition growth environment, what is the growth response between an AMF symbiotic-plant 

and an AMF non-symbiotic plant? What does the role AMF play? Is there a common molecular 

response in the leaf that may help to indicate AMF root colonization and what is it?  

        Manuscript III:  Is there a common chemical response in the root that indicates AMF root 

colonization and what is it? Are these root indicative markers positively associated with root 

colonization? Can these root indicative markers be found in leaves? Are the amounts of root 

markers in leaves positively reflective of root colonization? Could these foliar markers 

distinguish a plant impaired in its symbiosis with AMF? To what extent can we distinguish plants 

impaired in AMF symbiosis sampled from field trials using these markers? Can these AMF-

indicative markers be broadly applied for forward genetic screening? Are these foliar AMF-

indicative markers transported from roots or are they locally biosynthesized? Are these AMF-

indicative markers universal across species?  
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2. Manuscript Overview & Author Contributions 

Manuscript I: 

Catechol, a major component of smoke, influences primary root growth and root hair 

elongation through ROS-mediated redox signaling 
Ming Wang, Matthias Schoettner, Shuqing Xu, Christian Paetz, Julia Wilde, Ian T. Baldwin, Karin Groten 

Published in New Phytologist (2016) 
doi:10.1111/nph.14317 

In manuscript I, the morphological root appearance of N.attenuata seedlings was altered by 

external addition of liquid smoke, resulting in longer and hairless roots. Bioassay-driven 

fractionation enabled the identification of an active compound, catechol, from liquid smoke. 

Root transcriptome changes by a kinetic treatment of the active fraction isolated from liquid 

smoke shed light on potential regulatory mechanisms through the ROS signaling pathway, rather 

than through the conventional auxin pathway. Chemical complementation assays corroborated 

that imbalance of polar ROS distribution in the roots leads to an increase of cell length resulting 

from cell wall loosening, and hence eventually confers longer roots. 

MW, ITB and KG planned and designed the research and wrote the manuscript; MW performed 

the research and data analysis, MS guided the fractionation of catechol and its analysis by HPLC; 

MS and SX annotated the RNAseq data and helped with RNAseq data analysis; JW contributed 

to data collection. 
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Manuscript II: 

Nicotiana attenuata’s capacity to interact with arbuscular mycorrhiza alters its competitive 

ability and elicits major changes in the leaf transcriptome 
Ming Wang, Julia Wilde, Ian T. Baldwin and Karin Groten 
Published in Journal of Integrative Plant Biology (2017) 

doi: 10.1111/jipb.12609 

In manuscript II, under glasshouse conditions, when EV and irCCaMK are co-cultured in the 

same pot with a limited phosphate nutrition supply, the growth of irCCaMK plants is highly 

inhibited in the presence of AMF inoculum, in comparison to in the absence of this inoculum. To 

further understand the potential transcriptome changes in leaves between EV and irCCaMK 

plants, a microarray for transcriptome profiling was performed. Expected AMF-indicative shoot 

molecular markers were not found, but NaPT5 (phosphate transporter) in the root was 

unexpectedly targeted. NaPT5 is one of the AMF-indicative marker genes in root, and is 

differentially detected in leaves between EV and irCCaMK: it is up-regulated in irCCaMK plants 

while simultaneously down-regulated in EV plants within the same treatment with AMF 

inoculum.  Within phosphate- plants without AMF inoculation, NaPT5 lost its high inducibility 

in roots, but increased transcript abundance in leaves was still observed, suggesting the potential 

functional differentiation of NaPT5 within specific tissues.  

MW, JW, KG and ITB designed the study. MW, JW and KG setup the experiments, recorded 

plant growth and harvested the material. MW, JW and KG drafted the manuscript. ITB and KG 

revised the manuscript.  
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Manuscript III: 

Blumenols as effective shoot markers for root symbiosis with arbuscular 

mycorrhizal fungi 
Ming Wang, Martin Schäfer, Dapeng Li, Rayko Halitschke, Chuanfu Dong, Erica McGale, Christian 
Paetz, Yuanyuan Song, Suhua Li, Junfu Dong, Sven Heiling, Karin Groten, Philipp Franken, Michael 

Bitterlich, Maria Harrison, Uta Paszkowski and Ian T. Baldwin 
Submitted to eLife (2018) 

In manuscript III, the hypothesis was addressed that a subset of the AMF-induced root 

metabolites could accumulate in shoots as a result of transport or systemic signaling. A 

comparative metabolomics study was performed and potential AMF-indicative markers were 

documented in roots. Among them, blumenols were particularly focused on due to their high 

inducibility with AMF inoculation, and their abundance. By means of a targeted approach, a 

subgroup of blumenols including hydroxy- and carboxyblumenol-C-glucosides was detected in 

shoots as well, which were shown to also reflect root colonization by AMF, via validation by 

statistical correlation. A subsequent QTL analysis corroborated the potential application of this 

chemical marker by allowing leaf sampling on a RIL population resulting in clear loci from this 

marker, and the blumenol derivates found from different plant species broadened the scope of 

this marker as being part of a general AMF-responsive compound class. 

Conceptualization, MW, MS, DL, RH, KG and ITB; Methodology, MW, MS, DL and RH; 

Software, DL, RH and EM; Validation, MW, MS, DL, RH and SH; Formal Analysis, MW, MS, 

DL, RH, EM and CP; Investigation, MW, MS, DL, RH, CD, EM, CP, YS, SL, JD, SH and MB; 

Resources, CP, PF, MB, MH, UP and ITB; Data Curation, MW, MS, DL, RH, EM and CP; 

Writing – Original Draft, MW, MS, RH and ITB; Writing – Review & Editing, MW, MS, DL, 

RH, CD, EM, CP, YS, SL, JD, SH, KG, PF, MB, MH, UP and ITB; Visualization, MW, MS, DL, 

RH, EM and ITB; Supervision, RH, CP, KG, PF, MH, UP and ITB; Project Administration, RH 

and ITB; Funding Acquisition, ITB
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3. Manuscripts 

Manuscript I: 

Catechol, a major component of smoke, influences primary root growth and root hair 

elongation through ROS-mediated redox signaling 

Ming Wang, Matthias Schoettner, Shuqing Xu, Christian Paetz, Julia Wilde, Ian T. Baldwin, Karin Groten 
Published in New Phytologist (2016) 

doi:10.1111/nph.14317 
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Summary

� Nicotiana attenuata germinates from long-lived seedbanks in native soils after fires.

Although smoke signals have been known to break seed dormancy, whether they also affect

seedling establishment and root development remains unclear.
� In order to test this, seedlings were treated with smoke solutions. Seedlings responded in a

dose-dependent manner with significantly increased primary root lengths, due mainly to lon-

gitudinal cell elongation, increased numbers of lateral roots and impaired root hair develop-

ment. Bioassay-driven fractionations and NMR were used to identify catechol as the main

active compound for the smoke-induced root phenotype.
� The transcriptome analysis revealed that mainly genes related to auxin biosynthesis and

redox homeostasis were altered after catechol treatment. However, histochemical analyses of

reactive oxygen species (ROS) and the inability of auxin applications to rescue the phenotype

clearly indicated that highly localized changes in the root’s redox-status, rather than in levels

of auxin, are the primary effector. Moreover, H2O2 application rescued the phenotype in a

dose-dependent manner.
� Chemical cues in smoke not only initiate seed germination, but also influence seedling root

growth; understanding how these cues work provides new insights into the molecular mecha-

nisms by which plants adapt to post-fire environments.

Introduction

Fire is a predictably irregular natural event in many regions of
the world; fire frees up space, nutrients and light, allowing
seedlings to become established (Rundel, 1981; Baldwin et al.,
1994; Nelson et al., 2009). Regrowth, reproduction and germi-
nation are synchronized in the immediate post-fire environ-
ment. Some plant species are classified as fire ephemerals,
which germinate synchronously only after fires that start in
long-lived seedbanks in the soil (Keeley & Pizzorno, 1986;
Baldwin & Morse, 1994; Preston & Baldwin, 1999). One of
the key compounds of smoke that promotes seed germination
and is required for synchronizing mass germination after fire
has been identified as 3-methyl-2H-furo[2,3-c]-pyran-2-one,
also known as karrikin1 (KAR1) (Flematti et al., 2004a,b); by
contrast, catechol, a major constituent in smoke, does not
induce germination (Baldwin et al., 1994). Catechol is known
to interact with both organic compounds (e.g. amino acids)
and inorganic compounds (e.g. metal ions) (Yang et al., 2014),
and has a complex redox chemistry in the presence of metal
ions (Schweigert et al., 2001).

Treatments with smoke water and smoke extracts not
only induce germination, but also enhance root growth in rice
(Kulkarni et al., 2006), tomato (Taylor & Van Staden, 1998),
jatropha (Abdelgadir et al., 2012), rapeseed (Abdollahi, 2012),
papaya (Chumpookam et al., 2012) and maize (So�os et al.,
2009). However, for most of this work, it is not clear which com-
pound(s) in smoke is(are) responsible for the improved growth
and how the signals that result in growth promotion are trans-
duced into cellular processes.

Primary root growth requires two main physiological processes:
the proliferation of daughter cells in the apical meristem and the
enlargement of differentiated cells that are no longer in the meris-
tem. When cells stop expanding, they are considered morphologi-
cally to belong to the mature zone, which is characterized by root
hair development and vascular tissue formation (Petricka et al.,
2012). All of these developmental processes are regulated by dif-
ferent plant hormones, among which auxins are the best studied
(Sabatini et al., 1999; Galinha et al., 2007; Dinneny & Benfey,
2008). That the control of auxin biosynthesis and signaling is
important for root growth and development has been shown by
external applications of auxins, which result in increased cell
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division but decreased root growth in Arabidopsis (Rahman et al.,
2007; Zhou et al., 2011), whereas the addition of auxin biosynthe-
sis inhibitors, L-kynurenine (Kyn) (He et al., 2011) and yucasin
(Nishimura et al., 2014) leads to increased primary root growth.
Auxin gradients are also regulated by transport systems (Tromas
& Perrot-Rechenmann, 2010; Zhou et al., 2011; Adamowski &
Friml, 2015; Draelants et al., 2015; Rodr�ıguez-Sanz et al., 2015).
Furthermore, among other factors, auxin-regulated gene expres-
sion is controlled by the SHY2 (short hypocotyl) gene encoding
IAA3, a member of the Aux/IAA family (Tian et al., 2002).

In addition to auxin, reactive oxygen species (ROS) are impor-
tant signaling molecules that play a role not only in plants’
responses to biotic and abiotic stress, but also in plant growth
and development (Gapper & Dolan, 2006; Petrov & Van
Breusegem, 2012; Foyer & Noctor, 2013). In planta, O�

2 is
produced by NADPH oxidases (RBOH) and can be further con-
verted into H2O2 by superoxide dismutases (SODs) and other
enzymes, including apoplastic oxalate oxidase, diamine oxidase
and class III peroxidases. H2O2 can be catabolized enzymatically
to H2O by catalase (CAT), glutathione peroxidase (GPX) and
ascorbate peroxidase (APX) or it can be consumed nonenzymati-
cally by Fenton reactions when Fe2+ is available; such a reaction
depends greatly on pH and other indicators of subcellular reactiv-
ity. As demonstrated by mutants, the main ROS appear to have
different zones of accumulation within roots, and their genera-
tion and balance is controlled by the bHLH transcription factor
UPBEAT; superoxide accumulates in the meristematic zone,
whereas H2O2 accumulates in the elongation/differentiation zone
(Tsukagoshi et al., 2010). Furthermore, the presence and localiza-
tion of ROS in the growing root hair, in particular the root tip, is
decisive for the growth of the hair, and Arabidopsis RBOHC
mutants impaired in H2O2 production are defective in root hair
elongation (Foreman et al., 2003).

The cell wall plays an important role in cell expansion, and the
primary cell walls are composed primarily of microfibrils, hemi-
celluloses, pectins and structural proteins such as hydroxyproline-
rich O-glycoprotein extensins (EXT) (Velasquez et al., 2011;
Nguema-Ona et al., 2014; Xiong et al., 2015). ROS can con-
tribute to the tightening and the loosening of cell walls. Cell-wall
tightening is assumed to be due to the cross-linking of cell-wall
components. This process is concentration-dependent: moderate
levels of H2O2 and proper cross-linking are essential for root
growth, whereas excessive levels of H2O2 dramatically inhibit cell
expansion and may be directly toxic, oxidizing DNA, proteins
and metabolites (Tenhaken, 2014; K€ark€onen & Kuchitsu, 2015).
Cell-wall loosening and underlying root elongation were sug-
gested to be at least partly due to the production of the hydroxyl
radical; this radical can be produced from H2O2 in the presence
of metal ions through the Fenton reaction (Liszkay et al., 2004)
and leads to the cleavage of cell-wall polysaccharides (Fry et al.,
2001; Carol & Dolan, 2006; Kim et al., 2014).

At the molecular level, members of the receptor-like kinase
CrRLK1 family have been shown to control cell wall properties
and cell expansion (Anders et al., 2014), and in Arabidopsis,
MED25/PFT1 has been reported as a mediator that controls root
hair differentiation and primary root elongation by regulating the

expression of several genes encoding redox-active proteins; the
expression of these genes critically alters the balance of H2O2 and
O�

2 (Sundaravelpandian et al., 2013; Raya-Gonz�alez et al., 2014).
Nicotiana attenuata, or wild tobacco, is a summer annual native

to the Great Basin desert of California, Nevada, Idaho and Utah,
USA; it primarily occurs ephemerally for up to three growing sea-
sons after wildfires and persistently in certain areas that do not
accumulate leaf litter (Goodspeed, 1955; Preston & Baldwin,
1999). As a fire-chasing species, N. attenuata seed germination
after fires has been studied extensively (Baldwin & Morse, 1994;
Baldwin et al., 1994), and a wealth of ecological and molecular
knowledge is available for this species. However, surprisingly, little
is known about the additional effects of smoke on the establish-
ment of seedlings and their root growth in the post-fire habitat.

Here we tested the hypothesis that smoke has additional effects
on the growth of N. attenuata seedlings with a root morphology-
guided approach. We identified catechol as the main active
compound in smoke which shapes root architecture in a dose-
dependent manner. Histological, transcriptome and analytical
results provide evidence that ROS, and not auxin, are the primary
regulators of the catechol-induced root phenotype; the phenotype
results from alterations in ROS homeostasis in the root cortex of
the elongation zone, in root hairs and within the roots.

Materials and Methods

Plant material and growth

In all experiments, wild-type Nicotiana attenuata Torr. Ex Watts
seeds of the 31st generation inbred line were used. Seed germina-
tion and plant growth were performed as described (Kruegel et al.,
2002). In brief, seeds were sterilized and germinated on agar with
Gamborg B5 (Duchefa, The Netherlands, http://www.duchefa.-
com) after soaking for 1 h in a 1 : 50 (v/v) diluted liquid smoke
(House of Herbs, Passaic, NY, USA) supplemented with 1 mM of
gibberellic acid (GA3). Seedlings were grown vertically in Percival
chambers (Perry, IA, USA) at 28°C, under long-day conditions
(16 h : 8 h, light : dark). Seedlings were either directly germinated
on the supplemented media (long-term treatment) or transferred
5 d post-germination (dpg) to the supplemented media (short-
term treatment). For the long-term treatment (13 dpg, data for
Fig. 1), liquid smoke was added to the GB5 medium before auto-
claving. For all other short-term treatments, the chemicals were
added to cooled GB5 media (c. 45–50°C), using the concentra-
tions indicated in the text and figures, and seedlings were pheno-
typed hours or days after treatment.

Chemicals and stock solutions

Stock solution were prepared and filtered with 22-nm steril-
ized filters: Indole-3-acetic acid (IAA, CAS-no. 87-51-4,
Duchefa, https://www.duchefa-biochemie.com/, dissolved in
ethanol), 1-naphthaleneacetic acid (NAA, CAS-no. 86-87-3,
dissolved in 1M NaOH), N-1-naphthylphthalamidic acid
(NPA, CAS-no. 132-66-1, Santa Cruz Biotechnology, dis-
solved in DMSO), L-kynurenine (Kyn, CAS-no. 2922-83-0,

New Phytologist (2017) 213: 1755–1770 � 2016 The Authors

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist1756

Manuscript I

28



Sigma-Aldrich, dissolved in DMSO), 5-(4-chlorophenyl)-4H-
1,2,4-triazole-3-thiol (yucasin, CAS-no. 26028-65-9, Sigma-
Aldrich, dissolved in DMSO), diphenyleneiodonium chloride
(DPI, CAS-no. 4673-26-1, Sigma-Aldrich, dissolved in
DMSO), BES-H2O2-AC (WAKO, www.wako-chem.co.jp/
english/labchem/, dissolved in DMSO), 1,2-dihydroxybenzene
(catechol, CAS-no. 120-80-9, Sigma-Aldrich, dissolved in
80% methanol), 1,3-dihydroxybenzene (resorcinol, CAS-no.
108-46-3, Sigma-Aldrich, dissolved in 80% methanol), 1,4-
dihydroxybenzene (hydroquinone, CAS-no. 123-31-9, Sigma-
Aldrich, dissolved in 80% methanol), 2-methoxyphenol (gua-
iacol, CAS-no. 90-05-1, Sigma-Aldrich, dissolved in 80%

methanol) and nitro blue tetrazolium (NBT, CAS-no. 298-
83-9, Sigma-Aldrich, in 20 mM phosphate buffer pH 6.1).

Phenotyping experiments

In order to determine the length of primary roots, pictures of
seedlings were scanned using a desktop scanner at 600 dpi. These
scanned pictures were further measured using IMAGEJ (NIH). For
root hair phenotyping, macro-images were taken under a stere-
omicroscope (MZ16, Leica, Wetzlar, Germany) and micro-
images were taken by ApoTome (Zeiss, Oberkochem, Germany)
microscope.

(a)

(c)

(d) (e)

(b)

Fig. 1 Treatment of Nicotiana attenuata seedlings with liquid smoke increases primary root growth and decreases root hair elongation. Root phenotype is
induced by smoke treatment. Nicotiana attenuata seedlings were germinated on GB5 medium containing liquid smoke (v/v = 1/900) and compared to
mock-treated roots. Measurements were taken 13 d post-germination (dpg). (a) A scan of seedlings revealed the increase in primary root length after
smoke treatment. Bar, 0.2 mm. (b) The effect of smoke treatment is concentration-dependent (n = 6, for each biological replicate 25–30 seedlings per Petri
dish were measured); different letters indicate significant differences (P ≤ 0.05, one-way ANOVA followed by Tukey’s HSD), box plots show the medium
(white horizontal line), the upper and lower quartile (upper and lower end of the box) and the minimum and maximum (whiskers). (c) Root hair phenotype
was observed by Zeiss ApoTome imaging under bright-field. Bar, 10 lm. (d, e) Confocal microscope imaging after propidium iodide (PI) staining to
visualize the cell walls. Bars, 50 lm. (d) The number of meristem cells did not change after smoke treatment. The distances of meristem zone (MZ; left half
only) for measuring are marked by arrow-heads. (e) After smoke treatment, cells in the elongation zone were significantly longer than cells in the
elongation zone of controls. Only cells in the cortex layer were measured (see also Supporting Information Fig. S2). A representative picture of the
elongation/differentiation zones (EZ/DZ) is shown. The arrowheads point to the elongated cells. Data are means � SD (20–25 seedlings were measured),
significant differences are indicated by asterisks (Student’s t-test: ***, P ≤ 0.001) (see also Fig. S1).
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Extraction, fractionation and purification of liquid smoke
and burnt soil

Solid phase extraction (Multi 96 HR-XC (969 25mg) column
(Macherey Nagel, D€uren, Germany) was used as first step of liquid
smoke fractionation to isolate the active compound. In brief, 0.8 ml
undiluted liquid smoke (House of Herbs, Passaic, NY, USA) was
loaded onto an activated column and flow-through was collected as
S0, then successively eluted with 1ml each of 1M HCOOH, 80%
methanol in HCOOH, 100% methanol, 0.35M NH4OH,
0.35M NH4OH in 60% methanol and 2M NH4OH in acetone.
At each step the eluted flow-through was collected and desiccated
as S0–S6 fractions, dissolved eventually in methanol and the
obtained fractions used for further bio-assay and high power liquid
chromatography (HPLC) fractionation. A detailed description of
HPLC fractionation, mass acquisition by UPLC/electrospray ion-
ization-time of flight (ESI-TOF) and catechol quantification is pro-
vided in the Supporting Information Methods S1.

Soil was collected from a burn in 2016 from the native habitat
of N. attenuata in Arizona, USA. Milled soil was dissolved in
methanol (80%) and analyzed after solid phase extraction. The
same method was employed for catechol quantification as already
described. Catechol content was measured by UPLC/ESI-qTOF
with the standard curve method.

Structure elucidation by NMR

Collected fractions were dried completely in a vacuum concen-
trator (3.7 mbar, Concentrator 5301, Eppendorf). The merged
active HPLC-fractions ‘d3’ and ‘d4’ were used for structure elu-
cidation by nuclear magnetic resonance spectroscopy (NMR).
1H NMR, 13C NMR and1H-13CHSQC spectra were recorded
on an Avance500 NMR spectrometer (Bruker-Biospin, Karl-
sruhe, Germany) at 300 K using a 5 mm TCI CryoProbeTM.
Chemical shift values (d) are given relative to the residual solvent
peaks at dH 3.31 and dC 49.05, respectively. Coupling constants
are given in hertz (Hz).

RNA isolation

For our large-scale gene expression analysis, roots were treated
with the S2 fraction or the same amount of methanol as a con-
trol. Root tips were harvested 2 and 6 h after treatment. At least
200 seedlings were harvested as one replicate and kept in
RNAlater (Qiagen, https://www.qiagen.com/de/) until being
extracted. In total, three replicates per time-point and treatment
were harvested. RNA was extracted using Qiagen RNeasy Mini
Kit columns (Qiagen) according to manufacturer’s protocols, in
combination with on-column DNase-I treatment (Qiagen).
Aliquots (1 ll) of purified RNA were pipetted for quantification
and quality assessment of total RNA using the Agilent 2100 Bio-
analyser system in combination with RNA 6000 n kit (Agilent,
Santa Clara, CA, USA). Only RNA that displayed intact 18S and
25S peaks was sent for RNA-seq profiling (Max Planck Genome
Centre Cologne, Germany). All libraries were sequenced on the
Illumina HiSeq 3000 (Illumina, https://www.illumina.com/).

RNA-seq data analysis

For data analysis, we followed the descriptions of Ling et al.
(2015). Briefly, the raw reads were trimmed with
ADAPTERREMOVAL (Lindgreen, 2012), which were subsequently
aligned to the N. attenuata genome assembly (release 1.0) using
TOPHAT2 (Kim et al., 2013). The genes were assembled by
CUFFLINKS in combination with N. attenuata genome annotation
as the reference. Re-mapping all trimmed reads to the assembled
transcripts via RSEM was used to estimate the expression level of
the assembled transcripts. Read count were calculated using HT-
SEQ (Anders et al., 2014) using N. attenuata genome annotation.
The trimmed mean of M-values (TMM) normalized fragment
per kb of transcript per million mapped reads (FPKM) was calcu-
lated using TRINITY (Haas et al., 2013). The differentially
expressed genes (DEG) were identified using EDGER package
(Grman & Robinson, 2013). Genes with the absolute fold-change
of > 2 and with a false discovery rate (FDR)-adjusted P-value of
< 0.05 were considered as differentially expressed genes (DEGs).
The gene ontology (GO) annotations of N. attenuata genes were
derived from its genome annotation (S. Xu, T. Brockm€oller, A.
Navarro-Quezada, H. Kuhl, K. Gase, Z. Ling, W. Zhou, C.
Kreitzer, M. Stanke, H. Tang, E. Lyons, P. Pandey, S. P. Pandey,
B. Timmermann, E. Gaquerel & I. T. Baldwin, upublished). The
functional enrichment analysis was computed by CLUGO. The
levels of significance of enriched GO terms were determined by
Bonferroni corrected P-values (P ≤ 0.05).

Indole-3-acetic acid (IAA) extraction and measurement

Root and leaf tissues were separated, and roots dissected after
long-term treatment with smoke (5 dpg) and short-term treat-
ment with catechol (48 h) and immediately frozen in liquid nitro-
gen. After being ground to a fine power, IAA was extracted and
concentration was determined as described in detail by Schaefer
et al. (2016). In brief, total IAA was extracted with extraction
buffer (methanol : 1M formic acid = 4 : 1 (v/v)), and IAA was
measured relative to labeled D-IAA by a Bruker Elite EvoQ
Triple quad-MS equipped with a HESI (heated electrospray ion-
ization) ion source (Bruker Daltonik, Bremen, Germany).

Superoxide anion (O�
2 ) and hydrogen peroxide (H2O2)

staining and quantification

Seedlings grown on GB5 media were transferred to media sup-
plemented with smoke, catechol, and inhibitors of ROS and
H2O2 for the indicated time-points. For superoxide anion stain-
ing with NBT, seedlings were stained for 15 min in a solution of
2 mM NBT in 20 mM phosphate buffer (pH 6.1). Transferring
stained seedlings into distilled water stopped the reaction.
Pictures were taken by Leica stereomicroscope (MZ16, Leica,
Wetzlar, Germany). Settings were exactly identical for all of the
pictures in the same experiment. To visualize H2O2, seedlings
were incubated in 50 lM BES-H2O2-AC for 30 min in the dark;
and for the simultaneous visualization of H2O2 and plant cell
walls in a single specimen, seedlings were double-stained by
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incubation in 100 lM of propidium iodide (PI) and 50 lM of
BES-H2O2-AC for 30 min in the dark. After three quick rinses,
pictures were immediately taken by LSM 510 (Zeiss, Jena,
Germany). The excitation wavelength for PI-stained samples was
536 nm, and emission was collected at 617 nm; for BES-H2O2-
AC stained samples excitation was 485� 20 nm, and emission
collected at 515� 20 nm. For imaging after NBT and BES-
H2O2-AC staining, all of the instrumental parameters were
retained in an independent experiment.

IMAGEJ software (NIH, https://imagej.nih.gov/ij/) was used to
assess the average intensity of NBT-stained signals and the rela-
tive amount of H2O2 fluorescence intensity by BES-H2O2-AC.
Briefly, original captured images were loaded and inverted to 8-
bit mode, and then the images were processed under the menu of
‘Process’ to subtract background, followed by calibration under
the menu of ‘Analyze’, the default value of the threshold of
‘Adjust’ was kept for measuring the next step. All of the ‘IntDen’
values were exported to Microsoft EXCEL for statistical analysis.

The H2O2 content of the roots after staining with BES-H2O2-
AC staining was analyzed by Amplex Red hydrogen peroxide/
peroxidase assay kit (Thermo Fisher Scientific, https://www.ther
mofisher.com, USA) according to the manufacturer’s instruction.
Briefly, six root sections of 1–1.5 cm length (from tip to shoot) as
one replicate were incubated in the reaction mixture for 30 min
in the dark at room temperature. The fluorescence intensity was
quantified with a fluorescence microplate reader (Infinite® 200
PRO; Tecan, Maennedorf, Switzerland) with an excitation at
540 nm and emission at 610 nm. Different concentrations of
H2O2 solution were used to prepare the standard curve. The
reaction mixture without the substrate or root material served as
a control.

Statistical analysis

For all of the pairwise comparisons relative to control groups,
Student’s t-test was performed (P ≤ 0.05). In the experiments of
NAA/IAA complementation with or without smoke addition,
linear regression modeling was performed and ANOVA was
applied for significance test. For all other experiments, one-way
ANOVA was conducted, followed by either Tukey’s HSD for
symmetric groups or Fisher’s protected LSD for unequal groups.

Nucleotide sequence accession numbers

The RNA sequencing data have been deposited in the National
Center for Biotechnology Information (NCBI) under project
number PRJNA320036.

Results

Smoke cues impair root hair elongation and increase
primary root length by regulating cell expansion in the
elongation/differentiation zone

In order to determine the potential roles of smoke cues for establish-
ing seedlings, we germinated Nicotiana attenuata on media

containing different amounts of liquid smoke and observed root
morphology. After being treated with liquid smoke, N. attenuata pri-
mary roots were significantly longer and had more lateral roots,
whereas root hair elongation was impaired (Fig. 1). Hypocotyl length
did not change. The effect of smoke on root growth and lateral for-
mation was dose-dependent: growth was promoted at low concentra-
tions and inhibited at high concentrations (Figs 1a, S1a,b).

In order to examine whether an increase in cell division in the
meristem zone (MZ) or increase in cell expansion in the elonga-
tion/differentiation zone (EZ/DZ) accounted for the increase in
root length, the number of cortex cells was counted from the qui-
escent center (QC) to the first elongated cell as a measure of
meristem size (Fig. S2a). The number of cells in the MZ did not
increase significantly (Fig. 1d); however, the cortical cell length in
the EZ/DZ increased significantly (Fig. 1e). Short-term treat-
ments (16 h) with smoke showed the same result as long-term
treatments. These results indicate that an increase in longitudinal
cell expansion in the EZ/DZ was mainly responsible for the
accelerated root growth by smoke cues (Fig. S2).

Catechol, but not karrikins, is the main active compound in
smoke that affects root growth

Karrikins were identified in smoke and their effect on seed germi-
nation and seedling growth has been well described. However,
although treatment with KAR1 dramatically increased the seed
germination ratio and decreased hypocotyl elongation, as reported
earlier (Flematti et al., 2004a; Nelson et al., 2009), no significant
changes in root growth were observed after treatment (Fig. S1c–f).

In order to identify the potential compounds in liquid smoke
responsible for the observed increase in primary root elongation
and the decrease in root hair growth, bioassay-driven SPE was
applied as the first fractionation step. Among the seven collected
fractions (S0–S6), only fraction S2 induced the smoke-elicited
root phenotype: root length increased and root hair expansion
was impaired (Figs 2a, S3). In contrast to the strong acidic smoke
solution (1/900, pH 4.2), fraction S2 did not alter the pH of the
culture medium, allowing us to rule out the hypothesis that pH
changes in the medium are responsible for the root phenotype.

Further fractionation of the active S2 fraction was performed
by HPLC. Bioassays were conducted with pooled elutions as
indicated in Fig. 2(b). Only treatment with one of the fractions
(‘d’) was able to mimic the root phenotype elicited by S2
(Fig. 2b). Five subfractions (d1–d5) of fraction ‘d’ were collected,
and the application of fraction d3 and d4 resulted in impaired
root hair elongation (Fig. 2c).

Based on the acquired masses and retention time, fractions d3
and d4 were identical (Fig. 3a) and pooled for one-dimensional
(1H and 13C NMR) and two-dimensional (HSQC) NMR. The
1H NMR spectrum showed two multiplet signals (ddd, 3.7/3.7/
9.5 Hz) in the aromatic range, at dH6.74 and dH6.65, respec-
tively, which is typical for a symmetrically 1,2-disubstituted aro-
matic ring. 13C NMR showed, in accordance with the
expectation symmetry, three signals at dC116.4, 120.9 and 146.4.
Correlations in the 1H-13C HSQC allowed for the final identifi-
cation of 1,2-dihydroxybenzene (catechol) (Fig. 3b). The
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amounts of catechol in liquid smoke (1/900) and active S2
(1/100) were measured by U(H)PLC/ESI-TOF using different
catechol concentrations for a standard curve. Both solutions con-
tained approximately half (5.4 lM and 4.9 lM, respectively,

Fig. 3c) of the concentration of pure catechol (10 lM) required
to elicit a similar extent of root elongation (Fig. 3d). In order to
verify whether catechol is the active compound leading to the
same root phenotype as that induced by smoke, the bioassay was

(A)

(B)

(C)
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performed using different concentrations of commercially avail-
able pure catechol. Both catechol and smoke/S2 showed the same
dose-dependent root morphology (Fig. 3d). Interestingly, root
elongation was reliably increased up to a concentration of 60 lM,
whereas root hair formation was partially impaired by the addi-
tion of 10 lM catechol and fully abolished at catechol concentra-
tions higher than 20 lM (Fig. S4).

Several substances whose chemical structures are similar to
the structure of catechol but show different levels of redox reac-
tivity, such as resorcinol, hydroquinone and guaiacol, also have
been identified in liquid smoke (Baldwin et al., 1994). A com-
parison of the three isomers of dihydroxybenzene (1,2-
dihydroxybenzene-catechol; 1,3-dihydroxybenzene-resorcinol;
and 1,4-dihydroxybenzene-hydroquinone) revealed that only

catechol impaired root hair elongation and induced root elonga-
tion at a concentration of 10 lM, whereas for the para-isomer
hydroquinone, a higher concentration was required to observe
the effect on root hair growth, and for the meta-isomer resorci-
nol as well as for guaiacol, a higher concentration was required
to induce both, root hair growth and primary root elongation
(Fig. S5). Taken together, roots were most sensitive to catechol.
We assume that catechol is the main active compound in smoke
responsible for inducing the root morphology.

In order to prove that catechol is present not only in liquid
smoke, but also under natural conditions, we collected freshly
burnt soil from N. attenuata’s habitat in Arizona, USA, and
c. 10.1 lg of catechol in 12.5 g of soil was measured by U(H)
PLC/ESI-qTOF (Fig. 4).

Fig. 2 Bioassay-driven solid phase extraction (SPE) and high performance liquid chromatography (HPLC) fractionation: The elution S2 and HPLC fractions
d3/d4 are the bioactive fractions in liquid smoke. (A) Scheme of the SPE fractionation procedure and root-phenotype-guided activity assay. Elution S2 is
the active fraction of the SPE fractionation. Liquid smoke was loaded onto reverse/cation exchange phase column; the initial flow-through was called S0,
and subsequent flow-throughs were referred to as S1–S6. For the bioassay, seedlings were transferred from mock GB5 media to media supplemented with
the different elutions (S0–S6). 36 h after transfer, the newly elongated part of the root was measured (n = 3, for each biological replicate, 8–12 Nicotiana

attenuata seedlings per Petri dish were measured); different letters indicate significant differences (P ≤ 0.05, one-way ANOVA followed by Fisher’s LSD).
For additional replicates of root hair phenotype, see Supporting Information Fig. S3. The light-colored ‘roots’ in the pictures are reflections of the roots on
the medium due to the photographing technique. (B) HPLC fractionation of SPE-elution S2 on a reversed phase C18 column. Fractions were collected
every 30 s; and based on the chromatogram fractions 2.5–20min, 20–23min, 23–25min, 25–27min, 27–31min and 31–45min, fractions were pooled
and labeled ‘a’ through ‘f’ respectively. Only fraction ‘d’ inhibited root hair elongation. (C) The further fractionation of fraction ‘d’, the 5 sub-fractions (d1–
d5, starting at 24.5 min) were collected and used for bioassays; both ‘d3’ and ‘d4’ decreased root hair elongation. (B, C) Seedlings (5 d post-germination
(dpg)) were transferred to media supplemented with the different fraction for 24 h for root hair phenotyping (for each group, 8–10 seedlings per Petri dish
were observed). Bars, 1 mm.

(a)

(c)

(d)

(b)

Fig. 3 Mass acquisition by ultra (high)
performance liquid chromatography (U(H)
PLC)/ electrospray ionization-time of flight
(ESI-TOF) and structure elucidation by NMR:
catechol is the main active compound in
liquid smoke. (a) Mass acquisition by U(H)
PLC/ESI-TOF of fractions ‘d3’ and ‘d4’ in a
negative ionization mode (TIC: total ion
chromatogram; –/+: negative/positive
ionization mode). (b) Structure elucidation of
pooled ‘d3’ and ‘d4’ by 1H NMR, 13C NMR
and 1H-13C HSQC spectra. (c) NMR revealed
that the active compound is catechol. The
content of catechol from diluted liquid smoke
(1 : 900) and S2 fraction (1 : 100) was
quantified by standard curve method. (d)
Bioassay with catechol treatment. Nicotiana
attenuata seedlings (5 d post-germination
(dpg)) were transferred to media
supplemented with different doses of
catechol for 24 h for root hair phenotyping
and for 48 h for root elongation
measurements. The newly elongated root
part after transfer was measured (n = 6, for
each replicate 25–30 seedlings were
measured); different letters indicate
significant differences (P ≤ 0.05, one-way
ANOVA followed by Tukey’s HSD). Bar,
1 mm (see also Supporting Information Figs
S4, S5).

� 2016 The Authors

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2017) 213: 1755–1770

www.newphytologist.com

New
Phytologist Research 1761

Manuscript I

33



Smoke-treatment leads to massive changes in gene
expression

In order to dissect the potential mechanisms leading to the
smoke-induced changes in root morphology, transcriptome
profiling was performed by RNA-seq. We used roots treated
with the S2 fraction for these analyses, because in contrast
to the nonfractionated liquid smoke solution, S2 did not
affect the pH of the medium; however, it is more stable
than pure catechol, presumably due to the presence of addi-
tional compounds in the smoke solution which protect cate-
chol from oxidation. Seedlings were treated with S2-free or
S2-containing medium for 2 and 6 h (Fig. 5a). After
sequencing, a total of 1391 differentially expressed genes
(DEG) were identified (|log2FC| > 1, FDR ≤ 0.05; Fig. 5a,b;
Table S1).

In order to reveal the main regulatory pathway(s), DEGs
at both time points were considered first (424 DEGs;
Fig. 5b). Among these, several extensin-like proteins were
most strongly downregulated after treatment with smoke
(Fig. S6c), whereas a number of glucosyltransferases – ap2
erf domain-containing transcription factors and glutathione-
S-transferases – were most strongly upregulated (Table S1).
A GO analysis of these DEGs showed that enriched net-
works were mapped mainly to flavonoid biosynthesis, sec-
ondary metabolite catabolism, glucosyltransferase, cell redox
homeostasis and auxin biosynthesis (Fig. 5c). The two
enriched processes – auxin biosynthesis (Zhao, 2010) and
cell redox homeostasis (Tsukagoshi, 2016) – are known to
play major roles in root development and growth. Net-
works of enriched GOs for genes differentially expressed
only after 2 or 6 h were mainly related to programmed cell
death, water transport and general functions such as nucleo-
some assembly, ribosome and carbohydrate catabolism
(Fig. S6a,b).

The smoke-induced root phenotype is not primarily
regulated by auxin

We first tested the hypothesis that smoke-induced primary root
growth was due to changes in auxin production. Two auxin
biosynthesis inhibitors, Kyn and yucasin, were applied and the
root phenotypes observed. Kyn is an alternative substrate for
L-tryptophan-pyruvate aminotransferase 1 (TAA1) and decreases
root-derived auxin production through competition (He et al.,
2011). Yucasin is a potent auxin biosynthesis inhibitor that blocks
the conversion of indole-3-pyruvic acid (IPyA) to IAA by targeting
the YUC enzymes (Nishimura et al., 2014) (Fig. 6a). Nicotiana
attenuata seedlings grown on medium supplemented with either a
range of Kyn concentrations or yucasin, showed increased root
length and impaired root hair growth (Fig. 6b,c). By contrast,
seedlings grown on NPA-supplemented medium, which is a polar
auxin transport inhibitor (Jensen et al., 1998), had an inhibitory
effect on root growth (Fig. 6c). At first glance, these results sug-
gested that reduced auxin biosynthesis might be responsible for the
smoke-induced phenotype but not for polar auxin transport. How-
ever, the quantification of auxin levels in roots after long-term
treatment with smoke and short-term treatment with catechol
resulted in higher levels of IAA (Fig. 7a) and not the lower levels
suggested by the application of the auxin biosynthesis inhibitors.
Additionally, we monitored the auxin response in real time by
using an auxin reporter line from Arabidopsis (DII-VENUS)
which negatively correlates auxin responses with fluorescence inten-
sity. As expected, the application of the auxin biosynthesis inhibitor
Kyn resulted in more fluorescence and the application of external
auxin resulted in less fluorescence. The addition of smoke and S2
fractions led to an intermediate reduction in fluorescence intensity
indicating an increase in auxin levels, as was expected (Fig. S7a,b).

In order to further dissect a possible role for auxin in the smoke-
induced root phenotype, we performed a histochemical analysis.
The addition of the synthetic auxin NAA (1 nM) led to a significant

Fig. 4 Catechol occurs in high concentrations
(lg g�1) in burnt soil collected from the
native habitat of Nicotiana attenuata.
Catechol and resorcinol were detected by
ultra performance liquid chromatography
(UPLC)/ electrospray ionization-quadrupole
time of flight (ESI-qTOF in extracts from
burnt soil. Extracted ion chromatograms
(EIC,m/z = 109.03� 0.05) of soil extraction
(pink) and standards including catechol
(cyan) and resorcinol (green). Burnt soil was
collected in 2016 from the native habitat of
N. attenuata in Arizona, USA (inset: Google
Map image of collection site).
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increase in the number of MZ cells, whereas the addition of smoke
did not significantly alter the number of MZ cells (Fig. 7b). Fur-
thermore, a chemical complementation assay demonstrated that the
smoke-induced phenotype could neither be mimicked nor rescued
by IAA/NAA treatments (Fig. 7c). Moreover, SHY2/IAA3, a key
transcription factor involved in controlling the balance of cell divi-
sion and cell differentiation and considered as a molecular marker
of auxin activity, did not respond to S2 fraction incubation based
on RNA-seq datasets (Fig. S7c). Taken together, these results indi-
cate that auxin is not the primary signal responsible for the smoke-
induced changes in primary root growth and root hair elongation.

Redox processes regulate root growth and root hair
elongation in response to smoke

H2O2 and O�
2 , two important ROS in roots, are differentially

distributed and fulfill different developmental functions. Based

on the GO enrichment analysis from the RNA-seq data, we
hypothesized that the observed increased cell expansion in the
EZ/DZ was due to redox changes. We quantified the content of
H2O2 and O�

2 in roots before and after catechol exposure, and
also exposed roots to salicylhydroxamic acid (SHAM), an
inhibitor of peroxidase activity (Brouwer et al., 1986), and DPI,
which primarily inhibits NADPH oxidase activity (Li & Trush,
1998). The two inhibitors confirmed the validity of the method-
ology; their application strongly reduced O�

2 levels. Treating
seedlings with different concentrations of catechol also reduced
O�

2 production compared to controls (Fig. 8a,b). By contrast,
H2O2 content did not change in response to catechol treatment
(10 lM), but slightly and significantly increased with higher
amounts of catechol (Fig. 8c).

In order to understand how catechol treatment affects the
levels and distribution of H2O2 in the roots, we investigated the
spatial distribution of H2O2 in response to catechol treatment

(a)

(c)

(b)

Fig. 5 Hierarchical clustering and the
functional enrichment of differentially
expressed genes (DEGs) in Nicotiana

attenuata roots after treatment with the
active SPE-elution S2 for 2 and 6 h: genes
related to cell redox-homeostasis and auxin
biosynthesis are enriched among the
upregulated genes at both time-points after
treatment. Seedlings (5 d post-germination
(dpg)) were transferred to media with or
without the S2 fraction, and root tips were
harvested for RNA-seq. Three replicates were
sequenced for each group (~ 300 seedlings
were harvested from 10 Petri dishes and
pooled as one replicate). (a) Sample
preparation and data analysis (|log2FC| > 1,
FDR ≤ 0.05); Venn-diagrams show the
number of up- and downregulated genes in
root tips after treatment with S2 fraction for
2 and 6 h compared to control groups.
Numbers in red (upregulation) and green
(downregulation) indicate DEGs (319 + 109)
showing the same expression pattern at both
time points. (b) Hierarchical cluster analysis
of these 424 DEGs. (c) Gene ontology (GO)
enrichment analysis of the 424 DEGs was
computed with CLUGO according to the GO
categories ‘Biological Process’ and ‘Molecular
Function’ (two-sided hypergeometric test,
Bonferroni corrected, P ≤ 0.05) (see also
Supporting Information Fig. S6).
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using the highly specific H2O2 fluorescent indicator BES-H2O2-
AC (Maeda, 2008). In controls, H2O2 fluorescence was particu-
larly enriched in the expanding root hairs and in the EZ/DZ of
primary roots. The strongest signal was found in the cortical cells
close to the cell wall, whereas the remaining root parts did not
show detectable fluorescence (Fig. 8d). This distribution of ROS
is consistent with that found in previous studies (Dunand et al.,
2007). However, after catechol treatment, the H2O2 fluorescence
signal was enriched mainly in the inner tissue surrounding the
central cylinder in the EZ/DZ, whereas it disappeared from the
outer layers (Fig. 8d). Counterstaining with PI corroborated
the observation that after catechol treatment, H2O2 was detected
in the stele but not around the cortical cell walls, as was observed
in the controls (Fig. 6e). We therefore inferred that treating roots
with catechol leads to the redistribution of H2O2. We speculated
that the locally reduced H2O2 levels around the cortical cells
might be one important factor controlling cell expansion and
root hair elongation.

In order to test this hypothesis, we supplemented the cate-
chol-treated roots with H2O2. The application of H2O2 could
partly rescue the catechol-induced phenotype, and a weak
H2O2 fluorescent signal was detected around the cell walls of
the outer layer of cortical cells (Fig. 8e). Furthermore, the addi-
tional H2O2 supplementation reversed the inhibitory effect of
catechol on root hair elongation, and primary root growth rates
were similar to those of controls (Fig. 9). However, the

phenotype was fully restored only when 100 lM H2O2 and
10 lM catechol were applied, whereas higher catechol concen-
trations and 100 lM H2O2 were not able to rescue the root
hair development and resulted in significantly reduced root
growth (Fig. 9). Based on these results, we conclude that cate-
chol profoundly influences the root morphology by locally
decreasing H2O2 levels in the cell wall of the cortical layer in
the EZ/DZ and thereby increasing H2O2 levels in and around
the stele.

Discussion

The effects of smoke on seed germination and on the isolation
and characterization of active compounds from smoke for
enhancing germination have been well documented (Nelson
et al., 2012). However, the role of smoke signals on root growth
and development is poorly understood. As primary root growth
for nutrient uptake is a crucial factor for seedling establishment,
it plays a central role in Nicotiana attenuata’s ability to colonize
the post-fire environment. Here, we identified catechol – which
has been shown previously to be highly abundant in smoke
(Baldwin et al., 1994; Montazeri et al., 2013) – as the active effec-
tor in smoke that morphologically promotes root growth and lat-
eral root formation, while repressing root hair elongation of
N. attenuata seedlings. We could rule out the germination stimu-
lant karrikin from causing this effect (Figs 1, S1), which indicates

(a) (b)

(c)

(d)

Fig. 6 The root phenotype induced by smoke is mimicked by the application of auxin biosynthesis inhibitors, but not by an auxin transport inhibitor. To
investigate if auxin levels are responsible for the smoke-induced root phenotype, auxin biosynthesis and transport inhibitors were applied in an attempt to
mimic smoke-induced root phenotype. (a) Auxin biosynthesis is inhibited by L-kynurenine (Kyn) and yucasin. (b, c) Both Kyn and yucasin application
mimicked the smoke-induced root phenotype in a concentration-dependent manner. (d) Roots were treated with1-N-naphthylphthalamic acid (NPA), an
inhibitor of polar auxin transport. After treatment, root elongation was significantly decreased. (b–d) Nicotiana attenuata seedlings were grown on GB5
medium supplemented with different concentrations of Kyn, yucasin and NPA for 9 d (7 d post-germination (dpg)). Data are means + SD (n = 6, for each
replicate 25–30 seedlings per Petri dish were measured); different letters indicate significant differences (P ≤ 0.05, one-way ANOVA followed by Tukey’s
HSD). Bars, 5 mm.
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that N. attenuata perceives different substances in smoke respon-
sible for germinating and establishing seedlings.

The transcriptome profiling and gene ontology (GO)
network analysis indicated that auxin biosynthesis and

redox-homeostasis were affected by smoke cues. Previous
studies characterizing the morphology of the roots of Ara-
bidopsis auxin biosynthesis mutants (Pitts et al., 1998) and
of roots exposed to an imbalance of H2O2 and O�

2 (Takeda
et al., 2008) describe similar phenotypes. Based on the simi-
larities of the observed root phenotype after treatment with
smoke and the auxin-biosynthesis inhibitors Kyn and yucasin
(Nishimura et al., 2014), we initially assumed that the inhi-
bition of auxin biosynthesis and, hence, decreased auxin
levels, might be an important factor in tobacco’s response to
smoke. However, our results strongly suggest that auxin
biosynthesis does not play a primary role in the smoke- and
catechol-induced root phenotype because (1) supplementing
the smoke-treated roots with auxins could not rescue the
phenotype, (2) the total amounts of auxin showed the oppo-
site pattern – they increased in smoke/catechol-treated roots,
and (3) the expression of the molecular marker NaSHY2
regulated by auxin did not significantly change after treat-
ment. Additionally, in agreement with previous publications
(Peng et al., 2013; Perrot-Rechenmann, 2013), the treatment
of roots with the synthetic auxin NAA increased the number
of cells in the meristem zone, whereas the application of
smoke did not. Further evidence against a central role of
auxin in the smoke-induced phenotype was provided by the
Arabidopsis DII-VENUS line, which confirmed a slight
increase in auxin levels after smoke treatment; however, this
increase in auxin levels was not accompanied by an increased
number of MZ cells (Figs 6, 7, S7). It may be that the
increase of IAA is a byproduct or secondary signal from the
plants’ primary physiological responses to smoke treatment.
However, an effect of the increased auxin levels on meristem

(a)

(b)

(c)

Fig. 7 The smoke-induced root phenotype is not primarily regulated by
auxin. (a) Auxin levels were slightly but significantly increased by long-
term (left panel) and short-term (right panel) treatment. For long-term
treatment, Nicotiana attenuata seedlings were grown on media
supplemented with liquid smoke for 7 d (5 d post-germination (dpg));
shoot (I) and root (II) were harvested separately. For short-term
treatments, seedlings (5 dpg) were treated with catechol (10 lM) for 48 h,
and three parts were collected separately (shoot part (III), newly elongated
root part after transfer (V) and the remaining part (IV)). Auxin (IAA) was
measured by high-resolution LC/MS relative to labeled D-IAA. Cross-bars
in the strip plot indicate the means, Student’s t-test. 420–450 seedlings
from 15 Petri dishes were collected as one replicate. (b) The size of the
meristem was not significantly altered by smoke induction compared to its
size in control groups. Short-term (12 h) application of NAA (1 nM)
increased the number of meristem zone (MZ) cells, but results from
treatment with external smoke plus supplementation with NAA did not
significantly differ from results from the application of NAA only. The
distances of MZ (left half only) for measuring are marked by arrow-heads.
Data are means � SD (15–20 seedlings were analyzed, only the left half of
root was counted), different letters indicate significances (P ≤ 0.05, one-
way ANOVA followed by Fisher’s LSD). (c) Chemical complementation
assay. Indole-acetic acid (IAA) and the synthetic auxin, 1-naphthaleneacetic
acid (NAA) did not rescue the faster primary root elongation induced by
smoke (v/v = 1/900) application. Seedlings were grown on GB5 media
with external supplementations as indicated (7 dpg). Data are means � SD
(n = 6, for each replicate 25–30 seedlings per Petri dish were measured;
linear regression model was applied followed by ANOVA test: ***,
P ≤ 0.001) (see also Supporting Information Fig. S7).
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zone (MZ) cell proliferation might have been countered by
decreased O�

2 levels.
In addition to changes in biosynthesis, signaling and the tem-

poral and spatial distribution of auxin are also crucial to fully
evaluate the effects of auxin on growth (Ljung, 2013); in particu-
lar, the cell-to-cell transport of auxin can generate auxin gradients
that elicit growth responses (Sauer et al., 2013). However, in the
present study, the inhibition of auxin transport was unable to
mimic the smoke-induced phenotype, which supports the infer-
ence that auxin is not the primary effector. Nevertheless, based
on the data provided here, highly local cell-to-cell changes in
auxin concentrations cannot be ruled out completely.

The observed induction of reactive oxygen species (ROS)-
related genes corresponds with the analysis of the transcriptome

of maize embryos treated with liquid smoke solution for 24 h;
this analysis also demonstrated a GO enrichment for redox pro-
cesses (So�os et al., 2009). ROS are well-known from the signal
transduction pathways that regulate plant growth, development
and defense responses (Considine et al., 2015), and their produc-
tion is tightly controlled and locally restricted (Schmidt &
Schippers, 2015). As was shown in histochemical studies in
several other plant species (Schopfer, 1994; Dunand et al., 2007;
Tsukagoshi et al., 2010), in N. attenuata O�

2 was present mainly
in inner tissues of the young elongation zone, and, to a lesser
extent, in the meristem zone and in the stele along the roots
(Fig. 8a). By contrast, H2O2 was highly abundant around cell
walls of the cortical layer in the elongation/differentiation zone
(EZ/DZ) confined to the apoplast and in the expanding root

(a)

(d) (e)

(b) (c)

Fig. 8 Localization and total amounts of hydrogen peroxide (H2O2) in Nicotiana attenuata roots are altered by catechol treatment. (a) Histochemical
localization of superoxide anions (O�

2 ) by nitroblue tetrazolium (NBT) staining. Seedlings (5 d post-germination (dpg)) were transferred to media containing
different concentrations of catechol, diphenyleneiodonium (DPI, NADPH oxidase inhibitor), and salicylhydroxamic acid (SHAM, peroxidase inhibitor), and
pictures were taken 12 h after transfer. Bar, 100 lm. (b) O�

2 amounts in roots significantly decreased after catechol incubation by quantification of NBT-
stained signals in (a) (data are means + SD, 15–20 seedlings were measured). Different letters indicate significant differences (P ≤ 0.05, one-way ANOVA
followed by Fisher’s LSD). (c) Total amounts of H2O2 slightly but significantly increased as the concentration of catechol increased in the treatment by
Amplex red staining 24 h after induction (means + SD, n = 4, for each replicate, 6 newly elongated root parts after transfer were pooled as one replicate).
Significant differences relative to the control group are indicated by asterisks (Student’s t-test: **, P ≤ 0.01; ***, P ≤ 0.001). (d) Imaging after BES-H2O2-AC
staining with LSM 510 microscope (ZEISS) to visualize H2O2 spatial distribution in root tip. Bar, 100 lm. (e) Counterstaining BES-H2O2-AC with propidium
iodide (PI) showed that without treatment, H2O2 was enriched around the cortical cells, whereas after catechol treatment, H2O2 was mainly enriched in
the area around the stele. Seedlings were transferred to media supplemented with catechol and H2O2 for 24 h before staining. Arrows indicate H2O2

localization around cortical cells (6–10 roots were analyzed). st, stele; ct, cortex. Bars, 50 lm.
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hairs (Fig. 8d,e). After treatment with smoke or catechol, only a
very weak H2O2 signal was detected in this area, whereas a strong
H2O2 signal appeared in the tissue surrounding the stele. Using
compounds with a similar structure but altered antioxidant
capacity, we obtained data that were consistent with the idea that
changes in the redox homeostasis in the cortex are responsible for
enhanced primary root growth and impaired root hair extension:
roots were most sensitive to compounds containing free hydroxyl
groups and also to the ortho-position of the OH-groups of cate-
chol (Fig. S5). Catechol possesses the highest antioxidant capacity
among the three di-hydroxybenzene isomers (Bendary et al.,
2013), and it facilitates the Fenton reaction and can be absorbed
by membranes (Schweigert et al., 2001).

Different mechanisms may be responsible for root elongation
and impaired root hair growth because root elongation occurred
at a lower catechol concentration than did root hair growth inhi-
bition (Fig. S4). It is well known that root hair growth in Ara-
bidopsis is strongly decreased after antioxidant treatment
(Foreman et al., 2003; Carol & Dolan, 2006); and mutants (pft1)
impaired in the redox-homeostasis showed impaired root hair
differentiation and elongation, and longer roots (Sundaravelpan-
dian et al., 2013). Similarly, here the antioxidant function of cat-
echol may inhibit root hair elongation by locally disturbing the
redox homeostasis, in particular at the root hair tip.

Root growth was not due to an increase in cell numbers, but
catechol/smoke-treatment resulted in cell expansion in the EZ/
DZ (Fig. 1). This expansion requires the loosening of the cell
wall matrix (Wolf et al., 2012). It is possible that the disappear-
ance of H2O2 in the cortex of the elongation/differentiation zone
is due to catechol’s ability to generate hydroxyl radicals (OHs)
via the H2O2-dependent chelator-driven Fenton reaction
(Schweigert et al., 2001)..OHs are known to cause polymer

cleavage and wall loosening, specifically in the growing zone
(Tenhaken, 2014; K€ark€onen & Kuchitsu, 2015). The cell wall
provides the necessary conditions for this reaction (Schopfer,
2001; Liszkay et al., 2004; Kim et al., 2014) due to the presence
of iron ions and peroxidases class III, all of which have H2O2-
producing and scavenging abilities that depend on the chemical
environment (Price et al., 2003; Passardi et al., 2004b).

Interestingly, although the H2O2 signal disappeared in the
apoplast, a fluorescent signal indicating the presence of H2O2

appeared around the stele; however, total amounts of H2O2 in
the roots were not altered (Fig. 8). We propose that either cate-
chol or ROS themselves cross the plasma membrane (Schweigert
et al., 2001) and react in the cell, or that a catechol-induced redox
signal is transduced from the cell wall into the cell. In this context
it is important to note that the transcriptome data revealed
changes in both the transcriptional expression of genes related to
the highly regulated enzymes involved in ROS formation includ-
ing glutathione peroxidase (GPX), catalase (CAT), superoxide
dismutase (SOD), respiratory burst oxidase homolog D
(RBOHD) and peroxidases after treatment with smoke fraction
S2, and also in many transcription factors, extensins (EXTs) and
receptor-like kinases (RLK) (Table S1).

The strong downregulation of EXT-like proteins shows an
interesting parallel with mutants impaired in EXT expression
(Fig. S6c), such as the leucine-rich repeat extensins 1 and 2 (lrx1
and lrx2) with aberrant root hair formation (Ringli, 2010) and
T-DNA homozygous mutant lines (ext6, ext7, ext10) with
strongly reduced root hairs (Velasquez et al., 2011). EXTs are
known to be hydroxylated, and subsequently O-glycosylated and
cross-linked with other EXTs to form a network in the plant cell
wall. This cross-linking process requires EXT-specific peroxidases
of type III and ROS (Passardi et al., 2004a; Velasquez et al.,

(a)

(b)

Fig. 9 Hydrogen peroxide (H2O2) partially
rescues the smoke-induced root phenotype
in a defined concentration range. (a) The
addition of H2O2 restored root hair
elongation after catechol treatment.
Nicotiana attentuata seedlings (5 d post-
germination (dpg)) were transferred to
media containing catechol and H2O2 in
different concentrations as indicated. (b)
Root lengths from the same set-up as in (a)
were partially restored to levels of control.
Measurements were taken 36 h after
treatment. 20–25 seedlings were analyzed
for each treatment, P ≤ 0.05, one-way
ANOVA followed by Fisher’s LSD. Box plots
show the medium (white horizontal line), the
upper and lower quartile (upper and lower
end of the box) and the minimum and
maximum (whiskers). Bar, 0.25mm.
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2011). Considering the gene expression changes in ROS-related
genes and the strong downregulation of EXTs upon elicitation
with smoke cues, we propose that catechol/smoke treatment
weakens the cross-linking in the cell wall we propose that cate-
chol/smoke treatment weakens the cross-linking in the cell wall
and that this weakening is due to the lack of structural extensins.
However, to confirm this hypothesis, the signal leading to
reduced EXT expression still has to be elucidated.

Recent results indicate that five members of an RLK subfamily
in Arabidopsis are cell wall sensors; homologs of two (RLK-
theseus 1 and -feronia) (Cheung & Wu, 2011; Lindner et al.,
2012) are also regulated after smoke treatment (Table S1). RLK-
feronia has been thought to activate the production of ROS, and
these regulate growth (Cheung & Wu, 2011). It is tempting to
speculate that ROS perceive local changes in the redox-state in
the apoplast in the presence of smoke-inducing signaling cas-
cades, and that these changes ultimately result in growth effects.

catechol at high concentrations has been well described as a
highly toxic organic industrial waste product (Petriccione et al.,
2013), yet its role in root growth for fire ephemerals has not been
studied previously. In the present study we show that catechol is
not only present in liquid smoke solution, but also occurs at high
concentrations (lg g�1) in freshly burned soil from the wild
tobacco plant’s native habitat (Fig. 4). Plant roots forage in the
soil for minerals and water (Trewavas, 2014). We assume that
the root phenotype observed in vitro is of ecological importance.
The catechol-induced root elongation and increase in the number
of lateral roots may enable the roots to grow more quickly into
areas of the highest nutrient concentrations. However, additional
research is needed to better understand the local distribution and
persistence of catechol in burned soil and its correlation with the
presence of nutrients, and to fully understand its ecological role
as an environmental signal.

In conclusion, we provide evidence that, depending on the
dose, smoke can induce root growth and suppress root hair elon-
gation in N. attenuata seedlings. Smoke-induced root develop-
ment changes were mainly mediated by catechol. Transcriptomic
sequencing suggests that although the expression of genes from
both auxin biosynthesis and ROS pathways was significantly
altered by smoke treatment, only ROS were found to be involved
directly in smoke-induced root development changes and these
acted by altering the distribution of H2O2 in the elongation zone.
Further experiments will be required to elucidate how the cate-
chol-induced changes in the redox state are sensed in the root, if
catechol is also transported into the cells, and whether the pres-
ence of catechol in the soil will promote plant growth and fitness
in the field.
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Fig. S1 Treatment with karrikin1 (KAR1) increases N. attenuata seed germination and decreases
hypocotyl elongation, but does not induce changes in primary root length. 
(a)-(b) The number of lateral roots was significantly increased by smoke treatment, while 
hypocotyl length did not change. Seedlings for measurements were the same as those described 
in Fig. 1. Different letters indicate significant differences, 0.05, one-way ANOVA followed by 
Tukey’s HSD. Cross-bars in the box plots represent the median (n=6, for each biological 
replicate 25-30 seedlings per Petri dish were measured). (c) Morphology of seedlings treated by 
KAR1 (1 μM), scale bar, 0.5 mm. (d) Positive effect of KAR1 treatment on seed germination
(n=3, for each biological replicate 30 seeds per pot were analyzed 3 days after sowing). (e)
Negative effect of KAR1 treatment on hypocotyl elongation. (f) No significant differences were 
observed in primary root elongation after KAR1 treatment compared to controls. (d)-(f) 
Student’s t-test. N. attenuata seedlings were germinated on GB5 media containing KAR1 (1 μM)
or different doses of liquid smoke. Scans were taken 13 dpg for measurements.
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Fig. S2 Scheme of the meristem zone of N. attenuata roots and longitudinal elongation of cells in 
the elongation zone induced by smoke. 
(a) Schematic presentation of width to length (w/l) ratio progression of cortex cell development 
in an N. attenuata root meristem zone (MZ), with the developing stem cell daughters in red (w/l 

1.0) and intensive division zone in blue (w/l 0.5). Cells in both red and blue as MZ cells 
were counted (ep: epidermis, ct: cortex, en: endodermis, pc: pericycle, st: stele). (b) Root 
morphology after short-term application of smoke. Seedlings (5 dpg) were transferred from 
mock GB5 media to media containing liquid smoke (V:V = 1:900) for 16 h. Scale bar, 5 mm. 
Imaging by confocal LSM 510 (ZEISS) of roots before and after smoke-treatment stained with
propidium iodide to visualize the cell walls. The color codes indicate the lengths of cells. 12-15
seedlings were tested, the experiment was repeated twice.  Scale bar, 50 μm.
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Fig. S3 Root hair phenotype induced by SPE elutions.
Same set-up as described in Fig. 2(a), but additional replicates are shown.  Scale bar, 1 mm.
 

 
Fig. S4 Root phenotyping in response to different amounts of catechol. 
(a) Root hair phenotype 46 h after catechol incubation. At concentrations higher than 15 μM, 
root hair elongation was strongly impaired. Scale bar, 100 μm. (b) Primary root elongation 
induced by catechol treatment is concentration dependent. Seedlings (5 dpg) were transferred to 
catechol supplemented media for 46 h. Images were taken by ApoTome microscopy (ZEISS) for 
root hair phenotyping (8-10 seedlings were observed) and for root elongation measurements by 
desktop scanner (data are means ± SD (n=3, for each biological replicate, 6-8 seedlings per Petri 
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dish were measured). Significant differences relative to the control group are indicated by 
asterisks (Student’s t-test, ** 0.01, *** 0.001).

Fig. S5 Comparison of the catechol-induced root phenotype induced by structurally similar di-
hydroxy/-methoxy phenolics. 
(a)-(d) Structurally related compounds of catechol, including resorcinol, guaiacol and 
hydroquinone, were tested for root elongation measurements (36 h) and root hair phenotyping 
(24 h). Catechol is the most active compound used to decrease root hair elongation (0.01 mM) 
and abolish root elongation (0.1 mM) among tested substances. Seedlings (5 dpg) were
transferred from mock media to media supplemented with different concentrations of catechol 
(a), guaiacol (b), hydroquinone (c) and resorcinol (d). For root elongation measurements, data 
are means ± SD (n=6, for each replicate 6-10 seedlings per Petri dish were measured).
Significant differences relative to the control group are indicated by asterisks (Student’s t-test, 
** 0.01, *** 0.001). Scale bars, 1 mm.  
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S6 Hierarchical clustering and functional enrichment analysis of differentially expressed genes 
(DEGs) in N. attenuata roots after treatment with SPE-fraction S2.

2 0.05), but only 
the DEGs specifically regulated at either 2 h (a) or 6 h (b) are shown. Gene ontology (GO) 
enrichment analysis of the 1391 DEGs was computed with CluoGO according to the GO 
categories “Biological Process” and “Molecular Function” (two-sided hypergeometric test, 
Bonferroni corrected, 0.05). DEGs of 2 h with functions in programmed cell death were 
specifically enriched. Only 6 h after treatment, DEGs were mainly down-regulated and related to 
general cell functions.
 

 
 
Fig. S7 Real-time auxin response monitoring (DII-VENUS, Arabidopsis) indicates increased 
auxin level after smoke and active fraction S2 incubation within 90 min. 
DII-VENUS reporter line (Arabidopsis) was tested to monitor auxin response in a real time 
course after different treatments. (a) After the application of auxin biosynthesis inhibitor (L-
kynurenine) and synthetic auxin (NAA), fluorescence strongly increased and decreased, 
respectively. Both liquid smoke and active SPE elution S2 slightly increased auxin level shown 
by decreased fluorescence intensity. Seedlings were scanned every 45 min for 90 min to follow 
the DII-VENUS signal, immediately after the beginning of treatment. Imagining was conducted 
by LSM-510 laser-scanning confocal microscope (Zeiss). Scale bar, 50 μm. To quantify 
fluorescence in the root tips, the average fluorescence intensity over the identical scanned portion 
of the root was extracted by ImageJ software. (b) All of the exported values of fluorescence 
intensity were visualized by pheatmap using R. The values in the boxes and filled color codes 
indicate relative fluorescence intensities. The values in black bold indicate significant differences 
relative to the first time-point (0 min) (Student’s t-test, 0.05). For each treatment, 4-6
seedlings were analyzed and the experiment was repeated twice. (c) NaSHY2 expression profile 
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in N. attenuata seedlings. Data are normalized FPKM (Fragments per Kilobase Million) 
extracted from RNA-seq (means ± SD, n=3).
 

Table S1  Provided as separate excel file  

Methods S1 Extraction, fractionation of liquid smoke and quantification of catechol

Solid phase extraction (SPE, Multi 96 HR-XC (96 x 25 mg) column, Macherey-Nagel, 

http://www.mn-net.com/) was used as the first step of liquid smoke fractionation to isolate the 

active compound. In brief, 0.8 mL undiluted liquid smoke was loaded onto an activated column 

and flow-through was collected as S0, then successively eluted with 1 mL each of  1 M HCOOH, 

80% methanol in HCOOH, 100% methanol, 0.35 M NH4OH, 0.35 M NH4OH in 60% methanol 

and 2 M NH4OH in acetone. At each step the eluted flow-through was collected and desiccated 

as S0-S6 fractions and dissolved in methanol, and the obtained fractions were used for further 

bioassays and HPLC fractionation. The concentrated active S2 fraction was subjected to further 

fractionation using a reverse-phase HPLC (Luna C-18 (2), 250 × 10 mm; Phenomenex) at a 3-

mL min-1

Millipore model Milli-Q Advantage A10) and solvent B: HPLC grade methanol (Fluka, 

www.sigmaaldrich.com/germany.html). The details of Chromatographic solvent gradients were, 

from 0 to 5 min isocratic 15% of B, from 5 to 40 min linear gradient to 30% of B and from 40 to 

45 min linear gradient to100% of B. “d3” and”d4” were collected from fraction “d” (26 min and 

26.5 min, respectively). These purified fractions were further profiled using a Dionex UltiMate 

3000 RS (U)-HPLC system (Thermo Scientific, Waltham, MA, USA) equipped with a Thermo 

Scientific Acclaim RP-18 column 2.2μm, 120Å, 2.1x150 mm. The following binary gradient was 

applied for HPLC fractionation: 0 to 0.5 min isocratic 1% A (millipore water, 0.1% [v/v] aceto-

nitrile [HPLC LC-MS grade, VWR, https://de.vwr.com/, Germany], and 0.05% formic acid), 5% 

B (acetonitrile and 0.05% formic acid); 0.5 to 3.5 min linear gradient to 15% B; 3.5 to 30.5 min 

/min. 

Eluted compounds were detected by a Micro-ToF (Time of Flight) mass spectrometer (Bruker 

Daltonik, Bremen, Germany) equipped with an electrospray ionization source in a negative 

ionization mode. Instrument settings were as follows: capillary voltage, 4500 V; capillary exit, 

130 V; dry gas temperature, 200°C; dry gas flow, 10 L/min. Ions were detected from m/z 50 to 
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1400 at a repetition rate of 2 Hz. Mass calibration was performed using sodium formate clusters 

(10 mM solution of NaOH in 50/50% v/v isopropanol/water containing 0.2% formic acid).

To quantify catechol levels in liquid smoke, S2 fraction and burnt soil, compounds were detected 

by UHPLC-ESI/qTOF mass spectrometer (Bruker Daltonik, Bremen, Germany) and analyzed 

using the method described above.  Different concentrations of catechol were measured for a 

standard curve, and the content of catechol calculated was based on a comparison with the peak 

areas of the standard curve.
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ability and elicits major changes in the leaf
transcriptomeFA
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Abstract To study the local and systemic effects of
arbuscular mycorrhizal fungal (AMF) colonization, Nicotiana
attenuataplants impaired in their interactionswithAMFdue to
silencing of a calcium- and calmodulin dependent protein
kinase (inverted repreat (ir)CCaMK) were grown competitively
in pairs with empty vector (EV) plants, with and without two
different types of inoculum. When inoculated, EV plants
strongly outperformed irCCaMK plants. Foliar transcript
profiling revealed that AMF colonization significantly changed
gene expression of P-starvation and -transporter genes in
irCCaMK plants. The Pht1 family phosphate transporter NaPT5
was not only specifically induced in roots after AMF
colonization, but also in leaves of AMF-colonized irCCaMK
plants, and in plants grown under low Pi conditions in the

absence of AMF. The P-starvation signature of inoculated
irCCaMK plants correspondedwith increases in selected amino
acids and phenolic compounds in leaves. We also found a
strong AMF-induced increase in amino acids and phenolic
metabolites in roots. Plants impaired in their interactions with
AMF clearly have a fitness disadvantage when competing for
limited soil nutrients with a fully functional isogenic line. The
additional role of the AMF-induced Pht1 family transporter
NaPT5 in leaves under P-starvation conditions will require
further experiments to fully resolve.

Edited by: William J. Lucas, University of California, Davis, USA
Received Oct. 17, 2017; Accepted Oct. 27, 2017; Online on Oct. 31,
2017

FA: Free Access

INTRODUCTION

The formation of arbuscular mycorrhizae, a symbiotic

association of plants with soil fungi of the phylum

Glomeromycota, can be found throughout terrestrial

ecosystems (Smith and Read 2008) and has been dated

to 400million years agowhen plants started to colonize

land (Redecker et al. 2000). Arbuscular mycorrhizal

fungi (AMF) are known to alter root morphology and

increase the absorption surface in the soil, improving

water and nutrient acquisition of plants, especially

when these factors limit growth. AMF colonization

elicits differential gene expression in roots and these

have been extensively described for many species

where many are conserved responses to AMF coloniza-

tion (Guimil et al. 2005; Liu et al. 2007; Fiorilli et al. 2009;

Guether et al. 2009; Hogekamp and Kuester 2013;

Groten et al. 2015b). A few large-scale gene expression

studies have also investigated the systemic effects of

AMF colonization that occurs in shoots (Guimil et al.

2005; Kogel et al. 2010; Cervantes-Gamez et al. 2016).

However, there appears to be little conservation of the

differentially expressed genes (DEGs) in leaves of AMF

colonized and non-colonized plants among the different

studies that have examined this question (Liu et al.

2007; Fiorilli et al. 2009). Further studies focused on

root and foliar changes in metabolite levels after AMF

colonization, and found changes in particular amino

acids, carbohydrates and organic acids (Kogel et al.

2010; Fester et al. 2011; Schweiger et al. 2014).

Plants have a high demand in phosphorus for
metabolism and overall development, yet the mobility

© 2017 Institute of Botany, Chinese Academy of Sciences
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and availability of inorganic phosphate (Pi) in the soil is
low (Marschner 1996). The P-starvation response is
well-characterized in plants and includes an increase
in the root-to-shoot biomass ratio, root hair elongation,
anthocyanin accumulation, increased foliar levels
of free amino acids and other soluble nitrogenous
compounds, lipid remodeling, and expression of many
Pi starvation-induced (PSI) genes such as MGDG3, PHO1,
H1, and SPX3 (Chiou and Lin 2011; Schlueter et al. 2013; Gu
et al. 2016).

The formation of arbuscular mycorrhizae can greatly
enhance the P nutrition of plants, and in exchange for P,
plants provide 4 to 20% of their photosynthates to the
fungal partner (Jakobsen and Rosendahl 1990; Douds
et al. 2000; Bonfante and Genre 2010; Smith et al. 2011).
The AMF-related Pi uptake (indirect Pi uptake pathway)
happens via the fungal hyphae and arbuscules, and has
been shown to contribute up to 90%–100% to the plants’
P requirements (Smith et al. 2004; Bucher 2007). In
the direct pathway, Pi is directly taken up across the
root-soil interface (Bucher 2007). The two pathways are
tightly regulated, and depend on, among other factors,
the availability of Pi and nitrogen in the soil (Nagy et al.
2009; Balzergue et al. 2011; Nouri et al. 2014). Under high
soil Pi conditions, root AMF colonization is reduced; and
in the presence of AMF, the direct Pi pathway is reduced
or deactivated (Smith et al. 2011). Both pathways rely on
the expression of phosphate transporter (PT) genes
belonging to the phosphate transporter 1 (Pht1) family;
these are either expressed in epidermal cells and
root hairs or in cortical cells along the periarbuscular
membrane, which surrounds the main sites of nutrient
exchange between the plant and its fungal partner, the
arbuscule (Daram et al. 1998; Rausch et al. 2001). The
Pht1 family consists of 9–13 genes depending on the
species examined. Most of the mycorrhizal-specific
PTs belong to the family of active Hþ/Pi symporters
(Karandashov and Bucher 2005; Nagy et al. 2005;
Bucher 2007) and have been identified for di-, as well as
for monocots (Kai et al. 2002; Paszkowski et al. 2002;
Karandashov et al. 2004; Nagy et al. 2005; Chen et al.
2007; Tamura et al. 2012). PT4 and PT5 in Solanaceous
species, as well as their paralogs in other species, are
in roots only expressed in cells containing arbuscules,
while PT3 is constitutively expressed in roots, but
induced during symbiosis with AMF (Bucher 2007; Tan
et al. 2012; Chen et al. 2014). Interestingly, recently it
was demonstrated that Pht1 family member PT4 in

Medicago and Lotus is not only specifically induced by
AMF, but also in root tips under Pi starvation, under
conditions that are independent of AMF colonization
(Volpe et al. 2016). Thus, mycorrhizae-specific PT genes
may play additional functions than previously thought.

In nature, plants interact with many different fungal
and bacterial partners, who in turn interact with many
different plants, to form belowground networks linking
together plants of the same or different plant species
(Lehmann et al. 2012; Merrild et al. 2013). The identity of
the plant and fungal partners has been shown to alter
competitive interactions among plants, changing
growth and fitness outcomes (van der Heijden and
Horton 2009; Walder et al. 2012; Wu et al. 2015; Yang
et al. 2015). Similarly, plants of the same species grown
in pairs, revealed that in the presence of some fungal
species, genotypes with a lower capacity to interact
with a fungus produced less biomass and received less
Pi in comparison to their better interacting competitor
(Facelli et al. 2010; Willmann et al. 2013; Facelli et al.
2014). However, the roles of the direct and indirect Pi

uptake pathways in terms of PT gene expression remain

unclear, and an in-depth analysis of the foliar changes in

gene expression andmetabolites (amino acids, phenolic

compounds) of plants competing for the same limited

amount of nutrients remains to be done.
The majority of the relevant molecular-ecological

studies have been conducted either with crop plants
such as rice, maize and tomato (Willmann et al. 2013;
Gerlach et al. 2015; Jeong et al. 2015) or with legumes
which not only associate with AMF but also with
nitrogen-fixing bacteria (Harrison et al. 2002; Parniske
2008; Gutjahr and Parniske 2013). These additional
relationships of legumes may confound the effects of
AMF, as it is well known that nitrogen nutrition affects
P nutrition and vice versa, and the third partner (plant,
AMF, rhizobia) may also change the distribution of
carbohydrate rewards (Wang et al. 2011). Investigations
of wild plant species and their native fungal partner are
few, but are essential if we are to evaluate our current
understanding of plant AMF interactions in natural
systems.

Here, we used Nicotiana attenuata, an annual plant
native to the Great Basin Desert in North America. This
fire-chasing annual plant shows synchronized mass
germination from long-lived dormant seed-banks and
monocultural growth with high intra-specific competi-
tion after fires in its native habitat (Baldwin and Morse
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1994; Baldwin et al. 1994). An RNAi line, silenced in the
expression of its calcium- and calmodulin-dependent
protein kinase (inverted repeat (ir)CCaMK), a key
enzyme facilitating the interaction with AMF, does
not show arbuscule formation when grown in the field
in native habitats and the glasshouse, and when grown
in single pots, develops in a manner indistinguishable
from wild type plants (Groten et al. 2015a), a prerequi-
site for comparative studies (Rillig et al. 2008). Many
additional genes (e.g. SYMRK, CASTOR, POLLUX,
NUP85, NUP133, CYCLOPS, NENA and Vapyrin) have
been shown to be required for root colonization by
AMF, and also for the root-nodule symbiosis with

rhizobia in Lotus japonicus or in Medicago truncatula

(Kistner et al. 2005; Tan et al. 2013). Mutants in these are

impaired at different stages of development, and we

selected CCaMK for RNAi because when the expression

of this gene is silenced, hyphal growth is arrested in the

epidermis and arbuscules fail to develop (Levy et al.

2004; Banba et al. 2008; Gutjahr et al. 2008).
The aim of this work was: (i) to investigate systemic

changes in gene expression due to AMF colonization
using an AMF inoculum native to the plant’s native
habitat; (ii) to determine the effects of AMF associa-
tions on plant competition; and (iii) to evaluate the
regulation of direct and indirect phosphate transporter
genes in N. attenuata. To address these objectives,
we performed comparative whole-transcriptome profil-
ing with 60k oligomicroarrays using two transgenic
N. attentuata lines, empty vector (EV) plants capable of,
and irCCaMK plants, impaired in AMF colonization
grown under controlled, but competitive and P-limited
conditions with a field-collected mycorrhizal mixture
(native inoculum), and compared the results using
the same experimental set-up but with a commercial
Rhizophagus irregularis inoculum.

RESULTS

Roots grown in field mycorrhizal inoculum are
colonized by Funelliformis mossae and Rhizophagus
irregularis
In order to mimic natural intraspecific competition
and AMF colonization, EV and irCCaMK plants were
grown in competition with two different inocula, a
native inoculum based on soil collected in the plant’s
natural habitat in Utah, USA (field mycorrhizal mixture,

FMM) and a commercial Rhizophagus irregularis inocu-
lum, both under growth-limiting phosphate conditions
(Figure 1). AMF communities of the FMM were
characterized by amplifying a part of the 18S rDNA
using a nested PCR approach. The most abundant
species colonizing N. attenuata roots were identified as
F. mosseae and R. irregularis (Figure 1) with strains
related to Rhizophagus dominating the community. This
composition of fungal species is similar to that reported
from field grown-plants from the same soil in the plant’s
native habitat (Groten et al. 2015a), and hence mimics
natural conditions well.

AMF inoculation increases growth disparities
between EV and irCCaMK plants when grown in
competition
When EV and irCCaMK plants competed for the same
limited amount of nutrients in their shared pot without
AMF inoculation, growth of the non-inoculated irCCaMK
plants was similar (R. irr. -) or slightly attenuated
compared to EV (FMM-). However, when AMF inocu-
lated, irCCaMK plants were severely attenuated in
their growth and this attenuation was independent of
inoculum type, particularly for stalk elongation (Figure
2). The differences in stalk height between EV and
irCCaMK plants were almost doubled when plants were
associating with either of the two inocula types.

We used the known mycorrhizae-specific phosphate
transporters, NaPT4 and NaPT5, as markers of arbuscule
colonization (Chen et al. 2007; Tan et al. 2012; Groten
et al. 2015b). Their transcript abundance was strongly
increased in response to inoculation in roots of both
genotypes, though, the expression of this transporter
was significantly higher (2–3 fold) in inoculated EV roots
than in irCCaMK roots (Figure 2). The analysis of root
colonization after staining revealed that irCCaMK
plants also showed all of the typical AMF colonization
structures (internal hyphae, arbuscules, vesicles), but
relative abundance of arbuscules and vesicleswas lower
in irCCaMK than in EV plants for both inocula types
(Table S1). As these results contradicted our previous
characterization of the irCCaMK line, which did not
find any evidence of internal colonization when plants
were grown in single pots or in the field (Groten et al.
2015a), we re-analyzed the colonization patterns in
different experimental set-ups so as to distinguish
different hypotheses that could account for this
apparent discrepancy. We used singly-grown plants in
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1 L pots and competitively grown plants in 2 L pots with
root barriers penetrable by hyphae. For both set-ups we
did not find any internal AMF colonization structures,
and, consistent with our previous results (Groten et al.
2015a), NaPT4 was only upregulated in inoculated EV
plants, but not in irCCaMK (Figure S1A, S1B). To further
elucidate why we obtained a different result in the
present study, we decided to repeat the competitive
set-up without a barrier, but instead of EV we used a
transgenic N. attenuata line ectopically expressing a
green fluorescent fusion protein (GFP-SPOR). Using this
set-up we reproduced the results described above for
competitively grown EV and irCCaMK plants – roots of

GFP-SPOR plants showed much higher colonization
rates and NaPT4 transcript accumulation than for
irCCaMK, but some AMF-colonized roots and NaPT4
transcripts were also detected in roots of irCCaMK
plants. Interestingly, the transcript abundance of GFP
showed a similar pattern as NaPT4 (Figure S1C). As GFP
transcripts should only be present in GFP-SPOR plants,
and indeed they were not present in singly grown
irCCaMK plants, we infer that the colonization pattern
found for irCCaMK is probably due to an incomplete
separation of the root systems during harvest. This has
no effect on the aboveground part, which is the focus
of the present study. Furthermore, the incomplete

Figure 1. Experimental set-up, work-flow and characterization of the field mycorrhizal mixture (FMM)
Empty vector (EV) Nicotiana attenuata plants were co-cultured with transgenic lines silenced in the expression of
calcium and calmodulin dependent protein kinase (irCCaMK) in 2 L pots, with living and autoclaved arbuscular
mycorrhizal inoculum originally collected from the plant’s native habitat in Utah, USA, and with commercial
Rhizophagus irregularis inoculum. Leaves were harvested at two time-points after inoculation (2 and 6 weeks post-
inoculation (wpi)) for transcriptome profiling for FMM inoculation, metabolite analysis and validation of selected
genes found by transcriptome profiling in leaves inoculated with the commercial inoculum. Roots were used for the
characterization of the fungal strains of the field mycorrhizal mixture colonizing the roots based on the small
subunit (SSU) rDNA genes after nested PCRwith arbuscular mycorrhiza specific primers and cloning. Three replicate
samples per transgenic line were used, and 24 clones per sample sequenced. The relative number of clones with
highest homology to sequences in the NCBI database is shown (total number of positive sequenced clones: 141).
Unweighted Pair Group Method with Arithmetic mean (UPGMA) phylogenetic tree. Glomus macrocarpumwas used
as the out-group. Branches with bootstraps lower than 60% were collapsed to polytomies. The scale bar indicates
the SSUs per site.
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separation of the root systems turned out to be a

good indicator of AMF-inducible metabolites in roots by

using the characteristic additive expression pattern as a

marker.

Total P content of inoculated irCCaMK leaves and
roots is significantly lower than for competing EV
plants
As inoculated EV and irCCaMK lines showed a strong
difference in growth, we also quantified leaf and root
biomass, P concentration and total P contents of the
plants growing in FMM inoculated pots (Figure 3).
Roots showed a very clear pattern: while root biomass

was similar for both treatment and lines, P concentra-
tion tended to be higher and total P content was
significantly higher in inoculated EV roots. The shoots of
inoculated irCCaMK plants had a significantly lower
biomass than those of inoculated EV plants, while leaf P
concentration was only significantly different when
comparing the inoculated plants with non-inoculated
EV plants; within a pot the two plant lines did not
significantly differ in P leaf concentration. However,
when considering total biomass as a measure of P gain
over time and P leaf concentration, total P of inoculated

irCCaMK plants was significantly lower than that of their

competing EV plants. In short, inoculated irCCaMK

Figure 2. After inoculation with the fieldmycorrhizal mixture (FMM) (A) or with R. irregularis inoculum (R. irr.) (B)
N. attenuata empty vector (EV) plants grown in competition with transgenic plants silenced in the expression of a
key gene of arbuscular mycorrhizal signaling (irCCaMK) had significantly taller stalks than irCCaMK plants and
showed higher levels of mycorrhiza-specific phosphate transporter transcript accumulation
For the experimental set-up see Figure 1. Representative pictures of the plants. Pictures were taken 45 d
post-inoculation (dpi). Leaf and stalk length growth of the two transgenic lines, EV (blue diamonds) and irCCaMK
(red circles) with (þ, filled) and without (�, non-filled) mycorrhizal inoculum. Measurements were taken at
indicated time points after inoculation; significant differences are shown by different letters (linear model of leaf
and stalk length growth using the interaction ofmycorrhizal treatment and transgenic line followed by Tukey’s HSD,
P� 0.05, n¼ 10). Leaves depicted in red indicate harvested leaves 2 and 6 wpi for further analysis. Relative
expression of the arbuscular mycorrhiza-specific phosphate transporter NaPT4 as marker of arbuscule activity in
roots of EV and irCCaMK plants compared to elongation factor. Asterisks indicate significant differences among the
two genotypes (paired Student’s t-test, �P� 0.05, �� P� 0.01, ns, not significant, n¼ 6).
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plants grown in competition with EV plants acquired

less P than did the competing EV plants.

Foliar fingerprinting revealed differentially expressed
genes showing additive and interactive expression
patterns for AMF colonization and genotype
To further investigate the systemic effects of AMF

colonization for competing plants, we performed a foliar

transcriptome analysis by microarray at two time-points

after inoculation, 2 and 6 weeks. Quantile normalization

and qRT-PCR validation revealed the robustness of this

dataset (Figure S2B, S2D). Multi-dimensional scaling

analysis grouped all the samples harvested at 2 weeks

post-inoculation (wpi) together independently of geno-

type and colonization (Figure S2A). At 6 wpi, EV and

irCCaMK samples (without AMF inoculation) also

grouped, while they were clearly distinct after FMM

inoculation (Figure S2A). There was almost no difference

in the transcript abundances of EV and irCCaMK

without AMF inoculation (0 DEG, 2 wpi; 12 DEGs, 6 wpi)

(Figure S2C) and these minor differences reflect the

expression pattern of CCaMK in plants - CCaMK expression

is absent in leaf tissues, while transcripts accumulate in

roots and flowers (Figure S2E).

The microarray data analysis revealed that the

number of DEGs in leaves was 15 times greater in

irCCaMK than in EV leaves at both time points after FMM

inoculation compared with the non-inoculated group

(Figure 3B). This dramatic difference might result from

the strong growth differences between EV and irCCaMK

plants after FMM inoculation. Therefore, we first only

considered DEGs overlapping at the two time-points (47

core DEGs: 14 from 2 wpi, 33 from 6 wpi) (Figure 4A).

Hierarchical clustering analysis indicated two main

effects among them, an additive effect and an

interactive effect, in particular for DEGs at 6 wpi.
To evaluate whether this additive effect expression

pattern induced by FMM was independently reproduc-
ible by R. irregularis alone, we used the same set-upwith
a commercially available R. irregularis inoculum (Figure

Figure 3. Total P content is significantly lower in FMM- inoculated irCCaMK compared to non-inoculated plants and
to FMM-inoculated EV plants
Fresh mass of plants (roots and shoots) 6 weeks post-inoculation with field mycorrhizal mixture (FMM) and P
concentration in stem leaves (1st–3rd leaf) were analyzed and the total P content in leaves and roots determined.
Asterisks indicate significant differences among the two genotypes (paired Student’s t test, ��P� 0.01,
���P� 0.005; ns, not significant; n¼ 10 for fresh mass, and n¼ 3 for P measurements).
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Figure 4. Transcriptome analysis in leaves of FMM-inoculated and non-inoculated EV and irCCaMK plants indicate
strong interactive changes in expression of P-starvation genes and the additive effect of transcription factors and
receptor kinases at 6 weeks post-inoculation (wpi)
(A) The Venn-diagramdepicts the number of differentially expressed genes (DEG)when comparing FMM-inoculated
and non-inoculated EV plants (in blue and pink) and irCCaMK plants (in violet and grey) at the early (2 wpi) and late
harvests (6 wpi) of FMM inoculation. The pair-wise comparison was performed using R (fold change� 1.5 or��1.5,
FDR � 0.05). Hierarchical cluster analysis of 47 overlapping DEGs (in bold black). Strong interactive and additive
effects between genotypes (EV/irCCaMK) and treatments (FMM�/þ) were found at 6 wpi. The DEGs shown with a
blue background show the opposite expression pattern in EV and irCCaMK after AMF inoculation, while DEGs with a
green background show an additive effect, representing a significant increased expression level after inoculation,
which is higher in EV than in irCCaMK leaves. Data shown are means� SE (n¼ 3) after quantile normalization and
log2-transformation. (B) Foliar genes showing an additive effect could not be confirmed to be specifically induced by
arbuscular mycorrhizae using the same experimental set-up and the R. irregularis inoculum (see Figure 1). qPCR
analysis of selected genes expressed in leaves; significance was tested by a paired Students t-test, n¼ 6; ns, not
significant). (C) Pie-chart of DEGs selected from (A). GO enrichment analysis of 423 DEGs was computed with
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4B). Four representative genes, PIMP1, R1B-2, FLS2,
WRKY70 and RIN4,were selected from the FMM induced
foliar additive model (see Figure 4A) to more critically
evaluate the observed expression pattern. However,
the pattern found for the FMM-inoculated leaves could
not be reproduced: irCCaMK leaves of plants inoculated
with the R. irregularis AMF inoculum showed the same
expression as non-inoculated plants and inoculated EV
plants (Figure 4B). The lack of reproducibility after
inoculation with commercial R. irregularis inoculum
compared to FMM treatment suggests that foliar
differential gene expression found for FMM inoculum
following the additive model depends on other factors
such as the type of partner or growth conditions (sand
vs. expanded clay); and hence these DEGs found cannot
be considered as general foliar markers of AMF
colonization.

In the interactive model, patterns of transcript

accumulation in EV and irCCaMK show opposite

patterns. Many typical phosphate starvation-inducible

genes exhibited such a pattern at 6 wpi, for example,

phosphate transporter PHO1, purple acid phosphatases

(PAP), SPX domain containing SPX2 and PHOSPHATE2

(PHO2), but these were not significantly changed at 2

wpi (Figure 4A). To further dissect the gene expres-

sion pattern showing an interactive model induced by

FMM treatment, a detailed gene ontology (GO)

enrichment analysis was conducted. The overlapping

276 core DEGs at 2 and 6 wpi in irCCaMK leaves were

selected in combination with 59 DEGs (2 wpi) and 73

DEGs (6 wpi) of EV as GO enrichment analysis groups

(Figure 4C). GO enrichment analysis showed that

the GO terms of phosphate ion transport, galactolipid

biosynthetic process and phosphate starvation re-

sponses were enriched. These results corresponded

with the total P content of the leaves and are

consistent with the hypothesis that irCCaMK plants

sharing a 2 L-pot with EV plants were P starved after

FMM inoculation.

NaPT5 is induced by P-starvation in leaves
independently of AMF colonization
To further investigate the P-starvation signature of
irCCaMK plants, we quantified the gene expression
pattern of selected phosphate transporters. The PHT1
family of plant membrane proteins is mainly responsible
for the uptake of Pi from the soil. Based on a Blast
search using published PHT1 sequences from tomato,
rice, Medicago and Arabidopsis, 11 orthologues were

identified in N. attenuata. The maximum-likelihood

phylogenetic tree based on protein sequences grouped

NaPT4 and NaPT5 in the same clade with the well-

characterized AMF-inducible phosphate transporters

MtPT4/5, LePT4/5 and OsPT11 (Figures 5A, S3A). NaPT3.1

was in the same clade as the AMF-specific phosphate

transporter LePT3 (Figure S3A). Tissue-specific expres-

sion clustering classified NaPT4, NaPT3.1 and NaPT5 in

the same clade (Figure S3B).
To further elucidate the role of the selected

phosphate transporters, we quantified their transcript
levels by qRT-PCR and clustered the values after log2
transformation. NaPT4, NaPT3.1 and NaPT5 were upre-
gulated in FMM inoculated roots in EV and irCCaMK

plants, while NaPT1, NaPT7 and NaPT5 were only

upregulated in leaves of FMM inoculated irCCaMK

plants (Figure 5B). Hence, NaPT5 was not only

upregulated in FMM inoculated roots of both geno-

types (EV and irCCaMK), but also in P-starved leaf tissues

of irCCaMK plants. The distinct role of NaPT5 was

corroborated by hierarchical clustering which revealed

that NaPT5 has its own distinct expression pattern

compared to the clades of NaPT4/3.1 andNaPT1/7 (Figure

5B). These results were validated in a separate

experiment using the same experimental set-up but

with the commercial Rhizophagus inoculum (see Figure

1). The expression level of PHO2, an ubiquitin-

conjugating E2 enzyme and important central negative

regulator of the Pi response pathway (Chiou and Lin

2011), was significantly induced by R. irregularis

CluoGOþ CluePedia according to the GO categories “Biological Process” and “Molecular Function” (Two-sided
hypergeometric test, Bonferroni corrected test, P� 0.05). GO terms were associated to DEGs according to the best
BlastX hits obtained from Arabidopsis TAIR10 proteome. The color proportion of GO terms (strokes in black) is
positively correlated with the frequency of DEGs from the corresponding lists. Colors of associated nodes (without
stroke) including regulated PHT1 family members (inset) indicate overrepresented DEGs from the corresponding
lists.
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Figure 5. Leaves of FMM-inoculated and non-inoculated irCCaMK plants show a strong regulation of phosphate
transport and starvation genes, in particular of PHT1 transporter family members: NaPT5 is not only highly
expressed in mycorrhizal roots but also in leaves of plants grown under low Pi conditions
(A) Phylogenetic tree showing all phosphate transporters of the PHT1 family identified in N. attenuata and their
homologues in rice, sorghum, Arabidopsis, soybean, Medicago, Lotus and Brachypodium. The complete
phylogenetic tree is shown in Figure S2. The cut-out highlights the part of the tree showing NaPT4 and NaPT5.
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inoculation in EV leaves, and showed the same pattern

as in FMM-inoculated plants. Similarly, the expression of

NaPT4 and NaPT5 was the same for the commercial

inoculum and the FMM (Figure 5C). To evaluatewhether

the high transcript abundance of NaPT5 in leaves is a

P starvation response irrespective of AMF colonization,

plants were grown under two different P levels (low P:

0.02 and regular P: 0.50mmol/L) without AMF inocula-

tion. After irrigation with low P fertilizer (0.02mmol/L),

the molecular marker regulating Pi homeostasis PHO2

was significantly downregulated in both leaf and root

tissues (Figure 5D), and consistent with our expecta-
tions, NaPT4 was neither expressed in root or leaf
tissues, while NaPT5was not induced in root tissues, but
significantly upregulated in leaves of P-starved plants
(Figure 5D). In summary, from these data we conclude
that NaPT5 is not only induced by AMF colonization in
roots, but is also induced by P starvation in leaves
independently of AMF colonization.

Concentrations of particular amino acids are enriched
in leaves of inoculated irCCaMK plants, while roots
show a strong accumulation of amino acids and
phenolics in AMF-treated EV roots.
To further evaluate the results obtained by gene
expression analysis, we also analyzed amino acid levels,
as it is thoroughly documented that amino acids and
nitrogenous compounds increase during P limited
growth (Willmann et al. 2013; Ganie et al. 2015), and
AMF colonization is known to alter the foliar levels of
asparagine, glutamine, glutamic acid and aspartic acid
(Kogel et al. 2010; Fester et al. 2011).We used both types
of inocula for a robust analysis and the results were
largely consistent for both inocula. We did not find

a significant change in specific amino acids in leaves
of AMF-inoculated EV plants. However, glutamic acid,
aspartic acid, glutamine, serine and tryptophane were
significantly increased in leaves of inoculated irCCaMK
plants independently of inoculum type (Figure 6, Tables
S2, S3). Hence, levels followed the interactive pattern
found for genes known to be related to P-starvation
(Figure 5C). Furthermore, the foliar levels of the phenolic
compounds rutin, caffeoylputrescine, scopoletin and
scopolin tended to be lower in inoculated EV plants, and
increased in leaves of AMF-inoculated irCCaMK plants
(Figure 6). The overall pattern was similar for the two
different inocula (Tables S2, S3), but the absolute levels
differed, with higher levels in plants inoculated with the
commercial inoculum. In contrast to leaves, the levels of
themajority of free amino acids in roots showed a similar
additive pattern to that ofNaPT4expression – aminoacid
levels increased with AMF inoculation, but levels were
mostly higher for EV than for irCCaMK (Figure 6A; Tables
S2, S3). Thephenolic compoundssinapic acid, ferulic acid,
cinnamic acid and scopolin also reflected this pattern,
while other compounds showed similar AMF-induced
levels in both genotypes or higher levels in irCCaMK
plants (Figure 6, Tables S4, S5).

DISCUSSION

Plants have developedmany strategies to adapt to local
environments, in particular to cope with extreme
environments such as nutrient and water deficiency.
One strategy is to establish mutualistic symbiotic
relationships with AMF. The interaction with the fungal
partner leads to local large-scale reprogramming in the
roots. Here, we focused on systemic effects in isogenic

(B) Hierarchical cluster analysis of PHT1 family members (NaPT1, NaPT2, NaPT4, NaPT5, NaPT7) of FMM inoculated
and non-inoculated plants validated by qRT-PCR. Log2-transformed transcript accumulation values are only shown
for significant differences after pairwise comparisons among inoculated and non-inoculated samples of the same
genotype. (C) NaPT5 transcript accumulation was evaluated in response to R. irregularis inoculation (see Figure 1).
Relative gene expression values of gene expression in EV (blue bar) and irCCaMK (red bar) with (R. irrþ; dark colors)
and without (R. irr�; light colors) mycorrhizal inoculum 6 wpi is shown. Data represent the mean� SE (n¼ 6);
asterisks indicate significant differences among the two genotypes (paired Student’s t-test andWilcoxon Rank Sum
test for NaPT5 expression in leaves,� P� 0.05, �� P� 0.01, ��� P� 0.005; ns, not significant). (D) EV plants were
grown in a single pot under two different Pi levels, regular P (0.5mmol/L) and low Pi (0.02mmol/L), respectively, to
evaluate NaPT5 transcript accumulation in response to Pi-starvation. Asterisks indicate significant differences
between the two P-treatments (Student’s t-test, �� P� 0.01, ��� P� 0.005). Relative transcript abundance of
NaPHO2, NaPT5 and NaPT4 was compared to the housekeeping gene (eukaryotic translation initiation factor 5A-3
(EIF5A3); NIATv7_g37283) in leaves and roots.
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N. attenuata plants with different capabilities to interact
with AMF. Plants were grown in competition in a native
inoculum to mimic natural conditions, and for data
validation compared to the results with a commercial
Rhizophagus irregularis inoculum using the same
experimental set-up. N. attenuata host plants (EV)

and isogenic surrogate non-host plants silenced in a key

enzyme to establish an AMF symbiosis (irCCaMK) were

used to gain new insights into the regulation of AMF

colonization and the complex expression patterns of

PHT1 phosphate transporter family members.

Previously it has been shown that the two isogenic
wild annual tobacco plants used in the present study do
not differ in growth and fitness parameters when
grown in single pots or in rows in the field (Groten et al.
2015a); the growth of both lines was impaired to the

same extent after inoculation with AMF compared to
autoclaved inoculum (Groten et al. 2015a). Here, we
observed the same growth difference for EV plants

when comparing active and autoclaved inoculum.

However, in contrast to the results obtained from

plants grown singly in pots, when plants were grown in

competition in the same pot – a condition which is

similar to the natural situation in which plants due

to their mass germination after fire also compete with

their neighbors for light and nutrients (Lynds and

Baldwin 1998) – the two lines showed a strong growth

difference in the presence of AMF, with lines impaired

in the interaction with the fungal partner being strongly

reduced in growth compared to the fully functional

competitor. This result was independent of the inoculum

type. From these findings, we infer that AMF colonization

Figure 6. The foliar concentrations of many amino acids significantly increase in R. irregularis inoculated irCCaMK
plants and decrease in the leaves of inoculated EV plants compared to non-inoculated plants of the same
genotype, while in roots the majority of amino acid levels follow the additive pattern
Metabolites of leaves and roots of plants 6 wpi were extracted by solid-phase extraction based sample preparation
and analyzed by UHPLC–HESI–MS/MS. Data shown are means� SE (n¼ 7). Statistical results are provided in
Table S3. In order to show several metabolites in one graph, data were transformed - for malic acid values were
divided by 100, and for rutin, chlorogenic acid, caffeoylputrescine and scopolin by 10, while fraxetin and cinnamic
acid values are shown at 100- and 10-fold levels than the measured values, respectively.
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is not beneficial for irCCaMK plants when these AMF-

impaired plants are grown in competition with a fully

AMF-functional competitor. In accordance with the

reduced stalk lengths, shoot biomass was also signifi-

cantly reduced, and this was reflected in the significantly

lower total P values, while AMF-colonized roots of EV

plants had much higher P concentrations and total

amounts of P. From these results we infer that these

AMF-impaired plants took up less P than their EV

competitors, and this inferencewas further corroborated

by the microarray analysis of leaf tissues.
An in-depth analysis of foliar DEGs following the

interactive pattern, in other words, genes that show the
opposite expression pattern in EV and irCCaMK,
revealed that a majority of GO functions directly
(P starvation and P transport) or indirectly (galactolipid
biosynthesis) were related to P nutrition (Figure 4C).
The effect only became obvious 6 wpi, while after
2 weeks, only few changes in gene expression were

observed between plants with and without inoculum

(Figure 4A), and all samples clustered together (Figure

S2A). The low colonization rates at this early stage in the

interaction when the AMF network may not have been

fully established in addition to the likely nutrient

sufficiency of these smaller plants are likely responsible.

From these observations, we infer that the competition

for nutrients was less prominent at the early time-point,

as expected. The transcriptome analysis corroborated

the inference that AMF-mediated P acquisition and

nutrition resulted in the P starvation of irCCaMK plants.

P-uptake of plants via AMF occurs via inducible

P-transporters located in the periarbuscular membrane,

and these deserve further discussion.

NaPT4 and NaPT5 show 93 and 94% similarity at the
amino acid level with their orthologues LePT4 and
LePT5, in tomato, respectively (Karandashov et al. 2004;
Nagy et al. 2005). Interestingly, PT5, which is known as a
typical marker for AMF colonization (Tan et al. 2012),
was not only expressed in AMF-inoculated roots but
also in the leaves of inoculated irCCaMK plants. The
expression was only observed for NaPT5 and not for
NaPT4, and correlated with significantly higher expres-
sion levels of the direct transporters NaPT1 and NaPT7.
In particular PT1 is known to be induced by P-starvation
in tomato (Liu et al. 1998). These findings strongly
suggested that NaPT5 is induced by Pi starvation, and
the observations that 1) the same expression pattern

was observed with a different inoculum and 2) that high
levels of NaPT5 expression under low Pi conditions
without AMF were observed (Figure 5) were consistent
with this hypothesis. Interestingly, a recent study
with tomato revealed that LePT5 was significantly
downregulated in leaves in response to R. irregularis
inoculation. These plants were well-fertilized and did
not suffer from P-starvation (Cervantes-Gamez et al.
2016), again providing evidence consistent with the

hypothesis that PT5 transcript levels negatively corre-

late with the P status of leaves. Additional direct

evidence comes from an early study on the expression

of P-transporter genes in three Solanaceous species

which showed an induction of AMF-inducible PT4 in

leaves and roots of strongly P-starved eggplants, but

not in pepper and N. tabacum (Chen et al. 2007), and

a very weak expression of PT5 was also observed in P-

deprived tomato leaves (Chen et al. 2014), and of the

AMF-inducible PT3 in maize leaves (Nagy et al. 2006).

Expression of genes known to be AMF-induced in other

tissues were also reported for the AMF inducible Pht1

gene SbPT11 from sorghum, in reproductive tissue

(stamen and pistil), and for SbPT11, SbPT9, LuPT5 and

LuPT8 in leaves of sorghum and flax (Walder et al. 2016)

all consistent with our findings that PT5 is not only

a mycorrhizal marker in roots, but also an indicator of

P-starvation in leaves in N. attenuata. Furthermore,

the AMF-inducible PTs LjPT4 (L. japonicus) and MtPT4

(M. truncatula) were found to be expressed in non-

inoculated roots (Volpe et al. 2016). The transcript

abundance of LjPT4 and MtPT4 highly increased with

low P growth in non-mycorrhizal roots, and GUS

histochemical staining indicated an enrichment in the

root apex (Volpe et al. 2016). In the P starvation

experiment presented here, we could not detect any

changes in NaPT4 transcript levels in roots. This

discrepancy is likely due to the fact that we analyzed

entire roots of which the root apices represent only a

minor contributor.

The functional roles of the expression of these
AMF-induced PTs in non-mycorrhizal tissues remain
unknown. It has been speculated that MtPT4 and LjPT4
may function in the root apex act – in addition to
their roles in Pi transport across the periarbuscular
membrane – as phosphate sensors that regulate early
root branching (Volpe et al. 2016). The foliar expression
of AMF-inducible PTs may play a role in Pi mobilization
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(Walder et al. 2016). However, further studies are
needed to clearly distinguish if these AMF-inducible PTs
are relevant for transport, remobilization, or signaling.

At the metabolite level we found an increase in
foliar amounts of free amino acids, glutamine,
glutamic acid, aspartic acid, serine and tryptophane
in irCCaMK (Figure 6), a result which is consistent with
the hypothesis that irCCaMK plants suffer from P
starvation when competing with AMF-inoculated EV
plants. Increased levels of these amino acids are
known to occur in P-starved plants (Schlueter et al.
2013), while asparagine, aspartic acid, glutamine and
glutamic acid have also been shown to be reduced in
leaves of mycorrhizal Lotus japonicus probably due to
improved P nutrition (Fester et al. 2011). Consistent
with these findings, we also found a significant
decrease in the amounts of proline, tryptophane,
glutamine, glutamic acid and tyrosine after inoculation
with the two different inocula when comparing
inoculated and non-inoculated EV plants.

We also observed a decline in foliar concentrations

of malic acid, rutin and chlorgenic acid in EV plants,

while the same compounds also in addition to fraxetin,

caffeoylputrescine, scopolin and scopoletin increased

in AMF-inoculated irCCaMK plants, though not all

differences were significant for both inocula. This

result at first is surprising as rutin and chlorogenic

acid are typically induced by herbivory (Lou and Baldwin

2004), involved in priming against herbivores (Bandoly

et al. 2016) and bacterial pathogens (Yan et al. 2016) and

scopolin and scopoletin are known as antifungal

compounds (Sun et al. 2014). Moreover, AMF-inocu-

lated plants are usually considered to be better

defended against leaf-chewing herbivores than non-

colonized plants (Jung et al. 2012). However, early

publications on P-starvation reported a large increase

in chlorogenic acid and phenolic compounds in leaves

of P-starved plants and a leakage of scopolin and

scopoletin from leaves of these plants (Koeppe et al.

1976; Juszczuk et al. 2004), results consistent with

our observations that inoculated irCCaMK plants are

P-starved when grown in competition with fully func-

tional EVplants. An increase in foliar phenolic compounds

is one way for plants to cope with environmental

stress, and one hypothesis is that phenolics are

produced to make use of carbon skeletons (carbon-

nutrient balance theory) (Caretto et al. 2015). In

contrast toourfindings,which rather showedadecline in

some phenolic compounds in leaves of AMF inoculated

EV plants, a report on AMF-inoculated Medicago leaves

described an alteration in phenylpropanoid metabolism

due to AMF inoculation (Adolfsson et al. 2017). However,

other studies have reported only increases in particular

secondary metabolites upon AMF inoculation, and not a

general increase in phenolics associated with AMF

colonization (Cosme et al. 2014; Schweiger et al. 2014).

In contrast to leaves, levels of most amino acids in

roots showed a very clear pattern related to AMF

inoculation, which mostly followed the additive model

in both inoculated genotypes: levels were higher in EV

than in irCCaMK plants, and hence the increase in

irCCaMK plants is probably due to the percentage of EV

roots mixed up with irCCaMK providing a good indicator

that these compounds are AMF-induced. These results

are in clear contrast to the findings for tomato roots

colonized by two different AMF species, which showed

a reduction in basic and aromatic amino acids compared

to non-inoculated roots (Rivero et al. 2015). Increases in

the levels of aspartic acid, asparagine and glutamic acid

in inoculated roots is a more consistently observed

response across different host species and inocula

(Schliemann et al. 2008; Rivero et al. 2015) and it is

thought that these are related to N-uptake

(Govindarajulu et al. 2005). Levels of other amino acids

appear to be more plant species-specific and this also

applies to phenylpropanoids. Flavonoids and lignins

increase in some species (Lopez-Raez et al. 2010; Rivero

et al. 2015; Zubek et al. 2015), but the direction of change

as well as the type of metabolites differ among the

studies. For example, while we observed a significant

increase in caffeic acid and chlorogenic acid in AMF

inoculated roots, in clover a significant decline was

observed in response to inoculation with two mycor-

rhizal species (Lopez-Raez et al. 2010), though in both

studies an increase in ferulic acid was shown.

In this context it is important to note that though the
overall pattern was similar between the two inocula,
the absolute levels as well as the strength of induction
differed, which is in agreement with previous studies
indicating that different inoculum types can lead to
different plant responses (Lopez-Raez et al. 2010;
Rivero et al. 2015; Walder et al. 2015; Zubek et al.
2015; Walder et al. 2016).
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In conclusion, the present study underscores the
importance of the identity of the fungal partner in plant-
AMF interactions to evaluate systemic changes in
the plants due to AMF colonization. Plants impaired
in their interactions with AMF clearly display strong
signs of P-starvation and have a fitness disadvantage
when competing for limited soil nutrients with a fully
functional isogenic line. Furthermore, there is growing
evidence that AMF-specific phosphate transporters are

more versatile than previously thought. The data

presented here demonstrate an expression pattern of

the AMF-specific PT5 in leaves which is independent of

AMF colonization. An in-depth functional characteriza-

tion is needed to clarify the role and the molecular

mechanism of NaPT5.

MATERIALS AND METHODS

Fungal inoculum, plant germination and growth
Native soil was obtained from the New Plot site
(N 37.1412, W 114. 0275) at the Lytle Ranch Preserve, in
SW Utah, USA, a native habitat of Nicotiana attenuata in
Utah, USA. The soil wasmixedwith autoclaved sand (1:3)
and Medicago and leek plants were grown in the same
pot and used as trap plants to amplify the AMF in the soil.
Six weeks after planting, shoots were removed, and the
roots cut into small pieces and mixed with autoclaved
sand (1:10). This field mycorrhizal mixture (FMM) was
used as active inoculum and after autoclaving (twice at
121°C for 30min) for non-inoculated controls. Additional
experiments were performed with living and dead
(autoclaved at 121°C for 30min) commercial Rhizophagus
irregularis inoculum (Biomyc Vital), which was also
diluted 1:10 with autoclaved expanded clay (2–4mm)
(Figure 1). Empty vector (EV) plants carrying the empty
construct (line A-04–266-3-1) and plants silenced in the
expression of a calcium- and calmodulin-dependent
protein kinase irCCaMK (irCCaMK 2 line A09-1212-1,
(Groten et al. 2015a)), were germinated on Gamborg
B5 medium according to Kruegel et al. (2002). EV and
irCCaMK plants were grown as dual-plant communities in
2 Lpotsfilledwith either livingor dead inoculum (FMMor
R. irregularis). At the bottom of the pot we placed a layer
of expanded clay (size 4–8mm) for better drainage and
on top a layer of sand (about 1 cm) to prevent any cross-
contamination. Plants were irrigated with hydroponic
fertilizer (Groten et al. 2015a) with 1/10 of the regular

inorganic Pi concentration during rosette stage, and
starting with the elongation stage with 1/4 Pi concentra-
tion. Leaf and stalk length measurements were taken
every 5 and 3 d, respectively. Rosette leaves (1st and 2nd
source leaf) were harvested 2 weeks post-inoculation
(wpi), and stem leaves (1st–3rd) and root material 6 wpi.
The biomass of the leaves and shoots wasmeasured and
the plant material immediately frozen in liquid nitrogen.
To compare the irCCaMK phenotype of plants grown
with and without competitors in 1 and 2 L pots, we
also grew plants in single pots under low P conditions
with the commercial inoculum. In addition to 1 L
pots with individual plants only, we also used 2 L pots
separated by a barrier penetrable for hyphae but not for
roots (mesh size 30mM), so that plants were connected
by a common mycorrhizal network, but roots could not
directly interact (Supporting Figure S1). We repeated
the competition experiment in 2 L pots with an
isogenic N. attenuata line ectopically expressing a

green fluorescent protein (GFP)-sporamin fusion

protein (line A06-349-6) instead of EV (Zhang et al.

2010). As GFP from jellyfish should only be present in

GFP overexpressing plants, we used these plants as an

additional marker (see below).

Root harvest, root staining, mycorrhizal feature
visualization and evaluation
For harvests, roots of the two plants in each pot were
carefully disentangled and washed with tap water to
remove the remaining substrate. However, roots of
glasshouse-grown N. attenuata plants are very delicate
and partially mix up when two plants are grown
together in a pot, which makes a clean harvest very
difficult. We discarded all root parts for which we could
not be not sure if they were from a single genotype.
Additionally, in an independent experiment we used the
GFP-SPOR lines grown in competition with irCCaMK
plants to find out if the root systems were fully
entwined. Roots were cut into 1 cm pieces and the
pieces well-mixed. A subset was collected from each
genotype with and without AMF inoculation and stored
in a solution consisting of 99% ethanol and 60% acetic
acid (3:1, v:v) at 4°C. The remaining root material was
immediately frozen in liquid nitrogen. For fungal
colonization analysis, root tissue was stained with
trypan blue according to Riedel et al. (2008). For
colonization analysis, up to 15 randomly picked root
pieces were mounted on a slide and scored at �20
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magnification with an AxioImager Z1 microscope (Zeiss,
Jena, Germany) using a magnified gridline intersect
method (McGonigle et al. 1990; Groten et al. 2015a). 100
intersections per sample (slide) were counted.

Characterization of the Field Mycorrhizal Mixture
For the characterization of the FFM in EV and irCCaMK
roots, we followed the protocol described in detail in
Groten et al. (2015a). In brief, the FastDNASPINKit for Soil
(MP Biomedicals) was used for DNA extraction according
to the manufacturer’s instructions. PCR reactions using
the AML1 and AML2 primer pair (Lee et al. 2008) were
done in a 50mL volume using Phusion High-Fidelity DNA
Polymerase (NewEnglandBioLabs Inc., Beverly,MA,USA)
following the manufacturer’s protocol. For the second
PCR with the N31 and AM1 primer pair (Simon et al. 1992;
Helgason et al. 1999), PCR products of the first PCR were
diluted 1:50 with Milli-Q water. PCR products (550bp)
were run on a 1% agarose gel, excised and then purified
using the QIAquick Gel Extraction Kit. Purified DNA
fragments were ligated into the pGEM-T Easy vector
according to the manufacturer’s protocol. Twenty-four
positive clones were selected and sequenced using ABI
Genetic Analyzer 3100 (Applied Biosystems, Germany).
Using the Geneious R6 (ver. 6.0.5. available from http://
www.geneious.com/) software, overlapping sequences
of T7 and Sp6 were extracted and shortened in
accordance to the (�550bp) alignment with N31 and
AM1 primer flanking the AMF the small subunit (SSU). The
chromatogram of this sequence was checked for mis-
spaced peaks (i.e. missing nucleotides, confused nucleo-
tides) and the sequence was edited accordingly. After
completion of sequence annotation, the fungal taxawere
identified by a BLAST search with MaarjAM (http://
maarjam.botany.ut.ee/) and NCBI (http://blast.ncbi.nlm.
nih.gov/Blast.cgi) database.

Determination of total P content
Leaf and root material (6wpi) were thoroughly ground
to fine powderwithmortar and pestle in liquid nitrogen.
200mg ground material for each sample was freeze-
dried at �50°C for 48 h. The total P content of the
freeze-dried material was analyzed at the Laboratory
for Spectrometry at the Max Planck Institute for
Biogeochemistry, Jena, Germany.

Total RNA isolation and quality check
For large-scale transcriptome profiling, three replicates
per time-point (2 and 6wpi) and per treatment

(inoculated/non-inoculated) were analyzed for each
genotype. RNA was extracted using Qiagen RNeasy
Mini Kit columns (Qiagen, www.qiagen.com) according
to the manufacturer’s protocols, in combination with
on-column DNase-I treatment (Qiagen). Aliquots (1mL)

of purified RNA were pipetted for quantification and

quality assessment of total RNA using the Agilent 2100

Bioanalyzer system in combination with RNA 6000 n kit

(Agilent, Santa Clara, CA, USA). Only RNA that displayed

intact 18S and 25S peaks was used for microarray

analysis. For the additional set-ups with irCCaMK, EV and

GFP-SPOR RNA was extracted from leaves and roots

using the NucleoSpin RNA plant kit (Machery-Nagel,

http://www.mn-net.com/) according to the manufac-

turer’s instructions including on-column DNA

digestion.

Microarray analysis
Extracted RNA was labeled and hybridized according to

the protocol of the Quick Amp labeling kit (Agilent,

http://www.agilent.com/home). Agilent single-color

technology arrays (60 k) were used to form hybrids

from each sample. Raw intensity data were normalized

with the quantile method, and subsequently the

low expression probes were after log2 transformation.

Differentially expressed probes were filtered

after pair-wise comparison (FDR� 0.05, fold change

� 1.5).

Gene ontology enrichment analysis
Significantly overrepresented gene ontology (GO)
categories and distribution of differentially expressed
genes (DEG) were identified using ClueoGO (2.1.7)þ
CluePedia (1.1.7) plugin for Cytoscape (3.2.1). The
overrepresented GO terms were computed through
enrichment/depletion (Two-sided hypergeometric test)
and Bonferroni correction (pV� 0.05, Kappa Score
threshold¼ 0.4, Percentage for a significant cluster
� 60%) based on aspects of “Biological Process” and
“Molecular Function”.

qPCR of selected genes
RNA concentrations were determined using Nanodrop,

and equal amounts reverse transcribed with the

RevertAid H Minus First Strand cDNA Synthesis

Kit (Thermo Fisher, https://www.thermofisher.com).

qPCRs were performed using a Stratagene Mx3005P

qPCR system using the primers listed in Table S6.
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Amino acid analysis
Metabolites (amino acids) were analyzed by solid-phase
extraction based sample preparation and analyzed by
UHPLC–HESI–MS/MS according to Sch€afer et al. (2016).

Statistical analysis
R version 3.1.1 and Microsoft Excel version 2007 were
used for statistical analysis.

Nucleotide accession numbers
All microarray data were deposited in NCBI GEO
database (GSE85375).
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Fig. S1. Comparisons of transcript abundances and inoculation rates of AMF-inoculated irCCaMK plants 
in single pots, in 2L pots separated by a barrier not penetrable for roots and in 2L pots with a line of an 
isogenic line of N. attenuata ectopically expressing GFP confirm that irCCaMK roots are not internally 
colonized by AMF.

Plants were grown for at least six weeks with Rhizophagus inoculum. Roots were harvested and used to 
determine fungal colonization rates by Trypan Blue staining and to determine transcript abundance of 
NaPT4. A) Plants were grown in single pots. B) EV and irCCaMK plants were grown in 2 L pots with a 
barrier not penetrable for roots, but for fungal hyphae. Plants were grown either with the same genotype 
(mono) or in pairs with the other genotype (paired). C) Plants expressing a GFP-sporamin fusion protein 
(GFP-SPOR) and irCCaMK plants were grown either in single 1 L pots (single) or in mixed pairs (paired) 
in 2 L pots and in addition to NaPT4 relative transcript abundances of of GFP and of CCaMK were 

abundances among samples.
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Fig. S2. Expression box plots after data normalization, sequential multi-dimensional scaling (MDS) and 
measurement of selected, significantly changed gene expressions by qPCR indicate that data 
adjustment and the validity of the data-set for downstream analyses are valid.

(A) Multi-dimensional scaling (MDS) plot of all samples. Manhattan distances (statistically calculated 
from 33,798 informative probe sets) were used to generate the MDS plot. The largest differences occurred 
among inoculated and non-inoculated plants, in particular with data from irCCaMK plants, while at the 
early harvest time-point most samples grouped closely together without showing a clear pattern among 
the different samples. (B) Box plots of expression values after quantile normalization. Rank-average 
expression values of non-inoculated (blank) and inoculated (filled) at 2wpi (yellow) and 6 wpi (green) 
samples were used to replace the specific microarray expression values of pre-quantile normalization. The 
post-normalized box plots distribute in the same intervals with the same density center, indicating 
successful adjustment of data for further analysis. (C) Venn-diagram showing the number of DEGs (fold 
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- irCCaMK without AMF inoculation. 
Genotype based pair-wise comparisons were performed at 2 wpi (yellow) and 6 wpi (green) harvest. (D) 
qRT-PCR validation of selected DEGs confirmed the reliability of microarray datasets. Data shown 
are mean ± SE (N=3). (E) Tissue-specific gene expression pattern of NaCCaMK analyzed by RNA-seq. 
Data are TPM (transcripts per million) values after transformation. Relative higher transcript levels of 
NaCCaMK are present in root and floral tissues, but not in leaves. (F) CCaMK transcript level is silenced 
(72.4%) in irCCaMK roots. Transcript abundance was tested by qRT-PCR (relative to EIF5A3; mean ± 
SE; N=6; Student’s t test, ***p
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Fig. S3. Phylogenetic tree of PHT1 family and hierarchical cluster analysis of PHT1 family members in 
N. attenuata.

(A) Phylogenetic tree showing all phosphate transporters of the PHT1 family identified in N. attenuata
and their homologues in rice, Sorghum, Arabidopsis, soybean, Medigaco, Lotus and Brachypodium. The 
full-length amino acid sequences of PHT1 family were obtained by blasting the published sequences from 
Arabidopsis, rice, medicago and tomato against the N. attenuata database (Xu et al. 2017). These 
sequences were used to build a phylogenetic tree with Phylogeny.fr 
(http://phylogeny.lirmm.fr/phylo_cgi/index.cgi); the full mode of MUSCLE was used for alignment. The 
approximately maximum likelihood phylogenetic tree was generated using PhyML with the Jones-Taylor-
Thornton (JTT) model. Each branch division shows local support values with the approximate likelihood-
ratio test (aLRT). (B) Expression of PTH1 family members in different tissues based on RNAseq data. 
Hierarchical cluster analysis was conducted by heatmap.2.

Table S1. AMF root colonization rates 6 weeks post inoculation.

Genotype Relative root 
colonization (%) 

Relative arbuscule 
colonization (%) 

Relative vesicle 
colonization (%) 

EV (FMM+) 87±4.93 54±4.33** 19±2.03* 
irCCaMK (FMM+) 77±6.36 29±5.33 8±1.86 
EV (R. irr.+) 93±2.03 80±24.73 23±1.20** 
irCCaMK (R. irr.+) 73±11.06 28±7.31 6±2.67 
Asterisks indicate significant differences (paired Students t-test, *p p , N=3, mean±SE). 
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Table S2. Amino acid analysis of leaves and roots 6 wpi from plants grown on R. irregularis inoculum 
(+) and non-inoculated plants (-). For the experimental set-up see Fig. 1.

  Leaf – 6 wpi Root – 6wpi 

Amino acid EV- EV+ irCCaMK- irCCaMK+ EV- EV+ irCCaMK- irCCaMK+ 
 Threonine 11.63±0.57 14.60±0.95 13.97±1.57  29.19±3.75* 5.51±0.32 11.24±0.59 5.79±0.36 13.93±0.70 

L-Alanine 6.00±0.52 8.82±0.71 8.76±1.32 9.64±1.04 1.14±0.07  4.88±0.30* 1.19±0.07  2.86±0.22  

L-Arginine 2.86±0.24 4.63±0.39 2.86±0.20 4.89±0.7 2.87±0.28  213.09±19.01* 3.26±0.16 62.46±5.96 

L-Aspartic Acid 14.69±1.91 7.99±0.75 18.03±3.83* 18.91±1.24* 2.27±0.08 a 8.30±0.47 * 2.39±0.11 5.85±1.16  

L-Asparagine 0.90±0.29  0.57±0.05 0.67±0.09 4.34±1.35* 1.24±0.1  19.66±1.48 * 1.30±0.10 9.43±0.85  

L-Glutamic acid 71.39±6.33  59.37±4.32 76.49±9.92  108.74±6.24* 19.97±0.95 72.27±3.84* 20.05±1.14 35.48±2.30  

L-Glutamine 26.17±7.83  8.19±0.86  23.30±8.28  117.51±34.23* 11.28±0.67 37.77±2.15* 11.24±0.98 27.95±2.53  

L-Isoleucine 7.44±1.08  9.57±0.40 6.10±0.61 26.09±7.41* 2.34±0.14a 4.69±0.33  2.44±0.19 5.22±0.32 

L-Leucine 2.63±0.21  4.01±0.18  2.53±0.16 8.70±2.07*   3.58±0.16 4.55±0.23 3.80±0.21 6.08±0.33* 

L-Lysine 12.82±0.9 10.18±1.19 13.18±1.88 16.04±2.63 9.03±1.78a 13.81±1.50* 6.74±0.34a 8.66±0.86 

L-
Phenylalanine 

6.95±0.34  7.37±0.40 7.92±0.60  10.97±0.96* 3.96±0.20a 4.05±0.18a 4.19±0.20a 5.10±0.2* 

L-Proline 10.63±0.81  13.45±1.52 13.91±0.88  31.37±5.49* 1.63±0.07 3.12±0.29 1.77±0.06 3.51±0.72 

L-Serine 7.77±0.94  10.26±0.93 9.23±1.22 13.91±0.83* 5.45±0.43 9.87±0.98 * 5.20±0.27 7.82±0.65  

L-Valine 7.69±1.26 10.09±0.45 6.28±0.32  26.39±7.05  2.54±0.15 5.70±0.42* 2.52±0.22 4.86±0.41 

L-Tyrosine 3.66±0.70 3.94±0.22 2.99±0.32 16.03±4.66 * 3.44±0.29   5.28±0.29  3.59±0.39 7.73±0.52  

L-Tryptophane 18.86±5.34  13.29±1.02 12.48±1.58  105.50±34.87* 20.61±2.21 31.08±2.36  24.71±3.14  76.44±4.41* 

Values are in ng/g FM. Asterisks indicate significant differences between AMF-inoculated and non-inoculated plants of the same 
genotype (unpaired Students t-test, N=8, mean±SE, p . Values were log2(x+1) –transformed before statistical analysis.  
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Table S3. Amino acid analysis of leaves and roots 6 wpi from plants grown on FMM (+) and non-
inoculated plants (-). For the experimental set-up see Fig. 1.

 Leaf – 6 wpi 
 

Root – 6wpi 

Amino acid EV- EV+ CCaMK- irCCaMK+ EV- EV+ CCaMK- irCCaMK+ 
 Threonine 8.08±0.76 9.58±0.39 10.65±0.64 12.99±1.04 4.69±0.21  11.66±0.90* 5.29±0.63  9.48±0.59* 
L-Alanine 4.34±0.36 5.30±0.37 5.25±0.33 6.01±0.59 1.24±0.09  7.49±0.77*  1.63±0.25  5.14±0.98*  
L-Arginine 1.56±0.29 2.25±0.19 1.89±0.20 11.48±8.88* 1.48±0.09  161.16±23.08* 1.61±0.15  93.43±22.05* 
L-Aspartic 
Acid 

4.59±0.35  4.68±0.28  4.90±0.29  9.78±1.18* 2.34±0.13  6.60±0.69* 2.55±0.18 4.61±0.49*  

L-Asparagine 0.04±0.04 0.15±0.08 0.03±0.03 1.45±0.94* 1.49±0.1  13.51±1.62* 1.63±0.22  7.66±1.40*  
L-Glutamic 
acid 

29.78±2.97 26.67±1.32 35.63±2.89* 58.40±5.09* 19.53±1.04 52.78±5.19*  19.24±1.34 37.39±4.40*  

L-Glutamine 2.66±0.34  2.43±0.28 3.30±0.41  11.07±2.34* 7.89±0.96 43.62±4.83* 8.75±0.93 27.45±4.51* 
L-Isoleucine 4.33±0.77 5.66±0.41 5.17±0.64 6.75±0.78 1.70±0.09  4.44±0.36* 1.92±0.3  3.50±0.31* 
L-Leucine <0.01 0.33±0.33 0.27±0.27 0.49±0.48 0.20±0.2  0.74±0.51  0.98±0.39  1.34±0.69  
L-Lysine 8.40±0.64  4.60±0.43*  6.30±0.33  5.50±0.69  1.14±0.12 0.75±0.27 1.06±0.18 1.04±0.23 
L-
Phenylalanine 

4.31±0.37 5.04±0.46 5.45±0.33 5.02±0.44 2.48±0.12  3.53±0.19*  2.54±0.21 3.87±0.20*  

L-Proline 6.50±0.59 7.57±0.45 8.53±0.52 12.20±0.85* 1.37±0.11 6.77±0.81*  1.40±0.20  6.93±2.30*  
L-Serine 5.12±0.59 5.27±0.37 6.55±0.48*  8.10±0.48* 4.71±0.20 9.13±0.60* 6.94±2.00 7.99±0.53* 
L-Valine 4.52±0.79 5.85±0.55 5.48±0.70 7.14±0.72 2.14±0.11  6.32±0.50*  2.63±0.43 4.68±0.49*  
L-Tyrosine 2.17±0.40 2.58±0.23 2.83±0.39 4.29±0.32* 2.27±0.13 4.31±0.24*  2.61±0.29 4.60±0.27*  
L-
Tryptophane 

5.03±1.04  6.29±0.77  6.55±1.08  13.46±1.97*  8.87±0.64 18.86±1.37* 9.10±0.84 a 22.03±1.58* 

Values are in ng/g FM. Asterisks indicate significant differences between AMF-inoculated and non-inoculated plants of the same 
genotype (unpaired Students t-test, N=7, mean±SE, p . Values were log2(x+1) –transformed before statistical analysis.  
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Table S4. Secondary metabolite levels of leaves and roots 6 wpi from plants grown on R. irregularis
inoculated (+) and non-inoculated plants (-). For the experimental set-up see Fig. 1.

 Leaf – 6 wpi Root – 6 wpi 

 Metabolite EV- EV+ irCCaMK- irCCaMK+ EV- EV+ irCCaMK- irCCaMK+ 
IAA 1.31±  

0.36 
1.99±0.16 1.73±0.49 3.68±2.09 2.83±0.26 2.96±    

0.15 
2.75±0.26 3.99±  

0.17* 
Caffeic acid 59.17± 

6.17 
53.69±   

3.73 
60.95±3.72 81.55±10.28 69.48±6.26 182.17± 

15.95* 
70.98±8.5 124.75± 

10.81* 
Cinnamic acid 0.69±  

0.19 
0.33±0.13 0.75±0.15 2.24±0.51* 0.05±0.04  0.45± 

0.05* 
0±0 0.35±  

0.05* 
Coniferyl aldehyde 9.47±  

1.11 
7.41±0.39 9.12±1.00 8.99±0.68 7.02±0.55 15.99± 

0.79* 
7.39±0.60 10.42± 

0.51* 
Ferulic acid 3.47±0.62 1.81±0.23* 3.19±0.49 4.31±0.64 2.24±0.18 8.49±  

0.98* 
2.49±0.21 5.18±  

0.41* 
Fraxetin 0.04±0.02 0.02±0.01 0.04±0.02 0.2±0.04* 0.17±0.03 0.41±  

0.07 
0.15±0.03 0.84±  

0.18* 
Scopoletin 1.35±  

0.65 
0.13±0.03 0.4±0.12 9.93±5.53* 1.33±0.26 17.48± 

3.08* 
1.27±0.21 24.36± 

5.93* 
Scopolin 65.57± 

24.20 
18.22±2.23 39.91±9.00 194.63±77.72 36.72±9.98 292.84± 

55.97* 
46.67±9.56 226.59± 

51.66* 
Sinapic acid  53.47± 

4.60 
45.1±2.79 50.01±3.19 65.82±6.33* 2.37±0.20 28.65± 

3.50* 
2.56±0.46 10.23± 

0.80* 
Sinapyl aldehyde 0.58± 0.21 0.7±0.06 0.99±0.22 0.7±0.15 0.50±0.04 0.74± 

0.08 
0.51±0.06 0.51±0.02 

Malic acid  3422.28± 
257.65 

2179.66± 
216.15* 

3230.43± 
316.00 

1879.57± 
274.08* 

911.87± 
71.10 

447.58± 
37.31* 

1053.6±54.02 500.09± 
30.21* 

Rutin 338.89± 
34.01 

252.04± 
17.28 

430.18± 
25.42 

611.37± 
46.69* 

0.19±0.05 0.01± 
0.01* 

0.18±0.07 0.01±  
0.01* 

Tyramine 18.11± 
4.86 

20±3.94 15.7±1.63 47.92±8.11* 74.46±8.99 193.39± 
23.26* 

88.21± 13.44 228.51± 
40.62* 

Caffeoylputrescine 167.82± 
69.50 

69.06±6.97* 219.14±86.79 711.58± 
123.72* 

4.99±1.13 14.05± 
5.76 

6.74±2.06 30.42± 
12.17* 

Chlorogenic acid  477.26± 
60.85 

363.51± 
25.34 

505.22± 
50.51 

598.52± 
60.09 

231.51± 
13.29 

474.86± 
55.89* 

294.82± 
49.39 

470.3± 
103.20 

Values are in ng/g FM. Asterisks indicate significant differences between inoculated and non-inoculated plants of the same 
genotype (unpaired Students t-test, N=8, mean±SE, p . Values were log2(x+1) –transformed before statistical analysis.
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Table S5. Secondary metabolite levels of leaves and roots 6 wpi from plants grown on FMM (+) and non-
inoculated plants (-). For the experimental set-up see Fig. 1.

 Leaf – 6 wpi Root – 6 wpi 

 metabolite EV- EV+ irCCaMK-  irCCaMK+  EV- EV+ irCCaMK-  irCCaMK+  

IAA 4.30± 0.71 4.08± 0.47 4.10± 0.50 7.19± 1.59 6.93± 
0.40 

9.26± 0.62* 6.85± 0.39 10.29± 
0.72* 

Caffeic acid 33.24± 
2.98 

37.46± 3.89 30.94± 3.56 41.90± 3.69 82.94± 
3.80 

157.30±* 
11.16 

74.89± 3.49 99.28± 
13.03 

Cinnamic acid 0.19± 0.12 0.00± 0.00 0.10± 0.10 0.54± 0.15* 0.10±0.05 3.84± 0.59* 0.26± 0.09 2.27± 
0.51* 

Coniferyl aldehyd 0.00±  0.00 0.00±0.00 0.00± 0.00 0.00± 0.00 13.09± 
1.02 

17.46± 1.40* 13.29± 1.23 13.81± 
2.18 

Ferulic acid  1.97± 0.28 2.78±  0.44 1.74± 0.49 1.74± 0.30 1.67± 
0.08 

7.08± 0.97* 1.63± 0.11 3.91± 
0.97* 

Fraxetin 0.00± 0.00 0.01± 0.01 0.03± 0.01 0.08± 0.01 0.12± 
0.03 

0.71± 0.08* 0.14± 0.03 0.44± 
0.12* 

Scopoletin 0.37± 0.25 0.31± 0.08 0.13± 0.07 0.46± 0.35 2.03± 
0.40 

135.41± 
17.08* 

2.78± 0.40 67.45± 
24.94* 

Scopolin 20.52± 
2.09 

41.36± 10.21 19.14±3.85 29.40± 10.83 46.23± 
6.96 

1201.91±* 
150.05 

63.21± 7.69 675.77± 
*172.28 

Sinapic acid  38.45± 
2.62 

35.51± 1.53 34.99± 4.08 41.64± 1.55 1.57± 
0.28 

19.06± 3.37* 1.59± 0.15 8.52± 
4.65* 

Sinapyl aldehyd 0.35± 0.05 0.55± 0.09 0.74± 0.11 0.80± 0.12 1.46± 
0.16 

0.93± 0.23* 1.30± 0.24 1.03± 0.33 

Malic acid  2387.12± 
902.25 

1851.13± 
699.66* 

2025.71± 
765.65 

1740.21± 
657.74 

897.17± 
299.06 

394.72± 
131.57* 

795.47±265.16 544.24± 
192.42 

Rutin  201.15± 
12.12 

186.99±15.69 252.73±16.42 315.25±57.11* 0.38± 
0.07 

0.17± 0.07 0.11± 0.04 0.06± 0.02 

Tyramine  11.38± 
4.30 

69.74± 6.36* 13.04± 4.93 62.50± 3.62* 83.08± 
7.69 

939.40± 
13.13* 

112.56± 37.52 583.38± 
206.26* 

Caffeoylputrescine 18.72±2.30 27.65±4.26 25.23±4.58 129.00± 
18.37* 

1.53± 
0.26 

248.93± 
28.35* 

1.86± 0.32 168.50± 
44.51* 

Chlorogenic acid  379.80± 
12.32 

360.47± 
33.46 

442.30± 
25.72 

523.21± 38.82 534.12± 
41.60 

1795.11± 
181.84* 

628.20± 56.06 1334.19± 
205.39* 

Citric acid 6.26± 1.13 2.12± 0.38* 5.06± 0.94 10.41± 3.91 2.32± 
0.27 

3.45± 0.52 2.05± 0.35 3.58± 0.92 

Fumaric acid  0.73± 0.28 0.95± 0.57 0.73± 0.28 0.30± 0.30 0.63± 
0.32 

1.00± 0.24 0.49± 0.21 0.96± 0.32 

Values are in ng/g FM. Asterisks indicate significant differences between inoculated and non-inoculated plants of the same 
genotype (unpaired Students t-test, N=8, mean±SE, p . Values were log2(x+1) –transformed before statistical analysis.
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Table S6. qPCR primers used in this study

Gene  Forward Primer Reverse Primer 

NaCCaMK TTGGAGCTTTGTTCTGGTGGT ATACTTGCCCCGTGTAGCG 

NaPT1 GGGGCATTGAAACCTGGAT CCACCCGAAAAACAGTTGACC 

NaPT3.1 GTTGCTCTTATTATTGCTGGTGC TCCAAACATAATCAGCTTCAGGT 

NaPT4 GGGGCTCGTTTCAATGATTA AACACGATCCGCCAAACAT 

NaPT4-1* GGGGCTCGTTTCAATGATTA AGCAGTGTAACGCCCTGTTT 

NaPT5 TTGGCGAATAGTATTGATGCT TCAAGAACCTTTCCCATGTCAA 

NaPT7 GTTCACAGTGTTCCTCATTGACAG GCGAATAGAGAACCACGAATCC  

NaIF5a GTCGGACGAAGAACACCATT CACATCACAGTTGTGGGAGG 

NaWRKY70 TCGACGAGGACGCTACAAAA TGCATGGCCATCATCCACTAAA  

NaR1B-12 CTGGTGCTTGAATTTTGCAGGA TGCACATTGGAGGGGAAAATTG 

NaPMPI-1 TGGTGGTGAAGGTTTCTGTCT CAGTGTGTCGTCACCGTTTTG 

NaRIN4 AACGTCGCGTGAGTAAAGAAC ATCCACGACCAGCTCCATTAC 

GFP GGACACGATGTCCAAATGCG CCGGAAAGTCTGGTAGGTCG 

NaEF-alpha1 ACACTTCCCACATTGCTGTCA AAACGACCAATGGAGGGTAC 

*NaPT4-1 was used in Supporting Fig. S1
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Abstract 

The green revolution created high-yielding, but fertilizer-demanding crops; with P supplies 
dwindling, crop varieties harboring P-delivering mutualisms with arbuscular mycorrhizal fungi 
(AMF) are needed. High-through-put (HTP) screening for functional AMF-associations is 
challenging because roots must be excavated and colonization evaluated by transcript analysis or 
microscopy. Here we show that specific leaf-metabolites provide broadly applicable accurate 
proxies of these associations, suitable for HTP-screens. With a combination of untargeted and 
targeted metabolomics, we show that shoot accumulations of hydroxy- and carboxyblumenol C-
glucosides mirror root AMF-colonization in Nicotiana attenuata plants. Genetic/ pharmacologic 
manipulations indicate that these AMF-indicative foliar blumenols are synthesized and 
transported from roots to shoots. Such foliar markers, found in many di- and monocotyledonous 
crop and model plants (Solanum lycopersicum, Solanum tuberosum, Hordeum vulgare, Triticum 
aestivum, Medicago truncatula and Brachypodium distachyon), are not restricted to particular 
mycorrhizal species, and are shown to be applicable for field-based QTL mapping of AMF-
related genes.  
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eLife Digest 

More than 70% of all higher plants, including crop plants, form symbiotic associations with 
arbuscular mycorrhizal fungi (AMF). While the fungus facilitates the uptake of mineral nutrients, 
in particular phosphorous (P) and nitrogen, the plant supplies the fungus with carbon. Currently, 
phosphate fertilizer is derived from phosphate rock, a non-renewable resource, which is 
predicted to be depleted within the next decade. Unfortunately, the characterization of AMF-
associations is laborious and time-consuming, typically requiring destructive root harvesting and 
microscopic examination or transcript analyses. Here we describe a discovery that will enable 
crop breeding programs to select varieties that have negotiated AMF symbioses that deliver high 
yields with minimal P inputs, a discovery that could help steer the “green revolution” agricultural 
crops that currently feed the world’s growing populations away from intense fertilizer inputs and 
the collateral environmental damage they cause.  

AMF-interactions influence whole-plant performance, hence systemic metabolic responses have 
been anticipated, searched for, but no widespread and specific AMF-induced responses have 
been found. We performed different metabolomics analyses combining methods that are suitable 
for the identification of new target metabolites, sophisticated biostatistics approaches, as well as 
methods most suitable for the quantification of minute amounts of compounds even in highly 
complex mixtures. We found blumenols, a group of compounds derived from carotenoids, to 
accumulate in the roots of coyote tobacco plants with AMF-interaction. Interestingly, these 
metabolites also accumulated in shoot tissues and were highly correlated with mycorrhizal 
colonization rates as determined by classical methods.  

To clarify the origins (local biosynthesis vs. transport) of these leaf blumenols, we genetically 
manipulated the carotenoid biosynthesis in particular leaves of coyote tobacco plants. Treated 
leaves showed clear signs of bleaching, indicating impaired carotenoid biosynthesis but the 
levels of the AMF-indicative foliar blumenols were not affected. Additional, pharmacological 
experiments showed that seedlings have the capacity to transport blumenols from the root to the 
shoot. Therefore, we propose that AMF-indicative blumenols are produced in the root and are 
transported to shoot tissues. 

We demonstrate the utility of these foliar metabolite markers for plant breeding by screening a 
full population of recombinant inbred lines (728 plants) of a forward genetics experiment grown 
across a 7200 m2 field plot in Utah. The marker analysis took less than two weeks, something 
that would not have been possible with currently available techniques. Importantly, these foliar 
metabolites accurately reflected AMF associations in various major crop and model plants tested 
(tomato, potato, weed, barley, barrel clover, and purple false brome) and in associations with a 
variety of different mycorrhizal inoculum sources. The compounds are stable and can be 
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analyzed in dried leaves. We propose that the analysis of blumenols in the shoot provides a 
convenient, easy-to-conduct and minimally destructive tool to interrogate plant-AMF 
interactions to empower plant breeding programs to produce mycorrhizal-responsive and P-
efficient high-yielding lines of crops. 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Introduction 

More than 70% of all higher plants, including crop plants, form symbiotic associations with 
arbuscular mycorrhizal fungi (AMF) (Brundrett and Tedersoo 2018). While the fungus facilitates 
the uptake of mineral nutrients, in particular phosphorous (P) and nitrogen, the plant supplies the 
fungus with carbon (Helber et al. 2011, Bravo et al. 2017, Jiang et al. 2017, Keymer et al. 2017, 
Luginbuehl and Menard 2017). The interaction affects plant growth (Rooney et al. 2009, 
Adolfsson et al. 2015) and resistance to various abiotic and biotic stresses (Pineda et al. 2010, 
Vannette et al. 2013, Chitarra et al. 2016, Sharma et al. 2017). Although AMF interactions are 
physically restricted to the roots, they influence whole-plant performance, hence systemic 
metabolic responses have been anticipated, and searched for, but no general AMF-specific 
responses have been found (Bi et al. 2007, Toussaint 2007, Schweiger and Müller 2015). While, 
changes in foliar levels of carbohydrates, proteins, and amino acids, as well as secondary 
metabolites and phytohormones in response AMF inoculation have been shown (Schweiger et al. 
2014, Aliferis et al. 2015, Adolfsson et al. 2017), these changes are not specific to AMF 
interactions and tend to be general responses to various abiotic and biotic stresses. Moreover, 
these metabolic responses also tend to be taxa-specific, and many are likely indirect 
consequences of AMF-mediated effects on plant growth and development.

In contrast, large amounts of blumenol-type metabolites accumulate in roots after AMF 
inoculation. These compounds are apocarotenoids, in particular C13 cyclohexenone derivatives, 
produced by the cleavage of carotenoids. After AMF colonization, a C40 carotenoid is cleaved by 
carotenoid cleavage dioxygenase 7 (CCD7) to produce a C13 cyclohexenone and a 
C27 apocarotenoid which is further cleaved by CCD1 to yield a second C13 cyclohexenone (Floss 
et al. 2008, Vogel et al. 2010, Hou et al. 2016). The compounds have been found to accumulate 
in the roots of AMF-colonized plants in a manner highly correlated with the fungal colonization 
rate (Fester et al. 1999). Other stimuli such as pathogen infection and abiotic stresses, do not 
induce their accumulations (Maier et al. 1997). The AMF-induced accumulation of these 
compounds is widespread and has been observed in roots of plant species from different families, 
including mono- and dicotyledons, (Hordeum vulgare, Peipp et al. 1997, Solanum lycopersicum 
and Nicotiana tobaccum, Maier et al. 2000, e.g., Zea mays, Fester et al. 2002, Lotus japonicus 
and Medicago truncatula, Fester et al. 2005, Ornithogalum umbellatum, Schliemann et al. 2006, 
Allium porrum, Schliemann et al. 2008). 

Blumenols are classified into 3 major types; blumenol A, blumenol B and blumenol C (Figure 
1A). However, previous studies reported that only blumenol glycosides that contain a blumenol 
C-based aglycone are positively correlated with mycorrhizal colonization. The aglycone can be 
additionally hydroxylated at the C11 or carboxylated at the C11 or C12 position (Maier et al. 
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1997, Maier et al. 2000). Additionally, 7,8-didehydro versions of blumenol C have been reported 
(Peipp et al. 1997). The glycosylation usually occurs as an O-glycoside at the C9 position 
(Strack and Fester 2006), but glycosylations at the hydroxylated C11 position have also been 
observed (Schliemann et al. 2008). The glycosyl moiety can be a single sugar or combinations of 
glucose (Glc), rhamnose, apiose, arabinose and/or glucuronic acid, which, in turn can be 
additionally malonylated or contain a 3-hydroxy-3-methylglutarate decoration (Strack and Fester 
2006, Schliemann et al. 2008). The connections among sugar components can also vary (e.g., 
glucose-(1’’→4’)-glucose or glucose-(1’’→6’)-glucose; Maier et al. 2000, Fester et al. 2002). 
The particular type of decorations appears to be highly species-specific and it is likely that 
additional structural variants remain to be discovered. Exemplary structures are shown in Figure 
1B. 
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Figure 1 Blumenol core structures and exemplary modifications 

A Structure of blumenol A, blumenol B and blumenol C. B Exemplary blumenol C derivatives. 
Glyc, glycoside.  
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Interestingly, blumenols such as blumenol A, blumenol A-9-O-Glc, blumenol B, blumenol C and 
blumenol C-9-O-Glc, were also reported to occur in the aerial parts of various plant species 
(Galbraith and Horn 1972, Bhakuni et al. 1974, Takeda et al. 1997). However, most of these 
studies focused on the identification of natural products using large scale extractions (up to 
several kg of plant material) and were not performed in the context of AMF colonization. 
Furthermore, some blumenol compounds were also found in plant families that are known to 
have lost their ability to establish AMF interactions (Brassicaceae: Cutillo et al. 2005, 
Urticaceae: Aishan et al. 2010). These reports indicate AMF-independent constitutive levels of 
particular blumenols in aerial plant parts. Adolfsson et al. (2017) analyzed blumenol 
accumulations together with other metabolites in leaves of plants with and without AMF 
colonization. None of these studies reported AMF-specific accumulations of blumenols or 
transcripts specific for their biosynthesis. The concentrations of some blumenol derivatives were 
even reported to be down-regulated in response to AMF colonization (Adolfsson et al. 2017). 

The identification of a reliable metabolite marker in aerial plant tissues might be highly useful 
for AMF research since the characterization of AMF-associations is still laborious and time-
consuming, typically requiring destructive root harvesting and microscopic examination or 
transcript analyses (Vierheilig et al. 2005, Paradi et al. 2010). To identify readily accessible 
AMF-indicative shoot metabolites, we hypothesized that a subset of the AMF-induced root 
metabolites would accumulate in shoots as a result of transport or systemic signaling.  
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Results 

Blumenols are AMF-indicative metabolic fingerprints in roots  

We performed an untargeted metabolomics analysis of root tissues in a transgenic line of 
Nicotiana attenuata, silenced in the calcium- and calmodulin-dependent protein kinase 
(irCCaMK) and empty vector (EV) plants co-cultured with or without Rhizophagus irregularis 
(Figure 2A). By using irCCaMK plants, unable to establish a functional AMF-association 
(Groten et al. 2015), we were able to dissect the AMF association-specific metabolic responses 
from those changes that result from more general plant-fungus interactions. Untargeted 
metabolome profiling of roots using liquid chromatography (LC) coupled to time-of-flight mass 
spectrometry (qTOF-MS) resulted in a concatenated data matrix consisting of 943 mass features 
(m/z signals detected at particular retention times). A co-expression network analysis was 
conducted in which nodes represent m/z features and edges connect metabolite mass features 
originating from similar in-source fragmentations and sharing biochemical relationships (Li et al. 
2015, Li et al. 2016). For example, features representing well-known compounds, like nicotine 
and phenylalanine, were tightly connected (Figure 2B). A STEM clustering pipeline was 
performed to recognize patterns of metabolite accumulations in the genotype × treatment data 
matrix [(EV/irCCaMK) × (-/+ AMF inoculation)]. As a result, 5 of 8 computed distinct 
expression patterns were mapped onto the covariance network in Figure 2B (shown in different 
colors). A tightly grouped cluster of unknown metabolites, highlighted in red (Figure 2B) 
occupied a distinct metabolic space. Metabolites grouped in this cluster were highly elicited upon 
mycorrhizal colonization in EV, but not in irCCaMK plants and not found in plants without AMF 
associations (Figure 2C). The structures of the compounds of this cluster were annotated based 
on tandem-MS and NMR data. Five metabolites were annotated as blumenols: 11-
hydroxyblumenol C-9-O-Glc (Figure 2C; Compound 1), 11-carboxyblumenol C-9-O-Glc (Figure 
2C; Compound 2), 11-hydroxyblumenol C-9-O-Glc-Glc (Compound 3), blumenol C-9-O-Glc-
Glc (Compound 4) and blumenol C-9-O-Glc (Compound 5).  

To quantify these compounds throughout the plant, we used a more sensitive and specifically 
targeted metabolomics approach based on LC-triple-quadrupole-MS. The abundance of the five 
blumenol C-glycosides continually increased with mycorrhizal development (Figure 2—figure 
supplement 1A) and was highly correlated with the mycorrhizal colonization rate as determined 
by the transcript abundances of classical arbuscular mycorrhizal symbiosis-marker genes (fungal 
house-keeping gene, Ri-tub; plant marker genes, Vapyrin, RAM1, STR1 and PT4; Park et al. 
(2015); Figure 2—figure supplement 1B, Data Set 1).  
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Figure 2 Combined targeted and untargeted metabolomics identified blumenol derivatives as 
AMF-indicative in-planta metabolic fingerprints in the roots and leaves of Nicotiana attenuata 
plants. 

A Experimental set-up. EV and irCCaMK plants were co-cultured and inoculated with or without 
R. irregularis. Six weeks after inoculation (wpi), root samples were harvested for metabolite 
profiling. B Covariance network visualizing m/z features from UHPLC-qTOF-MS untargeted 
analysis (n=8). Known compounds, including nicotine, phenylalanine and various phenolics, and 
unknown metabolites (Unk.) are annotated by dashed ellipses. C Normalized Z-scored of m/z 
features were clustered using STEM Clustering; 5 of 8 significant clusters are shown in different 
colors and mapped onto the covariance network. The intensity variation (mean + SE) of 2 
selected features (Compounds 1 and 2) are shown in bar plots (n.d., not detected). D 
Representative chromatograms of Compounds 1 and 2 in roots and leaves of plants with and 
without AMF inoculation, as analyzed by targeted UHPLC-triple quadrupole-MS metabolomics.  
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Figure 2—figure supplement 1 Abundance of root blumenol derivatives correlates positively 
with root AMF colonization. 

 A Time lapse accumulations (3-7 weeks post inoculation, n≥3 for each time point) of 
Compounds 1, 2, 3, 4 and 5 in roots of plants with (EV+, black lines with circles) and without 
(EV-, grey lines with triangle) AMF inoculation. The experiment was conducted with empty 
vector (EV) transformed plants. Data are means ± SE. B Abundance of Compounds 1, 2, 3, 4 and 
5 relative to the transcript abundance of the R. irregularis specific housekeeping gene, Ri-tub 
(GenBank: EXX64097.1), as well as to the plant derived marker genes RAM1, Vapyrin, STR1 
and PT4 (Gene ID and transcripts abundance are listed in Data Set 1). The transcript abundance 
was quantified by q-PCR, relative to NaIF-5a (NCBI Reference Sequence: XP_019246749.1). 
The correlations among blumenol derivatives and the transcript abundances of marker genes 
were analyzed by linear regression (lm) models.  
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Hydroxy- and carboxyblumenol C-glucoside levels in leaves positively correlate with root 
colonizations 

Compounds 1 and 2 showed a similar AMF-specific accumulation in the leaves, as observed in 
the roots (Figure 2D). The other analyzed blumenols were not detected in leaves (Compounds 3 
and 4; Figure 3—figure supplement 1A) or showed a less consistent AMF-specific accumulation 
(Compound 5; due to its constitutive background level; Figure 3—figure supplement 1A). The 
identity of Compounds 1 and 2 in the leaves was verified by high resolution qTOF-MS (Figure 3
—figure supplement 1B-E).  

Next, we determined the correlations between the contents of AMF-indicative foliar Compounds 
1 and 2 and root colonization rates. In a kinetic experiment, the amount of both compounds 
steadily increased in the leaves of plants inoculated with R. irregularis (Figure 3A). In contrast, 
the classical AMF-marker-genes, which are usually analyzed in the roots, did not respond in the 
leaves (Figure 4). In an inoculum-gradient experiment using increasing inoculum concentrations, 
proportionally higher Compound 1 and 2 levels were observed (Figure 3B), accurately reflecting 
the differential colonization of roots across treatments (Figure 3E). In addition to inoculation 
with a single AMF species (R. irregularis), we also tested mycorrhizal inoculum originally 
collected from the plant’s native habitat, the Great Basin Desert in Utah, USA, which mainly 
consists of Funneliformis mosseae and R. irregularis. EV plants inoculated with this ‘natural 
inoculum’ also accumulated Compounds 1 and 2 in leaves, while irCCaMK plants did not 
(Figure 3C). When planted into the plant’s natural environment in Utah, both EV and irCCaMK 
plants could be clearly distinguished by their leaf Compound 1 and 2 contents. The signature of 
Compound 2 provided a better quality marker in these field-grown plants (Figure 3D, Figure 3—
figure supplement 2). The foliar contents of these two compounds were highly correlated with 
the percentage of arbuscules in roots, the core structure of AMF interactions (Figure 3F). In 
contrast, other biotic or abiotic stresses, including herbivory, pathogen infection and drought 
stress, did not elicit the foliar accumulations of Compounds 1 and 2 (Figure 5). Such stimuli also 
do not induce blumenol accumulation in roots (Maier et al. 1997). An analysis of various plant 
tissues, including different leaf positions, stem pieces, flowers and capsules revealed that these 
AMF-specific signatures accumulated throughout the shoot (Figure 3G). Taken together, we 
conclude that the contents of particular blumenols in aerial plant parts robustly reflect the degree 
of mycorrhizal colonization in N. attenuata plants.  
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Figure 3 Compounds 1 and 2 are leaf markers of root AMF colonization in N. attenuata. 

A Time lapse accumulations of Compounds 1 and 2 in leaves of EV plants with (EV+, red) or 
without (EV-, black) AMF-inoculation and of irCCaMK plants with AMF-inoculation (irCCaMK
+, orange, covered by black) (means ± SE, n≥5). B Leaf abundances of Compounds 1 and 2 (5 
wpi) of plants inoculated with different inoculum concentrations (means + SE, n≥4); different 
letters indicate significant differences (p < 0.05, one-way ANOVA followed by Fisher’s LSD). C 
Compounds 1 and 2 in leaf samples of EV and irCCaMK plants inoculated with (+) or without 
(-) AMF inoculum isolated from the plant’s native habitat (6 wpi); different letters indicate 
significant differences (p < 0.05, one-way ANOVA followed by Tukey’s HSD, n=10). D Field 
experiment (Great Basin Desert, Utah, USA): Compounds 1 and 2 in leaf samples of EV (n=20) 
and irCCaMK (n=19) plants sampled 8 weeks after planting. (Student’s t-test: ***, p<0.001). E 
Representative images of WGA-488 stained roots of plants shown in B (bar=100 µm). F Leaf 
Compounds 1 and 2 relative to the percentage of root colonization by hyphae, arbuscules, 
vesicles and total root length colonization of the same plants (linear regression model). G 
Compounds 1 and 2 in 17 different tissues of plants with (+AMF, n=3, red bars) or without (-
AMF, n=1, black bars) AMF-inoculation harvested at 6 wpi. 

Manuscript III

97



 

Figure 3—figure supplement 1 AMF-induced accumulation of blumenol derivatives in roots 
and leaves of N. attenuata. 

A Representative chromatograms of targeted tandem MS-based analyses of Compounds 3, 4 and 
5 in roots (bottom panel) and leaves (top panel) of N. attenuata plants after inoculation with R. 
irregularis (+R. irregularis, red line, 6wpi) and in untreated control plants (Control, black line). 
Experiments were conducted with wild type (WT) plants. The respective precursor-to-product 
ion transitions are indicated at the top. B, D Representative chromatograms of a high resolution 
MS-based analysis of Compounds 1, 3, 4 and 5 (B), as well as Compound 2 (D) in roots (bottom 
panel) and leaves (top panel) of N. attenuata plants after inoculation with R. irregularis. 
Extracted ion chromatograms (EIC) are labeled by colors and settings listed at the top. C, E 
Comparison of fragmentation patterns of Compounds 1 (C) and 2 (E) in both tissues by high 
resolution tandem MS. 

Manuscript III

98



 

Figure 3—figure supplement 2 Signals from Compound 1 are partially disturbed in field 
samples, but not for Compound 2. 

Leaf samples were harvested from glasshouse-(top panel) and field-grown, Utah, 2016 (bottom 
panel) plants for analysis. Representative chromatograms of two samples of each genotype, EV 
(red) and irCCaMK (black), were shown. Grey area indicates the peak integration window used 
for the quantification of Compound 1.   
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Figure 4 Transcript abundance of classical arbuscular mycorrhizal symbiosis-marker genes do 
not respond in leaves of mycorrhizal and control N. attenuata plants 

The transcript abundance (relative to NaIF-5a) of classical root marker genes was analyzed in 
leaves of N. attenuata plants in the presence (+R. irregularis, black bars) and absence (control, 
white bars) of root colonization with R. irregularis. The marker genes include the R. irregularis 
specific housekeeping gene, Ri-tub, as well as the plant-derived marker genes CCaMK, Vapyrin, 
PT4, STR1 and RAM1. Leaf samples were harvested 6 weeks after inoculation and analyzed by 
qPCR. Data represent means + SE (n≥3), n.d., not detected. 
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Figure 5 Different biotic and abiotic stresses do not elicit accumulations of Compounds 1 and 2 
in leaves. 

A-D Representative leaves of N. attenuata plants subjected to different stresses (right leaf), as 
well as the untreated controls (left leaf): A Manduca sexta feeding for 10 days; B Botrytis 
cinerea infection for 5 days. C Infection for 2 weeks with Agrobacterium tumefaciens carrying 
the Tobacco Rattle Virus; D Dehydration for 3 days. For each treatment, four biological 
replicates were used. E Accumulation of Compounds 1 and 2 in treated samples from A-D. n.d., 
not detected.  
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AMF–indicative blumenols in shoots most likely originate from the roots 

Blumenols are apocarotenoids originating from a side branch of the carotenoid pathway (Hou et 
al. 2016). Most of the candidate genes for blumenol biosynthesis were upregulated in roots, but 
not in leaves of N. attenuata plants in response to mycorrhizal colonization (Figure 6A, Figure 6
—figure supplement 1A). We inferred that these AMF-indicative leaf apocarotenoids are 
transported from their site of synthesis in colonized roots to other plant parts. This is consistent 
with the occurrence of blumenols in stem sap (Figure 6—figure supplement 1B) which was 
collected by centrifuging small stem pieces. To clarify the origins (local biosynthesis vs. 
transport) of these leaf blumenols, we genetically manipulated the carotenoid biosynthesis of N. 
attenuata plants. To minimize the effects of a disturbed carotenoid biosynthesis on the AMF-
plant interaction, we used the dexamethasone (DEX)-inducible pOp6/LhGR system to silence 
phytoene desaturase (PDS) expression in a single DEX-treated leaf position (Schäfer et al. 
2013). Treated leaves showed clear signs of bleaching, indicating PDS silencing (Figure 6B, 
Figure 6—figure supplement 1C), but levels of the AMF-indicative Compounds 1 and 2 were not 
affected, consistent with their transport from other tissues, likely the highly accumulating roots. 
As a control, we analyzed the non-AMF-inducible Compound 6, showing constitutive levels in 
aerial tissues (Figure 6—figure supplement 2). In DEX-treated leaves, Compound 6 
concentrations were reduced by nearly 40%, consistent with local production (Figure 6B, Figure 
6—figure supplement 1D). To confirm the within-plant transport potential of blumenols, we 
dipped roots of seedlings into aqueous solutions of Compounds 1 or 2. After overnight 
incubation, the blumenol derivatives were clearly detected not only in roots, but also in shoots 
(Figure 6C, Figure 6—figure supplement 1E).  
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Figure 6 AMF-indicative Compounds 1 and 2 in shoots of mycorrhizal plants originate from the 
roots.  

A Hierarchical clustering analysis of transcript abundance from RNA-seq of methylerythritol 4-
phosphate (MEP) and (apo)carotenoid biosynthetic genes (for details see Figure S6A). B 
Compounds 1, 2 (AMF-specific) and 6 (not AMF-specific) in AMF-inoculated i-irPDS and EV 
plants. On each plant, a single stem leaf (leaf 0) was elicited with 100 µM DEX-containing paste 
for 3 weeks; treated and adjacent, untreated control leaves (leaf -1 and leaf+1) were harvested.  
Representative leaves are shown (bleaching indicates PDS silencing); (means + SE, n≥6). The 
same leaf positions in i-irPDS and EV plants were compared by Student’s t-tests. C Contents of 
Compounds 1, 2 and 6 in the roots and shoots of seedlings whose roots were dipped for 1 d into 
an aqueous solution with (treatment) or without (control) AMF-indicative blumenols. D Model 
of blumenol distribution in plants with (right panel) and without (left panel) AMF colonization. 
The model illustrates constitutive blumenols (e.g., Compound 6 in N. attenuata) and AMF-
indicative ones (e.g., Compounds 1 and 2 in N. attenuata) and their inferred transport. 
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Figure 6—figure supplement 1 Foliar levels of Compounds 1 and 2 are derived from roots 

A Transcript abundance of MEP and apocarotenoid pathway biosynthetic genes (based on 
homologies to tomato, Arabidopsis and tobacco). Plant materials from same experimental set-up 
as in Figure1A were used for sequencing.  Data are means + SE (n=3) generated by RNA-seq 
and the abundance of each transcript is expressed in TPM (Transcripts per kilobase of exon 
model per million mapped reads). Transcripts were analyzed in roots (left panel, orange 
background) and leaf tissues (right panel, green background) of EV and irCCaMK plants with 
(EV+ and irCCaMK+ respectively) and without  (EV- and irCCaMK- respectively) inoculations 
with R. irregularis. Gene abbreviations; CRTISO: carotenoid isomerase; GGPPs: geranylgeranyl 
diphosphate synthase; PSY: phytoene synthase; PDS: phytoene desaturase; ZDS: ζ-carotene de-
saturase; Z-ISO: ζ- carotene isomerase; CCD: carotenoid cleavage dioxygenase; MAX1: 
cytochrome P450-type monooxygenase CYP711A1; DXS: 1-deoxy-D-xylulose 5-phosphate 
synthase; DXR: 1-deoxy-D-xylulose 5-phosphate reductoisomerase; MCT: 2-C-methyl-D-
erythritol 4-phosphate cytidylyltransferase; CMK: 4-(cytidine 5′-diphospho)-2-C-methyl-D-
erythritol kinase; MDS: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS: 4-
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hydroxy-3-methylbut-2-enyl-diphosphate synthase; HDR: 4-hydroxy-3-methylbut-2-enyl 
diphosphate reductase; D27: carotenoid isomerase. B Representative chromatograms from a 
targeted tandem MS-based analysis of Compounds 1, 2 and 6 in stem sap fluid of N. attenuata 
plants after R. irregularis inoculation (+AMF, red line, 6wpi) and of untreated control plants 
(Control, black line). The respective precursor-to-product ion transitions are indicated at top. C 
Accumulations of Compounds 1, 2 and 6 in non AMF-inoculated plants after local silencing of 
the carotenoid biosynthesis in the DEX-treated leaf. The experiment was performed with plants 
harboring a transformation construct of the chemically-inducible silencing of the phytoene 
desaturase (i-irPDS), as well as with empty vector (EV) plants. On each plant, a single stem leaf 
(leaf 0) was treated with a 100 µM dexamethasone (DEX) containing lanolin paste for 3 weeks. 
The adjacent, untreated leaves (leaf -1 and leaf+1) were harvested as controls. Representative 
leaves are shown (bleaching indicates functional PDS silencing). Data are means + SE (n≥6). For 
statistical analysis, the samples from the same leaf positions in i-irPDS and EV plants were 
compared by Student’s t test. D Contents of Compounds 1, 2 and 6 in the roots (red bars) and 
shoots (blue bars) of seedlings whose roots were dipped into an aqueous solution with or without 
addition of the respective blumenols. Seedlings were incubated for 1d before analysis. Data are 
means + SE (shoot, n=3; root, n=1). The data originate from the same experiment presented in 
Figure 6C. 
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Figure 6—figure supplement 2 Compound 6 is constitutively produced in shoots of N. 
attenuata and not indicative of AMF associations.  

A Representative chromatograms from a targeted tandem MS-based analysis of Compound 6 in 
leaves of N. attenuata (bottom panel) and as comparison, a blumenol A-9-O-glucoside 
(roseoside) standard (top panel). The precursor-to-product ion transitions are indicated. B Time 
lapse accumulations of Compound 6 in roots of EV plants with (EV+, green line) or without 
(EV-, black line) AMF-inoculation. Data represent means ± SE (n≥3). C Time lapse 
accumulations of Compound 6 in leaves of EV plants with (EV+, red line) or without (EV-, black 
line) AMF-inoculation and of irCCaMK plants with AMF-inoculation (irCCaMK+, orange line). 
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Data represent means ± SE (n≥5). D Comparison of the abundances of Compound 6 in leaves of 
plants inoculated with different inoculum concentrations, samples were harvested at 5 weeks-
post-inoculation (wpi). Data are means + SE (n≥4). Different letters indicate significant 
differences (p < 0.05, one-way ANOVA followed by Fisher’s LSD). E Field experiment (Great 
Basin Desert, Utah, USA): leaf samples of EV (n=20) and irCCaMK (n=19) plants were sampled 
8 weeks after planting and amounts of Compound 6 were analyzed. For statistical analysis, 
Student’s t test was applied. F Abundance of Compound 6 relative to the transcript abundance of 
the R. irregularis specific housekeeping gene, Ri-tub (GenBank: EXX64097.1), as well as to the 
plant derived marker genes RAM1, Vapyrin, STR1 and PT4.The transcript abundance was 
quantified by q-PCR, relative to NaIF-5a (NCBI Reference Sequence: XP_019246749.1). The 
correlation between compound 6 and transcript abundance of marker genes was analyzed by 
linear regression (lm) models. G Distribution of Compound 6 in different plant tissues, as 
indicated, of plants with (+AMF, n=3, red bars) or without (-AMF, n=1, black bars) AMF-
inoculation. Samples were harvested at 6 wpi. 
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The analysis of AMF-indicative blumenols as HTP screening tool for forward genetics 
approaches 

To test the potential of the foliar AMF-indicative metabolites as a screening tool, we quantified 
the concentration of Compounds 1 and 2 in leaves of plants of a population of recombinant 
inbred lines (RILs) of a forward genetics experiment, an experiment which would be challenging 
with the classical screening tools of root staining or nucleic acid analysis. We focused our 
analysis on Compound 2 due to the superior quality of its signature in the leaves of field-grown 
plants (Figure 3—figure supplement 2). The experiment consisted of a population of RILs from a 
cross of two N. attenuata accessions (Utah, UT and Arizona, AZ)(Zhou et al. 2017) which differ 
in their mycorrhizal colonization (Figure 7A-B, Figure 7—figure supplement 1) and 
accumulation of foliar Compound 2 in the glasshouse (Figure 7C). A QTL analysis of 728 plants 
grown across a 7200 m2 field plot (Figure 7D) revealed that the abundance of Compound 2 
mapped to a single locus on linkage group 3 (Figure 7E), which harbored a homologue of 
NOPE1(NIATv7_g02911), previously shown to be required for the initiation of AMF symbioses 
in maize and rice (Nadal et al. 2017). While clearly requiring additional follow-up work, these 
results highlight the value of these signature metabolites for HTP screens, which form the basis 
of most crop improvement programs. 

AMF-indicative blumenols in shoots are a widespread response of various plant species to 
different kinds of AMF 

The AMF-specific accumulation of blumenol C-derivatives in roots is a widespread phenomenon 
within higher plants (Strack and Fester 2006); however, how general are the observed blumenol 
changes in aerial parts across different combinations of plants and AMF species? We analyzed 
Solanum lycopersicum, Triticum aestivum and Hordeum vulgare plants with and without AMF 
inoculation and again we found an overlap in the AMF-specific blumenol responses in roots and 
leaves, consistent with the transport hypothesis. Further analyses led to the identification of 
additional AMF-indicative blumenols in the leaves of Medicago truncatula, Solanum tuberosum 
and Brachypodium distachyon. We identified various types of blumenols that showed an AMF-
specific accumulation in the shoot, including blumenol B (Compound 7), which has not 
previously been reported in an AMF-dependent context (Figure 7F; Figure 7—figure supplement 
2). As reported for roots, the particular blumenol types were species-dependent, but the general 
pattern was widespread across monocots and dicots in experiments conducted at different 
research facilities. In tests with diverse fungal species (R. irregularis, F. mosseae and Glomus 
versiforme), the observed effects were not found to be restricted to specific AMF taxa (Figure 
7F; Figure 7—figure supplement 2). In short, the method is robust.  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Figure 7 AMF-indicative changes in blumenols in aerial plant parts are valuable research tools 
providing accurate assessments of functional AMF associations in high-throughput screenings of 
multiple plant and AMF species.  

A Root colonization analysis in two N. attenuata accessions (UT/ AZ). H: hyphae; A: arbuscules; 
V: vesicles; T: total colonization (n=4; Student’s t-test, *, p<0.05, **, p<0.01, ***, p<0.001). B 
Representative images of trypan blue stained roots (6 wpi; bar=100 µm). C Compound 2 in roots 
and leaves of UT and AZ plants with and without AMF-inoculation (means + SE, n=8). D 
Heatmap of the normalized abundance of foliar Compound 2 in plants of a UT-AZ RIL 
population (728 plants) planted across a 7,200 m2 field plot. E QTL mapping analysis of the data 
from D. QTL locus on linkage group 3 contains NaNOPE1, an AMF-associated gene, in addition 
to others. LOD, logarithm of the odds ratio. F Blumenol contents of different crop and model 
plants with and without AMF inoculation (S. lycopersicum (n=6), T. aestivum (n=10),  H. vulgare 
(n=5): 8 wpi; M. truncatula (n=3): 7 wpi; S. tuberosum (n=5): 6 wpi; B. distachyon (n=4): 5 
wpi). Different plant and AMF species were used as indicated (means + SE; n.d., not detected). 
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Figure 7—figure supplement 1 Phenotypes of UT and AZ accessions and field plot planting 
design. 

A Representative N. attenuata plants of the UT and AZ accessions in the rosette stages of growth 
(12 days after potting). B Transcripts of marker genes in roots responding to AMF colonization 
in UT and AZ after 6 wpi inoculated with R. irregularis were quantified by qPCR in the same 
samples as in Fig 4A-C (n=8); Student’s t test *, p<0.05, **, p<0.01, ***, p<0.001. C Field plot 
of 728 sampled individual plants in Utah, USA, 2017. 
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Figure 7—figure supplement 2 AMF-indicative changes in blumenols in aerial plant part are 
valuable research tools providing accurate assessments of functional AMF associations of 
multiple plant and AMF species (continued from Figure 7F).  

Blumenol contents of different crop plants with and without AMF inoculation (T. aestivum: 8 
wpi, n=5;  H. vulgare: 8 wpi, n=10; S. lycopersicum with F. mossae: 6wpi, n=5; S. lycopersicum 
with R. irregularis: 11wpi, n=6; B. distachyon: 5 wpi, n=4; M. truncatula: 7 wpi, n=3). Different 
plant and AMF species were used, as indicated; means + SE, n.d., not detected.  

Manuscript III

112



Discussion 

AMF-interactions are proposed to have played an important role for the colonization of land by 
plants and still play an important role for a majority of plants by improving the function of their 
roots and increasing whole-plant performance. Consequently, the investigation of AMF-mediated 
effects on a host plant’s physiology has been an important research field for many decades and 
characteristic transcriptional and metabolic changes have been observed in the roots of AMF-
colonized plants. However, the cumbersome analysis of AMF-interactions, involving destructive 
harvesting of root tissues and microscopic or transcript analysis, restrains large-scale 
investigations and commercial applications. AMF interactions were also shown to affect the 
primary and secondary metabolism in the systemic, aerial tissues of plants; however none of 
these responses proved to be widespread and sufficiently specific to function as reliable markers 
(Schweiger and Müller 2015). Here we describe the discovery of particular blumenols as AMF-
indicative markers in leaves and other systemic aerial tissues and illustrate their potential 
application as tools for research and plant breeding. 

Systemic AMF-mediated metabolite changes 

Improvements in analytical instrumentation has enabled the study of minute amounts of 
compounds with unprecedented accuracy and sensitivity and different types of instrumentation 
have allowed for different workflows each with specific advantages and drawbacks. While 
untargeted metabolomics allow for a less biased view of metabolic responses, they are more 
affected by co-occurring compounds and the post-run analysis is usually cumbersome. Targeted 
methods, in contrast, are often more sensitive and specific, but limited to the targeted 
metabolites. We capitalized on the strengths of these two approaches by applying a combination 
of targeted and untargeted LC-MS based metabolomics approaches coupled with a sophisticated 
biostatistical analysis (Figure 2). Metabolites and metabolite responses are often specific to 
particular parts and tissues of a plant (Li et al. 2016, Lee et al. 2017), but it is also known that 
local responses can spread to other plant parts. Additionally, metabolites do not only accumulate 
at their place of biosynthesis but can be readily transported throughout the plant (Baldwin 1989). 
Therefore, we hypothesized that local changes in the roots might be also be reflected in the 
systemic aerial tissues, either by signaling or transport. This more focused view allowed us to 
identify specific AMF-indicative blumenols in the shoot (Figure 3) despite the occurrence of 
other highly abundant and constitutively produced compounds and not AMF-indicative 
blumenols. Interestingly, the confirmation of compound identities in leaf samples with high 
resolution MS techniques proved to be challenging and required additional sample purification 
steps. Likely, such matrix effects thwarted the detection of these AMF-indicative, systemic 
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blumenol responses in previous investigations. The discovery of these AMF-indicative blumenol 
compounds in diverse plant species interacting with different AMF species (Figure 7, Figure 7—
figure supplement 2) further indicates that these responses are widespread.  

Root-to-shoot transport of AMF-indicative blumenols 

Despite the AMF-induced accumulation of blumenols in the shoot, putative candidate genes of 
the apocarotenoid biosynthesis pathway were only induced in the roots of AMF-inoculated plants 
(Figure 6A, Figure 6—figure supplement 1A). To exclude other mechanisms (e.g., post-
transcriptional regulation) mediating the local production of the blumenol compounds in the 
leaves, we genetically manipulated the carotenoid pathway in a tissue-specific manner. It is 
challenging to manipulate blumenols without affecting the AMF-colonization of the plant, since 
other carotenoid-derived compounds, such as strigolactones, are known to play an important role 
in this process (Lanfranco et al. 2017). To circumvent these problems, we used the LhGR/pOp6 
system for chemically-inducible RNAi-mediated gene silencing of PDS (Schäfer et al. 2013) to 
impair carotenoid biosynthesis only in a particular leaf of AMF-inoculated plants. Interestingly, 
only the constitutively produced Compound 6 was reduced in the treated leaves, while the AMF-
indicative Compounds 1 and 2 were not affected by our treatment (Figure 6B). This indicated 
that instead of being locally produced, Compound 1 and 2 are translocated from the roots, an 
inference consistent with the occurrence of AMF-indicative blumenols in stem sap and the 
capacity of seedlings to transport blumenols from the root to the shoot from hydroponic solution 
(Figure 6C, Figure 6—figure supplement 1B, D). It seems likely that the AMF-indicative 
blumenols are transported in the xylem with the transpiration stream (Figure 6D). The blumenol 
glucosides (Compounds 1, 2 and 6) are hydrophilic low-molecular weight (402, 388 and 386 
Da), compounds that are unlikely to pass membranes without further support, e.g., by 
transporters and it will remain an interesting research question to identify the involved 
mechanisms. 

Functional implication of blumenol accumulation and transport 

Blumenols were shown to accumulate in large amounts in the roots of various plants after AMF-
inoculation (Strack and Fester 2006) and our data indicate that they are subsequently distributed 
throughout the plant (Figure 3G). While the conservation of this response in various plants after 
inoculation with different AMF species (Figure 7F, Figure 7—figure supplement 2) indicates an 
important functional role in the AMF-plant interaction, this function remains to be explored. 
Genetic manipulation of DXS and CCD1 indicate a role in arbuscule maintenance (Floß et al. 
2008, Floss et al. 2008). However, DXS is located upstream in the carotenoid biosynthesis 
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pathway and its manipulation might have caused pleiotrophic effects, while CCD1 silencing only 
results in a partial reduction in blumenol levels. Other studies showed that direct application of 
blumenols suppresses root colonization and arbuscule formation at early stages of mycorrhiza 
development (Fester et al. 1999) and inhibit the growth of soil born plant-pathogens (Park et al. 
2004). Unfortunately, these soil-born activities do not shed light on the systemic function of 
AMF-induced blumenols in shoot tissues observed here. Activity studies on vomifoliol, the 
aglycone of the not AMF-indicative Compound 6, showed that this compound induces stomatal 
closure similar to the structurally related abscisic acid (Stuart and Coke 1975). Additionally, 
blumenols are known to suppress seed germination and plant growth (Kato-Noguchi et al. 2012, 
Kato-Noguchi et al. 2015). Therefore, AMF-induced blumenols could serve as systemic signals 
that mediate the large-scale adjustments in general physiology that are thought to accompany 
AMF-interactions. For example, AMF-induced blumenols could be involved in the regulation of 
differential susceptibility of AMF-inoculated plants to stresses, such as drought or pathogen 
infection. 

AMF-indicative blumenols as tool for research and plant breeding  

Classical tools for the quantification of AMF-plant interactions are labor intensive and highly 
destructive which limits their application in studies that require high sample throughput, as well 
as in experiments that require repeated analysis of plants. We propose that the analysis of AMF-
indicative blumenols in the shoot provides a convenient, easy-to-conduct, and minimally 
destructive tool to interrogate plant-AMF interactions in a HTP manner that allows for forward 
genetic studies even under field conditions (Figure 7E) and empowers plant breeding programs 
to produce mycorrhiza-responsive and P-efficient high-yielding lines (van de Wiel et al. 2016). 
Currently, phosphate fertilizer is derived from phosphate rock, a non-renewable resource, which 
is predicted to be soon depleted (Vaccari and Strigul 2011). By enabling breeding programs to 
select crop varieties that have negotiated AMF symbioses that deliver high yields with minimal P 
inputs, this discovery could help steer the “green revolution” away from intense agricultural 
inputs and the collateral environmental damage they cause.  
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Materials and Methods 

Plant material and AMF inoculation 

For our experiments with Nicotiana attenuata (Torr. ex S. Wats.), we used plants from the 31st 
inbred generation of the inbred ‘UT’ line, irCCaMK (A-09-1212-1; Groten et al. 2015) plants 
that are stably silenced in CCaMK via RNAi, i-irPDS plants (A-11-92-4 × A-11-325-4; Schäfer 
et al. 2013) harboring the LhGR/pOp6 system for chemically-inducible RNAi-mediated gene 
silencing of phytoene desaturase (PDS) and the respective empty vector (EV) transformed plants 
(A-04-266-3; Bubner et al. 2006) as controls. Details about the transformation and screening of 
the irCCaMK plants are described by Groten et al. (2015) and for the i-irPDS plants by Schäfer 
et al. (2013). Seeds were germinated on Gamborg B5 as described by Krügel et al. (2002). The 
advance intercross recombinant inbred line (RIL) population was developed by crossing two N. 
attenuata inbred lines originating from accessions collected in Arizona (AZ) and Utah (UT), 
USA (Glawe et al. 2003, Zhou et al. 2017). Additionally, we used Solanum lycopersicum 
‘Moneymaker‘, Hordeum vulgare ‘Elbany‘ and Triticum aestivum ‘Chinese Spring‘ plants. 

For glasshouse experiments, plants were treated according to Groten et al. (2015). In brief, they 
were transferred into dead (autoclaved twice at 121 °C for 30 min; non-inoculated controls) or 
living inoculum (R. irregularis, Biomyc Vital, inoculated plants) diluted 1:10 with expanded clay 
(size: 2–4 mm). Pots were covered with a thin layer of sand. Plants were watered with distilled 
water for 7 d and subsequently fertilized every second day either with a full strength hydroponic 
solution (for 1 L: 0.1292 g CaSO4 × 2H2O, 0.1232 g MgSO4 × 7H2O, 0.0479 g K2HPO4, 0.0306 
g KH2PO4, 2mL KNO3 (1 M), 0.5 mL micronutrients, 0.5 mL Fe diethylene triamine pentaacetic 
acid) or with a low P hydroponics solution containing only 1/10 of the regular P-concentration 
(0.05 mM). Plants were grown separately in 1L pots, if not stated otherwise. In the paired design 
(Figure 2), irCCaMK plants were grown together with EV plants in 2L pots and the watering 
regime was changed to ¼ of the regular P-concentration after plants started to elongate. 
Glasshouse experiments with natural inoculum (Figure 3C) were conducted in a mesocosm 
system (4 boxes, each 2 pairs of EV and irCCaMK plants). Plants were maintained under 
standard glasshouse conditions (16 h light, 24-28 °C, and 8 h dark, 20- 24 °C and 45 -55% 
humidity) with supplemental light supplied by high-pressure sodium lamps (Son-T-Agro). 

The field experiments were conducted as described by Schuman et al. (2012). Seedlings were 
transferred to Jiffy pots and planted into a field plot at the Lytle Ranch Preserve in the Great 
Basin Desert (Utah, USA: N 37.1412, W 114.0275). Field season 2016 (Figure 3D): field 
experiments were conducted under the US Department of Agriculture Animal and Plant Health 
Inspection Service (APHIS) import permission numbers 10-004-105m (irCCaMK) and 
07-341-101n (EV) and the APHIS release permission number 16-013-102r. EV and irCCaMK 
plants were planted in communities of six plants, either of the same genotype or with both 
genotypes in equal number.   

Sample collection 
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During harvests, roots were washed and briefly dried with a paper towel. Subsequently, they 
were cut into 1 cm pieces and mixed. Plant tissues were shock-frozen in liquid nitrogen 
immediately after collection, ground to a fine powder and stored at -20°C (short-term 
storage)/-80°C (long-term storage) until extraction. From the root samples, an aliquot was stored 
in root storage solution (25% ethanol and 15% acetic acid in water) at 4 °C for microscopic 
analysis.  

For stem sap collection, branches of N. attenuata plants were cut into 1.5cm long pieces and 
placed into small 0.5 mL reaction tubes with a small hole in the tip, which were placed in a larger 
1.5 mL reaction tube. The tubes were centrifuged for 15 min at 10 000 × g. The stem sap from 
the larger reaction tubes was collected and stored at -20°C. 

Samples prepared at other laboratory facilities 

Medicago truncatula (Figure 7 and Figure 7—figure supplement 2) and Brachypodium 
distachyon (Figure 7 and Figure 7—figure supplement 2) samples were prepared at the 
laboratory of Prof. Maria Harrison from the Boyce Thompson Institute for Plant Research 
(Ithaca, NY, USA). M. truncatula plants were grown in a growth chamber with a 16 h light 
(25°C)/8 h dark (22°C) cycle. B. distachyon plants were grown in growth chamber with a 12 h 
light  (24 ºC) / 12 h dark (22 ºC) cycle.  All experiments were carried out in surface sterilized 
containers, autoclaved growth substrates and with surface sterilized spores and seeds as 
described previously (Liu et al. 2004, Hong et al. 2012, Floss et al. 2013). The growth substrates 
were mixtures of play sand (average particle 200-300 µm), black sand (heterogeneous particle 
size 50 – 300 µm) and gravel (heterogeneous particle size 300 µm -10 mm) as outlined below. 
For M. truncatula, 2 d-old seedlings were planted into 20.5 cm cones (Cone-tainers) containing a 
1:1 mixture of sterile black sand and gravel with 200 surface-sterilized G. versiforme spores 
placed on a layer of play sand positioned 4 cm below the top of the cones.  Five seedlings were 
planted into each cone. Plants were fertilized twice weekly with 20 mL of with modified 1/2-
strength Hoagland’s solution (Millner and Kitt 1992) containing with 100 µM potassium 
phosphate. Plants were harvested 49 d post planting and tissue frozen in liquid nitrogen and 
stored at -80 C. One cone containing 5 seedlings represents one biological replicate. The harvest 
date was 3/3/2015. B. distachyon seedlings were planted into cones (Cone-tainers) containing a 
2:1:1 mixture of black sand:play sand:gravel with 300 surface-sterilized G. versiforme spores 
placed on a layer of play sand positioned 4 cm below the top of the cones. Plants were fertilized 
twice weekly with 20 mL of modified 1/4-strength Hoagland’s solution (Millner and Kitt 1992) 
containing with 20 µM potassium phosphate. Plants were harvested 35 d post planting and tissue 
frozen in liquid nitrogen and stored at -80 C. Each cone contained 3 plants and each biological 
replicate consisted of a pool of 4 cones. The harvest date was 6/20/2016.  

S. lycopersicum ‘Moneymaker‘ (Figure 7—figure supplement 2) and Solanum tuberosum ‘Wega’ 
(Figure 7) samples were prepared at the laboratory of Prof. Philipp Franken by Dr. Michael 
Bitterlich from the Leibniz-Institute of Vegetable and Ornamental Crops (Großbeeren/Erfurt 
Germany). S. lycopersicum were transplanted into 10 L open pots containing a sand/vermiculite 
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mixture (sand: grain size 0.2–1 mm; Euroquarz, Ottendorf-Okrilla, Germany, vermiculite:agra 
vermiculite, Pullrhenen, Rhenen, The Netherlands; 1:1 v:v) and grown in the glass house from 
March to May (20-28:17°C day:night, PAR: 300-2000 µmol m-2 s-1). Mycorrhizal plants were 
inoculated with a commercial inoculum either containing R. irregularis DAOM 197198 (INOQ, 
Schnega, Germany) or F. mosseae BEG12 (MycAgro Laboratory, Breteniere, France) with 10 % 
of the substrate volume and were harvested after 11 or 6 weeks, respectively. S. tubersosum 
tubers of similar size were planted into 3 L pots filled with the same substrate and grown in a 
growth cabinet (20:16°C day:night, 16 h light, 8 h dark; PAR: 250-400 µmol m-2 s-1, 50 % rH). 
Mycorrhizal plants were inoculated with a commercial inoculum either containing F. mosseae 
BEG12 (MycAgro Laboratory, Breteniere, France) with 10 % of the substrate volume and were 
harvested after 6 weeks. Non-mycorrhizal counterparts were inoculated with the same amount of 
autoclaved (2 h, 121°C) inoculum and a filtrate. The filtrate was produced for every pot by 
filtration of 200 mL deionized water through Whatman filter (particle retention 4–7 µm; GE 
Healthcare Europe GmbH, Freiburg, Germany) containing approx. 200 mL of inoculum. The 
same amount of deionized water (200 mL) was added to mycorrhizal pots. Plants were irrigated 
every other day with 400- 600 mL nutrient solution (De Kreij et al. 1997); 40% of full strength) 
with 10% of the standard phosphate to guarantee good colonization (N:10.32 mM; P: 0.07 mM, 
K: 5.5 mM, Mg: 1.2 mM, S: 1.65 mM, Ca: 2.75 mM, Fe: 0.02 mM, pH: 6.2, EC: 1.6 mS). For 
the experiment in the glasshouse, additional irrigation was carried out with deionized water until 
pot water capacity every other day. The pooled bulk leaf sample was dried at 60°C for 48 h, 
ground to a fine powder and stored under dry conditions at room temperature until further 
analyses. 

Stress treatments 

Herbivory treatments were conducted by placing Manduca sexta neonates, originating from an 
in-house colony, on the plants. After feeding for 2 weeks, rosette leaves were harvested. As 
controls, we harvested leaves from untreated plants. 

For bacteria and virus infection, plants were inoculated with Agrobacterium tumefaciens carrying 
the Tobacco Rattle Virus. The inoculation was conducted by infiltrating leaves with a bacteria 
solution using a syringe. The treatment was conducted as described for virus-induced gene 
silencing described by Ratcliff et al. (2001) and by Saedler and Baldwin (2004). After incubation 
for 3 weeks, stem leaves of the treated plants and untreated control plants were harvested. 

The fungal infection was done with Botrytis cinerea. On each plant, three leaves were treated by 
applying 6 droplets each containing 10 µL of B. cinerea spore suspension (106 spores mL-1 in 
Potato Extract Glucose Broth, Carl Roth GmbH) to the leaf surface. As control, plants were 
treated with broth without spores in the same way. Samples were collected after 4 days 
incubation. 

Drought stress was induced by stopping the watering for 4 d. Subsequently, stem leaves of the 
drought-stressed plants and the continuously watered control plants were harvested. In contrast 
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to the other samples of the stress experiment, leaves were dried before analysis to compensate for 
weight differences caused by changes in the water content. 

Sample preparation - extraction and purification 

For extraction, samples were aliquoted into reaction tubes, containing two steel balls. Weights 
were recorded for later normalization. Per 100 mg plant tissues (10 mg in case of dry material), 
approximately 1 mL 80% MeOH was added to the samples before being shaken in a 
GenoGrinder 2000 (SPEX SamplePrep) for 60 s at 1150 strokes min-1. After centrifugation, the 
supernatant was collected and analyzed. For triple-quadrupole MS quantification, the extraction 
buffer was spiked with stable isotope-labeled abscisic acid (D6-ABA, HPC Standards GmbH) as 
an internal standard.  

Stem sap was diluted 1:1 with MeOH spiked with D6-ABA as an internal standard. After 
centrifugation, the supernatant was collected and analyzed. 

The purification of N. attenuata leaf extracts for high resolution MS was conducted by solid-
phase-extraction (SPE) using the Chromabond HR-XC 45 µm benzensulfonic acid cation 
exchange columns (Machery-Nagel) to removed abundant constituents, such as nicotine and 
phenolamides. After purification the samples were evaporated to dryness and reconstituted in 
80% methanol.  

Compound identification was conducted by NMR with purified fractions of root and leaf 
extracts. Compounds 1, 3 and 4 were extracted from root tissues of N. attenuata and purified by 
HPLC (Agilent-HPLC 1100 series; Grom-Sil 120 ODS-4 HE, C18, 250 × 8 mm, 5 µm; equipped 
with a Gilson 206 Abimed fraction collector). Compounds 2 and 7 were extracted from a mixture 
of leaf tissues from different plant species (M. truncatula, Z. mays, S. lypersicum and N. 
attenuata). The first purification step was conducted by SPE using the Chromabond HR-XC 45 
µm benzensulfonic acid cation exchange columns (Machery-Nagel) to remove hydrophilic and 
cationic constituents. Additional purification steps were conducted via HPLC (Agilent-HPLC 
1100 series; Phenomenex Luna C18(2), 250 × 10 mm, 5 µm; equipped with a Foxy Jr. sample 
collector) and UHPLC (Dionex UltiMate 3000; Thermo Acclaim RSLC 120 C18, 150 × 2.1 mm, 
2.2 µm; using the auto-sampler for fraction collection).  

Untargeted MS based analyses 

For high resolution mass spectrometry (MS), indiscriminant tandem mass spectrometry (idMS/
MS), tandem MS (MS2) and pseudo-MS3 were used. Ultra-high performance liquid 
chromatography (UHPLC) was performed using a Dionex UltiMate 3000 rapid separation LC 
system (Thermo Fisher), combined with a Thermo Fisher Acclaim RSLC 120 C18, 150 × 2.1 
mm, 2.2 µm column. The solvent composition changed from a high % A (water with 0.1% 
acetonitrile and 0.05% formic acid) in a linear gradient to a high % B (acetonitrile with 0.05 % 
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formic acid) followed by column equilibration steps and a return to starting conditions. The flow 
rate was 0.3 mL/min.  MS detection was performed using a micrOTOF-Q II MS system (Bruker 
Daltonics), equipped with an electrospray ionization (ESI) source operating in positive ion mode. 
ESI conditions for the micrOTOF-Q II system were end plate offset 500 V, capillary voltage 
4500 V, capillary exit 130 V, dry temperature 180°C and a dry gas flow of 10 L min-1. Mass 
calibration was performed using sodium formiate (250 mL isopropanol, 1 mL formic acid, 5 mL 
1 M NaOH in 500 mL water). Data files were calibrated using the Bruker high-precision 
calibration algorithm. Instrument control, data acquisition and reprocessing were performed 
using HyStar 3.1 (Bruker Daltonics).  

idMS/MS was conducted in order to gain structural information on the overall detectable 
metabolic profile. For this, samples were first analyzed by UHPLC-ESI/qTOF-MS using the 
single MS mode (producing low levels of fragmentation that resulted from in-source 
fragmentation) by scanning from m/z 50 to 1400 at a rate of 5000 scans/s. MS/MS analyses were 
conducted using nitrogen as collision gas and involved independent measurements at the 
following 4 different collision-induced dissociation (CID) voltages: 20, 30, 40 and 50 eV. The 
quadrupole was operated throughout the measurement with the largest mass isolation window, 
from m/z 50 to 1400. Mass fragments were scanned between m/z 50 to 1400 at a rate of 5000 
scans/s. For the idMS/MS assembly, we used a previously designed precursor-to-product 
assignment pipeline (Li et al. 2015, Li et al. 2016) using the output results for processing with 
the R packages XCMS and CAMERA (Data Set 2). 

Additional MS/MS experiments were performed on the molecular ion at various CID voltages. 
For the fragmentation of the proposed aglycones via pseudo-MS3, we applied a 60 eV in-source-
CID transfer energy which produced spectra reflecting the loss of all sugar moieties. 

Structure elucidation by NMR 

Purified fractions were completely dried with N2 gas and reconstituted with MeOH-d3 prior to 
analysis by nuclear magnetic resonance spectroscopy (NMR). Structure elucidation was 
accomplished on an Avance III AV700 HD NMR spectrometer (Bruker-Biospin, Karlsruhe, 
Germany) at 298 K using a 1.7 mm TCI CryoProbeTM with standard pulse programs as 
implemented in Bruker TopSpin (Version 3.2). Chemical shift values (δ) are given relative to the 
residual solvent peaks at δH 3.31 and δC 49.05, respectively. Carbon shifts were determined 
indirectly from 1H-13C HSQC and 1H-13C HMBC spectra. The data are shown in Table 1. 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Table 1 1H and 13C NMR data for compounds 1-4 and 7 

 

s, singlet; s br, broad singlet; d, doublet; dd, doublet of doublet; m, multiplet 

Manuscript III

121



Targeted metabolite analysis 

For chromatographic separations, a UHPLC (Dionex UltiMate 3000) was used to provide a 
maximum of separation with short run times. This reduced the interference from other extract 
components (matrix effects), increased the specificity of the method, and met the requirements of 
a HTP analysis. The auto-sampler was cooled to 10°C. As a stationary phase, we used a reversed 
phase column (Agilent ZORBAX Eclipse XDB C18, 50 × 3.0 mm, 1.8 µm) suitable for the 
separation of moderately polar compounds. Column temperature was set to 42°C. As mobile 
phases, we used: A, 0.05% HCOOH, 0.1% ACN in H2O and B, MeOH, the composition of 
which was optimized for an efficient separation of blumenol-type compounds within a short run 
time. We included in the method a cleaning segment at 100% B and an equilibration segment 
allowing for reproducible results across large samples sets. The gradient program was as follows: 
0–1 min, 10% B; 1–1.2 min, 10-35% B; 1.2–5 min, 35-50% B; 5–5.5 min, 50-100% B; 5.5–6.5 
min, 100% B; 6.5–6.6 min, 100-10% B and 6.6–7.6 min, 10% B. The flow rate was set to 500 µL 
min-1. Analysis was performed on a Bruker Elite EvoQ triple quadrupole MS equipped with a 
HESI (heated electrospray ionization) ion source. Source parameters were as follows: spray 
voltage (+), 4500V; spray voltage (-), 4500V; cone temperature, 350°C; cone gas flow, 35; 
heated probe temperature, 300°C;  probe gas flow, 55 and nebulizer gas flow, 60. Samples were 
analyzed in multi-reaction-monitoring (MRM) mode; the settings are described in Table 2. 
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Table 2 MRM-settings used for targeted blumenol analysis 

 

RT: retention time 
CE: collision energy  
Glc: glucose 
GlcU: glucuronic acid 
Rha: rhamnose 
Hex: hexose 
Pen: pentose 
a Resolution: 0.7 
b [M+H]+ or [M-H]- if not stated differently 
c Resolution: 2  
d Quantifiers are depicted in bold 
e [M+H-Glc]+ 
f Verified by high resolution MS 
g Verified by NMR 
h Optimized with commercial available standards  
i Transitions predicted based on structural similar compounds and literature information 
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Adjusted method for targeted blumenol analysis in N. attenuata 

The compound list was limited to the AMF-indicative markers in N. attenuata, Compound 1 and 
2, the not AMF-indicative Compound 6 and the internal standard (D6-ABA). Accordingly, the 
gradient program was adjusted as follows: 0–1 min, 10% B; 1–1.2 min, 10-35% B; 1.2–3 min, 
35-42% B; 3–3.4 min, 42-100% B; 3.4–4.4 min, 100% B; 4.4–4.5 min, 100-10% B and 4.5–5.5 
min, 10% B. The MRM settings are given in Table 3. 

Table 3 MRM-settings for the analysis of selected blumenols in N. attenuata 

*  

RT: retention time 
CE: collision energy  
Glc: glucose 
Hex: hexose 
Pen: pentose 
a Resolution: 0.7 
b [M+H]+ or [M-H]- if not stated differently 
c Resolution: 2  
d Quantifiers are depicted in bold 
e [M+H-Glc]+ 
f Verified by high resolution MS 
g Verified by NMR 
h Optimized with commercial available standards  
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Determination of the AMF colonization rate 

To determine the fungal colonization rates and mycorrhizal structures, root samples were stained 
and analyzed by microscopy. For WGA-Alexa Fluor 488 staining, roots were first washed with 
distilled water and then soaked in 50% (v/v) ethanol overnight. Roots were then boiled in a 10% 
(w/v) KOH solution for 10 minutes. After rinsing with water, the roots were boiled in 0.1 M HCl 
solution for 5 minutes. After rinsing with water and subsequently with 1x phosphate-buffered 
saline solution, roots were stained in 1x phosphate-buffered saline buffer containing 0.2 mg mL-1 
WGA-Alexa Fluor 488 overnight in the dark. Zeiss confocal microscopy (LSM 510 META) was 
used to detect the WGA-Alexa Fluor 488 (excitation/emission maxima at approximately 495/519 
nm) signal. Trypan blue staining was performed as described by Brundrett et al. (1984) to 
visualize mycorrhizal structures. For the counting of mycorrhizal colonization, 15 root 
fragments, each about 1 cm long, were stained with either trypan blue or WGA-488 followed by 
slide mounting. More than 150 view fields per slide were surveyed with 20x object 
magnification and classified into 5 groups: no colonization, only hyphae (H), hyphae with 
arbuscules (H+A), hyphae with vesicles (V+H), and hyphae with arbuscules and vesicles (A+V
+H). The proportions of each group were calculated by numbers of each group divided by total 
views. 

For the molecular biological analysis of colonization rates, RNA was extracted from the roots 
using the RNeasy Plant Mini Kit (Qiagen) or NucleoSpin® RNA Plant (Macherey-Nagel) 
according to the manufacturer’s instructions and cDNA was synthesized by reverse transcription 
using the PrimeScript RT-qPCR Kit (TaKaRa). Quantitative (q)PCR was performed on a 
Stratagene Mx3005P qPCR machine using a SYBR Green containing reaction mix (Eurogentec, 
qPCR Core kit for SYBR Green I No ROX). We analyzed the R. irregularis specific 
housekeeping gene, Ri-tub (GenBank: EXX64097.1), as well as the transcripts of the AMF-
induced plant marker genes RAM1, Vapyrin, STR1 and PT4. The signal abundance was 
normalized to NaIF-5a (NCBI Reference Sequence: XP_019246749.1). The primer sequences 
are summarized in Table 4. 
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Table 4 Sequences of primers used for qPCR-based analysis of AMF-colonization rates 

Transcript analysis of the apocarotenoid pathway 
The transcript analysis of the (apo)carotenoid pathway was conducted based on RNA-seq (Data 
Set 3) by using N. attenuata roots with or without R. irregularis inoculations. The data analysis 
methods are based on the previously published pipeline of Ling et al. (2015). Representative 
values for transcripts abundances are TPM (Transcripts per kilobase of exon model per million 
mapped reads).   

Blumenol transport experiment 
To analyze the root-to-shoot transfer potential of blumenols, we placed three N. attenuata 
seedlings, previously germinated on petri dishes with GB5 Agar for approximately 10 days, into 
0.5 mL reaction tubes. The roots were placed into the tube, while the shoot projected out of the 
tube. The tubes were carefully covered with parafilm, which held the seedlings in place and 
isolated roots from shoots (see Figure 6C). The tubes were filled with tap water supplemented 
with 0.5% v/v plant extracts enriched in Compounds 1 or 2 (unknown concentration; purified 
fractions), or a commercial available standard of Compound 6 (25 ng µL-1 end concentration; 
Roseoside; Wuhan ChemFaces Biochemical Co., Ltd.). Compound 1 or 2 were prepared from a 
mix of leaf tissues from different plant species (M. truncatula, Z. mays, S. lypersicum and N. 
attenuata) by methanol extraction followed by purification by SPE (Chromabond HR-XC 
column) and HPLC (Agilent-HPLC 1100 series; Phenomenex Luna C18(2), 250 × 10 mm, 5 µm; 
equipped with a Foxy Jr. fraction collector). As a control, we used tap water supplemented with 
the respective amounts of MeOH. The seedlings were incubated for 1d in a Percival climate 
chamber (16 h of light at 28 °C, and 8 h of dark at 26 °C). During sample collection, roots and 
shoots were separated and the roots were rinsed in water (to reduce the surface contamination 
with the incubation medium). While the shoots were analyzed separately, the roots of all 
seedlings from the same treatment were pooled. Sample extraction was conducted as described 
above. 

Inducible PDS silencing 

Gene Forward primer Reversed primer

NaIF-5a GTCGGACGAAGAACACCATT CACATCACAGTTGTGGGAGG

NaRAM1 ACGGGGTCTATCGCTCCTT GTGCACCAGTTGTAAGCCAC

NaVapyrin GGTCCCAAGTGATTGGTTCAC GACCTTCAAAGTCAACTGAGTCAA

NaSTR1 TCAGGCTTCCACCTTCAATATCT GACTCTCCGACGTTCTCCC

NaPT4 GGGGCTCGTTTCAATGATTA AACACGATCCGCCAAACAT

NaCCaMK TTGGAGCTTTGTTCTGGTGGT ATACTTGCCCCGTGTAGCG

Ri-TUB TGTCCAACCGGTTTTAAAGT AAAGCACGTTTGGCGTACAT
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For the temporal and spatial restriction of PDS gene silencing, we treated the petiole of the 
second oldest stem leaf of AMF-inoculated and non AMF-inoculated i-irPDS and EV plants with 
a 100 µM dexamethasone-containing lanolin paste (1% v/v DMSO). The lanolin paste was 
prepared and applied as described by Schäfer et al. (2013). The treatment started 3 weeks after 
potting and was conducted for 3 weeks. The lanolin paste was refreshed twice per week. On each 
plant the treated leaf and the adjacent, untreated leaves were harvested for analysis. 

QTL analysis 

The field experiments for QTL analysis were conducted in 2017. Collected leaf samples were 
extracted as described with 80% MeOH spiked with D6-ABA as internal standard and analyzed 
with the method described under ‘Adjusted method for targeted blumenol analysis in N. 
attenuata’. The peak areas for Compound 2 were normalized by amount of extracted tissue, 
internal standard and log-transformed. Samples with missing genotype or phenotype information 
were removed. In total, 728 samples were used for QTL mapping analysis. For quantitative trait 
loci (QTL) mapping, we used the AZ-UT RIL population described by Zhou et al. (2017). 

Statistics 

Statistical analysis of the data was performed with R version 3.0.3 (http://www.R-project.org/). 
The statistical methods used and the number of replicates are indicated in the figure legends.  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4. Discussion 

Nicotiana attenuata was developed as a model system to study plant developmental growth, 

resistance and productive traits. In its native habitat, abiotic stresses such as high UV radiation, 

drought, heterogeneity of nutrient distribution and smoke residues from fires in the Great Basin 

Desert represent crucial environmental factors to which N. attenuata has adapted. Over millions 

of years, and with a myriad of interactions with microbiomes in the soil, this plant has evolved 

sophisticated systemic responses. Integrated ecological factors have interplayed in multiple 

layers to sculpt N. attenuata’s diversified adaption mechanisms for its survival in nature 

(Baldwin & Morse, 1994; Baldwin et al., 1994; Kessler & Baldwin, 2002; Wu & Baldwin, 2010; 

Schuman & Baldwin, 2016).  

4.1. From the abiotic perspective: a new compound, catechol, which exists in natural 

environments, is involved in root growth 

We investigated the impact of smoke on root growth and development, rather than only on seed 

germination stimulation, in manuscript I. The active compounds from smoke which enhance 

seed germination have been well characterized and include karrikin and cyanohydrin (Flematti et 

al., 2004; Flematti et al., 2013).  Previous data indicates that smoke cues are easily transported 

out of the burn area, but the activity which results from their initial presence can remain for 

many years. From the emergence of roots from the seed, it is inevitable that they will contact 

these cues for their whole life span. Smoke cues can be found in artificial food condiments such 

as barbeque sauce and a dilution of these sauces are referred to as “liquid smoke”, with no 

significant differences detected between brands (Baldwin & Morse, 1994; Baldwin et al., 1994; 

Preston & Baldwin, 1999; Krock et al., 2002; Preston et al., 2004; Wang et al., 2017). By 

externally supplementing liquid smoke to GB5 growth medium, root morphology was changed 

with primary roots showing a longer phenotype with no elongated root hairs. Here, bioactivity-

guided fractionation helped isolate catechol as the main active compound resulting in the defects 

of root growth and development.  Catechol has been identified in liquid smoke as highly 

abundant and moreover, targeted analysis of soils from different burn sites in the Great Basin 

Discussion

134



Desert demonstrated a fair amount of presence in burn soils, which supports the ecological 

relevance of this smoke cue in nature.  

4.2. Auxin is not the main regulator that mediates catechol-induced root morphological 

changes 

Plant roots mainly forage in the soil for nutrients and water. Based on the observations of root 

phenotypes in an in-vitro assay, the ecological importance was surmised to be that the promotion 

of primary root elongation and numbers of adventitious roots may facilitate a more efficient root 

growth rates to reach nutrients-rich patches or areas with higher water content.  Additional 

research is certainly needed to better understand the local distribution and persistence of catechol 

in burn soil and its correlation with the presence of nutrients in order to fully understand its 

ecological role as an environmental signal. Large discrepancies of root morphology after 

comparison of addition of liquid smoke and karrikin1 (KAR1) ruled out that the effect is due to 

the well-characterized germination stimulant karrikin. This further indicates that N. attenuata 

perceives different substances in smoke for germination and for seedling establishment. To 

further understand underlying mechanisms for how smoke alters root morphology, an RNA-seq 

transcriptome profiling performed on kinetic samples was done to identify the potential 

regulatory pathway. Indeed, Gene Ontology (GO) enrichment of differential expressed genes 

(DEG) resulted in a few main physical responses networks such as those related to auxin 

biosynthesis, cell redox homeostasis and glucosyltransferases activity, which guided us to focus 

on two well-studied pathways: the auxin- and reactive oxygen species-related pathways (ROS).  

Root phenotypes induced by smoke resembled some which resulted from root exposure 

to the auxin-biosynthesis inhibitors Kyn and yucasin (Nishimura et al., 2014), which included 

longer but hairless roots. We initially hypothesized that the decrease of auxin production ascribed 

to the inhibitory effect of smoke substances on biosynthesis may be an important factor in the 

root morphological response to smoke. However, evidence was obtained via the following auxin-

related tests to corroborate that auxin production doesn’t play a primary role in the modifications 

of root phenotype upon smoke or catechol treatments.  

1) External auxin application failed to rescue the deficient root phenotype induced by smoke. 
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2) The content of auxin showed the opposite accumulation as expected: an increase of IAA in 

roots was observed after smoke or catechol exposure.  

3) NaSHY2, a molecular reporter bi-directionally regulated by auxin and cytokinins (Tian & 

Reed, 1999), did not significantly change after smoke incubation.  

4) In line with previous publications (Peng et al., 2013; Perrot-Rechenmann, 2013), synthetic 

NAA supplementation increased proliferation of meristematic cells leading to an increase of cell 

numbers in the root tip, while the application of smoke did not.  

5) By means of the reporter line in Arabidopsis DII-VENUS (Brunoud et al., 2012), in which 

rapid fluorescence quenching accompanied with AUX/IAA degradation is elicited by an auxin 

signal, we found a sharp decline of fluorescence intensity with NAA induction, and smoke 

treatment slightly decreased fluorescence intensity, indicating an increase of auxin.  

6) Inhibition of an auxin transport by application of NPA could not mimic the smoke-induced 

root phenotype. As reported, the signaling and polar distribution of auxin were also essential to 

for its full effects on root growth (Ljung et al., 2001), and in particular, cell-to-cell transport of 

auxin forms gradients along the roots which determine the life cycle of each cell file (Sauer et 

al., 2013). 

Based on these six pieces of evidence, we corroborated that auxin is not the primary 

effector from smoke application. Nevertheless, the lack of diverse approaches for N. attenuata 

plants to study this question, such as auxin reporter transgenic lines to temporally/spatially study 

cell-to-cell changes in auxin gradient, limited the tests we could conduct and led us to conclude 

that we cannot completely rule out this possibility. However, the slight but significant elevation 

of auxin did not correspond to an increase of meristematic cell number from cell division. Likely 

the increase of IAA results from the primary physiological responses upon smoke treatment, 

rather than an initial input for root structure formation.  

4.3. Spatial ROS homeostasis interruption caused by catechol treatment accounts for root 

defects 
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Another possibility is that the effect of the increase of auxin might be counteracted by decreased 

superoxide (O2-) levels. Another study investigated transcriptional changes of maize kernels in 

response to smoke treatment over one day. Interestingly, differential GO enrichment in redox 

processes were found (Soós et al., 2009), overlapping with ours. Genetic evidence on the role of 

ROS homeostasis in root development and growth comes from research done in Arabidopsis on 

UPBEAT (UPB1) and MED25/PFT1 (Tsukagoshi et al., 2010; Sundaravelpandian et al., 2013), 

with both mutant lines showing alteration of ROS balance as the main regulator of corresponding 

phenotypic defects. To date, it is well known that ROS is an independent signaling pathway 

involved in root development. Hydrogen peroxide (H2O2) and superoxide (O2-) are two 

important reactive oxygen species in roots. H2O2 is enriched in the EZ/DZ, and is confined to the 

apoplast and the extending root hairs; in contrast, O2- is differentially localized in MZ to 

coordinate cell proliferation. In accordance with such patterns in other plant species, ROS has the 

same distribution pattern in N. attenuata roots. It has been reported that in pft1 and upb1 in 

Arabidopsis, perturbed ROS distribution resulted in reducedaccumulation of H2O2 in the EZ/TZ, 

but had a reverse pattern of O2- in MZ, ultimately leading to an increase of meristem size which 

could be positively associated with meristem cell length.  

The increase in root length resulting from the application of catechol or smoke is mainly 

due to longitudinal increases of cell size, rather than increases in meristem cell numbers. 

Consistent with previous data, no changes in cell proliferation in the MZ were associated with 

simple alteration of O2- content; however, the increase in cell length did not correspond to a 

decrease in H2O2 content in the EZ/DZ, but in fact a small increase, contrary to expectations 

(Tsukagoshi et al., 2010). This is not in agreement with the conical theory about how ROS affect 

root development. Interestingly, with the help of BES- H2O2-AC fluorescence dye to track the 

polar location of H2O2 spatially (Maeda et al., 2004), we observed that in seedlings free of 

catechol incubation, H2O2 was mainly distributed around the cell files of the epidermis and 

cortex, while catechol treated seedlings had misplaced H2O2 to the tissue surrounding the stele, 

and only sporadic signals of H2O2 could be visualized in the outer layers. It became obvious that 

the content of H2O2 around the cell walls in the epidermis and cortex layers was much lower, 

even though in total amounts, catechol treated seedling roots seemed to have a higher overall 
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quantity. It is wildly accepted that H2O2 is an important factor to loosen cell walls and to directly 

regulate the cell wall matrix to eventually determine cell size. We speculated that the reduction in 

H2O2 around cell walls might be ascribed to catechol’s ability to produce hydroxyl radicals (.OH) 

via the Fenton reaction with H2O2 (Pignatello et al., 2006). In this case, external catechol 

spatially meeting with apoplast H2O2 would be a precondition to generate hydroxyl radicals 

(.OH). In another words, catechol itself would need to cross the plasma membrane to react and 

thereby would produce a redox signal, which would then be transmitted into cells to be perceived 

through a signaling cascade that would ultimately activate adaptive responses. Importantly, the 

catechol transport and Fenton reaction hypotheses presented in this story are still hypothetical, 

and further experimental evidence is needed. However, if differential transcription of ROS 

response genes is indicative, then there is evidence which may suggest the validity of these 

hypotheses: a number of ROS related genes were found to have altered transcript accumulation, 

including RBOHD, CAT, GPX, SOD, and some peroxidases.    

Besides ROS-response genes, some genes which are mediated by ROS also had altered 

transcripts, including extensin (EXT). Extensin has been intensively investigated as one of the 

members of the hydroxy-Pro-rich glycoprotein superfamily, generically referred to as HRGPs 

(Velasquez et al., 2011; Mangano et al., 2017; Mangano et al., 2018; Marzol et al., 2018). It is 

mainly involved in hydroxylation of Pro residues into Hyp, and then O-glycosylation of Hyp and 

Ser, which will ultimately form intra- and inter-EXT linkages through putative type-III 

peroxidases (PERs). These may functionally overlap with other cell wall constituents to create 

the final cell wall matrix. From genetic research in Arabidopsis thaliana, loss of function 

mutants for each of the leucine-rich repeat extensins, extensins 1 and extensins 2 (lrx1 and lrx2 

respectively), along with extensin 6, 7 and 10 (ext6, ext7 and ext10) demonstrated aberrant root 

hair formation due to genetic disruption which had resulted in the disturbance of O-glycosylation 

(Velasquez et al., 2011). Interestingly, in our transcriptome data, 21 extensins were strongly 

down-regulated, similarly to these loss of function mutants. Integrating our results of interrupted 

homeostasis of ROS, strongly decreased transcript abundance of a bulk of EXTs and increased 

cell length, led us to propose that catechol/liquid smoke addition weakens cross-linking 

composition in cell walls, which facilitates cell expansion, and can be ascribed to attenuated 
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linking strength mediated by EXTs and ROS. However, this inference needs additional work to 

be corroborated.    

Returning to biochemical properties: dihydroxybenzene isomers consist of catechol, 

resorcinol, and hydroquinone. After comparison of the antioxidant capacity of each of these, we 

report that catechol had the highest activity, and facilitates the Fenton reaction most readily. We 

detected that young seedlings were much more sensitive to catechol under the concentration of 

0.01 mM and that catechol incubated seedlings displayed fewer root hairs and longer roots, when 

compared to seedlings treated with the other two isomers. Applying these isomers, or derivatives, 

of catechol caused observable differences in antioxidant capacity and the corresponding root 

phenotypes supported the concept that disruption of ROS homeostasis is mainly responsible for 

root defects. Importantly, in a biochemical complementation assay, external H2O2 addition 

largely rescued defects in root length and root hairs and this assay thus supported the significance 

of catechol-disrupted H2O2 spatial distribution. Interestingly, previous data indicated that liquid 

smoke contains various phenolic compounds such as hydroquinone and guaiacol, and these also 

exist along with catechol in burned soil, so an influence of smoke on N. attenuata’s growth, 

development and production as a result of root morphology changes, and not only the stimulation 

of germination, could largely be expected in nature.  

In conclusion, we have provided evidence to reveal another impact of smoke on plant 

development and growth, besides the impact of karrikin on seed germination. Smoke promotes 

N. attenuata root growth and suppresses root hair elongation in a dose-dependent manner. 

Bioassay-driven fractionation and elucidation revealed that catechol is the main active compound 

that corresponds to these observed smoke-induced root defects. Transcriptional profiling under 

smoke induction highlighted the potential involved mechanistic pathways: auxin and ROS. 

Genetic and biochemical trials provided evidence of the independence of the auxin pathway from 

these effects, even though it was initially expected to play a major role. The potential 

involvement of ROS homeostasis disruption by catechol was determined based on transcriptional 

responses and its hyperactive antioxidation property has been shown.  
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Further quantitative and qualitative analyses on ROS demonstrated that total amounts of 

H2O2 were slightly but significantly elevated, while histochemical staining specifically 

visualized the misplaced H2O2 from outer layers to inner ones. The interruption of the 

distribution of H2O2 resulted in the decrease in amounts located directly adjacent to cell walls, 

which may have caused the longer root phenotype.  

4.4. From the biotic perspective: growth responses of plant communities in mesocosms 

colonized with arbuscular mycorrhizal fungi (AMF) 

Arbuscular mycorrhizal structures have been clearly observed in field roots of N. attenuata, in 

addition to the ability of N. attenuata to associate with AMF being confirmed by sequencing, and 

the ecological importance of this interaction is a subject of ongoing research (Riedel et al., 2008; 

Groten et al., 2015a; Groten et al., 2015b; Wang et al., 2018). Regarding the complexity of an 

ecosystem at community level, and in particular, in an extreme abiotic environment, it is 

interesting to explore the plant’s benefit and global response from this symbiotic relationship.   

To mimic the natural growth competitive condition of N. attenuata in monoculture 

communities, two N. attenuata host plants were planted in the same pot in the glasshouse with 

either a commercial AMF inoculum or native inoculum isolates, referred to as FMM (field 

mycorrhizae mixture). These were compared to non-inoculated plant pair controls. In each pot, 

one plant was an empty vector control (EV), and the other was from an RNAi line deficient in 

the formation of AMF symbioses, irCCaMK (calcium-calmodulin-dependent kinase), which was 

made by knocking down the core CCaMK gene in the signaling cascade involved in central 

stages of AMF symbiosis with plant roots. As reported in rice (Oryza sativa), high phosphate 

fertilization leads to a rapid decrease of arbuscule density and inhibition of hyphal branching. 

Such suppression can be exaggerated in mutants, such as the rice pt11-1 mutant that is impaired 

in P uptake in its arbuscule branches, and which leads to suppression, indicating that an output of 

P is a critical regulator to stabilize arbuscules (Yang et al., 2012). To facilitate a prominent 

competitive difference in the above genotypes by ensuring AMF inoculation and optimal 

association, low P fertilizer was used on these plants for watering, and the P amount was 

Discussion

140



progressively increased with development, reaching a maximum of 25% of the normal fertilizing 

formula for glasshouse N. attenuata.  

However, a serious problem emerged in that irCCaMK plants, which had previously been 

observed not to be colonized by AMF in monoculture, were now colonized (Groten et al., 

2015a). The sampling process was carefully checked to rule out potential contamination of 

irCCaMK root samples from EV samples during the harvesting process. The silencing efficiency 

of CCaMK gene was also assessed and reflected a 73% silencing in all irCCaMK plants, 

regardless of treatment, which had been sufficient silencing to dampen colonization in a previous 

monoculture experiment. This suggested that other factors involved in this abnormal 

upregulation of root colonization may exist. Though root colonization of irCCaMK co-cultured 

with EV was significantly increased, the transcript abundance of AMF-indicative markers 

NaPT5/NaPT4 that normally increase with association, was still far lower in irCCaMK upon 

mycorrhization than in EV.  In previous studies using rice (O. sativa), the genetic mutant hebiba 

(hb) was used because it has a 169kb deletion containing 26 genes, of which one is kai2 (karrikin 

insensitive). Genetic complementation phenotypically deciphered the essential roles of KAI2 in 

symbiotic partnership establishment with AMF. When hb mutants were co-cultured with WT 

plants, numbers of hyphopodia, intraradical hyphae and arbuscules in the roots were significantly 

increased compared to the roots of hb in monoculture. Authors proposed that the lack of fungus 

development was partially recovered by the increase of inoculum strength gained from active 

fungus interaction occurring in neighboring WT plants (Gutjahr et al., 2015). Likewise, 

increased root colonization of irCCaMK could largely be due to the same reason, though it could 

also be that RNAi remains “leaky” to a certain extent with still ca. 27% of CCaMK being 

produced and inducing the CCaMK-dependent pathway, a common drawback of the knock-down 

technique.   

4.5. AMF-mediated preferential Pi uptake in EV plants leads to better growth  

Regularly monitoring growth traits such as seedling diameter and stalk height clearly showed a 

suppression effect on plant growth from AMF inoculation, which agrees with previous data 

(Riedel et al., 2008; Groten et al., 2015a). Interestingly, such suppression was exacerbated in 
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irCCaMK plants. Initially, only small differences in irCCaMK plant growth were expected, 

though significant differences in growth may be due to the abortion of AMF colonization 

compromising plant growth, as previously reported for N. attenuata plants. In fact, severely 

dampened growth in co-cultured irCCaMK plants were recorded, which indicated the existence 

of a third factor behind these growth changes, aside the treatment and genotype effects, 

respectively. Because Pi-limited fertilizer enhanced the growth differences in irCCaMK plants 

which were both in competition and inoculated with AMF, versus in competition and not 

inoculated, a preferential Pi allocation to the EV in the pair, mediated by the AMF network, was 

hypothesized. Indeed, after Pi measurement it was found that more Pi content accumulated in EV 

plants, indicating the importance of partner identity in the outcome of plants’ competitive 

interactions.  Similarly, AMF preferentially allocating nutrients has been previously tested in 

non-host (A. thaliana) and host (Trifolium pratense or Lolium multiflorum) plants, with or 

without AMF inoculum (Veiga et al., 2013). These plants were grown in dual compartments 

separated by mesh that was only hyphae-penetrable. The results were a clear growth inhibition 

effect (up to 50%) observed in A. thaliana, the non-host plant, versus itself in non-inoculated 

pairs, suggesting that host plants took full advantage of their symbiotic partners at the expense of 

competitive non-host plants. In extremely complex ecosystems, it is likely that unequal nutrient 

allocation, mediated as well by symbionts, could be one of the selective strengths that 

evolutionarily sculpt the landscape of terrestrial plants.  

On the one hand, growth differences helped us to better understand the reason behind the 

impeded growth of irCCaMK as a result of uneven nutrient uptake by its neighbor through AMF 

involvement. On the other hand, such an unexpected third effect introduced into experiments 

from inconsistent growth may result in unpredicted complexity of results.  To further dissect the 

effects as being from AMF inoculation or from simple growth differences, a leaf transcriptome 

analysis was performed, using samples with FMM inoculation and their controls. Differentially 

expressed genes (DEGs) were summarized in two modules comprising additive and interactive 

DEGs, which inspired us to undertake subsequent studies.   
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4.6. Interactive model aspect summarized from foliar DEGs: the third regulator behind 

differential plants growth 

NaPT5 is a dual response gene triggered both by root AMF colonization and leaf Pi-starvation 

Manuscripts II and III contain transcriptome and metabolome data that were analyzed based on 

additive and interactive models after comparison the effect between genotype (EV vs. irCCaMK) 

and treatment (AMF vs. not-AMF inoculated) , and led to the discovery of foliar AMF-indicative 

chemical markers. 

To better understand effects of phosphate availability and AMF-plant interaction on plant 

competitive growth, DEGs were screened from microarray datasets in manuscript II and were 

analyzed at length. Interestingly, Gene Ontology analysis of these DEGs revealed their 

physiological functions to be highly associated with the phosphate starvation process, phosphate 

transport and galactolipid metabolism, which is an indirect consequence of Pi shortage. The 

transcript accumulation patterns of these genes exhibited an interactive model in EV and 

irCCaMK plants: showing a decrease in EV plants (AMF vs. not-AMF inoculated) and an 

increase in irCCaMK plants (AMF vs. not-AMF inoculated), but this trend could only be 

detected six weeks post inoculation (6 wpi), and not in an earlier root sample harvest at two 

weeks post inoculation (2 wpi).  

In the earlier stage, it is possible that the symbiosis establishment was not yet complete, 

including particularly the formation of arbuscules, which are widely accepted as the phosphate 

exchange site between fungus and host and usually occur normally in a late stage of the 

symbiosis. However, sporadic arbuscules were observed with their main arbuscule trunk and 

branches by microscopy. We thus inferred that it is more likely in the earlier stage that the 

symbiotic structures are already formed, but that the limited occurrence of such functional 

structures is not sufficient for competitive acquisition. In later stages, with the progressively 

growing arbuscules in the roots, more phosphate can be put into the “trade market”, can 

preferentially go to EV plants, and this then can eventually lead to a severe Pi shortage in 

irCCaMK plants.  
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Considering the importance of phosphate transporters (PT) in Pi uptake, PTs were 

particularly focused. In manuscript II, we demonstrated the potential function of NaPT3/4/5 in 

transporting Pi into plants during AMF association. NaPT1/7 were clustered closely together as 

non-AMF-specific members of the PT family, with obvious phosphate deficit responses in leaves 

even at an early time point (2 wpi). NaPT3/4 were grouped together showing low expression in 

leaves and in non-AMF inoculated root samples, and highly induced transcript levels in AMF-

inoculated root samples, indicating that NaPT3/4 are AMF-specific, in line with the results from 

Nicotiana tabacum (Tan et al., 2012). Similarly, PT4 isologues were broadly investigated as 

AMF-specific markers in different species such as tomato, potato, rice and Medicago [reviewed 

in (Harrison et al., 2010)] as they mediate Pi uptake at the arbuscules.  

Interestingly, we found that transcript levels of NaPT5 exhibited a dual inducibility in 

roots and leaves. On the one hand, NaPT5 transcripts in irCCaMK plants were induced in leaf 

samples from both two and six wpi presenting similar expression profile with NaPT1/ 7.  On the 

other hand, in roots, NaPT5 transcripts behaved in the same way as NaPT3/4, being highly 

induced by AMF colonization as validated mycorrhization indicative genes, resulting in 

clustering classified NaPT5, the homologue of NtPT5 (Tan et al., 2012) into a distinctive clade 

compared to the clade of NaPT1/7 and NaPT3/4. Based on this observation, we hypothesized 

that NaPT5 might played dual roles in Pi-starvation and AMF colonization responses. 

Independent repeat by using field mycorrhizal mixture (FMM) inoculum corroborated the 

consistence of these 5 PTs transcripts profile relative to that only inoculated with commercial R. 

irregularis. 

To determine the role of Pi status in NaPT5 transcript accumulation, a Pi-starvation 

experiment was conducted, the same set of genes were analysed, and we found that transcript 

abundance of NaPHO2 was inhibited by Pi-starvation as expected as negative repressor, NaPT4 

did not change, and NaPT5 was induced not in roots, but in the leaves of Pi-deficient samples, 

which suggested a tissue-specific effect. Given that foliar NaPT5 responds to Pi-starvation, but 

belowground it is highly induced with AMF colonization, the dual responses of NaPT5 were then 

inferred, A detailed study was performed to research the role of PT4 in Lotus japonicas and 
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Medicago truncatula during Pi-starvation responses, and the authors verified the increase of 

GUS stain coupled with PT4 in the root tips when Pi availability was depleted (Kobae et al., 

2016).  In contrast, NaPT4 expression in roots had no detectable changes under Pi-starvation 

conditions, which might be due to species specificity, but is most likely due to whole root 

harvesting resulting in an over dilution of an increase which is most likely confined to the root 

tip. Taking these two observations together, under the instruction of an interactive model, the 

reason for the huge growth differences between EV and irCCaMK when AMF inoculated is 

presented as being mainly due to Pi preferentially being allocated to EV plants by AMF, and the 

up-regulation of NaPT3/4/5 in plants potentially facilitates this more efficient Pi acquisition 

mediated by AMF. An additional function of NaPT5 was proposed to be as a Pi-starvation 

response in systemic tissues, in addition to its function as a conical AMF-indicative marker in 

roots. 

4.7. Additive model aspect 1: predication of AMF-indicative markers genes in leaves 

As we found that the expression of AMF-induced makers NaPT4/PT5 was much higher in EV 

roots than in irCCaMK roots showing an additive effect, a bulk of other markers were tested as 

well which exhibited the same additive pattern. DEGs with such a pattern of expression were 

searched for as potential “reporters” of AMF colonization in the leaves, parallel with that in 

roots.  

Hierarchal clustering was performed to specifically target DEGs with an additive effect, 

and indeed such clusters helped us to obtain some candidates as potential foliar markers. 

However, further investigation by comparing the common responses with two different inocula 

(R. irregularis vs. FMM native inoculum) failed to find a general expression pattern as originally 

expected. This unexpected result reminded us to think of the differences between the two set-ups. 

Apart from the culture substrate (clay vs. sand) and inoculum (FMM vs. single R. irregularis), 

other growth conditions were strictly controlled to maintain the same conditions for every plant 

within the same batch, including light intensity and photoperiod, irrigation plan and nutrient 

supply. The parameters we monitored also indicated comparability between the two set-ups, 

including growth record and the transcripts of AMF marker genes. One hand, we speculated that 
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the genes with additive effects that were picked up were not surrogates of general AMF 

colonization effects and possibly resulted from some unknown environmental factors. On the 

other hand, more likely, the different partner identities from the AMF inoculum accounted for the 

discrepancies of the systemic responses in two set-ups.   

Consistently with our results, research comparing Pi uptake efficiency within various 

AMF species has demonstrated that the same host plant colonized with a few AMF species 

separately can differ in many growth traits per the identity of the AMF symbiotic partner. Not 

only the growth of these plants differed, but also the distinctive response in coping with abiotic 

stress varied with the fungus partner. Drought tolerance was surveyed in tomato (Solanum 

lycopersicum) in response to two AMF species (Funneliformis mosseae and Rhizophagus 

intraradices) (Chitarra et al., 2016). Under sufficient water conditions, obvious growth variation 

in terms of plant height and shoot biomass were observed between two inoculum colonized 

groups, and notably, such differences were erased under water stress. Overall, plants associated 

with AMF performed much better than control plants under water stress, but within AMF-

inoculated plants, performance largely depended on the symbiotic partner. For example, R. 

irregularis-associated plants significantly increased water use efficiency in comparison to F. 

mosseae-inoculated plants. The complicated mechanism was multifaceted and included 

modification in stomatal density, ABA content and ABA responses. Similarly, plants of the same 

species grown in pairs revealed that in the presence of some fungal species, genotypes with a 

lower capacity to interact with a fungus produced less biomass and received less Pi in 

comparison to their better- interacting competitor (Facelli et al., 2010; Willmann et al., 2013; 

Facelli et al., 2014). In nature, plants also broadly interact with different fungal and bacterial 

microbes, who in turn interact with many different plants, to create a belowground network 

linking plants together (Lehmann et al., 2012; Merrild et al., 2013). Partner identity in 

partnerships of plants and fungus has been shown to change competitive interactions among 

plants, altering growth and fitness outcomes (Van Der Heijden & Horton, 2009; Walder et al., 

2012; Wu et al., 2015; Yang et al., 2015). All of these studies together demonstrate that factors 

specific to individual fungal and host plant species determine the outcome of a symbiosis in 

terms of growth and resistance.  
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4.8. Additive model aspect 2: searching AMF-indicative chemicals in leaves 

We next hypothesized that metabolic changes in the leaves resembling the inducibility of root 

AMF-indicative maker genes could also biochemically represent the extent of AMF colonization 

in the roots, and show an additive effect between EV and irCCaMK plants. The aforementioned 

root samples (EV vs. irCCaMK) associated with R. irregularis were analyzed for untargeted 

metabolite profiling to search for candidates. In this process, sample extraction methods and 

profiling approaches technically determined the output of feature acquisition. Computationally 

generated coexpression networks and STEM pipeline application successfully narrowed the 

range from thousands of features to hundreds. As we expected, a number of metabolic candidates 

were screened meeting the requirements of the additive effect: exhibiting higher inducibility in 

EV with AMF colonization than in irCCaMK plants. Still, the numbers of candidate were beyond 

manageable and testable, and most of them were only putatively annotated with structures. 

Extend of metabolic inducibility and actual amount of candidates in roots was then considered to 

further facilitated compound selection, fractionation and structure elucidation. Taken all together, 

five metabolites were identified based on tandem-MS and NMR data as blumenols: 11-

hydroxyblumenol C-9-O-Glc (Figure 2C; Compound 1), 11-carboxyblumenol C-9-O-Glc (Figure 

2C; Compound 2), 11-hydroxyblumenol C-9-O-Glc-Glc (Compound 3), blumenol C-9-O-Glc-

Glc (Compound 4) and blumenol C-9-O-Glc (Compound 5), which all belonged to a class of 

compounds already reported in other plant species to be associated with AMF, but only in root 

tissue, rather than in aerial tissues. We then asked whether these chemical markers could be 

AMF-indicative markers in leaves, which was the same question we had for our transcriptome 

analysis. Before we switched to focus on the shoot, the validation of these 5 chemicals as AMF-

indicative markers in roots was necessary, and indeed, the amount of these chemicals positively 

correlated with the transcript abundance of marker genes in the roots, as well as with the degree 

of root colonization, particularly reflecting the percentage of arbuscules per root length. 

Hereafter, we started to test the hypothesis that a subset of the AMF-induced root metabolites 

could accumulate in shoots as a result of transport or systemic signaling. Fortunately, 2 of 5 

verified compounds in roots (11-hydroxyblumenol C-9-O-Glc, 11-carboxyblumenol C-9-O-Glc) 

can be traced in leaf tissue with high inducibility triggered by AMF colonization (R. irregularis) 
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although the absolute amount was not comparable with that in local root tissue. This same 

pattern was also detected in leaves of FMM-inoculated plants as well, which increased the 

reliability of these 2 compounds as foliar AMF-indicative markers. So far, we purified only 5 

features in the present study based on their amount and inducibility, and they were proved to be 

robust as AMF-indicative markers, but details on their physiological functions and ecological 

consequences are still largely unknown. 

Though the discovery of Myc-LCO and CO as elicitors derived from AMF is a 

breakthrough in this research topic, very few studies focus on how metabolites from host plants 

affect symbiosis establishment. Strigolactones are one of the main plant exudates that have been 

revealed to stimulate AMF spore germination and hyphal branching, though the confounding 

results of root colonization phenotyping from studies in different species suggest that more 

investigations need to be done on this topic (Akiyama et al., 2005; Akiyama & Hayashi, 2006). 

Recently, four independent groups reported that plant lipids play critical roles in symbiosis. 

Misallocation of 2-monoacylglycerols from plants to fungus in Mtstr1/str2 mutants resulted in 

defective symbiosis establishment success (Bravo, A. et al., 2017; Jiang et al., 2017; Keymer et 

al., 2017; Luginbuehl et al., 2017). By silencing the DXS gene in Medicago to block blumenol 

biosynthesis, it was found that colonization significantly decreased, which indicated that 

blumenols have a function in AMF symbiosis. However, the side-effect of silencing DXS to 

study the function of blumenols was that it concomitantly impaired other critical metabolite 

biosynthesis including that of strigolactones and of ABA derived from the DXS-mediated 

carotenoid biosynthesis pathway, both of which play important roles for the AMF symbiotic 

process (Floss et al., 2008a). Therefore, more focused research on the role of blumenols in AMF 

symbiosis is needed. As mentioned before, only 5 metabolites from our additive analysis were 

structurally elucidated, and studying the rest of the candidates belonging to this additive model 

may enhance the understanding of how plant-derived metabolites mediate this mutualistic 

partnership establishment.  

Improvements in analytical instrumentation have enabled the study of minimal amounts 

of compounds with higher accuracy and sensitivity, and different types of instrumentation have 
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allowed for different workflows, each with specific advantages and disadvantages. While 

untargeted metabolomics allow for a less biased view of metabolic responses, they are more 

affected by co-occurring compounds and the post-run analysis is usually cumbersome. Targeted 

methods, in contrast, are often more sensitive and specific, but limit the number of metabolites 

analyzed. We imposed on the power of these two approaches by applying a comprehensive 

combination of targeted and untargeted LC-MS methodology coupled with genetically 

transformed plants: including irCCaMK in set-ups. Through a sophisticated biostatistical 

analysis, an expected additive pattern was screened. Metabolites and metabolic responses are 

often specific to particular tissues of a plant (Li et al., 2016; Lee et al., 2017) , but it is also 

known that local responses can spread to systemic tissues, just as foliar herbivore-induced 

responses can cause a large increase of defensive metabolites in roots (Gulati et al., 2013; Gulati 

et al., 2014). Additionally, specific metabolite accumulation has been shown to not be confined 

to their locations of biosynthesis and to be readily transported to other places, such as 

phytohormones (Baldwin, 1989). Therefore, we hypothesized that in the metabolic layer of AMF 

responses, some local responses in the roots might be statistically associated with similar 

responses in the systemic aerial tissues, due either to signaling or transport. This concept allowed 

us to identify specific AMF-indicative blumenols in the shoot despite the occurrence of other 

highly abundant and constitutively produced compounds and non-AMF-indicative blumenols. 

The confirmation of compound identities in leaf samples with high-resolution MS techniques 

proved to be challenging and required additional sample purification steps. Likely, such matrix 

effects compromised the detection of these AMF-indicative, systemic blumenol responses in 

previous investigations. The discovery of these AMF-indicative blumenol compounds in diverse 

plant species with different AMF species colonization further indicates that these responses are 

widespread.  

Despite the AMF-induced accumulation of blumenols in the shoot, putative candidate 

genes of the apocarotenoid biosynthesis pathway were merely induced in the roots after AMF 

inoculation via transcriptome profiling. To determine the likelihood that the root mediates the 

production of these blumenol compounds, we genetically manipulated the carotenoid pathway in 

a tissue-specific manner. It is challenging to manipulate blumenol production without affecting 
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the AMF colonization of the plant, since other carotenoid-derived compounds, such as 

strigolactones, are known to play an important role in this process (Akiyama et al., 2005) and are 

affected by this manipulation. To circumvent these problems, we used the LhGR/pOp6 system 

for chemically-inducible RNAi-mediated gene silencing of PDS (Schäfer et al., 2013) to impair 

carotenoid biosynthesis only in a dexamethasone-induced leaf. Interestingly, only the 

constitutively produced Compound 6 was reduced in the treated leaves, while the AMF-

indicative Compounds 1 and 2 were not affected by our treatment. This indicated that instead of 

being locally produced, Compound 1 and 2 are translocated from the roots, an inference 

consistent with the occurrence of AMF-indicative blumenols in stem sap and the capacity of 

seedlings to transport blumenols from the root to the shoot from hydroponic solution. It seems 

likely that the AMF-indicative blumenols are transported in the xylem with the transpiration 

stream. The blumenol glucosides (Compounds 1, 2 and 6) are hydrophilic and have a low-

molecular weight (402, 388 and 386 Da), but are still compounds that are unlikely to freely 

diffuse through membranes. Instead, active transport is likely required, for example by ABC-type 

transporters, and it will remain an interesting research question to identify the involved 

mechanisms. 

4.9. Functional implication of blumenol accumulation and transport 

Blumenols were shown to accumulate in large amounts in the roots after AMF inoculation 

(Strack & Fester, 2006) and our data indicate that they are subsequently distributed throughout 

the plant. While the conservation of this response in various plants after inoculation with 

different AMF species implicates an important functional role in the AMF-plant interaction, this 

function remains to be further explored. Previous studies mainly focus on the function of AMF-

induced blumenols in roots as plant-derived signals mediating the AMF colonization process. 

Genetic manipulation of DXS and CCD1 indicate a role in arbuscule maintenance (Floss et al., 

2008a; Floss et al., 2008b). However, DXS is located upstream in the carotenoid biosynthesis 

pathway and its manipulation might have caused pleiotrophic effects, while CCD1 silencing only 

results in a partial reduction in blumenol levels. Other studies showed that direct application of 

blumenols suppresses root colonization and arbuscule formation at early stages of mycorrhiza 
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development (Fester et al., 1999) and inhibits the growth of soil born plant-pathogens (Park et 

al., 2004). Unfortunately, these soil-born activities do not shed light on the systemic function of 

AMF-induced blumenols in shoot tissues observed here. But indirect evidence from functional 

studies in the shoot inspires hypotheses regarding the ecological relevance of shoot AMF-

induced blumenols. Activity studies on vomifoliol, the aglycone of the non-AMF-indicative 

Compound 6, showed that this compound induces stomatal closure similar to the structurally 

related abscisic acid (Stuart & Coke, 1975). Additionally, blumenols are known to suppress seed 

germination and plant growth (Park et al., 2004; Kato-Noguchi et al., 2012). Therefore, AMF-

induced blumenols could serve as systemic signals that mediate the large-scale adjustments in 

general physiology that are thought to accompany AMF interactions. For example, AMF-induced 

blumenols could be involved in the regulation of differential susceptibility of AMF-inoculated 

plants to stresses, such as drought or pathogen infection. 

4.10. Using AMF-indicative blumenols as a powerful tool for research and plant breeding 

As previously mentioned, there are many drawbacks to conventional phenotyping approaches of 

AMF colonization, including destructive sampling and time-consuming analyses. Therefore, we 

propose that the analysis of AMF-indicative blumenols in the shoot provides a convenient, easy-

to-conduct, and minimally destructive tool to harbinger plant-AMF interactions in a HTP manner 

that allows for large-scale studies (e.g. forward genetics studies) even under field conditions and 

empowers plant breeding programs to produce mycorrhiza-responsive and P-efficient high-

yielding lines (van de Wiel et al., 2016). Currently, phosphate fertilizer is derived from 

phosphate rock, a non-renewable resource, which is predicted to be soon depleted (Vaccari & 

Strigul, 2011). By enabling breeding programs to select crop varieties that have negotiated AMF 

symbioses that deliver high yields with minimal P inputs, this discovery could help steer the 

“green revolution” away from intense agricultural inputs and the collateral environmental 

damage they cause.  
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5. Summary 
As one of well-established plant model systems, Nicotiana attenuata has been intensively 

researched in plant resistance/tolerance, plant physiology and interactions with other 

environmental components in the last two decades. Although root systems, hidden belowground, 

are much harder to study than other organs, considering their importance in dynamic regulation 

of plant physiology, morphology, biochemistry, flowering and synthesis of metabolites, and their 

rich environmental interactions, the exploration of root responses to abiotic and biotic factors in 

N. attenuata will help to better understand mechanisms of how plants cope with multifaceted 

environmental factors.  

Smoke cues are long-live chemical signals in native habitats which play important roles 

in many aspects for N.attenuata plants, for example by promoting seed germination. Roots are 

likely exposed to smoke cues in the soil, but how roots respond to such chemical cues was poorly 

understand. We observed clear root developmental defects in primary root and root hair 

elongation with liquid smoke incubation. Bioassay-guided fractionation allowed us to obtain the 

active compound (catechol) responsible for these root defects. Amongst many root growth 

regulators, comparative transcriptomics narrowed them down to auxin and reactive oxygen 

species (ROS) signaling pathwaysAuxin was excluded as the main regulator to mediate smoke-

induced root morphilogical alteration. Extenal catechol application caused a spatial disruption of 

H2O2 accumulation, although no bulk quantitative differences. Such misslocation of H2O2 is 

likely responsible for root defects caused by catechol, which can be partially recovered by H2O2 

supplementation that suggested catechol is the main regulator in smoke leads to the smoke-

mediated root defects. Further investigation demonstared the exsistence of catechol in burned 

areas in the native habitat of Utah, indicating possible ecological functions of smoke cues tuning 

root growth in nature.   

 As one the 80% of higher plants associated with arbuscular mycorrhizal (AMF) for a 

mutualistic relationship, N.attenuata has been observed to harbor the characteristic symbiotic 

fungus structure in roots along with sequence identity confirmation; R. irregularis and F.mosesa 

are domestic fungus species colonizing N.attenuata roots in a native habitat.  We were aiming to 
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seek representative systemic responses in leaves by transcripts or metabolites after AMF 

colonization. Comparative transcriptomics and metabolomics were performed to compare 

changes in EV and irCCaMK plants after AMF colonization, and a class of blumenols were 

targeted for their specificity and high inducibility. By optimizing quantification methods for an 

improvement of sensitivity, 11-hydroxyblumenol C-9-O-Glc and 11-carboxyblumenol C-9-O-Gl 

were traced in aerial tissues as foliar markers to mirror root colonization ratio belowground. By 

application of “real-time” genetic modification using a chemically inducible promoter, we 

locally blocked biosynthesis of these two compounds in leaves, but their levels in modified 

leaves were not reduced. Thus, we inferred a root-to-shoot translocation mechanism. Using these 

more easily applied foliar markers of AMF association, a large screening was performed for a 

QTL analysis, and we successfully targeted some reported genes regulating symbioses such as 

NOPE1. We further confirmed that such foliar markers, found in many di- and 

monocotyledonous crop and model plants (Solanum lycopersicum, Solanum tuberosum, 

Hordeum vulgare, Triticum aestivum, Medicago truncatula and Brachypodium distachyon), are 

not restricted to particular mycorrhizal species. 
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6. Zusammenfassung 
        Nicotiana attenuata ist ein gut etabliertes Pflanzenmodellsystem und wurde innerhalb der 

letzten zwanzig Jahre intensiv  mit Blick auf Pflanzenresistenz/Toleranz, Pflanzenphysiologie 

und Interaktionen mit weiteren Umweltfaktoren untersucht. Obwohl das Wurzelsystem aufgrund 

seiner unterirdischen Lage schwerer zu untersuchen ist als andere Pflanzenorgane, bietet es die 

Möglichkeit abiotische und biotische Wachstumsfaktoren von N. attenuata zu erforschen und 

kann somit zu einem besseren Verständnis führen, wie Pflanzen ihr Überleben in einer 

facettenreichen Umwelt meistern. 

      Da Rauch ein chemisches Signal im natürlichen Habitat der Pflanze ist, dass lange 

überdauert, ist es für viele Aspekte der Pflanze wie zum Beispiel die Samenkeimung von 

entscheidender Bedeutung. Die Wurzeln der Pflanze sind wahrscheinlich vom ersten Moment an 

Rauchsignalen ausgesetzt, jedoch ist bisher wenig darüber bekannt, wie Wurzeln solche 

chemischen Signale adaptieren. In unseren Experimenten beobachteten wir Defekte bei der 

Entwicklung von primären Wurzeln und Wurzelhaarstreckung nach Inkubation mit flüssiger 

Rauchlösung.  Die Bioassay-getriebene Isolierung führte zu dem Ergebnis, dass die aktive 

Komponente (Catechol) für die beobachteten Defekte verantwortlich war. Mit Hilfe 

vergleichender Transkriptomik konnten die möglichen Wurzelwachstumsfaktoren auf Auxin und 

reaktive Sauerstoffspezies (ROS) eingegrenzt werden. Durch den Vergleich von physiologischen 

und biochemischen Reaktionen der Wurzel auf Auxin, konnte Auxin als Hauptregulator bei 

rauch-induzierten Änderungen der Wurzelmorphologie ausgeschlossen werden. Die externe 

Applikation von Catechol bekräftigte eine räumliche aber keine quantitative Veränderung von 

H2O2. Diese Lageveränderungen von H2O2 bewirkten Wurzeldefekte durch Catechol und können 

teilweise durch Supplementierung von H2O2 behoben werden, was darauf hinweist, dass 

Catechol als der Hauptregulator in Rauch diese rauch-induzierten Wurzeldefekte bewirkt. 

Weitere Untersuchungen zeigten die Existenz von Catechol in Brandflächen im natürlichen 

Habitat in Utah, was eine bestimmte ökologische Funktion bietet, inwiefern Rauchsignale das 

Wurzelwachstum von Pflanzen in der Natur regulieren. 

             N. attenuata gehört zu den 80% der höheren Pflanzen, die eine mutualistische Beziehung 

mit arbuskulären Mykorrhizapilzen (AMF) eingehen. Mittels Sequenzierung konnte die 
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charakteristische symbiotische Pilzstruktur in den Wurzeln aufgedeckt werden: R.irregularis und 

F.mosesa sind heimische Pilzarten und kolonisieren die Wurzeln von N. attenuata als abiotische 

Interaktionspartner. Unser Ziel war es nach charakteristischen systemischen Antworten im Blatt 

auf der metabolischen Ebene zu suchen, die nach AMF Kolonisierung auftreten und somit nicht 

nur erleichtern würden, bestimmen zu können, welche Individuen von AMF kolonisiert sind, 

sondern auch unser Verständnis von funktionellen Konsequenzen in systemischen Geweben 

verbessern könnten. Der Ansatz der vergleichende Metabolomik wurde genutzt, um metabolische 

Veränderungen in EV und irCCaMK  Pflanzen nach AMF Kolonisierung zu messen, wodurch 

eine Klasse von Blumenolen gefunden wurde, die Spezifität und hohe Induzierbarkeit zeigte. 

Durch Optimierung der Quantifizierungsmethode, wodurch eine erhöhte Sensitivität erreicht 

werden konnte, war es möglich 11-hydroxyblumenol C-9-O-Glc und 11-carboxyblumenol C-9-

O-Gl zu identifizieren, die die Kolonisierungsrate in Wurzeln widerspiegeln und somit als 

Blattmarker genutzt werden können. Durch Nutzung genetischer “real-time“ Toolbox, wurden 

irPDS Pflanzen hergestellt, die in der Biosynthese dieser zwei Stoffe in Blättern blockiert sind, 

was jedoch zu keiner Reduktion der Menge führte, wodurch sich ein Mechanismus der 

Translokation von der Wurzel in den Spross vermuten lässt. Für eine breitere Anwendung dieser 

„Vorboten“ in Blättern für AMF Kolonisierung wurde ein großes Screening für eine QTL 

Analyse durchgeführt. Dabei wurden einige Gene ins Auge genommen wie zum Beispiel 

NOPE1, von denen bereits berichtet wurde, dass sie in die Regulierung von Symbiosen 

involviert sind und somit weitere Anhaltspunkte für die Forward Genetics Forschung bieten. 

Weiterhin konnten wir bestätigen, dass solche Blattmarker, wie sie in vielen ein- und 

zweikeimblättrigen Kultur- und Modellpflanzen (Solanum lycopersicum, Solanum tuberosum, 

Hordeum vulgare, Triticum aestivum, Medicago truncatula and Brachypodium distachyon) zu 

finden sind, nicht auf eine bestimmte Mykorrhiza-Art beschränkt sind.  
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