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Summary

Vegetation, one of the major C sinks with respect to the atmosphere, has an indispensable role
in the global carbon cycle; it assimilates atmospheric CO32 via photosynthesis and distributes the
assimilated C among plant parts with different cycling rates. These processes can be generalized
into one main concept: carbon allocation (CA). Since vegetation has different CA strategies to
survive changing climate and disturbance regimes, the efforts towards a better understanding of
CA in vegetation have increased, particularly through the development of Dynamic Vegetation
Models (DVMs). However, there is no consensus in the model representation of CA, ie.,
there are discrepancies among predicted trajectories, as well as between model predictions
and empirical observations. This lack of consensus goes in hand with the quest to find a
balance between precise predictions and a good level of abstraction; detailed models require
high computer power, whereas simpler models may fail to capture complex dynamics such as
nonlinearities. Additionally, not all processes that are relevant for ecosystem dynamics take
place at the same space/time resolution, and they are not understood with the same level
of detail. Thus, upscaling and simplification are another source of uncertainty. These issues
have motivated several model intercomparisons and conceptual reviews, yet none of them have
focused on their mathematical formulation.

In this PhD thesis, three fundamental aspects of the CA component in ecosystem models
are assessed. First, common mathematical representations of CA are evaluated and synthesized
into a new framework that benefits from concepts of dynamical systems theory; second, this
framework is used to select pertinent diagnostics of model performance, such as the distributions
of carbon ages and transit times, based on model properties (e.g. autonomy and linearity); and
third, the long standing puzzle of source and sink limitation on CA is approached from the
dynamical systems perspective of the proposed framework, using a simple nonlinear model. The
implications that these nonlinearities have for the model behaviour are also discussed.

o Towards better representations of carbon allocation in vegetation: A conceptual framework
and mathematical tool

Given that current ecosystem models are written in different programming languages, and
their descriptions are often incomplete, the comparison between components of carbon allocation
in vegetation is not a simple task. This means that the structural problems that may exist
remain hidden despite all previous model intercomparison studies that have been performed so
far. Here, a new conceptual framework and mathematical tool is proposed in order to study
carbon allocation in vegetation. This tool includes a model database and a Python 3 package
that is now publicly available. Within this framework models can be classified according to
their linearity and autonomy, with important consequences for the predicted biogeochemical

dynamics, model stability, and the applicability of certain performance diagnostics.



Chapter 0. Summary

» Ages and transit times as important diagnostics of model performance for predicting carbon

dynamics in terrestrial vegetation models

The alternative representations of carbon allocation in ecosystem models has lead to
differences in their performance, and this has prompted the development of diagnostic methods,
some of which include calculations that have as a requisite the steady state of the system.
However, not all models can fulfill this requirement because some models do not converge
to a single fixed point, particularly those that are driven by variables that depend on time
(i.e. non-autonomous models). The framework proposed in this thesis can help in that matter,
since it offers a model classification according to their autonomy. Therefore, in this thesis,
three autonomous models with a different number of storage compartments are compared using
various performance diagnostics. It is shown that the diagnostics with the highest sensitivity to
model structure is the distribution of C ages and transit times. The use of distributions instead
of mean values is not only valuable as a performance diagnostic, but it also has biological
relevance, which is discussed in the context of the mixing of old and newly fixed carbon.

« Sink and source limits on carbon allocation in vegetation: A dynamical system perspective

Another long standing puzzle approached with this new framework was the interplay between
source and sink limits of carbon allocation in vegetation, and the central role that non-structural
carbon (NSC) plays in this subject. A simple analytical model is used to predict the response
of vegetation to different limitation scenarios. The implications that this limitation has for the
stability of the system is also discussed; it is shown that strong sink limitations can lead to
oscillations in the neighborhood of fixed points, as well as changes in the ratios of carbon stocks
and predicted C mean ages. The latter changes were enhanced by the nonlinearities of the
model.

In conclusion, the field of theoretical ecosystem ecology could benefit immensely from a
common modeling language. This could ease the comparison of models and the identification of
potential problem sources. Furthermore, the matrix representation and the overall framework
presented here could be of great use as a building block towards this goal, since with it complex
models can be represented in a compact form where key structural characteristics are discernible.
This has indeed proven to be invaluable in the prediction of model properties and the selection of
modeling approaches and diagnostics suitable for particular research questions. The knowledge
gained with the comparison of models in terms of their mathematical representation can also
help in the development of improved models. Moreover, it was also found that the nonlinear
interactions from some models have important repercussions in the system stability, among
other properties. Thus, given that models applied to large space/time scales are often linear,
whereas the nonlinear models are mostly used in shorter scales, it would be interesting to
find different types of behaviors that can be derived from the nonlinearities. These types of
behaviour include oscillations and bifurcations, and could ultimately reflect scaling effects in
the predictions of the sustainability of vegetation as a terrestrial carbon sink under changing

climate regimes.
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Zusammenfassung

Die Vegetation, eine der wichtigsten Kohlenstoffsenken beziiglich der Atmosphére, spielt eine unersetzliche
Rolle im globalen Kohlenstoffkreislanf: Sie assimiliert COs durch Photosynthese und verteilt den
anfgenommenen Kohlenstoff auf verschiedene Panzenteile mit verschiedenen Umsetzungsraten. Diese
Prozesse lassen sich zum Konzept der Kohlenstoffallozierung (KA ) verallgemeinern. Da sich die Strategien
der Planzen mit Klimawandel und Stérungsszenarien umzugehen unterscheiden, bemiiht man sich
sunchmend um ein besseres Verstindnis der KA, insbesondere durch die Entwicklung dynamischer
Vegetationsmodelle (DVM). Allerdings gibt es iiber die Darstellung der KA in den Modellen keinen
Konsens, was sich unter anderem an den Differenzen zwischen den Lésungen verschiedener Modelle zeigt,
die =sich sowohl voneinander als auch von den beobachteten Daten unterscheiden. Dieser fehlende Konsens
ist eng mit der Aufgabe verbunden cine Balance zwischen Vorhersagegenauigkeit und Abstraktionsgrad
zu finden: Detaillierte Modelle erfordern mehr Rochenleistung, wihrend einfachere Modelle komplexe
Dynamik, wie Nichtlinearititen, nur unzureichend beschreiben. Auflerdem unterscheiden sich die fiir
die Okosystemdynamik relevanten Prozesse hinsichtlich ihrer zeitlichen und rdumlichen Auflésung und
auch darin wie detailliert sie bereits verstanden sind. Demzufolge tragen anch Mafistabsvergréforung
und konzeptionelle Vereinfachungen zur Unsicherheit in der Modellierung bei. Obwohl diese Probleme
bereits einige Studien zum Vergleich verschiedener Modelle, sowohl beziiglich der Ergebnisse als auch
hinsichtlich ihrer konzeptionellen Grundlagen, motiviert haben, fehlt es bisher an Untersuchungen die
sich auf die Unterschiede in ihrer mathematischen Formulierung konzentrieren.

In dieser Dissertation werden drei findamentale Aspekte der KA Komponenten verschiedener
Okosystemmodelle untersucht. Erstens werden verschiedene, gebriauchliche mathematische Darstellungen
der KA untersucht und zu einem neuen System susammengefasst, das Konzepte der Theorie dynamischer
Systeme nutzt.

Zweitons wird dieses neue System verwendet um fiir die Beurteilung der Modellgualitat relevante
diagnostische Variablen auszuwihlen, wie z.B. die Verteilung des Kohlenstoffalters oder der Transitzeiten
in Abhingigkeit von Modelleigenschaften wie Linearitit und Autonomie.

Drittens wird das seit Langem bestehende Ratsel der Quell und Senken-Limitierung der KA aus
der, dem neuen System inhérenten, Perspektive der Theorie dynamischer Systeme behandelt, wobei ein
cinfaches nichtlineares Modell zum Einsatz kommt. Die Auswirkungen dieser Nichtlinearititeon auf das
Modellverhalten werden ebenfalls diskutiert.

o Auf dem Weg zu besseren Reprdsentationen der Kohlenstoffallozierung in der Vegetation: FEin
konzeptionelles System und mathematisches Werkzeug.

Dadurch, dass gegenwirtige Okosystemmodelle in verschiedenen Programmiersprachen geschrieben
sind und ihre Beschreibung zu dem hiinfig nur unvollstindig vorliegt, ist es schwierig verschiedene Modelle
hinsichtlich ihrer Komponenten fiir die Kohlenstoffallozierung der Vegetation zu vergleichen. Konkret heifit
das, dass potentiell existicrende strukturelle Probleme trotz vorangegangener Modellvergleichsstudien
unerkannt bleiben. Das hier vorgestellte Werkzeug enthilt eine Modelldatenbank und ein frei verfiighares
Python 3 Paket. Innerhalb des konzeptionellen Systems kinnen Modelle hinsichtlich Linearitit und
Auntonomie klassifiziert werden. Beide Faktoren haben grofie Auswirkungen anf die vorhergesagte
biochemische Dynamik, Stabilitit der Modelle und die Anwendbarkeit verschiedener diagnostischer
Variablen zur Evaluierung ihrer Leistungsfihigheit.
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o Alter und Transitzeiten als wichtige Diagnosevariablen fiir die Vorhersagequalitit der Kohlenstoff-
dynamik in terrestrischen Vegetationsmodellen.

Es ist klar, dass Okosystemmodelle sich hinsichtlich ihrer Leistungsfihieit unterscheiden, und man
hat deshalb versucht ihre Vorhersagequalitit zu ermitteln. Einige der Diagnoseverfahren benutzen
Vergleichsrechnungen die voraussetzen, dass sich das System in einem Gleichgewichtszustand befindet.
Bevor ein solches Diagnoseverfahren gewihlt wird, ist os deshalb wichtig zu wissen, ob das Modell
iiberhaupt jemals zu einem Fixpunkt konvergiert, was z.B. fiir nichtautonome Systeme keineswegs zu
erwarten ist. Hier kann das konzeptionelle System helfen.

In dieser Dissertation werden drei Modelle unterschiedlicher Anzahl von Speicherreservoiren hin-
sichtlich verschiedener CQualititskriterien verglichen. Es wird gezeigt, dass das Kriterium mit der gréfiten
Sensitivitit gegeniiber der Modellstruktur die Verteilung der Kohlenstoffalter und Transitzeiten ist.
Die Verwendung der kompletten Verteilungsdichten anstatt der Mittelwerte ist nicht nur niitelich als
Qualititskriterinm, sondern hat anch biologische Relevanz, die im Kontext der Mischung von neuem und
altemn fixierten Kohlenstoff diskutiert wird.

s Der Einfluss von Beschrinkungen von Kohlenstoff-Quellen und Senken aus Sicht der Theorie
dynamischer Systeme

Ein weiteres seit Langem bestchendes Ritsel, das mit dem neuen konzeptionellen System un-
tersucht wird, besteht im Wechselspiel zwischen den Beschriankungen der Kohlenstoff-Quellen und
Senken bei der Kohlenstoffallozierung der Vegetation und der zentralen Rolle, die die nichtstrukturi-
erten Kohlenwasserstoffe (NSKW) dabei spiclen. Um die Reaktion der Vegetation auf verschiedene
Beschrankungsszenarien zu untersuchen wird ein einfaches analytisches Modell verwendet. Die Implika-
tionen, die die Beschrinkungen fiir die Stabilitit des Modells haben, werden ebenfalls diskutiert. Es wird
gozeigt, dass starke Beschrinkungen der Kohlenstoffquellen sowohl zu Schwingungen in der Umgebung
von Fixpunkten als auch zu Anderungen im Verhaltnis der Inhalte der einzelnen Kohlenstoffreservoire
und deren mittleren Altern fithren kénnen. Diese Anderungen verstirkten sich durch Nichtlinearititen
im Modell.

Schlussfolgernd kann man sagen, dass die theoretische Okosystemékologie von einer gemeinsamen
Modellierungssprache extrem profitieren kénnte. Sie kinnte den Vergleich verschiedener Modelle und die
Identifikation potentieller Probleme erleichtern.

Dariiber hinaus kénnten die Matrixdarstellung und das konzeptionelle System, die hier vorgestellt
werden, ein sehr niitzlicher Baustein zum Erreichen dieses Zicles sein, da komplexe Modelle in kompakter
Form dargestellt werden kénnen und damit entscheidende strukturelle Charakteristika erkennbar bleiben.

Tatsichlich haben sich diese als unschatzbar wertvoll erwiesen,sowohl in der Vorhersage von Mod-
elleigenschafton als auch der Auswahl von Modellierungsansitzen und diagnostischer Variablen anhand
einer bestimmten Forschungsfrage.

Die im Vergleich der mathematischen Darstellung verschiedener Modelle nen gewonnenen Erkenntnisse
kénnen auch zur Entwicklung verbesserter Modelle genutzt werden.

Zudem wurde deutlich, dass sich die nichtlinearen Interaktionen mancher Modelle unter anderem anf
deren Stabilitit auswirken.

Angesichts der Tatsache, dass Modelle denen grobe rdumliche und zeitliche Mafistibe zugrunde
liegen oft linear sind, wihrend nichtlineare Modelle hauptsichlich kleinskalig sind, wire es interessant
verschiedene Typen im Verhalten der Modelle in Abhingigkeit der Nichtlinearititen zu finden.

Diese Verhaltenstypen schlieflen Schwingungen und Bifurkationen ein und kénnten Ausdruck von
Skalierungseffekten in der Vorhersage der Zukunftsfihighkeit der Vegetation als globaler Kohlenstoffsenke
unter verinderlichen klimatischen Bedingungen sein.
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1

State of the art and research questions

Vegetation in the context of the global carbon cycle

In the Anthropocene, the currently proposed geological epoch, the effects of humans on the
environment have provoked the rise of temperature and other noticeable changes in climate
(Crutzen and Stoermer, 2000). This is the reason why some ecosystems have undergone very
drastic and abrupt transformations, mainly when the strength of the external perturbations
surpassed their resilience. Resilience is a measure of the ability of a system to persist by absorbing
changes and bouncing back into its original state after a perturbation (Holling, 1973). Hence,
the maintenance and enhancement of the ecosystem’s resilience is critical for the conservation of
the ecosystems as we know them (Scheffer et al, 2001). In the interest of preserving the current
state of the Earth ecosystems, it was proposed to manage our planet within the framework of a
safe operating space that defines the boundaries among which we should keep acceptable levels
of global stressors in order to reduce their risk to collapse (Rockstrém et al, 2009; Scheffer
et al., 2015). Interestingly, the ability of a system to persist despite critical global perturbations
can also increase if some conditions (e.g. ecosystem properties) are managed locally (Scheffer
et al., 2015).

In order to design effective local strategies that aim at the conservation of ecosystems
threatened by climate change, it is necessary to understand the local processes that are affected.
One of these processes is the C0O32 exchange between the atmosphere and the biosphere. Carbon
dioxide is a greenhouse gas increasingly emitted to the atmosphere by fossil fuel combustion,
but a significant portion of it is removed from the atmosphere by terrestrial ecosystems (Schimel
et al, 2001; Canadell et al., 2007). However, not all ecosystems absorb and store the same
amount of carbon at all times; in fact the C-storage capacity, which is directly proportional to
the amount of time that carbon remains in a reservoir -the ecosystem residence time (7)- (Luo
et al, 2003), is not a concept of static pool sizes but a dynamic measure of the photosynthetic
carbon influx and the time that C atoms take to transit the ecosystem from their entrance
to their exit. This process can be sensible to external and internal cues, which means that
plants acclimate to new circumstances by adjusting their carbon intake (Luo et al., 2003). The
plants sensitivity and acclimation to changes in the environment can indicate whether the
photosynthetic C influx will be sustainable or not; the sensitivity is independent of growth
environments and interspecific variation (varies only with [CO2| and temperature), and the

acclimation (i.e., adjustment in photosynthetic capacity) is frequently related to many factors
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such as nitrogen supply (Luo et al, 2003). The sustainability of terrestrial carbon sequestration
has been the subject of several modeling studies (De Kauwe et al., 2014; Luo et al, 2003).

In the same way as the photosynthetic carbon influx can vary, the sequestered carbon is stored
into terrestrial reservoirs of different residence times ( Trumbore, 2006). Therefore, understanding
the mechanisms by which carbon is preferentially partitioned to compartments where it would
remain for longer versus shorter periods is imperative. However, despite all the empirical and
theoretical studies that have pursued a better understanding of the mechanisms behind carbon
partitioning within vegetation, the uncertainties with respect to the representation of carbon
allocation in vegetation persist and have lead to divergent predictions. For example, Keenan
et al. (2013b) found that 13 different models could not accurately predict the experimentally
assessed water use efficiency of the forests they sampled. Furthermore, Zaehle et al. (2014)
found a case in which 11 ecosystem models could predict early responses to elevated atmospheric
C0O2 concentration, but the simulations failed to fit the experimental results in a larger time
scale (10 years).

Evidently, there is a need to achieve a better understanding on the dynamics of carbon
allocation in vegetation, particularly in terms of the mathematical structure needed to represent
this process at different scales; this was the main motivation of this thesis. Here, I developed
a synthesis of a representative sample of carbon allocation models and explore their main
mathematical properties, focusing mainly on the relation between nonlinear interactions and

predicted vegetation functioning.

Carbon allocation in vegetation: from cells to ecosystems

Terrestrial plants have different strategies to survive in environments with changing conditions
such as variations in water or nutrient availability, or increasing temperatures and CO3 concen-
tration. One of these strategies is the adjustment of their carbon allocation scheme to prioritize
limiting organs (Lacointe, 2000; Franklin et al., 2012). According to this carbon allocation
theory, plants maximize their growth rate by optimizing the capture of limiting resources, and
this is done by partitioning carbon to key organs (Franklin et al, 2012). For example, when
competing for scarce nutrients in the soil, vegetation would rather use its carbon resources for
the growth of roots than to become taller.

Here, carbon allocation is referred to as all carbon-cycle-related processes that take place
within vegetation, from the fixation of carbon particles during photosynthesis, until they leave
the system via autotrophic respiration or litterfall. Although these processes take place in
different space/time scales, as summarized in figure 1.1, they are interconnected. Photosynthesis,
for example, is the result of metabolic reactions in the chloroplast (i.e., organelle -cell organ-)
and require COs, water and light.

The rate of gas exchange of CO; entering and water vapor leaving the plants is often called
stomatal conductance. Stomata are pairs of cells -guard cells- in the epidermis of leaves, whose
movement controls the opening and closing of pores in relation to the absolute concentration
gradient of water vapor from the leaf to the atmosphere (Waring and Running, 1998). Water
is generally absorbed by the plant through its roots, from where it is transported to the rest
of the plant by the vascular tissue: xylem. The other type of vascular tissue, the phloem,
transports the products of photosynthesis. The efficiency with which the available light is
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Figure 1.1: Conceptual depiction of carbon allocation in vegetation across space/time scales.

captured by the photosynthetic tissue depends on the photosynthetic pigments located in the
chloroplasts. Deciduous plants, for example, have green leaves at the beginning of the growing
season because they are rich in chlorophyll, which is a pigment that can absorb blue and red
lights. Thus, when chlorophyll is no longer produced and is broken down (in autumn), the
leaves take the colors of the remaining pigments, which are not as efficient absorbing light. This
means that the amount of captured light available for photosynthesis depends on molecules
whose abundance is determined by the phenological state of the plant. Ontogeny also plays an
important role, because older plants have slower metabolism than younger ones (Hartmann
et al., 2018). Nevertheless, not all leaves in a plant are exposed simultaneously to light, some
may be shaded by other leaves of the same plant or competing plants. This means that the
light availability, on a larger scale, also depends on the leaf area index (LAI), i.e., the sum of all
leaf layers in a canopy (Waring and Running, 1998).

Uncertainties in scaling-up

It is then evident that the metabolic activities that occur at short space/time scales, depend on
precursors whose availability is determined by processes taking place at larger scales, such as
competition for light, water and other resources. This has to be taken into account when leaf
level processes are scaled to upper levels such as populations, communities and ecosystems. For
example, in some individual-based models the leaf level processes are scaled to the whole plant
level, and other characteristics are estimated using allometric equations that relate biomass
in plant compartments to height, basal area, canopy area, leaf area index and rooting depth
(Scheiter and Higgins, 2009). The rooting depth, together with the soil water content, determines
the water available for the plant; and this and the light availability are used to scale the leaf
level photosynthetic rate to the canopy level photosynthetic rate (Scheiter and Higgins, 2009).

In process based models, photosynthesis is generally calculated using the set of basic
equations proposed by Farquhar et al (1980). These equations take into account limitations by
enzymes, electron transport, and stomatal conductance. Therefore, at the ecosystem level, the
Gross Primary Productivity (GPP) is calculated as the difference between the photosynthesis
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rate and the leaf maintenance respiration during daytime (Govingjee, 2009). If the autotrophic
respiration is substracted from GPP, one can calculate the Net Primary Productivity (NPP)
(Govingjee, 2009). By association, NPP is limited by resources (e.g. water, nutrients), and
climate and soil conditions, all of which vary in different space/time scales; in a narrow time
scale (hours-weeks) the patterns of NPP are mostly determined by short term controls over
photosynthesis, whereas annual patterns of NPP are governed by soil resources (Chapin et al.,
2002). Space-scale wise, there is a 14-fold range in average NPP between biomes (think of how
different the Tundra and the Rain forest are in terms of ecosystem productivity) (Chapin et al,
2002). This has been the subject of many in depth reviews, for more information on plant—
environment interactions across scales please refer to (Waring and Running, 1998; Reichstein
et al, 2014; Hartmann and Trumbore, 2016; Hartmann et al, 2018).

It is then clear that robust models can be built on the available experimental evidence,
but some observations are not attainable at the same level of detail and, or spatio-temporal
resolution as modelled processes. Therefore, some upscaling has to be done, which leaves
room for multiple interpretations and uncertainties. For instance, it is very common that the
meteorological drivers that are used to run models have a time step faster than that of the
maodel, e.g., some drivers are measured with a time resolution of minutes or hours, while models
are resolved in years. Thus, to adapt the time steps, the values of the fast dynamic variables
(smaller time steps) are averaged over the time step that is implemented in the model (Govingjee,
2009). However, this is not an error free adaptation, particularly when there are nonlinear
dynamics in play, because the average output value of nonlinear functions (e.g. photosynthesis
rate) may not match the output value achieved by using average values of variables (e.g. for
radiation or temperature) in nonlinear equations. For this reason, the calculated value for a
daily time step may be lower or higher versus the average output value of the nonlinear function
(Govingjee, 2009).

Averaging is not only used to solve problems with temporal scales, but also with spatial
heterogeneity. While the ecosystems are highly heterogeneous entities, the observation towers
and measuring instruments used in the field can only cover a limited area. This makes it
difficult to track changes in the dynamics of ecosystems as a whole, but this can be approached
using process-based models. In such models the mentioned measurements are averaged over
larger areas, also known as grid cells. It should be noted that even though these models can be
used to address the spatial heterogeneity and the interaction between ecosystem patches, it is
very important to select relevant processes and to combine measurements taken at different
resolutions to estimate fluxes and parameters (Chapin et al., 2002); all of these steps are of
course susceptible to multiple interpretations and errors. The Box “Spatial scaling through
ecological modeling” in Chapin et al. (chapter 14 2002) has a thorough explanation of how the
spatial heterogeneity and scaling is accounted for in ecosystem models, and a couple of models
is used to give examples.

The upscaling process can also be impaired by the fact that not all the processes that are
relevant to the ecosystem dynamics are well represented in current models (Urbanski et al.,
2007). The underrepresentation of key factors in models is problematic because if processes
are addressed with a different level of detail, there is an unbalanced representation of reality
(Waring and Running, 1998); this biased representation can lead to inconsistent predictions

where a single modeled process may dominate the system (Govingjee, 2009). For example,
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photosynthesis -as opposed to litter decomposition- may seem to dominate the ecosystem
response to changes in environmental drivers, only because it is represented in greater detail in
the models. In order to achieve a balanced representation of reality, it would also be necessary
to improve our understanding of other factors such as the long-term increases in tree biomass
that drive the interannual and decadal changes of ecosystem productivity, or the successional

change in forest composition, and disturbance events.

The quest to find the source of uncertainties

Seemingly, vegetation is a dynamical system and as such its response to changing environmental
cues has been represented using Dynamic Vegetation Models (DVMs). One of the most common
representations of vegetation in DVMs consists on dividing it into three carbon compartments,
i.e. foliage, wood and roots. The C balance of these compartments depends on their input,
i.e. photosynthetically fixed C, and output (e.g. carbon transferred to other compartments,
respiration, litterfall, among others), and the speed at which these fluxes take place depends
on transfer rates. These rates are mostly represented by parameters whose values are often
unknown because they are not measurable (Trumbore, 2006). Some parameters may also vary in
such a wide range among forests that the variation can be even greater than the one associated
to C partitioning (Litton et al., 2007). Thus, despite all of the advances in the field, there is
still uncertainty and consequently disagreement among different model predictions.

The quest to find the source of uncertainties has motivated several model intercomparison
studies. Although some of these studies are multimodel experiment frameworks that focus on
punctual aspects such as the drought-induced vegetation mortality (McDowell et al, 2013)
where model runs are compared, other studies have reviewed the modeling approaches and
derived model classifications from them. One of these classifications was proposed by (Litton
et al., 2007), who claimed that ecosystem models can be classified according to whether their
carbon allocation scheme is static or dynamic. Another classification proposed by Franklin et al
(2012) has more specific categories based on the conceptual design of the models: 1) Fixed
allocation -bottom up approach used for large time scales in steady state forests- 2) Allometric
-used at the population level, e.g. pipe model- 3) Functional balance or optimal partitioning
theory -coordination theory, growth rate maximization- 4) Eco-evolutionarily-based -top down
approach, whose commonly used proxy for fitness is the instantaneous growth rate-, and 3)
Thermodynamic approach -Maximum Entropy Production-.

The above mentioned classifications can inform about the potential predictive uses of the
model (until a certain extent), which could aid the researchers in the selection of appropriate
models to answer their particular research questions. Unfortunately, these classifications are only
based on the “descriptive rather than analytic” assessment of models (Xia et al., 2013). This
means that they ignore the implications that the mathematical representations of ecosystem
processes may have for the predicted dynamics. Some of these implications have been assessed
in analytic reviews of models on soil organic matter dynamics (Manzoni and Porporato, 2009;
Sierra and Miiller, 2015), studies that have given us deep insight into some model properties such
as mass balance, stability, among others, and have discussed the effects that these properties
may have on the predicted dynamics of carbon in soils.
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Importance of assessing model structure

“Since all models are wrong the scientist must be alert to what is importantly wrong” (Box, 1976).
While the parameter non-identifiability and a wrong choice of modeling approach are undeniable
causes of poor model performance, an important cause of error in models involves problems
with model structure. It is indeed known that simple but evocative models are preferred over
overelaborated and overparameterized models (Box, 1976), but there is more to the model
structure than meets the eye.

Some characteristics of model structures can help to identify a priori certain model behaviours,
e.g. the stability of the system modelled. The stability analysis of dynamical systems is a
research field on its own and, as such, it has been the subject of in depth studies (Jost, 2005;
Strogatz, 2014). One of the outcomes of a stability analysis is the notion of whether a system
can potentially converge to one or multiple fixed points, also referred to as steady states. The
state of a system is assessed by the way in which its state variables (model attribute that changes
according to model parameters and external variables) vary. The steady state or equilibrium is
a point in the state-space where the state variables remain constant, i.e., their rate of change is
zero. Further analysis can confirm the stahbility of the fixed points, where stable fixed points
are those to which the system returns after small perturbations, and unstable fixed points are
those from which any trajectory will eventually move away. The stability of a fixed point can
be analyzed through its slope; given that the reciprocal of the slope of a fixed point determines
the time required for the function to vary significantly in the neighborhood of the fixed point, if
this slope is negative, the fixed point is stable (Strogatz, 2014). It is also possible to obtain
the rate of decay to a stable fixed point by linearizing about a fixed point, which is further
explained by Strogatz (2014).

The analysis of the models stability can have a tremendous impact in the perception of its
resilience and the safe operating space of the ecosystems under study (Holling, 1973). Due to
the fact that the ecosystems resilience is a measure of the maximum perturbation that they can
take without causing a shift to an alternative stable state, the larger the size of the basin of
attraction, the stronger the resilience of the system.

Another important aspect of model structure is the way in which the interactions between
the parts of the modelled system are portrayed. For example, interactions such as interference,
cooperation, and competition can be symbolized mathematically with nonlinear terms such as
products and powers (Strogatz, 2014). These nonlinear interactions increase the intricacy of the
model dynamics with interesting consequences for the stability and resilience of the ecosystem,
since they can lead to hysteresis loops, oscillations, and multiple steady states. For more details
on this topic, Strogatz (2014) gave an interesting outlook of nonlinear dynamics and chaos.

In addition to the above mentioned significance of the stability analysis for the understanding
of predicted dynamics, the identification of fixed points is a prerequisite to select adequate
diagnostics, because some of their calculations are applicable to systems in steady state only.
For example, one of the diagnostics used to assess model performance is the carbon residence
time. This diagnostic not only is defined by an ambiguous concept, but there has also been
a lack of understanding of its applicability, since it is only applicable to systems in steady
state, but has also been used for non-autonomous models, which are constantly changing by
the forcing of external drivers, i.e. they do not converge to a steady state (Sierra et al., 2016).

The residence time of carbon in ecosystem compartments (e.g. storage pools in vegetation)
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has been estimated from the dilution rate of labels such as radiocarbon (14C) (Trumbore et al,
2002). This radioactive isotope of carbon has an atomic nucleus with six protons and eight
neutrons, and is produced at a relatively constant rate in the upper atmosphere through the
interaction of cosmic rays with nitrogen. It is oxidized to CO; and enters the terrestrial carbon
cycle via photosynthesis. Radiocarbon also decays at a constant rate (half-life = 5 730 years),
which means that the atmospheric [1‘1(3] has a relatively constant value. Certainly, given the
fact that the cosmic radiation and radioactive decay kept a relatively balanced *C atmospheric
concentration around the 1800s, and that it can be absorbed by the biosphere, Willard F. Libby
developed a dating method (the *C dating method) whose importance and applicability has
transcended barriers across research fields, which is the reason why he was awarded the Nobel
Prize in 1960 (Trumbore et al., 2016).

The C data has been used to a) estimate ages of C in closed systems (which are those
that no longer exchange C with their surroundings, e.g. fossils); b) estimate mean ages and
transit times of C in different reservoirs of the Earth system (open systems such as living
tissues or organisms); and identify relative contributions of sources in a mixture (Trumbore
et al, 2016). For conversions of 14 age to calendar age (for closed systems), it is necessary to
use calibration curves, which account for isotopic ratios and radioactive decay and have been
assembled from thousands of samples whose ages are known (Trumbore et al., 2016). Thus, the
amount of radiocarbon that remains in a reservoir relative to the atmospheric value has been
used to estimate the time (century to millennial timescales) that the carbon has remained in
the reservoir since the moment it stopped receiving carbon (Trumbore et al, 2002). For systems
that still exchange C with their environment (open systems), it is only possible to estimate
mean ages and transit times, and models need to be used to account for other factors, such as
the ones that will be explained in the next paragraphs.

Although the generation and decay of atmospheric 4C was thought to keep a balanced
concentration of radiocarbon, it has been reported to decline and increase as a result of human
activity. Between 1800s and 1945 it declined because the input of C from land-use change and
fossil fuel combustion diluted the atmospheric radiocarbon (Trumbore et al, 2016). Furthermore,
the aboveground testing of thermonuclear weapons in the decades of 1950 and 1960 duplicated
the amount of 14C in the in the Northern Hemisphere, so, by comparing how much of that carbon
has been incorporated to a given reservoir (with respect to the atmospheric ‘bomb’ 14C) it is
possible to model the exchange rate between the atmosphere and the carbon reservoir (decadal
timescale). This calculation is performed with the use of models that account for C exchange
between model compartments, the radioactive decay, and the difference in the absorption of C
isotopes by the vegetation (heavier atoms tend to be absorbed by the vegetation at a slower rate
than the lighter ones, which is a characteristic known as fractionation) (Trumbore et al, 2016).
In this order of ideas, slow cycling reservoirs incorporate less radiocarbon than the fast cycling
ones, which exhibit a dynamic closer to the atmospheric incorporation curve. This method has
been called the bomb spike.

However, the atmospheric 14C0O5 concentration has been diluting with the incorporation of
un-labeled CO3 released from the ocean and terrestrial reservoirs. For this reason, in order to
be able to use the incorporation of radiocarbon as a measure of carbon exchange in shorter
timescales (< 1 year), researchers have deliberately added tracer 4. As an example, this
pulse-chase labelling technique has been used to assess the allocation and residence time of
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photosynthetic products in a boreal forest (Carbone et al, 2007). Other carbon isotopes such
as 3C, which is stable, have also been used as tracers. For example, Blessing et al. (2015) used
a 13C0; pulse-labelling approach to study the allocation dynamics of recently fixed carbon in
response to increased temperatures and drought. For more information on the subject, Epron
et al. (2012) reviewed some of the methods used to apply this technique on trees as means to
study carbon allocation dynamics.

Caveats of assessment of model structure

Owerall, a better understanding of model structure can contribute to develop concrete criteria for
selecting relevant modeling approaches and performance diagnostics. However, the comparison
of the mathematical formulation of multiple dynamic vegetation models is impaired by the fact
that they are encoded in different (often cryptic) programming languages, and the published
model descriptions do not follow a standard such as the ODD (Overview, Design concepts, and
Details) protocol (Grimm et al, 2006, 2010), which means that sometimes the sets of equations
are incomplete or the parameter values are missing. But perhaps the main caveat is that when
equations are presented as lists, independent from each other, the interactions between variables
are not conspicuous. Thus, it is not always clear if there are dependencies between variables
that can lead to structural non-identifiabilities (Raue et al, 2009) or nonlinearities.

The above mentioned caveat is one of the reasons why the general matrix model of the
terrestrial carbon cycle (see equation 1.1 in Fig. 1.2) was a leap forward in the field (Luo
et al., 2003, 2012). Luo ef al. (2003) proposed this framework as means to ease the analytical
assessment of models; it was the result of an important effort in regards to the theoretical analysis
of the carbon dynamics represented in ecosystem models, which focused on the mathematical
representation of biogeochemical processes, and used mathematical tools to generalize the
equations in a compact matrix form (Xia ef al., 2013). Thus, within this framework, the
modelled terrestrial C storage capacity can be decomposed into a few traceable components
that are built upon biogeochemical principles of the terrestrial C cycle.

Notice, however, that in this system of first order differential equations, the carbon processes
are expressed as the sum of the C transferred between compartments (state variables) and
the C fixed in the compartments -terms 1 and 2 of the first row in equation 1.1 (Fig. 1.2),
respectively-. In addition, the partitioning of photosynthetically fixed C is depicted as a vector
of fixed coefficients (B), with no interactions among the state variables. This indicates that
this framework ignores possible nonlinear interactions among vegetation processes, which is a
disadvantage because complex systems such as terrestrial ecosystems are not precisely equal to
the sum of their parts (as it is assumed in linear systems). It is known that since “the carbon,
nitrogen, water and energy cycles interact with each other, none of them can be calculated
as a single, linear, casual relationship. These interactions are organized as feedback loops.”
(Govingjee, 2009). In fact, nonlinearities have been revealed when there is competition for light
in individual-based models that can accurately predict productivity and species composition
(Purves and Pacala, 2008), revealing the intricate interactions vegetation-environment that are
responsible for the potential capacity of vegetation to adapt to variable climatic conditions.
Thus, it is necessary to find a new framework that can accommodate the nonlinear interactions

that shape the ecosystem processes.
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Figure 1.2: Matrix approach to carbon cycle modeling (Luo et af, 2003). Empirical cbservations inspire model
development, and the models can be encoded using ordinary differential equations. These equations can be generalized
inte a matrix representation, which in turn can be used to evaluate how the C sinks vary with environmental
forcing over time. X(t) is a vector of ecosystem carbon pools, £ is a scalar representing effects of temperature
and moisture on the carbon transfer among pools, A and O are carbon transfer coefficients between plant, litter,
and soil pools, B is a vector of partitioning coefficients of the photosynthetically fited carbon to plant pools, U{t)
is the photosynthetically fixed carbon, and X is a vector of initial values of the carbon pools. Adapted from
http: //vwv.cesm.ucar. edu/events,/wg-neatings/2017/presentations /bgcugtlmwg/luo . pdf.
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Research questions

The process of carbon allocation in vegetation has not yet been holistically understood, and the
remaining knowledge gaps have contributed to the persistence of uncertainties in model predic-
tions. This is a great caveat in the prediction of the response of ecosystems to abrupt changes
in the environmental stressors, and the sustainability of the terrestrial carbon sequestration
in the face of climate change. The working hypothesis of this thesis is that one of the main
sources of the uncertainties in model predictions can be found by assessing the representation of
carbon allocation in vegetation, particularly by analyzing key characteristics of model structure.
Thus, the present theoretical study was designed to tackle issues such as the need of a common
programming language to describe the mathematical representation of carbon allocation in
vegetation. A synthesis of mathematical representations is also proposed as a framework that
can be used to support the selection of relevant performance diagnostics, as well as to explore
the implication of certain structures (particularly nonlinearities) in predicted dynamics. In this
thesis [ address the following three main questions:

1. Is there a robust framework in the realm of dynamical systems that can be used to identify
key aspects of carbon allocation linked to model uncertainties?

One of the main objectives of this work was to construct a repository with a representative
sample of models of carbon allocation in vegetation, and propose a mathematical generalization
derived from the common model characteristics such as driving variables and their type of
interactions. More specifically, I asked whether the reviewed models followed the general
linear model structure proposed by Luo et al (2012), or whether another structure that could
accommodate nonlinearities was necessary. This general representation was intended to boost
the prediction of model properties based on associated mathematical structures, and in this
way be used as a standardized tool to identify modeling approaches that could better suit given

questions or data assimilation projects.
2. What diagnostics can be used to assess model performance?

Certain model uncertainties can be evidenced by the fact that some model predictions
are far off from expected behaviours, i.e. not all models perform well. Given that the former
methods to diagnose model performance were ambiguous and not sensible enough to changes
in model structure, the second objective of this work was to explore alternative diagnostics.
For this purpose, three simple models were developed with structures that differed only in the
number of storage compartments. Their parameters were estimated using published empirical
data, and their performance was compared in terms of predictions of C age and transit time
distributions. The applicability of these diagnostics was also discussed with regard to the

linearity and autonomy of the models.
3. How can nonlinear interactions lead to the emergence of different patterns over time?

There are particular dynamics that can only be simulated with nonlinear models. In fact,
some nonlinearities can lead to oscillations and alternative steady states, which have implications
for predicted ecosystem resilience and stability. For this reason, the third objective of this work
was to develop a simple nonlinear model and assess the impact of decreasing C source and sink
strengths on its steady state.
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Thesis overview and related publications

The three major questions that guided this research are answered in the following three chapters.
Each chapter encapsulates a complete story, with an introduction, methods, results, discussion
and conclusions.

Chapter 2, Towards better representations of carbon allocation in vegetation: A conceptual
framework and mathematical tool, consists of an in depth review of a representative sample of
published model descriptions. Some of these models had been previously reviewed (Malhi ef al.,
2011; Franklin et al., 2012), but not with the mathematical rigor that could enable the inference
of common properties and generalizations, as the ones proposed here. These generalizations
lead to the formulation of a new conceptual framework to study carbon allocation in vegetation,
and a mathematical tool that can accommodate nonlinearities. This tool includes a model
database and a Python 3 package that is now publicly available.

Chapter 3, Ages and transit times as important diagnostics of model performance for predict-
ing carbon dynamics in terrestrial vegetation maodels, focuses on the effects of model structures,
mainly the addition of one or two storage compartments, on the predicted distributions of ages
and transit times. Given that these distributions were highly sensitive to model structures
and have important consequences on predicted vegetation functioning, they are proposed as
important diagnostics of model performance.

Finally chapter 4, Sink and source limits on carbon allocation in vegetation: A dynamical
system perspective, makes use of the above mentioned Python package, and the Python library
for symbolic mathematics SymPy, to study the impact of source and sink limitation on carbon
allocation, in the context of dynamical systems.

The model formulated in this chapter is nonlinear, and exhibits oscillations under strong sink
limitation conditions. This chapter also challenges common representations of non-structural
carbon in ecosystem models and highlights its double role as a carbon source and a sink.

Chapter 2 was submitted to the journal Theoretical Ecology, and is currently under review!,
chapter 3 was published in Biogeosciences?, and chapter 4 will soon be submitted for publication®.

! Ceballos-Nafez, V., M. Miller, and C. A. Sierra. Towards better representations of carbon allocation in
vegetation: A conceptual framework and mathematical tool. (in review)

"ECeha.I]Da-Nﬁ'uez, V., A. D. Richardson, and C. A. Sierra. 2018. Ages and transit times as important
diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models. Biogeosciences,
15:1607-1625.

*Ceballos-Nifez, V., J. Huang, H. Hartmann, and C. A. Sierra. Sink and source limits on carbon allocation

in vegetation: A dynamical system perspective. (in prep)
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Towards better representations of carbon allocation in
vegetation: A conceptual framework and

mathematical tool

The representation of carbon allocation (CA) in ecosystem models differs tremendously, resulting
in diverse responses to climate change as evidenced by their divergent trajectories in results
from model inter-comparisons. Several studies have also highlighted discrepancies between
empirical observations and model predictions, attributing these differences to problems of
model structure. We analyzed the mathematical structure of CA in models using concepts
from dynamical systems theory; we reviewed a representative sample of models of CA in
vegetation, and developed a model database within the Python package bge-md. We ask
whether these representations can be generalized as a linear system, or whether a more general
framework is needed to accommodate nonlinearities. We found that some of the vegetation
systems portrayed in the reviewed models have a fixed partitioning of photosynthetic products,
independent of environmental forcing. Vegetation is often represented as a linear system without
storage compartments. Yet, other structures with non-linearities have also been proposed,
with important consequences on the temporal trajectories of ecosystem carbon compartments.
The proposed mathematical framework unifies the representation of alternative CA schemes,
facilitating their classification according to mathematical properties, as well as their potential
temporal behavior. It can represent complex processes in a compact form, which can potentially

facilitate dialog among empiricists, theoreticians, and modelers.

Introduction

Coupled climate-carbon cycle models predict divergent trajectories of future Huxes among
Earth’s major carbon reservoirs, with no consensus on whether terrestrial ecosystems will act

as a net source or sink of carbon with the atmosphere (Friedlingstein et al, 2006, 2014). This
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net fHux is the result of the overall rate at which CO3 is assimilated by the vegetation via
photosynthesis, the partitioning of the photosynthetic assimilates to vegetation parts, from
here on compartments, and the time carbon atoms remain in these compartments before being
released back to the atmosphere (Lacointe, 2000; Schimel et al, 2001; Trumbore, 2006; Canadell
et al, 2007; Franklin et al, 2012; Kérner, 2017). All these processes, which are associated with
the concept of carbon allocation (CA), have been implemented in different ways in ecosystem
models (Sitch et al, 2003; Purves and Pacala, 2008; Schiestl-Aalto et al., 2015), and this may
be one of the reasons behind the lack of consensus between their predictions (Xia et al, 2017).

Although there is increasing attention towards improving the representation of CA in models,
there are still ambiguities in concepts and definitions. Despite previous attempts to clarify
terminology, the concept of carbon allocation is still being used to describe both, patterns
and processes, which leads to an ambiguity that has persisted over a decade after first being
exposed by Litton ef al (2007) (see Fig. 2.1). Furthermore, models have been classified
according to their conceptual design of the CA scheme, as models with constant coefficients, or
dynamic! allocation, among others (Franklin et al., 2012); but, yet another ambiguity arises here
with the term dynamic carbon allocation, because it is unclear whether this implies dynamic

functions for fluxes or for partitioning of photosynthetic input.

[ Carbon ﬂ.]lm:ation]

Patterns

~
I d ~

1
~
| -

Biomass Partitioning

Figure 2.1: Carbon allocation is a general term that overarches patterns (biomass) and processes (flux and partitioning)
according to Litton et al. (2007). As an example, the sentence the carbon allocated to the vegetation compartment
X, may have three different meanings depending on the context: a) the amount of carbon present in X at a certain
time (biomass), b) the portion of photosynthetic input that goes to X (partitioning), and c) the flux of carbon into
and out of X.

-

Some CA schemes have been partly inspired by experimental results or by theoretical
analyses, but it is still uncertain how the different mathematical expressions of the models affect
the overall dynamics of the vegetation system. Several factors have hindered the reduction of
this uncertainty. On the one hand, previous synthesis studies have only focused either on very
general ideas about modeling CA, or on the numerical output of the models per se (Franklin
et al, 2012; De Kauwe et al, 2014; Walker et al, 2014). On the other hand, the effort to

reconcile diverse empirical findings and attain realistic predictions has prompted the use of a

! Dynamic is a term used for time-evolutionary phenomena or the part of mathematical science that is used
for the representation and analysis of such phenomena (Luenberger and Hill, 1979).

14



Introduction

large number of functions and parameters in models (Quaiser ef al., 2011), and this increase in
model complexity has obscured the identification of the main represented processes and the
understanding of overall system behavior. Indeed, cryptic programming styles make it much
more difficult to understand what is going on and what specific functions are implemented in a
particular model. For this reason, new approaches have been proposed to express these models
in tractable mathematical expressions that can be easily related to ecological ideas or principles,
with known mathematical properties (Luo et al., 2003; Xia et al., 2013; Luo et al, 2017).

To the best of our knowledge, a comprehensive analysis of the common mathematical
expressions used to model CA in vegetation has not been performed yet. This was the main
goal of this study: to synthesize different mathematical expressions used to represent CA in
models. For this purpose, we took advantage of the mathematical concept of dynamical system,
which is a general abstraction to describe a rule that determines the future behavior of a set of
variables based on their current state (Luenberger and Hill, 1979). In other words, the patterns
from the present are a result from the patterns in the past. These time linkages among variables
can be represented using difference or differential equations depending on whether the dynamic
behavior occurs in discrete or continuous time, respectively. A difference equation relates the
value y(k), at point k, to values at other points (e.g., y(k+1) = ay(k),k=0,1,2,...). And a
differential equation connects a function y(t) defined on an interval of continuous time and some
of its derivatives. For further details on these concepts please refer to (Luenberger and Hill,
1979, p.27).

The equations used to model CA in vegetation can then be studied within a comprehensive
framework. A wvaluable contribution to this was the general matrix model of the terrestrial
carbon cycle proposed by Luo et al (2003). This matrix decomposes terrestrial carbon storage
into a few traceable components (Xia ef al, 2013). Interestingly, these components were built
upon biogeochemical principles of the terrestrial carbon cycle, as it is observed in the following

linear dynamical system:

dX(t) _
= = EACX(t) + BU(t), o

X(t =0) = X,
where X (t) is a vector whose elements represent the size of individual carbon compartments, A
is a square matrix of transfer coefficients among compartments, C' a square matrix of processing
rates within each compartment, £ scales the effects of temperature and moisture on C processing
and transfer rates, B is a vector of partitioning coefficients of C to growth of tissues, U(t) is
the ecosystem C influx, and Xy is a vector of initial values of the carbon compartments (Luo
et al., 2012).

Although this matrix equation has an important role mapping the mathematical formulations
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to the modeled biogeochemical processes, it has a few limitations: the partitioning coefficients (B)
are fixed; and it does not allow for nonlinear interactions such as the case when photosynthetic
rates depend on the storage of carbon in other compartments. This is problematic because
complex systems such as terrestrial ecosystems are not necessarily linear (Luenberger and Hill,
1979; Zobeley et al., 2005). In fact, certain nonlinearities have been revealed when there is
competition for light in models that can accurately predict productivity and species composition
(Purves and Pacala, 2008). Thus, it is necessary to define a new framework that: a) has more
Hexibility to accommodate different type of inputs (e.g. C assimilation rate, Gross Primary
Productivity -GPP, Net Primary Productivity -NPP), b) allow for a dynamic partitioning of
inputs or storage reserves, and c) can accommodate nonlinearities among system components.

In this contribution, we studied the process of CA in vegetation from a dynamical systems
perspective. We addressed the following questions: 1. How can we express the carbon allocation
concept within the context of dynamical systems? 2. Is there a mathematical framework that can
accommodate nonlinearities? 3. Can we systematically identify common model properties and
categorize the models accordingly? We reviewed published model descriptions and constructed
a database with a selection of them. This database aided us during the analysis of the sets of
equations that represent CA in vegetation. Based on this model synthesis, we were able to
identify key characteristics from which we inferred the proposed conceptual framework and

mathematical tool.

Methods

In order to avoid the ambiguities mentioned in the introduction, we contextualized the CA
concept within the more general theory of dynamical systems. Thus, by modifying the matrix

representation from equation 2.1, we propose the following definition:

Working definition of earbon allocation

Carbon allocation is the balance (net flux) of the C flows into, between, and out of the vegetation
compartments, because the amount of carbon in a single compartment at a given time (z) is the
balance between the C that has flown into and out of this compartment. This is illustrated
with an example of a two-compartment system (Fig. 2.2).

This definition makes it possible to distinguish between the different cases constantly grouped
as carbon allocation (see example in Fig. 2.1), by assigning each case to its corresponding term
in the equation 2.2 (Fig. 2.2) as follows: a) “the C in X" refers to the biomass = z, b) “the C
partitioned to X" is the fraction of the input that goes to that compartment, i.e. partitioning

= E, and ¢) “the carbon allocated to X" is the result of the whole process, i.e. the net flur =
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Figure 2.2: General mathematical representation of carbon allocation (CA) in a 2-compartment vegetation model.
The colors facilitate the identification of the different modules; grey: entire CA process, blue: photosynthetic inpurt,
green: partitioning of the input, and orange: C transfers between and out of the compartments. The arrows point
towards the direction of the movement of the compartment content. The letters above them symbolize the parameters
that regulate this flux. Other symbols are ¥ vector of states for vegetation (state variables); ¥ = d¥/dt: Changing
guantity of vegetation compartment = with respect to time (state variables =, and z3); f: Function valued vector
that relates the changing guantities that take place between the vegetation compartments; u: Scalar function that
represents the primary productivity -system input- and may be an assimilation rate, GPP, or NPP; E: Vector containing
the partitioning coefficients of photosynthetic input; B: Carbon transfer coefficients between plant, litter, and soil
compartments. Equation 2.3 was derived as described in (Anderson, 1983) and (Sierra et al., 2012). Equation 2.4
shows the units that the different components may have, highlighting their participation as fluxes (f, u), coefficients
fractions- (), and rates (B) in the model.

right hand side of the Ordinary Differential Equation -ODE (equations 2.2 and 2.3).

This definition was the result of the review of several published model descriptions, and is
the basis of the mathematical framework that we propose and use to further analyse the main
characteristics of the model descriptions (e.g. driving variables and parameters”, nonlinearities).
The organization of the equations within this framework also facilitates the identification of
rates ([mass - time—!]), fractions ([], unitless), and fluxes ([mass - area=! - time~1]), just by
observing their units. As means to automate the PMDs analysis and promote the use of this
framework to understand the CA representation in models, we developed a model database and
an accompanying Python 3 package called bge-md (Fig. 2.3).

Selection of published model descriptions (PMDs)

We reviewed PMDs of ecosystem models, and extracted the equations and descriptions contained

in the CA module. Our literature search was not exhaustive, but we obtained a representative

2 Variable is a model attribute that changes during the model simulation. A parameter is a model attribute
that (e.g. rates) does not change during the model simulation. Note that some factors that have been called
parameters (e.g. soil moisture...) but actually are dynamic (are functions of time or other variables) are
indeed variables (http://web.hwr.arizona.edu/hwrf42 /Generic/Content /Definitions /DefinitionsText. html and
http:/ /www.math.tamu.edu/” phoward /m647 /modode. pdf).
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Figure 2.3: This figure summarizes our methods, and highlights the software that we have used and the one that we
are developing. As it may be seen, the development of the entries and of the software is shaped by the user queries.
This database is dynamic, and will be enriched with future contributions of model entries and implementation of new
functionalities.

sample of PMDs by focusing our selection to published reviews (Franklin et al., 2012; De Kauwe
et al., 2014; Walker ef al, 2014), and Web of Science. In the latter case, we found 135 published
articles about models of CA by searching for the following keywords: Major concepts: Models
“and” simulations AND Major concepts: Environmental Sciences; ts=(carbon near/4 allocat®)).
From these, we selected complete PMDs in which the models were described using ordinary
differential equations (ODEs) with a consistent use of symbols.

Protocol for analyzing the PMDs using the Python package bgc-md

The Python 3 package, bge-md (https://github.com /MPIBGC-TEE /bge-md) consists of a
model database, and additional code that (a) extracts the information from each database
entry, (b) generates reports, and (c) performs computations such as model runs, calculation
of jacobian and eigenvalues, and generates various plots for comparison. The entries in the
database consist of text files written in YAML format (www.yaml.org). Each entry corresponds

to a selected publication -PMD, and is created as follows:

1. The first lines of an entry are used for the metadata -information needed in oder to identify
the model, the author of the entry, the publication where it came from, and some model

characteristics:

name: [model's short name]
longName :

version:

entryAuthor:

entryAuthorlrcid:

modApproach: [e.g. process based]
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partitioningScheme: [fixzed or dynamic]

claimedlynamicPart: ["yes" if they claimed to prioritize a compartment during partitioning, else "no®]
doi:

model:

The doi of the original publication is used with the API from Mendeley (www.mendeley.com)

to automatically generate citations.

2. ‘model:" is a section that is divided into subsections (e.g. state variables, photosynthetic
parameters, among others), which consist of a list of symbols that represent variables or

parameters; for example:

- state_variables:
C f:
desc: Carbon in foliage
mnit: "kgCsa”{-Z}"
type: [parameter or variable]

If the function to calculate a variable is provided (e.g. NPP = GPP - R), the equation is
written using symbolic mathematics according to the syntax of the python package SymPy

(Meurer et al., 2017).
The final component of the ‘model’ section is the subsection ‘components’. Here the sets of

ODEs are factorized into the matrix form f=u~,|'§+B-i".

- COEpOnEents:
- Xx:
key: state_wector
expra: "x=Matrix(3,1,[C_leaf, C_stem, C_roots])}"
desc: vector of states for vegetation
- u:
desc: scalar function of photosynthetic inputs
exprs: "u = NFP~
key: scalar func_phot
- beta:
key: part_coeff
expra: “beta=Matrix(4,1,[eta_L,eta_8,eta_R])}"
desc: vector of partitioning coefficients of photosynthetically fixed carben
- B:
key: cyc_matrix
expra: "B = Matrix([[-gamma_L,0,0],
[0, -gamma_35 0],
[0, 0, —gamma R]11}"
desc: matrix of cycling rates
- f_w:
desc: the righthandside of the ode
expra: "f_w = u*beta + B*x"
key: state_wector_derivative

3. The bge-md package computes the equations in the matrix form and produces reports
in html format. These reports summarize the PMDs and display the set of equations in
a readable way. In order to allow a quick comparison of a list of models, the package
can also generate a website with reports and graphs that can be navigated. Two of such
graphs are Fig. 2.4 and 2.5.

Code availability

All of the simulations and figures for this work can be reproduced using the code and data

provided in the supplementary material.
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Results

From a total of 150 reviewed publications, only a few of them (17) met the requirements
of having a CA scheme described with a complete set of difference or differential equations
(Table 2.1). Evidently, we did not include PMDs without equations (e.g. Chen and Reynolds,
1997). Other types of publications excluded from our review were those concerned with aquatic
vegetation (e.g. Soetaert ef al, 2004), tree ring simulations (e.g. Eglin et al., 2010; Lazzarotto
et al., 2009; Li et al, 2014), pipe models (Valentine, 1999), annual plants (Fox, 1992), and

vegetation systems with two compartments or less (e.g. Huntingford ef al, 2000).

Table 2.1: Classification of the different models analyzed according to their mathematical structure.

Structure Models with corresponding structure
Linear ODEs Name Number of Partitioning of Diagonal Source
Compartments  photosynthetic  matrix?
input

f=ult)-F+B-% FOREST-BGC 4 fioced yes {Running and Coughlan, 1988)

CASA 4 fioced yes (Potter et al, 1993)

G'DAY ] fixed yes {Comins and McMurtrie, 1993)

- 3 fined yes (Murty and MeMurtrie, 2000}

CABLE E fioced yes (Wang et al, 2010)

- E fioced yes {Luo et al, 2012)

5 fined yes (DeAngelis et al, 2012)

Nonlinear ODEs
f=ulzt)-F+B-F - E fioced yes (King, 1993)

IEIS E fioced yes (Foley et al, 1996)

CTEM 4 dynamic yes (Arora and Boer, 2005)

IBIS 3 dynamic yes (Castanho et al, 2013)
f=ulzt)-B(z,t) + B-F CEVSA2 E dynamic ves (Gu et al, 2010)
f=u(t)- 5+ B(zx,t)-F ACONITE fi fioced no {Thomas and Williams, 2014)
f=ulzt)- B+ B(rt)-F - 5 dynamic no (Hilbert and Reynolds, 1991)

Jeli-DHEV fi dynamic no (Pavlick et al, 2013)
f=id(zt)+ B-F DALEC 4 dynamic no (Williams et al, 2005)

I5AM 4 dynamic yes (El-Masri et al., 2013)

The vegetation systems described in the PMDs correspond to different hierarchies, ranging
from individual plants (1 model), to forests (4 models), regions (2 models), up to the whole
globe (10 models). In terms of time resolution, the processes described in the PMDs often take
place at different scales; there can be daily simulations of photosynthesis, evapotranspiration,
and soil water dynamics, and annual updates of vegetation structure and plant functional
type population densities (Sitch ef al, 2003). Another example of such a wide time scale
range was observed in the model Tethys-Chloris by (Fatichi and Leuzinger, 2013), in which the
photosynthesis, energy and water fluxes are resolved hourly, and the ‘carbon allocation’ and
turnover take place at a daily time step. This means that the input (u) of these models is often
portrayed as a faster process as the partitioning {EJ and cycling (B).

Moreover, different modeling approaches (conceptual and mathematical) have been used to
simulate CA as a whole, and the partitioning in particular. Table 2.2 summarizes the main
groups in which the models can be classified according to these different approaches. Our

contribution to this classification, which builds on the previous work of De Kauwe et al (2014)
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and Walker ef al (2014), is a classification based on the mathematical formulation of CA
(f(Z,t)), derived from the fact that several models have been described using linear ODEs,

nonlinear ODEs, or difference equations.

Table 2.2: Classification of the carbon allocation (CA) module of different models according to the main conceptual
and mathematical approach used.

Modeling approach Mathematical formulation Coneceptual design of C partitioning

Process based Difference equations Fixed cocflicients
Individuals based Linear ODEs= Dynamic
Nonlinear ODEs

ODEs: Ordinary differential equations.

Our literature search revealed that in nine of the 17 PMDs selected, it was claimed that
they had a ‘dynamic carbon allocation’ because their objective was to simulate the vegetation
response to environmental cues (e.g. lack of water or light) via selective partitioning of newly
photosynthesized carbon to a limiting compartment. However, three of these nine PMDs had
a fixed partitioning scheme (fixed coeflicients) and the environmental scalars were only found
in the photosynthesis or turnover modules (see Fig. 2.4). Within such a scheme, the changes
in environmental conditions only affect the amount of C entering or leaving the system as a
whole, i.e. the limiting compartment would not be favored in the partitioning of C. This is an
example of how alternative interpretations of the term ‘dynamic carbon allocation’ can lead
to misleading model descriptions. Other examples of this were also observed in publications
that were not selected for further review because they did not abide to our criteria -e.g. model
ForCent by Parton et al. (2010).

This supports the need to use the working definition of CA proposed in the methods to
continue with our analysis, leaning on the biogeochemical relevance of the terms in equation 2.2
(i.e., photosynthetic input-u, p&rtitionjng—,g, cycling-B, and stocks (state variables)-7'). For this
reason we analyzed the components of each term instead of searching for connections between
numerous equations spread across modules (e.g. stomata, physiology, canopy, carbon balance),
which is a very common way to organize the equations in ecosystem models. Identifying
these connections, and especially the type of interactions between variables and parameters is
important because some dependencies between state variables can lead to nonlinearities.

In light of this working definition, we could find the characteristics that the 17 PMDs
had in common, such as their driving variables and their interactions. We found that in 13
of the 17 PMDs, there is a lack of carbon exchange between the vegetation compartments.
This characteristic was diagnosed by the bge-md package, which automatically identified that
their cycling matrix B is diagonal -the elements of the off diagonal are zeros (see Fig. 2.5).

Moreover, the only cases in which the compartments exchange C is when there is a labile C
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Figure 2.4: Comparison between published model descriptions where it was claimed that the model intended to have a
partitioning scheme that favoured a limiting compartment, versus which of those had indeed a dynamic partitioning
scheme.

compartment, e.g. the model DALEC (Williams et al., 2005), but such compartments (labile
or nonstructural carbohydrates -NSC) were ignored in eight of the 17 PMDs, which only have
three state variables: foliage, wood, and roots.

Furthermore, we found two distinct ways to represent respiration in vegetation: (a) growth
respiration is often portrayed as a percentage of the C influx, which is a calculation performed
within u independently from the amount of C stored in the compartments -state variables; in
contrast, (b) maintenance respiration is a flux that depends on the amount f C stored, because
it is the product of the multiplication of state variables and cycling rates (B - ¥). These two
representations have different implications. In case (a), respiration represents the cost of growing
organs, which is the amount of photosynthetically fixed C that cannot be used to build new
tissues. In case (b), respiration is the metabolic cost of maintaining the existent tissue, which
depends on how much tissue there is.

In most PMDs, the environmental variables driving the models (e.g. temperature, water and
nutrients content, light availability) were found in the equations that compute the photosynthetic
input (u), but sometimes air temperature and atmospheric CO2 concentration were implicitly

included in environmental scalars. In addition, the photosynthetic input generally does not
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Figure 2.5: Comparison between number of state variables in models, and whether their cycling matrices are diagonal
or not. In models with diagonal cycling matrices (off diagonal = 0), there is no C exchange between the compartments.

depend directly on the C content of the leaves (one of the state variables), rather on the leaf
area index (LAI), which is not always expressed in terms of leaf C.

In contrast to the input dependency on environmental cues, the C transfers that shape
the compartments via partitioning (E} of photosynthetic input and C cycling (B) are seldom
driven by climate. In some cases the partitioning is constrained by the ratio between some
compartments (e.g. C foliage : C roots), but the most common constraint is the use of fixed
coefficients that should sum up to 1 (see Fig. 2.4). One example is the model by King
(1993), which was designed to analyze the influence of partitioning to root and foliage on forest
production. This model has a structure in which the partitioning (E} and the cycling (B) contain
parameters, instead of state variables or time dependent variables. Thus, its partitioning scheme
is independent of changes in the environment. In other schemes the partitioning can switch
between fixed and dynamic, depending on the sensitivity to changes in resource availability
(e.g. the model CEVSAZ2 by (Gu et al., 2010)).

Some PMDs have an intricate C cycling dynamic; for example, the model proposed by
Hilbert and Reynolds (1991) has a structure inspired in the hypothesis of balanced root and
shoot activity (Davidson, 1969) and the response of specific shoot activity to resource availability.

This model has five state variables: mass of leaf proteins, leaf structural components, roots,
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substrate carbon, and substrate nitrogen. The photosynthetic carbon is produced in the
substrate compartments, and from there it is cycled to the other compartments. In cases like
this, where all the photosynthetically fixed C is first stored in a compartment, there is either
no partitioning or 'E = [1,0,0,0]. Conversely, the B matrix is highly nonlinear because the C
cycling depends on the state variables. This is why we broadened the mathematical framework

and propose a new one that can accommodate nonlinearities.

The new mathematical framework

Based on the three categories in Table 2.2 and the fact that equation 2.2 can have particular
cases based on the dependencies of its terms, we propose a new mathematical framework to

study the CA representation in models (Fig. 2.6).

Difference eq.

E(tnt1) = I(ta) + f(Z,9(tn)) - (AL) (2.5)
[Ma,thema,tical furmu],a,tiun
= f(Zt) =|ufg) - B + B -7 (2.6)
i= (@) = @) Be) + B@) - (2.7)
{Nﬂn]inear DDE&]
i= f@1) =) @y + BE) -z (2.8)
:ir": f{i'::t} = “(i:t} ’ E(i'lt} + B(E:t:l T {2‘9}

Figure 2.6: Model classification according to their mathematical formulation, where F(tn41) is a vector of states for
vegetation at time £,44. f(Z, §{t,)) represents the dependency of the function valued vector f on state variables (¥)
and time-dependent functions (§(t,)); it can also depend on state variables and time: f(Z,t). The time step size is

At =tnt1 — tn. The dependency of u in time and state variables is represented by u(%,t). F(t): partitioning function
valued vector that represents the time dependency of E, which may also depend on vegetation compartments (allowing
for nonlinearities): (B(#,t)). B(t) represents the time dependency of the cycling matrix B.

We classified the 17 PMDs according to their mathematical formulation -structure (see
Table 2.1). The analysis behind this classification can be found on the reports generated for
each of the PMDs using the bge-md package (see supplementary material).

Notice that not all models have separated photosynthetic input u and partitioning E
Particularly, the models with a partitioning scheme that depend on phenology often formulate
this dependency as a set of if statements or piecewise functions. Thus, the u and 'E fuse together
into the vector of photosynthetic inputs to each compartment i, e.g. DALEC (Williams et al.,
2005) and ISAM (El-Masri et al, 2013) (see Table 2.1). Another model with a partitioning
scheme that depends on phenology according to its description is CASTANEA (Dufrene et al.,

2005}, but this publication could not be included in the database because of the lack of equations.
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Implications of nonlinearities using an example of a vegetation system with

four compartments

This new framework takes into account that the mathematical abstraction from Fig. 2.2 may
vary among models, depending on how their variables and parameters interact with each
other, i.e. whether they depend on each other or not. These dependencies have informative
ecological implications such as positive feedback loops in the scalar function of system input u,
or sink-dependent fluxes of the cycling matrix B (see Fig. 2.2 and 2.6), which will be further
explained later in this section. These dependencies ultimately determine whether a model is
linear or nonlinear. Nonlinearities are the result of multiplicative interactions between the state
variables on which the fluxes depend. They can have a major impact on the model dynamics,
when compared to a linear model with the same compartments. We can illustrate this using a
couple of simple models; a linear model, and a nonlinear model (see Table 2.3). Both of them are
autonomous systems (with no external drivers) with four compartments: foliage, nonstructural
C (NSC), wood, and roots (see Fig. 2.7). For practical purposes, we show the results of only
two compartments.

Table 2.3: Sets of equations of the models from the example

Type of model Linear Nonlinear
Matrix representation f=u~,|§+B)<I_E f='u.11,|§+B[I})<f¢
ODEs Cr=u-ny +vrnsc -Cnse — (nvse +75) - Cy u=ki-Cy-Cyio
Cnsc = nvse -Cr— (e + M + 17,850) -Cnse nvse =vl- (K1 + Cnsc)!
Cw =1 -Cnsc — Tw-Cu Yrnse =v2- (k2+Cp)7!

Cr=nr-Cnsc— 7 -Cr

Both models have the same sets of ordinary differential equations (ODEs), but the nonlinear has
replaced some parameters for functions (right column). €: changing amount of carbon in foliage (),
nonstructural carbohydrates (ygo ), wood () and roots (), with respect to time; u: photosynthetic
input; ki: absorption rate; k1, £2, vl and v2: Michaelis Menten parameters; ny: flux rate of
photosynthetically fixed C to foliage; nygo: Hux rate of C from foliage to NSC; 7, flux rate of C
from NSC to wood; nr: flux rate of C from NSC to roots; vy vso: flux rate of C from NSC to foliage;
1o, rate at which C leaves each compartment (e.g. respiration, litter).

In the model comparison from Fig. 2.7 it is evident that the differences in the schemes
of C cycling between the foliage and NSC impacted the model outcome. Given the intricate
nonlinear interactions between these compartments, the C stocks oscillated, reducing the chance
to predict the C stocks at a given time; i.e. while one can predict that increasing amounts of C
in the foliage will result in increased NSC in the linear case, the C accumulation of NSC with
respect to foliage is constantly changing in the nonlinear case (see the phase planes in Fig. 2.7).
Another particular characteristic of the nonlinear model was the positive feedback loop in the

input, which resulted in a rapid C gain in the foliage at the beginning of the simulation.
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Discussion

A detailed analysis of the mathematical representation of the CA component of the ecosystem
models has allowed us to identify common structures and do generalizations. We were able
to obtain a deep insight into the properties of a system, by identifying the factors on which
photosynthesis, and C partitioning and cycling depend. This assessment motivated the formula-
tion of this new mathematical framework, which emerges as a powerful tool to study carbon
allocation in models.

Seemingly, the published model descriptions that we reviewed overlook key properties, and
thus they might be a too simplistic representation of the processes involved in carbon allocation
in vegetation. One of the oversimplifications that we observed was the fixed partitioning scheme
from most of the PMDs. Evidently, models with fixed coefficients for C partitioning and
cvcling would fail to simulate a vegetation that responds to environmental cues by changing its
partitioning scheme.

Another oversimplification was the lack of carbon exchange between the vegetation com-
partments, as well as the absence of storage (or labile) compartments. In fact, the role of
non-structural or labile carbon has proven to be more important than just an overlow compart-
ment (Richardson et al., 2013; Dietze et al., 2014; Doughty et al, 2015; Hartmann et al., 2015;
Martinez-Vilalta et al, 2016; Muhr et al, 2016). We speculate that the source-sink relationship
between the vegetation C compartments may have important implications in phenology (seasonal
variability) in deciduous forests, because the stored C can be cycled to the other compartments
when the growing season starts, thus explaining the rapid loss and replenishment of carbon
in foliage (Trumbore et al., 2015). Unfortunately, this model structure was rarely observed in
large-scale models.

The model structures are also too simplistic because they are mostly linear; the carbon
processes are expressed as the sum of the C fixed in the compartments and the one leaving
the compartments -terms 1 and 2 of the first row in equation 2.1, respectively-. This linear
structure ignores possible nonlinear interactions among vegetation processes that can arise
when partitioning depends on state variables [E{f,t))? as an example. Even though these
simplifications increase the speed of model runs without jeopardizing the trends at global scales,
they could result in prediction errors while trying to simulate finer spatio-temporal scales. Most
importantly, these oversimplifications could be the reason why some models fail to capture the
response of vegetation to extreme climatic changes.

Categorizing models of interest in this framework has several advantages (as described above
and in the following section), but a categorization performed solely based on the published model

descriptions (PMDs) might not be advisable because they leave out important details. The
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PMDs of complex models such as the Dynamic Vegetation Models (DGVMs) often lack complete
sets of equations, parameter values, and, when difference equations are used, they do not describe
the way in which the time steps are performed (e.g. LPJ by Sitch et al (2003) and O-CN by
Zaehle and Friend (2010)). Given that these details not only guarantee the reproducibility of
the results, but the reliability of the model categorization within this framework, the source
code of these models also needs to be assessed. As challenging as that process may be, the
development of such models within this framework can be an efficient way to improve their
performance and the one of the Earth system models to which they are coupled. Thus, we
highly encourage other researchers to contribute with their own models to this database. It is
also important to mention that the current functionalities of the database limit the inclusion
of individual-based models (e.g. aDGVM by Scheiter and Higgins (2009), but this issue will
hopefully be solved in the future.

Implications and future studies

We have identified some of the impacts that certain model structures have on the simulations,
in agreement with other systematic studies (Holling, 1973; Jacquez and Simon, 1993; Strogatz,
1994). This leads us to another of the main contributions of this framework, which is the
ease to identify models that fall into the Compartmental Systems category. Compartmental
systems are those whose compartments exchange material, and according to the qualitative
theory proposed by Jacquez and Simon (1993), their structure may have important implications
in the stability of the system. As an example, systems with time-dependent variables such as
f(Z,t) = u(Z,t) ~ﬁ|:i",t} + B(#,t) - ¥, are classified by this theory as non-autonomous systems
and one of their characteristics is that they do not have a steady state (see stability of non-
autonomous systems in Jacquez and Simon (1993)). This is an important property to consider,
especially when choosing methods to make other calculations (e.g. mean age of carbon) under
the steady state assumption (Sierra et al., 2016).

Given that the structure of the models determines the dynamics that can be simulated
(Holling, 1973; Strogatz, 1994), the simulated response of vegetation to changing climatic
conditions depends on the variables and parameters used, as well as on their interactions,
i.e. whether the systems are linear or not. Evidently, finding the right combinations remains the
most challenging part, because several aspects of the potential capability of vegetation to exploit
climatic conditions remains unclear. Empirical findings suggest that climate change alone has
contrasting effects on vegetation, and the effects of multiple driving factors on vegetation is not
always additive (Leuzinger et al, 2011; Dieleman et al., 2012). Nonetheless, these and other
interesting dynamics could be explored using models, and the software implemented in the

database can help to test different hypothesis and parameter values. Finally, this could lead to
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a close dialog between empirical and theoretical research fields that could result in interesting
findings.

Conclusions

Carbon allocation in vegetation is a complex process that involves C Howing into, between and
out of plant compartments, at different rates. This concept can be generalized and formalized
using the mathematical concept of dynamical systems. Here, we found that many vegetation
models can be represented in matrix form as a non-autonomous compartmental system of
nonlinear ODEs. However, many models, particularly those used for large-scale simulations,
use a linear representation with no interactions among ecosystem compartments.

We also identified some general properties of models according to the linearity and autonomy
of the systems. We found that, although the linear structure is common, other structures with
nonlinearities have been also proposed. These nonlinearities can be accommodated in the new
mathematical framework proposed here. This framework has allowed us to assess models in
a simple way, and can be a powerful aid in the interaction between theoretical and empirical
research in ecosystem ecology and other related fields. It is an interface that summarizes
the models’ perspective of carbon allocation, and highlights relations (dependencies) between
factors that are normally studied separately and in detail in the field and the lab; so, hopefully
both could find a common language to share their knowledge. This conceptual /mathematical
framework may allow us to find new insights into the study of the global carbon cycle under
changing climate and disturbance regimes, and identify gaps where more experiments and

theoretical work are needed.
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Figure 2.7: Examples of two models of carbon allocation in vegetation. Each representing a linear (2), and nonlinear
(b) system. In both systems the photosynthetically ficed C enters through the foliage (), and part of it is transferred
to the non-structural C (Cys-). From there, part of this C goes to the wood (), and ancther to the roots (C)).
The difference between both models is the nonlinear fluxes represented by the three green arrows in (b). Their model
runs illustrate the impact of these differences on the model predictions, such as the time course of the C stocks in
foliage and NSC from the linear (c) and nonlinear (d) models. Motice that both compartments in the linear model
have a transient increase in their stock, until they reach a stationary state, while in the nonlinear model they have
damped oscillations. This is supported by the phase planes of these two compartments. In the linear model (), the C
in the N5C increases as the foliage increases. This is not always the case for the nonlinear model (f), since the relation
between these two compartments varies with time, resulting in a spiral.
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Ages and transit times as important diagnostics of
model performance for predicting carbon dynamics in

terrestrial vegetation models

The global carbon cycle is strongly controlled by the source/sink strength of vegetation as
well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as
processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem
models, but different assumptions regarding the carbon allocation strategies and other model
structures may result in highly divergent model predictions. We assessed the influence of three
different carbon allocation schemes on the C cycling in vegetation. First, we described each
model with a set of ordinary differential equations. Second, we used published measurements
of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to
find suitable parameters for the different model structures. And third, we calculated C stocks,
release fluxes, radiocarbon values based on the bomb spike, ages, and transit times. We obtained
model simulations in accordance to the available data, but the time series of C in foliage and
wood need to be complemented with other ecosystem compartments in order to reduce the
high parameter collinearity that we observed, and reduce model equifinality. Although the
simulated C stocks in ecosystem compartments were similar, the different model structures
resulted in very different predictions of age and transit time distributions. In particular, the
inclusion of two storage compartments resulted in the prediction of a system mean age that
was 12-20 years older than in the models with one or no storage compartments. The age of
carbon in the wood compartment of this model was also distributed towards older ages, whereas
fast cycling compartments had an age distribution that did not exceed 5 years. As expected,

models with C distributed towards older ages also had longer transit times. These results
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suggest that ages and transit times, which can be indirectly measured using isotope tracers,
serve as important diagnostics of model structure and could largely help to reduce uncertainties
in model predictions. Furthermore, by considering age and transit times of C in vegetation
compartments as distributions, not only their mean values, we obtain additional insights on
the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only
depends on the rate at which this C is transferred in and out of the compartments, but also on

the stochastic nature of the process itself.

Introduction

The global carbon cycle is strongly controlled by the source /sink strength of terrestrial ecosystems.
Vegetation in particular, is one of the major controls of global C sources and sinks with respect
to the atmosphere (Canadell et al, 2007); it has the capacity to be either a strong C sink or a
source, depending on the amount of C fixed by the canopy and the time that C takes to transit
through its components back to the atmosphere (Luo et al., 2003). Strong sinks therefore, not
only fix carbon at a fast rate, but have also the capacity to store this carbon for long periods of
time (Kdrner, 2017).

The C storage capacity of an ecosystem is determined by the collective behavior of vegetation
compartments such as foliage, wood, and roots, rhich may also act as C sources and sinks
among each other (Xia et al., 2013; Luo ef al, 2017). The capacity of a vegetation compartment
to oscillate between C source and sink has important implications for ecosystems in their
response to perturbations and environmental change, i.e their resilience. Carbon fixed during
photosynthesis is transported from the leaves (sources) to other parts of the plant (sinks). One
of these sinks is the labile or non-structural carbon (NSC) (Hartmann and Trumbore, 2016;
Trumbore et al., 2015; Martinez-Vilalta et al., 2016), which may turn into a C source during
critical events, such as the start of the growing season (after periods of limited photosynthesis)
(Richardson et al., 2013), and the recovery from disturbances such as drought (Hartmann et al,
2013}, cold temperatures (Hoch and Kérner, 2003), pollution (Grulke et al., 2001), or nutrient
stress (Ericsson et al, 1996). Despite the importance of the source-sink capacity of NSC reserves,
many questions remain unsolved. For example, are NSCs completely depleted when needed,
and replenished afterwards? Is the C that has remained stored for many vears still available for
the plant? (Richardson et al, 2013).

It is indeed possible that the carbon stored in vegetation compartments, including N5Cs,
have been fixed at different times, resulting in a mix of ages (Muhr et al., 2016). Studies across
wood rings in temperate forest trees revealed that the mean age of NSCs in stemwood can be up

to several decades old (Richardson et al., 2013; Trumbore et al., 2015). Trumbore et al. (2015)
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explained these old ages with a simple model consisting of one NSC compartment with inward
mixing of younger and older C. Alternatively, Richardson et al. (2013) proposed a model with
two separate storage compartments (NSC)-with old and young C, respectively- that exchange
material among each other. It is therefore uncertain how this mixing of NSCs of different ages
occurs: In the form of one single compartment in which all ages are mixed, or in different
compartments with separate ages?

Previous studies have focused mostly on determining ages of NSCs using radiocarbon-derived
mean residence times, but this approach has limitations. One limitation is the ambiguity in the
term “mean residence time”, which has been defined in different ways across studies; in some
cases it implies the mean age of C in an ecosystem or ecosystem compartment and in other
cases it implies the time it takes C molecules to leave the system of compartments (Sierra ef al.,
2016). Another limitation is the use of mean values instead of complete frequency or density
distributions to assess the spread of C ages in vegetation compartments.

The study of C age distribution in vegetation requires challenging empirical methods, but
can also be approached using ecosystem C cycle models. However, not all of the models perform
equally well because the assumptions behind their structures may result in highly divergent
predictions (Lacointe, 2000; Friedlingstein et al., 2006; Friend et al, 2014; Schiestl-Aalto et al.,
2015). The performance of such models has been diagnosed by comparing their predicted C
storage capacity and residence times (Friend et al., 2014; Yizhao et al, 2015), but if the above
mentioned ambiguities are resolved, ages of carbon in vegetation and in respiration fuxes can
serve as excellent additional diagnostics of ecosystem models, and can give important insights
about carbon metabolism in vegetation under stress conditions, such as in the case of drought

stress,

Definitions: ages and transit times

C0O2 molecules are fixed continuously by photosynthesis during the growing season; so, C
particles enter the vegetation (from here on called “system”) at different times during the year.
After fixation, the photosynthetic products transit through the vegetation compartments until
they eventually leave the system, either as COs back to the atmosphere or as litter and exudates
to the soil. This means, that at a given time (t) each particle in the system has a different age,
which is the time that it has remained within the system since its fixation from the atmosphere.
The time that each particle spends transiting through the system, from arrival until exit, is
called transit time (Bolin and Rodhe, 1973).

At each time step, a particle may stay where it is, given certain probability, or flow to

the next compartment with a rate or probability given by the transfer coefficients (also know
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Figure 3.1: Graphical representation of the concepts of age and transit time distributions in a vegetation model.
Carbon particles are represented here as docks that measure the time they have been in the system. System age can
be defined as the age of all particles in the system at a given time, while transit time as the age of particles in the
output flix. Adapted from Sierra et al. (2016)

as cycling rates). This means that the age of carbon in a system results from stochastic and
deterministic processes, which can be illustrated in Figure 3.1; given two organic molecules in a
compartment, one that has remained in the system for longer time than the other, they both
have the same chance to either leave the system, or move on to another compartment. Thus, if
by chance older molecules remain for longer times, then the system’s age gets older. But the
pace at which these molecules are transiting is moderated by the cycling rates. This is why
slow cycling compartments have older C.

Lets describe a system of well-mixed C (distributed in multiple compartments) with the

system of ordinary differential equations

i) =Bxz(t)+j - u,
(3.1)
#(0) = o,
where .i:l:t} is how much the guantity of carbon in vegetation compartment x changes with
respect to time, B is a matrix of carbon transfer coefficients between the plant compartments,
I(t) is a vector of states for vegetation (state variables), ﬁ is a vector containing the partitioning

coefficients of photosynthetic input, and » is a scalar that represents that input. This linear

system does not include environmental variables, or any other variables that depend on time,
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thus, it is an autonomous linear system with multiple interconnected compartments.

Given that each particle in the system has its own age and transit time, the age and transit
time of the whole system can be considered as random variables. Additionally, the age and
transit time of particles in a system'’s compartment is exponentially distributed. Then, the
age and transit time distributions of the entire system would be the sum of those exponential
distributions, i.e. a phase-type distribution (PT) (Metzler and Sierra, 2018).

The calculation of how many C particles have a certain age, or the age density distribution
of a system (f4(y)), is determined by the probability of entering the system through a given
compartment and the rates at which C is transferred from one compartment to another until it

leaves the system. Consistent with the symbols from the previous equation

T

=7 . yB, =
Jaw) =2

(3.2)

fa(y)) is a function of (i) how fast the carbon is leaving the system: the row vector of
release rates, which is the column-wise sum of the elements of the B matrix (7 = —17 B), (ii)
the transition probability matrix (e¥B), and (iii) the relative amount of C stock at steady state
with respect to the total {ﬂ%”} Notice that we use here the symbol || - || to represent the vector
norm, which is the sum of all entries of the vector.

The mean age is given by the expected value (E[A])

IB—1 x #||

E[4] = | 21 (3.3)

Likewise, the transit time density distribution (ferr(t)) is also a function of 27 and the

transition probability matrix (e!B), as well as the vector of input distributions (E}

ferr(t) =2 -8B . 5. (3.4)

The mean transit time is defined as (E[FTT]):

[1Z°]]

Il

In this case, the definition of mean transit time coincides with the commonly used stock

E[FTT] =|[B™" x §|| = (3-5)

over flur approach (turnover time), but note that the definitions presented here can only be
applied to autonomous systems at steady state. For non-autonomous systems, i.e. models in
which inputs and process rates change over time, formulas for the estimation of mean age and
transit time can be found in Rasmussen et al (2016).

From these equations it is evident that age and transit time calculations mainly depend on the

—

schemes of C partitioning (3) and cycling (B) within a vegetation model. Therefore, if we want
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to understand processes such as the mixing of old and newly fixed NSC using ecosystem models,
it is critical to model proper carbon allocation (CA) strategies. Unfortunately, it is still uncertain
what assumptions and simplifications should be done: How many carbon compartments are
necessary to describe carbon cycling in vegetation? How are these compartments interconnected
and how fast are they transferring C among each other? These are important questions that need
to be addressed to improve our understanding of vegetation dynamics, and predict consequences
of environmental change on vegetation.

In this contribution, we address the question: how different C allocation schemes affect
the ages and transit times of carbon in vegetation models? In particular, we are interested in
understanding whether different carbon allocation strategies would lead to different patterns of
mixing of ages for the NSC compartment. For this work, we implemented 3 carbon allocation
schemes based on Richardson et al. (2013); the models have either no storage, 1 storage
compartment, or 2 storage compartments (fast and slow C cycling). Our approach is mostly
theoretical, and we are mainly interested in introducing the concepts of age and transit time
distributions as useful model diagnostics as well as as an approach to explain mixes of C
age in NSC compartments. For this purpose, we used published measurements on ecosystem
C compartments from the Harvard Forest Environmental Measurement Site to find suitable
parameter values for the different model structures. We also diagnosed the performance of these
models using as metrics 1) C release fluxes (respiration and other carbon losses such as litterfall),
2) the dynamics of radiocarbon (based on the bomb spike) for individual compartments, 3) the
transit time distribution of the system, and 4) the age distribution of C in the system and in

each compartment.

Methods

Model Implementation

Each model was written as a set of ordinary differential equations (based on Equation 3.1)
within the environment of the R package SoilR (Sierra et al, 2012). All models met the
requirements of equation 3.1; they are autonomous (their dynamics do not depend on variables
that change with time) linear systems with multiple interconnected compartments. The initial
carbon stocks, and some of the parameter values needed to solve those equations were obtained
from the literature, from a deciduous-evergreen model with similar carbon allocation schemes
(Fox et al., 2009). Other parameter values were obtained from an optimization procedure (see
below).

As means to assess whether the carbon allocation strategies had an impact on the mixing

of C age in vegetation compartments, we implemented three models whose carbon allocation
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strategies varied depending on the number of storage compartments (0, 1, or 2) (Figure 3.2),
following the hypotheses proposed by Richardson et al. (2013). Given that we aimed at a
theoretical comparison of the above mentioned strategies, we eliminated other potential sources
of variation that may act as confounding factors by assuming that all C transfers between
the compartments depended on constant rates. We also assumed that there was a constant
photosynthetic input -gross primary production (GPP): u-of 1400 gCm 2year! (Urbanski
et al., 2007). Environmental variability, which operate mostly on an hourly-daily time scales,
was not considered here because we ran the models at an annual time scale; i.e., without diurnal

cycles or phenology.
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Figure 3.2: Three carbon allocation strategies in vegetation models. These strategies differ in the number of storage
compartments, Storage: 0, Storage: 1, and Storage: 2. Adapted from (Richardson et al, 2013). The parameters
are the rates at which the carbon cycles into and out of the compartments; thus, the fluxes are proportional to the
C stocks and the rates. Notice that the foliage is divided into two compartments: Photoassimilates and Structural
Foliage.

Fixed photosynthetic input enters the system through the Photoassimilates compartment,
and part of the carbon is released back to the atmosphere at each time step, in a flux proportional
to the size of Photoassimilates and the constant rate K, (Figure 3.2). In the model without
storage compartment, the C stored in the Photoassimilates is partitioned into Structural foliage
(from here on: Str. Foliage), Wood (including branches and coarse roots) and Fine roots (from
here on: Roots), with the constant rates Ay, A,,, and A,; part of the C stored in these three
compartments also leaves the system with constant rates L¢, L,,, and L., which comprise all
the carbon released through respiration and other losses (e.g. litterfall). For the models with
storage, the C is transferred from the Photoassimilates to the fast cycling storage, from which
it is then partitioned to the rest of the compartments. In addition to the fast cycling storage,

the model with 2 storage compartments also has a slow cycling compartment.

Optimization procedures

To obtain results that can be related to a particular ecosystem, we performed a parameter

estimation procedure using published measurements of two ecosystem C compartments from

a7
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the Harvard Forest Environmental Measurement Site (see links 11, 22, and 3°, and the raw
LATY) . Harvard Forest is a regenerating temperate forest located in Petersham, Massachusetts
(42.54°N, 72.18°W, 340 m asl). Among the tree species that are found in this 65- to 85-year-old
mixed deciduous forest are: red oak, red maple, white and red pine, vellow and white birch,
beech, ash, sugar maple and hemlock (Wofsy et al., 1993).

We calculated C stocks in wood and foliage from the above mentioned aboveground biomass,
LAT and LMA, using allometric equations. Although in previous studies performed at the same
site the use of woody biomass increment and LAI reduced the uncertainties in the predictions
of net C sequestration and foliage dynamics, respectively (Keenan et al, 2013a), and the wood
stock observations have been used to successfully constrain fine root mass simulations (Smallman
et al, 2017), we obtained unrealistic simulations of C stocks in storage and roots because these
pools were not well constrained. Thus, we estimated C stocks of roots based on the assumption
that shoot:root ratio = 1:5, and we also used published ratios to calculate NSC from Wood
carbon (p. 5 Richardson et al., 2010).

We were also interested in observing the uncertainty of the model simulations (see section
below), so we performed a Bayesian optimization, which gave us alternative parameter sets after
exploring the parameter space. This optimization procedure was started using the result of a
classical optimization method using the R package FME (Soetaert and Petzoldt, 2010). Taking
into account that data uncertainties have a direct influence on the fit of the outcome of the
parameter estimation (Richardson et al, 2010), we accounted for the uncertainty in the data
using the standard deviation of the measurements in the cost functions.

As means to evaluate whether the parameters could be estimated from the given data
sets, i.e. parameter identifiability, we performed a local sensitivity analysis and estimated the
collinearity of the parameter sets with the package FME. The obtained collinearity index -~
expresses the degree at which pairs of parameters are linearly related. Values of v > 20 indicate
high collinearity among parameters and poor identifiability of the model given the available
data (Soetaert and Petzoldt, 2010).

Given the high correlation between some of the parameters, we decided to run all model
simulations using the parameter set that was most frequently chosen by the Bayesian optimization
method. We then calculated C stocks, release fluxes, radiocarbon values based on the bomb spike,
ages, and transit times, using functions implemented in SoilR. The functions that calculate age

and transit time distributions are based on the formulas proposed by Metzler and Sierra (2018).

Yhttp:/ /atmos.seas harvard.edu /lab,/hf /index. html

*http:/ /ameriflux.Ibl.gov /doi/ AmeriFhn /US-Hal

*http:/ /ameriflux. Ibl.gov /sites siteinfo /US-Hal

http: / /ftp.as. harvard .edu/pub/nigec /HU_Wofsy /hf_data fecological_data /lai /1ai.98.15.txt
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Results

Uncertainty analysis

In order to explore model predictions that could result from different parameter sets that were
possible and likely, we extracted a random sample of 1000 posterior parameter sets from the
Bayesian optimization that used Markov chain Monte Carlo. We ran the models with the
unique sets, and calculated the weighted mean and standard deviation of the C stocks, the
released C from each compartment, and the system’s mean age and transit time. The weights

corresponded to the number of times that each parameter set was repeated in the sample.

Code availability

All of the simulations and figures for this work can be reproduced using the code and data

provided in the supplementary material.

Results

Simulations of carbon stocks

The C stocks simulations obtained from the three models were within the uncertainty range of the
available data (Figures 3.3 and 3.4). The simulations of Wood and Foliage C (Photoassimilates +
Structural) stocks were in accordance with the stocks estimated from the aboveground biomass

inventory data and the LAI, respectively.
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Figure 3.3: Carbon stocks estimated for each model, comparing the observed data and the model predictions of C
stocks in Wood (A) and Foliage (B).

All of these predictions were obtained using the parameter set that was most frequently
chosen by the Bayesian optimization method (Table 3.1). This table also shows two quantiles

of the distribution of each parameter value after exploring the parameter space.
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Figure 3.4: Carbon stocks estimated for each compartment and their uncertainties. Carbon in the (A) Foliage
(Photoassimilates + Structural), (B) Wood, (C) Roots, and (D) Storage compartments.

Interestingly, some of the parameters were strongly correlated among each other. For the
three model structures and the available empirical data, the number of parameters that can be
simultaneously estimated with a collinearity index < 20 for the models Storage: 0, 1, and 2
was 3, 4, and 5, respectively. The correlations can be seen in the pairwise plots of sensitivity
functions (Figures 2-4). Table 5 summarizes the number of parameter correlations that we
observed under the diagonal of the pairwise plots of sensitivity functions. For this reason, the

results presented here need to be interpreted within the context of predicted uncertainties.

Influence of carbon allocation strategies on ecosystem level C cycling

To assess the impact of different carbon allocation strategies on the ecosystem C cycling, we
used the following metrics: 1) C release fluxes, 2) dynamics of radiocarbon for individual

compartments, 3) transit time distribution of C through the system, and 4) age distribution
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Table 3.1: Parameter values obtained from the optimization procedures [year™ ).

Model Parameter Final Bestl Best2 Meadian gos grs
Storage: 0 Ra 0.64 0.7 0.7 0.57 0.45 0.64
Af 0.48 0.5 0.5 0.42 0.32 0.46
Ar 0.32 0.5 0.5 0.33 0.26 0.4
Aw 0.5 0.49 0.49 047 0.43 0.49
Lf 35.09 17.84 17.84 3212 28.47 34.92
Lr 0.06 0.12 0.12 0.09 0.07 0.1
Lw 0.04 0.02 0.02 0.03 0.03 0.04
Storage: 1 Ra 0.61 0.32 0.32 0.52 0.35 0.61
Af 0.31 0.17 0.17 0.19 0.13 0.3
Ar 047 0.5 0.5 0.36 0.3 0.43
Aw 0.29 0.3 0.3 0.37 0.32 0.44
Lf 3.04 7.9 7.9 10.82 6.49 14.18
Lr 0.13 0.21 0.21 0.17 0.14 0.19
Lw 0.02 0.03 0.03 0.04 0.03 0.05
As 2.55 2.14 2.14 3.55 2.26 4.29
Storage: 2 Ra 0.65 0.7 0.7 0.58 0.5 0.65
Af 0.15 0.1 0.1 0.16 0.14 0.18
Ar 047 0.5 0.5 0.44 0.39 0.47
Aw 0.23 0.19 0.19 0.23 0.21 0.28
Lt 0.74 17.52 17.52 17.89 12.03 21.6
Lr 0.23 0.21 0.21 0.27 0.23 0.35
Lw 0.02 0.01 0.01 0.02 0.02 0.03
As 2.27 1.69 1.69 1.96 1.67 2.26
As12 2.77E03 1.00E-03 1.00E-03 1.83E-03 1.43E-03 216E-03
As21 0.09 0.82 0.82 0.41 0.22 0.6

Final: Parameter set that was most frequently chosen by the Bayesian optimization method
and was used for all of the simulations, unless otherwise noted.

Best1l: Parameter set obtained from the classical optimization procedure.

Best? and the remaining columns were the result of the Bayesian optimization.

of C in the system and in each compartment. The calculations required for these metrics
were performed using the parameter set that was most frequently chosen by the Bayesian

optimization method for each model, unless otherwise noted.

Fluxes of C released from the compartments

The three models predicted different mean fluxes of C released from each compartment at steady
state (Figure 3.5). Nonetheless, the Structural Foliage compartment had large uncertainties and
overlaps among the flux distributions of the three models. This means that certain combinations
of model structures with parameter sets result in similar predictions of Str. Foliage C release
fluxes. However, for the other compartments these differences were larger. Thus, regardless
of the parameter sets, the differences in model structure lead to the prediction of different C

release fluxes at steady state.
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Figure 3.5: C release fluxes from the compartments at steady state, with uncertainty ranges obtained from the set of
posterior parameters obtained by Bayesian optimization.

Radiocarbon content in each compartment

The simulated radiocarbon content of fast cycling compartments (e.g. Photoassimilates, Str.
Foliage, and Storage (fast)) had a stronger resemblance to the atmospheric §'4C' values than
the slower cycling compartments (Figure 3.6). However, for the Str. Foliage of the models with
storage there was a time lag of about 3-5 years with respect to the peak that corresponds to
the ‘bomb-spike’ Furthermore, the accumulation of radiocarbon in slow cycling compartments
such as Wood and the Storage (slow), was characterized by a slow incorporation of radiocarbon
that resulted in large §'4C values of the last part of the curve. The radiocarbon accumulation
in the Roots compartment was not as fast as in the Foliage compartments, but was faster than
that of the Wood.

Differences in radiocarbon values for the different compartments hint to different levels
of mixing of carbon fixed at different times. For the fast cycling compartments such as the
Photoassimilates, the degree of mixing is relatively low because most of the radiocarbon reflects
the values in the atmosphere. For other compartments that cycle at slower rates, the mix of
recent and old radiocarbon results in important divergences from the atmosphere. Mixing of

carbon of different ages can be further studied with ages and transit times distributions.
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Figure 3.6: Radiocarbon simulations for the three model structures. The black curve corresponds to the &' *C in the
atmosphere, and the other colors depict the vegetation compartments.

Age and transit time distributions

The age and transit time distributions were calculated assuming that the system was in steady
state. These distributions had a wide range, expanding from 0 to several decades old carbon,
and their shape varied according to the model structure (Figure 3.7). The ascending order
of the models according to their mean age, from young to old, was: Storage: 0, Storage: 1,
Storage: 2. As expected, the model with the oldest ages (Storage: 2) had the longest transit
time. These trends were partially observed when we analyzed the uncertainties in mean age
and mean transit times (Figure 3.7 (C) and (D)), but the uncertainties were large. These large
uncertainties may have resulted from the high correlation between the models parameters.

At the compartment level, the above mentioned age-dependent ranking of the models only
holds true for Wood (Figure 3.8), which was the compartment with the closest resemblance

to the overall system age densities because it comprised most of the mass in the system. The
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Figure 3.7: System ages and transit times. (A) Age and transit (B) time density distributions calculated for each of
model structure using the best parameter set from the optimization; the dashed and dotted lines mark the mean and
median ages, respectively. (C) Spread of mean ages (left) and mean transit times (D) obtained from all posterior
parameter sets from the Bayesian optimization.

inclusion of two storage compartments in Storage: 2 resulted in a relatively ‘Hat’ distribution;
with a long tail that leads to a mean age 12-20 years older than the other two models, but with
a peak at very young ages. This contrasts with the other models, which peaked at around the
same time, but had steeper declines with age.

The only compartment that had an age maximum at 0 years was the Photoassimilates.
Hence, this compartment had a unique distribution curve reflecting the fact that all new carbon
(age = 0 years) enters the models only through this compartment. Although the other fast
cycling compartments (Str. Foliage and Roots) had peaks after 0 years, their C age was
distributed towards young ages, with mean ages between 1 and 3 years. This spread in the C

age of Str. Foliage for the models with storage may suggest either that the cycling rate of this
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compartment was relatively slow or that it received C from compartments with older carbon.

(A) (B)
Photoassimilates Str. Foliage
Storage: 0
1.5 Storage: 1
Storage: 2
| Mean
-a 1 D_
&
S
% 0.5
0.0
0.00 0.25 0.50 0.75 1.00 0 i 2 3 4 5
Age [years]
(C)
Wood
- Storage: 0
ooa- |\ Siorage: 1
-+ Siorage: 2
‘ 4 | Mean 0.104
P b
o 002 - \ £
= ' . BB z
L -, \ _8
SN
| R
g | S 8 § 0.05
AN,
0.00 l - 0.004
0 25 50 75 100 0 5 10 15 20
Age [years] Age [years]

Figure 3.8: Age densities simulated for the compartments: (A) Photoassimilates, (B) 5tr. Foliage, (C) Wood and (D)
Roots. Each model structure is depicted in a different color. Dashed lines correspond to mean ages.

The age densities of the storage compartments, just as the ones for Foliage, Wood, and
Roots, consisted of curves with peaks at young ages and long tails (Figure 3.9). In the case of
the fast cycling compartments, the mean age of the models Storage: I and Storage: 2 was 1.25
and 1.55 years, respectively, but the long tail indicates that it is also probable to find 5-year-old
C in this compartment. The mean age of the slow cycling compartment was 13.25 years, but
the mixing of ages is also observed in the density curve, in which the age of C ranged from 0 to
more than 50 years.
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Figure 3.9: Age densities simulated for the models with storage compartments. (A) Fast cycling compartment of
models Storage: 1 and Storage: 2. (B) Slow cycling storage of the only model with 2 storage compartments.

Discussion

Our simulation results showed that C cycling in ecosystems can be largely influenced by different
carbon allocation strategies, which may result in diverging carbon cycling predictions for specific
simulations. However, not all of the different prediction metrics were impacted with the same
strength by the assumed number of compartments and values of cycling rates, so results here

need to be interpreted within the context of predicted uncertainties.

Diagnosing model performance with C release fluxes, and age and transit

time distributions

The simulated ecosystem properties that were more strongly impacted by the assumptions
behind model structure were: the Huxes of C released from each compartment, and the ages and
transit time distributions of carbon in the system and in each compartment. This sensitivity
to different carbon allocation strategies makes them good candidates for diagnosing model
performance.

Given that the C release fluxes from Photoassimilates, Roots, and Wood were highly sensitive
to the three model structures, empirical measurements of these compartments could be used as
constraints during the parameter estimation procedure. The radiocarbon accumulation was
less sensitive, but can be useful to diagnose the models’ performance according to the cycling
speed of their compartments. As an example, we could identify the short delay of the 4'4C
signature of the Str. Foliage compartment with respect to the current vear’s atmosphere, in the
models with storage (Figure 3.6). Although such a delay could indicate that this compartment
had a slightly slower C cycling than what is expected for a deciduous forest (Trumbore et al,
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2002, 2015), it could also indicate the flux of old C from the slow cycling compartments into
the foliage. This delay in radiocarbon accumulation was also observed as shifts to older ages
in the age distributions (Figure 3.8), with a resolution of months. In general, radiocarbon
measurements can also help to constrain model parameters with respect to how fast or slow
different compartments cycle C (Trumbore et al., 2016), but with less resolution than the age
and transit time distributions.

Owerall, the age and transit distributions were the best candidates to diagnose model
performance and potentially constrain parameter estimations, because they were the most
sensible to differences in model structure and parameter values. So, what had the highest
impact on these distributions, the differences in cycling rates or the inclusion of storage
compartments? It seems like these two characteristics had direct and indirect effects on the
predictions of the above mentioned distributions, respectively.

On the one hand, as we initially inferred from the equations 3.2-3.5, the calculation of age
and transit time distributions depends on the C partitioning schemes (E} and the transfer
-cycling- rates between plant compartments (B). Therefore, different parameter values that
compose the vector ﬁ and matrix B directly result in the different calculations of ages and transit
times. This was tested by running the three models using the same parameter set; although they
still differed in the number of storage compartments, there was almost no difference between
the age and transit time distributions in the whole system and in the compartments (Figures 7,
8, and 9). These similarities were also observed for the radiocarbon accumulation (Figure 6).
The only exceptions to the above were the foliage compartments of the model Storage: 0, which
were faster than in the other two models.

On the other hand, model structure had an indirect effect on the predictions of age and
transit time, most likely because the addition of storage compartments impacted the outcome
of the parameter estimation and these different parameter values then lead to different age and
transit time predictions. An illustration of this is the fit of the models to the data (Appendix
chapter 3, Fig. 5): Running the three models with the parameter set that gave the best fit
for the model with 2 storage compartments hampered the fit of the model with no storage
compartments to the woody and foliage C measurements. Thus, although the system had an
external C input that could never be depleted because it was assumed to be a constant fux,
the parameter estimation accounted for extra compartments by modifying the cycling rates to
optimize the fit of the models to the data.

As expected, systems with ages distributed towards older values also have older transit
time distributions. In fact, their correlation can be confirmed by observing the formulas once
again. The calculation of these two properties depends on the matrix of transfer coefficients
(B), but there are other factors driving these two distributions. The additional factor driving
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the mean age calculation is the relative amount of C stock at steady state; whereas the mean
transit times depend on the C partitioning schemes (S’} (Metzler and Sierra, 2018). So, the
mean transit time calculation is only limited by the rates of C transfer, while the mean age
of C in the system also depends on its mass. This is why the mean age of C in vegetation is
determined by the age of the compartment where the majority of the mass is stored, which in
this case is Wood. We further explored this relation in the scatter plot in (Figure 10), where
the distribution of the points below the 1:1 line indicate that the three models have mean ages
greater than their mean transit times. This means that they have big masses of old carbon, but
they also have highly dynamic compartments through which carbon transits very fast.

We also diagnosed the model performance by comparing the predicted ages for the storage
compartments (Figure 3.9) with the mean age of NSC measured in previous empirical studies
(Richardson et al., 2013). The mean age of NSCs from red maple cores obtained at Harvard
forest, was 7.2 & 7.7 yr; for the fast cycling storage compartments of the models Storage: 1
and Storage: 2, it was 1.25 and 1.55 yr respectively, and 13.25 yr for the slow cycling storage.
Clearly, the mean ages of fast storage compartments are smaller than the mean value calculated
empirically, but given the uncertainty of the measurements, they are still within the observed
range. Furthermore, the density distributions of these storage compartments show that even
though they are well-mixed, their C do not have the same age. Thus, it is also likely to find C
between (-5 yr and 0-50 vyt in the fast and slow cycling storage compartments, respectively. This
resonates with the fact that although stemwood NSC is highly dynamic on seasonal time-scales,
it can also be surprisingly old (Richardson et al, 2013). Then, the two hypothesis regarding C
mixing -inward mixing of younger and older C in one compartment (Trumbore ef al, 2015), and
2 compartments (young and old) that mix (Richardson et al., 2013)- converge in the concept of
age distributions because C is simultaneously been fixed and removed from the compartments
at different times, a process that results in C age distributions. We can think about these
dynamics in the context of a stochastic process. The total amount of C that enters and leaves
each compartment is fixed and given by the deterministic model, but the time that each C
particle stays in a compartment varies stochastically within them. So, the age distribution of
C particles in each compartment is a mix of new and old carbon, with distribution functions
emerging from the deterministic model (equation 3.2).

Another important observation regarding the mean age predictions is the fact that these
calculations were performed under the assumption that the system, in this case the forest, was
in steady state. Since the C stocks in Harvard forest continue growing, the calculated mean
ages and transit times should be interpreted as predictions of the mean age that the carbon may
have in this forest once it is in steady state. Based on this, the time that this forest will take to

reach the steady state is highly divergent among the three models. As an example, the model
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with two storage compartments would predict 20 yr more of growth to reach a steady-state
close to that of the model with no compartments.

In case of systems that are driven by environmental variables and result in time dependencies
of inputs (GPP) and process rates, the mean ages and transit time distributions would also
change over time. To calculate the means of these time-dependent distributions one would need
to know the complete history of inputs and cycling rates for the duration of the simulation
(Rasmussen ef al, 2016), information that is not available for Harvard forest. Nonetheless, we
can predict that if there were external factors influencing the simulations, there would be a
different prediction of mean ages and transit times at each time step, but the model structure
(C allocation scheme in particular) would play a major role determining the shape of these
distributions.

It is also noteworthy that what we assume to be a compartment, e.g. Wood, does not
necessarily meet the well mixed assumption, so its particles may not have the same probability
to leave the compartment at all times. Richardson et al. (2015) found a low concentration
of old NSC in old rings of stemwood, and a high concentration of old NSC in coarse roots
and fine roots of pine. Additionally, they found young and old C in roots. These dynamics
were interpreted as poor C mixing and reserves that cycle on different timescales (Richardson
et al, 2015), but they may also obey to physiological constraints. For example, the parenchyma
in heartwood is thought to be dead, so NSC trapped in there may no longer be accessible
to the plant (Richardson et al., 2015). So, to study the physiological significance of these
findings with models, we might have to include such details regarding tree physiology. The
important point we want to emphasize however, is that mixing of carbon in different vegetation
compartments results in C age distributions that have been little studied previously. Our results
are a first attempt to obtain these distributions using a number of assumptions, but in the
future other analysis with more complex models and explicit formulas for time-dependent age
distributions would help to obtain better predictions of ages and transit times as affected by
specific physiological processes.

Although there are still knowledge gaps regarding plant physiology, and current C-dating
methods only measure mean age of C rather than age distributions (Richardson ef al., 2013},
we expect our results to motivate future work, particularly in the use of isotope tracers and
their time evolution to approximate age distributions. Biosphere models can be enhanced
with structural adjustments and the uncertainties in the parameter values can be reduced by
constraining them with age and transit time distributions. These improved models could then
be used to test hypotheses regarding physiological questions, and assess the sustainability of

current terrestrial C sinks, given changes in environmental forcing.
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Model equifinality (identifiability)

Model equifinality (Medlyn et al, 2005) was evident from the fact that despite having different
mumber of compartments and values of cycling rates, all of the three models had similar
simulations of C stocks (Figures 3.3 and 3.4). Along with model equifinality, we obtained a
high collinearity between some parameters, implying that they are non-identifiable, i.e., they
cannot be uniquely estimated from the given data sets (Soetaert and Petzoldt, 2010). Thus,
for these particular models, the time-course measurements from only 2 out of 4-6 vegetation
compartments is not sufficient to estimate the values of 7-10 parameters.

Model equifinality as well as the impossibility to uniquely identify certain parameters
(parameter non-identifiability) is expressed as high correlations between the parameter sets.
Positive parameter correlations, may indicate practical non-identifiability, where the insufficiency
or poor quality of data is not a good constrain for the parameters. In addition, a negative
parameter correlation can be a symptom of structural non-identifiability, which is the result of a
redundant parameterization (Raue et al., 2009; Timmer, 2011; Raue et al., 2012; Cressie et al.,
2009). Thus, the three models had practical and structural non-identifiabilities, which means
that they need to be constrained with more and hetter data, and they need to be restructured
in order to avoid compensation of fluxes into and out of the compartments.

Since this study was limited by the availability of relevant empirical data, the parameter
values that we used are only one of many possible outcomes of parameter estimations using
the same data sets. Therefore, it is possible that none of these models accurately depict the
C cycle in the Harvard Forest. However, these problems experienced with parameter non-
identifiability are not an isolated case; the process of finding unknown rates of C sequestration
by fitting biosphere models to empirical data (Luo et al., 2003) is often hampered by parameter
non-identifiability (Schaber and Klipp, 2011). This is a real problem because parameters such
as those that correspond to carbon turnover explain most of the variation in the response of
terrestrial vegetation to future climate and CO2 (Friend et al, 2014) and are highly important

in determining C age and transit times.
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Conclusions

We obtained age and transit times distributions of carbon for simple vegetation models with
contrasting carbon allocation schemes. Our results show that mixing of carbon in different
vegetation compartments results in C age distributions not explored before in previous studies.
The shape of these distributions depends largely on model structure, and in particular on how
carbon allocation is represented in models.

Models with none or one storage compartment may fail to explain the mixing of ages
found in different vegetation compartments, but they are more parsimonious than the model
with 2 storage compartments. Nonetheless, parameter collinearity and model equifinality were
persistent problems that might be solved if more constraints are added, since the time series of
C in foliage and wood are not enough to parameterize a full vegetation model.

Although all models predicted similar C stocks in vegetation compartments, the inclusion
of a carbon storage compartment resulted in very different predictions of age, transit time
distributions, C release, and isotopic composition. Thus C ages and transit times, which can
be indirectly measured using isotope tracers, can be used to improve biosphere models via
examination of their structure and estimation of parameter values, which then can be used to
assess the strength of C sources or sinks from vegetation.

Finally, it is advantageous to consider age and transit times as distributions, rather than only
mean values; with their distributions we obtain additional insights on the temporal dynamics of
carbon use, storage, and allocation, which not only depends on the rate at which C flows into

and out of the compartments, but also on the stochastic nature of the process itself.
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4

Source and sink limits on carbon allocation in

vegetation: A dynamical system perspective

Vegetation is to a large extent resilient to changing environmental conditions by its ability to
use storage reserves or to remobilize carbon and nutrients, therefore adjusting carbon transfers
among compartments. Some environmental stressors can limit the strength of C sources and
sinks in vegetation, but the interplay between these limits has not been analyzed yet from
a theoretical perspective. We employved a simplified analytical model of carbon allocation
to predict the vegetation response to source and sink limitation scenarios. With this, we
ventured to answer three questions: (i) What model structure can represent the central role of
non-structural C in vegetation functioning? (ii) Do the source and/or sink limitations alter the
ratio between C stocks in equilibria? (iii) Are there alternative equilibria? How do they change
under different source and/or sink strengths? We represented the central role of non-structural
C in vegetation functioning with two compartments: a soluble sugars compartment that had a
dual source/sink capacity, and a reserves compartment. Our model predictions were in line with
empirical observations of vegetation growing under source and, or sink limitation. We found
that strong sink limitations can lead to oscillations in the model solutions and shifts in the ratio
between C stocks in equilibria. Our findings challenge the idea of NSC as a mere ‘overflow’ or

‘buffer’ compartment.

Introduction

Plants experience strong changes in environmental conditions while maintaining their sessile
condition. This is possible by making adjustments whose impact transcend physiological

processes, and could affect regional and even global energy and element fluxes (Keenan et al.,
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2014). One of the ways in which plants cope with a changing environmental stimuli is by
adjusting the partitioning of photoassimilates from sources (donors) to sinks (recipients). In
fact, the remobilization of non-structural carbon (NSC) (from reserves to other sinks) is what
allows plants to recover from periods of non lethal drought (Hartmann et al., 2013), extreme
temperatures (Hoch and Kérner, 2003), shade (Kobe, 1997), tissue loss (Wiirth et al, 2005),
among others.

In this sense, vegetation can be considered as a system of C sources and sinks. The major C
source in vegetation is the C supply gained through photosynthesis. After their assimilation,
the photoassimilates are transported to plant sinks (compartments) such as leaves and woody
tissues. Moreover, some sinks (e.g. NSC) can also become C sources, when they replenish the C
of other sinks, such as the case when vegetation recovers from environmentally induced stress.
While the importance of this source-sink interplay in vegetation functioning has motivated
several studies, the identification of C transport between tree parts, and the characterization
of the specific mechanisms that regulate carbon gain and distribution in vegetation are still
unknown.

Quantifying C transport between tree parts has indeed been an elusive task, but Klein and
Hoch (2015) were able to make an approximation using a C balance approach. They combined
measurements of C exchange between the tree and its environment with the partitioning of
sequestered C among tree compartments. Important progress has also been made with regard
to the identification of the mechanisms regulating C gain and distribution (carbon allocation).
Empirical findings have lead to the characterization of four factors that limit carbon allocation,
which Hartmann et al. (2018) summarized as follows: (i) source strength, (ii) rate of translocation
of C via phloem, (iii) sink strength, and (iv) sink priority.

Source strength refers to the strength of the C supply from photosynthesis and for remo-
bilization of storage to other C sinks. Therefore, this strength depends on environmental
factors such as light, CO2 and water availability. The rate of translocation of C via phloem
determines the speed of C transport between plant parts, and is influenced by processes such as
osmoregulation. The sink strength is defined as the maximum potential of C import rate of a
sink; e.g. the maximum amount of C that a compartment can import for growth. Finally, the
sink priority refers to the preference of a given sink over competing sinks to be supplied with
photosynthate. This preference can respond to an established hierarchy such as the following:
maintenance respiration > growth of the canopy and fruit development > stem cambium > root
growth. Storage is considered to have the lowest priority. Changes in sink priority have also
been attributed to phenology (Epron et al., 2012); for example, Epron et al. (2011) observed a
competition between the *C partitioned to soil CO2 efflux and the aboveground growth in late

spring, as well as the storage in late summer, for a 20-year old beech stand. The sink priority
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can also respond to the sink proximity to sources, or by the genetic regulation of proteins that
affect phloem loading and unloading in sink tissues.

These four factors are represented in the figure 4.1. The limitation on source strength is
symbolized with the function {(t), and the limitation on above and belowground sink strength
is symbolized with the functions a(t) and p(t), respectively. The array of vertical and horizontal
fluxes represent the sink priority in response to the sink proximity to sources. The horizontal
distribution of the compartments -reserves, soluble sugars, structural compartment- represents
the rule: “last in, first out” (Lacointe et al., 1993), since the structural compartments only
receive the old C from the reserves if it is remobilized through the soluble sugars (which
consists mostly of newly fixed C). Additionally, the C used for respiration also comes from the
soluble sugars compartments, although the respiration is also proportional to the amount of
living structural biomass. This scheme was intuitively designed based on plant physiology, and
resembles the scheme used by Klein and Hoch (2015) in their carbon balance approach.

C{t} = .f(ﬂ"ampnr\uturn,wntar,iight,atc.}
kq: Assimilation rate
R.: Autotrophic respiration
Ek{!.::l = .f(']"ampzrs:urz,wutar,z:c.}
F{t} = f{ﬂ"empnr\fﬂurn__wntzr,ntﬂ.]
U= g{t] #* Fatrur:mrg # kl r: Rate controlling the flux )
Ryp w,ry: C released or lost (litter, etc.)

lefF, W, B): Maintenance respiration
- RnhF = -sttructura}
RoW =

(FaliveWgtructure)
RnR= -f(Ra tructure)

Figure 4.1: Carbon allocation scheme based on (Hartmann et al, 2018). The figure shows a system of nine vegetation
compartments -blocks- with C fluxes among them -arrows-. F, W and R stand for foliage, wood and roots, respectively.
Each of these plant parts has a structural, soluble sugars and reserves compartment. The arrows point in the direction
of the C flow, and the symbols associated to them represent the rates at which these fluxes occur. {, o, p are
functions that modify the flux associated to them, thus indicating source, aboveground and belowground limitation,
respectively; they are functions of environmental variables (e.g. some environmental controls of photosynthesis are
light, temperature, nutrient and water availability, among others (Kozlowski and Keller, 1966)). u is a scalar function
of system input (C assimilation via photosynthesis). fir w, m)s: i5 3 function controlling the C flux from structural
compartments to soluble sugars, it depends on the amount of soluble sugars.
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Figure 4.2 represents the interplay of two of the four limiting conditions: source and sink
strength limitation. These schemes can also be viewed as hypothesis for model predictions;
for example, figure 4.2(a), (b), and (c) shows predictions of system behavior under (i) source

limitation, (ii) prolonged or stronger source limitation, and (iii) sink limitation, respectively.

(b) (c)
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Figure 4.2: Schematic representation of limits of C allocation based on (Hartmann et al., 2018). The figure shows
a system of nine vegetation compartments under four different circumstances. F, W and R stand for foliage, wood
and roots, respectively. Each of these organs has a structural, soluble sugars and reserves compartment. When the
translocation and sink strength are not limiting, the rate of C partitioning to the sinks is a function of source strength
and sink priority. (a) When there are environmental constraints on source strength -photosynthesis- e.g. low [CO2z]
and lack of light, which do not affect growth directly, the C fluxes are reduced, and so is the C in soluble sugars. This
reduces the C flow to structural compartments and potentially induce the conversion of structural C to soluble sugars.
(b) If the source limitation continues for an extended time, or takes place in close intervals, the vegetation will start
using older C reserves. (c) If the translocation and source strength are not limiting, but there is a sink limitation
(could be caused by low temperature, non-lethal drought), C is partitioned to the structural compartments until it
reaches the limit of the sink, decreasing the cycling rate of C to these compartments. This results in the accumulation
of soluble sugars and reserves.

The four factors that limit the carbon allocation in vegetation have been studied mostly
separately, or without explicit relation to carbon allocation. As an example, Minchin and
Lacointe (2005) proposed a mechanistic model that combined the transport-resistant approach
with phloem loading dynamics. Other studies evaluate the effect of a few environmental
variables on one or two of the factors that limit C allocation. Omne of the most studied
environmental variables is water availability; e.g. McDowell et al. (2013) examined the model-
based understanding of drought-induced vegetation mortality, and Fatichi et al (2016) modelled
the plant-water interactions in an ecohydrological overview from the cell to the global scale.
Other modeling and empirical approaches have also focused on the interplay between water
availability and carbon allocation, under elevated CO2 conditions (Fatichi and Leuzinger, 2013).
Perhaps the closest and most recent approach on combining the knowledge obtained from
empirical findings and modelling to tackle the ‘long-standing puzzle’ of sink limitation has been
the data assimilation approach of Mahmud et al. (2018). However, the model implemented in
that work lacked explicit formulas for source and sink limitation.

Those studies are generally motivated by the question of whether the vegetation will be able
to survive projected climatic conditions or not. Other studies revolve around the concept of safe

operating space (Scheffer et al., 2015) whose boundaries are acceptable levels of environmental
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stressors. Manzoni et al. (2014), for example, proposed a minimal plant hydraulic model and
found a bifurcation in the hydraulic failure, where some environmental parameters trigger the
loss of a “physiologically sustainable equilibrium” The term equilibrium leads us to another
interesting topic: Given that plants adjust to drastic changes in environmental forcing via
acclimation, they can have more than one stable state —or equilibrium, or fixed point, all these
terms will be used interchangeably throughout this text. Bryla et al. (1997) found that citrus
plants can acclimate to changes in water levels and temperature by shifting to higher or lower
respiration rates. How easily can they shift between alternative steady states? Are there points
of no return?

Evidently plant growth depends on factors that control the conversion of carbohydrates
to new tissues (e.g. nutrient availability, temperature and cell turgor (Kozlowski and Keller,
1966; Kérner, 2015)). Nonetheless, the prevailing assumption amongst models is that plant
growth is primarily controlled by the C supply from photosynthesis i.e., source strength, thus
ignoring sink strength limitation on growth. Here, a simplified analytical model of carbon
allocation in vegetation is employed with explicit formulas for source and sink limitation. Three
main questions were addressed: (i) What model structure can represent the central role of
non-structural C in vegetation functioning? (ii) Do the source and/or sink limitations alter the
ratio between C stocks in equilibria? (iii) Are there alternative equilibria? How do they change

under different source and/or sink strengths?

Methods

Working definitions

The dual role of non-structural carbohydrates, in particular the soluble sugars (55) as sinks
and sources may generate confusion when the term sink or source strength (or in the opposite
case, limitation) is used in this work. This is why it is important to distinguish them; in this

context:

» Source strength only refers to the C supply from photosynthesis —55 are the sink of the
photosyaothetic source.
« Sink strength refers to the maximum C import rate of the structural sinks (foliage, wood

and roots) for their growth —55 are the source of C for the structural compartments.

Model description

The model description follows the ODD (Overview, Design concepts, and Details) protocol
(Grimm et al., 2006, 2010).
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Chapter 4. Source and sink limits on carbon allocation in vegetation: A
dynamical system perspective

1. Purpose

This model is a process based representation of the central role of non-structural C in
vegetation functioning, particularly in the context of source and sink limitations on carbon
allocation. Figure 4.3 shows the vegetation compartments considered and the Huxes between
them. The carbon fluxes modelled are constrained by mass balance and are calculated using a
set of ordinary differential equations 4.1-4.5. Despite the nonlinearities of some of these fluxes

(see equation 4.1), the simplicity of the model facilitates the identification of fixed points.

l £: Sealar for source limitation
U= C T R ky: Assimilation rate
R;: Autotrophic respiration
Rm: Maintenance respiration, depends on
living parts of structural compartments
foliage, wood and roots
ce: Sealar for aboveground sink limitation
p: Secalar for below ground sink limitation
r: Hate controlling the fux
Bip w,m: C released or lost (litter, ete.)

Figure 4.3: Schematic representation of the model. The model is a system of five vegetation compartments -blocks-
with C fluxes among them -arrows-. F, W and R stand for foliage, wood and roots, respectively; together, they
constitute the structural part of the vegetation. The non-structural carbon is divided in two compartments: soluble
sugars (S5) and Reserves (starch, lipids, etc.). The arrows point in the direction of the C flow, and the symbaols
associated to them represent the rates at which these fluxes occur. w is a scalar function of system input (C assimilation
via photosynthesic). All the photosynthesized C is first collected in the S5 compartment, and from there it is transferred
to the structural compartments and the Reserves. The C stored as reserves may also be converted to soluble sugars.
£, o, p are scalars that modify the rates of the fluxes associated to them, thus indicating source, aboveground and
belowground limitation, respectively; they can have values between 0 and 1. The flux from structural compartments to
soluble sugars is neglected.

2. Entities, state variables and scales

The model consists of five state variables, i.e., vegetation compartments: soluble sugars (55,
reserves (Hes), and structural foliage, wood and roots (Fatrue, Watrue, and Hagrue, Tespectively).
Other parameters used in the model are described in the table 4.1.

3. Process overview and scheduling

The vegetation system modelled here consists of a photosynthetic input that enters via the
soluble sugars and from there it is distributed to other compartments. This central position
of soluble sugars guarantees its priority, which means that the other compartments can only

obtain C when there are soluble sugars. This is in agreement with empirical findings where
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Table 4.1: Variables and parameters of the model.

Symbol Description Value Unit
85 Soluble sugars (soluble NSC) 15 kgl -
m—2
Res Carbon in reserves (non-soluble NSC) 15 kgC' -
m-2
Foirne Structural carbon in foliage 15 kgC' -
-2
m
Watrue Structural carbon in wood (wood of stem, 150 kgC' -
branches, and roots) m~?
Rairue Structural carbon in fine roots o0 kgC' -
m-2
I Maintenance respiration scalar 1000.0 kgC™!
fu Scalar for aboveground sink limitation 1
n Proportion of photosynthetically fixed carbon 0.5
partitioned to S5
Tz Flux rate of carbon from Hes to S5 0.0015 day !
a1 Flux rate of carbon from 55 to Hes 0.001 day ™"
1F Rate in which carbon leaves from Fagrue to the 0.0 day !
exterior (e.g. litter)
TR Rate in which carbon leaves from R, ;. to the 0.0005 d.uy_i
excterior
Tw Rate in which carbon leaves from Watrue to 0.0001 day ™"
the exterior
ky Atmospheric C absorption rate 1 day !
liveW ood Percentage of W, that is still alive 0.1
maTa Max. flux rate of carbon from 55 to Farue ﬁ day ™
AT Max. flux rate of carbon from S5 to Wirue 50 day ™
AT Max. flux rate of carbon from 55 to Ratruc Toee day !
P Scalar for belowground sink limitation 1
[ Scalar for source limitation 1
a1 Flue rate of carbon from 55 to Farue € - TTMIT 31 d.uy_i
a1 Flue rate of carbon from 55 to Watrue € - TIMIT 41 d.uy_i
Y51 Flhx rate of carbon from 55 to Ratrue X - MaTEL day ™!
Rm Rate of maintenance respiration Fotrnet Rotrnct (liveWood Watrus) day !

Values for 55, Res, Forrue, Watrue, and Ry correspond to initial C stocks.
Values for {, @, and p varied according to the scenarios from figures 4.9 and 11.

reserve formation was prioritized over growth (Chapin et al., 1990). Carbon continiously flows
into and out of the compartments, with a rate of change computed with the set of differential
equations 4.1-4.5. The model was implemented using the Python 3 package bge-md 1. For this
implementation, the set of ODEs 4.1-4.5 was transformed into its matrix representation (see

table 4.2), according to the framework described in chapter 2.

Fnruﬂ + R:tme + “’rntruc - liveW ood

55 = Feprue - k1 - { 4+ Res-y12 + 55 (—r:t-muzm — - TRAT41 — Y21 — TATEL - §—

T
{4.1)
Res = —Res 712 + 88 -y (4.3
Fatrue = —Fatrue -7F + 85 - o - mazs (4.3
Witrue = 55 - o - mazrat — Watrue - 1w [4.4)
Ratrue = — Ratrue - TR + S8mazg p [4.5)

"https:/ /github.com/MPIBGC-TEE, /bge-md

a9
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Table 4.2: Matrix representation of the model

Name Diescription Expression
| e |
Res
T vector of states for vegetation = | Fatrue
“"’struﬂ
RJ“’“E
u sralar function of photosynthetic = Foprye-k1-§
inputs
‘|
0
B vector of partitioning coefficients of =10
photosynthetically fived carbon \‘HJ
0
—rz1— T3 —Ta1 — 751 — Bm Tz 0 0 0
T3 —7T12 ] ] 0
B matrix of cycling rates B= a1 0 —¥F 0 0
Tl 0 0 — 0
TEL 0 0 0 —TR
fw the right-hand side of the ODE fo=u(z)-F+ B(z)- -z

4. Design concepts

+ Basic principles: Here we assume that the functions that determine source and

sink limitation have solutions in the range from 0 to 1, where 1 is a scalar that
does not change the Hux when multiplied by it, i.e. it indicates no limitation. This
simplification has two important advantages. First, it avoids potential biases that
result from the representation of processes with different levels of detail (Govingjee,
2009). In fact, the inner transport mechanisms and processes behind sink limitation
are not as well known as the ones related to photosynthesis, thus the functions
related to source limitation can and has been described in more detail than the ones
related to sink limitation (Hilbert and Reynolds, 1991; King, 1993; Potter et al.,
1993; Foley et al., 1996; Murty and McMurtrie, 2000; Arora and Boer, 2005; Williams
et al., 2005; DeAngelis ef al, 2012; Luo et al., 2012). And second, the use of scalars
multiplying particular fluxes facilitates the control of the target of the limitation, and
thus the attribution of the observed dynamics to a particular treatment. Otherwise,
it would be extremely difficult to discern between effects of variables that have a role
in contrasting processes, such as temperature, water availability, etc.

Emergence: The C input (photosynthetically fixed C) of the vegetation system
modelled depends on the amount of C stored as structural foliage (Faruc), thus, any
changes in the size of this compartment have an impact on the system’s input.
Interaction: The C exchange between vegetation compartments and between the
vegetation and its surroundings is represented by the arrows in figure 4.3. The C
used for maintenance respiration of the whole vegetation system is extracted from
the soluble sugars (S5), but depends on the current biomass, i.e., the amount of

C in the living tissues of structural compartments -foliage, wood and roots. This
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results in a nonlinear flux.

5. Initialization

All the initial carbon stocks and parameter values used for the model runs are summarized

in table 4.1, unless otherwise noted.
6. Input data

Given that the model proposed here is autonomous, i.e. is not driven by external time-

dependent variables such as environmental drivers, no input data is required to run it.

Stability analysis

We based the stability analysis of the proposed model on the well established theory for
dynamical autonomous systems (Jacquez and Simon, 1993; Strogatz, 2014). First, we computed
the analytical solution of the system in steady state, i.e., we calculated the fixed points, which
are points where the C input and output of each compartment cancel out. For this, we set
the ordinary differential equations 4.1 - 4.5 to 0, and then solved them analytically, using the
Python package SymPy (Meurer et al., 2017).

Second, we assessed the stability of each fixed point by calculating the eigenvalues from
the Jacobian matrix for each of them, using the Python 3 package, bge-md (see link in
subsection 4 Model description - Process overview and scheduling). The eigenvalues provide
useful information regarding the qualitative behaviour of the solutions (Sierra and Miiller, 2015);
from them one can mainly infer whether the solutions of the modelled system would eventually
converge to a given fixed point or not. The eigenvalues can also indicate whether the system
solutions will approach the fixed points oscillating or not, because for complex eigenvalues of
the form A = € + —ix, € controls the rate of exponential decay and & the oscillation frequency
(Sierra and Miiller, 2015). Thus, the ratio between these real and imaginary parts (i.e. damping
ratio, ¢) indicates whether the system oscillates indefinitely, i.e. ¢ =0, or decays exponentially,
¢ = 1. The damping coefficient (¢) can be calculated using the equation (Lallement and Inman,
1995) :

—E

e — 4.6
¢ Vel + k2 (4.6)
Code availability

All of the simulations and figures for this work can be reproduced using the code and data

provided in the supplementary material.
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Results

Stability analysis

We found two fixed points by setting the ODE system (right-hand side of equations 4.2 - 4.5)
to 0, and solved equations 4.2 to 4.5 for each state variable, thus the solutions were in terms of
S5 and the dimensionality of our five dimension system was reduced to one dimension. We
replaced the state variables in the equation 4.1 with these solutions, which could then be solved,
i.e., we found the solution of 55 in steady state (equation 4.1 = 0). This solution could then
be computed into the remaining ODEs to find the solutions of the other state variables in
steady state. Aside from the fixed point [0,0,0,0,0], the non-zero fixed point has as solution

the following set of equations:

g5 _ 25.107al — 55107 % — 5.0- 10~ 10g @
1.0-10-% £+ 1.0-10-%
Res — LBOGAT - 10~ "af — 266667 - 10~ %2 — 333323 . 10~ 1% (4.8)
10-10-% 4+ 1.0.10-9p
. 5010~ 5 {u.uu&.:.;_u.uumm_ 1.0- 10—5,;}
F, = 4.9
strus 1.0-10~% 4+ 1.0- 10-%p (4.9)

0.0005a (0.005a¢ — 0.00011a — 1.0- 10~5p)

W — 4.10
atrue 1.0-10%a + 1.0- 1095 (4.10)
e 0.0001 (0.005a¢ — 0.00011a — 1.0 - 10-5p) i
strue = 10-10-%a + 1.0-10-%g (4.11)

Notice that equations 4.7 to 4.11 are written in terms of the limitation parameters {, o and
g, which would allow us to test how the fixed point changes with respect to limitation scenarios.
Note also that none of these equations is quadratic (or higher order), so the model can only
have maximum two fixed points for each parameter set, the fixed point with the empty system
and the fixed point determined by the equations (4.7) to (4.11) . This means that there are no
potential bifurcations or tipping points (Strogatz, 2014).

The eigenvalues for the fixed point [0,0,0,0,0] in the case all limitations are removed
(( = a = p=1) were: [—0.0001,—0.0005,—0.0822,0.0592, —0.0015]. All but one of these
eigenvalues are real negative numbers, which indicates that this fixed point is unstable, and
solutions that start close to this value are repelled from this point (Strogatz, 2014).

And for the second fixed point, calculated with equations 4.7-4.11 with { = a=p =1,
the complex eigenvalues were the following: [A; : —0.50832, Ay : —1.5641 x 10~2 + 0.0011i, Aq :
—1.5641 x 10~° — 0.0011i, Ay : —1.2745 x 10~% A5 : —1.5201 x 10~?]. Their negative real
parts indicate that this fixed point is stable, and the complex conjugate Az and As indicates
that solutions that start close to this fixed point converge to it through oscillations (Strogatz,
2014). Indeed, when we calculated the eigenvalues for this fixed point under different limitation

scenarios, and their respective damping coefficients, we found that under certain conditions
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(mainly when the aboveground sink limitation (o) = 0.01) the damping coefficient of eigenvalues
Az and Az is the closest to 0 (see figure 4.4 (b)). As a reminder, when the damping coefficients
= 0, the system oscillates indefinitely (Lallement and Inman, 1995; Sierra and Miiller, 2015).
This was further explored with the complex planes, i.e., plots of Real Vs. Imaginary parts of
the eigenvalues (figures 4.5 and 4.6). The complex plane in figure 4.6(a) for eigenvalues Az and
Az shows that when the aboveground sink limitation increases, so does the absolute value of
the imaginary part of the eigenvalues, while the absolute value of the real part decreases. This
trajectories follow a semicircle. In contrast, the eigenvalues A; and Ay always have imaginary
parts in the neighborhood of 0, independent of the limitation scenario.

The oscillations in the model solutions, which result from a strong aboveground limitation,
can be seen in figure 4.7 (b) and (c). The spirals can be observed in the phase planes (C
stocks in compartments plotted against each other) of the columns (b) and (c) of figure 4.8. In
contrast, the eigenvalues for the same model run with a constant photosynthetic input (u no
longer depends on the state variable F,.,.) only had real parts, thus there were no oscillations
(see figures 12 and 13).

Simulation of carbon allocation limits in steady state

We calculated the C stocks in steady state using the equilibria equations 4.7 to 4.11 under
different limitation scenarios (represented by combinations of the scalars (, a, and p) see figure
4.9. Thus, the C stocks plotted should not be interpreted as ‘transient’ states of C limitation,
they are the amount of C that each compartment would have when they reach the equilibrium,
given a limitation condition and any initial C stock. For these simulations, all the parameters
were kept as in table 4.1, except for the limiting scalars ({, @, or p), which varied according to
the limitation scenario. The results shown in figure 4.9 will be described in more detail in the
following subsections:

Source limitation: The simulations of C stocks in steady state is in agreement to the
hypothesis from figure 4.2 (a) and (b). The constraint in source strength resulted in reduced
C stocks (see figure 4.9(a)), and all of the compartments were equally affected. As the source
limitation approached its maximum strength, i.e. as { — 0, the sensitivity of the steady-state
carbon stocks increased.

Aboveground sinks limitation: When the strength of the aboveground sinks (structural
foliage and wood) was reduced, their C stocks decreased smoothly with the decreasing sink
strength, and accelerated when o — 0 (figure 4.9(b). The reduction in the C content of the rest
of the sinks (soluble sugars, reserves and roots) decreased in a smaller proportion, which could
have been the result of an unintentional source limitation given by the input dependency on
structural foliage —which was under sink limitation. This explanation can be confirmed by the
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belowground sink limitation simulations and the predictions of the fixed-input version of the
model (see figure 11(b)).

Belowground sink limitation: When the amount of C partitioned to the roots was
limited, the C content in this compartment was shortly reduced at first, but dramatically
declined when p — 0. All of the four remaining compartments had slow increases in their C
stocks, proportional to the sink limitation (see figure 4.9(c)).

Above and belowground sink limitation: The combination of the two former limita-
tions, i.e. the sink limitation on the structural compartments foliage, wood and roots, resulted
in similar reductions in the affected sinks (see figure 4.9(d)). On the contrary, the soluble
sugars and reserves had small proportional increases and, under certain sink strengths (e.g.
{=1,a<0.1,p < 0.25) the C stocks of non-structural carbon was higher than the structural
compartments. This change in the NSC:structural C ratio can be explained by the sink lim-
itation hypothesis (figure 4.2(c)), where a restriction in the How of sugars to the structural
compartments, results in their accumulation in the source compartments.

Source and sink limitation: This dual limitation can be interpreted as the representation
of drought-induced stress, leaving aside the effect that it has on the entire C transport; in the
early stages of drought the source strength is barely impacted, the aboveground sinks strength
is affected the most, and the belowground sinks are slightly buffered by the water content that
remains in the soil, so it is not as heavily impacted as the aboveground sinks (see figure 4.9(e)).
Under these two limitations the C stocks in steady state were reduced, following the trends
predicted for the individual above and belowground sink limitation scenarios, but with smaller
C stocks. The sugars and reserves were the least affected by the limitations. Interestingly, there
was a slight bump in the trend, possibly when the NSC accumulation slightly counteracted the

sink limitations ({ = 1,a = 0.05, p = 0.1).

Discussion

Representing the central role of non-structural C in vegetation functioning

with an analytical model

We developed a simple analytical model of carbon allocation to predict the vegetation response
to source and sink limitation scenarios. Our model representation not only satisfies the need for
the inclusion of a non-structural C (NSC) compartment to capture vegetation growth under
limited source or sink conditions as previously observed in empirical studies (Mahmud et al.,
2018), but it also portrays the multi-functional nature of NSCs, which can act as cash flow
and reserves —among other roles (Martinez-Vilalta et al., 2016). Perhaps the most important

feature of this model is that the soluble sugars compartment is an intermediary between the
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photosynthetic input and the structural C sinks, thus representing the central role of NSC in
vegetation functioning.

The soluble sugars have very important and diverse roles in the entire plant functioning
as summarized by Hartmann and Trumbore (2016). Soluble sugars are the products from
photosynthesis, but since they are rapidly converted to reserves, the most highlighted quality of
NSCs in general has been its buffering capacity. In fact, C reserves can “buffer any asynchrony
of supply and demand” (Hartmann and Trumbore, 2016), and in certain cases this buffering
capacity can cover C deficits over several growing seasons (Muhr et al., 2016). Thus, the amount
of C stored in a tree indicates its actual C-supply status, which reflects its capital for Hushing
and reproduction or to replace lost tissue (Wiirth ef al, 2005). However, these reserves can also
be transformed back into soluble sugars to perform other tasks or to be used for growth, which
is probable the reason why they have a dual behaviour: they act as a C sink with respect to the
photoassimilates, and as a major C source with respect to reserves and structural compartments
(see SS in figure 4.3).

Owerall, the vegetation representation proposed in this work challenges two persisting views
of carbon allocation in global vegetation models: 1. The role of non-structural C is far beyond
what has been represented in models, where it has reached to a point where they are only
determined by the imbalance between source strength (net assimilation) and the sink strength
(growth of structural compartments) (Hartmann et al., 2018). 2. With the inclusion of a sink
limitation to growth, it highlights the fact that growth is not necessarily a C source-limited
process, because what limits the biomass formation is the rate at which carbohydrates are
converted to new tissues, as it has been observed, in an individual scale, in cambial growth
(Kozlowski and Keller, 1966). This will be discussed in the next subsection.

Source and /or sink limitation can lead to changes in equilibria and alter the

ratio between C stocks

This analysis was mainly focused on the effect that C allocation limitation can have on the
stable state or equilibrium of a vegetation system. Thus, it is imperative to contextualize our
results in the stability analysis of dynamical system theory. Here we proposed an autonomous
non-linear model, which in principle means that it could potentially reach one or more fixed
points (equilibria). Contrarily, the solutions of non-autonomous models, i.e., models driven by
time-dependent variables, do not converge to a fixed steady state (Jacquez and Simon, 1993),
but may instead be attracted to a particular region, which increases the complexity of their
stability analysis (Miiller and Sierra, 2017). In contrast, one of the simplest types of models
whose stability analysis can be performed are the autonomous linear models with constant

input, which are models that can only have one fixed point (Strogatz, 1994). This fixed point
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is not zero, because a fixed point where all C stocks are 0 can only occur when the C input
depends on a state variable. An example is the model proposed here, whose photosynthetic
input depends on structural foliage (Fg,,.); if the C stock of Fg,,,. reaches 0 no input can be
generated, and all compartments will decay until no C remains in them. In addition to the fixed
point 0, the nonlinearities of the model proposed here could potentially lead to more than one
fixed point, because their steady state equations may have variables with orders of magnitude
higher than 1, e.g. a quadratic equation. Yet, the model proposed here only had two fixed
points, one of them zeros.

This non-zero fixed point represents the C stocks predicted by the model in equilibrium,
and can vary depending on the degree of C allocation limitation, just as it has been observed in
empirical studies (Bryla et al, 1997). Certainly, increasing source and /or sink limitation resulted
in smooth changes in the equilibrium, and the keyword is smooth because these adjustments
were not drastic or catastrophic, i.e. there were no tipping points. Instead, some limitation
scenarios had an effect on the way that model solutions approached the equilibrium, because
very strong source and/or sink limitation lead to an increase in the nature of oscillations as
captured by the damping ratio (see figure 4.7). There has been oscillations documented during
in situ 1*COq pulse labelling studies in 20-year-old beech trees (Plain et al., 2009), in a boreal
pine forest (Subke et al., 2009), in the soil CO; efflux of a temperate, 15-year old oak stand (in
September) (Epron et al, 2011), and on the stem CO; of a northern white-cedar (Powers and
Marshall, 2011).

The C allocation limitation scenarios also influenced the predictions of vegetation functioning.
Decreasing levels of source strength resulted in proportionally lower accumulation of C in all
compartments (see figure 4.9 (a)). This is not only in agreement with our intuitive predictions,
but also with empirical findings where reducing just the source -not the sink- strength resulted in
decreased C in the vegetation compartments. An example is the decrease in NSC of trees growing
in source-limitation conditions, observed at the individual level in an experiment designed to
test drought-induced tree mortality in pifion pine trees (Sevanto et al, 2014). Likewise, at the
forest stand level, an extended drought lead to a reduction of root NSC of mature longleaf
pine (Sword Sayer and Haywood, 2005). In contrast, NSC accumulated when source strength
increased to a higher extent than the sink strength (growth became a limiting factor), in 32-to
35-m-tall trees of a deciduous forest exposed to elevated COg (Korner et al., 2005).

In fact, when the strength of structural sinks such as foliage, wood and roots is reduced,
the carbohydrates not used for growth accumulate in reserves and soluble sugars (see figure
4.9 (c)-(e). These findings are in agreement with empirical studies where the NSC increased
at the expense of root growth in low temperatures (Alvarez-Uria and Kérner, 2007), and leaf
growth under limiting N availability (Cheng and H Fuchigami, 2003). Sink limitation has also
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been attributed to the altitudinal tree limit, where low temperatures affected the sink activity
-not the photosynthetic capacity- at the tree line and the surplus C was stored in the reserves
(osmotically inactive) (Hoch and Kérner, 2003, 2012).

Interestingly, if the sink limitation is strong enough (e.g. a < 0.01, p < 0.05, see figure 4.9
(b), (d) and (e)), the ratios between C stocks shift, with NSC even higher than wood C (in the
case of aboveground sink limitation). Thus, sink priorities change not by directly increasing
the rate at which C is transferred to a particular compartment, but by a strong decrease in C
transfer to other compartments (sink limitation), which then leads to the accumulation of C in
the source compartments —soluble sugars and reserves.

The strong sink limitation also affected the predictions of C age. As discussed in chapter 3,
the time that a C particle remains in a compartment since its entrance, i.e. C compartmental
age, depends on the probability of C particles entering this compartment and then leaving
after a certain period. Since this probability increases with faster cycling rates, fast cycling
compartments tend to have younger mean ages than slower ones. In this context, when cycling
rates are reduced by multiplying them by a coefficient < 1, the probability of particles leaving
the involved compartment decreases, and this results in the prediction of older compartmental
mean ages (see figure 14). This effect was mainly observed when there was a very strong
source and sink limitation (see figure 14 (a),(b), (d) and (e)), but the limitation impact was
noticeably reduced when the same age calculations were performed with a fixed-input version of
the model (figure 15) and almost disappeared for the linear version (figure 16). This means that
the nonlinearities in the model proposed here magnified the effect that the carbon allocation

limitations had on predicted mean ages.

Implications for C cycle modelling

With the simplified representation of source and sink limits on C allocation proposed here it has
been demonstrated that the C source-sink dynamics are a defining characteristic of vegetation
functioning. As an example, the model predicts that strong source and sink limitations can
affect the C age and the sink capacity of vegetation with respect to the atmosphere, because
ecosystems that have reached steady state under these limiting conditions accumulate less
mass and have older mean ages than those with stronger C source and sink capacities. This
behaviour has been observed in environmental gradients and contrasting ecosystems such as the
rain forest and the dry forest, but the fact that both responses were only significantly predicted
by the nonlinear model can be an indication that the nonlinearities may increase the model
performance.

Owerall, the model simulations explored here could steer the improvement of more detailed
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models, where the limitation scalars ((,a, p) could be replaced with functions driven by
environmental variables, and parameters estimated through the assimilation of experimental or
observational data.

Conclusions

Our simple model was able to display qualitative behaviours of source and sink limitation
that have been encountered in a wide range of scales: from single plants to forests. We found
that the central role of non-structural C in vegetation functioning can be represented with
two compartments: a soluble sugars compartment that acts as an intermediary between the
photosynthetic input and the rest of the compartments (it has a dual source/sink capacity),
and a reserves compartment, where the osmotically inactive compounds are stored.

In addition we found that strong sink limitations can lead to oscillations in the model
solutions, and shifts in the ratio between C stocks in equilibria. These shifts result from the fact
that the impairment of C How for the growth of some sinks lead to the C accumulation in the
source compartments (soluble sugars). Thus, under different source and /or sink strengths there
are smooth changes in the equilibrium states, where not limited compartments accumulate more
carbon than the limited ones.

All of our findings support the empirical inferences that challenge the idea of NSC as an
‘overflow’ or ‘buffer’ compartment that has been perpetuated in most dynamic global vegetation
models. It is clear that, given its involvement in all aspects of vegetation functioning, NSC has
a central role in C allocation in vegetation, and its accumulation when there are constraints
on growth of structural tissues is only an effect of its dual role as a sink of photosynthetic
input and source of the structural C compartments. Improving the representation of NSC in
models could enhance model predictions of the vegetation response to source or sink limitation

scenarios under changing environmental stressors.
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Figure 4.4: Damping coefficients under the different limitation scenarios. When there is no limitation, the damping
coefficient of all the eigenvalues are in the neighborhood of 1, and most of them remain there even under different
C allocation limitation scenarios. In contrast, A2 and A3 have slightly smaller values. They are also the only two
eigenvalues whose damping coefficients start to drop under stronger limitation scenarios, especially under strong
aboveground limitation (b) and a combined source and sink limitation (e). Another eigenvalue with an interesting
response is A4, whose damping ratio increases with increasing belowground sink limitation (c), and decreases when the
combined source and sink limitation is the strongest (e).

69



Chapter 4. Source and sink limits on carbon allocation in vegetation: A
dynamical system perspective

(a)

T
i
]
1
0002
[
1
0001 !
i
[
8
B
E o000 A r 3 ik 3 ik ke k -
E
=001 ‘
—-1.002
|
i
1
-5 —0.4 —03 —0.2 —0.1 0.0
Real part of eigemvalues
Al Al Al a1l Al
Az A2 Az Az Az
A3 Al A3 A3 A3
Ad M a4 ad as
AS A5 AS AS AS
— Souroe — amnk b sink —— a+h sanks —— source + sink
S
..
.
S
0002 .
S
S,
.
2
N A
S
, 00014 .
2 et
g T
B H‘H,
8 Tl
B - =,
g 0000 — !-;-
B e
E -
-
& -
e
£
—0.001 -
%
hg M
r"-‘-
=100 - T
r"-‘-
>
u-"'-
-
-0, 005 —-0.004 =0.003 =002 -1 0.000
Real part of eigemvalues
Al Al a1l Al a1l
A2 A2 Az Az Az
A3 F | A3 A3 A3
Ad M a4 as as
As As A5 A5 A5
— Souroe — amnk b sink —— a+h sanks —— source + sink

Figure 4.5: Complex planes for the model under different limitation scenarios. (a) All of the eigenvalues -see marker
symbols- plotted for all of the limitation scenarios -see colors-. (b) Same plot, but zoomed into the smallest values
of real parts. The color gradient indicates the strength of the C source or sink; the lighter color, the stronger the

limitation.
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Figure 4.7: Carbon stocks with respect to time. (a) Model solutions with initial C stocks and parameter values as
specified in table 4.1, no C allocation limitations. (b) Model simulations with same initial C stocks and parameters
as before, but with strong aboveground sink limitation: @ = 0.05. (c) Model solutions with initial C stocks in the
neighborhood of the steady state calculated with o = 0.05; this parameter value was also used for the simulations. (d)
Maodel simulations with same initial C stocks as in (c) but initial parameter values (no limitation).
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Figure 4.8: Phase planes of different combinations of vegetation compartments. The column (a) corresponds to model
runs with initial conditions as in table 4.1 (see figure 4.7 (a)). The plots in column (b) correspond to model runs
with the same initial C stocks as in (a), but with a strong aboveground sink limitation: « = 0.05 (see figure 4.7 (b)).
Finally, column (c) contains the plots from model runs with @ = 0.05 and initial C stocks in the neighborhood of the
steady state calculated with this parameter value (see figure 4.7 (c)). Interestingly, the spirals of columns (b) and
(c) occur in different planes. Additionally, the spiral for the phase plane of Foerue V5. Witrue only appears when the
simulations start in the neighborhood of the steady state calculated with « = 0.05 column (c).
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Concluding remarks and outlook

Our understanding of the influence of the terrestrial biosphere on the global carbon balance has
improved, and we have been able to predict possible scenarios for ecosystems in a climate change
context thanks to the development of global models of terrestrial biogeochemistry (Cramer
et al., 1999). A key comparison of 17 of these models categorized them as follows: 1) remote
sensing based models, 2) models of seasonal biogeochemical luxes, and 3) models of process and
pattern, which are capable of predicting the response of vegetation to climate change (Cramer
et al., 1999). This thesis on Nonlinearities in carbon allocation and vegetation functioning
focused on process based models, and aimed at enhancing our holistic understanding of the
process of carbon allocation in vegetation, using for this purpose concepts from the well studied
theory of dynamical systems. This theoretical approach had the advantage of building up on
the knowledge that has already been encapsulated in the ecosystem models, whose development
has put together the information gained in empirical studies as pieces of a puzzle.

Evidently, carbon allocation in vegetation is a multi scale process, and as such, many
empirical studies have aimed at shedding light on some of its details at diverse scales. For
example, at a small scale, some studies have focused on phloem physiology and the long
distance carbon transport (Minchin and Lacointe, 2005; Furze ef al, 2018}, as well as the carbon
partitioning to defense and storage in wheat (Huang et al, 2017). At a larger time-scale, other
studies have assessed the seasonal variations of belowground carbon transfer in trees (Epron
et al., 2011), the allocation dynamics of vegetation in response to increasing temperatures and
drought (Blessing et al., 2015), and they even dug into the mechanisms behind tree mortality as
a result of drought and other stressful conditions (McDowell and Sevanto, 2010; Sevanto et al.,
2014). Other processes such as the carbon source—=sink balance and the effect of limitation on
the partitioning of carbon into growth and storage, have been studied in small scales (i.e. trees
(Wiley et al, 2013)) and in a global scale (Hoch and Kérner, 2012; Mahmud et al, 2018). In
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such bigger scales meteorological data and fluxes calculated via eddy covariance towers and
field measurements are used in combination with modeling to simulate forest productivity and
response to changing environmental conditions (Ueyama et al., 2010; Marthews et al., 2012;
De Kauwe et al., 2014; Gea-Izquierdo et al., 2015; Koven et al, 2015). And all these studies
have been carried out in vegetation at different ontological stages (e.g. seedlings, saplings and
mature trees), leading to reviews that have questioned the validity on the inference of carbon
allocation mechanisms for mature trees based on experiments in seedlings (Hartmann et al.,
2018).

All this information available at different scales must be combined in order to facilitate the
contimious assessments of carbon fluxes (Hartmann et al, 2018), and has been used to infer the
general mechanisms that are the backbone of ecosystem models. This means that with every
new observed behaviour and elucidated mechanism the ecosystem models become more complex,
to the point where it is hard to imagine that they were once as simple as box diffusion models
(Oeschger et al., 1975). Paradoxically, given that models still need to be simple enough so that
they can remain computationally efficient, the complexity of the observed processes is not fully
portrayed in ecosystem models, and this leaves room for diverse interpretations of empirical
findings. Therefore, just as there is a need for a systematic review protocol to compare methods
for measuring and assessing carbon stocks in terrestrial carbon pools (Petrokofsky et al., 2012},
it is also necessary to have protocols that can allow us to systematically compare models. The
framework developed in this thesis can help to achieve this goal, and this is supported by

answering the three research questions proposed in this thesis.

1. Is there a robust framework in the realm of dynamical systems that can be used to identify

key aspects of carbon allocation linked to model uncertainties?

While dynamic vegetation models have been a powerful tool for enhancing our understanding
of the carbon allocation process as a whole, their representation of carbon allocation often differs
in the formulated strategies. This is important because, although some models underperform
because of wrong parameter values (Rogers ef al., 2017), it has been claimed that alternative
carbon allocation strategies are the reason why seven models had divergent projections of
terrestrial carbon uptake in response to elevated atmospheric CO2 concentration (Walker et al.,
2015). Indeed, Model-Data Synthesis projects have shown that model uncertainty can be
reduced by identifying and evaluating the main assumptions causing differences among models
(Medlyn et al, 2015). Considering that these different model assumptions are represented with
different mathematical formulations, the framework proposed in this PhD thesis emerges as a
powerful tool to identify and evaluate these differences, since it synthesizes the carbon allocation

strategies that have been proposed in published model descriptions, and represents them in a
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compact form using the same programming and mathematical langnage. This common language
for describing models also offers a great advantage to researchers that are just familiarizing with
ecosystem models and want to compare several of them systematically, because it eliminates
the intermediate steps of searching for the right set of equations in scripts written in different
programming languages, and then translating them back to the ecosystem processes that they
were meant to portray.

This leads us to another important feature of this framework: the division of the carbon
allocation process into components of biogeochemical relevance (input: u, partitioning: E, and
cycling: B). The complex conceptual design used in some models to represent the entire carbon
allocation process in vegetation can then be arranged into smaller objects of interest that can
be individually explored in detail. This is specially relevant for studies that aim at punctual
aspects of the global carbon cycle as it is commonly done in empirical studies such as the study
performed by Malhi et al. (2015), where they assessed the linkages between photosynthesis,
productivity, growth and biomass in lowland Amazonian forests using the largest data set
assembled to that date. These empirical studies are crucial when trying to constrain terrestrial
carbon cycle projections (Mystakidis ef al., 2016), but it is important to know how to interpret
the observation-based carbon flux estimates and incorporate them into models whose structure
are a reflection of the observed carbon allocation strategies.

It is in this particular matter where the framework proposed in this work can be of great
use. For instance, when comparing the partitioning component of the models in this framework,
it became clear that the models used for global predictions often used fixed coefficients in order
to partition the photosynthetically fixed carbon among the vegetation compartments, i.e. they
have a fixed partitioning scheme. In contrast, models used for simulations in smaller scales
often had a dynamic partitioning of the photosynthetic input, evidenced by the fact that the
elements of their 'E vector had functions instead of coefficients. Naturally, these two schemes
have important consequences for the simulated response of vegetation to changing conditions in
models; while with the fixed coefficients the vegetation compartments will always receive the
same proportion of photosynthetic input, with a dynamic partitioning scheme the proportion
of photosynthetically fixed carbon that goes to each compartment may change in response to
external variables (e.g. temperature, water availability, among others) or to state variables (the
amount of carbon in each compartment at a given time). This clear distinction can further help
in the selection of model properties that can better represent the response mechanisms inferred
from observations or boost the improvement of current models.

These improved models can be used to guide field experiments by providing a priori
predictions of the ecosystem response to treatments (Medlyn et al., 2016). In addition, models

can be used to explore questions such as the prioritization of carbon partitioning under various
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environmental conditions (Guillemot et al., 2015). For example, is non-structural carbon an
“overflow” compartment that only receives the C that remains after partitioning it to other
compartments? Or, does it have a more important role and is therefore prioritized under
stressful conditions such as drought and low [CO5]? For the reasons explained in the previous
paragraph, these questions cannot be explored using a model that has fixed coefficients as a
partitioning scheme.

Furthermore, within the proposed framework, the models are generalized in a matrix
form that benefits from the general language of dynamical systems and can accommodate
nonlinearities, providing an optimal common ground for the comparison of model structures.
Essentially, with this matrix representation important interactions within the elements of the
model become conspicuous, for example, nonlinear interactions among state variables, and
model dependencies on variables whose value can change with time. In this way, it facilitates the
classification of models depending on their autonomy, i.e. non-autonomous models are driven
by external variables that depend on time, whereas antonomous models do not, and according
to their linearity, i.e. as linear and nonlinear models.

Nonlinearities are the result of strong interactions (such as feedback loops) between com-
partments, and as such they can only be observed in models with non-diagonal compartmental
matrices where the off-diagonal values of the matrix also have state variables because the C
transfer rates depend on them. In these kind of models the compartments may also exchange C,
in which case it is also likely that they have at least one non-structural C compartment that can
act as an intermediary in the C exchange. One of the most common nonlinear interactions is
between the foliage-dependent photosynthetic input and the dynamic partitioning: u(z,t)-b(z,t).
This is a positive feedback loop that assures the increase in photosynthesis with an increase in
foliage, which might explain the rapid loss and replenishment of foliage in deciduous forests.

The above mentioned model classification with respect to their mathematical formulation
is also important because there are some model properties that can be predicted from their
structure. One of these properties is the stability of the system. A stability analysis can inform
us, for example, whether the modelled system could potentially reach a steady state, i.e., if each
state variable in the model can converge to a fixed point in time, where its inputs and outputs
are cancelled out. This is an interesting property because, even though it is highly debated
whether the ecosystems can reach such a steady state, it is an assumption that has to be done

in order to use some methods to diagnose the model performance.
2. What diagnostics can be used to assess model performance?

As discussed above, the difference in the formulation of carbon allocation strategies in

models can influence their capacity to predict empirically observed dynamics, thus affecting
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their performance. Model performance is commonly diagnosed using different methods, some of
which require that the system is in steady state. So, models that abide by this requirement
portray a vegetation system in equilibrinm. Naturally, whether ecosystems can indeed reach
this equilibrium or what would this equilibrium be like is subject of discussion. Ecosystem
processes are regulated by external drivers that change with time, e.g light, temperature, water
availability, as well as by endogenous heterogeneity (e.g. age, birth, death, ete.) (Moorcroft
et al., 2001). Given that vegetation undergo changes depending on daily and seasonal cycles, how
can it reach an equilibrinm? How does it look like? Do we have to set space/time boundaries
within which it is possible to assume that there is an equilibrium? Some researchers assume
that a certain equilibrium is reached when there are no longer drastic changes in the behaviour
of the system, i.e., when a system behaves with a certain “periodicity”. So, assuming that the
system of interest is in eguilibrium, the performance of a model that can simulate it can be
diagnosed using a method that has a steady state requirement, as long as an autonomous model
(as opposed to a non-autonomous model that can not reach a steady state) is employed.

In this thesis three simple autonomous models were diagnosed using different mechanisms
that required the systems to be in steady state; it was assessed how changes in model structure
could impact the predictions of vegetation functioning. We concluded that the differences in
carbon allocation strategies altered model performance, and from all the different performance
diagnostics compared, the distribution of C ages and transit times emerged as the most sensible
diagnostic. This is in agreement with a model intercomparison study where it was found that
63% of the variability in contemporary global vegetation C stocks across the 11 Earth system
models involved in the Coupled Model Intercomparison Project phase 5 (CIMP5) was explained
by differences in vegetation C residence time (Jiang et al., 2015).

These results are a strong motivation for improvements in measurements of C dating that
could lead to the measurement of age distributions and not just mean ages. One empirical
approach in this subject is the relative quantification of radiocarbon, which has been used to
infer cycling rates (e.g. pulse-labeling experiments using '4C) and carbon mean ages (14C), but
this approach has limitations. Although it has been possible to develop robust models based
on the available experimental evidence, some observations are not available at the same level
of detail and, or spatio-temporal resolution as modelled processes. Indeed, most of the rates
at which carbon exchange take place at the ecosystem level are not measurable (Trumbore,
2006) because of physical and experimental constraints. For example, given that radiocarbon
experiments can only be performed in individuals, these results need to be upscaled to the
whole ecosystem. Additionally, since the rates inferred from individuals-based experiments
are not universal, multiple measurements have to take place in several species at different

phenological and onthogenical stages in order to improve the upscaling. In fact, previous
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studies have concluded that a better understanding and representation of plant phenology and
physiology can improve predictions of gross primary productivity over time and space (Xia
et al., 2015). Another limitation is that some cycling rates can not be measured because, in an
effort to formulate simple models, some artificial boundaries have been set in order to delimit
compartments that do not exist in nature. Therefore, the design of future experiments should
take this into account, and aim at an ecosystem level calculation of Huxes, carbon stocks and
ages, preferably with a good resolution (time courses with multiple points).

The distribution of C ages and transit times was not only found to be a good diagnostic,
but it also shed some light on the prevailing puzzle of the mixing of C ages in vegetation
compartments. In this regard it was concluded that the temporal dynamics of carbon use,
storage and allocation, not only depend on deterministic rates of carbon transfer, but also on
the stochastic nature of the processes involved at a particle scale.

Towards the end of chapter 3 it was also briefly discussed about model equifinality and
parameter identifiability. In this regard it was found that the three models had practical and
structural non-identifiabilities, and as such the results could not be interpreted as accurate
depictions of the C cycle in the Harvard Forest (site from which the data used to constrained the
models was obtained). Some of these issues could potentially be solved in the future by using
empirical measurements of carbon stocks, fluxes and ages, preferably obtained as time series
where the measurement frequency and length is big enough to capture the C dynamics. The
use of some measurements as proxies for carbon stocks and fluxes should also take into account
potential pitfalls such as the delay between growth and stem diameter (Cuny et al., 2015), and
the correlation between fluxes such as the canopy photosynthesis and respiration obtained with
eddy covariance methods (Baldocchi et al., 2015). Finally, the parameter estimations could also
be further constrained using boundaries for the parameter values that make ecological “common

sense” (Bloom and Williams, 2015).
3. How can nonlinear interactions lead to the emergence of different patterns over time?

One of the main motivations behind the development of dynamic vegetation models is the
possibility to predict ecosystem responses to global changes in climate (Schimel et al, 2015;
Seddon ef al, 2016). Amongst the effects that these changes have had is the reduction in the
strength of carbon sources and sinks in vegetation (Guillemot et al., 2015). Although studies on
this topic have led to a “paradigm shift in plant growth control” (Fatichi et al., 2014; Kérner,
2015), the mechanisms behind the source and sink limitation of carbon allocation still remain
unknown. This long lasting puzzle was approached in this thesis using a simple model, whose
formulation was the result of a better understanding of key aspects of model structures found
at the beginning of this thesis while performing the model synthesis.
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Here it was found that strong sink limitations can lead to shifts in the C stocks ratio in
equilibrium, and can also lead to changes in the way this equilibrium is approached by the
system solution, i.e., they can even result in oscillations of the carbon stocks. Limitations on
carbon allocation can also have implications for the predicted C mean ages, and these effects
are enhanced by the nonlinear interactions. All of these model predictions can inspire new
experimental designs to test them. Hence, a model whose parameters are fitted to a given
system, i.e., the object of study (e.g. saplings of a given tree species), can be used to predict
at what degree of sink limitation the oscillations in carbon stocks become apparent, and use
this information to confirm the predicted dynamics in an experimental design that recreates
the same limitation. Another experimental design can involve the comparison of the mean
carbon ages of a couple of ecosystems that have grown in different sink limitation conditions
(e.g. temperate Vs. tropical forests).

The structure of the proposed model corroborated the important role that non-structural
carbon has on vegetation functioning. In previous studies, a labile carbohydrate store mediated
the shift between the assimilation and growth, and in that way the C allocation could be better
coupled to phenology (Haverd et al, 2016). In the present study it became very clear that
representing the non-structural carbon compartment as an independent pool that receives the
carbon that overflows from the other compartments is not only an oversimplification, but also
a misconception. It was concluded that, given the dual capacity of non-structural carbon as
a source and a sink, it would be more accurate to represent this compartment as a central
pool that receives the photosynthetic input and redistributes it to the structural compartments
and reserves. This could be one of the changes that are needed to improve the core structure
of current dynamic global vegetation models, as previously suggested by Fatichi et al. (2014).
This model structure can also be a good candidate to further explore the hypothesis of the
prioritization of storage under stressful conditions (Palacio ef al., 2014). For example, it can
help distinguish between cases where the results are a reflection of the mass balance approach of
the model (e.g. non-structural carbon cannot be fully drained to feed the other compartments
because if this happens the system will collapse), or some compartments are indeed prioritized
over others (e.g. if there is a restriction in the flux from non-structural carbon to the structural
compartments, or if the reserves compartment is favoured over the structural compartments) as
it has been suggested in some empirical studies where the prioritization of belowground sinks
have helped the trees to recover from drought (Hagedorn et al., 2016).

Owerall, this thesis addressed relevant aspects of current research performed on carbon
allocation in vegetation in a manner that simplified the assessment of the effect that both, the
models mathematical formulation and their conceptual design have on the stability of the system

and the vegetation functioning, respectively. This approach can contribute to the understanding
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of the holistic system behaviour, given that this mathematical framework is compact enough to
ease the qualitative understanding of models, but its simplicity does not compromise the detail
in the process representation (Sierra et al., 2018).

Accordingly, the knowledge gained regarding the conceptual design of the models can help
the modelers to select pertinent modeling approaches not only based on expected properties
(e.g. stability), but also on their suitability to the experimental design. For example, given two
models: a linear non-autonomous system, and a non-linear autonomous system, what model
should be used for a data assimilation experiment, provided that they both have comparable
outcomes? This choice depends on the experimental design. If the environmental conditions
were kept constant, then they cannot be the model drivers, thus the non-linear, autonomous
system would be more suitable.

Given that the framework and mathematical tool proposed here is part of a Python package
that is now awvailable to the public, it can be further enhanced and built on. Perhaps the
next versions of the software can make it possible to implement individuals based models such
as the one that deals with the ecosystems endogenous heterogeneity using partial differential
equations (Moorcroft et al.,, 2001), or the one that models tree growth taking into account C
source and sink limitations (Hayat et al., 2017). The new functionalities could further explore
long lasting questions in an automated way. One of these questions concerns the relation
between model complexity and the size of the space/time scale, which is expected to be inversely
proportional. Another relation that can be explored is the one between model complexity, in
terms of number of variables and parameters, and the level of detail in which processes are
described. Additionally, the common language used in this tool is a crucial base to find a metric
of model similarity that could even lead to the generation of cladograms.

With this thesis it has been demonstrated that the holistic understanding of carbon alloca-
tion in vegetation can be achieved through the inference of general mechanisms from empirical
observations and experiments, and integrating this information into broader overarching hy-
potheses formulated in ecosystem models. These proposed hypotheses, or ways in which carbon
allocation have been interpreted, can be further explored to achieve a further generalization.
This can be done in three steps: 1) synthesizing the mathematical formulation of ecosystem
models and testing whether their formulation is in agreement with the intended conceptual
design, as well as identifying important properties from model structures e.g. linearity and
autonomy; 2) diagnosing the model performance using sensitive methods whose requirements
are in line with the model properties e.g. stability of the system; and 3) developing improved
models with structures that truly reflect the biological concepts that inspired their design,
and using them to predict the response of vegetation to alternative scenarios in the context of

climate change. See Fig. 5.1 for a schematic representation.
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Figure 5.1: Mathematical tool and conceptual framework to study carbon cycle modeling. These equations are fully
described in chapter 2. Models are developed from the overarching mechanisms inferred from empirical observations
and experiments. These models are then encoded using ordinary differential equations. These equations can be written
in the form of a matrix that generalizes them into components of biogeochemical relevance. These models can be
adjusted to particular vegetation systems by estimating their parameters (1, 7:) to field measurements of carbon stocks
and fluxes. Once parameterized, the performance of the models can be diagnosed using methods whose application
requirements are met by the model's properties; the latter two steps are not represented in the figure. The validated
models can finally be used to predict the vegetation response to environmental forcing over time and other queries.

Generalization

Finally, from the present work it was concluded that, while linear structures are the prevalent
modelling approach in the dynamic global vegetation models, nonlinear models have also been
proposed. For this reason, it would be interesting to test whether these nonlinearities indeed
improve the model performance with respect to empirical observations. Another hypothesis
that could be tested in the future is whether these nonlinearities are relevant for predictions
obtained with global dynamic vegetation models enriched with soil compartments and coupled
to climate, and see if the nonlinear interactions, which have so far been ignored by some models,
have an impact on the prediction of the sustainahbility of terrestrial carbon sequestration under
changing climate regimes. Perhaps more importantly, improved models in combination with
further research on the relationship between the ecosystems resilience and the stability of the
models can help us identify the safe operating space of each ecosystem and develop strategies

that can better prevent their collapse in the future.
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Appendix chapter 2

Variables, parameters and matrix representation of the models used for the example in chapter

2.

1. Autonomous linear model

Name Description Units Values

State variables

Cy Carbon in foliage kgC -m~? 15

Cyso Non Structural Carbohydrates kgC - m~? 15

Cy Carbon in wood (wood of stem, branches, and  kgC - m™? 150
roots)

Oy Carbon in fine roots kgC - m~? a0

Photosynthesis parameters

ky Absorption rates (light, CO2, water...) day™! 2

Partitioning rates

uls Flux rate of photosynthetically fixed carbon from day™! 1
foliage to foliage

N SC Flux rate of photosynthetically fixed carbon from day™! 0.016
foliage to Non Structural Carbohydrates

Tho Flux rate of photosynthetically fixed carbon from day™! 0.001
Non Structural Carbohydrates to wood

r Flux rate of photosynthetically fixed carbon from day™! 0.003
Non Structural Carbohydrates to roots

Internal cycling rates

TINSC Flux rate of carbon from Oy g to foliage day™! 0.01

Release rates

Tr Rate in which carbon leaves from Oy to the exte- day™! 0.01
rior (respiration, litter, ote.)

T Rate in which carbon leaves from O, to the exte- day™! 0.0001
rior (respiration, litter, ote.)

Tr Rate in which carbon leaves from Cf to the exte- day™! 0.0005

rior (respiration, litter, ote.)

Table 1: Variables and parameters of the linear model.
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Table 2: Matrix representation of the Autonomous Linear Model, see variables and parameters in table 1

Name Dlescription Expression
Cr
T wector of states for veg- Cgs‘c
etation C‘:‘
u scalar function of pho- u =k
tosynthetic inputs
s
B wector of partitioning 8= [g:|
coefficients of photo- 0
synthetically fixed car-
bon
—NSC —TF TFNEC 0 0
P matrix of cycling rates B_ [ Jmusc —Tr — J'.I:;w— TFNSC _Sﬁ" g ]
0 nr 0 —r.
fu the righthandside of fo=u-f+B-r
the ode
2. Autonomous nonlinear model
Name Description Units Values
State variables
Cy Carbon in foliage kgC -m~? 15
Cyse Non Structural Carbohydrates kgC -m~? 15
Cy Carbon in wood (wood of stem, branches, and kgl -m~? 150
roots)
Oy Carbon in fine roots kgC -m~? 40
Photosynthesis parameters
ky Absorption rates (light, CO2, water...) day~! 0.5
Other rates
kq Michaelis-Menten parameter 200
ko Michaelis-Menten parameter 560
i Michaelis-Menten parameter 1
v Michaelis-Menten parameter 0.01
Partitioning rates
r Flux rate of photosynthetically fixed carbon from 1 day 1
foliage to foliage
NSO Flux rate of photosynthetically fixed carbon from NSO = day 1
foliage to Non Structural Carbohydrates i -I-E‘lm -
T Flux rate of photosynthetically fixed carbon from dﬂy“q 0.001
Non Structural Carbohydrates to wood
r Flux rate of photosynthetically fixed carbon from day~! 0.003
Non Structural Carbohydrates to roots
Internal cycling rates
VINSC Flux rate of carbon from Oy g to foliage VINSC = day 1
v2 -
Release rates
Tt Rate in which carbon leaves from €' to the exte- day~! 0.01
rior (respiration, litter, ote.)
Y Rate in which carbon leaves from Oy to the exte- day~! 0.0001
rior (respiration, litter, ote.)
Yr Rate in which carbon leaves from Cr to the exte- day~! 0.0005

rior (respiration, litter, ote.)

Table 3: Variables and parameters of the nonlinear model.
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Table 4: Matrix representation of the Autonomous Nonlinear Model, see variables and parameters in table 3

Name  Description Expression
Cy
T voctor of states for T = Ggsc
etation o
veg C.
i scalar function of uw=Fk- CC'F
NEo
photosynthetic in-
puts
Tr
I vector of partition- B= g
ing cocfficients of 0
photosynthetically
fixed carbon
[—'-'Inrsc — VINSC 0 0 ]
B matrix of cycling B = INSC Tl T T T IINSC 0 0
0 The —tw 0
rates
0 e 0 —%¥r
fu the righthandside of fe=ulz) -8+ Bi(z)- -z
the ode
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Appendix chapter 3

Table 5: Number of positive and negative correlations between parameters. Only R' values < —0.1 and > 0.1 were
assumed to account for correlations.

Model Positive correlations Negative correlations Possible combinations
Storage: 0 5 ] 21
Storage: 1 10 15 28
Storage: 2 12 21 45
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Figure 2: Pairwise plots of sensitivity functions for the model Storage: 0
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Figure 5 Carbon stocks estimated for each model, comparing the observed data and the model predictions of C stocks
in Wood (A) and Foliage (B). The C stocks from models Storage: 0 and 2 overlap. The three models were run using
the same parameter set.
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Figure 6: Radiocarbon simulations for the three models. The three models were run using the same parameter set.

The black curve corresponds to the 47 accumulation in the atmosphere, and the other colors depict the vegetation
compartments.
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Figure 7: System ages and transit times. (A) Age and transit time (B) distributions calculated for each of the three

models using the same parameter set; the dashed and dotted lines mark the mean and median ages, respectively.
Some of the lines may be overlapping others.
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Figure 8: Age densities simulated for the compartments: (A) Photoassimilates, (B) 5tr. Foliage, (C) Wood and (D)
Roots. The three models were run using the same parameter set. Each model is depicted in a different color. The
dashed lines correspond to the mean ages of each model for each compartment.
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Figure 9: Age densities simulated for the models with storage compartments; the models were run using the same

parameter set. (A) Fast cycling compartment of models Storage: 0 and Storage: 2. (B) Slow cycling storage of the
only model with 2 storage compartments.
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Figure 10: Scatter plot of mean age Vs. mean transit times in log scale. The three models have distributions below
the 1:1 line.
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Impact of C allocation limitation scenarios on the predictions of a model with fixed

photosynthetic input

The model proposed in this work has a photosynthetic input that depends on the state
variable structural foliage (u = ki - ¢ - Fatruc); in order to determine whether this dependency
could affect the impact of the limitation scenarios on diverse model simulations, we developed
another version with fixed-input. This new version is summarized in the table 6 and was used
to calculate the impact of source and sink strength on the predicted C stocks in steady state
(figure 11}, the transient C accumulation in each compartment (figure 12), the phase planes
(figure 13), and the mean ages for the system compartments (figure 15).

Table 6: Matrix representation of the model with fixed photosynthetic input (u no longer depends on foliage)

MName Description Expression
B
Rea
T vector of states for vegetation = | Fatrue
ﬁrﬂ‘r“ﬂ
Rﬂ‘r“ﬂ
u scalar function of photosyn- w=ky-{
thetic inputs
i
0
g vector of partitioning coef- =10
ficients of photosynthetically 1]
fixed carbon 0
—¥a1— 731 —Ta1 — 11— Bm Tz 0 0 0 ]
T -1z 0 0 0
B matrix of cycling rates B= i 0 —¥F 0 0
Tl 0 0 —r 0
TEL 0 0 0 —TR
fu the right-hand side of the ode fo=u-8+ B(x) -z
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Impact of limitation scenarios on predicted mean ages of a linear model

The initial model proposed in this work has two sources of nonlinerities: a photosynthetic
input that depends on a state variable (u(z)), and the multiplication between the state variable

soluble sugars (S5) and the maintenance respiration rate that depends on other state variables

R,, = FatruetBaeruet{liveWood Watrue) [y rder to determine whether these nonlinearities modified

m

the impact of the limitation scenarios on predicted compartment mean ages, we developed a
linear version of the model proposed in this work. The linear version is summarized in the table

7 and the predicted mean ages for the compartments of this model are in figure 16.

Table 7: Matrix representation of the linear model with constant photosynthetic input and constant maintenance
respiration (R, = rm)

MName Deescription Expression
| e |
Rea
T vector of states for vegetation = | Fatrue
ﬁrﬂ“r“ﬂ
Rﬂff'ﬂﬂ
u scalar function of photosyn- w==ky-§
thetic inputs
i
0
g vector of partitioning eoef- =10
ficients of photosynthetically 0
fixed carbon 0
—rz1 — T3 — Ta1 — 751 — B iz 0 0 0 ]
21 —T12 1] 1] 1]
B matrix of cycling rates B= a1 0 —¥F 1] 1]
a1 0 0 — 0
T8 0 0 0 —TR
fu the right-hand side of the ode fo=u-g+B-z
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Figure 11: Carbon stocks of each compartment under different limitation scenarios; (a) source limitation only -, (b)
aboveground sinks limitation -c, (c) belowground sinks limitation -p, (d) above and belowground limitation -c, g, and
(e) Source and sink limitation -{, o, p. For these simulations the photosynthetic input was kept constant, ie., it was
no longer dependent on foliage.
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Figure 12: Carbon stocks with respect to time for a model with constant photosynthetic input. (a) Model solutions
with initial C stocks and parameter values as specified in table 4.1, no C allocation limitations. (b) Model simulations
with same initial C stocks and parameters as before, but with strong aboveground sink limitation: a = 0.05. (c)
Model solutions with initial C stocks in the neighborhood of the steady state calculated with o« = 0.05; this parameter
value was also used for the simulations. 190
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Figure 13: Phase planes of different combinations of vegetation compartments for a model with constant photogynthetic
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= 0.05. Finally, column (c) contains the plots from model runs with @ = 0.05 and initial C stocks in the neighborhood
of the steady state calculated with this parameter value.
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Figure 14: Mean ages predicted for the initial model proposed in this work, in steady state under different limitation
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Figure 15: Mean ages predicted for the model with constant photosynthetic input, in steady state under different
limitation conditions; (a) source limitation only -, (b) aboveground sinks limitation -, (c) belowground sinks limitation
-, (d) above and belowground limitation -, p, and (&) Source and sink limitation -{, a, p. The highest source or sink
strength is achieved when the respective scalar is equal to 1.
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Figure 16: Mean ages predicted for the linear model with constant photosynthetic input, in steady state under different
limitation conditions for a; (a) source limitation only -, (b) aboveground sinks limitation -ax, (c) belowground sinks
limitation -p, (d) above and belowground limitation -, p, and (e) Source and sink limitation -¢, a, p. The highest
source or sink strength is achieved when the respective scalar is equal to 1.
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