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A B S T R A C T

Reaction networks are an important tool for the analysis of complex
chemical reaction systems. They help us understand systems ranging
from specific metabolisms to planetary atmospheres. This thesis de-
velops methods for the analysis of living systems by using reaction
networks with a focus on the inclusion of thermodynamic proper-
ties. Existing methods for reaction pathway analysis are extended and
the thermodynamics of reaction pathways is analysed to gain insight
into thermodynamic structures. New methods for more realistic arti-
ficial chemistries are developed using thermodynamic constraints. A
model of evolvable artificial ecosystems is created to understand the
effect of evolution and life on the flow of matter and energy through
the system.

To investigate general thermodynamic properties of large-scale re-
action networks, artificial reaction networks are created with a sim-
ple scheme for deriving thermodynamically consistent reaction rates.
Linear and nonlinear networks using four different complex network
models are simulated to their non-equilibrium steady state for vari-
ous boundary fluxes. The distribution of entropy production of the
individual reactions of the network follows a power law in the inter-
mediate region with an exponent of circa −1.5 for linear and −1.66
for nonlinear networks. An elevated entropy production rate is found
in reactions associated with weakly connected species. This effect is
stronger in nonlinear networks than in linear ones. Increasing the
flow through those nonlinear networks also increases the number of
cycles and leads to a narrower distribution of chemical potentials.

In the context of finding signs of life by detecting chemical dise-
quilibrium, a photochemical model of the modern atmosphere and
a model of the Archean atmosphere are compared. Calculating the
reaction pathways that are most relevant for explaining their reaction
network’s steady state with a new method allows for the detection
of topological differences between the two models. Pathways of the
modern Earth atmosphere are simpler (less reactions) and contain
fewer cycles than their Archean counterparts. To compare thermody-
namic properties of the found pathways, values for chemical poten-
tials of most of the species are estimated. The Archean atmosphere
is shown to be driven more by radiation, generally increasing the
chemical energy of the matter it exchanges with its environment. In
contrast, the matter fluxes of the modern atmosphere have a nega-
tive net energy balance. An analysis of methane consuming pathways
shows their importance in both atmospheres and, in agreement with
previous work, allows for a quantification of the thermodynamics of
methane oxidation for the modern atmosphere.

A simple artificial chemistry model that incorporates thermody-
namic constraints and mass conservation is build. To emphasize the
analogy to planetary systems, the system is not driven to disequilib-
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rium by matter flow but by photoreactions. This technique, together
with pathway analysis, is demonstrated for small example systems
and is discussed in a broader context. Increasing the strength of
the force that drives the system to (thermodynamic) disequilibrium
concentrates the mass of the system in a smaller number of chemi-
cal species. To model the influence of life on pathways, an artificial
ecosystem model is developed. An artificial ecosystem is an artifi-
cial chemistry build from a fixed anorganic part and interfacing or-
ganisms. Organisms are evolved by successively replacing the organ-
ism that is least active, measured by its mass and its reaction rates.
Evolution of the reaction networks entails an evolution of reaction
pathways towards simplicity, thus indicating that the presence of pro-
nounced, relatively simple pathways in real systems is a consequence
of an evolutionary mechanism.

All in all, this thesis is meant to show how to analyse and char-
acterise complex reaction systems using a network-oriented view on
thermodynamics, thereby informing on the effect of life on chemical
disequilibrium and the complexity of associated reaction networks.

Z U S A M M E N FA S S U N G

Reaktionsnetzwerke sind ein wichtiges Werkzeug zur Analyse von
komplexen chemischen Reaktionssystemen. Sie helfen beim Verständ-
nis von Systemen der Größenordnung eines spezifischen Metabo-
lismus bis hin zu Atmosphärenchemien. In dieser Abschlussarbeit
werden Methoden zur Modellierung und Analyse lebender Syste-
me durch Verwendung von Reaktionsnetzwerken und die Einbezie-
hung thermodynamischer Eigenschaften entwickelt. Existierende Me-
thoden zur Analyse von Reaktionspfaden werden erweitert und die
Thermodynamik von Reaktionspfaden analysiert, um Einblick in ther-
modynamische Strukturen zu gewinnen. Es werden neue Modelle für
künstliche Chemien unter Einbeziehung thermodynamischer Rand-
bedingungen entwickelt. Das Modell eines künstlichen Ökosystems
wird entwickelt, um den Einfluss von Evolution und Leben auf che-
mische Fließstrukturen besser zu verstehen.

Zur Untersuchung allgemeiner thermodynamischer Eigenschaf-
ten in großskaligen Reaktionsnetzwerken werden künstliche Reak-
tionsnetzwerke mit thermodynamisch konsistenten Reaktionsraten
erzeugt. Lineare und nichtlineare Reaktionsnetzwerke mit vier ver-
schiedenen Modellen komplexer Netzwerke werden für verschiede-
ne Randbedingungen in das Fließgleichgewicht simuliert. Die Ver-
teilung der Dissipation der Einzelreaktionen des Netzwerks folgt ei-
nem Potenzgesetz mit einem ungefähren Koeffizienten von −1.5 für
lineare und −1.66 für nichtlineare Netzwerke. Für schwach verknüpf-
te chemische Spezies wird eine vergleichsweise erhöhte Dissipation
festgestellt. Der Effekt ist bei nichtlinearen Netzwerken stärker als
bei linearen Netzwerken. Ein Erhöhen des Flusses durch nichtlineare
Netzwerke erhöht die Anzahl der Zyklen und führt zu einer engeren
Verteilung der chemischen Potentiale.
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Im Kontext der Detektion von Leben durch chemisches Nichtgleich-
gewicht wird ein photochemisches Modell der modernen Atmosphä-
re mit einem entsprechenden Modell der archaischen Atmosphäre
der Erde verglichen. Durch das Berechnen der Reaktionspfade für das
spezifische Fließgleichgewicht können Unterschiede zwischen den
Modellen gefunden werden. Reaktionspfade der modernen Atmo-
sphäre sind einfacher (weniger Reaktionen) und enthalten weniger
Zyklen als ihre archaischen Gegenstücke. Eine Abschätzung der che-
mischen Potentiale für die chemischen Spezies erlaubt eine genauere
thermodynamische Charakterisierung der Reaktionspfade. Es zeigt
sich, dass die archaische Atmosphäre stärker von Strahlungsenergie
getrieben ist, welche in ihr in chemische Energie umwandelt wird,
während die Materieflüsse der modernen Atmosphäre eine negative
Energiebilanz haben. Die Analyse der Methan konsumierenden Re-
aktionspfade zeigt deren Bedeutung in beiden Atmosphären und er-
laubt es, die Thermodynamik der Methanoxidation für die moderne
Atmosphäre in Übereinstimmung mit existierenden Publikationen zu
quantifizieren.

Ein Modell mit thermodynamischen Nebenbedingungen und Mas-
senerhaltung wird erstellt. Um die Analogie zu planetaren Systemen
hervorzuheben, wird die Chemie nicht durch Massenfluss, sondern
durch Photochemie mit Energie versorgt. Dieses Modell wird zusam-
men mit einer Reaktionspfadanalyse an kleinen Beispielsystemen prä-
sentiert und für den weiterreichenden Kontext diskutiert. Eine stär-
kere treibende Kraft in das thermodynamische Nichtgleichgewicht
führt zu einer Konzentration der Masse des Systems bei weniger che-
mischen Spezies. Um den biologischen Einfluss auf Reaktionspfade
zu modellieren, wird ein Modell für künstliche Ökosysteme entwi-
ckelt. Das bezeichnet eine künstliche Chemie, die aus organischen
und anorganischen Modulen assembliert wird. Die organischen Kom-
ponenten (Organismen) werden durch ein einfaches Evolutionssche-
ma evolviert. Dies induziert eine Evolution auf Ebene der Reaktions-
pfade hin zu einfacheren Reaktionspfaden. Ein Auftreten von heraus-
gehobenen, einfachen Reaktionspfaden in realen Netzwerken kann
dementsprechend als Folge eines evolutionären Prozesses verstanden
werden.

Insgesamt zeigt diese Arbeit also, wie komplexe Reaktionssyste-
me mit einem netzwerkorientierten Blick auf ihre Thermodynamik
unterschieden werden können. Dies ergibt einen neuartigen Blick auf
den Effekt des Lebens auf das thermodynamische Nichtgleichgewicht
und die Komplexität der assoziierten Reaktionsnetzwerke.
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One in ten thousand of us can make a technological

breakthrough capable of supporting all the rest.

The youth of today are absolutely right

in recognizing this nonsense of earning a wage.

— R Buckminster Fuller
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1
I N T R O D U C T I O N

This thesis aims to bring forward methods for analysis and
modelling of living and planetary systems. Approaches from
different fields to life, its origins, and its definition are recapit-
ulated in the introduction. An overview of open problems in
these areas is given to motivate the approach of this thesis to
thermodynamics, reaction networks and reaction pathways.
keywords: origins of life, history of life, Earth, atmosphere, life

detection, self organisation

1.1 foreword and motivation

The last 50 years have brought great progress in our understanding
of Earth’s climate, chemistry and history. Isotope measurements have
greatly enhanced our possibilities to look back in time while satellite
observation allows us to obtain highly resolved data on the status
quo. The growing amount of diverse data, together with the growing
computational capabilities, has led to models of planetary dynamics
with continuously increasing complexity. The topic of anthropogenic
global warming is the most urgent case, but it is now undisputed that
life has modified the planet long before [Kno03]. Thus, understanding
planetary dynamics and its connection with the biosphere is not only
important to solve the biggest current challenge of human civilisation,
climate change, it also might be essential for understanding how life
itself originated and influenced our planet’s history.

Models currently used for climate simulations consist of many
submodels that are developed by different groups throughout many
years of work. Different computer languages and data interfaces ren-
der a consistent analysis of connected processes spanning multiple
submodels difficult. At the same time, increases in data size and
computing power lead to even more complex submodels. Up to now,
complex networks have been used frequently to analyse model out-
put in Earth system science; these networks, however, mainly work
on a statistical level and do not directly resolve flow of matter and
energy [Don+09].

The aim of this work is to bring forward methods for the analysis
and modelling of living systems. The focus lies on methods that work
on the conceptual level of process models1. In comparison to purely 1 Process models, in

contrast to statistical

model, describe

dynamics in terms of

physical processes.

data-oriented models, this includes implicit constraints of thermody-
namics (energy, matter) on all levels. To achieve this, data and mod-
els are formalised into reaction networks in which emergent struc-
tures can be defined and analysed (Fig. 1.1). This approach can be
called unconventional in the sense that it takes methods that are com-
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flow / reaction

 network

pathways and

biogeochemical cycles
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H2O

hv

Figure 1.1: Biosphere and its environment form complex flow patterns

that can be analysed by reaction networks. Planetary systems
consist of complex and versatile dynamics and flow patterns.
Even more if the planet contains a biosphere (top). All flows
can be understood as parts of one big reaction network (bottom-

left). This thesis proposes to understand the emergence of living
structures as emergent phenomena in such networks that can be
formally analysed by methods like pathway analysis (bottom-

right).

monly used in bottom-up approaches (artificial chemistries, reaction
networks) and uses them on a larger scale (top-down).

This thesis touches many different fields of research. The methods
of modelling and analysis stem from thermodynamics, complex net-
works, and bioinformatics. The general approach, however, can prob-
ably best be attributed to the field of artificial life [Lan97; Bed+00;
Bed03; Ras+04]. In contrast to modelling techniques in the fields of
chemistry, ecology or biology, models in artificial life are qualitative
by choice. This means that models are conceptual in nature, and thus
not directly meant to explain existing data but to give a better under-
standing of the basic concepts of life. This goes as far as the famousAn example for

artificial life’s

potential can be seen

in the work of

Adami, Ofria, and

Collier [AOC00] on

simulated artificial

ecosystems.

claim of investigating not only "life-as-it-is", but also "life-as-it-could-
be" [Lan97].

The many fields and approaches relating to phenomena of life and
the planets that support it will shortly be summarized in the follow-
ing. Necessarily, some of the remarks might seem incomplete or repet-
itive, considering the extent of the fields of research connected to life
as well as the interdisciplinary approach of this thesis.
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1.2 life

1.2.1 Complexity and Life

With his short book titled "What is life?" [Sch43] Schrödinger arose
awareness for the relationship between physics and life. He used first
principles and statistical arguments to theorise on the relevance of an
information bearing molecule, the DNA discovered years later.

Yet, there is still no widely accepted answer to the question in the
title of Schrödinger’s book. Life is hard to define and for many pos-
sible definitions there exist striking counterexamples [CC02; Ben10].
The common biological definitions see an organism as alive if it can
metabolize, grow, react to stimuli, and is able to reproduce [Fis01].
NASA’s working definition for astrobiological purposes is driven by
the type of primitive life that might be found by its own missions on
other planets. It states: "Life is a self-sustained chemical system capa-
ble of undergoing Darwinian evolution." [RMPM04] The problem in
both cases is, that one has to look at the dynamics of the system to
verify its evolution. Also, a biological species might need a specific
environment and also a mate to reproduce, which would mean, that
by this definition one lion in a cage would not be alive.

A popular definition in artificial life is to think of life as an au-
topoietic system. An autopoietic system is a network of processes of
construction and destruction that continuously regenerates its com-
ponents [VMU74; MV87]. The abstract nature of this definition is its
strength and weakness at the same time. It is less biased from life
forms we know, but it is hard to apply operationally. Ruiz-Mirazo,
Peretó, and Moreno [RMPM04] see the autopoietic approach as an
alternative (metabolism focused) to the biological (evolution focused)
and try to unify them. They define a universally living being as an
autonomous system that is capable of open ended evolution.

Life is often said to be complex. And as for life, there is no unique
definition for complexity. It is undoubted, that there are way more
complex chemical structures (size of molecules) in biological species
than in non-living systems [WI99]. Very complex macromolecules are
synthesized in biology. Molecules process information and regulate
the metabolism to allow life to exist far from thermodynamic equi-
librium. In artificially evolving systems complexity has been mea-
sured by the amount of information that the genome contains about
the environment of the organism. These simulations evolved towards
more complexity, if the environmental conditions were fixed [AOC00;
Ada02].2 2 For coevolving

species complexity

could theoretically

decrease.

Complexity of living structures can also be defined from an ecosys-
tems perspective. The species diversity and the network of feeding
relationships between species has been shown to be an interesting
property of ecosystems [BPW06; Duf+07]. From a philosophical stand-
point, the emergence of new phenomena, which need new theories
for explanation, also is an indicator for complexity [Sol16]. All bi-
ological matter follows laws of physics and chemistry, but current
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physical and chemical theories are in no way adequate to explain the
functioning of life.

Statistical aspects of Schrödinger’s work are extended by recent in-The connections

between information

(computer science)

and fundamental

questions of life have

existed early on, on

remarkable example

being Von

Neumann’s work on

self-reproducing

automata [VNB66].

formation theoretical approaches for the understanding of life. They
focus on finding measures that distinguish the causal structure of liv-
ing beings. This is connected with finding how computation happens
in dynamical systems [WD13] and the concept of agents [Fri10]. The
emergence of computation has been connected to life before. Lang-
ton showed that computation emerges in dynamical systems close to
chaos and related this to the concept of phase transition in thermody-
namics [Lan90].

1.2.2 Origins of Life

Even more than the definition of life, explaining its origins3 is a com-3 Plural is used as it

is unclear if there are

multiple ways for

life to emerge. The

process is also called

abiogenesis.

mon challenge in many disciplines [Sch+15]. A good review of im-
portant controversies in this area has been written by Peretó [Per05],
a more extensive summary is given by Ruiz-Mirazo, Briones, and Es-
cosura [RMBE14].

One main problem with explaining the origin of life lies in the re-
lationship between replication and metabolism. The metabolism of
cells relies on proteins, large macromolecules that act as specific cat-
alysts and thus allow cells to persist and grow far from thermody-
namic equilibrium. Proteins are biologically constructed using infor-
mation encoded in genes. For the genetic information to generate
a metabolic network requires evolution, which requires replicating
cells with an existing metabolism. This has lead to different hypoth-
esis on which process came first, consequently named replication-first

and metabolism-first.
One hypothesis that might resolve this dilemma is called RNA

world. It assumes that instead of the DNA found in modern life, early
life used RNA as information carrier [CSM07; Cec12]. This is possible
because RNA can not only encode digital information, but also can
operate as catalyst directly. The disadvantages of RNA are that it is
harder to synthesize and less stable than DNA [WD13].

In artificial life there is numerous work that models artificial chem-
istry for a better understanding the origins of life. Much effort has
gone into trying to explain how simple chemistry develops towards
self maintaining subsets [Per14; JK98; BF92; Kau86]. But there have
also been efforts to approach the question of how primitive forms
of evolution might evolve and interact with basic chemistry [ES78;
CHS17].

Another interesting hypothesis from Smith and Morowitz argues
that life started with the core anabolic metabolism of the reduc-
tive tricarboxyl acid cycle (rTCA c.) that was forced into existence
by the reducing atmospheric conditions of the early Earth [SM16;
SM04a; MS07].4 The same set of reactions operating in reverse direc-4 This implies a

certain relation to

biogeochemical

cycles (Sect. 1.4.2).

tion are common in heterotrophic organisms to break down organic
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molecules for energy. The latter process is then called Krebs cycle or
tricarboxyl acid cycle (TCA c.).

Through fossils there is numerous evidence for life on early
Earth [Sch06]. Earliest signs of life on land have been found in hot
spring deposits. They are estimated to have lived 3.5 million years
ago [Djo+17]. Life in oceans reaches even further back. The oldest
signs of life on Earth to date have been found in hydrothermal vent
precipitates, estimated 4.28 million years old [Dod+17]. Hydrother-
mal systems are a popular theory for the origin of life because of the
high availability of energy in these places [SRK11]. A recent study
has found the 355 probable genes of the last universal common an-
cestor (LUCA)5 from genetic information of living species. The corre- 5 This refers to the

last common

ancestor of all

organism alive

today.

sponding proteins indicate a metabolism that could have evolved in
hydrothermal vents [Wei+16].

Even if the probable mechanism for the emergence of life on Earth
will be found, this will not answer questions of determinism to life.
Was Earth determined to develop life or was this a happy coinci-
dence? Could there have been other planetary trajectories, maybe
even alternative trajectories that include a different mechanism of
abiogenesis [Sch+15]? For answering these question not only the tran-
sition from inorganic chemistry has to be better understood. It also The effect of possible

planetary

trajectories in

feedback with

biogenesis is

discussed in Chopra

and Lineweaver

[CL16]. (Cf. Sect. 1.3.2)

requires a good understanding of planet formation and evolution.

1.3 atmosphere and daisyworld

1.3.1 Earth’s Atmosphere

An important factor for life on Earth is the composition and chem-
istry of its atmosphere [YD98]. The modern atmosphere is mainly
composed of nitrogen (78.09%), oxygen (20.95%), argon (0.93%), and,
water vapour (≈ 1%), with minor traces carbon dioxide (0.039%). The Both Mars and

Venus have

atmospheres that

consist of more than

90% of CO2. It is

removed on Earth by

photosynthesis.

troposphere is the lowest part of Earths atmosphere and contains
about 80% of the mass of the atmosphere. The troposphere extends to
around 10 to 17km height. It is characterised by decreasing tempera-
ture and strong convective mixing. In the stratosphere, which is above
the troposphere from around 15 to 50km altitude, vertical mixing is
reduced because of temperature increasing with height. Reduced den-
sity and more radiation with higher energies leads to formation of the
ozone layer.

Progress in geology and modelling in the last decades has allowed
to constraint atmospheric conditions [Hol06; CK07]. Atmospheric
oxygen levels were below 10−4 of the present atmospheric level (PAL)
until 2.4 billion years ago. Early Earth’s oxygen concentration can be
constrained by found mass independent fractionation of sulfur (MIF-
S) and sedimentary rock called banded iron formation (BIF).

Between 2.4 and 2.0 billion years ago the great oxidation event
(GOE) lead to a increase of oxygen to roughly one tenth of present
levels. Oxygen producing cyanobacteria have existed before that, but
the oxygen was insignificant in comparison to the reducing atmo-
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sphere. The atmospheric oxygen and the oxidation state of the oceans
reached modern levels around 600 million years ago. The exact trajec-
tory and mechanisms of this transition is still not conclusively re-
solved [GLW06; Geb+17; LRP14; HTS15]. It is assumed that the mod-
ern atmospheric oxygen concentration plays an important role for the
development of complex terrestrial life [Spe+13].

1.3.2 Gaia and Daisyworld

Until the middle of the last century the common scientific under-
standing was that environmental conditions, especially atmospheric
composition, was something that was determined by geological pro-
cesses. Biology was understood as a lucky beneficiary of climatic con-
ditions and atmospheric oxygen concentration. This was famously
questioned by Lovelock’s Gaia hypothesis, suggesting that Earth’s biota
influence their environmental conditions and as a part of a com-
plex planetary system self-regulates their environment into planetary
homeostasis [LM74].66 This work built on

earlier work

proposing weaker

forms of atmospheric

control [LL72;

ML74].

For supporting this hypothesis, Daisyworld was created, a simple
model that describes daisies of different colours and physiological pa-
rameters. Together they stabilize the planetary temperature against
changing solar irradiation [WL83; Woo+08]. One main criticism of
Daisyworld (and Gaia) concerns its relation to the theory of evolu-
tion [Sau94; Len98; LL00]. If biological species can actively modify
their environment, what stops rebel organism from evolving that ei-
ther do not contribute to environmental regulation or even regulate
the environment away from the preferred conditions of their compe-
tition? Some artificial life models were created to tackle this, and it
seems that the constraints between metabolism (growth) and envi-
ronmental regulation (by-product) is decisive for the outcome of the
simulations [DZ99; Dow02; WL07b].

Today it is widely accepted that the biospheres influences feedback
processes controlling its environment, but the extend of this control
and the question of a physical determinism towards such feedback
loops (and towards life) is still not really resolved [Kno03].

Considering biotic regulation of environmental conditions also
leads to interesting questions in relation to habitability and planetary
evolution. If persistence of life on a planet depends on it managing toIncreasing radiation

of stars during their

lifetime means that

conditions allowing

life to emerge and

persist (without

biotic regulation) are

vanishing after some

time.

regulate environmental conditions, the sparsity of inhabited planets
might not be due to the difficulty for emergence of life, but because
a low probably of life managing to regulate its environment (Gaian
Bottleneck) [CL16].

1.3.3 Habitability and Remote Life Detection

While there are various measurement methods from spacecrafts that
would have informed us on existing life on other planets in our so-
lar system [Sag+93], conceiving concepts for remote life detection on
exoplanets is way more difficult. There is not only a limit on the
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observations that can be made, but also a big diversity in stars and
planets [Sea13]. It is common to assume that possible life has to be car-
bon based, similar to life on Earth, and thus requires a planet to have
liquid water to be habitable [Kas97]. With this assumption, habitable
zones around stars are defined, with their boundaries depending on
the radiative flux generated from the star.

Besides the distance of an exoplanet from its star, there are other
factors to consider. Depending on bulk composition and geology,
greenhouse gasses in the atmosphere can increase the atmospheric
temperature. Atmospheric pressure influences the temperature at
which liquid water vaporizes. The size of the planet determines for
which time span of the planet’s evolution plate tectonics is main-
tained [GRP13; Rau+13]. Plate tectonics is important as it cycles
volatiles like CO2, helping to regulate atmospheric temperature. It is
also connected to the formation of the magnetic field of planets which
protects the atmosphere from stellar plasma particles [Lam+09].

In this conundrum of uncertainties, it is pragmatic and common
that astrobiological research focuses on exoplanets and scenarios for
which the existence of life could be confirmed with high certainty,
should it exist. One example for this is the modelling of super-
Earth atmospheres and their spectra around M-dwarf stars [Rau+11;
Gre+13].7 7 Resolving

planetary spectra

indirectly is easier

for smaller stars.1.4 global perspective

1.4.1 Thermodynamics of Planets and Life

The books of

Douce [Dou11] and

Kleidon [Kle16] give

a good introduction

in this interesting

area.

Roughly 50 years ago James Lovelock proposed to use atmospheric
thermodynamic disequilibrium as a general way of remote life de-
tection [Lov65; HL67]. This idea is based on the common thermody-
namic standpoint that Earth, like any dissipative structure [KP98], self
organizes in a way that maximizes entropy production by reducing its
entropy at the expense of its environment. By this argument, the ther-
modynamic disequilibrium in the atmosphere manifested through
the coexistence of oxygen and methane should thus be seen as an
indicator for the biosphere.

As striking as this idea is in its simplicity and its generality8, 8 The method, if

successful, would

also work for

non-carbon-based

life.

nowadays it is widely accepted that atmospheric thermodynamic
disequilibrium is necessary, but not sufficient for finding life on a
planet [Sag+93]. The power maintaining thermodynamic disequilib-
rium has to be distinguished from the magnitude of the disequilib-
rium and possible inorganic sources have to be considered [SVK13].
Recent work also suggests that ocean chemistry has to be considered
to quantify atmospheric chemical disequilibrium [KTBC16].

In spite of such difficulties, thermodynamics gives interesting in-
sights into Earth’s energetic structure [Kle10a] and the role of life
therein [Kle10b]. It allows to characterize the evolution of free energy
production throughout our planets history [LPW16] and to put life
into a cosmological perspective [LE08].
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Many recent applications of thermodynamics in Earth system
science are related to the maximum entropy production principle

(MEPP) [Oza+03; DK10]. This proposed extremal principle assumes
that high dimensional systems out of thermodynamic disequilib-
rium self organise to maximise their entropy production [MS06;
VSGCU11]. This principle has been explored for mixing processes
in the atmosphere, but also for other parts of the physical climate
system [Kle09].

Using the MEPP, ecosystems can be treated as self organiz-
ing molecular machines that adapt to maximise entropy produc-
tion [Val10]. Even though thermodynamic methods have a long his-
tory in ecology [Odu68; MM93], it is hard to assign chemical poten-
tials to organisms [MB07]. Thus, much of the work done on thermo-
dynamics in this area is related to theoretical models [Mic05; Mic12].
For example, in case of the daisyworld model, controlling heat flux
by MEPP leads to ideal homeostatic control. [Dyk08].99 See Sect. 1.3.2 for

an explanation of

daisyworld.
An important reason to have thermodynamic theory for living sys-

tems is related to the hypothesis of life evolving towards more com-
plexity. If this is true it is reasonable to expect a relationship with the
arrow of time that the second law of thermodynamics provides.

1.4.2 Ecology and Biogeochemical Cycles

Contrary to thermodynamics of planetary systems, many classical
disciplines investigating the biosphere often start with observations
on a small scale. In ecology these are for example observations on
biological individuals, counting them and measuring specific proper-
ties. From these, spatial and temporal patterns can be analysed onOriginally a part of

biology, ecology has

evolved into a field

of its own [Bar01].

different scales, and explanations for their occurrence can be tested
through modelling [Lev92; Lev98].

While ecology focuses on biological organisms, their connection
with each other and their environment, the focus of biogeochemistry

lies on the matter cycles that are related to the biosphere.10 Examples10 There is a

considerable overlap

between those two

fields.

for basic observations are measurements of atmospheric fluxes and
concentration for various chemical species. These observations are
then combined into an integrated view [Gor91; Hed92].

Biogeochemical cycles are collections of processes that lead to chem-
ical elements being recycled on various spatial and temporal scales.
Most important elements for biospheric modelling are carbon, nitro-
gen, oxygen, hydrogen, sulfur and phosphorus. Another important
cycle is the water cycle. But other than with the others, a big frac-
tion of water is cycling without being modified chemically, it only
is transported and undergoes physical phase changes. The cycling
of the different components is connected. For example, the fixation
of inorganic carbon into organic matter is limited by nitrogen and
phosphorus [WLP10]. The water cycle influences the transport of
other elements through rivers [Auf+11]. Matter cycles are connected
dynamically to each other and the climate system through various
feedback loops. In light of the anthropogenic climate change, models



1.5 thesis structure 9

that describe natural fluctuations and sensitivity to disturbance are
of special interest [Fal+00; CI+08; Cia+14].

For the biosphere, recycling of matter is important from an ener-
getic standpoint. Creating organic matter, or also just precursors for
it, is energetically expensive and might need complex machinery that
the biological organisms can not provide. Theoretical considerations
show that cycles necessarily exist in (biological) systems which are
driven into thermodynamic disequilibrium [Mor66]. The amount of
cycles has also been show to have an influence on thermodynamic
efficiency of cyclic processes [Lay+12]. Even if ecology and biogeo-
chemistry puts much effort into small scale observations, these obser-
vations and their interpretation is connected to thermodynamics by
energy and mass balance.

1.5 thesis structure

To guide the reader,

each chapter also

starts with a short

summary, keywords

and a side note on

recommended

chapters for prior

reading.

In Chapter 2 (methods) the formal methods used in this thesis are
presented. It communicates knowledge of nonequilibrium thermo-
dynamics and reaction networks. A new method for calculating the
pathway decomposition of a reaction network and its steady state is
introduced. Big random reaction networks are generated in Chapter
3 (thermodynamics of reaction networks) and simulated
with thermodynamic constraints. Their topological structure (cycles)
is investigated as a function of network flow and the internal distri-
bution of dissipation in the networks is analysed.

In Chapter 4 (atmospheric reaction pathways) two chemi-
cal models of Earth’s atmosphere in different states of its planetary
evolution are compared by using reaction pathways. A tendency to-
wards simpler pathways in the modern atmosphere is found. Ther-
modynamic characterisation reveals that the matter flow across the
boundary of the modern atmosphere is stronger driven by chemical
energy (of the matter) while the Archean atmosphere is more driven
by photochemical reactions (radiation). To get an integrated view on
pathways in a thermodynamical setting, in Chapter 5 (pathways in

artificial ecosystems) artificial ecosystems are generated and
evolved by a simple selection process. It is shown that evolution leads
to less complex pathways (less reactions, less cycles) explaining the
pronounced biogeochemical cycles found on Earth. After giving a Additional

information is

contained in the

appendix. The

attached disc also

contains scripts and

simulation data in

digital form.

short conclusion on the main part of this thesis in Chapter 6, a short
outlook with ideas for reaction networks in planetary science and
artificial life is given in Chapter 7.



2
M E T H O D S

Methods of non-equilibrium thermodynamics and formal meth-
ods of reaction networks are introduced. A new approach for
calculating important reaction pathways for a given steady state
of a reaction network is presented. Additionally, a method for
calculating a uniquely defined (for a specific set of pathways)
pathway decomposition is introduced. This method is espe-
cially well suited numerically if steady state rates span many
orders of magnitude.
keywords: reaction network, thermodynamics, pathway analy-

sis, elementary modes, graphs, thermodynamics

2.1 basic thermodynamics

Thermodynamics is a field of physics that is concerned with the study
of energy and its transformations, especially in the context of macro-
scopic systems. Its development is connected to the rise of the steam
engines in the 18th century. Today, concepts of thermodynamics are
used in a wide range of fields, from biology to planetary science.
In the following section, a very short introduction into the subject
is given roughly following the book of Kondepudi and Prigogine
[KP98]. Douce [Dou11] also

gives an intro-

duction in the field

with focus on

planets and life.

2.1.1 Equilibrium Thermodynamics

In thermodynamics there are different types of systems, depending
on their interaction with their environment. Isolated systems do not
exchange heat or matter with their environment. Closed systems do
not exchange matter with their environment, but they can exchange
heat and work with it. Open systems exchange work, matter and heat
with their environment.

A system in thermodynamic equilibrium is fully specified by a set
of state variables. All closed systems evolve irreversible towards such
a state. The relation between the state variables is given by state func-

tions or thermodynamic potentials. For closed systems the state function
entropy S = S(U, V, Nj) describes the state of the system as a func-
tion of the natural variables inner energy U, volume V , and particle
numbers Nj. In differential form, the change of entropy is written Relationship

between conjugate

variables: 1
T = ∂S

∂U ,
p
T = ∂S

∂V ,

µi = − ∂S
∂Ni

dS =
∂S

∂U
dU+

∂S

∂V
dV +

∑

i

∂S

∂Ni
dNi

=
1

T
dU+

p

T
dV −

∑

i

µi

T
dNi.

(2.1)

11
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The partial derivatives of the state function in relate conjugate pairs
of potential state variables. Volume V is related to pressure p, as well
as chemical potential µi is related to particle number Ni. Conjugate
pairs always consist of one intensive and one extensive variable. Ex-
tensive variables like volume and inner energy scale with the size of
the system, while intensive variables like pressure and temperature
do not.

For different situations different thermodynamic potentials can be
used. The Gibbs free energy G = G(T, p, Nj) describes the work thatTransformation

between

thermodynamic

potentials is done

using the Legendre

transformation

[KP98, p. 132].

can be extracted from a system at constant pressure p and tempera-
ture T .

Relationship

between conjugate

variables: S = −∂G
∂T ,

V = ∂G
∂p ,

µi = − ∂S
∂Ni

.

dG =
∂G

∂T
dT +

∂G

∂p
dp+

∑

i

∂G

∂Ni
dNi

= −SdT + Vdp−
∑

i

µidNi

(2.2)

Using the concept of state function, the first law of thermodynamics,
stating energy conservation in closed systems, can be formulated by
saying that the inner energy U is a state function with the entropy
S and volume V as its natural variables. For its differential dU this
means

∮

dU = 0. (2.3)

All integrals over dU on a closed path are zero. This is equivalent
with the statement that the path integral between two points is inde-
pendent of the path chosen.

The second law of thermodynamics states that entropy in closed sys-
tem never decreases over time. In differential form:

dS ⩾ 0. (2.4)

Isolated systems in equilibrium are in their state of maximum entropy,
which means that Eq. 2.4 reduces to dS = 0.

2.1.2 Non-Equilibrium Thermodynamics

In non-equilibrium thermodynamics fluctuations become important
and interesting phenomena, such as long-range correlated structures
and dissipative structures, become possible. There are no global state
functions that describe the state of the system. The systems that we
are focusing are locally in equilibrium, state variable like temperature
and pressure can only be defined as densities. State functions can be
integrated to get the entropy or inner energy of the entire system,
but these integrated quantities do not fully quantify the state of the
system.

A good starting point for explaining the difference to equilibrium
thermodynamics (where no irreversible processes are considered) is
the splitting of the entropy change dS of a system into a part due to
internal processes diS and a part related to exchange processes deS.

dS = diS+ deS (2.5)
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The part describing exchange processes deS depends on heat trans-
port through the boundary, while the internal part can be attributed
to irreversible processes in the system. By removing heat from the
system one can reduce the entropy, implying a negative deS or even
dS. But through irreversible processes entropy can only be generated.
This leads to the inequality

diS

dt
=

1

T

dU

dt
+

p

T

dV

dt
−
∑

i

µi

T

dNi

dt
⩾ 0, (2.6)

that corresponds the second law of thermodynamics, but for non-
equilibrium systems.

To give an example, the entropy production rate from heat conduc-
tion of an isolated system with two heat baths with distinct tempera-
tures is calculated [KP98, p. 94]. The two heat baths have well defined
temperatures T1 and T2. They are isolated to the outside (deS = 0),
but are in contact with each other. The heat flow is dQ

dt = α(T1 − T2).
This leads to an entropy production rate σ of:

σ =
dS

dt
=

diS

dt
=

(
1

T2
−

1

T1

)
dQ

dt
= . . . = α

(T1 − T2)
2

T1T2
⩾ 0. (2.7)

As this describes an isolated system, it will naturally approach equi-
librium at some time. The entropy production ceases when the en-
tropy reached its maximum according to the second law.

2.2 reaction networks

The growing importance of investigating complex systems has lead
to different approaches for handling new phenomena and growing
amount of data. One are the different aspects of network theory. It
is applied in social science, for investigation of the spreading of dis-
eases, for gene regulatory networks in systems biology, for data anal-
ysis and in many other areas. The basic theory of reaction networks
describes how a set of chemical species interact through a set of reac-
tions. Formally, reaction networks [Cla88] consist of a set of species M
combined with a set of reactions R. They contain information on the
connection of chemical species through reactions and include the sto-
ichiometric constraints given by the reactions. Reaction networks can
be represented in different ways (Fig. 2.1). Either by a list of chemical
reaction equations or by different graphical representations.

Mathematically, a reaction network can also be described by two
stoichiometric matrices Nin and Nout. Nin

ij is the coefficient of the i-th
species on the left side of the j-th reaction and Nout

ij is the coefficient of
the i-th species on the right side of the j-th reaction. Combining both
matrices gives the stoichiometric matrix N = Nout −Nin, for which the
element Nij in i-th row and j-th column gives the effective change of
species i by reaction j. Given a relation v = v(x) between reaction rates
v and species concentrations x, one can associate the reaction network
with the dynamics of an ordinary differential equation (ODE):

dx

dt
= N · v(x). (2.8)
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(a) (b)

(c)

(d)

X_1

X_2

X_3X_4

Figure 2.1: Different representations of the same reaction network. The
same network can be represented through its reaction equa-
tions (a) or different graphical forms in which reactions are ei-
ther represented by connected arrows (b) or by yellow squares
(c). (d) The stoichiometric matrix N does not uniquely encode
the network if the network includes autocatalytic reactions (same
species occurring in reactants and products of a reaction).

If the functional form of the kinetic law v = v(x) is known, the dif-
ferential equation can be simulated as well as analysed as a dynam-
ical system. The fixed points can be found by solving 0 = N · v(x)

for x. Linearization allows to determine the stability of these fixed
points [Cla88].

2.2.1 Mass Action Kinetics

In principle one can imagine different kinetic laws to simulate the dy-
namics of a chemical system. As our aim is to simulate and analyse
reaction networks in a thermodynamically consistent framework we
use the kinetic law for elementary reactions: mass action kinetics [HJ72].
A reaction being elementary means that it happens in one step and
there are no intermediates that can be detected. Because it is neces-
sary for all reactants to collide (meet in space) for the reaction to
become possible, the reaction rate vi scales with the product of all
their concentrations:

vi(x) = ki
∏

j

xj
Nin

ji . (2.9)

For a general, thermodynamically realistic description, chemical re-
actions have to be simulated reversible. The net reaction rate is de-
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fined as the difference of mass action kinetics rates (Eq. 2.9) applied
for the forward and the reverse reaction:

vi(x) = vf
i − vb

i

= kf
i

∏

j

xj
Nin

ji − kb
i

∏

j

xj
Nout

ji . (2.10)

An important formula for constraining the reaction rate constant k
and describing its scaling with temperature is the Arrhenius equation,

k = k0e
−Ea/RT . (2.11)

In this equation k0 is a reaction dependent constant, Ea the activation
energy of the reaction, R the ideal gas constant, and T the absolute
temperature. The equation can be derived using transition state the-
ory [KP98, p. 231].

2.2.2 Substrate Graphs

To analyse the topology (connectivity structure) of reaction networks,
complex network theory is used. The area of complex networks ex- A complex

network can be

simply understood

as a graph with

nontrivial statistical

properties.

tends the older concept of a graph from mathematics and computer
science. Formally a graph is defined as a pair G = (V ,E) of nodes V

and edges E. Edges are 2-element subsets of V Sometimes nodes are
also called vertices and edges links. If the edges have a direction they

Often E is a

multiset. For clarity

G is then called

multigraph.

are defined as ordered pairs E ⊂ V ×V , then G = (V ,E) is called a or-

dered graph. An example of an ordered graph with V = {A,B,C,D,E}
and E = {(D,D), (A,D), (A,B), (A,B), (B,C), (C,B), (C,A)} is shown
in Fig. 2.2 (a).

For comparison of large-scale properties of reaction networks they
are often transformed into a graph representation. This representa-
tion is called substrate graph. The nodes in the substrate graph cor-
respond to the chemical species of the reaction network and an edge
between two species is added each time they are found on different
sides of a reaction equation (Fig. 2.2 (b)) [SM04b; WF01]. For the sam-
ple network in Fig. 2.2 (c) this results in the substrate (multi)graphs
shown in Fig. 2.2 (d)&(e). In the substrate graph representation ba-
sic methods from computer science can be used to calculate simple
topological properties like cycles [Gle+01] and shortest path.

For example, such a network theoretic analysis of chemistry found
that the interstellar medium (ISM) [JD10] shows a different scaling
behaviour than a biological network (metabolism of E. coli) [JD12].
Earth’s atmosphere was found to have a modular reaction network
comparable to other networks of living systems, while inorganic net-
works have a simpler structure [SM04b].

2.2.3 Elementary Modes & Reaction Pathways

In bioinformatics for looking at the steady state of N without know-
ing the function v = v(x), often elementary (flux) mode analy-
sis [SH94] is used. An elementary (flux) mode of a reaction network
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is a collection of reactions that can operate together in steady state
and can not be decomposed further.1 Be |(R)| the number of reactions1 See Fig. 2.3 (b) for

an example. in our reaction network, then an elementary mode E ∈ N
|(R)|

0 has to
meet the following conditions:
a) Not change the concentration of any intermediary species Si ∈ M:

∀Si :
∑

j

EjNij = 0. (2.12)

b) Not be a proper superset of any other (potential) elementary
mode F (that fulfils condition a)):

̸ ∃F :
(
∀j,Ej = 0 : Fj = 0

)
∧ (∃k, Fk = 0 : Ek ̸= 0) . (2.13)
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Figure 2.2: Substrate graph and cycles. (a) Sample of a directed graph.
(b) Substrate graph of a reaction network is obtained by tak-
ing all species as nodes and adding an edge between each pair
of reactants and products of every reaction. (c) Sample reaction
network. (d) Substrate graph of reaction network (with multi-
ple edges). Cycles with different size are highlighted in colour.
(e) Substrate graph without multiple edges.
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Every steady state rate vector v ∈ ker(N) can be represented as
a linear combination of elementary modes E(i) with positive, real
valued coefficients αi:

v =
∑

i

αiE
(i). (2.14)

For a given steady state rate vector v the coefficients αi are not
unique. In Sect. 2.3.4 a method is introduced, that calculates coeffi-
cients that are uniquely defined for a given set of elementary modes.
We will use the term reaction pathway to refer to elementary modes in
the context of a specific steady state.2 We will also call this expansion 2 Elementary

mode analysis is

commonly used for

metabolic networks

in bioinformatics,

where steady state

rates are unknown.

(Eq. 2.22) pathway decomposition, as it decomposes the steady state
into elementary modes. An example of the pathway decomposition
and calculated coefficients is shown in Fig. 2.3 (b).

For application in this thesis, reaction rates vi are understood as
effective rates of forward and backward reaction rates like defined
in Eq. 2.10. Reaction pathways are calculated with one reaction repre- The notion of a

reversible reaction
is not to be confused

with the idea of a

reversible process
in thermodynamics!

senting the dominant reaction direction of each reaction. This is dif-
ferent for the analysis of metabolic networks in bioinformatics, where
some reactions are treated as reversible and some as irreversible de-
pending on their chemical equilibrium. For elementary mode anal-
ysis, reversible reactions are then represented by two identical re-
actions with opposing directions. This leads to pathways that only
contain reactions of one direction and make it difficult to associate
thermodynamic properties of reactions to pathways (cf. Eq. 2.22).

2.2.4 Other Approaches

Besides elementary flux modes [SH94; SDF99] there exists the related
notion of extreme pathways [SLP00]. Those two theories are closely
related and mainly differ on the way they treat reversible reactions
[Pap+04].

Also related is metabolic flux analysis which tries to find the steady
state using constraints and maximising the production of selected
species [OTP10]. Chemical organisation theory [DF07; CD07] focuses
on enumerating subsets of the reaction network that are closed and
self maintaining. Similarly, the theory of autocatalytic sets [HS04;
HHS10; HS12; HSK13; HSS15] specifies subsets of reaction networks
that can catalyse their own production and maintain themselves.

2.2.5 Thermodynamics of Reaction Networks

Some work has been done for integration of thermodynamic con-
straints in reaction network formalism. With few exceptions [QB05],
most of it focuses on steady state conditions. A short introduction
into the formalism of thermodynamics of reaction networks is given
in Qian and Beard [QB05].

Much of the research in this area focuses on connecting flux balance
analysis with thermodynamics as an additional constraint [BLQ02;
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Bea+04; HBHk07; PE14]. But there are also attempts to use thermo-
dynamics to indicate regulatory control in reaction networks. [BQ05;
KPH06] and to derive reaction directions [YQB05] and chemical po-
tentials [De +12; SMH12] through thermodynamics.

Thermodynamic properties of reaction networks can be described
by non-equilibrium thermodynamics as shown in Sect. 2.1.2. Similar
to the change of entropy before, we are splitting the change of Gibbs
free energy dG into the exchange of the system with the environment
deG and change through processes in the system diG:33 Gibbs free energy

is used because

through its natural

variables it is well

suited for describing

systems with

constant pressure

and temperature.

dG = deG+ diG. (2.15)

Using Eq. 2.2 we get4:

4 Pressure and

temperature are

constant, thus

dT = dp = 0.

dG

dt
=

deG

dt
+

diG

dt
= −

∑

i

µi
dNi

dt
. (2.16)

In steady state the concentrations do not change and G is con-
stant. But we can split the change of concentration dNi

dt into one
part through fluxes fi (external) and one part through chemical re-
actions

∑
jNijvj:Positive values of fi

correspond to inflow,

negative values to

outflow.
dG

dt
= −

∑

i

µi

⎛
⎝fi +

∑

j

Nijvj

⎞
⎠

= −
∑

i

µifi +
∑

j

(
∑

i

µiNij

)
vj

= −
∑

i

µifi +
∑

j

∆µjvj

=
deG

dt
+

diG

dt
.

(2.17)

For the last simplification the definition of the Gibbs free energy of
reaction ∆µj :=

∑
i µiNij is used. Because G is constant in steady

state the two terms

deG

dt
= −

∑

i

µifi

diG

dt
=

∑

j

∆µjvj

(2.18)

have to cancel out. With constant pressure and constant temperature,
the free energy dissipated inside the system describe the amount of
heat that is generated. Thus, the entropy production σ can be calcu-
lated byIn steady state, σ

can also be

calculated through

boundary flow by

using deG
dt .

σ =
diS

dt
= −

1

T

diG

dt
= −

∑

j

∆µjvj. (2.19)

To reformulate this, the entropy production can be defined per re-
action by

σi = −
1

T
∆µivi = −

1

T

∑

j

µjNji (2.20)
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to get the total entropy production of the network as the sum of the
entropy production of all of its reactions:

σ =
∑

i

σi. (2.21)

There is an alternative way of calculating entropy production of
individual reactions in steady state by writing it in terms of forward
and backward reaction rates vf

i and vb
i [KP98; BQ07]:

σi = (vf
i − vb

i) log
vf
i

vb
i

. (2.22)

For simulations done in this thesis both formulations are equiva-
lent, though Eq. 2.22 is more general and allows to determine entropy
production for complex kinetic laws like, for example, Michaelis-
Menten kinetics [BQ07].

2.3 calculating significant reaction pathways

For calculating a decomposition of the steady state of a reaction
network into reaction pathways we use an algorithm inspired by
Lehmann’s work [Leh04]. Lehmann’s algorithm was already applied
to models for atmospheric chemistry [Gre+06; Sto+12a; Sto+12b] but
with a slightly different aim. In these publications reaction pathways
were used as a tool to explain the production or consumption of spe-
cific species. Our work has a different approach which leads to some
changes to Lehmann’s original algorithm:

• We treat all species as intermediate species.

• We do not use the concentration of the species as input for the
algorithm. Thus we cannot calculate the residence time of the
species to order them. The species are all considered as interme-
diate species in order of their increasing production rate.

• The system is assumed to be in steady state. Effective produc-
tion and consumption of species is balanced by introducing in-
and outflow pseudoreactions.

• A different criterion to decide which pathways are discarded is
used. To find a decomposition of the steady state that explains
a big fraction of all reactions a criterion that is independent of
the rate of the reactions is used. This is especially relevant as
typical steady states have reaction rates ranging over more than
10 orders of magnitude.

In the following a self contained description of the algorithm used
in this thesis is given. The implementation of the algorithm in R
[IG96] is freely available [Fis16a].5 5 Cf. Appendix C.
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Figure 2.3: Reaction pathways: Decomposition example and algorithm.

(a) Sample reaction network with steady state rates (indicated
by nX). (b) Complete set of pathways for the reaction network.
Coefficients αi are calculated with the algorithm in Sect. 2.3.4
and reconstruct the given steady state. The nonuniqueness of
the pathway decomposition is exemplarily shown by the sets
of coefficients α = (1, 0, 1, 1, 0, 0) and α = (0, 1, 0, 0, 1, 0), which
represent the same steady state. (c) Calculation of Pathway (6)
with elementary mode algorithm (Sect. 2.3.1). Calculation starts
with all reactions being represented by one individual pathways.
Then, pathways producing and consuming specific species are
combined, and these species "eliminated". In our example this
happens in the order (1) X, (2) Y, (3) Z.
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2.3.1 General Structure

The input of the algorithm is the structure of the reaction network An example for

pathway calculation

(general method) is

given in Fig. 2.3 (c)

given by the stoichiometric matrix N and a steady state rate vector v.
Before the pathways are calculated pseudo in- or outflow reactions
are added for all species, so that their concentrations are balanced
(N · v = 0). If the system is not (yet) in steady state this can be done
in the same way, but the added pseudoreactions then do not only
describe the matter exchange of the reaction network in steady state
with the environment, but also the change of concentrations at the
corresponding point in time. For the following description of the al-
gorithm we will also assume (without loss of generality), that all ele-
ments in the rate vector v are non-negative.

In the beginning, the list of pathways is initialised with the (inter-
mediate) pathways each representing exactly one reaction. M(i) is used here

instead of E(i) to

distinguish

intermediate from

final pathways.

M
(i)
j = δij (2.23)

αi = vi (2.24)

These values fulfil v =
∑

i αiM
(i). Throughout iterating all species

as branching species this identity is approximately maintained and
the pathways are updated and combined in a way that results in all
pathways leaving the concentration of all already branched species
unchanged. For ordering the species for branching, their turnover
rate is used. The turnover rate w is defined by

wi(v) = max

⎧
⎨

⎩

∑

j,Nij⩾0

Nij · vj , −
∑

j,Nij⩽0

Nij · vj

⎫
⎬

⎭
(2.25)

and is in our case equivalent to the quantities commonly called
production and consumption rate. As this shows the best runtime
behaviour, we schedule the species for branching with increasing
turnover rate. This means that species with high turnover rate, and
probably also a high number of associated reactions, are used for
branching last.

When branching at a species Xi, the pathways are separated in
three disjunct sets, depending on how they affect the concentration
of Xi:

∆Xi(M
(k)) =

∑

j

NijM
(k)
j . (2.26)

Apart from possible dropping of unimportant pathways as de-
scribed in Sect. 2.3.2, pathways that do not change the concentration
of Xi are left unaffected by branching and all pathways that net pro-
duce Xi are combined with all pathways that net consume it. The coef-
ficients are chosen so that the combined pathway does not change the
concentration of Xi. The combination of the net producing pathway
M(k) with the net consuming pathway M(j) is given by

M(k,j) = ∥∆Xi(M
(j))∥ · M(k) + ∥∆Xi(M

(k))∥ · M(j). (2.27)
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Finally, for every newly combined pathway the integer coefficients
defining the pathway are divided by their greatest common divisor
and the pathway is then replaced by its elementary pathways as de-
scribed in Sect. 2.3.3. When the new set of pathways has been calcu-
lated, new coefficients αi are determined (Sect. 2.3.4) and the criterion
for dropping pathways with minor importance is applied (Sect. 2.3.2).

After iterating all species as branching species M(i) contains the fi-
nal set of pathways and (αi) the corresponding coefficients. If the
quality of the expansion is insufficient, important pathways may
have been dropped (2.3.2) and the coefficients r and fexp should be
adapted accordingly.

2.3.2 Discarded Pathways

There are two points in the algorithm at which pathways can be dis-
carded. One is at branching, before combining a pathway that pro-
duces and one that consumes the branching species. For this, we
split the pathways in two classes. "Important" pathways generating
the branching species are combined with all pathways consuming
it. "Unimportant" producing pathways however are only combined
with consuming pathways that are themselves in the class of impor-
tant pathways. Ultimately, every pathway producing and consuming
the branching species is combined with some other pathway, but path-
ways contributing little to the production are not combined with path-
ways that have a small share in consumption.

To split the pathways in two classes, producing pathways as well as
consuming pathways are ordered with decreasing fraction they have
at the production or consumption of the branching species. In both
cases, pathways are assigned to the class of important pathways until
their cumulative fraction of production or consumption exceeds the
free parameter r ∈ [0, 1[.

The second point for discarding pathways is after the two path-
ways are combined and the new (intermediate) decomposition of the
steady state is calculated. For each pathway the maximum fraction
that it explains of a reaction rate, fR, and the maximum fraction that
if explains of the turnover of a species, fT , are calculated.

fR(M
(i),αi) = max

j,M(i)
j ̸=0

M
(i)
j ·αi

vj
(2.28)

fT (M
(i),αi) = max

j,M(i)
j ̸=0

wj(M
(i)
j ·αi)

wj(v)
(2.29)

In the last equation wj = wj(v) is used as defined in Eq. (2.25). After
each branching step the pathways for which both measures, fR as well
as fT , are below the parameter fexp are discarded and removed from
the list of pathways that will be used for branching in the following
steps.
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2.3.3 Non-Elementary Pathways

At each branching step the newly generated pathways have to
be checked for the elementary property. In the original elemen-
tary modes algorithm this is simply done by checking for the non-
existence of a proper sub-pathway (other pathway which set of reac-
tions is a proper subset of its reactions). In our case this is not possible
because some of the sub-pathways may not be included in the list of
pathways as one of their precursors might have been discarded. Thus,
for every combined pathway the original elementary mode algorithm
is applied to the subnetwork defined by this pathway. If the pathway
is not elementary (because it has proper sub-pathways) it is removed
from the list of newly generated pathways and instead all its elemen-
tary sub-pathways are added.

The structure of the original elementary mode algorithm [SS93]
used for this step is identical to the general algorithm as described
above (Sect. 2.3.1), except that no coefficients are calculated and no
pathways are discarded. With no rates known in this case, the species
for branching are ordered randomly.

2.3.4 Calculation of Coefficients

For the expansion of a steady state rate vector into elementary path-
ways the coefficients αi are not uniquely defined. To counter this
arbitrariness we are using the following method to calculate a unique
set of coefficients for a given steady state v and a given set of reaction
pathways M(i). This method iteratively distributes the steady state
rate to as many reaction pathways as possible.

It starts from a set of pathways M(i) and a steady state rate vector v.
On the course of the iterative algorithm, a list of current coefficients
that is initialised with zeros (αi = 0) and a vector containing the yet
unexpanded part of the steady state (initially v∗ = v) are kept and
updated. After initialising, the following steps are iterated:

• Determine the set of pathways I that are compatible with the
currently unexpanded part of the steady state v∗:

I = {i|{k|M
(i)
k ̸= 0} ⊂ {j|v∗j ̸= 0}}

• If I is empty, the algorithm is finished. The final coefficients are
in αi and the remaining unexpanded rates in v∗.

• If I is not empty, the coefficients of all pathways in I are in-
creased by the same amount ∆α until at least one additional
reaction in v∗ is depleted.

∆α = min
j,v∗

j ̸=0

v∗j
∑

i∈IM
(i)
j
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• Update the coefficients accordingly and afterwards continue
with the next iteration.

α ′
i =

⎧
⎨

⎩

αi +∆α if i ∈ I

αi else
(2.30)

The quality of the expansion can be evaluated by comparing the re-
mainder of the rates v∗ with the steady state rates v.
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T H E R M O D Y N A M I C S O F L A R G E - S C A L E R A N D O M
R E A C T I O N N E T W O R K S

This chapter requires

the reader to

understand basics of

reaction networks

and thermodynamics

(see Chapter 2).

Large-scale artificial reaction networks are created and their
non-equilibrium steady state is investigated for various bound-
ary fluxes. Linear and nonlinear reaction networks of different
topologies are compared. The distribution of entropy produc-
tion of the individual reactions inside the network follows a
power law. An elevated entropy production rate is found in reac-
tions associated with weakly connected species. Increasing the
flow through nonlinear reaction networks leads to an increased
number of cycles through self-organization like switching of re-
action directions.
This chapter is based on work previously published in [FKD15].

keywords: reaction networks, complex networks, thermody-
namics, artificial chemistry, cycles

introduction

Connecting network theory with thermodynamics was an idea al-
ready present more than 40 years ago under the term network ther-
modynamics [OPK71; Per75]. Despite the fact that the terms were
used in combination, the theory was merely a graphical represen-
tation of conservation equations and did not make any statements
about complex networks, as they are known today. In 2006 Cantú The field of

complex networks
itself was not

existent 20 years

ago.

and Nicolis [CN06a] studied thermodynamic properties of linear net-
works, but limited themselves to small networks, which they were
able to handle analytically. Here, we extend their study by generating
large random linear and nonlinear reaction networks and simulating
them to a thermodynamically constrained steady state. This might
contribute to a framework that allows to test methods for reconstruct-
ing thermodynamic data of reaction networks [SH10; SMH12] and
lead to a better thermodynamic understanding of reaction networks
in general. Possible applications of this approach include the thermo-
dynamic investigation of reaction models in biology [SH10; SMH12;
MQN14], origin of life [HS12] and also Earth system and planetary
science [KHP85; Sau+03].

We look at reaction networks as thermodynamic systems that trans-
form two chemical species into one another [CN06a] (see Fig. 3.1).
The environment is driving the network to thermodynamic disequi-
librium by keeping the concentration of two species constant. In the
following, we will call the chemical species that are kept constant
boundary species, because they are the species to which the boundary
conditions are applied to.

25



26 thermodynamics of reaction networks
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Figure 3.1: Simple method for maintaining reaction networks in non-

equilibrium steady-state. This idea is inspired by the work of
Cantú and Nicolis [CN06a] and allows to control thermody-
namic forcing through concentration of species A and B. The
implicit assumption is, that there are pathways that transform A
into B. For the external observer the network in steady state can
be replaced by a single reaction. This scheme is realized with lin-
ear reaction networks (left) as well as nonlinear networks (right).

Our basic assumption is that the network in steady state is able
to transform the two boundary species into each other. This is not al-
ways possible in real reaction networks where the transformations are
constrained by stoichiometry of chemical constituents. For example,
any chemically sound reaction model will implicitly forbid pathways
that transform N2O into H2O. Even if the artificial networks we cre-The model in

Chapter 5 will allow

to consider

stoichiometric

constraints.

ate are comparable in density to real network, they are not created
with this constraint. This is due to the implications this constraint
would have on the complexity of the boundary conditions. Omitting
it leads to the existence of many transformation pathways between
most pairs of randomly chosen boundary species, otherwise almost
all pairs of boundary species would just have a steady state flow of
zero between them.11 The existence of

pathways between

boundary species is

also an effect of

many linear

reactions in the

network.

We study different quantitative properties of the networks at steady
state. In particular, because cycles have been reported to have impor-
tant functions in networks [Mor66; Gle+01; Kre+12; PPS13], we look
at the cycles that appear in the flow pattern. These cycles depend

Cycles are

investigated using

the networks

substrate graph as

shown in Fig. 2.2.

on the direction of the flow of each reaction, which in turn depends
on the strength of the thermodynamic disequilibrium caused by the
boundary condition.

The next section describes a method for generating reaction net-
works so they resemble different complex network models and a
method to simulate their reaction equations and find their non-
equilibrium steady state. Results concerning the flow through the net-
works, the distribution of entropy production of individual reactions,
and the dependency of cycle number from flow through the nonlinear
networks are then presented.
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Figure 3.2: Illustration of realized simulations: (a) Linear reaction net-
works are generated from existing complex network models. (Ar-
rows represent reactions, chemical species are indicated by up-
percase letters.) (b) Pairs of linear reactions are coupled to form
nonlinear reactions. (b’) Substrate graph that should maintain
its characteristic properties while coupling. Edges invoked by
coupling are depicted with dotted arrows. (c) Gibbs energies of
formation are assigned to species from a normal distribution,
activation energies to reactions from a Planck-like distribution
(Eq. 3.2). (d) Two boundary species whose concentrations are
kept constant are selected while the other species are initialized
randomly. (e) Reaction equation is solved numerically and final
rates are taken as steady state rates.
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3.1.1 Network Construction

Our artificial reaction networks are generated in three steps. We first
generate a simple directed network (graph) consisting out of a set V
of N nodes and a multiset E ⊂ V × V of M edges. These networks
are generated following the models of Erdős-Rényi [ER59], Barabási-
Albert [AB02] (scale-free), Watts-Strogatz [WS98] (small-world, clus-
tering) and Pan-Sinha [PS09; PS07] (hierarchically-modular). In each
case we are using variants of these network models that allow forma-
tion of self loops and multiple edges between the same nodes. Also,
we generate networks with a fixed number of edges. From these com- Using a fixed

number of edges

maintains

comparability in

density.

plex networks the reaction network is constructed.
Simple reaction networks are created by translating each edge into

a reaction of the form X ⇀↽ Y with X being the first and Y being the
second node of the edge. In the rate equation of mass action kinet-
ics this leads to a linear dependence of the reaction rates from the
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concentrations and thus we are calling these networks linear reaction
networks.22 This implies a

linear dependency of

all concentrations

from boundary

concentrations.

Nonlinear reaction networks are generated out of directed com-
plex networks by combining pairs of edges to second order reactions
of the form X + Z ⇀↽ Y +W. The selection of pairs is done with a
probability distribution that maintains the characteristic properties of
the substrate graph as far as possible. This is done by considering
the probability of newly introduced edges in the substrate graph in
the originally used network model. For example, consider the com-
bination of the reactions A ⇀↽ B and C ⇀↽ D to create the reaction
A+C ⇀↽ B+D. This leads to two new edges in the substrate graph
between A and D as well as between C and B. The probabilities of
these two edges in the original network model are then used to calcu-
late the probability of the combined reactions.

Finally, the thermodynamic data is generated and assigned to
species and reactions. In the following, the generation process of non-
linear networks specific to the different network models is explained
before the generation of thermodynamic data is specified in detail.

Erdős-Rényi (ER)

In the Erdős-Rényi network model [ER59] all possible edges have the
same probability. We create these networks by simply drawing the
nodes of every edge from the set of all nodes with uniform prob-
ability. For the construction of nonlinear reaction networks, second
order reaction equations are then chosen from the set of pairs of lin-
ear equations with uniform distribution. Note that linear equations
that are used as part of a nonlinear equation are not replaced, mean-
ing that the probability of all pairs of linear equations containing it is
set to zero for subsequent couplings.

Barabási-Albert (BA)

For generating scale-free networks, the Barabási-Albert model is used
[AB02]. In this model nodes are added consecutively. Newly added
nodes are connected to the network by introducing edges between
it and already existing nodes. The selection of nodes to attach to is
done with probability scaling with their node degree (preferential
attachment).This preference of

well connected nodes

leads to power law

degree distribution

(scale-free property).

The coupling probability of linear reactions is calculated from the
product of the node degrees of the chemical products. In principle,
other functional dependencies are possible, but for simplicity we
choose this one and check that it maintains the power law distribution
of the node degree in the associated substrate graph (Fig. 3.3 (a)).

Watts-Strogatz (WS)

Networks having a comparable average path length to the Erdős-
Rényi model, but with a higher clustering coefficient, are generated
with the Watts-Strogatz model [WS98]. From a circular lattice like
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structure, a fraction α of all edges is randomly reordered. Consid-
ering the size of our networks we choose a value of α = 0.1 (see
Table 3.1).

For the creation of nonlinear networks, we only form couplings
between linear reactions that lead to two new close edges in the sub-
strate graph. Here “close” means that their distance in terms of the
circular lattice is not larger than the largest distance of non reordered
edges in it. It would have be possible to use a more sophisticated
approach and use the parameter α as the probability of introducing
a far edge in the substrate graph while coupling. But because even
our simple method does not achieve a clustering coefficient as high
as equivalent linear networks (Table 3.1) we use this simple method. Allowing more far

edges while coupling

would lead to a even

lower clustering

coefficient.

Pan-Sinha (PS)

Hierarchically-modular networks are generated starting with uni-
formly partitioning the nodes into 2h elementary modules, with h

being the number of hierarchical levels of the network. On the first
level, two pairs of modules on the elementary level are joined to form
a new module, leading to 2(h−1) modules on the first level. Analo-
gous, for all other levels modules of the level below are joined pair-
wise, up to the h-th level where there is just one module consisting
out of the entire network. When edges are added to the network, this
happens with a probability proportional to the lowest level l in which
the two nodes to be connected share a module. Two nodes that share
an elementary module are connected with the probability p0 whose
value is given by normalization. Nodes whose lowest common level
is l are connected with probability p0p

l. For our networks we choose
p = 0.5 and h = 8.

When creating nonlinear reactions we assign each possible cou-
pling a probability proportional to the product of the probability of
the two newly introduced edges in the original model. Assuming a
coupling leads to new edges in the substrate graph between nodes
with lowest common module on levels l1 and l2, then the probability
of choosing this coupling is scaled with pl1pl2 .

Parameters

For network construction we generate linear reaction networks with
N = 1000 species and M = 5000 first-order reactions. Nonlinear net-
works are built by generating a linear network with M = 3000 re-
actions and connecting C = 1000 of them to second-order reactions. As nonlinear

reactions have four

edges in the

substrate graph, this

leads to the same

density than the

linear reference

network.

To compare linear and nonlinear networks directly we also generate
linear networks from the substrate graph of the nonlinear networks.
This comparison is not possible with the generated linear reaction net-
works because their substrate graph is not as clustered. An overview
of all generated networks is shown in Table 3.1.
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3.1.2 Thermodynamics of Reaction Networks

For generating thermodynamic data and analysis we are using the for-
malism introduced in Sect. 2.2.5. As we are generating artificial data
and do not directly compare with chemical data, unitless equations
are used in this chapter (kBT = 1 or RT = 1).

Generating Thermodynamic Data

For calculating the networks dynamics, Gibbs energies of formation
of the species µ0

i are drawn from a normal distribution N(0, 1). Reac-
tion rate constants are then calculated using the Arrhenius equation
(with the prefactor A set to 1):

k = Ae−Ea = e−Ea . (3.1)

Here, Ea is the activation energy which is sampled from the distri-
bution

P(x) =
6

π2

1

x3(exp(1/x) − 1)
(3.2)

for every reaction. We have chosen this distribution, which resembles
the Planck-distribution, because it has an effective non-zero lower
bound while still having a large tail to the right (Fig. 3.2). We sim-
ulate all reactions reversibly. Forward and backward reaction are en-
ergetically constrained by the Gibbs energies of the species. Thus,
we sample Ea just once for every reaction and assign it to the re-
action direction which respective educts have a higher Gibbs en-
ergy of formation, either Ee,i =

∑
j,Nij<0 µ

0
i |Nij| (forward direction)

or Ep,i =
∑

j,Nij>0 µ
0
iNij (backward direction). The activation en-

ergy of the second reaction direction is then given by the constraint
E ′
a = Ea + |

∑
j µ

0
iNij|. This expression is a reflection of the fact that

in equilibrium forward and backward reaction rates need to balance.The reaction rate

constant for the

backward reaction is

thus written

kb = e−E′

a .

Analysing Dissipation

In steady state the entropy production of individual reaction i can
be as function of forward and backward reaction rates vf

i and vb
i like

explained in Sect. 2.2.5:See Eq. 2.22.

σi = (vf
i − vb

i)ln
vf
i

vb
i

. (3.3)

This relation can be applied to calculate the total entropy produc-
tion rate σtot =

∑
i σi of a reaction network acting between two

boundary species b1 and b2 kept at concentrations c1 and c2. As the
entropy production rate in steady state only depends on the bound-
ary conditions (c1, c2, v = v+ − v−) we can replace the entire network
with one imaginary linear reaction b1 ⇀↽ b2. If we assume the Gibbs
energies of formation of boundary species to be zero, the forward and
backward rate coefficients are equal and we obtain the equationCf. Fig. 3.1.
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σtot = v ln
c1

c2
. (3.4)

Alternatively one could also get this result by calculating the
boundary species entropy exchange with the environment, because
in steady state 0 = dS = deS+ diS.

3.1.3 Network Simulation

As we are interested in the steady state of the network under thermo-
dynamic boundary conditions, we solve the reaction equation while
keeping the concentration of two selected chemical species b1, b2 at
fixed concentration c1, c2. To remove the effects of the energy differ-
ence between the boundary species on the flow, we set their Gibbs
energy of formation µ0

i to zero and recalculate reaction rates before
starting the simulation. For solving the ODE, the C++-library boost

is used. The selected algorithm is “Dormand-Prince 5”. Concentra- This is an explicit

method. The implicit

(stiff) solver used for

Chapter 5 cannot

handle networks of

this size.

tions are initialized normally distributed with c1+c2

2 taken as mean
and |c1 − c2| as standard deviation. Dynamics are simulated up to a
time t of 50000 or up to the time when the mean square change of
concentration (per species and time-step size) is smaller than 10−20.

We assume that the greatest topological factor influencing flow
through the reaction network is the shortest path distance between
the boundary species. Because we cannot perform simulation and
analysis for one million pairs of boundary species, we sample 50 pairs
of boundary species for all values of the shortest path occurring in the
network.

A simple investigation of network flow and dissipation is done
with boundary species concentrations set to c1 = 0.1 and c2 = 1. To
get an error estimate, we generate 10 independent samples of every
network type.

To investigate the response of the nonlinear networks to an increase
in thermodynamic disequilibrium we vary the boundary conditions
accordingly. For this we keep c1 at 0.1 while varying c2 from 0.2 up
to 60. With higher values of boundary concentrations we notice an
extreme increase of computational time needed to solve the individ-
ual ODEs. Thus, we are only able to simulate one network sample of
every type for this setup.

The software used is contained in the digital appendix (Ap-
pendix C) and available on GitHub3. The networks were generated 3 https:

//github.com/

jakob-fischer/
with the jrnf_tools C++-program and simulated with jrnf_int. For anal-
ysis a set of R-tools was used (jrnf_R_tools).

https://github.com/jakob-fischer/
https://github.com/jakob-fischer/
https://github.com/jakob-fischer/
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Table 3.1: Network properties: Properties of the substrate graphs of artificially generated networks as well as of examples of real networks. Table contains the
number of vertices (|V |) and edges (|E|), and the mean shortest path length (< L >). The clustering coefficient (< C >) is taken from the respective
undirected network. The modularity is calculated using the walktrap community finding algorithm [PL06]. Data for real networks is taken from
a database for Earth’s photochemical reactions [YD98], models for the combustion of Ethanol [Mar99] and Dimethyl ether [Kai+00] and a kinetic
model of Yeast’s metabolism [Sta+13]. For the artificial networks and the randomizations of the real networks mean values and standard deviations
are calculated from 10 samples. For real networks also reference networks obtained through randomizing reaction directions (but not association to
species) are calculated.

network |V | |E| < L > < C > modularity 1-cycles 2-cycles 4-cycles

ER (linear) 1000 5000 4.5 ± 0.02 0.0098 ± 5e-04 0.234 ± 0.0037 4.6 ± 2.4 10 ± 2.3 151 ± 14

ER (nonlinear) 1000 5000 4.5 ± 0.03 0.0141 ± 0.002 0.296 ± 0.00921 4.1 ± 2 1634 ± 274 2964 ± 939

BA (linear) 1000 5000 3.9 ± 0.04 0.0277 ± 0.001 0.178 ± 0.00412 5.2 ± 2.4 47 ± 9.3 2138 ± 245

BA (nonlinear) 1000 5000 3.8 ± 0.04 0.0386 ± 0.002 0.266 ± 0.00664 9 ± 3.9 1254 ± 273 9321 ± 5306

WS (linear) 1000 5000 6.4 ± 0.1 0.484 ± 0.009 0.805 ± 0.00569 0.3 ± 0.48 2.4 ± 1.8 4188 ± 158

WS (nonlinear) 1000 5000 6.7 ± 0.1 0.255 ± 0.008 0.748 ± 0.00733 90 ± 5.1 1002 ± 58 2201 ± 161

PS (linear) 1000 5000 5 ± 0.03 0.0414 ± 0.003 0.51 ± 0.0124 469 ± 17 208 ± 24 316 ± 31

PS (nonlinear) 1000 5000 4.6 ± 0.06 0.0297 ± 0.001 0.314 ± 0.00817 285 ± 23 1782 ± 553 3758 ± 1745

Earth’s atm. 280 1846 2.9 0.147 0.301 3 1337 48503

(random dir.) 280 1846 2.7 0.147 0.301 3 3675 (39) 661986 (10544)

(randomized) 280 1846 3.3 ± 0.03 0.0513 ± 0.003 0.202 ± 0.011 6.2 ± 1.6 21 ± 5 480 ± 42

Ethanol 57 2902 1.7 0.4977 0.171 18 14264 1.59e+07

(random dir.) 57 2902 1.7 0.498 0.171 18 13506 (93) 1.56e7 (2e5)

(randomized) 57 2902 1.4 ± 0.005 0.831 ± 0.006 0.051 ± 0.014 56 ± 7.4 1265 ± 22 1.49e+6 ± 19103

Dimethyl ether 79 2492 1.9 0.416 0.285 10 9995 3.45e+06

(random dir.) 79 2492 2 0.416 0.285 10 9329 (94) 3374297 (70542)

(randomized) 79 2492 1.7 ± 0.005 0.551 ± 0.007 0.073 ± 0.016 30 ± 4.9 492 ± 23 226961 ± 5134

Yeast Metab. 295 16954 2.6 0.1005 0.0175 27 355713 3.34e+09

(random dir.) 295 13742 2.8 0.101 0.0175 27 347764 (32317) 2.98e+09 (4.27e+08)

(randomized) 295 16954 2 ± 0.01 0.51 ± 0.02 0.025 ± 0.045 59 ± 6.1 1715 ± 208 2.77e+06 ± 6.5e+05
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3.2 results

For this study, multiple random networks are generated for each net-
work model (Table 3.1). The networks are simulated with various
boundary conditions and the resulting steady state is analysed. In the
following, we first compare the artificial networks with real networks
and then go into detail of how the flow and and energy dissipation
depend on network structure and boundary condition.
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Figure 3.3: Comparison of artificial and real networks: (a) Nonlinear BA
networks maintain scale-free degree distribution. (b) Cumula-
tive degree scaling of real network’s substrate graphs shows
pronounced scale-free property in comparison with their null
models (randomized counterparts) for Earth’s photochemistry
[YD98] and a kinetik model of Yeast’s metabolism [Sta+13].

3.2.1 Network Structure

We compare the topological features of the artificially generated net-
works with real world networks (Table 3.1). For this a compilation
of chemical reactions in Earth’s atmosphere [YD98] and models for
the combustion of Methane [Mar99] and Dimethyl ether [Kai+00] is
used. Also a kinetic model of the metabolic network of Yeast [Sta+13],
available through the BioModels Database [Li+10], is investigated. To
avoid that the representation of networks as substrate graphs biases
our results [ZN11], we compare each network with a randomized
version of itself. When randomizing an artificial network one would
obtain an Erdős-Rényi network with the same density and the same
types of reactions. Thus, rows for randomized BA, WS, and PS net- For nonl. BA, WS

and PS networks the

reference is

naturally the nonl.

ER network as it has

the same constraints

on clustering.

works are omitted in Table 3.1.
The power law scaling for Earth’s atmospheric reaction network

and the metabolic network of Yeast are clearly pronounced in compar-
ison with their respective null models (Fig. 3.3 (b)). This is not true for
the Ethanol combustion chemistry whose size of 57 species (nodes)
does not allow to unambiguously decide on the scale-free property.
The substrate graphs of the two combustion chemistries show the
properties of small-world networks, they have a small mean shortest
path length and a high clustering coefficient. As their null models
show the same properties, this can be attributed to their high density.
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Figure 3.4: Comparison of thermodynamic parameters of artificial and real

networks: Cumulative distribution of the standard change of
Gibbs energy of formation (∆µ0

j =
∑

iNijµ
0
i ) for artificial net-

works and respective thermodynamic reference data for glycol-
ysis (see [Li+11], Table 4, ∆rG

′0). Distributions were (linearly)
rescaled to have a mean of one.

All reaction networks have more cycles than their randomized coun-
terparts. With the exception of the network from Yeast’s metabolism
all real networks also have a higher clustering coefficient or a higher
value for modularity.

To see if the occurrence of cycles depends on the dynamical state
of the system represented in the reaction directions, we additionally
calculate the properties of the different reference networks with ran-
domized directions. As only cycles depend on the directions of edges
in the substrate graph, all other properties are equal to the originals.
For the number of cycles with randomized directions we find that
only Earth’s atmosphere deviates significantly from its original net-
work. Interestingly the number of cycles goes up. That means that if
the actual reaction directions are result of a self organization process
in the atmospheric chemistry, it self organizes towards fewer cycles.The atmosphere self

organizing towards

less cycles might be

related to the finding

of a less complex

modern atmosphere

in Chapter 4.

For a comparison of the artificial reaction networks with real ther-
modynamic data we use a table of reaction free energies (∆rG

0) of
reactions in glycolysis [Li+11]. In our networks this corresponds to
∆µ0

j =
∑

jNijµ
0
i . Because there is no way to assign a unique reac-

tion direction to the reactions in the artificial networks, we are only
comparing the distributions of absolute values |µ0

j |. The normalized
(mean set to one) cumulative distributions show a more localized dis-
tribution with a wider tail for the data from glycolysis (Fig. 3.4). The
distribution for the artificial networks is over all more regular. The
bimodal distribution for the data from glycolysys might be related toIf those two work on

different energy

scales, this would

explain the bimodal

distribution.

the fact that it describes two distinct processes, the tricarboxylic acid
cycle and the pentose phosphate pathway.
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Figure 3.5: The flow v through the network depending on boundary

species distance d. All networks are simulated with a boundary
concentration difference of |c1 − c2| = 0.9 and a base concentra-
tion of min(c1, c2) = 0.1. Filled (grey) symbols represent linear
networks, empty (white) the nonlinear ones. Error bars show the
standard error of the mean.

3.2.2 Distance Dependency of Flow

To characterize the strength of the steady state flow for different net-
work types, we start with the intuitive assumption that the main fac-
tor determining the flow is the distance between the two boundary
species in the reaction network, measured by shortest path length d

in the substrate graph. The dependency of the mean flow on shortest
path length is shown in Fig.3.5.

The flow through reaction networks created with small-world and
clustering topology (Watts-Strogatz model) shows to be especially
weakly dependent on boundary species distance d. In the linear as
well as the nonlinear case these networks have a lower mean flow
for small d (⩽ 4) while for larger values of d, they have generally a
larger flow than the other networks. We hypothesize that the flow for
boundary points whose distance is close to the diameter is limited
by the sparse connection of those boundary species to the network.
The high clustering of Watts-Strogatz networks (cf. Table 3.1) appar-
ently leads to their exceptional high flow for boundary points with a
large distance d. This also agrees with the low sensitivity to boundary
species distance that the Watts-Strogatz networks show.

The linear networks generated out of the Erdős-Rényi model and
those generated with the Pan-Sinha model show a strikingly similar
behaviour. This may be due to their similar degree distribution (not
shown).
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Figure 3.6: Varying flow through large nonlinear networks. Each data
point is the average of all simulations with specific boundary
species concentration (c1 = 0.1 c2 = 0.2 . . . 60) and a shortest
path between boundary species of 3. (a) Dependency of flow
from concentration difference. Pan-Sinha results are not shown
as they overlap with the Erdős-Rényi ones. (b) Distribution of
species chemical potential µi for different boundary condition
strengths of Barabási–Albert (BA) networks. (c) The fraction of
dissipation in the network explained by the most dissipating 10

percent of reactions, fσ(0.1). (d) Standard deviation of chemi-
cal potentials σµ normalized by difference between boundary
species’ potentials ∆µ = |µb2

− µb1
| shows a more localized dis-

tribution of chemical potentials for larger flows.

3.2.3 Varying Flow for Nonlinear Networks

Unlike in linear networks, the flow and dissipation distribution in
nonlinear networks depend on the absolute concentrations of the
boundary species. For the variation of boundary concentration, flow
dependency of the concentration difference is in an intermediate
regime (Fig. 3.6 (a)) and the slope in log-log plot takes a value be-
tween 1 and 2. This is plausible since the network consists of a mix
of linear reactions and nonlinear reactions with at best quadratic be-
haviour. Theoretically a stronger than quadratic dependency of flow
from concentration difference would be possible for a specific bound-
ary condition and a specific concentration range, but this possibility
seems not to influence the mean behaviour.

We look at the distribution of chemical potentials µ = µ0 + ln(xi)
inside the reaction network for different strengths of the boundary
condition. In Fig. 3.6 (b) the distributions P(µ) are shown for the sim-
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ulated Barabási-Albert (BA) reaction networks with boundary species
distance d of 3. The distributions in general are localized between
the chemical potentials of the boundary species µb1

= ln(xb1
) and

µb2
= ln(xb2

) While the distributions are almost uniform in this Remember that µ0

for boundary species

is set to zero.
range for low flows, at higher flows the distributions are more shifted
towards the upper part. Normalizing the standard deviation σµ by
∆µ = |µb2

− µb1
| confirms this finding (Fig. 3.6 (d)) and shows a nar-

rower distribution relative to the chemical potentials of the boundary
species.

The distributions of dissipation values of the reactions are to noisy
to find out if they also get narrower for higher flows. Thus, we calcu-
late the fraction of the dissipation explained by the 10% of reactions
with the highest dissipation, fσ(0.1). We see that with higher flows
the fraction of dissipation explained by these 10 percent of the net-
work decreases (Fig. 3.6 (c)). The networks generated from the Watts-
Strogatz (WS) and the Pan-Sinha (PS) networks show an increase of
fσ(0.1) for lower values, but above a flow of around 5 they also de-
crease. Put differently, for higher flows one needs a larger part of the Note that this

happens under the

specific boundary

conditions of a flow

network that adapts

its mass to higher

flows. Networks

investigated in

Chapter 5 behave

differently.

network to explain a given fraction of its dissipation. Together with
the narrower distribution of chemical potentials we interpret this as
the thermodynamic disequilibrium leading to a tighter coupling of
the reaction network. This coupling leads to the chemical potential of
different species to be closer and to the dissipation being more evenly
distributed among reactions.

3.2.4 Flow Dependency of Cycle Number in Nonlinear Networks

There are many indicators that cycles have an important function in
networks [Gle+01; Kre+12; PPS13]. Cycles function as feedback mech-
anisms and stabilize the dynamics of the system against perturba-
tions. Also cyclicity has been related to thermodynamic efficiency in
thermodynamic power cycles [Lay+12]. To check if there is a depen-
dency of the number of cycles from the flow through the networks,
we count the number of small cycles (2- and 4-cycles) in the directed
substrate graph for different values of v. Note that even if the sim-
ulated reactions do not change, a change in the effective flow of a
reaction can imply a change of direction and by this a change in the
directed substrate graph.

The number of small cycles is dependent on local topological prop-
erties of the network models. Thus, for evaluation we subtract the This analysis only

considers the

reaction direction

but not the reaction

rates (strength of

cycles). Strength of

cycles will be

included in the

following chapters

through using

pathway analysis.

number of cycles found in networks with randomly chosen reaction
directions (Table 3.1). For all network types we find a clear increase in
the number of cycles with increasing flow (Fig. 3.7). This formation of
additional cycles can be understood as the network self-organising in
thermodynamic disequilibrium to increase its flow and dynamic sta-
bility. This supports the idea of a closer coupling of the network with
higher degree of disequilibrium that was presented in the previous
section.
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Figure 3.7: Number of 2- and 4-cycles in the (directed) substrate graphs

of the nonlinear reaction networks. The plots show the number
of additional cycles depending on the flow through the network
in comparison to the same network with random reaction direc-
tions (Table 3.1). Each data point is the average of all simulations
with boundary points distance of 3 and fixed boundary concen-
trations (c1 = 0.1 c2 = 0.2 . . . 60).

3.2.5 Distribution of Entropy Production Rates

To see how dissipation is distributed inside of the networks, we cal-
culate the entropy production rate for the individual reactions σi

(Eq. 2.22) and look at their distribution for specific network topologies
and boundary conditions. To better see the power law dependency,
instead of P(σ) we plot the cumulative distribution 1−

∫σ
−∞

P(σ ′)dσ ′,
which describes the probability of the entropy production rate being
higher than σ [New05].

The distributions show no large qualitative differences between the
different network models (Fig. 3.8). The power law in the interme-
diate regime is differently pronounced in its extent for different net-
work types, but the greatest difference is clearly seen between the
slopes of linear and nonlinear networks. Assuming that P(σ) follows a
power law, we get an exponent of about −1.5 for linear networks and
of −1.66 for nonlinear networks. The steeper slope of the nonlinear
networks can be interpreted as an effect of their reactions being better
coupled. This can be seen by the fact that nonlinear (A+B ⇀↽ C+D)
reactions are not depleting a potential between two species directly
but there is always the probability that they increase the potential
between two other species. The coupling implies a stronger connec-
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tion of the flow between individual reactions and by this a stronger
connection with the magnitude of dissipation.

3.2.6 Connectivity Dependence of Dissipation

To evaluate how the dissipation of a reaction depends on the con-
nectivity of the involved species, for every species we calculate the
mean dissipation of all reactions connected to it. Plotting the mean
dissipation depending on the degree centrality of the species (in the
substrate graph) shows a relatively high dissipation for reactions ad-
jacent to lowly connected species (Fig. 3.9). This effect is more pro-
nounced for nonlinear networks. When looking for reactions with
high dissipation we should search in the vicinity of lowly connected
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Figure 3.8: Cumulative distribution of the entropy production of the reac-

tions. All simulations are performed with boundary concentra-
tion values of c1 = 0.1, c2 = 1.0 and a shortest path between
boundary species of length 4. (a) Distributions for Barabási-
Albert (BA) and Erdős-Rényi (ER) networks. (b) Distributions
for Watts-Strogatz (WS) and Pan-Sinha (PS) networks.
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Figure 3.9: Mean entropy production σ associated with nodes of degree f.
Values are normalized by mean entropy production in the spe-
cific network. Grey filled points show nonlinear networks, white
filled points show linear networks. Data was taken from all simu-
lation runs of the specified network type with min(c1, c2) = 0.1,
|c1 − c2| = 0.9 and shortest path d = 4.

species. This can be explained by the stronger connection between
reactions generating and consuming the species. When the rate of a
reaction that produces a species is increased, the additional flow has
to be distributed to all consuming reactions. If there are many con-To illustrate this,

one might think of

an electric network

which is going to

overheat at a

bottleneck.

suming reactions, there are more potential pathways to forward the
flow while keeping the mean dissipation rate low.

3.3 conclusions

The simulated random reaction networks under thermodynamic con-
straints have provided insight into how energy is dissipated in com-
plex reaction networks in thermodynamic disequilibrium. We observe
a clear difference between linear and nonlinear networks. The power
law has an exponent of ≈ −1.5 for linear and a slightly lower expo-
nent of ≈ −1.66 for nonlinear networks. However, there are no qual-
itative differences between the distributions of entropy production
rate for different complex network models like Erdős-Rényi, Barabási-
Albert, etc. (Fig. 3.8). The differences between thermodynamic reac-
tion networks of different topologies are more pronounced in the flow
(Fig. 3.5) than in the other properties investigated.

We found that a greater thermodynamic disequilibrium in nonlin-
ear reaction networks is associated with a more tightly coupled net-
work. For a greater flow, the network self-organises and maintains
a higher number of cycles (Fig. 3.7). A greater flow also leads to a
narrower distribution of chemical potentials (Fig. 3.6 (b), (d)). This
is associated with results that suggest that for higher flows, a larger
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fraction of the network is necessary to explain a given fraction of its
dissipation (Fig. 3.6 (c)). We interpret this as an increase in the com-
plexity of the system that comes along with a higher thermodynamic
disequilibrium.

Finally, we found that reactions involving lowly connected species
tend to dissipate more energy, which is more pronounced in non-
linear networks, but is also found in linear networks (Fig. 3.9). This
might help to identify reactions that play central roles in the energy
dissipation of a complex reaction network.

We also showed how our artificial networks share topological prop-
erties with real reaction networks. The artificial networks are topo-
logically more similar to Earth’s atmospheric chemistry and Yeast’s
metabolism than to the two investigated combustion chemistries. The
main discriminating factor here is the high density of those two com-
bustion chemistries. The distribution of thermodynamic parameters
in the artificial networks only roughly matches data from reactions of
glycolysis (Fig. 3.4). Obviously, the amount of thermodynamic data
(37 reactions) is quite limited. Current progress in bioinformatical
methods to reconstruct thermodynamic data [Can14; Cha+13; DM13]
may improve the availability of such data in future and allow a better
analysis.

Nevertheless, a fundamental problem of such a comparison re-
mains. It is the way the data of reaction networks is obtained. In
networks from chemical models, experimentalists and modellers have
made a decision on which reactions they deem relevant. Experimen-
talists only find reactions that are occurring and are measurable in the
systems they investigate. Also the modellers might just decide to ex-
clude reactions with low reaction rates from their models. Hence, the
reaction network taken from a model is already biased with respect
to the purpose of the model. Our approach with artificial networks,
however, assumes the artificial network is a set of (hypothetically)
possible reactions. Which reactions become important emerges from
the dynamics and can be different depending on the boundary con-
ditions.

A solution for this mismatch between different approaches could
be found in future development in automated network generation.
Methods using quantum chemical and molecular dynamics simula-
tions to construct reaction networks have been explored in recent
years [Wan+14; Wan+16; Dön+15]. When these techniques can gen-
erate big, meaningful networks, these can be used in computer-aided
modelling of real system as well as reference to evaluate artificial
chemistries.
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T H E R M O D Y N A M I C S O F AT M O S P H E R I C R E A C T I O N
PAT H WAY S

This chapter makes

use of most of the

methods from

Chapter 2 (reaction

networks,

thermodynamics,

reaction pathway

analysis).

Two models of Earth’s atmosphere (modern, Archean) are com-
pared in terms of their chemical reaction pathways. Pathways of
the modern Earth atmosphere are simpler (less reactions, fewer
cycles). Estimating thermodynamic properties of the pathways
shows that the Archean atmosphere is stronger driven by ra-
diation. The modern atmosphere obtains a larger part of its
energy through matter exchange (chemical energy). This novel
approach allows to analyse and distinguish complex reaction
systems with a pathway oriented view on thermodynamics.
keywords: atmospheric chemistry, Earth, Archean Earth, reac-

tion networks, reaction pathways, thermodynamics

introduction

Since Lovelock proposed the idea of using atmospheric thermody-
namic disequilibrium as a general way of remote life detection [Lov65;
HL67] non-equilibrium thermodynamics of planets has been an ex-
citing topic. The idea has been fascinating to many, because it con-
nects two very fundamental questions with a macroscopic physical
theory [LE08]. These questions concern the reason for the existence
of life and how our planet manages to be so well suited to maintain
it.

Alongside many considerations regarding extraterrestrial life, like
its likelihood and detectability [CL16], progress in geology and mod-
elling in the last decades lead to a constant refinement of our view of
our own planet’s history [Hol06; CK07]. Atmospheric oxygen levels Much of recent

progress made in

geology is related to

the analysis of

isotope distributions.

were below 10−4 of the present atmospheric level (PAL) until 2.4 bil-
lion years ago. From there on the atmospheric oxygen level and the
oxidation state of the oceans increased until reaching modern levels
around 600 million years ago. The exact trajectory of this transition is
still not conclusively resolved [LRP14]. Yet the increase in oxygen in
the atmosphere with a mostly reduced solid Earth suggests an evo-
lution towards greater chemical disequilibrium which is associated
with evolution towards more complex forms of life [LPW16].

Regarding the detectability of life by atmospheric chemical disequi-
librium there is an important distinction to be made between the mag-
nitude of the disequilibrium and the strength of the force maintain-
ing it [SVK13]. The work by Simoncini, Virgo, and Kleidon [SVK13]
also showed that the biological power maintaining the chemical dis-
equilibrium of the atmosphere is of the same order of magnitude as
abiological geochemically driven processes at Earth’s surface. Recent

43
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(c) chem. potentials

(d) reaction

     pathways

(b) box model

     representation
(a) column model

Figure 4.1: Sketch showing how the data of the two atmospheric chem-

istry models is processed. The reaction rates of the gas phase
chemistry (a) are vertically integrated to get a box model repre-
sentation (b). Integrated reaction rates are assumed to represent
the steady state. This steady state is decomposed into reaction
pathways (d). Concentration, pressure and temperature profiles
(a) are used to calculate profiles for chemical potentials (c). From
these an effective chemical potential in the box model represen-
tation is derived. This allows a thermodynamic characterisation
of the individual reaction pathways.

work [KTBC16] quantifies thermodynamic disequilibrium of various
planets and finds that Earth has a distinctively high disequilibrium if
one includes oceanic chemistry.This suggests one

needs information on

ocean chemistry to

use thermodynamics

as proxy for life on

exoplanets.

Another approach to discriminate different types of planets by their
atmospheres is in the realm of looking at the topological structure of
atmospheric chemical reaction networks. In the field of complex net-
work theory a basic comparison of planetary atmospheric chemistries
[YD98] and other reaction networks has been done by Solé and
Munteanu [SM04b]. Gleiss et al. [Gle+01] found that metabolic net-
works and networks from atmospheric chemistry have an unusual
high amount of short cycles. An important recent work was the inclu-
sion of reaction directions in the topological analysis of atmospheric
chemistries [Est12]. This was done by using a concept called network
returnability, an application of statistical physics to characterise net-
work topology. Artificial networks self organise to form additional
cycles in higher thermodynamic disequilibrium [FKD15] and cycles
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also have been related to dynamic stability [Kre+12]. This suggests
that topology and especially cycles are important for understanding
chemical disequilibrium in Earth’s atmosphere.Earth’s atmosphere

The goal of this chapter is to introduce a method that allows to
reveal the structural features of thermodynamics in such complex re-
action networks. A novel element of this approach is not only using
topology and reaction direction, but also including reaction rates as
input of the analysis. Such rates can be taken from models that de-
scribe the chemical composition of the atmosphere. For this work
we choose two atmospheric chemistry models from the group of
James Kasting. The first model describes the composition of an atmo-
sphere of early Earth without an extensive biosphere [PBK01; KKS05;
Seg+07]. The second model describes the composition of modern day
Earth’s atmosphere [KHP85; PK02]. Both models are column models
and use overlapping sets of reactions. Additionally they include some
reactions, chemical species, and parametrisations for boundary con-
ditions that are specific to the respective planetary situation. Because
of this, besides comparing the dynamical steady state of the mod-
els, we also compare their structure. This is in accordance with the
implicit assumption that the modellers have chosen an appropriate
model structure for the specific planetary state. From these column
models we derive a box model representation and effective chemi-
cal potentials for this representation. Fig. 4.1 sketches how the data An overview of

models and

pre-procesing of the

data is given in

Appendix B.1.

from these original models is used to obtain a better topological un-
derstanding of their respective atmospheric chemistries. For simplic-
ity we will refer to properties of the "modern atmosphere" and the
"Archean atmosphere" in this chapter, meaning the two models that
we investigate. An introduction in

methods used here is

given in Chapter 2.
The following section provides a short recapitulation of reaction

pathways and the role thermodynamics plays for their understanding.
An interpretation for reaction pathways in the context of atmospheric
chemistry is given. The results are structured in a general presen-
tation of the pathways found, their thermodynamic properties, and
an interconnection of their properties with the boundary fluxes of
the atmosphere. We conclude by explaining how reaction pathways
and thermodynamics together can be used to analyse atmospheres
for signatures of life on the basis of our model comparison. Process-
ing of the data from the atmospheric chemistry models for analysis
and calculation of chemical potentials is given in the appendix of the
thesis (Sect. A.2 and Sect. B.1).

4.1 methods

To compare the two states of the atmosphere we use classic reac-
tion kinetic modelling1 and existing thermodynamic data [MGR93] 1 This has been done

by the creators of the

chemical models (see

Sect. B.1).

in combination with elementary mode type pathway analysis [SS93].
We use the algorithm for determining all reaction pathways relevant
for explaining a certain fraction of the simulated steady state fluxes.
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Furthermore these pathways are characterised thermodynamically by
estimating the chemical potentials for the chemical species (Fig. 4.1).

4.1.1 Thermodynamic Consistency

Assuming mass action kinetics for a reaction network, with the knowl-
edge of thermodynamic data the parameters of the kinetic law v(x)

are specified and the dynamics of the system can be calculated.22 See Chapter 3.

But even with a rate vector v that fulfils the steady state condition
N · v = 0 from some other kinetic law, one can use thermodynamics
to check the consistency of a model [Ksc10]. Thermodynamic con-
sistency for our purposes means that the reaction direction matches
with the chemical potentials of the species. Formally this means that
the reaction rate vi and the change of chemical potential ∆µi of a
reaction must have different signs:

vi ·∆µi = vi ·
∑

j

Njiµj ⩽ 0. (4.1)

This implies that all reactions have to be understood as in principle
reversible reactions for which the rate vi corresponds to the effective,
thermodynamically favoured rate in the specific state of the system.
As no reaction can spontaneously increase the chemical energy (Gibbs
free energy) of the system, Eq. 4.1 has to hold for all reactions.

4.1.2 Reaction Pathway Analysis

For analysing steady states of the reaction networks we use their de-
composition into reaction pathways as shown in Section 2.2.3. Reac-
tion pathways are collections of reactions that can operate together in
steady state (without changing concentration of species) and can not
be decomposed further. Steady state vectors v can be represented as
a linear combination of reaction pathways E(i) ∈ N

|R| with positive
coefficients αi:Cf. Eq. 2.14.

v =
∑

i

αiE
(i).

The coefficients αi are not uniquely defined by the equation above.
We use the method presented in Sect. 2.3.4 to calculate αi, which
leads to coefficients that are unique for a given set of elementary
modes. The algorithm has the additional advantage of working well
if not all reaction pathways have been found and if reaction rates span
many orders of magnitudes. The description of the algorithm used to
calculate all significant reaction pathways can be found in Sect. 2.3.

This algorithm is a slightly modified version of Lehmann’s algo-
rithm [Leh04]. Yet the work presented here does not only differ in

This interpretation

of pathways will

be relevant in the

following

chapters!

details of the used algorithms but also comes with a different inter-
pretation of the meaning of an elementary mode or reaction path-
way. In bioinformatics the technique is widely used for analysing
metabolic networks [TWS09; Pap+03]. The reactions are enzymatic
reactions that are controlled by genes. Thus a found pathway is as-
sociated with a set of genes and can be understood as a product of
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Figure 4.2: Pathways found in atmospheric chemistry can be thermody-

namically divided into three categories, even without knowl-
edge of exact thermodynamic potentials. (a) Pathways only
driven by photochemical reactions that do not exchange any mat-
ter with the boundary of the atmosphere. (b) Pathways that do
not include any photoreactions, but are instead driven by matter
exchange across the boundary of the system. (c) Pathways that in-
clude both, photochemical reactions and matter exchange. These
can in theory transform radiative energy into chemical energy. To
decide if this is the case one needs to know the chemical poten-
tials of the species. (d) For thermodynamic analysis of the mixed
pathways, photoreactions are substituted with marked pseudore-
actions that maintain their effect. If the photoreaction increases
the chemical energy of the system, multiple marked exchange re-
actions are used. Otherwise the photoreaction is replaced by one
single dissipating reaction.

evolution. It represents a mechanism with certain objectives in an or-
ganism.

In atmospheric chemistry there is no direct effect of information
processing as it is present in biological systems that are formed by
evolution. But the biosphere might be able to shift the concentra-
tion of certain chemicals as it happened with oxygen on Earth. This
change in concentration indirectly influences the pathways present in
the system. Additionally some pathways may be directly driven by
the biosphere through matter exchange. The difference of the work
of this chapter and the work by Lehmann [Leh04; Gre+06], whose
algorithm we adapted, is that we try to pronounce this analogy to
pathways usage in bioinformatics. We treat all species as intermediate
species and then obtain pathways that describe how the reaction net-
works connects in- and outflow of the system (Fig. 4.3 (a)). Lehmann’s
existing algorithm treats only shorter lived species as intermediates
and then obtains pathways that connect longer lived species inside
the reaction network.
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Pathway Types and Thermodynamics

With this interpretation of pathways as structural units that connect
the inflow and outflow of the atmosphere we can already characterise
three types of pathways that can be found (Fig. 4.2). This distinction
relates to the type of exchange, whether the pathway contains photo-
chemical reactions or mass exchange. Every pathway has to be con-
nected to the environment of the system by some exchange process
to obtain the chemical energy that drives the chemical reactions and
is dissipated.Finding pathways

without any

interactions

indicates

thermodynamic

inconsistencies in

the model.

Pathways that are driven by photoreactions without exchanging
matter (Fig. 4.2 (a)) are purely dissipative in terms of thermodynam-
ics. This means the energy originating from photonic radiation is
transformed into heat by the reactions in the pathway. Pathways with-
out photoreactions have to be driven by chemical potentials (Fig. 4.2
(b)). Overall the chemical energy (Gibbs free energy) through mass
exchange has to decrease and its amount must exactly correspond to
the energy dissipated by all reactions in the pathway.

Most interesting are those pathways that use radiative energy and
transform chemical species (Fig. 4.2 (c)). For these we can define a
thermodynamic quantity that we will call transformation efficiency. We
do not consider the actual chemical potential of the radiation to do
this [Wur82], but replace photochemical reactions by pseudoreactions
(Fig. 4.2 (d)). The chemical energy necessary for all these reactions
to occur is then taken as the radiative energy which is used by the
pathways. If we consider the change of chemical energy by all con-
ventional exchange reactions as (chemical) work ∆µex and the change
of chemical energy by photoreactions as radiative energy input ∆µhν,
we can calculate the transformation efficiency in analogy to the thermal
efficiency of heat engines known from basic thermodynamics:

η =

⎧
⎨

⎩

∆µex
∆µhν

if ∆µex ⩾ 0

0 else
. (4.2)

The second part of the equation captures the case of no work be-
ing done by the pathway. This case is possible even if photoreactions
are driving the pathway. In analogy to thermodynamic efficiency the
transformation efficiency tells us how much of the energy3 absorbed3 Classically this is

heat, here the energy

is radiation.
by the system is transformed into chemical energy usable by some
other processes outside of the atmosphere.

Cycles In Pathways

The found pathways are characterised in terms of cycles of reactions
that in part transform a starting compound back to its original form
(Fig. 4.3 (b)). Investigation of such cycles in biological and chemical
systems, their abundance and formation, has a long history [Mor66;
Gle+01]. In comparison to much of the existing work in this area, the
analysis through pathways allows to weight the importance of each
cycle found in the network using the importance of associated path-
ways. Cylces are calculated similar to the work presented in Chapter 3.



4.2 results 49

C
A

D

B

A A

view without pathways view with pathways

hv

OH

O2

HO2

CH O23

H CO2

H CO3

CH OOH3

(a) (b)

Figure 4.3: Pathway analysis gives a more detailed view on production

and consumption of species. (a) Pathways allow to separate con-
tribution of cycles inside the network and use this to better un-
derstand its function. (b) For every pathway the number of cy-
cles can be counted individually and then interpreted weighted
with the pathways’ coefficient αi. The shown atmospheric path-
way contains two cycles of length two and three. The length of a
cycle corresponds to the number of chemical species in it.

Instead of doing this for the entire network, the cycles are calculated Cycles are calculated

like in Fig. 2.2 (e)

here.
for the subnetwork defined by each pathway. Cycles are defined in
the substrate graph of the subnetwork which is obtained by defining
the chemical species as nodes and inserting directed edges between
all reactants and products of the reactions occurring in the pathway.
An example of a pathway for the modern atmosphere with two cycles
is given in Fig. 4.3 (b). To limit computational complexity we calculate
only cycles with four edges or less. Cycles are defined by the order
of the chemical species that they contain. Even if there are multiple
identical cycles from different reactions this is only counted as one
cycle.4 4 This differs from

Chapter 3, where

multiple edges are

considered

(Fig. 2.2 (d)).

4.2 results

4.2.1 Reaction Pathways

Despite the fact that the algorithm we use reduces the complexity of
finding all reaction pathways to finding those that have a large contri-
bution to the steady state it still requires substantial computing time.
This is mostly because we want to have a decomposition of the steady
state into reaction pathways that explain a large fraction of most reac-
tion rates and these span more than 10 orders of magnitude. Thus, we
have to choose quite strict parameters. For the model of the modern
atmosphere we choose r = 0.1, fexp = 5× 10−3. For these parame- See Sect. 2.3.1 for an

explanation of the

parameters.
ters the decomposition takes roughly a day to finish on a a single
Xeon CPU at 2.90Ghz. We find 30,157 reaction pathways and corre-
sponding coefficients that decompose the steady state perfectly (error
below numerical accuracy). For the Archean atmospheric model the
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parameters are r = 0.3, fexp = 10−3. Here, the analysis takes a com-
parable amount of time and results in 24,627 reaction pathways that
also decompose the respective steady state exactly.

As described in Sect. 4.1.2 we can differentiate the pathways into
three types, depending on whether they contain photoreactions and
exchange matter with the outside of the gas phase chemistry. The
least common ones are the pathways that do not contain any photore-
actions but are driven solely by the flux of matter. For the modern
(high O2) atmosphere there are 39 pathways of this type that together
only explain a fraction of 1.67× 10−06 of the steady state rates. For
the Archean (high CO2) atmosphere there are just two pathways that
explain 3.59 × 10−8 of the steady state. Most common in numbers
are the pathways that contain photoreactions as well as exchange of
matter. There are 29,778 of this type for the modern atmosphere and
24,384 for the Archean one. Nevertheless these explain only a fraction
of 6.1× 10−4 and 0.073 of their respective steady states.

For both atmospheres the most important pathways of the differ-
ent types are shown in Table 4.1 (modern atmosphere) and Table 4.2
(Archean atmosphere). They are ordered according to their impor-
tance for explaining their respective steady states (cf. Eq. 4.3). A vi-
sualisation of samples of important pathways of the three different
types for the high O2 atmosphere is given in Fig. 4.4.

Table 4.1: The three most important pathways of each pathway type

(Fig. 4.2) for the modern atmosphere. ∆µhν is the photochemical
energy used by the pathway and ∆µex the chemical work (matter
exchange) done by the pathway. Both are given in W/m2 scaled by
the pathway coefficient αi. ("NA" indicates values that are unde-
termined because of missing thermodynamic data. "*" pathways
purely dissipate radiation to heat.)

#cycles ∆µhν ∆µex

O + O2 + M → O3 + M
(1) 5 2.03 0O3 + hv → O2 + O

net*: hv →

O + O2 + M → O3 + M

(2) 5 2.23 0
O(1D) + N2 → O + N2

O3 + hv → O2 + O(1D)

net*: hv →

O + O2 + M → O3 + M

(3) 7 0.90 0
O(1D) + O2 → O + O2

O3 + hv → O2 + O(1D)

net*: hv →

2X O + O2 + M → O3 + M
(23) 1 3.5× 10−4 2.6× 10−4O2 + hv → 2O

net: hv + 3O2 → 2O3

2X H2O + O(1D) → 2OH

(24) 8 1.4× 10−4 −8.6× 10−5

2X H + O2 + M → HO2 + M

2X O + O2 + M → O3 + M

O2 + hv → 2O

2X O3 + hv → O2 + O(1D)

2X CO + OH → CO2 + H

2X CH3O2 + HO2 → CH3OOH + O2

2X CH3OOH + OH → CH3O2 + H2O

net: 3hv + O2 + 2CO → 2CO2

(continued on next page)
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Table 4.1: (continued - pathways of modern atmosphere)
#cycles ∆µhν ∆µex

2X H2O + O(1D) → 2OH

(27) 7 1.4× 10−4 −8.6× 10−5

2X H + O2 + M → HO2 + M

2X OH + HO2 → H2O + O2

2X O + O2 + M → O3 + M

O2 + hv → 2O

2X O3 + hv → O2 + O(1D)

2X CO + OH → CO2 + H

net: 3hv + O2 + 2CO → 2CO2

Cl + O2 + M → ClO2 + M (120) 1 0 NA
net: O2 + Cl → ClO2

H + O2 + M → HO2 + M

(587) 3 0 −1.5× 10−6H + HO2 → 2OH

2X CO + OH → CO2 + H

net: O2 + 2CO → 2CO2

2X H + O2 + M → HO2 + M

(1472) 11 0 −6.9× 10−7

OH + O3 → HO2 + O2

O + O2 + M → O3 + M

2X CO + OH → CO2 + H

2X HCO + O2 → HO2 + CO

2X H2CO + OH → H2O + HCO

2X CH4 + OH → CH3 + H2O

2X CH3 + O2 + M → CH3O2 + M

2CH3O2 → 2H3CO + O2

2X H3CO + O2 → H2CO + HO2

7X NO + HO2 → NO2 + OH

7X NO2 + O → NO + O2

net: 8O + 2CH4 → 4H2O + 2CO2

Table 4.2: Three most significant pathways of each pathway type (Fig. 4.2)

for the Archean atmosphere model. The last two pathways were
the only ones found that are solely driven by flow of matter. ∆µhν

is the photochemical energy used by the pathway and ∆µex the
chemical work (matter exchange) done by the pathway. Both are
given in W/m2 scaled by the pathway coefficient αi. ("NA" indi-
cates values that are undetermined because of missing thermody-
namic data. "*" pathways purely dissipate radiation to heat.)

#cycles ∆µhν ∆µex

H + O2 + M → HO2 + M

(1) 6 8.3× 10−3 0

HO2 + O → OH + O2

CO2 + hv → CO + O

CO + OH → CO2 + H

net*: hv →

SO2 + hv → 1SO2

(2) 3 NA 0
1SO2 + M → SO2 + M

net*: hv →

H + CO + M → HCO + M
(3) 5 0 0HCO + hv → H + CO

net*: hv →

H + O2 + M → HO2 + M

(4) 7 1.9× 10−3 0

H + HO2 → 2OH

OH + O → H + O2

O(1D) + M → O + M

CO + OH → CO2 + H

CO2 + hv → CO + O(1D)

net: hv →

(continued on next page)
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Table 4.2: (continued - pathways of Archean atmosphere)
#cycles ∆µhν ∆µex

CO2 + hv → CO + O

(31) 4 2.9× 10−5 1.2× 10−5

2X H + CO + M → HCO + M

2HCO → H2CO + CO

2X H2CO + hv → H2 + CO

CH3 + O → H2CO + H

CH4 + hv → CH3 + H

net: 4hv + CO2 + CH4 → 2H2 + 2CO

H2O + hv → H + OH

(32) 6 2.6× 10−5 5.6× 10−6

CO2 + hv → CO + O

CO + OH → CO2 + H

4X H + CO + M → HCO + M

2X 2HCO → H2CO + CO

3X H2CO + hv → H2 + CO

CH3 + O → H2CO + H

CH4 + hv → CH3 + H

net: 6hv + H2O + CH4 → 3H2 + CO

H2O + hv → H + OH

(34) 7 2.7× 10−5 4.7× 10−6

2X CO2 + hv → CO + O

2X CO + OH → CO2 + H

4X H + CO + M → HCO + M

2X 2HCO → H2CO + CO

3X H2CO + hv → H2 + CO

CH3 + O → H2CO + H

CH4 + O → CH3 + OH

net: 6hv + H2O + CH4 → 3H2 + CO

1SO2 + M → 3SO2 + M (5897) 1 0 NA
net: 1SO2 → 3SO2

SO3 + H2O → H2SO4 (16883) 0 0 −1.3× 10−13

net: H2O + SO3 → H2SO4

4.2.2 Topology of Reaction Pathways

With both models having roughly 30,000 reaction pathways whose
coefficients αi are ranging from around 10−28 to 1015, it is important
to weight the pathways when comparing their topological properties.
Instead of just taking the pathway coefficient αi, we are using the
fraction of the steady state explained by it. This leads to the pathways
being weighted by the so called rate fraction:fi is the fraction of

the rate vector

explained by

pathway i, measured

by the L1-norm.

fi =
αi

∑
j |E

(i)
j |

∑
k αk

∑
j |E

(k)
j |

. (4.3)

By weighting pathway properties with this factor instead of their coef-
ficient αi, a higher weight is put onto pathways with more reactions.
For each pathway we calculate the number of unique cycles with
a length smaller than five as described above (Sect. 4.1.2, Fig. 4.3).
Weighted with fi this allows to calculate a cycle number for each of
the models. This number indicates the importance of cycles in the
pathway representation of the network’s steady state. A high num-
ber indicates complex pathways (many cycles) with high coefficients
while a low number indicates that most pathways with higher coef-
ficients have few or no cycles. We get a cycle number of 5.22 for the
modern atmosphere and 5.51 for the Archean one. For the weighted
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Figure 4.4: Example of pathways with different thermodynamic charac-

teristics from the model of the modern atmosphere. Bright
green squares represent conventional reactions and dark purple
squares in- or outflow reactions. Size corresponds to the coeffi-
cient of a reaction in the pathway. (a) Pathway number 20,549

is one of a large number of pathways that oxidise methane us-
ing light. (b) Pathway 680 oxidises methane without using any
photoreactions. (c) Pathway number 2 (see Table 4.1) dissipates
radiation without any exchange of matter through the boundary
of the gas phase chemistry of the atmosphere.

number of reactions contained in the reaction pathways the distinc-
tion is more pronounced. This value is 3.38 for the modern, and 5.42

for the Archean atmosphere. This means that with respect to this mea-
sure the modern atmosphere is slightly less complex.

The cumulative distribution (Fig. 4.5) shows this difference in
greater detail. The graph shows the probability of finding a path-
way with more cycles / reactions than the value given on the x-axis.
All pathways are weighted with their respective fi. In this represen-
tation a steep slope corresponds to a high probability in the original
distribution. While the difference between distributions for cycles is
evenly distributed over a wide range, for the number of reactions the
difference is more localised in the shape of the distribution. We see a
notable drop of the probability of longer pathways around pathways
with five reactions. This drop might be explained by the high impor- The first three (ozone

related) pathways in

Table 4.1 together

explain 97% of the

steady state.

tance of ozone related pathways in the modern atmosphere that have
a relatively simple structure.

4.2.3 Chemical Potentials

Chemical potentials µ are calculated from the values of concen-
trations, temperature and pressure in each simulated atmospheric
layer (see Appendix A.2). From these vertical profiles of chemical



54 atmospheric reaction pathways

1e 04

1e 02

1e+00

-

-

0 5 10 15

cycle number

c
u
m

u
la

ti
ve

 d
is

tr
ib

u
ti
o
n

1e-04

1e 02

1e+00

-

0 5 10 15

reaction number

c
u
m

u
la

ti
ve

 d
is

tr
ib

u
ti
o
n

model modern atm. Archean atm. model modern atm. Archean atm.

Figure 4.5: Comparison of atmospheric reaction networks by pathway

complexity. Weighted cumulative distribution of cycles in path-
ways (left) and number of reactions in pathways (right). Value on
the y-axis indicates the (weighted) fraction of pathways that has
more cycles / reactions than shown on the corresponding value
on the x-axis. It can be clearly seen that the Archean atmosphere
has a greater amount of complex reactions in the intermediate
region (more cycles, more reactions).

potentials an effective potential is calculated by averaging with the
concentration of the respective chemical species as weight. Note that
these are not chemical potentials in the strict physical sense.5 Though5 There is no kinetic

law that generates

the same dynamics

in the integrated box

model representation.

the simplification made through the box model representation should
not matter for reaction processes that happen on timescales much
faster or much slower than the timescale of vertical mixing, it is pos-
sible that inconsistent pathways in intermediate timescales are found,
even if one assumes a column model that is perfectly thermodynami-
cally consistent.

For the model of the modern atmosphere we can calculate the effec-
tive chemical potentials for all species except the following: CH3OOH,
HO2NO2, S2, CH3O2, HS, ClONO2, ClONO, 1SO2, 3SO2. For theFor some complex

species even the

model itself is

unclear about what

isomers the species

refer to exactly.

Archean atmospheric model the chemical potentials for the follow-
ing species can not be calculated because of missing data: CH3O2,
HS, 1SO2, 3SO2, S3, S4, S8AER, C2H4OH, C2H2OH, HCAER, C3H2,
C3H6, C3H7, C3H5,NH2s, CH3C2H. Pathways exchanging these
species can not be quantified thermodynamically. These unquantifi-
able pathways will be called "undecidable" in the following para-
graph and their contribution to the steady state will be calculated
to evaluate the impact of missing thermodynamic data.

For the calculated chemical potentials of the modern atmosphere
model 164 reactions are correct in terms of the reaction directions,
11 reactions are incorrect, and 39 reactions can not be decided (Eq.
(4.1)). For the chemical potentials calculated for the second model
276 reactions have correct direction, 11 reactions are incorrect, and 71

reactions can not be decided because of missing values for chemical
potentials. To weaken the effect of unknown or erroneous chemical
potentials reaction pathways are quantified directly, without calcu-
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Figure 4.6: Comparing both models by looking at their thermodynamic

transformation efficiency. left: Cumulative distribution of ther-
modynamic transformation efficiency. Only pathways with pos-
itive efficiency are considered. right: Cumulative distribution of
thermodynamic efficiency weighted by rate fraction of pathways.
Two pathways that transform O2 in O3 and O1 dominate the
distribution (contribute 90%of the steady state rate) and are ex-
cluded.

lating thermodynamic properties of contained reactions first. Only
species that take part in photochemical reactions or matter exchange
are relevant for this characterisation. On the pathway level, from
30,157 pathways of the modern atmosphere 19,983 are compatible
with the chemical potential, 13 are incompatible and 10,161 can not
be decided. Weighted (Eq. (4.3)), the fraction of incompatible path-
ways is 0.01 and the fraction of undecidable is 7.3× 10−5. From the
24,627 pathways of the Archean model 11,917 are compatible with
the chemical potential, 3 are incompatible and 12,707 can not be de-
cided. Weighted (Eq. (4.3)), the fraction of incompatible pathways is
0.09 and the fraction of undecidable is 0.22. This big fraction is mainly
due to Pathway 2 (undecided) and Pathway 3 (incompatible) which
are shown in Table 4.2. A list of all pathways incompatible with the
estimated chemical potentials is given in the supplementary material
(Appendix C).

4.2.4 Thermodynamic Characterisation

From those pathways that can be fully quantified and that match
the chemical potentials, that is 99% (rate weighted) for the modern
atmosphere and 70% for the Archean atmosphere, thermodynamic
properties of individual pathways and the atmosphere as a whole6 6 Excluding the part

of non-quantifiable

pathways.
can be calculated. In total, the accountable part of the modern at-
mosphere model consumes 5.33 W/m2 of radiative energy and the
matter flux across its boundary has a balance of -2.6 mW/m2. For the
Archean atmosphere, the photochemical reactions only consume 26

mW/m2 and the flux of matter has a balance of 0.29 mW/m2. The
comparable large amount of consumed radiative energy of the mod-
ern atmosphere is due to pathways related to ozone formation in the
stratosphere. Just the three most significant pathways (Table 4.1) ex-
plain 5.16 W/m2 of radiative energy consumed and all three involve
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Figure 4.7: Scatterplot showing the relationship between inflow and out-

flow of chemical species and their concentration for the modern
(high O2) and the Archean (high CO2) model. Both quantities are
integrated vertically. Units are 1/cm2.

ozone. Its overall positive balance of chemical energy fluxes implies
that the Archean atmosphere transforms light into chemical energy
as a whole with an overall transformation efficiency of 1.1%. In con-
trast, matter passing the modern atmosphere is effectively driven by
its own chemical energy that is dissipated inside the atmosphere.

This clear distinction changes if we focus our analysis only on
those pathways of the third type (photochemical reactions and mat-
ter exchange) that actually have a positive balance of chemical energy
through their matter exchange. Weighting all those pathways with
the radiative energy that they consume we get a transformation effi-
ciency of 79% for the modern and 15% for the Archean atmosphere.
Further analysis of the transformation efficiency values reassures this
by showing that the distribution tends more toward the extremes for
the modern atmosphere (Fig. 4.6). A distinct feature of the model of
the modern atmosphere shows is a significant number of pathways
whose transformation efficiency is almost zero or almost one. The lat-
ter ones are pathways that consist of single photochemical reactions.
As these reactions are substituted by exchange reactions for analy-
sis (Fig. 4.1 (d)) there is no dissipation happening in these pathways
and thus they have 100% transformation efficiency. This indicates an
overall more efficient Archean atmosphere compared with the mod-
ern atmosphere. However, a few pathways of the modern atmosphere
much more efficient as their Archean counterparts.

4.2.5 Boundary Fluxes and Methane Pathways

With the coexistence of molecular oxygen and methane in the modern
atmosphere being the main contributions to its thermodynamic dise-
quilibrium [HL67; SVK13] pathways depleting this disequilibrium are
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of special interest. We find 7,666 pathways that consume methane and
oxygen to create water and carbon dioxide. All of those use photore-
actions, and in total they dissipate 1.6 mW/m2 of chemical energy
and 1.4 mW/m2 of radiative energy. Additionally there are 9,861

pathways that also consume methane but miss at least one of the
other components. They dissipate additional 0.3 mW/m2 of chemical
and 0.2 mW/m2 of radiative energy. The value calculated in existing
work [SVK13]7, normalised by Earths surface area, corresponds to 7 The estimated

power necessary to

maintain Earth’s

methane-oxygen

equilibrium is

0.67 TW.

1.3 mW/m2. This roughly matches our estimation of 1.6 mW/m2.
Getting a little higher results can be explained by complex path-
ways including additional species whose consideration increases the
change of chemical energy.

For the Archean atmosphere there is a higher methane influx and
higher methane concentration (Fig. 4.7). Because the atmosphere is
reducing, there are no pathways that oxidise methane with O2 to
H2O and CO2. The most important methane pathways perform re-
action with H2O to H2 and CO (see Table 4.2). The chemical energy
balance for the 10,404 pathways consuming CH4 is an increase by
0.29 mW/m2 and the radiation consumed by them is 2.0 mW/m2.
This is a difference to the present atmosphere where chemical en-
ergy is decreased by the pathways. In both cases methane pathways
do not only make up for a significant number of the pathways but
also explain a big fraction of the chemical energy balance through
mass exchange (75% for modern atmosphere; 99.7% for Archean at-
mosphere).

To get more details on the structure of the pathways we look at the
species that are part of their outflow, inflow and appear in them as
intermediates. Being an intermediate means that the species is pro-
duced as well as consumed by some reaction in the pathway. If it is
net produced or consumed an intermediate species can be also an
inflow or outflow species. The contribution of the most significant
species in these categories is visualised in Fig. 4.8. The values are
normalised by the amount of CH4 consumed by the specific path-
way.8 That means they correspond to the mean number of times a 8 Naturally, these

values are also

weighted by the

pathway

coefficients αi.

species appears as inflow, outflow or intermediate for one molecule
of methane being consumed. Besides verifying the big impact of the
significant pathways on these figures we notice an especially interest-
ing phenomena looking at species that function as inflow or outflow
as well as intermediates. These species are of interest because the co-
efficients of a pathway are naturally limited by the concentrations of
all the intermediates. High concentrations of intermediates thus pro-
motes its respective pathways.

The methane consuming pathways for the modern atmosphere are
mainly promoted by inflow species (O2, OH, O) while those for the
Archean atmosphere are primarily promoted by outflow species (H,
CO, H2CO). This might be understood as an autocatalytic structure
(pathways creating their own catalysts) that goes along with the path-
ways transforming radiation in chemical energy. The modern atmo-
sphere does not show this kind of self organisation because the fluxes
through its boundary are not as much driven by photochemical reac-
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Figure 4.8: Common species in methane consuming pathways. Occurence
of species for modern atmosphere (top) and Archean atmosphere
(bottom). Numbers are normalised by pathway coefficient αi

and number of methane species consumed by pathway.

tions but through mass exchange of species with different chemical
potential.

4.3 discussion

In this chapter it has been shown that pathway analysis can be a
useful computational tool for atmospheric modelling by providing
additional information in comparison to a simpler view on reaction
networks (Fig. 4.7). We found a tendency of the modern atmosphere
to pathways with fewer cycles and fewer reactions. This decreased
complexity indicates a flow of matter that is more direct and can be
seen as an effect of a stronger connection of the atmosphere with
other planetary processes. The decrease of complexity might seem
paradoxical at first as the chemical development towards life is com-
monly described as an increase in chemical complexity[Pea93]. But in
this context, complexity especially refers to molecular structure and
spatial organisation, it would hardly be contained in our type of anal-
ysis even if it would extend from the atmosphere into biochemical
details of living organisms. Generally the much greater chemical dise-
quilibrium is between the organic carbon of the biosphere (with all of
its complexity) and the oxygen in the atmosphere, and not within the
atmosphere itself [Kle16]. But also, for biochemistry of metabolism
the point of common and comparable simple universal pathways is
made [SM16; MS07].

One major assumption that the results of pathway analysis depend
upon is that the models accurately describe the respective atmosphere
and its planetary system. The model is constrained by reaction rate
constants that are derived from laboratory measurements. Addition-
ally there is a constraint through proxy data and geological insight
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that is used for choosing the right model structure and deposition
fluxes. However, there is no explicit consideration of thermodynamic
constraints in modelling itself. This is especially noteworthy as a con-
siderable mismatch of pathway directions with thermodynamic esti-
mates was found for the second model (high CO2, Archean atmo-
sphere). Even if this mismatch only affects 3 pathways, these are ex-
plaining 9% of the system’s steady state. For obtaining thermodynam-
ically consistent models, calculating these pathways and modifying
the model to eliminate them should be straightforward. The list of

inconsistent

pathways is

available in the

digital appendix. See

Appendix C.

The found consistency of the quantification of methane oxidation
i the modern atmosphere with existing work is encouraging regard-
ing the conducted estimation of chemical potentials. The change of
methane consuming pathways from being solely driven by radiation
in the Archean atmosphere to being driven together by radiation
and matter flow shows to be the important indicator for widespread
life and the oxidising atmosphere. The increased transformation effi-
ciency in few pathways transforming radiative into chemical energy
(79% vs. 15%) in the modern atmosphere due to simpler pathway
structure does not influence the overall picture of a more chemical en-
ergy driven modern atmosphere.9 For remote life detection [Sag+93; 9 The high efficiency

for few selected

pathways might

even be an artefact of

the choice of

boundary

conditions.

Kas97; Pac01] our technique may have some potential on the long
term. The requirement of an atmospheric chemistry model is chal-
lenging nowadays10 in comparison to existing ideas of looking at spe-

10 It is even more

challenging if one

wants characterise

contribution of

different sources to

exchange fluxes.

cific spectra of absorption. Nevertheless, in the future an increased
number of observations, better understanding of planet formation,
and improvement in modelling might allow to estimate atmospheric
models from sparse observations.

4.4 conclusion

The approach of this chapter allows to analyse and distinguish com-
plex reaction systems with a pathway oriented view on thermody-
namics. In the model of the modern atmosphere, reaction pathways
are shorter than in the Archean atmospheric model. Furthermore the
Archean atmosphere has more cycles and could be regarded as more
complex than the modern atmosphere. This difference can be ex-
plained by a big contribution of simple pathways (especially ozone
related) in the modern atmosphere. A clear difference between the
two models and its respective atmospheres can be found through
thermodynamically characterising the found pathways and focusing
especially on pathways that contain photochemical reactions as well
as matter exchange through the boundary of the atmosphere. The
energy driving these pathways mainly comes from photochemistry
(radiation) for the Archean atmosphere. In the modern atmosphere
these pathways are generally driven by the chemical energy of the ex-
changed matter and photochemistry only acts as an additional driver
catalysing the pathways. Our methodology thus allows to separate
between the influence of the purely abiotic photochemistry within
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the atmosphere and of the biotically influenced mass exchange on
maintenance of atmospheric chemical disequilibrium.For more detailed

characterisation an

annotation of

exchange would be

necessary.

This pathway analysis method characterises the structure of an at-
mospheric disequilibrium by the set of thermodynamically most im-
portant pathways, which goes beyond simply calculating and com-
paring the strength of the chemical disequilibria. The application of
this allowed us to distinguish the Archean from the modern atmo-
sphere, revealing differences in pathway complexity, cycle number,
and mass exchange. This suggests that for understanding the dis-
tinction between biotic and abiotic systems the associated pathways
should be studied in detail. To link these insights to the possibility of
life detection, this work implies that there may be characteristic sets
of pathways and associated concentrations of species that could serve
as fingerprints of biotic metabolisms in planetary environments.



5
E M E R G I N G PAT H WAY S I N A RT I F I C I A L
E C O S Y S T E M S

Reading the

previous chapter (4)

helps to understand

the motivation of the

work presented here.

Most methods from

Chapter 2 are used.

Thermodynamic data

was generated

analogous to

Sect. 3.1.2.

Artificial ecosystems consisting of abiotic parts and evolving
organisms are simulated. The ecosystems are created from ar-
tificial chemistries with thermodynamic constraints and a stoi-
chiometric substructure. Networks are driven by reactions that
resemble photochemistry to obtain cycling patterns as they are
found in real ecosystems. Pathway analysis shows that the ar-
tificial evolution leads to the formation of simpler, more pro-
nounced pathways.
keywords: artificial chemistry, artificial ecosystem, ecology, evo-

lution, emerging pathways

introduction

An important topic in current climate research is the quantification
of global matter cycles. Especially the carbon cycle [Fal+00] and nitro-
gen cycle [GG08] are of interest as they connect biosphere, geosphere
and atmosphere. More precisely, each of these cycles consists of many
processes that cycle elements on various spatial and temporal scales.
The fastest part of the carbon cycle includes atmospheric CO2 which
is removed by photosynthesis of plants and returned by respiration.
Much slower, in comparison, is the geological carbon cycle, which in-
cludes sedimentation, subduction in the Earth’s mantel, and release
of CO2 through volcanoes on the timescale of millions of years. It is
assumed to have an important function in stabilizing Earth’s temper-
ature through feedback loops [Ber99; Ber03].

All these matter cycles control the abundance of chemicals in the
atmosphere. After looking at pathways of atmospheric chemistry in
Chapter 4, it seems to be the obvious next step to get reaction net-
works of biosphere and geosphere, connect them to our atmospheric
network and see if we can find the reaction pathways that correspond
to those global matter cycles. Unfortunately, these networks are not as
well-modelled as those in the atmosphere.1 This is why, for this work, 1 Possible

approaches are

discussed in the

outlook (Chapter 7).

we are building an artificial life model which is inspired by the Flask
model [WL07b; WL07a] and the GUILD/METAMIC models [DZ99;
Dow02]. These, in turn, were inspired by Daisyworld [Woo+08] and
have been developed to see how biological species might gain control
of parameters of their environment. Another interesting

artificial ecosystem

has been build by

Rönkkö [Rön07]

using particle-based

simulation.

To model the emergence of life on a molecular scale, often artificial
chemistries are used [DZB01; BF92; MOI03]. The main idea of their
application is to investigate the emergence of life-like structures from
abiotic components. In this chapter, we want to roughly follow an

61
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Figure 5.1: Flow of matter and energy in ecosystems in quasi-steady state
can be described by a reaction network. The same chemical com-
plexes in different places are represented by formally distinct
species of the reaction network. C and N do not directly corre-
spond to carbon and nitrogen here but are abstract species with
their names chosen to highlight the analogy. The system is ener-
getically driven by photosynthesis (in plants) which drives cyclic
flow though other parts of the system.

idea by Dorin and Korb [DK07] and see if artificial chemistries can
be used to explain properties of ecosystems rather than single organ-
isms (see Fig. 5.1).

In general, the term artificial ecosystem can mean two things. FirstA short summary of

the use of the term

ecosystem [Rei86]

in artificial life is

given in Dorin,

Korb, and Grimm

[DKG08].

it refers to the specific artificial chemistry that is constructed to have
properties of real ecosystems like modularity and evolution. The sec-
ond meaning is that of an artificial chemistry in which ecosystem
properties emerge without being explicitly designed. This chapter fo-
cuses on the exploration of artificial ecosystems in the first sense. The
techniques and methods discussed here, however, should be general
enough to make it possible to use them in artificial life simulations.
With few exceptions [VI13; Per14; YN13], artificial chemistry models
are most often built ignoring thermodynamics (energetic constraints).
Here, the work done in Chapter 3 is extended to create thermody-
namically consistent artificial ecosystems that can be analysed using
pathway analysis methods as presented in Chapter 2 and already ap-
plied in Chapter 4.

5.1 methods

Instead of a flow system that is driven by the inflow and outflow of
chemicals, we are building a closed system. The system does not ex-
change matter with its environment but is driven to thermodynamic
disequilibrium by the inflow of energy in form of a chemical pseu-
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Figure 5.2: Different ways of driving a simulated reaction network to dise-
quilibrium by ways of thermodynamics and supplying it with
matter. (a) Network entirely driven by inflow of high energy
food species. To be able to reach a steady state, some waste
species have to be continuously removed (outflow). Either food
and waste species are kept constant through contact with the en-
vironment, or a constant influx of food is induced and the outflux
of waste is allowed to adapt proportional to the concentration
of waste. (b) Network is energetically driven by photoreactions
but allowed to adapt its mass through one buffered (low energy)
species. (c) Total mass in network is kept constant (fixed through
initial condition) and driven to disequilibrium by photoreactions.
(d) Networks simulated without mass exchange can be analysed
as open systems by selecting a core subnetwork (red) and treating
the effect of the other reactions as environment.

dospecies hν which is kept constant while being used in photochem-
ical reactions. We are using thermodynamically derived dynamics
(Chapters 2 & 3) to simulate the systems and pathway analysis (Chap-
ters 2 & 4) to analyse their steady state.

5.1.1 Artificial Chemistry Model

To drive an artificial chemistry energetically there are different ways
that keep a consistent thermodynamic formalism. Common ideas are
a constant inflow or a constant concentration of some high energy
food species. Many common artificial chemistries (no consideration
of thermodynamics) work with a fixed set of food species and out-
flow of all species through using a reactor with a fixed number of
molecules[DZB01].

Having fixed inflow species and outflow species (Fig. 5.2 (a)), as
used for the model in Chapter 3, comes with some drawbacks. If
one wants to include substructure of species that constrains reactions,
it has to be ensured that there are pathways from food species to
waste species at all. The stoichiometric constraint would also undo
one of the biggest advantages of the flow system, which is that its
dynamics mostly does not depend on its initial condition.2 To stress 2 One would have to

at least guarantee

pathways to generate

all species from food

species exist.
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Figure 5.3: Sketch showing the generation of the artificial chemistries.

(a) Elementary composition of the chemical species is chosen.
(b) Fixed number of reactions (of different types) are chosen.
The set of possible reactions is constrained by chemical species
elementary composition. (c) Chemical potentials of species and
activation energies of reactions are drawn from probability dis-
tributions.

the analogy to planetary ecosystems we use a model which is driven
energetically by photoreactions of the form A+ hν → B and does not
exchange matter with its environment (Fig. 5.2 (c)). By setting the
formation enthalp µ0 of hν to a high value of 50 and controlling the
concentration of hν, the strength of the force driving photochemistry
can be controlled implicitly.

The artificial chemistry is generated in multiple steps that are vi-
sualised in Fig. 5.3. First, the stoichiometric mass composition of in-
dividual species is generated. Then reactions are selected from the
set of all reactions compatible with the stoichiometric mass compo-
sition of the species. In the last step, activation energies EA and for-
mation enthalpies µ0 are sampled with the method described previ-
ously (Sect. 3.1.2).

Generating Species Stoichiometry

Before random reactions can be generated we have to create the el-
ementary structure of the chemical species. The model includes a
minimal substructure of the species, there is no spatial conformationIf one wants an even

richer substructure a

reaction network

could be created

through rule based

expansion. [BFS03b;

BFS03a; Fae+05]
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or even spatial symmetry that constrains the reactions, but just the
stoichiometric composition. Chemical species are made up of ec ele-
mentary components. We use an upper bound for the stoichiometric
coefficient of an elementary component ŝ. This means the elementary
composition of each species is chosen from the set {0 . . . ŝ}ec . For all
simulations presented here, we use a maximal stoichiometric coeffi-
cient ŝ = 10.

We use the poison distribution For generating the

networks presented

here, a value of

λ = 0.1 is used.P(x) =
λxe−λ

x!
(5.1)

to define a distribution Pc over all possible elementary compositions.

Pc : [0, ŝ]ec → [0, 1], (s1 · · · sec) ↦→ P(s1) · . . . · P(sec) (5.2)

This distribution is then used to sample the compositions of the N

species while making sure the number of duplicates (same composi-
tion of different species) is limited). Each composition value can have
one duplicate3 and in total there can not be more than M/3 dupli- 3 That means one

composition can

occur in at most two

species.

cates.4 The probability of values whose sampling would violate the

4 For ec = 1

duplicates are

allowed without

limitations.

duplicate condition are set to zero.

Sampling Reactions

For selecting a set of M reactions between the N species (Fig. 5.3 (b)),
we explicitly construct the probability distribution of all reactions of
the form A+B → C+D in memory. Values in this form can represent
one of the N species, the hν-pseudospecies or be empty. This leads
to a distribution of size (N+ 2)4. In this distribution probabilities of Having a

distribution over all

∼ N4 reactions in

memory has the

advantage that one

can easily disable

subsets of reactions,

e.g. A+X → B+X,

for all X.

reactions breaking mass conservation of elementary components are
disabled. Additionally, duplicates by symmetry (e.g. B+A → C+D,
C+D → A+B, . . . ) are disabled.

After separating the reactions in linear5 reactions (A → C or

5 Linear reactions

are identified with

respect to the

stoichiometric

matrix.

A+ E → C+ E type), photoreactions (contains hν) and nonlinear re-
actions (rest) we can sample a given number of reactions for each type.
Inside the different types duplicates are prohibited. Each time after
a reaction has been sampled, the probability of the duplicates of the
same type is set to zero. Duplicates are defined in terms of effective
concentration change. E.g. A → C and A+ E → C+ E are duplicates
of each other. Only one of those reactions can be included in a reac-
tion network. The reaction A+ hν → C can be combined with one of
the reactions mentioned before, as it is of a different type.

Algorithmic Complexity

The networks generated in this chapter are all relatively small, so
we can simulate a large number and analyse their reaction pathways
rapidly. Nevertheless, an estimate for the complexity of network gen-
eration should be given. The sampling of the elementary composition
as well as the sampling of the reactions is done by explicitly writing
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the distribution to memory and sampling from it. After each new
sample the distribution is updated by setting probabilities to zero to
avoid duplicates if necessary. In exchange for having to update the
distribution we get a deterministic run time.

For species composition the number of possible values (distri-
bution size) is n ∼ ŝec . With a primitive algorithm, sampling aFor ŝ and N there is

an offset of one or

two that we ignore

in the estimate here.

value and updating the distribution both are O(n) in time. For sam-
pling the composition of all N species this gives a time complexity
of O(N ·n) = O(N · ŝec).

Reactions are sampled in the same way, except that the size of
the distribution is m ∼ N4.6 Sampling M reactions in this case has6 Each reaction has a

maximum of four

participating species.
O(M ·m) = O(M ·N4) time complexity. Put together, for sampling
the entire artificial chemistry the time complexity is

TRN = O(N · ŝec +M ·N4). (5.3)

For future use, the algorithm can be improved by using a binary
tree like structure for sampling from the discrete probability distribu-
tions. In this tree, each node contains the accumulative probability of
its subtree. The data structure takes linear time to create, but samples
can be drawn and probabilities can be updated in logarithmic time.
For network generation time this means77 The N in the

fourth term

originates from the

N equivalent

reactions for which

the distribution

might have to be

updated.

TRN = O(ŝec +N log(ŝec) +N4 +MN log(N4))

= O(ŝec +N · ec log ŝ+N4 + 4 ·MN logN).
(5.4)

For reasonable small values of ŝ and ec and a number of reactions
M comparable to the number of species N, the dominating term is
the N4 term for generating the distribution of all possible reactions
for the calculated set of species. As the possible reactions are marked
in an array of that size, this also describes the memory consumption
of the program.8 If we assume each (theoretically possible) reaction8 Just saving the

valid reaction does

not allow for time

efficient deletion of

duplicates of linear

reactions.

takes 8 byte, generating a network with 150 species would need 8.1GB
of memory.

Simulating Chemistry

The reaction equations of the networks are defined in the same man-
ner as in Chapter 3. Thermodynamic parameters are generated as
described there (Sect. 3.1.2) and reactions are simulated reversibly
with mass action kinetics (Sect. 2.2.1). Because the systems here do
not exchange matter with the environment a solver with a low er-
ror is important. Thus we are using an implicit solver for integratingAn implicit solver

calculates the next

time step by solving

an equation system

involving partial

derivatives

(Jacobi-matrix).

the differential equation. The necessary equations are derived in Ap-
pendix A.1, the source code is contained in the package jrnf_int (see
Appendix C).

To simulate a chemistry with different initial conditions, but still
having the same mass distribution of elementary components in the
system, we use the following scheme. All chemical species (except hν)The concentration of

hν is not affected by

this randomisation.
are initialised with a given initial concentration c. Then, before start-
ing the integration of the ODE, all reactions are applied in random
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order and direction. To ensure that no species has a concentration of
zero when the integration starts, each reaction is only applied until
one of its educts has a concentration of c/100.

5.1.2 Evolvable Artificial Ecosystems

The artificial ecosystems we simulate are constructed from one anor-
ganic part and multiple organisms (Fig. 5.4). All parts are constructed
using the artificial chemistry model presented previously. There is
no a priori difference between the chemistry of organisms and the
anorganic part. The anorganic part of the network contains the hν-
pseudospecies that supplies the system with energy. Organisms are
created by first choosing a given number of interaction species from
the anorganic chemistry and then creating the stoichiometry of a
number of internal species that are only visible to the organism. Af-
terwards the "internal" reactions of the organism9 are sampled as de- 9 This are reactions

that can contain

interaction species

and internal species.

scribed in Sect. 5.1.1. For species composition and reactions inside the
anorganic network and inside each organism the same constraints re-
garding duplicates apply as described before. When selecting inter-
acting species for an organism hν is treated like any chemical species.
If it is not chosen as interacting species, no photoreactions are con-
tained in the respective organism.

Once assembled, an anorganic chemistry and connected organisms
form an artificial chemistry (Sect. 5.1.1) and its reaction equations can
be simulated to steady state in the same way. We want to simulate the
same anorganic chemistry with different organisms and have a com-
parable mass in the system. To achieve that, we set the initial concen-
tration of organic species (before randomizing) to be one thousandth
of that of anorganic species. That means the mass of the system is de-
termined by the stoichiometry of the elementary components of the
anorganic species, which do not change when changing organisms.

To evolve the network, an additional layer of dynamics is added on
top of the chemical differential equation.10 In each step the system is 10 This technique

resembles a simple

version of

evolutionary

optimisation [BS02].

simulated for a fixed amount of time that should be enough to reach
steady state for most cases of networks and initial conditions. Then
for each organism the fitness Li is determined by the product of its
fraction of the total mass wi and its fraction of the absolute steady
state rate ri.11 Formally those are defined by 11 ri has a similar

meaning than rate
fraction fi defined

in Eq. 4.3. But it

refers to an organism

instead of a pathway.

wi :=

∑
Sj∈Oi

mj
∑

jmj
ri :=

∑
Rj∈Oi

|vj|
∑

j |vj|
Li := wi · ri, (5.5)

with Sj ∈ Oi indicating that species j is part of organism j and Rj ∈ Oi

meaning the same for reaction j. If multiple evaluation runs (ODE in-
tegrations) are performed for the same network, each species fitness
is determined by the maximum of the fitness values of the individual
runs. After the organism with the lowest fitness is determined it is re-
moved from the network and a new organism is sampled and added
to the ecosystem.
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Table 5.1: Parameters for generation (and evolution) of artificial chemistries (A, B, C) and artificial ecosystems (D,E). Parameter values are given in the order
they are needed for simulation, starting with the number of elementary components and cutoff for activation energy ÂE. "*" X+1 indicates X species
plus hν-pseudospecies. "†" Linear reactions are identified in respect to the stoichiometric matrix (includes A+ E → C+ E type).

Network / Ecosystem A B C D E

el. components ec 1 2 2 1 2

ÂE 5 5 5 2 3

anorganic network

species* 4+1 4+1 12+1 12+1 18+1

total reactions 6 6 18 25 25

linear reactions† 2 2 5 5 10

photoreactions 2 2 3 5 5

organisms

interacting sp. 4 4

internal species 3 4

total reactions 8 10

linear reactions† 2 2

photoreactions 2 2

organism number 4 4

evaluation runs 5 5

generations 500 500

ODE solver
initial concentration 0.1; 1; 10 0.1; 1; 10 0.01. . . 100 10 10

simulated time units 107 107 107 109 109

hν concentration 10−4 . . . 5 · 109 10−2 . . . 5 · 109 10−3 . . . 5 · 104 10 10
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Figure 5.4: Evolvable reaction network made of organisms (top / colour)

and their abiotic environment (bottom). Organisms are added
by first selecting interacting species (green) and then adding in-
ternal species that are only visible inside the organism. Then
random reactions can be added between internal species and in-
teracting species. By successively replacing organisms with low
fitness the network structure is evolved.

5.1.3 Reaction Pathway Analysis

Steady state rate vectors v of the simulated reaction networks are
analysed by decomposing them into a linear combination of reaction
pathways E(i) with positive coefficients αi as described in Sect. 2.2.3, Cf. Eq. 2.14

v =
∑

i

αiE
(i), (5.6)

using the algorithm for pathway decomposition (Sect. 2.3).
For weighting pathways we use the rate fraction as introduced in

Sect. 4.2.2: Cf. Eq. 4.3.

fi =
αi

∑
j |E

(i)
j |

∑
i αi

∑
j |E

(i)
j |

. (5.7)

It describes which fraction of the steady state is explained by a certain
pathway in this specific expansion. This quantity has the advantage
of being normalized (if sufficiently many pathways have been calcu-
lated). Thus, fi can be interpreted as a probability and be used to
weight quantities associated with individual pathways, like the num-
ber of cycles or the number of reactions.

Besides for analysis of complete networks, we are also using the
pathway analysis for subnetworks, specifically those of the static
(anorganic) part of our artificial ecosystems (Fig. 5.4). These subnet-
works are treated like any other network, except that in- and outflow
reactions are added to represent the effect of the outside part of the
original network (see Fig. 5.2 (d)).
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5.1.4 Simulations

To present how reaction pathways and artificial chemistries work to-
gether, some simple artificial chemistries are simulated. Afterwards
ecosystems constructed from more complex networks are evolved. A
summary of the different simulations and their parameters is given
in Table 5.1.

Sample Networks (A, B, C)

Two simple network with 4+1 chemical species are created and simu-
lated. This means 4 conventional species and the "+1" is indicating the
hν-pseudospecies for controlling photochemical reactions. Both net-
works have 6 chemical reactions. Network A (Fig. 5.5 (a)) is created
with one elementary component, Network B (Fig. 5.6 (a)) with two
elementary components. Both are simulated for 107 time steps for
various combinations of initial concentration and energy input. Net-
work C (Fig. 5.7) is created with two elementary components, from
which 12+1 chemical species and 18 reactions are sampled. It is sim-
ulated with similar parameters as the other two networks (Table 5.1).

Evolving Ecosystems (D, E)

The size of the ecosystems is limited by the performance of the
pathway analysis that is performed after network evolution. For the
ecosystem with one elementary component (Ecosystem D) we create
anorganic core networks with 12+1 species and 25 reactions. The cho-
sen parameters for creating the organisms lead to the final network
(anorganic core and four organisms) having 24+1 species and 49 reac-
tions.

The ecosystem with two elementary components (Ecosystem E)
seems to be handled better by pathway analysis, which means that
we can generate larger networks. The anorganic core is made of 18+1

species and 25 reactions. With 4 organisms the network size is 34+1

species and 65 reactions. For the choice of all parameters (Table 5.1),
the aim was to allow for some complexity inside of each organism as
well as some interaction between organisms.

5.2 results

To show the basic properties of model and analysis, the simple reac-
tion networks are simulated to steady state (1 · 107 time units) and
the final rate vector is decomposed into reaction pathways.

5.2.1 Pathway Structure

Thermodynami-
cally closed
systems can

exchange heat and

work with their

environment, but do

not exchange matter.

Cycling in the thermodynamically closed system is driven by photo-
chemical reactions, which in turn are controlled by the concentration
of the chemical species hν in the network. We vary concentration of
hν to see how photochemical activity and reaction pathways change
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Figure 5.5: Simulation of Reaction Network A (1 elementary component;
4+1 species; equations shown in Table 5.3). (a) Plot of network
structure. (b) Relationship between inflow of hν and its con-
centration for different initial concentrations (mass of the sys-
tem). (c) The five reaction pathways of the reaction network
for the states (reaction directions) occurring in the simulations.
(d) Change of pathway decomposition with driving force (hv)
for simulations with initial concentration of 1 for all species.

with thermodynamic forcing.12 This reveals two distinct regimes, a 12 Photochemical
activity means

consumption of hν

by photoreactions.

power law with an exponent between one and two and a saturated
phase with a constant photochemical activity above a certain concen-
tration of hν (Fig. 5.5 (b) & Fig. 5.6 (b)). The plateau is an effect of the
constant mass of the system. All pathways are constrained through
their non-photochemical reactions, which are proportional to concen-
trations of their reactants.13 13 This works as

long as no pathways

with only

photochemical

reactions exist.

Interestingly, between the two regimes also a qualitative change in
pathway decomposition occurs. The tendency of the sample systems
(Fig. 5.5 & 5.6) is to have fewer, more important pathways in the
plateau regime. These pathways also tend to have fewer reactions.
For Network A we can see how a reaction changes in the transition
between pathways (5),(6) and (18) (cf. Fig. 5.5). The coexistence of
pathways (1) and (3) in the higher regime of Network B (Fig. 5.6) can
be explained by them sharing species N, which occurs as a product
of photochemical reactions in both pathways.
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Figure 5.6: Simulation of Reaction Network B (2 elementary components;
4+1 species; equations shown in Table 5.4). (a) Plot of network
structure. (b) Relationship between inflow of hν and its con-
centration for different initial concentrations (mass of the sys-
tem). (c) The five reaction pathways of the reaction network
for the states (reaction directions) occurring in the simulations.
(d) Change of pathway decomposition with driving force (hv)
for simulations with initial concentration of 1 for all species.

5.2.2 Network Self Organisation

The larger sample chemistry (Network C) is shown in Fig. 5.7 and
its simulation results are depicted in Fig. 5.8. We notice the same
transition between different regimes and change in pathway decom-
position between them like in the smaller sample chemistries. The
pathway distribution also seems more skewed for the upper regime,
where the most important pathway have a larger contribution to the
steady state than their lower flow counterparts.

To see how mass inside the network redistributes, we are looking at
the part of the network that accumulates mass. To determine this, the
chemical potential µ14 in non-equilibrium steady state is compared14 µ = µ0 + log c

with its value in a reference simulation with disabled photoreactions.
We call those species that have an increased chemical potential core

network. Looking at the size of this core network for different concen-
trations of hν shows how the mass of the system is concentrating in
a smaller section of the network if hν, and thus the thermodynamic
disequilibrium, is increased (Fig. 5.8 (b)).
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Figure 5.7: Plot of Reaction Network C. Larger sample network with 2 el-
ementary components and 12+1 species. Reaction equations are
given in Table 5.6.

5.2.3 Pathway Evolution

When evolving artificial ecosystems, not only pathways or pathway Ecosystem

generation and

evolution is

introduced in

Sect. 5.1.2.

coefficients change, but in each generation the network is partially
rewritten. Throughout each evolution run, the steady state rates of the
anorganic network and of the entire ecosystem are decomposed into
reaction pathways.15 Using the rate fraction of the pathway (Eq. 5.7), 15 Because of its

computational

complexity, pathway

analysis on the full

ecosystem is only

performed for 10 out

of the 500

generations.

we are calculating the weighted number of cycles (of length shorter
5) as an indicator for the change of pathway complexity (Fig. 5.9
(e) & (f)). From the initial, random network of the ecosystems, the
weighted number of cycles decreases by around 50% in roughly 50

generations for both ecosystems.
To look at this change in greater detail, the most important path-

ways for explaining their respective steady state (Eq. 5.7) are visual-
ized for selected generations in Fig. 5.10 and Fig. 5.11. The structure
of the pathways in the evolved ecosystem are much simpler than the
most important pathways in the initial (random generated) ecosys-
tem. Also the contribution of the most important pathway increases
from 30% to 65% for Ecosystem D and from 10% to 50% for Ecosys-
tem E.

To better characterise this tendency towards fewer, more important
pathways, we interpret the values for the rate fraction fi (Eq. 5.7) as
probability distribution from which the informational entropy H can
be calculated:16 16 Throughout this

work log refers to

the natural

logarithm. The

choice of base only

changes a constant

factor of H.

H = −
∑

i

fi log fi. (5.8)

Plotting the changing informational entropy for the anorganic part of
the artificial ecosystem confirms the hypothesis of a simpler pathway
distribution (Fig. 5.9 (c) & (d)). Interestingly, most of the effect of evo- Lower values of H

imply a more uneven

distribution.
lution on pathways seems to happen in the first 50 generations.
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Figure 5.8: Results for Reaction Network C. (See Fig. 5.7 and Table 5.6
for network structure.) (a) Dependency of photochemical activ-
ity (hν inflow) from driving force for different initial concentra-
tions. (b) Number of core species as function of driving force
(hv concentration). Core species are defined as species that have
a higher chemical energy µ than in thermodynamic equilibrium
(same initial concentration; no photoreactions). (c) Decomposi-
tion of steady state into pathways for an initial concentration of 1.
(d) Decomposition of steady state into pathways for species ini-
tial concentration equal to 10. Plots show the rate fraction for the
five most important pathways as a function of concentration of
pseudospecies hν. (e) Pathways that are occurring in decomposi-
tions shown in Panels (c) and (d). (Pathways are also described
in Table 5.5.)
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Figure 5.9: Evolution of Ecosystem D (left) and E (right). Bright blue data
points show generations in which a newly generated organ-
ism survived longer than one generation (indicates innovation).
(a),(b) Evolution of the ecosystems (wi · ri is used as fitness func-
tion). (c),(d) Informational entropy (Eq. 5.8) of pathway decom-
position of the (anorganic) core network. (e),(f) Cycle number
of entire ecosystem (obtained through pathway decomposition).
(g),(h) Anorganic parts of the evolved ecosystems.
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Figure 5.10: Pathways of Ecosystem D (1 elementary component). Most rel-
evant pathways for explaining the steady state of the ecosystem
and their rate fractions (Eq. 5.7) in percent. (a) Before evolu-
tion, (b) after 80 steps, and (c) after 439 steps of evolution. (Size
of squares symbolizes coefficient of respective reaction. Lead-
ing letters X, Y, Z, U separated by underscore indicate internal
species of organism. Final number separated by underscore in-
dicates isotopes.)
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Figure 5.11: Pathways of Ecosystem E (2 elementary component). Most rel-
evant pathways for explaining the steady state of the ecosystem
and their rate fractions (Eq. 5.7) in percent. (a) Before evolu-
tion, (b) after 34 steps, and (c) after 405 steps of evolution. (Size
of squares symbolizes coefficient of respective reaction. Lead-
ing letters X, Y, Z, U separated by underscore indicate internal
species of organism. Final number separated by underscore in-
dicates isotopes.)
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After that time there are no pathways that are spanning multiple or-
ganisms, indicating that evolution did not lead to formation of a form
of cooperation, but rather independent organisms.

5.2.4 Statistics of Evolution Runs

The evolution of both of the two different ecosystems shows that
evolved ecosystems have a simpler pathway structure. To get an es-
timate on the statistical significance of this, we repeat network con-
struction and evolution 20 times for each of the two network types.
Reaction pathways are evaluated like described in Sect. 5.2.3 and
the change of all parameters between the initial, random generated,
ecosystem and all states of the ecosystems after generation 50 of the
evolution is calculated. The statistics shows a significant decrease
of all of the parameters between initial and evolved ecosystems (Ta-
ble 5.2) showing that the effect of evolution towards simpler pathways
that was found for two specific ecosystems (Sect. 5.2.3) is statistically
significant.

We find the efficacy of the evolution being limited to the begin-
ning of the simulation (Fig. 5.9). In later stages of the evolution, mu-
tation of ecosystems leads to large fluctuations of fitness. To better
understand the nature of this fluctuations, simulations with a differ-
ent number of organisms and with a different number of evolution
runs are concluded. If changing the number of evolution runs per
network influences the fitness this would indicate that the fluctua-
tions are (partially) due too random errors in determining the fitness.
Some initial concentrations would lead to the ODE-simulations not
converging fast enough and an incorrect fitness of the organisms be-
ing determined. Change of fluctuations with number of organisms
in an ecosystem would indicate the process of evolution by mutation
through simple replacement of organisms as the origin of the fluctu-
ations.1717 Replacing the

least fit organism of

a bigger number

should naturally

have less of an

impact.

Five anorganic core networks are created with the parameters of
Ecosystem D and the same number with the parameters of Ecosys-
tem E . To compare the effect of organism number and fitness evalua-
tion, we use the same anorganic networks with different parameters
for number of organisms o and number of evaluation runs r. The
number of evaluation runs per generation r does not have a large
influence on the evolution process (Fig. 5.12 & 5.13). In contrast to
this, increasing the number of organisms from 4 to 8 leads to reduced
fluctuations in most cases. In the case of network type D (one elemen-
tary component) there are still jumps in the fitness, but those seem
more like discrete jumps at few time points instead of the fluctuations
visible in the reference simpulations (Fig. 5.12).
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Figure 5.12: Multiple evolution runs of artificial ecosystem (Network D-

type). Figure shows evolution of quantity mirroring fitness of
the organisms for multiple runs (vertical) and for different pa-
rameters (horizontal) for number of simulation runs for evalua-
tion r and number of organisms per ecosystem o. Each row of
simulation runs was started with the same anorganic network
but initialized with different organisms. (See Table 5.1 under
Network D for additional parameters.)
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Figure 5.13: Multiple evolution runs of artificial ecosystem (Network E-

type). Figure shows evolution of quantity mirroring fitness of
the organisms for multiple runs (vertical) and for different pa-
rameters (horizontal) for number of simulation runs for evalua-
tion r and number of organisms per ecosystem o. Each row of
simulation runs was started with the same anorganic network
but initialized with different organisms. (See Table 5.1 under
Network E for additional parameters.)
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Table 5.2: Statistics of changing pathway properties for multiple evolution

runs. For each ecosystem type 20 ecosystems are generated and
evolved. For each weighted pathway property the mean ratio be-
tween evolved ecosystems (later than generation 50) and the non
evolved ecosystem is calculated. The error is estimated calculating
the standard error of the mean.

Ecosystem D Ecosystem E

Fitness 19.4± 13.4 3.66± 0.46

core NW

cycle number 0.85± 0.14 0.52± 0.18

reaction number 0.85± 0.08 0.73± 0.07

species number 0.85± 0.06 0.82± 0.05

PW inf. Entropy 0.70± 0.07 0.68± 0.13

full NW

cycle number 0.60± 0.12 0.61± 0.09

reaction number 0.57± 0.06 0.58± 0.05

species number 0.59± 0.06 0.66± 0.04

PW inf. Entropy 0.78± 0.11 0.48± 0.09

5.3 discussion

5.3.1 Evolution Towards Simpler Pathways

The observed evolution towards simpler pathways is in accordance
with the results of the previous chapter which indicated a higher im-
portance of reaction pathways with fewer cycles and reactions in the
modern atmosphere. As was already mentioned then, finding sim-
pler pathways seems to contradict existing research associating life
and evolution with more complexity. Increase of complexity has been
found for chemical species[Pea93] as well as for genetic information
[AOC00].

While simple pathways are not surprising in biology [SM16; MS07],
the ones evolved might also be an effect of the simple environment.
This could be tested by evaluating the fitness of organisms with mul-
tiple different simulation runs. One could for example have a higher
number of organisms per anorganic network and then only solve the
differential equation for the network containing different subsets of
all organisms. Having the organisms compete in different situations Finding complex

pathways would

allow to check a

proposed

relationship between

pathways and their

dissipation [SU10]

[US11].

might give an incentive for more complex functioning.

5.3.2 Network Creation and Evolution Scheme

In systems biology and artificial life there are countless models that
evolve or grow networks [JK98; JK01; PSB05; Kre+08; HA08]. Most
of them do not demonstrate the evolution of more complex reaction
networks [YBC11]. While the application of reaction pathway analysis
proved to be successful here, the process of network creation and
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evolution can certainly be improved. The largest increase in fitness
is always seen in the first 50 generations and no complex interaction
between different organisms emerges. The problem lies in replacing
entire organisms, which is a big disturbance for the system. It could
be promising to have smaller mutations. A more fine-tuned mutation
operator could for example change single reactions of the least fit
organism.

To ensure evolvability for all possible ecosystems, mutation would
also have to be able to change chemical species that are constrained by
existing reactions. The stoichiometric constraints of elementary com-
position leads to a trade-off between evolvability and avoiding ex-
treme mutations. Using some rule based schemes to create and mu-
tate the network might allow to solve the problem of the mutation
operator and increase the performance of network generation at the
same time [BFS03b; BFS03a; Fae+05; And+14]. A different model for
network generation might also reduce the number of parameters.

5.3.3 Pathway View on Dynamic Stability

Looking at reaction pathways in steady state has one drawback. The
found pathways might not include the full information of how the
system got into steady state or what is keeping it there. In flow re-
actors, where all the species are diluted constantly, pathways would
describe the buildup of the autocatalytic structure that is countering
the dilution. But we are having a constant mass, that is cycling inside
the network. Once the concentrations and reaction rates are in steady
state, the chemistry does not need to regenerate anything. To get the
pathway view of how the network focuses its mass in certain parts
of the network, it might be worthwhile to analyse how the system
approaches its steady state. Pathway analysis could give a detailed
explanation of how the central part of the network builds up from its
environment and might allow to connect this to formal definitions of
autocatalysis [HS12].

5.4 conclusion

This chapter has shown how thermodynamically constrained arti-
ficial chemistries, together with reaction pathway analysis, can be
used to create and analyse model ecosystems. An artificial chemistry
model was created with mass conservation and thermodynamic con-
straints to be driven to cycling processes by photoreactions. Its func-
tioning has been demonstrated with simple example systems. Inves-
tigating cyclic flow as a function of the thermodynamic driving force
shows two regimes. In the lower regime, the strength of the flow fol-
lows a power law. In the higher regime, the flow is limited by the
mass of the system. Pathway analysis shows that transition between
those two regimes goes along with a reorganisation of reaction path-
ways. When increasing flow, also a reorganisation of the mass of the
system into a smaller part of the network is detected.
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The artificial chemistry was used as building block for generating
a model for artificial ecosystems. This model allows to evolve the
ecosystem by selectively replacing network parts representing differ-
ent organisms. The use of this simple evolution scheme together with
reaction pathway analysis makes it possible to observe an evolution
towards simpler pathways with less cycles and less reactions. The
statistical significance of this result has been successfully tested by
concluding an ensemble of simulations. This allows for the under-
standing of the presence of pronounced simple pathways in real sys-
tems as a consequence of an evolutionary mechanism and explain its
importance for life [MS07].

More work is needed for better models of the evolution process
of the ecosystem. The primitive mutation operation of substituting
entire organisms leads to strong fluctuations of fitness after a few
initial generations. Also it is quickly leading to very simple reaction
pathways that are focused on single organisms. A more fine-tuned
evolution scheme might reduce fluctuations and might also lead to
pathways that connect multiple organisms. In the ecosystem inter-
pretation, pathways covering multiple organisms represent feeding
relationships which are omnipresent in real ecosystems [OH72].
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appendix : list of networks and pathways

This appendix contains tabular information on the structure of Net-
works A (Table 5.3), B (Table 5.3), and C (Table 5.6) as well as a list
of the most significant reaction pathways found in the simulation of
Network C (Table 5.5).

Table 5.3: Network A (1 elementary component; 4+1 species).

hv + 2C1 → 3C1 (1)

hv + 3C1 → C1 (2)

3C1 → C1 (3)

3C1 + C1 → 3C1 + 2C1 (4)

4C1 + 4C1 → 3C1 + 2C1 (5)

4C1 + 3C1 → 2C1 + C1 (6)

Table 5.4: Network B (2 elementary components; 4+1 species).

hv + C1N1 → C1 + N1 (1)

hv + 2N1 → N1 (2)

2N1 → N1 (3)

C1N1 + 2N1 → C1N1 + N1 (4)

C1N1 → C1 + N1 (5)

C1N1 → 2N1 + C1 (6)

Table 5.5: Selected pathways of Network C. Pathways that are occurring in
the pathway decomposition of Network C (cf. Fig. 5.8.)

cycles

hv + 2C1N1 → 2N1 + 2C1

2 (1)
2C1 → C1

C1N1 → 2C1N1

2N1 + C1 → C1N1

net: hv →

hv + C1N2 → 2C1N1 + 2N1

8 (2)

hv + 2C1N1 → 2N1 + 2C1

2X 2C1 → C1

C1N1 + C1N1 → 2N2 + 2C2

2N2 + 2C2 → C1N2 + 2C1

2X 2N1 + C1 → C1N1

net: 2hv →

(continued on next page)
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Table 5.5: (continued - pathways of Network C)

cycles

hv + C1N2 → 2C1N1 + 2N1

17 (4)

hv + 2C1N1 → 2N1 + 2C1

2X 2C1 → C1

N1 → 2N1

C1N1 + 2N2 → C1N2 + N1

C1N1 + 2N1 → 2N2 + 2C1

2X 2N1 + C1 → C1N1

net: 2hv →

hv + N2 → 2N1 + 2N1

10 (5)

2X 2C1 → C1

2N2 + C1 → N2 + 2C1

C1N1 + 2N1 → 2N2 + 2C1

2N1 + C1 → C1N1

net: hv →

hv + N2 → 2N1 + 2N1

14 (21)

hv + 2C1N1 → 2N1 + 2C1

2X 2C1 → C1

C1N1 + 2N1 → 2N2 + 2C1

2C1N1 + C1N1 → N2 + C2

2N2 + C2 → 2C1N1 + 2C1N1

2X 2N1 + C1 → C1N1

net: 2hv →

hv + N2 → 2N1 + 2N1

4 (19)

2C1 → C1

2N2 → N2

C1N1 + 2N1 → 2N2 + 2C1

2N1 + C1 → C1N1

net: hv →

hv + C1N2 → 2C1N1 + 2N1

14 (37)

hv + 2C1N1 → 2N1 + 2C1

2X 2N2 → N2

2X N2 + 2C1 → 2N2 + C1

C1N1 + C1N1 → 2N2 + 2C2

2N2 + 2C2 → C1N2 + 2C1

2X 2N1 + C1 → C1N1

net: 2hv →

hv + 2C1N1 → 2N1 + 2C1

9 (43)

N2 + 2C1 → 2N2 + C1

2C1N1 + C1N1 → N2 + C2

2N2 + C2 → 2C1N1 + 2C1N1

2N1 + C1 → C1N1

net: hv →

(continued on next page)
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Table 5.5: (continued - pathways of Network C)

cycles

hv + C1N2 → 2C1N1 + 2N1

9 (44)

C2 → 2C2

N2 + 2C1 → 2N2 + C1

2C1N1 + C1N1 → N2 + C2

2N2 + 2C2 → C1N2 + 2C1

2N1 + C1 → C1N1

net: hv →

Table 5.6: Network C (2 elementary components; 12+1 species).

hv + 2C2 → 2C1 + C1 (1)

hv + C1N2 → 2C1N2 (2)

hv + 2C1N1 → 2C1 + N1 (3)

2C1 → C1 (4)

2C2 → C2 (5)

2C1N1 → C1N1 (6)

2C1N2 → C1N2 (7)

2N1 → N1 (8)

C1N1 + 2C1 → C2 + 2N1 (9)

2C2 + N1 → C1N1 + C1 (10)

2C1N2 + C1 → C1N2 + 2C1 (11)

N3 + 2C2 → 2C1N2 + 2C1N1 (12)

N3 + 2C2 → C1N2 + C1N1 (13)

N2 + 2C1 → C1N1 + 2N1 (14)

2C2 → C1 + C1 (15)

N3 + 2C1N1 → C1N2 + N2 (16)

C2 → 2C1 + C1 (17)

2C2 + C1N1 → 2C1N1 + C2 (18)
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C O N C L U S I O N

The conclusion

refers to parts of all

previous chapters.
Methods for the analysis of reaction networks have been de-
veloped and successfully combined with a thermodynamically
driven artificial chemistry. Two models of Earth’s atmosphere
have been compared in terms of reaction pathways and thermo-
dynamic functioning. Using an artificial chemistry to create an
evolvable artificial ecosystem has shown that evolving ecosys-
tems leads to the formation of simpler, more pronounced reac-
tion pathways.
keywords: reaction network, pathway analysis, artificial chem-

istry, complex network, thermodynamics, life detec-
tion

In this thesis, methods for the analysis of reaction networks
through thermodynamics and reaction pathways were extended and
combined with novel models for artificial chemistries that include
reversible reactions. Applications in the range of origins of life and
Earth system science have been tested and further connections have
been discussed.

The generated large-scale artificial reaction networks have shown Cf. Chapter 3.

the importance of thermodynamic constraints. Without those, the re-
versible dynamics-induced self organisation leading to an increase in
cycles is not possible. Searching for autocatalytic sets without con-
sidering this type of self organisation might miss important factors.
Besides increasing the number of cycles, increasing the flow through
nonlinear networks also leads to a narrower distribution of chemi-
cal potentials. Comparing different complex network types did not
indicate large differences in their thermodynamic functioning. The
biggest difference was found between linear and nonlinear networks.
The distribution of entropy production rate of individual reactions is
steeper for nonlinear networks. The power law coefficient was found
to be approximately −1.66 for them instead of −1.5 for linear net-
works.

Using pathway analysis and thermodynamic characterization, two See Chapter 4.

models of Earth atmospheric chemistry could successfully be dis-
tinguished. Pathways of the modern Earth atmosphere were found
to be simpler (less reactions) and contain fewer cycles than those
of the Archean atmosphere. Thermodynamic analysis showed that
the Archean atmosphere is driven more strongly by radiation, gener- Chemicals passing

the modern

atmosphere (on

average) decrease

their chemical

energy.

ally increasing the chemical energy of the matter it exchanges with
its environment, while the matter fluxes of the modern atmosphere
have a negative net energy balance. The estimated chemical poten-
tials allowed for a successful quantification of methane oxidation in
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the modern atmosphere in accordance with previous studies. Never-
theless, many chemical species and reaction pathways could not be
quantified. Some pathways were even found to be inconsistent with
the calculated thermodynamic potentials. These inconsistent path-
ways can be used to further improve future models. But they also
provide insight into what needs to be done to achieve a comprehen-
sive thermodynamic model analysis.

For analysis with the pathway decomposition algorithm, an artifi-See Chapter 5.

cial chemistry model was created. The model ensures mass conserva-
tion and thermodynamic constraints while it is driven to thermody-
namic disequilibrium through photochemistry-like reactions. It has
been tested with different example systems to show how a change
in the driving force leads to a reorganisation of reaction pathways.
For increasing flow, the mass of the system concentrates within a
smaller number of chemical species. The artificial chemistry was used
as a building block for generating a model for artificial ecosystems.
This model enables network evolution by selectively replacing net-
work parts representing different organisms. The usage of this simple
evolution scheme together with reaction pathway analysis provides
insight into an evolution towards simpler pathways with less cycles
and less reactions. This allows for an understanding of the presence
of pronounced simple pathways in real systems as a consequence of
an evolutionary mechanism. The primitive mutation operation of sub-
stituting entire organisms shows its limit by leading to strong fluctu-
ations of fitness after a few initial generations with large fitness gain.
Future work in this area should focus on achieving a more finely
tuned evolution scheme together with an artificial chemistry whose
network construction is computationally less complex.

In Chapter 3 it has been shown that Earth’s atmospheric reaction
network has fewer cycles than its null model with randomized reac-
tion directions. This fits the lower cycle number found for the modern
atmosphere in Chapter 4. Also in Chapter 5, a decrease of the cycle
number1 was found for evolved ecosystems, for the analysis of the1 Weighted number

of cycles in

pathways.
anorganic part as well as of entire networks.

The simulations of large scale reaction networks in Chapter 3 indi-
cated that when flow is increased, a larger fraction of the network is
necessary to be able to explain the same fraction of dissipation (Fig.
3.6 (c)). The artificial chemistries in Chapter 5, however, concentrate
their mass in smaller parts of the network with increasing flow. This
is not a contradiction as both networks are simulated with different
boundary conditions. The large-scale network is driven by flow of
matter and increases its mass, while the artificial chemistry that is
driven by photoreactions retains a constant mass.

The work presented has shown that combining pathway analysis
with planetary modelling as well as artificial chemistry is full of po-
tentials. Nonetheless, further research is needed to make the algo-
rithm scale better for large systems and the models more easily ac-
cessible to analysis.2 In the final chapter, possible ideas for a better2 For example

through common

data formats and

model description

languages.

combination of reaction networks with planetary modelling and arti-
ficial life are discussed.
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O U T L O O K

Previous chapters (4

and 5) and questions

formulated in the

introduction

(Chapter 1) are

referred to often. The

technical part

requires an

understanding of

methods from

Chapter 2.

The potential of compiling planetary reaction networks for fu-
ture studies is discussed. To demonstrate the approach, a toy
model-like sample network of Earth’s energy and matter flows
is assembled and its pathway decomposition calculated. The
potential of reaction network-based techniques is demonstrated
with the help of two special artificial chemistries (bistable, os-
cillating dynamics). Further possible applications in the area of
artificial life are discussed.
keywords: planetary reaction network, pathway analysis, arti-

ficial life, reaction diffusion systems, planetary life
detection

In the previous chapters, reaction pathways have been used to iden-
tify atmospheric chemistries. A model of artificial ecosystems was de-
veloped and its evolving structure analysed. In the following, various
ideas for further application of reaction pathway analysis in the areas
of artificial life and planetary science are presented and discussed.

7.1 planetary reaction network

Biogeochemical cycles like the carbon cycle and the nitrogen cycle
have an important function for life on Earth as they regulate plan-
etary conditions and the recycling of matter [Fal+00; GG08]. After
using reaction pathways to analyse the atmosphere in Chapter 4, the
question of how the reaction pathways found are connected to the
rest of the planet cannot be answered easily. Assuming we had a de-
tailed model of reactions and flows in the geosphere and biosphere,
should it not be possible to connect those to the atmospheric reac-
tion network and get one big planetary reaction network? Extending
the reaction pathway analysis to this planetary network might not
only help understand how atmosphere, biosphere and geosphere in-
teract in detail, but the important reaction pathways should directly
correspond to the known biogeochemical cycles. The main structures
determining the chemical composition of our planet could be auto-
matically evaluated and compared through model analysis.

The idea of this approach is depicted in Fig. 7.1). The general idea
might be applied to Earth, planets of our solar system, and even ex-
oplanets, as far as observations allow to build a process model. The
latter, however, seems to be quite far-fetched, considering that often
we only have access to a noisy spectrum and an estimated size for
extrasolar planets [Sea13]. Nonetheless, future progress in astronom-
ical observations and modelling might allow us to apply the overall

89
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Figure 7.1: Idea for planetary reaction network. Starting from an integrated
model, informed by extensive observations of the planet, a re-
action network containing all important flow and reaction pro-
cesses of the planetary system can be derived. An analysis of this
network will give an integrated view on the planet’s processes
(biogeochemical cycles) as well as their evolution and sensitivity
to changes. (Source of planet images: NASA/public domain.)

idea even for these cases. The following section, however, will focus
on a discussion of the idea for Earth only. After giving an elemen-
tary example of a network that connects Earth’s climate system with
a simple representation of the water and the carbon cycle, we will
focus on discussing how this idea might be used for larger models.

7.1.1 Pathways of the Climate System

To demonstrate how such a planetary reaction network integrat-
ing different kinds of processes might work, we build a simple toy
model. It is conceptually based on simple energy-balance climate
models [NCC81] and contains a primitive water and (organic) car-Geological processes

and timescales are

not considered here.

However, doing so

and considering

alternative

(quasi-)steady states

would be an

interesting

extension.

bon cycle. The main aim here is to demonstrate the concept. Thus,
not all processes are directly related to physical processes. Quantities
are only roughly estimated by using different sources. Nevertheless,
the model is complete in the sense that the steady state condition is
fulfilled (by design).

To connect carbon cycling and water cycling with energy, we calcu-
late simple constant factors between these flows. We do not go into
detail regarding the question through which physical processes these
flows are connected and do not try to calculate chemical potentials for
the different species in the reaction network. Estimating Earth’s sur-
face temperature at 15°C, the energy necessary for evaporating water
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Figure 7.2: Sample Earth-climate network inspired from simple energy

balance climate model. A terrestrial carbon cycle has been
added and rates have been estimated according to data giving
in the body of literature and by assuming steady state condition.
The left side (subscript 1) represents terrestrial processes while
processes on the right side (subscript 2) are oceanic. Units for
power are PW (1015W). For the carbon cycle, this corresponds to
2.27 · 1010g/s C. For the water cycle it is 3.823 · 105m3/s H2O.

is the sum of the heat needed to warm it to 100°C (heat capacity is
4.19kJ/(kgK)) and the evaporation enthalpy (2260kJ/kg) [SS02]:

1J ≡ 3.823 · 10−10m3H2O. (7.1)

Photosynthesis is estimated by the chemical reaction

CO2 + H2O → CH2O + O2 (7.2)

for which the change of formation enthalpy is given as 528.96 ·

kJ/mol [Dou11, p. 657], leading to the following relationship between
energy flow and carbon cycle:

1J ≡ 2.269 · 10−5gC. (7.3)

Network Structure

The network structure is shown in Fig. 7.2. It consists of two parts de-
scribing processes happening on land (subscript 1) and processes hap-
pening at the oceans (subscript 2). The solar radiation hitting Earth
Tsun is split into one part for Earth’s land surface Tsun,↓,1 and another
for its oceans Tsun,↓,2. For each of these downward-facing radiative
fluxes, one part is directly reflected back to space Tspace whereas
another part is transformed into heat and after some intermediate1 1 This may include

radiative as well as

convective transport.
steps re-emitted into space as longwave radiation (Tatm,i → Tspace).
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Part of the surface heat is the driving force behind the water cy-
cle as it causes the evaporation of water (→ Tsurf,i + H2Osurf,i →

H2Oatm,i). Evaporation is balanced by condensation and precipita-
tion (H2Oatm,i → H2Osurf,i + Tatm,i) and transport of water vapour
landwards (H2Oatm,2 → H2Oatm,1) as well as by continental discharge
into the oceans (H2Osurf,1 → H2Osurf,2).

A primitive carbon cycle is included on land, driven by part of
the downward-facing radiation transforming carbon into biomass
(Tsun,↓,1 + CO2 → Cplant). From there, organic carbon is either used
for respiration (Cplant → Tsurface,1 + CO2) or used for plant growth
and decomposed after the plant dies (via Csoil).

Steady State Rates

Using the solar constant of 1,370 W/m2 and the Earth radius of
6,400km [SS02], we estimate the total influx of solar radiation to Earth
at 176PW (petawatt, 1015W). Ignoring exact latutudinal distribution
of land masses, we split the irradiation between land masses and
oceans by simply using the fraction of Earth’s surface they occupy2.2 29% to 71%

[SS02] With a rough estimate for the albedo of 0.3 over land and 0.1 over
oceans [SS02], we get the values for the upward flux of short wave ra-
diation. Using the equivalency of water with energy (Eq. 7.1) and es-
timates for global continental discharge3 and precipitation over land43 37288km3/a =

1.18 · 106m3/s
[DT02]

4 1.13 · 1014m3/a =

3.583 · 106m3/s
[Tre+07]

and ocean5 allows us to quantify all reactions related to the water

5 3.73 · 1014m3/a =

1.18 · 107m3/s
[Tre+07]

cycle.
Rates for (terrestrial) photosynthesis are calculated using estimates

for the gross primary production (GPP) of 120PgC/a [Bee+10]. Respi-
ration is calculated from the difference of GPP and net primary pro-
duction (NPP). According to [Fie+98], NPP is estimated to be around
56.4PgC/a. With all these rates known, all other rates in the reac-
tion network (Fig. 7.2) can be calculated by assuming a steady state
condition, i.e. assuming that the production of each species exactly
balances its consumption.

Pathway Analysis

The steady state vector can then be decomposed into reaction path-
ways (Fig. 7.3). As all pathways transform energy between the samev =

∑
i αiEi

(see Sect. 2.2.3 and

Sect. 2.3)
inflow and outflow species, the coefficients αi are directly propor-
tional to the amount of energy passing through them.

In the pathways with high coefficients we can see the importance of
the physical climate system. The most important pathways describe
how energy is transported from Earth’s surface to space: through di-
rectly reflected solar radiation (pathw. (4)+(5)), through convection or
long wave radiation (pathw. (1)+(3)) or through latent head (pathw.
(2)+(6)+(7)). The remaining pathways are all connected to our prim-
itive carbon cycle and are one to two magnitudes weaker than the
pathways mentioned before.

This implies that pathways directly related to life on a planet do
not have to be within the most important pathways found using a
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(4) =15.3
(5) =12.5

(1)
=78.47

(2) =30.94 (3)

=26.245

(8) =0.045

(10) =0.04

(6) =6.195

(9)
=0.045

(11) =0.04

(7) = 3.09

Figure 7.3: Pathways of sample Earth climate network. Pathway decom-
position of the steady state / reaction network shown in
Fig. 7.2. Units for power are PW (1015W). For the carbon cy-
cle, this corresponds to 2.27 · 1010g/s C. For the water cycle it is
3.823 · 105m3/s H2O.

model of this planet. For the sake of analysis, it is necessary to com-
pare different states of the same model or different models that are Previous work

indicates similar

relations with

respect to Earth’s

entropy

budget [KMC10].

comparable in structure, like it was done in Chapter 4.
It should be mentioned that the pathways found here are, of course,

influenced by the decisions made while assembling the network. One
could argue that the dominance of some pathways in the decomposi-
tion just indicates that this part of the network needs to be resolved
in a more suitable way or that we could highlight any part of the
network through extreme high pathways if we just design the right
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networks. This is partially true if we assume the person assembling
the model to be malicious. This, however, will not be the case if we
assemble the network to be a meaningful model to the best of our
knowledge and abilities.

7.1.2 Further Steps

A general limitation of analysing existing models derives from a lack
of formal description of processes that happen outside the models’
core components6. Future improvement in modelling and analysis6 In the example of

atmospheric

chemistry models

(Chapter 4),

processes outside the

gas phase chemistry

are not formally

described.

could be achieved especially by using techniques from Systems Biol-
ogy for handling large-scale models [Knü+13]. This would include a
description of processes across model boundaries in a way similar to
chemical models.

Practical first steps could be explored with dynamical system mod-
els of Earth’s climate [SB97; SB98; Svi99]. They allow to study feed-
back processes and dynamical stability. There are also models with
multiple compartments for the carbon cycles for which the use of
pathway analysis could be demonstrated [GZ08]. Using a network ap-
proach to spatially resolved models could be tested with the model
of Dommenget and Flöter [DF11], a spatially resolved climate model
for teaching purposes.

If one aims for analysing more complex models, our approach is
currently limited by the inherent complexity of the algorithm for path-
way decomposition.7 The only possibility to control running time is7 A 10 variable

model on a 100x100

grid would be

represented by a 105

species network.

by altering two algorithmic parameters. Even though this makes it
rather easy to use this approach, it is difficult to find a good balance
between running time and resolution (number of pathways). Espe-
cially the resolutions of different parts of the network can not be
controlled separately. Apart from using more recent techniques for
elementary mode analysis [TS08], a promising idea for future work
is to extend the algorithm to allow for the fine tuning of algorithmic
parameters to specific areas of the reaction network. If multiple itera-
tions of the pathway calculation were done, the algorithm could first
calculate pathways with a focus on speed and then adapt cutoff pa-
rameters to increase resolution in parts of the network for successive
runs. Using a stochastic search, comparable to the way cycles are of-
ten searched [BC15], might also provide the advantages of an anytime
algorithm.

7.2 advanced artificial ecosystems

Bistable Chemistry

The artificial chemistry models created in this thesis all were based on
the assumption that, besides the mass of the system, every simulated
chemistry ends up in an deterministically decided steady state. This
does not always have to be true. For biology, multistationary systems
have an important function for differentiation and memory [TK01;
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Pie+10]. Some theoretical work has been done on conditions for bista-
bility [CTF06], finding minimal bistable systems [WSH97; Wil09; JS13]
and analysing the relationship between thermodynamic stability and
dynamic stability.

Through semiautomatic search, an example for an artificial chem-
istry with bistable behaviour was found.8 The results of its simula- 8 See Sect. B.2,

network shown in

Fig. B.1 and

Table B.3.

tion results are shown in Fig. 7.4. For a high enough concentration
of hν, the network can end up in two different steady states. They
are quantitatively distinct in the amount inflow of hν, yet also show
some reactions with different directions (Fig. B.1) leading to distinct,
incompatible pathways.9 9

Pathways 188&249

in Fig. B.1.
Oscillating Chemistry

Another example for non-trivial chemistry are systems with periodic
oscillation. A prominent example for this in real-life chemistry is the
Belousov-Zhabotinsky (BZ) reaction [ES96; LO08].10. Structurally, os- 10 There are

periodically

contracting polymer

gels controlled by a

BZ reaction.[Yos10]

cillating chemistry can be seen as dynamical self-assembly that is sta-
bilised by dissipating energy [WG02]. Chemistry with periodic dy-
namics is also interesting from a biological perspective. For cyanobac-
teria in a periodic environment it has been shown that the possession
of an circadian clock (internal oscillator) gives an adaptive advan-
tage [Woe+04].

In Fig. 7.5 results of an artificial chemistry that exhibits oscillat-
ing behaviour is shown. Like the bistable chemistry, this artificial
chemistry was found using semiautomatic search.11 The oscillatory 11 See Sect. B.2.

Network shown in

Fig. B.2, and

Table B.4.

behaviour can be seen in the Gibbs free energy of reaction for se-
lected reactions, but also for the concentrations of selected chemi-
cal species. Because the system does not reach a steady state, the
pathway decomposition as a function of time consists of steady state
pathways as well as pathways that are transforming chemical species
(Fig. 7.5 (c) & (e)). For our example system, the steady state pathways
seem to make up most of the reaction rates. Nevertheless, we can
clearly see how the other pathways are cycling species periodically.
Pathway 3125 transforms 11C1 into 9C1 while Pathway 3382 trans-
forms in the reverse direction.12 The same happens between 11C1

12 In the figures,

isotopes xCi are

written as Ci_x!
and 5C1 with Pathways 3122 and 3201. Taken together, these pairs
of pathways explain how material is cycled by the periodic dynamics
which cannot be done by simply averaging the steady state over time.
Even though time averaging the reaction rates leads to rates that sat-
isfy the steady state condition, it also reduces the number of reaction
pathways as reactions that occur with both directions in time-resolved
analysis only have one averaged direction.



96 outlook

Figure 7.4: Sample results for bistable artificial chemistry. (Reactions
shown in Fig. B.1 and Table B.3.) Initial concentration for all
simulations was 10. (a) Energy flow (consumed hν-species) as
function of driving force (hν concentration). (b) Species concen-
trations for the two different steady states at [hν] = 100. (c) Gibbs
free energy for selected reactions. (d) Pathway decomposition for
changing driving force. (e) Most important pathways in pathway
decomposition. (Size of squares symbolizes coefficient of respec-
tive reaction.)
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Figure 7.5: Results for sample artificial chemistry with oscillating dynam-

ics. (Reactions shown in Fig. B.2 and Table B.4.) (a) Gibbs free
energy for selected reactions. (b) Concentration of selected reac-
tions. (c) Selected pathways in pathway decomposition. (d) Os-
cillation of energy flow through the network (consumed hν-
species). (e) Most significant steady state pathway (1824) and
the four most significant pathways that change concentrations
of species (3126, 3122, 3381, 3201). (Size of squares symbolizes
coefficient of respective reaction.)
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Integration into Artificial Ecosystems

For both bistable chemistry and oscillating chemistry, a way to inte-
grate them in our model of evolving artificial ecosystems still needs
to be found. It is unlikely that artificial evolution will find such net-
works naturally and allow them to persist. Instead, a fitness function
that allows these nontrivial networks to gain an advantage needs to
be chosen. It should include multiple scenarios for which the differ-
ential equation of the networks will be solved. Some of them might
require a time-dependent boundary condition. A periodic driving
force could give an incentive for oscillating networks similar to the
circadian clock in cyanobacteria [Woe+04]. Switching stochastically
between a high and low driving force, respectively, and attributing
higher fitness if the network maintains a higher flow after switching
down might help developing bistable systems.
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Figure 7.6: Analysis of reaction diffusion systems through reaction net-

works. Reaction diffusion systems are simple models that have
been used to argue about pattern formation and morphogene-
sis. After shapes are identified, a simple reaction network can be
assembled (top-right). Simultaneously, the network of reactions
and diffusion (bottom) can be investigated and related to the
simplified network. Further, the implications of pattern types on
the networks can be studied.
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7.3 further applications in artificial life

Reaction Diffusion Systems

Extending the description of oscillating chemical systems into space
leads to reaction diffusion systems. The reactions are happening in
the cells of a lattice and their products and educts are diffusing be-
tween next neighbour sites. Formally, the grid is the spatial discreti-
sation in which the partial differential equation D is the diffusion

matrix and R the

function describing

sources and sinks

through reactions.

∂tu = D∇2u + R(u) (7.4)

is solved [Pea93; GS83]. These systems are an important theoretical
tool for the study of pattern formation as well as morphogenesis.
They have also been investigated in terms of thermodynamics (en-
tropy production)[Mah+04; MYS05]. A recent extension of reaction
diffusion systems by hydrodynamics has given interesting results,
showing competition between different dissipative structures [BB15].
Simple reaction diffusion-like models were also used to investigate
how individuals form and how their states (i.e. their existence) de-
velop under perturbation (ontogenesis) [AGB15].

Figure 7.6 shows how reaction networks and pathway analysis
might be applied to better understand reaction diffusion systems and
eventually build more complex ones. By using clustering on concen-
trations, the spots can be separated from their background and the
concentrations and rates in the different areas integrated for con-
structing a simplified network model (Fig. 7.6 (top-right)). Simulta-
neously, the grid of the simulation defines a much larger network
(Fig. 7.6 (bottom)). The difference in size of the networks implies that
each pathway in the simple network corresponds to many pathways
in the bigger network. Investigating this relationship might help to
understand the functioning of reaction diffusion systems. Addition-
ally, it might help to develop clustering techniques that work for path-
ways in the larger network without looking at the smaller network
first.

Agent Based Models

The last example for possible applications of thermodynamic con-
strained artificial chemistries are agent based models. Agent based
models are an important modelling technique in ecology, economics,
traffic engineering, social science, and other disciplines. In evolution-
ary biology and ecology, often the slightly different term "individ-
ual based models" is used. They describe ecosystem with evolving
behaviour and allow for the study of species diversity and specia-
tion [DM05; Gra+09; KG12].

Related to virtual ecosystems of individuals in ecology and arti-
ficial life is the field of evolutionary robotics [Bed03; Sim94; Pra03].
It focuses more on evolving physical machines, but relates closely
to artificial life when concepts for self-replicating robots are ex-
plored [Eib14]. If such robots are electromechanical, they probably do
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Figure 7.7: Using artificial chemistry as physical basis for agent-based

models. Basing agents functioning on chemical thermodynam-
ics allows for the usage of reaction networks to analyse their
energetic interactions.

not contain any natural notion of chemistry, yet their self-replication
process might be described with formal reaction equations.1313 See the work

of Von Neumann

and Burks [VNB66].
In these fields, the application of chemical reaction networks of

agent interaction (Fig. 7.7) would directly integrate energy and mat-
ter flow into the models. For example, the interconnection between
metabolic function, (co-)evolution, and behaviour [Egb13] can then
be analysed easily. In a broader context, this allows for an integration
of basic physics (thermodynamics) with the increasingly important
field of information theory [WD13; Fri10].
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a.1 solving reaction equations

Bold symbols in

formulas are used to

indicate matrices

and vectors.

Solving the reaction equation of artificial chemistries as they where
created for Chapter 5 comes with certain challenges. As the system
does not exchange matter with its environment, but only cycles the
mass it has, small errors could accumulate over time and violate mass
conservation. Furthermore, for reactions close to equilibrium the for-
ward and backward reaction rates are big compared to the effective
rate:

vf
i ≫ |vf

i − vb
i | vb

i ≫ |vf
i − vb

i |. (A.1)

Thus, we have to use the following reformulation that expresses the
effective rates vi = vf

i − vb
i in terms of the standard enthalpies of for-

mation µ0 and the activation energies EA. Activation energy is

defined in absolute

values in this

chapter!

We start reformulating the reaction equation (Eq. 2.8)

d

dt
x = N · v(x) = N ·

(
vf(x) − vb(x)

)
, (A.2)

with N = Nout −Nin being the stoichiometric matrix given as differ-
ence of the stoichiometric matrix of the products and the educts.

Inserting mass action kinetics (Eq. 2.9)

vf
i(x) = kf

i

∏

j

xj
Nin

jk vb
i(x) = kb

i

∏

j

xj
Nout

jk (A.3)

gives

d

dt
xi =

∑

l

Nil ·

⎛
⎝kf

l

∏

j

xj
Nin

jl − kb
l

∏

j

xj
Nout

jl

⎞
⎠ . (A.4)

Inserting the Arrhenius equation to calculate the reaction rate con-
stants as defined for our artificial chemistries (Eq. 2.11)

kf
i = exp

⎛
⎝−β

⎛
⎝EA

i −
∑

j

Nin
ji µ

0
j

⎞
⎠
⎞
⎠

kb
i = exp

⎛
⎝−β

⎛
⎝EA

i −
∑

j

Nout
ji µ0

j

⎞
⎠
⎞
⎠

(A.5)

and further reformulation leads to a reaction equation in terms of
thermodynamic quantities:

d

dt
xi =

∑

l

Nil e
−βEA

l ·

⎛
⎝eβ

∑
j N

in
jlµ

0
j

∏

j

xj
Nin

jl − eβ
∑

j N
out
jl µ0

j

∏

j

xj
Nout

jl

⎞
⎠ .
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The abbreviationsThe values fil, gin
l

and gin
l are only

depending on

thermodynamic

quantities that are

constant. They only

have to be calculated

once per network.

fil := Nil e
−βEA

l

gin
l := eβ

∑
j N

in
jlµ

0
j

gout
l := eβ

∑
j N

out
jl µ0

j

(A.6)

allow to simplify the rewritten differential equation.

d

dt
xi = ẋi =

∑

l

fil ·

⎛
⎝gin

l

∏

j

xj
Nin

jl − gout
l

∏

j

xj
Nout

jl

⎞
⎠ (A.7)

The factorisation of fil in Eq. A.7 weakens the numeric problem
mentioned above. Besides the right-hand side of the differential equa-
tion we also have to calculate the Jacobi-matrix, so that we can use an
implicit solver for integration of the differential equation. The Jacobi-
matrix is defined as the partial derivatives of the right-hand side of
the differential equation.

Mik =
∂ẋi

∂xk

=
∑

l

fil ·

⎛
⎝gin

l ·
∂

∂xk

∏

j

xj
Nin

jl − gout
l ·

∂

∂xk

∏

j

xj
Nout

jl

⎞
⎠

=
∑

l

fil ·

(
gin
l · xk

(Nin
kl−1)

∏

j ̸=k

xj
Nin

jl

− gout
l · xk

(Nout
kl −1)

∏

j ̸=k

xj
Nout

jl

)

(A.8)

The ODE solver used for the artificial ecosystems in Chapter 5 uses
Eq. A.7 and Eq. A.8. It is written using the odeint library available
through C++’s boost [AM11]. The used algorithm is called Rosen-
brock 4 [Pre+07]. The program can be found in the digital appendix
(Appendix C) and in Fischer [Fis16b].
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a.2 calculation of chemical potentials

To calculate thermodynamic parameters in atmospheric chemistry
often the NASA polynomials from McBride, Gordon, and Reno
[MGR93] are used [Ven+12; Gra+14]. For many common species this
list contains coefficients a1 . . . a7 that give temperature dependent es-
timates for the standard enthalpy of formation h0(T)

h0(T)

RT
= a1 + a2

T

2
+ a3

T2

3
+ a4

T3

4
+ a5

T4

5
+

a6

T
(A.9)

and the standard entropy s0(T)

s0(T)

R
= a1 log T + a2T + a3

T2

2
+ a4

T3

3
+ a5

T4

4
+ a7. (A.10)

By assuming all components of the simulated atmosphere behave
like an ideal gas, we can calculate the chemical potentials for all the
components in the different layers of the atmosphere using the equa-
tion (see Eq. (B.3) in [Ven+12])

µ = h0 − Ts0 + RT log
(

p

p0

)
. (A.11)

Here, p0 is the standard pressure and p the partial pressure of the
chemical species. The latter is calculated from the number density
N/V by using the ideal gas law (pV = NRT ).
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b.1 atmospheric chemistry models

b.1.1 Model Structure and Application

For the work in Chapter 4, two freely available1 atmospheric chem- 1 Obtained in

August 2013 from

http://vpl.astro.

washington.edu/

sci/AntiModels/

models09.html

istry models from the group of James Kasting were analysed. One
model describes the modern oxidising atmosphere with high O2 con-
centration [KHP85; PK02]. The other model describes a reducing,
pre photosynthetic atmosphere dominated by CO2 and H2 [PBK01;
KKS05; Seg+07]. Both models are one dimensional photochemical
models that describe the concentrations of the atmospheric compo-
nents by a set of homogeneous layers connected by vertical mixing
and influenced by parametrisations of fluxes and further processes.
These models play an important role in connecting geological obser-
vations with probable atmospheric conditions. The Archean model
for example, was used to show that mass independent fractionation
in sulphur isotopes found in sediments is in fact an indicator for ex-
tremely low oxygen concentrations in the past atmosphere [PK02].

As parts of the structure of the models are almost 30 years old
and computational resources were more limited then, these models
treat chemical species differently depending on their lifetime and con-
centration. Species with a long lifetime and a high concentration are
kept at the same constant fraction in all layers. Short lived species
are treated as being in photochemical equilibrium in the individual
layers. For the remaining species combined vertical transport and con-
tinuity equations are solved. Furthermore, a constant deposition flux
of some species in the lowest layer and simple parametrisations of
aerosol chemistries and rainout are integrated in the model equations.

For both models the concentrations of the most abundant species
of the investigated steady state is given as follows: For the first model
(modern atmosphere) the dominating species and their respective
number fraction are N2 (78.5%), O2 (20.9%), H2O (0.5%), CO2 (353

ppm), and CH4 (1.5 ppm). For the second model (Archean atmo-
sphere) these are N2 (97.2%), CO2 (2.5%), H2O (0.2%), CH4 (846

ppm), CO (75 ppm), and H2 (58 ppm).

b.1.2 Preprocessing for Metaanalysis

Before we perform our analysis, we condense the model output into a
box model representation by vertically integrating the reaction rates.
This implies that some spatial resolution is lost. For example, we can
no longer distinguish the flux from Earth’s surface and the fluxes by
parameterised processes in the different columns of the model.
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From the source code of the models we are extracting a list of all
the reactions that are simulated by the respective models. From the
model output we are getting vertically integrated reaction rates vi,
concentration profiles cjk, temperature profiles Tk and the position of
the layer’s upper boundaries xk. Please note, for clarity specific letters
are used for indices in this section. The letter i selects the chemical
reaction, j the chemical species and k the layer of the atmosphere.
Indices start with one, except x0 which is defined to be the lower
boundary of the first atmospheric layer.

In an additional step, before both reaction models are analysed we
replace the few reactions that are modelled reversibly by their effec-
tive reactions. This means removing the reaction of the reverse pair
that has the lower rate and setting the rate of the other reaction to the
effective reaction rate. This is in accordance with our understanding
of the non-reversibly modelled reactions just representing the effec-
tive reactions of reversible reactions that are far from equilibrium.

The concentration cj in integrated representation2 is calculated by2 This quantity is

sometimes called

column density.
the formula

cj =

kmax∑

k=1

cjk (xk − xk−1) . (B.1)

This is analogous to the formula used by the models to calculate the
integrated reaction rates vi. A graphic overview of inflow and out-
flow as well as concentration in the integrated representation of both
models is given in Fig. 4.7. The full list of reactions for the model of
the modern atmosphere and the integrated steady state flux is given
in Table B.1. The reaction equations and their steady state rates for
the Archean atmosphere model can be seen in Table B.2.

Table B.1: Reaction network of the model of the modern atmosphere. Re-
action equations have been extracted from the model source code.
Vertically integrated rates are taken from the model output.

rates (1/cm2)

H2O + O(1D) → 2OH 2.522e+11 (1)

H2 + O(1D) → OH + H 7.729e+08 (2)

H2 + O → OH + H 5.072e+06 (3)

H2 + OH → H2O + H 5.931e+10 (4)

H + O3 → OH + O2 4.688e+11 (5)

H + O2 + M → HO2 + M 3.251e+12 (6)

H + HO2 → H2 + O2 9.605e+07 (7)

H + HO2 → H2O + O 2.401e+07 (8)

H + HO2 → 2OH 1.081e+09 (9)

OH + O → H + O2 3.144e+12 (10)

OH + HO2 → H2O + O2 1.166e+11 (11)

OH + O3 → HO2 + O2 9.055e+11 (12)

HO2 + O → OH + O2 2.914e+12 (13)

HO2 + O3 → OH + 2O2 2.887e+11 (14)

2HO2 → H2O2 + O2 1.239e+11 (15)

H2O2 + OH → HO2 + H2O 4.492e+10 (16)

(continued on next page)
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Table B.1: (continued - modern atm. reaction network)
rates (1/cm2)

2O + M → O2 + M 8.853e+08 (17)

O + O2 + M → O3 + M 3.405e+15 (18)

O + O3 → 2O2 1.326e+12 (19)

2OH → H2O + O 1.381e+09 (20)

O(1D) + N2 → O + N2 6.576e+14 (21)

O(1D) + O2 → O + O2 2.646e+14 (22)

O2 + hv → O + O(1D) 3.076e+07 (23)

O2 + hv → 2O 8.934e+12 (24)

H2O + hv → H + OH 1.374e+10 (25)

O3 + hv → O2 + O(1D) 9.225e+14 (26)

O3 + hv → O2 + O 2.445e+15 (27)

H2O2 + hv → 2OH 5.457e+10 (28)

CO2 + hv → CO + O 1.395e+09 (29)

CO + OH → CO2 + H 4.646e+11 (30)

CO + O + M → CO2 + M 2.552e+05 (31)

H + CO + M → HCO + M 7.931e+02 (32)

H + HCO → H2 + CO 8.27e-01 (33)

2HCO → H2CO + CO 0e+00 (34)

OH + HCO → H2O + CO 2.217e+01 (35)

O + HCO → H + CO2 3.602e+03 (36)

O + HCO → OH + CO 3.602e+03 (37)

H2CO + hv → H2 + CO 6.789e+10 (38)

H2CO + hv → HCO + H 3.931e+10 (39)

HCO + hv → H + CO 3.161e+02 (40)

H2CO + H → H2 + HCO 1.558e+04 (41)

CO2 + hv → CO + O(1D) 2.496e+05 (42)

2H + M → H2 + M 4.531e+02 (43)

HCO + O2 → HO2 + CO 9.356e+10 (44)

H2CO + OH → H2O + HCO 5.374e+10 (45)

H + OH + M → H2O + M 2.445e+05 (46)

2OH + M → H2O2 + M 4.712e+07 (47)

H2CO + O → HCO + OH 3.343e+08 (48)

H2O2 + O → OH + HO2 9.42e+06 (49)

HO2 + hv → OH + O 5.803e+09 (50)

CH4 + hv → 1CH2 + H2 2.635e+04 (51)

CH3OOH + hv → H3CO + OH 2.009e+10 (52)

N2O + hv → N2 + O 9.737e+08 (53)

HNO2 + hv → NO + OH 7.812e+09 (54)

HNO3 + hv → NO2 + OH 2.446e+10 (55)

NO + hv → N + O 1.863e+08 (56)

NO2 + hv → NO + O 3.123e+13 (57)

CH4 + OH → CH3 + H2O 1.733e+11 (58)

CH4 + O(1D) → CH3 + OH 1.769e+09 (59)

CH4 + O(1D) → H2CO + H2 1.769e+08 (60)

1CH2 + CH4 → 2CH3 7.472e-04 (61)

1CH2 + O2 → H2CO + O 2.479e+04 (62)

1CH2 + N2 → 3CH2 + N2 1.554e+03 (63)

3CH2 + H2 → CH3 + H 3.986e-05 (64)

3CH2 + CH4 → 2CH3 2.465e-05 (65)

3CH2 + O2 → H2CO + O 1.554e+03 (66)

CH3 + O2 + M → CH3O2 + M 1.762e+11 (67)

(continued on next page)
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Table B.1: (continued - modern atm. reaction network)
rates (1/cm2)

CH3 + OH → H2CO + H2 1.514e+04 (68)

CH3 + O → H2CO + H 2.231e+06 (69)

CH3 + O3 → H2CO + HO2 3.439e+06 (70)

CH3O2 + HO2 → CH3OOH + O2 1.177e+11 (71)

2CH3O2 → 2H3CO + O2 4.028e+09 (72)

CH3O2 + NO → H3CO + NO2 1.182e+11 (73)

H3CO + O2 → H2CO + HO2 1.65e+11 (74)

H3CO + O → H2CO + OH 1.918e+03 (75)

H3CO + OH → H2CO + H2O 1.241e+05 (76)

N2O + O(1D) → 2NO 1.048e+08 (77)

N2O + O(1D) → N2 + O2 7.667e+07 (78)

N + O2 → NO + O 1.602e+08 (79)

N + O3 → NO + O2 2.179e+04 (80)

N + OH → NO + H 3.887e+06 (81)

N + NO → N2 + O 2.222e+07 (82)

NO + O3 → NO2 + O2 3.318e+13 (83)

NO + O + M → NO2 + M 8.275e+09 (84)

NO + HO2 → NO2 + OH 7.795e+11 (85)

NO + OH + M → HNO2 + M 7.813e+09 (86)

NO2 + O → NO + O2 3.6e+12 (87)

NO2 + OH + M → HNO3 + M 3.917e+10 (88)

NO2 + H → NO + OH 3.406e+08 (89)

HNO3 + OH → H2O + NO3 9.514e+09 (90)

HO2 + NO2 + M → HO2NO2 + M 1.098e+11 (91)

HO2NO2 + OH → NO2 + H2O + O2 1.005e+10 (92)

HO2NO2 + O → NO2 + OH + O2 2.846e+05 (93)

HO2NO2 + M → HO2 + NO2 + M 9.247e+10 (94)

HO2NO2 + hv → HO2 + NO2 7.115e+09 (95)

CH3OOH + OH → CH3O2 + H2O 8.657e+10 (96)

CH3O2 + OH → H3CO + HO2 1.868e+10 (97)

O3 + NO2 → O2 + NO3 4.197e+10 (98)

NO2 + NO3 → NO + NO2 + O2 5.149e+05 (99)

O + NO3 → O2 + NO2 6.84e+08 (100)

CH3Cl + hv → CH3 + Cl 8.041e+03 (101)

NO + NO3 → 2NO2 3.725e+10 (102)

OH + NO3 → HO2 + NO2 1.211e+08 (103)

CH3Cl + OH → Cl + H2O + 1CH2 4.395e+08 (104)

Cl + O3 → ClO + O2 1.174e+12 (105)

Cl + H2 → HCl + H 5.198e+07 (106)

Cl + CH4 → HCl + CH3 1.18e+09 (107)

Cl + CH3Cl → Cl + HCl + 1CH2 1.458e+06 (108)

Cl + H2CO → HCl + HCO 1.721e+08 (109)

Cl + H2O2 → HCl + HO2 2.631e+06 (110)

Cl + HO2 → HCl + O2 1.518e+08 (111)

Cl + HO2 → ClO + OH 3.118e+07 (112)

Cl + ClONO2 → 2Cl + NO2 + O 1.936e+07 (113)

Cl + NO + M → NOCl + M 2.803e+06 (114)

Cl + NO2 + M → ClONO + M 5.124e+07 (115)

Cl + NOCl → NO + Cl2 6.585e+03 (116)

Cl + O2 + M → ClO2 + M 1.232e+14 (117)

Cl + ClO2 → Cl2 + O2 7.231e+02 (118)

(continued on next page)
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Table B.1: (continued - modern atm. reaction network)
rates (1/cm2)

Cl + ClO2 → 2ClO 3.772e+01 (119)

ClO + O → Cl + O2 4.392e+11 (120)

ClO + NO → Cl + NO2 7.128e+11 (121)

ClO + NO2 + M → ClONO2 + M 1.091e+10 (122)

ClO + HO2 → HOCl + O2 5.282e+09 (123)

ClO + OH → Cl + HO2 5.908e+09 (124)

HCl + OH → Cl + H2O 1.122e+09 (125)

HOCl + OH → ClO + H2O 7.694e+07 (126)

ClONO2 + OH → Cl + HO2 + NO2 1.399e+08 (127)

HCl + O → Cl + OH 1.2e+06 (128)

HOCl + O → ClO + OH 8.088e+06 (129)

ClONO2 + O → Cl + O2 + NO2 3.647e+08 (130)

Cl2 + OH → HOCl + Cl 5.608e+02 (131)

Cl2 + hv → 2Cl 1.662e+06 (132)

ClO2 + hv → ClO + O 1.864e+04 (133)

HCl + hv → H + Cl 5.364e+06 (134)

HOCl + hv → OH + Cl 5.192e+09 (135)

NOCl + hv → Cl + NO 2.797e+06 (136)

ClONO + hv → Cl + NO2 5.646e+07 (137)

ClONO2 + hv → Cl + NO3 1.037e+10 (138)

ClO2 + hv → Cl + O2 3.235e+13 (139)

HO2 + NO3 → HNO3 + O2 2.319e+08 (140)

2ClO + M → Cl2O2 + M 5.743e+06 (141)

Cl2O2 + hv → ClO2 + Cl 2.749e+06 (142)

Cl2O2 + M → 2ClO + M 2.994e+06 (143)

ClO2 + M → Cl + O2 + M 9.084e+13 (144)

Cl + NO3 → ClO + NO2 4.998e+05 (145)

Cl + HOCl → Cl2 + OH 1.655e+06 (146)

ClO + NO3 → ClONO + O2 5.217e+06 (147)

ClONO + OH → HOCl + NO2 2.678e+03 (148)

ClO2 + O → ClO + O2 1.583e+03 (149)

NO2 + O + M → NO3 + M 8.082e+09 (150)

NO3 + hv → NO2 + O 3.14e+10 (151)

NO3 + NO2 + M → N2O5 + M 2.065e+09 (152)

N2O5 + hv → NO2 + NO3 1.788e+09 (153)

N2O5 + M → NO2 + NO3 + M 2.951e+07 (154)

N2O5 + H2O → 2HNO3 2.474e+08 (155)

SO + hv → S + O 0e+00 (156)

SO2 + hv → SO + O 8.386e+04 (157)

H2S + hv → HS + H 5.96e+01 (158)

SO + O2 → O + SO2 3.48e+08 (159)

SO + HO2 → SO2 + OH 1.492e+04 (160)

SO + O → SO2 9.906e+00 (161)

SO + OH → SO2 + H 1.721e+03 (162)

SO2 + OH → HSO3 2.71e+09 (163)

SO2 + O → SO3 5.666e+04 (164)

SO3 + H2O → H2SO4 2.71e+09 (165)

HSO3 + O2 → HO2 + SO3 2.71e+09 (166)

HSO3 + OH → H2O + SO3 4.901e-02 (167)

HSO3 + H → H2 + SO3 3.344e-07 (168)

HSO3 + O → OH + SO3 1.505e-03 (169)

(continued on next page)
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Table B.1: (continued - modern atm. reaction network)
rates (1/cm2)

H2S + OH → H2O + HS 3.499e+08 (170)

H2S + H → H2 + HS 2.704e+00 (171)

H2S + O → OH + HS 1.779e+03 (172)

HS + O → H + SO 9.816e+01 (173)

HS + O2 → OH + SO 1.31e+08 (174)

HS + HO2 → H2S + O2 4.637e+05 (175)

2HS → H2S + S 1.14e-01 (176)

HS + HCO → H2S + CO 1.965e-05 (177)

HS + H → H2 + S 1.387e-04 (178)

HS + S → H + S2 9.387e-14 (179)

S + O2 → SO + O 3.594e+04 (180)

S + OH → SO + H 1.463e-03 (181)

SO2 + hv → S + O2 3.594e+04 (182)

S + HO2 → HS + O2 1.638e-04 (183)

S + HO2 → SO + OH 1.638e-04 (184)

HS + H2CO → H2S + HCO 2.049e+05 (185)

SO2 + hv → 1SO2 2.098e+11 (186)

SO2 + hv → 3SO2 1.504e+09 (187)

H2SO4 + hv → SO2 + 2OH 4.135e+02 (188)

SO3 + hv → SO2 + O 0e+00 (189)

1SO2 + M → 3SO2 + M 1.907e+10 (190)

1SO2 + M → SO2 + M 1.907e+11 (191)

1SO2 + hv → 3SO2 + hv 2.626e+06 (192)

1SO2 + hv → SO2 + hv 3.851e+07 (193)

1SO2 + O2 → SO3 + O 4.004e+05 (194)

1SO2 + SO2 → SO3 + SO 9.696e+00 (195)

3SO2 + M → SO2 + M 2.056e+10 (196)

3SO2 + hv → SO2 + hv 1.419e+07 (197)

3SO2 + SO2 → SO3 + SO 1.218e+00 (198)

SO + NO2 → SO2 + NO 4.348e+04 (199)

SO + O3 → SO2 + O2 2.227e+05 (200)

SO2 + HO2 → SO3 + OH 0e+00 (201)

HS + O3 → HSO + O2 2.152e+08 (202)

HS + NO2 → HSO + NO 3.013e+06 (203)

S + O3 → SO + O2 2.108e+00 (204)

2SO → SO2 + S 6.594e-07 (205)

SO3 + SO → 2SO2 6.682e-06 (206)

S + CO2 → SO + CO 2.641e-07 (207)

SO + HO2 → HSO + O2 0e+00 (208)

SO + HCO → HSO + CO 1.111e-07 (209)

H + SO → HSO 4.655e-04 (210)

HSO + hv → HS + O 1.753e+00 (211)

HSO + OH → H2O + SO 2.167e+08 (212)

HSO + H → HS + OH 8.633e+00 (213)

HSO + H → H2 + SO 7.674e-01 (214)

HSO + HS → H2S + SO 8.49e+01 (215)

HSO + O → OH + SO 4.581e+05 (216)

HSO + S → HS + SO 6.294e-10 (217)

N2 + O(1D) → N2O 4.031e+06 (218)

N2O + H + O2 → 2NO + OH 6.226e-18 (219)

N2O + NO → NO2 + N2 1.378e-22 (220)
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Table B.2: Reaction network of the model of the Archean atmosphere. Re-
action equations have been extracted from the model source code.
Vertically integrated rates are taken from the model output.

rates (1/cm2)

H2O + O(1D) → 2OH 5.48e+06 (1)

H2 + O(1D) → OH + H 1.443e+09 (2)

H2 + O → OH + H 1.391e+08 (3)

H2 + OH → H2O + H 1.974e+09 (4)

H + O3 → OH + O2 4.481e+10 (5)

H + O2 + M → HO2 + M 1.818e+12 (6)

H + HO2 → H2 + O2 4.955e+10 (7)

H + HO2 → H2O + O 1.239e+10 (8)

H + HO2 → 2OH 5.574e+11 (9)

OH + O → H + O2 5.585e+11 (10)

OH + HO2 → H2O + O2 1.333e+08 (11)

OH + O3 → HO2 + O2 1.571e+04 (12)

HO2 + O → OH + O2 1.401e+12 (13)

HO2 + O3 → OH + 2O2 6.313e+04 (14)

2HO2 → H2O2 + O2 3.268e+08 (15)

H2O2 + OH → HO2 + H2O 1.42e+05 (16)

2O + M → O2 + M 6.844e+10 (17)

O + O2 + M → O3 + M 2.231e+11 (18)

O + O3 → 2O2 3.764e+06 (19)

2OH → H2O + O 5.025e+06 (20)

O(1D) + M → O + M 6.467e+11 (21)

O(1D) + O2 → O + O2 6.841e+07 (22)

O2 + hv → O + O(1D) 3.613e+10 (23)

O2 + hv → 2O 4.643e+09 (24)

H2O + hv → H + OH 1.082e+11 (25)

O3 + hv → O2 + O(1D) 1.42e+11 (26)

O3 + hv → O2 + O 3.627e+10 (27)

H2O2 + hv → 2OH 3.266e+08 (28)

CO2 + hv → CO + O 2.251e+12 (29)

CO + OH → CO2 + H 2.4e+12 (30)

CO + O + M → CO2 + M 6.659e+10 (31)

H + CO + M → HCO + M 2.035e+12 (32)

H + HCO → H2 + CO 9.554e+10 (33)

2HCO → H2CO + CO 2.058e+11 (34)

OH + HCO → H2O + CO 4.751e+06 (35)

O + HCO → H + CO2 2.074e+11 (36)

O + HCO → OH + CO 2.074e+11 (37)

H2CO + hv → H2 + CO 8.474e+10 (38)

H2CO + hv → HCO + H 9.75e+10 (39)

HCO + hv → H + CO 8.537e+11 (40)

H2CO + H → H2 + HCO 4.475e+10 (41)

CO2 + hv → CO + O(1D) 4.713e+11 (42)

2H + M → H2 + M 2.866e-04 (43)

HCO + O2 → HO2 + CO 2.154e+11 (44)

H2CO + OH → H2O + HCO 1.23e+09 (45)

H + OH + M → H2O + M 5.648e+08 (46)

2OH + M → H2O2 + M 1.113e+04 (47)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

H2CO + O → HCO + OH 9.081e+09 (48)

H2O2 + O → OH + HO2 8.214e+04 (49)

HO2 + hv → OH + O 5.501e+09 (50)

CH4 + hv → 1CH2 + H2 2.665e+10 (51)

C2H6 + hv → 23CH2 + H2 0e+00 (52)

C2H6 + hv → CH4 + 1CH2 4.73e+06 (53)

HNO2 + hv → NO + OH 1.432e+06 (54)

HNO3 + hv → NO2 + OH 1.229e+05 (55)

NO + hv → N + O 1.096e+05 (56)

NO2 + hv → NO + O 6.589e+09 (57)

CH4 + OH → CH3 + H2O 2.63e+10 (58)

CH4 + O(1D) → CH3 + OH 1.084e+09 (59)

CH4 + O(1D) → H2CO + H2 1.084e+08 (60)

1CH2 + CH4 → 2CH3 3.665e+07 (61)

1CH2 + O2 → HCO + OH 1.182e+07 (62)

1CH2 + M → 3CH2 + M 2.659e+10 (63)

3CH2 + H2 → CH3 + H 0e+00 (64)

3CH2 + CH4 → 2CH3 0e+00 (65)

3CH2 + O2 → HCO + OH 3.721e+08 (66)

CH3 + O2 + M → H2CO + OH + M 2.369e+09 (67)

CH3 + OH → H2CO + H2 3.147e+07 (68)

CH3 + O → H2CO + H 8.379e+10 (69)

CH3 + O3 → H2CO + HO2 1.29e+06 (70)

2CH3 + M → C2H6 + M 5.265e+08 (71)

CH3 + hv → 1CH2 + H 3.905e+08 (72)

CH3 + H + M → CH4 + M 1.296e+09 (73)

CH3 + HCO → CH4 + CO 1.744e+10 (74)

CH3 + HNO → CH4 + NO 2.576e+06 (75)

CH3 + H2CO → CH4 + HCO 3.688e+08 (76)

H + NO + M → HNO + M 3.69e+08 (77)

2N + M → N2 + M 0e+00 (78)

N + O2 → NO + O 5.542e+00 (79)

N + O3 → NO + O2 0e+00 (80)

N + OH → NO + H 1.386e+04 (81)

N + NO → N2 + O 8.186e+05 (82)

NO + O3 → NO2 + O2 1.462e+05 (83)

NO + O + M → NO2 + M 1.284e+10 (84)

NO + HO2 → NO2 + OH 2.514e+09 (85)

NO + OH + M → HNO2 + M 1.432e+06 (86)

NO2 + O → NO + O2 5.873e+09 (87)

NO2 + OH + M → HNO3 + M 1.229e+05 (88)

NO2 + H → NO + OH 1.128e+09 (89)

HNO3 + OH → H2O + NO2 + O 1.352e+01 (90)

HCO + NO → HNO + CO 2.11e+10 (91)

HNO + hv → NO + H 4.613e+10 (92)

H + HNO → H2 + NO 1.649e+06 (93)

O + HNO → OH + NO 1.668e+07 (94)

OH + HNO → H2O + NO 2.012e+06 (95)

HNO2 + OH → H2O + NO2 1.711e+01 (96)

CH4 + O → CH3 + OH 1.886e+10 (97)

1CH2 + H2 → CH3 + H 2.924e+08 (98)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

1CH2 + CO2 → H2CO + CO 7.555e+07 (99)

3CH2 + O → HCO + H 1.529e+09 (100)

3CH2 + CO2 → H2CO + CO 4.946e+09 (101)

C2H6 + OH → C2H5 + H2O 1.06e+09 (102)

C2H6 + O → C2H5 + OH 1.847e+09 (103)

C2H6 + O(1D) → C2H5 + OH 3.131e+05 (104)

C2H5 + H → 2CH3 1.665e+09 (105)

C2H5 + O → CH3 + HCO + H 8.116e+08 (106)

C2H5 + OH → CH3 + HCO + H2 1.461e+05 (107)

C2H5 + HCO → C2H6 + CO 8.916e+08 (108)

C2H5 + HNO → C2H6 + NO 2.104e+05 (109)

C2H5 + O2 + M → CH3 + HCO + OH + M 6.317e+08 (110)

SO + hv → S + O 0e+00 (111)

SO2 + hv → SO + O 1.025e+11 (112)

H2S + hv → HS + H 1.905e+11 (113)

SO + O2 → O + SO2 8.547e+04 (114)

SO + HO2 → SO2 + OH 3.923e+09 (115)

SO + O + M → SO2 + M 9.424e+10 (116)

SO + OH → SO2 + H 5.229e+07 (117)

SO2 + OH + M → HSO3 + M 2.878e+06 (118)

SO2 + O + M → SO3 + M 9.054e+07 (119)

SO3 + H2O → H2SO4 9.342e+07 (120)

HSO3 + O2 → HO2 + SO3 4.612e+05 (121)

HSO3 + OH → H2O + SO3 6.281e+01 (122)

HSO3 + H → H2 + SO3 1.245e+05 (123)

HSO3 + O → OH + SO3 2.292e+06 (124)

H2S + OH → H2O + HS 6.704e+06 (125)

H2S + H → H2 + HS 1.078e+09 (126)

H2S + O → OH + HS 2.164e+07 (127)

HS + O → H + SO 2.241e+10 (128)

HS + O2 → OH + SO 6.89e+00 (129)

HS + HO2 → H2S + O2 7.366e+07 (130)

2HS → H2S + S 1.514e+10 (131)

HS + HCO → H2S + CO 1.262e+11 (132)

HS + H → H2 + S 3.684e+08 (133)

HS + S → H + S2 4.326e+09 (134)

S + O2 → SO + O 1.827e+07 (135)

S + OH → SO + H 1.355e+05 (136)

S + HCO → HS + CO 8.659e+09 (137)

S + HO2 → HS + O2 1.493e+06 (138)

S + HO2 → SO + OH 1.493e+06 (139)

2S → S2 1.097e+06 (140)

S2 + OH → HSO + S 0e+00 (141)

S2 + O → S + SO 3.017e+08 (142)

HS + H2CO → H2S + HCO 4.733e+10 (143)

SO2 + hv → 1SO2 1.592e+12 (144)

SO2 + hv → 3SO2 9.135e+08 (145)

S2 + hv → 2S 4.014e+09 (146)

S2 + hv → S2 0e+00 (147)

H2SO4 + hv → SO2 + 2OH 8.72e+05 (148)

SO3 + hv → SO2 + O 0e+00 (149)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

1SO2 + M → 3SO2 + M 1.447e+11 (150)

1SO2 + M → SO2 + M 1.447e+12 (151)

hv + 1SO2 → 3SO2 + hv 2.762e+07 (152)

hv + 1SO2 → SO2 + hv 4.052e+08 (153)

1SO2 + O2 → SO3 + O 9.188e-03 (154)

1SO2 + SO2 → SO3 + SO 7.954e+01 (155)

3SO2 + M → SO2 + M 1.455e+11 (156)

hv + 3SO2 → SO2 + hv 1.393e+08 (157)

3SO2 + SO2 → SO3 + SO 9.331e+00 (158)

SO + NO2 → SO2 + NO 1.722e+09 (159)

SO + O3 → SO2 + O2 7.409e+05 (160)

SO2 + HO2 → SO3 + OH 0e+00 (161)

HS + O3 → HSO + O2 4.477e+03 (162)

HS + NO2 → HSO + NO 4.148e+07 (163)

S + O3 → SO + O2 3.436e+04 (164)

2SO → SO2 + S 2.345e+09 (165)

SO3 + SO → 2SO2 3.137e+03 (166)

S + CO2 → SO + CO 1.005e+10 (167)

SO + HO2 → HSO + O2 0e+00 (168)

SO + HCO → HSO + CO 1.032e+11 (169)

H + SO + M → HSO + M 9.929e+08 (170)

HSO + hv → HS + O 2.353e+10 (171)

HSO + NO → HNO + SO 2.468e+10 (172)

HSO + OH → H2O + SO 7.627e+06 (173)

HSO + H → HS + OH 7.118e+09 (174)

HSO + H → H2 + SO 6.327e+08 (175)

HSO + HS → H2S + SO 2.961e+09 (176)

HSO + O → OH + SO 4.22e+10 (177)

HSO + S → HS + SO 3.126e+09 (178)

S + S2 + M → S3 + M 1.277e+07 (179)

2S2 + M → S4 + M 3.22e+08 (180)

S + S3 + M → S4 + M 4.273e+05 (181)

2S4 + M → S8(aer) + M 2.878e+06 (182)

S4 + hv → 2S2 3.167e+08 (183)

S3 + hv → S2 + S 1.235e+07 (184)

NH3 + hv → NH2 + H 5.375e+09 (185)

NH3 + OH → NH2 + H2O 2.39e+04 (186)

NH3 + O(1D) → NH2 + OH 2.466e-07 (187)

NH2 + H + M → NH3 + M 1.249e+08 (188)

NH2 + NO → N2 + H2O 1.67e+08 (189)

2NH2 + M → N2H4 + M 1.14e+09 (190)

NH2 + O → NH + OH 5.291e+06 (191)

NH2 + O → HNO + H 5.291e+06 (192)

NH + NO → N2 + O + H 6.686e+06 (193)

NH + O → N + OH 2.219e+05 (194)

N2H4 + hv → N2H3 + H 2.116e+09 (195)

N2H4 + H → N2H3 + H2 4.978e+06 (196)

N2H3 + H → 2NH2 6.486e+06 (197)

2N2H3 → N2H4 + N2 + H2 1.053e+09 (198)

NH + H + M → NH2 + M 1.627e+06 (199)

NH + hv → N + H 5.011e+05 (200)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

NH2 + hv → NH + H 3.489e+07 (201)

NH2 + hv → NH2(s) 7.735e+09 (202)

hv + NH2(s) → NH2 + hv 1.404e+06 (203)

NH2(s) + M → NH2 + M 7.733e+09 (204)

NH2(s) + H2 → NH3 + H 4.352e+05 (205)

NH2 + HCO → NH3 + CO 2.795e+09 (206)

NH + HCO → NH2 + CO 3.114e+07 (207)

1CH2 + O2 → H2CO + O 0e+00 (208)

3CH2 + O2 → H2CO + O 0e+00 (209)

C2H2 + hv → C2H + H 4.156e+06 (210)

C2H2 + hv → C2 + H2 3.253e+06 (211)

C2H4 + hv → C2H2 + H2 8.592e+07 (212)

3CH2 + CH3 → C2H4 + H 5.587e+04 (213)

C2H5 + CH3 + M → C3H8 + M 4.095e+07 (214)

C3H8 + OH → C3H7 + H2O 2.181e+06 (215)

C3H8 + O → C3H7 + OH 3.877e+07 (216)

C3H8 + O(1D) → C3H7 + OH 1.575e+01 (217)

C3H7 + H → CH3 + C2H5 2.927e+06 (218)

23CH2 → C2H2 + 2H 0e+00 (219)

C2H2 + OH → CO + CH3 1.296e+07 (220)

C2H2 + H + M → C2H3 + M 2.249e+08 (221)

C2H3 + H → C2H2 + H2 2.16e+08 (222)

C2H3 + H2 → C2H4 + H 1.579e+03 (223)

C2H3 + CH4 → C2H4 + CH3 6.685e+02 (224)

C2H3 + C2H6 → C2H4 + C2H5 6.189e-04 (225)

C2H4 + OH → H2CO + CH3 4.551e+08 (226)

C2H4 + O → HCO + CH3 8.797e+09 (227)

C2H4 + H + M → C2H5 + M 1.96e+09 (228)

C2H + O2 → CO + HCO 3.661e+06 (229)

C2H + H2 → C2H2 + H 5.671e+04 (230)

C2H + CH4 → C2H2 + CH3 2.08e+06 (231)

C2H + C2H6 → C2H2 + C2H5 1.079e+04 (232)

C2H + H + M → C2H2 + M 8.008e+05 (233)

C3H8 + hv → C3H6 + H2 8.329e+02 (234)

C3H8 + hv → C2H6 + 1CH2 2.223e+02 (235)

C3H8 + hv → C2H4 + CH4 9.632e+02 (236)

C3H8 + hv → C2H5 + CH3 4.951e+02 (237)

C2H6 + hv → C2H2 + 2H2 4.825e+06 (238)

C2H6 + hv → C2H4 + 2H 5.72e+06 (239)

C2H6 + hv → C2H4 + H2 2.669e+06 (240)

C2H6 + hv → 2CH3 1.515e+06 (241)

C2H4 + hv → C2H2 + 2H 8.255e+07 (242)

C3H6 + hv → C2H2 + CH3 + H 4.753e+01 (243)

CH4 + hv → 3CH2 + 2H 2.711e+10 (244)

CH4 + hv → CH3 + H 5.531e+10 (245)

CH + hv → C + H 4.332e+04 (246)

CH2CO + hv → 3CH2 + CO 2.116e+09 (247)

CH3CHO + hv → CH3 + HCO 1.545e+08 (248)

CH3CHO + hv → CH4 + CO 1.545e+08 (249)

C2H5CHO + hv → C2H5 + HCO 3.789e+07 (250)

C3H3 + hv → C3H2 + H 2.261e+03 (251)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

CH3C2H + hv → C3H3 + H 1.176e+06 (252)

CH3C2H + hv → C3H2 + H2 4.41e+05 (253)

CH3C2H + hv → CH3 + C2H 5.88e+04 (254)

CH2CCH2 + hv → C3H3 + H 2.137e-02 (255)

CH2CCH2 + hv → C3H2 + H2 8.013e-03 (256)

CH2CCH2 + hv → C2H2 + 3CH2 3.205e-03 (257)

C3H6 + hv → CH2CCH2 + H2 7.968e+01 (258)

C3H6 + hv → C2H4 + 3CH2 2.796e+00 (259)

C3H6 + hv → C2H + CH4 + H 6.989e+00 (260)

C + OH → CO + H 6.829e+04 (261)

C + H2 + M → 3CH2 + M 4.691e+06 (262)

C + O2 → CO + O 2.347e+09 (263)

CH + H → C + H2 2.351e+09 (264)

CH + O → CO + H 4.958e+09 (265)

CH + H2 → 3CH2 + H 8.866e+06 (266)

CH + H2 + M → CH3 + M 4.338e+06 (267)

CH + O2 → CO + OH 4.343e+09 (268)

CH + CO2 → HCO + CO 1.354e+10 (269)

CH + CH4 → C2H4 + H 1.125e+10 (270)

CH + C2H2 → C3H2 + H 2.707e+06 (271)

CH + C2H4 → CH3C2H + H 1.976e+06 (272)

CH + C2H4 → CH2CCH2 + H 1.976e+06 (273)

3CH2 + O → CH + OH 1.223e+09 (274)

3CH2 + O → CO + 2H 1.269e+10 (275)

3CH2 + H + M → CH3 + M 9.434e+06 (276)

3CH2 + H → CH + H2 3.524e+10 (277)

3CH2 + CO + M → CH2CO + M 3.99e+06 (278)

23CH2 → C2H2 + H2 1.941e+03 (279)

3CH2 + C2H2 + M → CH3C2H + M 1.103e+05 (280)

3CH2 + C2H3 → CH3 + C2H2 6.594e+00 (281)

3CH2 + C2H5 → CH3 + C2H4 6.491e+01 (282)

CH2CO + H → CH3 + CO 3.367e+05 (283)

CH2CO + O → H2CO + CO 3.105e+08 (284)

CH2CCH2 + H + M → CH3 + C2H2 + M 1.177e+04 (285)

CH2CCH2 + H + M → C3H5 + M 2.214e+04 (286)

CH3 + O2 + M → CH3O2 + M 0e+00 (287)

CH3 + CO + M → CH3CO + M 5.443e+09 (288)

CH3 + H2CO → CH4 + HCO 0e+00 (289)

CH3 + OH → CO + 2H2 2.267e+06 (290)

CH3 + C2H3 → C3H5 + H 3.199e+00 (291)

CH3O2 + H → CH4 + O2 0e+00 (292)

CH3O2 + H → H2O + H2CO 0e+00 (293)

CH3O2 + O → H2CO + HO2 0e+00 (294)

CH3CO + H → CH4 + CO 1.225e+09 (295)

CH3CO + O → H2CO + HCO 7.363e+08 (296)

CH3CO + CH3 → C2H6 + CO 1.508e+09 (297)

CH3CO + CH3 → CH4 + CH2CO 2.402e+09 (298)

CH3CHO + H → CH3CO + H2 2.329e+07 (299)

CH3CHO + O → CH3CO + OH 4.035e+08 (300)

CH3CHO + OH → CH3CO + H2O 1.905e+06 (301)

CH3CHO + CH3 → CH3CO + CH4 1.537e+05 (302)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

CH3C2H + H + M → CH3 + C2H2 + M 5.153e+06 (303)

CH3C2H + H + M → C3H5 + M 5.153e+06 (304)

C2 + O → C + CO 3.235e+05 (305)

C2 + O2 → 2CO 4.024e+04 (306)

C2 + H2 → C2H + H 4.209e+04 (307)

C2 + CH4 → C2H + CH3 2.847e+06 (308)

C2H + O → CO + CH 4.824e+05 (309)

C2H + C3H8 → C2H2 + C3H7 2.178e-01 (310)

C2H2 + O → 3CH2 + CO 1.39e+08 (311)

C2H2 + OH → C2H2OH 1.016e+05 (312)

C2H2 + OH + M → CH2CO + H + M 1.185e+07 (313)

C2H2OH + H → H2O + C2H2 1.016e+05 (314)

C2H2OH + H → H2 + CH2CO 1.004e+00 (315)

C2H2OH + O → OH + CH2CO 2.874e-02 (316)

C2H2OH + OH → H2O + CH2CO 3.24e-03 (317)

C2H3 + O → CH2CO + H 8.85e+06 (318)

C2H3 + OH → C2H2 + H2O 1.23e+03 (319)

C2H3 + CH3 → C2H2 + CH4 4.532e+02 (320)

C2H3 + CH3 + M → C3H6 + M 1.597e+03 (321)

2C2H3 → C2H4 + C2H2 1.382e-01 (322)

C2H3 + C2H5 → 2C2H4 4.225e-01 (323)

C2H3 + C2H5 → CH3 + C3H5 9.278e-01 (324)

C2H4 + OH + M → C2H4OH + M 2.098e+06 (325)

C2H4OH + H → H2O + C2H4 2.098e+06 (326)

C2H4OH + H → H2 + CH3CHO 2.184e+01 (327)

C2H4OH + O → OH + CH3CHO 2.365e+00 (328)

C2H4OH + OH → H2O + CH3CHO 9.121e-02 (329)

C2H5 + OH → CH3CHO + H2 1.328e+05 (330)

C2H5 + O → CH3CHO + H 7.378e+08 (331)

C2H5 + CH3 → C2H4 + CH4 1.639e+06 (332)

C2H5 + C2H3 → C2H6 + C2H2 8.451e-01 (333)

2C2H5 → C2H6 + C2H4 1.476e+05 (334)

C2H5 + H + M → C2H6 + M 1.265e+05 (335)

C2H5 + H → C2H4 + H2 1.271e+08 (336)

C3H2 + H + M → C3H3 + M 3.15e+06 (337)

C3H3 + H + M → CH3C2H + M 2.162e+06 (338)

C3H3 + H + M → CH2CCH2 + M 2.162e+06 (339)

C3H5 + H → CH3C2H + H2 1.723e+06 (340)

C3H5 + H + M → C3H6 + M 6.928e+03 (341)

C3H5 + H → CH4 + C2H2 1.723e+06 (342)

C3H5 + CH3 → CH3C2H + CH4 1.276e+01 (343)

C3H5 + CH3 → CH2CCH2 + CH4 1.276e+01 (344)

C3H6 + OH → CH3CHO + CH3 1.007e+03 (345)

C3H6 + O → 2CH3 + CO 1.363e+05 (346)

C3H6 + H + M → C3H7 + M 2.974e+04 (347)

C3H7 + CH3 → C3H6 + CH4 1.578e+05 (348)

C3H7 + OH → C2H5CHO + H2 4.027e+03 (349)

C3H7 + O → C2H5CHO + H 3.789e+07 (350)

H + CH2CCH2 → CH3C2H + H 6.011e+06 (351)

O + H2CO → HCO + OH 9.081e+09 (352)

3CH2 + C2H2 + M → CH2CCH2 + M 1.842e+05 (353)

(continued on next page)
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Table B.2: (continued - Archean atm. reaction network)
rates (1/cm2)

C2H + C2H2 → HC(aer) + H 1.236e+04 (354)

1CH2 + H2 → 3CH2 + H2 3.987e+07 (355)

C3H5 + H → CH2CCH2 + H2 1.723e+06 (356)

HCO + H2CO → CH3O + CO 1.126e+07 (357)

CH3O + CO → CH3 + CO2 1.126e+07 (358)

C2H + CH2CCH2 → HC(aer) + H 1.678e+00 (359)
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b.2 selected artificial networks

In Sect. 7.2 two artificial chemistries with especially interesting prop-
erties were presented and discussed in relation to the idea of further
applications of reaction network analysis. We can not investigate the
details of how probable it is to find such networks with scientific
rigour here, but besides stating the existence of these networks a short
explanation of how they were found should be given.

Roughly 10.000 artificial chemistries3 are generated to semi- 3 See Sect. 5.1.1.

automatically search for especially interesting networks. All networks
contain 12+1 chemical species and 24 reactions. From these reactions 12 normal species

plus one for

controlling

"photochemical"

reactions (hν).

8 are linear reactions and 4 are photochemical reactions. The pa-
rameter for the number of elementary components of the chemical
species (one or two) is randomly chosen for each network. The other
parameters that control how duplicate reactions are handled are also
randomly chosen.4. 4 Parameters are

explained in the

source code of the

function jrnf_cre-
ate_artificial_eco-
system in

jrnf_R_tools (see

Appendix C)

The concentration of all species (except hv) is set to 10 initially and
then reactions are applied randomly to randomise initial conditions
before starting the simulation. Each network is simulated to 1 · 107

time units twenty times, each simulation with different initial con-
ditions. The concentration of hv (driving force) is set to 50 for all
simulations.

To ensure that the networks approach their steady states as much
as possible in the simulated time frame the activation energy is cutoff
at a value of three. This prohibits higher activation energies and thus
slower dynamics that takes longer to relaxate.

b.2.1 Bistable Artificial Chemistry

To identify bistable artificial chemistries in the networks simulated to
1 · 107 time units, for each network the statistics of inflow of hν for the
last time step is investigated. If a network has multiple steady states
it is reasonable that those steady states also have a different inflow
values. Because of this, we start looking at the inflow distribution
manually, starting with networks for which the quotient between the
standard deviation of inflow values and the average inflow is high.
This means that the spread between the inflows is relatively large.
We have to identify those networks that have two distinct inflow val-
ues manually, because slow relaxation also may lead to a relative big
standard deviation. These network then are investigated for differ-
ent values for the strength of their driving force (hν concentration).
The network topology of the found bistable artificial chemistry can
be seen in Fig. B.1, a full list of reactions is given in Table B.3.

b.2.2 Oscillating Artificial Chemistry

The (successful) candidate for an artificial chemistry with periodic
dynamics was easy to identify. As the implicit solver5 for differential 5 Implicit solvers

are especially suited

for stiff equations

(multiple

timescales).

equations (Sect. A.1) uses an adaptive step size it can increase step
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C1

C1_2

C1_3

C1_4
C1_5

C1_6

C1_7

C1_8

C1_9

C1_10

C1_11

C1_12 hv

Figure B.1: Plot of sample bistable artificial chemistry. (Cf. Table B.3.)

size when approaching steady state. Thus, the artificial chemistries
(as described above) take normally less than one second to integrate
to 1 · 107 time units. This is not true for periodic systems (which do
not approach any steady state). When integrating thousands of can-
didate networks, the one network that did not finish integration for
hours was investigated manually and identified as having a periodic
dynamics. The network topology can be seen in Fig. B.2, a full list of
reactions is given in Table B.4.

C1

C1_2

C1_3
C1_4

C1_5

C1_6

C1_7

C1_8

C1_9

C1_10

C1_11 C1_12

hv

Figure B.2: Plot of sample artificial chemistry with oscillating dynamics.

(Cf. Table B.4).



B.2 selected artificial networks 121

Table B.3: Sample for an artificial reaction chemistry that has two stable

steady states. Chemistry was found by generating and simulating
a large number of artificial reaction networks (≈ 10000) and man-
ually looking at heuristically preselected candidates. Forward re-
action constants kf and backward reaction constants kb have been
calculated from random energies as shown in Sect. 3.1.2.

kf kb

hv + C1 → 6C1 4.978707e-02 1.492498e-24 (1)

hv + 5C1 → 8C1 7.452432e-01 7.727118e-22 (2)

hv + 7C1 → 10C1 7.142340e-01 6.735825e-22 (3)

hv + 6C1 → 10C1 6.737922e-01 1.476818e-21 (4)

12C1 → 8C1 9.131044e-02 6.341485e-01 (5)

4C1 → 3C1 3.847280e-01 5.513001e-02 (6)

2C1 → C1 1.210867e-01 1.324041e-01 (7)

8C1 → 7C1 7.304459e-02 1.536627e-02 (8)

11C1 → 3C1 5.125628e-01 2.566127e-01 (9)

12C1 → C1 2.240622e-01 9.062480e-01 (10)

10C1 → 4C1 4.269291e-01 1.602344e-01 (11)

11C1 → 2C1 3.181214e-02 1.533339e-01 (12)

12C1 + 10C1 → 7C1 + 3C1 2.060491e-01 1.619034e-02 (13)

8C1 + 3C1 → 2C1 + C1 5.617656e-02 3.149758e-01 (14)

11C1 + 5C1 → 10C1 + 2C1 1.547249e-02 4.123857e-01 (15)

11C1 + 3C1 → 11C1 + 2C1 7.166242e-02 6.899306e-01 (16)

8C1 + 3C1 → 5C1 + C1 5.642374e-02 1.104936e-01 (17)

10C1 + 7C1 → 9C1 + 9C1 5.669881e-01 5.319954e-01 (18)

11C1 + 4C1 → 7C1 + 7C1 5.292460e-01 5.490419e-01 (19)

8C1 + 5C1 → 6C1 + C1 8.021296e-02 2.273137e-02 (20)

7C1 + 7C1 → 5C1 + 4C1 3.222952e-01 5.230033e-01 (21)

12C1 + 3C1 → 10C1 + 2C1 9.906861e-03 6.813578e-01 (22)

12C1 + 4C1 → 6C1 + C1 6.811983e-01 6.459914e-01 (23)

11C1 + 6C1 → 8C1 + 7C1 3.109788e-02 6.540693e-01 (24)



122 appendix networks and pathways

Table B.4: Sample artificial chemistry with oscillating dynamics. Chem-
istry was found by generating and simulating a large number of
artificial reaction networks (≈ 10000) and manually looking at
heuristically preselected candidates. Forward reaction constants
kf and backward reaction constants kb have been calculated from
random energies as shown in Sect. 3.1.2.

kf kb

hv + 3C1 → 5C1 3.493301e-01 3.515938e-23 (1)

hv + C1 → 4C1 5.915973e-01 2.339289e-22 (2)

hv + 2C1 → 5C1 3.303608e-01 2.845655e-22 (3)

hv + 2C1 → 11C1 1.166197e-01 1.583525e-23 (4)

10C1 + 8C1 → 10C1 + 4C1 8.491597e-02 3.687288e-01 (5)

9C1 + 3C1 → 9C1 + 7C1 4.186161e-01 1.650730e-01 (6)

9C1 + C1 → 9C1 + 8C1 3.284513e-01 1.550726e-01 (7)

12C1 + 9C1 → 12C1 + 6C1 1.629401e-01 7.104541e-01 (8)

7C1 + 6C1 → 6C1 + 5C1 5.519999e-01 7.304799e-01 (9)

9C1 → 5C1 1.340816e-02 7.331016e-02 (10)

12C1 + 5C1 → 6C1 + 5C1 6.272412e-01 7.496179e-01 (11)

4C1 → 2C1 5.095917e-01 5.181876e-02 (12)

10C1 + 7C1 → C1 + C1 2.690245e-01 6.716334e-01 (13)

12C1 + 2C1 → 10C1 + 4C1 1.802030e-02 1.624015e-01 (14)

11C1 + 3C1 → 10C1 + 2C1 2.058409e-02 9.330057e-03 (15)

12C1 + 11C1 → 8C1 + 8C1 6.899998e-03 1.686871e-02 (16)

12C1 + 5C1 → 9C1 + 3C1 5.269599e-01 2.767870e-01 (17)

11C1 + 9C1 → 4C1 + 3C1 5.275851e-03 7.721767e-01 (18)

8C1 + 7C1 → C1 + C1 2.467435e-01 7.428251e-01 (19)

12C1 + 5C1 → 8C1 + 3C1 5.095817e-02 7.421245e-02 (20)

11C1 + 7C1 → 8C1 + 4C1 1.581391e-03 1.482405e-02 (21)

5C1 + 2C1 → 4C1 + 3C1 9.786585e-03 1.844324e-01 (22)

10C1 + 3C1 → 9C1 + C1 2.485208e-01 4.166127e-02 (23)

8C1 + C1 → 4C1 + 3C1 8.697111e-04 6.737947e-03 (24)
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b.3 network file format

This section contains the definition of the file format that is used
to process reaction networks for this thesis. The definition and re-
spective source code is also contained in the digital appendix (Ap-
pendix C) and available online on GitHub. 6 6 https:

//github.com/

jakob-fischer/

jrnf_R_tools

The jrnf file format describes a reaction network consisting out
of a set of chemical species, reactions between those species and
(thermo)dynamic parameters. The networks are contained in plain
Unix-format text files (line feed character for new line) with only
ASCII characters. Individual elements are unsigned integer or float-
ing point numbers in plain text or character strings. They are sepa-
rated by whitespaces.

The first line of a file should contain the string "jrnf0003" to identify
the file format and version:

1 "jrnf0003"

The second line contains two integers, the number of chemical
species N and the number of reactions M.

2 ⟨N⟩⟨M⟩

The following N lines each have 4 values (separated by whites-
paces). Each line represents one chemical species and has the follow-
ing form:

3 . . . 2 + ⟨N⟩ ⟨type⟩⟨name⟩⟨energy⟩⟨constant⟩

The entries each consist of a number or a string.

entry type description

type unsigned integer Contains the type of the species.
Standard is 0, but users may use
/ define additional types. A not
recognized type should just be ig-
nored by programs (treated as type
0).

name string Name of the species. May contain
alphanumeric characters and un-
derscores. Name should be unique
in the network.

energy double Value containing the formation en-
thalpy of the species.

constant unsigned integer Indicating if the species is constant
(buffered by environment). Value is
1 if the species is constant and 0

else.

The next M lines each describe one of the M reactions. The exact
number of entries for each line depends on the complexity of the
reaction. Each line has at least 7 entries.

https://github.com/jakob-fischer/jrnf_R_tools
https://github.com/jakob-fischer/jrnf_R_tools
https://github.com/jakob-fischer/jrnf_R_tools
https://github.com/jakob-fischer/jrnf_R_tools
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3 + N . . .

2 + N + M

⟨reversible⟩ ⟨c⟩ ⟨kf⟩ ⟨kb⟩ ⟨Ea⟩⟨educt_number⟩
⟨product_number⟩ (⟨educt_id⟩ ⟨educt_mul⟩)∗
(⟨product_id⟩ ⟨product_mul⟩)∗

The pattern in the first bracket occurs exactly ⟨educt_number⟩
times, the pattern in the second brackets occurs ⟨product_number⟩
times.

entry type description

reversible unsigned integer The value is ’1’ if re-
action is simulated re-
versible. Else the value
has to be ’0’.

c double (positive) Reaction constant for
stochastic simulations.
Not used at the moment.

kf double (positive) Forward reaction rate.

kb double (positive) Backward reaction rate.

Ea double (positive) Activation energy. (Please
note remark below!)

educt_number unsigned integer Number of educts in the
reaction equation.

product_number unsigned integer Number of products in
the reaction equation.

educt_id unsigned integer Id of the species occur-
ring on educt side of this
reaction equation. Species
are 0-indexed.

educt_mul unsigned integer Number of occurrences of
respective species on the
educt side of this reaction
equation.

product_id unsigned integer Id of the species oc-
curring on product side
of this reaction equation.
Species are 0-indexed.

product_mul unsigned integer Number of occurrences of
respective species on the
product side of this reac-
tion equation.

Reaction rates (kf and kb) and energies (formation enthalpy & acti-
vation energy) are complementary. The specification does not require
for them to have the same dynamics. Applications are free to specify
which one to use. For reversible reactions the activation energy refers
to that reaction direction which respective products have a higher
Gibbs energy of formation (formation enthalpy). See Sect. 3.1.2 for
details.



C
D I G I TA L A P P E N D I X

c.1 digital content

Selected data of this thesis as well as the thesis itself in digital form
is contained on the accompanying data medium. The directory struc-
ture of the medium is shown in Fig. C.1. The data is ordered accord-
ing to the chapters it is related to, with one extra folder (code/) for
the tools and scripts that are used multiple times. These tools have

/

3_thermodynamics_of_reaction_networks/ (Chapter 3)

<net>/ Networks of type <net> := er | ba | ws | ps

<typ>/ Linear, nonlinear, linearised nonl. <t> := lin | nonl | lin_ind

real_compare/ Networks from real systems for comparison

4_atmospheric_reaction_pathways/ (Chapter 4)

calculated_pathways/ Pathways-comma separated files

data_source/ Network files and atmospheric parameters

incompatible_pw/ Thermodynamically inconsistent pathways

5_pathways_in_artificial_ecosystems/ (Chapter 5)

network_<x>/ Networks simulation, <x> := A | B | C

ecosystem_<x>/ Ecosystem evolution runs, <x> := D | E

evo_runs_<x>_type/ NW+evol. runs with different param., <x> := D | E

7_outlook/ (Chapter 7)

sample_climate_nw/ Sample climate network and rates

sample_bistable_nw/ Bistable network (with simulation results)

sample_periodic_nw/ Periodic dynamics network (with simulation results)

code/ (Software: tools, scripts)

jrnf_int/ C++ tool for integrating RN-ODEs

jrnf_R_tools/ R tool for analysing and generating networks

jrnf_tools/ C++ tool for handling network files

readme Description of disk content

thesis_document.pdf Digital version of thesis

Figure C.1: Directory structure of digital appendix. Directories starting
with numbers contain reaction networks, simulation data and
scripts related to the respective chapter. Scripts are mostly in R
language, networks in jrnf format (see Sect. B.3) and Data as R
data files (.Rdata). Every directories for data of the individual
chapters contain a separate readme file describing its content.

125



126 digital appendix

been published previously ([Fis16a; Fis16b; Fis16c]). Future releases
should be available through the author’s GitHub page1. All tools use1 http://www.

github.com/

jakob-fischer/
the jrnf file format for exchanging reaction networks (Sect. B.3).

Generation of large artificial networks for Chapter 3 was done with
the C++-tool in code/jrnf_tools. The artificial networks and ecosystems
for Chapter 5 were generated with the R-tool code/jrnf_R_tools. Gener-
ally, simulation results (intermediates) are contained in the medium.
But because of space limitation for the simulations of large-scale re-
action networks of Chapter 3 only the network files are contained in
the digital appendix.

The two C++-tools (jrnf_tools, jrnf_int) have been developed and
tested with gcc (version 6.3). All the R-scripts were tested with ver-
sion 3.3 of R and require the ggplot2 and igraph libraries (tested with
version 1.0.1 of igraph).

http://www.github.com/jakob-fischer/
http://www.github.com/jakob-fischer/
http://www.github.com/jakob-fischer/
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