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1 Introduction 

Ecosystem functions and processes are largely determined by structural parameters of 

vegetation (WIEZIK et al. 2011, GAITAN et al. 2014). Biometrical parameters of vegetation 

such as plant height, plant volume, diameter at the breast height etc. and their spatial 

distribution are fundamental variables in ecosystem research and modeling of plant 

functional types, diversity, carbon accounting, as well as ecophysiology (BROWN & LUGO 

1992, HOUGHTON et al. 2001, CHAVE et al. 2005, GIBBS et al. 2007). For instance, the 

amount of light used for photosynthesis is largely determined by the amount and 

distribution of leaves within a vegetative canopy, and therefore, leaf area index (LAI; 

amount of leaves per unit of ground area) and clumping index (Ω; variable defining leaf 

distribution) are key structural variables in modeling of biosphere-atmosphere exchanges 

of energy, water vapor and carbon dioxide (ASNER et al. 2003, BREDA 2003). Thus, proper 

estimation of vegetation structure is necessary for understanding the ecological processes 

in an ecosystem.  

Light Detection and Ranging (LiDAR) is a remote sensing technique that has been 

used successfully to estimate vegetation structural parameters (VAN LEEUWEN & 

NIEUWENHUIS 2010, HILL et al. 2011). LiDAR is an active sensor that measures distance 

to the object by generating beam of light. Its major advantage over optical sensors is its 

ability to obtain the 3D structure of objects (LEFSKY et al. 2002, HILL et al. 2011). LiDAR 

instruments can be classified according to the placement of the scanner: spaceborne, 

airborne and ground-based LiDAR (also termed as Terrestrial Laser Scanner, TLS) 

(LEMMENS 2011). Whereas spaceborne LiDAR is mostly used for land cover 

classification and estimation of terrain elevation on global scale, airborne and ground-

based LiDAR provides information about vegetation structure at the scale of a single tree 

to the whole ecosystem. It is worth remarking that TLS acquires not only height level 

vegetation like airborne LiDAR, but also the structure of understory, which play an 

important role. (VAN LEEUWEN & NIEUWENHUIS 2010, DASSOT et al. 2011). The use of 

TLS is, therefore, essential when targeting tree-grass ecosystems. 

The ability of TLS to provide the information of vegetation structure on different 

levels is especially useful for research of savanna ecosystem, which is characterized by 

existence of two separated layers: sparse trees (typically between 10-40 tree/ha) and a 

well-stablished herbaceous stratum. Savanna is one of most important ecosystems of our 

planet as it covers a quarter (27 million km2) of Earth’s land surface and is credited as the 

main source of food (via pastoral industry) for almost a quarter of the world’s human 
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population. The productivity of savanna is about 25% of total Gross Primary Production 

(SCHOLES & ARCHER 1997) and can vary depending on different factors, e.g. seasonal 

moisture variability, annual solar radiation budget, fires or spatial heterogeneity of 

vegetation (BERINGER et al. 2007, KANNIAH et al. 2011, KANNIAH et al. 2013, MOORE et 

al. 2015). The contribution of trees to the productivity of the ecosystem depends to some 

extent on how trees and grass compete each other for resources (e.g. water, nutrients, light 

etc.), which is strongly regulated by their spatial distribution and temporal dynamic. The 

trees influence the herbaceous productivity by storing water and nutrients and via 

protection from overheating (JOFFRE & RAMBAL 1993, BELSKY 1994, VALLADARES & 

PUGNAIRE 1999, MOORE et al. 2015). In fact, divergent patterns of the grass have been 

described in space, with clear differences in structure and functions between the grass 

underneath and between the crowns. This has been associated with structural relations 

between the tree crown projections and properties (i.e. gap fraction), soil moisture and 

nutrient availability and tree root development capacity. TLS provides an accurate 

estimation of tree parameters and their spatial distribution, which is critical for modeling 

of savanna ecosystem (HILL et al. 2011).  CHEN et al. (2006) used LiDAR-derived Canopy 

Height Model (CHM) for delineation of trees in open oak savanna in California. GARCÍA 

et al. (2015) calculated Clumping index for oak trees in Spanish savanna based on gap 

fraction using TLS. The combination of airborne LiDAR and hyperspectral data were 

applied to classification and mapping tree species in African savannas (CHO et al. 2012, 

COLGAN et al. 2012, NAIDOO et al. 2012).  

In practice, the application of TLS to heterogeneous ecosystems such as savannas 

remains challenging (HILL et al. 2011). One of the technical problems is occluded areas 

in laser scans that complicates estimation of trees’ locations and diameter retrieval in the 

areas with high tree density (MOSKAL & ZHENG 2011). Additionally, TLS has the 

tendency to underestimate tree height, because of low point density in the upper canopy 

(HOPKINSON et al. 2004). Moreover, proper filtering and classification of points in the 

point cloud can be difficult, especially in areas covered by low-level vegetation (LIM et 

al. 2003). To improve the efficiency of LiDAR measurements the researchers have 

suggested the combination of TLS with optical sensors, development of new more 

effective approaches, as well as improvement of LiDAR technology itself (LIM et al. 

2003, VAN LEEUWEN & NIEUWENHUIS 2010, DASSOT et al. 2011). 

The objectives of this thesis are: 
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i. Evaluate and develop approaches for retrieval of structural parameters of 

vegetation (i.e. tree height, canopy projected area and perimeter, diameter 

at the breast height and canopy clumping index). 

ii. Characterize structural properties of ecosystem. The spatial distribution of 

tree structural parameters and their biometrical relationships is to be 

evaluated.  

The thesis is divided in several different chapters described below. Chapter 2 

describes the basics of LiDAR measurements and its application and gives an overview 

of Mediterranean savanna ecosystem (Dehesa). Chapter 3 provides the state of research 

in retrieval of structural vegetation properties.  Chapter 4 introduces the study area, the 

data sets used and methodology. The results are presented in chapter 5. Finally, in chapter 

6 there is a discussion of the findings and conclusions (chapter 7) close the thesis. 
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2 Theoretical background 

2.1 LiDAR application 

Remote sensing technology has been successfully used for different research purposes 

since the 1920s, when aerial photographic cameras were used to map the land cover and 

land cover changes. In the early 1960s the era of space-borne sensors began and since 

then over a hundred satellite-based sensors have been launched (COOPS & TOOKE 2017). 

Development of new techniques and instruments, such as unmanned aerial systems 

(UAS), improvement of spatial and radiometric resolution of satellites sensors makes 

remote sensing more effective for ecosystem research (TURNER et al. 2003, COLOMINA & 

MOLINA 2014). 

One of these remote sensing instruments is Light Detection and Ranging 

(LiDAR), which an active sensor that emits a beam of electromagnetic energy (light) for 

measuring the distance to object (LEMMENS 2011). The object is represented as a 3D point 

cloud, where every point has the specific coordinates.  

The idea to use the LiDAR as a remote sensing instrument goes back to the 1960s 

when LiDARs were first used in topography and bathymetry (ST-ONGE et al. 2003). The 

forest application of LiDAR began in the early 1980s when researchers used laser 

developed for bathymetrical works to accurately assess terrain elevation and forest 

canopy profile (KRABILL et al. 1984). Further development of the use of LiDAR forest 

application consisted of biomass, tree height and stand volume estimation (ST-ONGE et 

al. 2003). With the development of Geographical Information Systems (GIS), LiDAR 

became geo-data technology, which is used for the estimation of three-dimensional (3D) 

information for a variety of topographic and industrial objects (LEMMENS 2011). The 

utility of LiDAR prompted commercial development of Terrestrial Laser Scanners (e.g. 

RIEGL LMS Z210 and CYRAX 2200) in the late 1990s (NEWNHAM et al. 2015). 

LiDAR and its outputs are used for different research purposes. Digital elevation 

model (DEM) and digital terrain model (DTM) are two of the most important LiDAR 

products that allow for the production of high-resolution topographic maps. Examples of 

application of LiDAR products include: for planning and designing roads (PEREIRA & 

JANSSEN 1999, SCHIESS & KROGSTAD 2003), detecting archeological features in 

woodland (DEVEREUX et al. 2005, DONEUS et al. 2008), estimating surface geometry in 

geology, studying the active processes in hard rock coastal cliffs, controlling erosion etc. 

(BUCKLEY et al. 2008). LiDARs are applied to forest management and forest fire 
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management, because of its high spatial resolution.  Accurately measures of vegetation 

height is used to estimate post- and pre-fire fuel conditions: crown bulk density, 

differences in vertical structure and 3D canopy fuel measurements  (LENTILE et al. 2006). 

LiDAR is also applied to fire smoke detection (FROMM et al. 2000, UTKIN et al. 2002). A 

special Instantaneous-Profile Laser Scanner is used to measure soil surface 

microtopography (DARBOUX & HUANG 2003). Airborne and terrestrial LiDARs are used 

for soil surface roughness estimation (PEREZ-GUTIERREZ et al. 2007, TURNER et al. 2014). 

Oceanographic LiDARs are used for water target detection, surface roughness 

measurements, bathymetry, measurements of chlorophyll and other waterborne pigments 

(HOGE & SWIFT 1981, CHURNSIDE 2013) 

The ability of LiDAR to determine the vertical structure of scanned objects and to 

detect water droplets and ice particles in the atmosphere is relevant to cloud profiling 

(TAKEUCHI 2005). National Aeronautics and Space Administration (NASA) has LiDAR 

application group (https://science.larc.nasa.gov/LiDAR/), which uses airborne LiDARs 

to research the atmosphere, its chemical composition, radiation and dynamical processes: 

DIAL (Differential Absorption LiDAR) for ozone and aerosol/cloud profiles, LASE 

(LiDAR Atmospheric Sensing Experiment) for water vapor and aerosol/cloud profiles 

and HSRL (High Spectral Resolution LiDAR) to improve DIAL system for more quality 

of measurements.  

The geoscience laser altimeter system (GLAS) onboard of the ICESat satellite was 

operated by NASA from 2003 to 2009 (https://icesat.gsfc.nasa.gov/). This spaceborne 

LiDAR was used for studies of ice-sheet mass, cloud and atmospheric properties over 

polar areas. It also provided topography and vegetation data around the globe. 

2.2 Principles of measurement  

LIDAR is an active sensor that emits a beam of electromagnetic energy (light) for 

measuring the distance to an object (LEMMENS 2011). These systems typically include 

the following components: high-frequency pulsed laser (the transmitter), solid-state 

photo-detector (the receiver) and optics that modify laser beam and collect backscattered 

light (LEDINGHAM & CAMPBELL 1997, ST-ONGE et al. 2003). The transmitter emits a laser 

beam, which is  corrected by optic (O1 see Figure 2-1) and hits a target object (S) at the 

distance (R). This object generates backscattered light collected by further optic (O2) and 

received by the detector. The backscattered signal can be shown as a time function (t) 

with a peak at t=2R/c, where R is a range distance to the object and c is the velocity of 

light  (LEDINGHAM & CAMPBELL 1997).  
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The resulting data set of laser scanning is a point cloud that consists of massive 

amount of points, each with 3D coordinates. These points define the positions of  LiDAR 

echo (or pulse return) from each target (ST-ONGE et al. 2003). The 3D coordinates are the 

result of combining measured range, scan angles and position and orientation of the 

scanner. The raw data are then typically converted into a geodetic reference system 

(LEMMENS 2011). 

The scan’s mirror of TLS rotates vertically and deflects a laser beam that provides 

vertical plane scanning. The head part of the scan rotates 360 degrees horizontally and 

provides hemispherical scanning (DASSOT et al. 2011, SOUDARISSANANE 2016). The 

result of scanning is represented as 3D point cloud covering almost 360 degrees in 

spherical domain. 

TLSs can be divided in two groups according to their range measurement 

principle: phase-shift and pulsed time-of-flight. Phase-shift scanners measure distances 

using a phase shift between the emitted and received laser beam and record only one 

return for each direction (Figure 2-2). Advantages of this kind of instrument are fast 

acquisition speeds, very high point quantities and wide fields of view (DASSOT et al. 

2011). 

 

Figure 2-1: LiDAR principles of measurement  

(LEDINGHAM & CAMPBELL 1997) 

Legend: 

S – target object 

R – range distance to 

object 

Q1, Q2 – optics 

c – speed of light 
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Time-of-flight instruments estimate the distances based on the measure of the time 

emission and reception of a laser pulse. Dassot et al (2011) described four recording 

methods of time-of-flight LiDARs according to the number of return signals:  

 single return recording (for the first object that reflects a portion of the laser pulse, 

Figure 2-2a);  

 first/last return recording (the first, the last or both reflected signals are recordable, 

Figure 2-2b);  

 multiple return recording (up to five signals, Figure 2-2 c); 

 full waveform recording (continuous signal echo recording) 

Different to phase-shift LiDARs, which use visible light for scanning (600–800 

nm), time-of-flight LiDARs use near-infrared wavelengths (900–1.500 nm). The 

acquisition speeds of these instruments are relative low, but very long measurement 

distances are possible (over 100m). The vertical field of view is usually narrow. 

There are three kinds of instrument according to the placement of scanner: 

airborne, spaceborne and ground-based LiDAR (Figure 2-3). An airborne LiDAR scanner 

is mounted on aircrafts or helicopters and spaceborne LiDAR is mounted on satellites. 

Ground-based LiDAR (also called terrestrial laser scanner or TLS) is placed on tripod 

over the ground or on the top of a car (LEMMENS 2011). 

Figure 2-2: Types of laser returns. Depending on sensor capabilities, one or more 

signals can be recorded by the scanner  

(DASSOT et al. 2011) 
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The major advantage of TLS is the possibility to get the information at the tree 

scale and under the canopy, which allows determining the structure of a single tree 

(DASSOT et al. 2011). However, TLS has several disadvantages. First, laser scans have a 

large file size that leads to slow file processing and an increased hardware requirement. 

The second problem is low point density in the occluded areas: the upper part of crown 

or even the entire tree can be hidden by low branches, understory or surrounded trees.  

Additionally, the quality of laser scans depends on weather conditions. Thus, wind, rain 

and snow lead to increase of noise points. Moreover, standard instruments cannot be used 

during extreme temperatures: under 0 and over 40°C (DASSOT et al. 2011).  

2.3 Clumping index 

Leaf area index (LAI) and clumping index (Ω) are key parameters in ecosystem modeling 

of biosphere-atmosphere exchanges of energy, water vapor and carbon dioxide. The 

amount of light used for photosynthesis is largely determined by the amount and 

distribution of leaves within a vegetative canopy, i.e. canopy architecture. Optic 

instruments (i.e. LI-COR LAI-2000) and hemispherical photos are usually used to 

estimate LAI in the field (GOWER et al. 1999). They measure the diffuse radiation that 

penetrates through the canopy, a.k.a. gap fraction. The measurement is based on the 

Figure 2-3: Spaceborne, airborne, and terrestrial LiDAR remote sensing and their 

inherent scales of operation  

(VAN LEEUWEN & NIEUWENHUIS 2010) 
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assumption that all foliage element and live parts within canopy are randomly distributed. 

The overlapping and clumping of leaves are not taken into account  (CHEN et al. 2005, 

ZHENG & MOSKAL 2009, KOENIG et al. 2013).  

However, foliage elements are seldomly random distributed, and, therefore, LAI 

is typically underestimated in clumped canopies. In order to describe the results of LAI 

estimation from the gap fraction more accurately the term, effective LAI (eLAI), was 

developed (CHEN et al. 1991): 

 

eLAI=Ω·LAI         (1) 

 

where Ω is the clumping index, that evaluates a foliage grouping within single canopy 

structures such as tree crowns, shrubs and row crops, relative to a random distribution. 

Further, the ‘true’ LAI is defined as ‘one half the total intercepting area per unit ground 

surface area’ (CHEN & BLACK 1992). 

Completely clumped canopy has a Ω value of 0 (leaves lay on each other), while 

Ω = 1 represents a completely random canopy.  Ω =1 means that canopy is uniform (leaves 

lay side by side). One of the methods to estimate the Ω is a gap size distribution. For a 

given LAI, clumped canopies have larger canopy gap fractions with different gap size 

distributions than that of random distribution (CHEN et al. 2005).  

Thus, the Ω can be obtained from a gap fraction as (CHEN & CIHLAR 1995, 

LEBLANC 2002):  

 

Ω =  
ln[Fm(0,θ)]

ln[Fmr(0,θ)]
∙

[1−Fmr (0,θ)]

[1−Fm(0,θ)]
        (2) 

 

where Ω is canopy clumping index, Fmr (θ) is the gap fraction of a theoretical canopy with 

random spatial distribution, Fm (θ) is measured gap fraction, i.e. using Hemispherical 

Photography (HP) technology (TERRADAS 1999).  

Some researches has estimated Ω using HP (WALTER et al. 2003, GONSAMO & 

PELLIKKA 2009, PUESCHEL et al. 2012, LIU et al. 2013). However, the optical instruments 

are limited in their 2D presentation of vegetation canopy. The ability of LiDAR to provide 

3D point clouds and the resulting 3D canopy architecture is, therefore, used in many 

studies to better estimate the Ω and LAI.  
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GARCÍA et al. (2015) estimated Ω from combination of TLS and airborne UAS 

laser: the point cloud was converted into a 3D voxel-based model to obtain the gap size 

distribution (voxels are volumetric pixels). MOORTHY et al. (2011) calculated Ω direct 

from TLS points. They simulated point cloud with random distribution of points (laser 

returns) within the boundary of tree canopy derived from TLS data. Then they compared 

the densities of points in simulated and measured canopies. The Ω was calculated as a 

ratio of between simulated and measured canopy gap fractions. 

2.4 Savanna type Dehesa 

This study is focused on application of TLS in Mediterranean type of savanna named 

Dehesa. Spanish Dehesa is a landscape of the Southwestern Iberian Peninsula (Figure 

2-4), that occupies more than 2 million ha (FERNÁNDEZ et al. 2018). Dehesa is covered 

by oaks, scattered among annual grasses and shrubs. The most representative Dehesa 

region in Spain is Extremadura, which is characterized by high oaks density (HUNTSINGER 

et al. 2013). Dehesas are result of human activities influence during more than 2000 years: 

their forming began at the ages of the Roman Empire. During many centuries it was 

managed by grazing (especially Iberian pigs), hunting and farming and as source for wood 

fuel. The most important was production of sweet acorns both for human food 

consumption and domestic animals feeding (JOFFRE et al. 1988). Today Dehesa is 

managed generally by livestock (sheep, goats, cattle or pigs) (ALAGONA et al. 2013).  

This tree-grass ecosystem is located in Mediterranean climate zone, which is 

characterized by hot summer with drought and medium to low precipitation. The climatic 

factors such as temperature, drought and summer precipitation have influence on 

Dehesa’s distribution. The researchers identify three Dehesa climate zones (Figure 2-5 

a,b): zone 1, located in the southern and southwestern part of Spain, zone 2, covered 

central and south parts, and zone 3 in the northern part of the distribution of the Dehesa. 

The first zone is influenced by the humid winds from the Atlantic Ocean. The summer is 

characterized by a long drought period: July and August with their mean monthly 

precipitation value 3.0 and 5.0 mm and mean temperature 25.6 and 25.4 °C respectively 

are the hardest for vegetation growth.  The zone 3 is coldest one: it is characterized by the 

lowest winter temperatures (coldest months are December and January with mean 

temperature 3.7 ºC for each of them). Precipitation value in summer is about 14 mm.  The 

second zone has intermediate climate characteristics in compare with others: the 

temperature of the coldest month (December) is 6.7 ºC, the warmest month (July) hat  
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Figure 2-5: Climatic characteristics of the Spanish Dehesa 

(modified after ROIG et al. (2013) 

a) location of the tree climatic zones of Dehesa in Spain (green, yellow and pink patches); 

b) distribution of precipitation and mean temperature during the year at three climatic 

zones of the Spanish Dehesa. Bars show the standard deviation of the mean. 

 

a b 

Figure 2-4: Location of the Dehesa areas in the Iberian Peninsula 

(HORRILLO et al. 2016) 

Dehesa 
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mean temperature of 25.8 ºC. The driest month (July) has 6.0 mm of precipitation (ROIG 

et al. 2013). 

Holm oak (Figure 2-6a) is the dominant tree species of Dehesa: it is present in 84 

% of the woodlands (HUNTSINGER et al. 2013). As a typically for Mediterranean plants it 

is evergreen and resistant to drought.  Holm oak can reach a height 25-30 m with over 2 

m of trunk diameter. However, trees having this height are rare, usually they are up to 15 

m tall (TERRADAS 1999, DE RIGO & CAUDULLO 2016). Holm oaks are long-life trees: 

often they are over 300 years old (PLIENINGER et al. 2003). Holm oak forms a dense 

canopy during its slow growth and its stems are usually low. The crown is broad with 

ascending branches. Cracked into thin plates the bark has brownish-black color. The 

leaves are small, 3-7 cm long and their form is lanceolate to oval.  The upper side is dark 

green, while the lower side is covered by white hairs. The leaves have relatively small 

stomata (length is 22-27 µm). Chlorophyll content is high: it ranges from 600-700 mg m-

2 at the top of the canopy to 1000 mg m-2 at 3 m below the top (SABATÉ et al. 1999). 

Photosynthesis is highly dynamic throughout the year.  

The roots of holm oak are deep, consisting of a complex system of spreading 

lateral roots growing from a thick, sometimes massive root crow. Deep complex root 

system of oaks (the roots expand as much 25 times the canopy volume into the soil) covers 

a larger soil area, stores more water and obtains more nutrients in areas with wide spacing 

between trees. Thus, the effect of duration and intensity of tree water stress is reduced 

that eventually helps them to survive and keep ability to growth even during the drought 

period (TERRADAS 1999, MORENO et al. 2013). The peak of vegetative growth, as well as 

maximum leaf fall, occurs during the spring season between April-June.  

Holm oak is wind-pollinated tree. Flower buds and flowers appear mostly in May-

June and last until late July (Figure 2-6b). Mature and fall of acorns take place in 

November- January. Sweet acorns are used for human and animal consumption (Figure 

2-6c). Acorn production vary due to environmental factors, including rainfall and 

temperature, and biotic factors, such as birds, mammals and herbivores that eat or collect 

acorns (TERRADAS 1999, KOENIG et al. 2013).Holm oak is a hardwood tree, its wood is 

used for manufacturing of carpentry tools, parquets, etc. (TERRADAS 1999). 

Undercover is represented by annual grasses and other herbaceous species, 

common species are rockrose (Cistus spp.), leguminous brooms (Retama, Genista and 

Cytisus sp.), gorse (Ulex spp.) and heather (Erica sp.). In total Dehesa has more than 100 

species of herbaceous plants in 0.1 ha (DÍAZ 2009). DÍAZ (2009) concluded, that  
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Figure 2-7: Trees affect the understory: green grass beneath the canopies in dry 

season  

(Max Planck institute photo archive) 

Figure 2-6: Dehesa ecosystem  

(Max Planck institute photo archive) 

a) typical Dehesa ecosystem near Majadas de Tiétar covered by holm oak;  

b) flower buds of holm oak, c) acorns of the holm oak 

 

a b 

c 
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‘the richness of species tends to be higher in Dehesas than in other types of habitat either 

natural or man-made’. 

Soils were developed over acid slates and granites and characterized by low 

contents of organic matter, mineral nitrogen and available phosphorus (MORENO et al. 

2013). Spatial distribution of trees in open tree-grass ecosystems like Dehesa can be 

characterized as scattered. MANNING et al. (2006) demonstrated the keystone role of 

scattered trees for savanna ecosystems and summarized their functions at local and 

landscape scales.  Scattered trees influence water balance: complex root system storage 

the water during drought (SIMIONI et al. 2003). Trees influence the soil structure and 

composition. Recycling of leaf litter and circulation of the nutrients thought the deep root 

system makes soils beneath the canopy rich on organic matter, nutrients and water. This 

influence is proportional to the canopy projected area (JOFFRE & RAMBAL 1993, 

VALLADARES & PUGNAIRE 1999).  

The trees affect understory layer, its species composition and phenology (Figure 

2-7). The pants beneath the canopy have less light than in open areas: light reduction 

reaches 70 % close to trunks and decreases with the distance from the trunk (MONTERO 

et al. 2008). This light reduction play an important role during dry season protectiong the 

plants beneath the tree canopy from the overheating and damage of photosynthetic 

apparatus during high-light conditions (VALLADARES & PUGNAIRE 1999). Thus, the trees 

contribute to increase of pasture yield beneath the canopy. MARCOS et al. (2007) studied 

the effects of soil fertilisation on productivity of trees and grass. They showed the absence 

of any effect of soil fertilisation on nutrient status or acorn production of trees, while the 

productivity of understory increased. They concluded that tree-grass competition is 

limited. The grass takes nutrients from uppermost soil horizon, whereas complex deep 

root system of trees makes it possible to tap up nutrients from deeper soil layers.  Similar 

results were demonstrated by BELSKY (1994) for African savannas. His study suggested 

that the competition is less intense in dry zones, because of root distribution into open 

grassland, and more intense in wet areas, where roots of tree are concentrated close to 

canopies.  

Dehesas are a habitat for great number of birds and mammals.  Among them are 

European red deer (Cervus elaphus), wild boar (Sus scrofa), Iberian lynx (Lynx pardinus), 

rabbits (Oryctolagus cuniculus), hares (Lepus granatensis), redlegged partridges 

(Alectoris rufa), pigeons (Columba palumbus, C. oenas) (DÍAZ et al. 2013). Seed-

dispersing animals such as wood mouse (Apodemus sylvaticus) and Algerian mouse 
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(Mus spretus) as well as birds, e.g. Eurasian jay (Garrulus glandarius) helps regeneration 

of oaks through hoarding of acorns for their consummation (DÍAZ 2009). 
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3 Retrieval of vegetation structural parameters using LiDAR: state of 

the art 

Forest structural parameters; such as tree height, crown perimeter, crown area, diameter 

at breast height (DBH), tree density and canopy fraction; are not only the key forest 

inventory attributes. They are also important for studies of the biomass, biogeochemical 

cycles, ecological functioning, spatial heterogeneity, exchange between mass and energy 

and water budgets of a forest ecosystem (WIEZIK et al. 2011, GAITAN et al. 2014). LiDAR 

technology also allows accurate estimation of vegetation structural parameters, LAI and 

aboveground biomass in high-biomass ecosystems (LEFSKY et al. 2002).  

Terrestrial Laser Scanners (TLS) are common used for vegetation structure 

retrieval (BUCKLEY et al. 2008). TLS provide data with high point cloud density that 

allows retrieval of detailed 3D information on individual trees. There are various 

automatic data processing techniques that can be used to extract individual tree position, 

tree height, DBH and other forest structural parameters from LIDAR data. Many studies 

have reported the use of TLS for extraction of the main forest parameters.  

Tree top detection and delineation are necessary for collection of information 

about forest stands. Accurate delineation of trees is important for the estimation of main 

metrics of a tree such as tree height, crown perimeter, tree volume etc. Some researches 

based their approaches to detect single trees on the analysis of horizontal slices of LiDAR 

point clouds. For example, BIENERT et al. (2006) used slices that were extracted from the 

point cloud at the height 1.30 m. Fitting the circles into these slices at a given height 

allowed to detect the tree location. Given the increasing importance of this variable in 

defining further tree structural attributes, this algorithm has been implemented into 

AutoStemTM software (DASSOT et al. 2011). Different fitting approaches and detection 

approaches have been proposed during last decade. HOPKINSON et al. (2004) used a 

similar approach: slicing the point cloud data at different height of the trunk. The center 

of circle of points was defined as the tree stem. Identification of individual trees is also 

implemented by detecting local maxima in a Canopy Maxima Model (CHEN et al. 2006) 

or in a Digital Crown Height Model (KOCH et al. 2006).  

To delineate the trees CHEN et al. (2006) applied the watershed segmentation 

algorithm. The fundament of this algorithm is based on the representation a gray-scale 

image as a landscape model, where pixels with low values (basins) are isolated by pixels 

with high values (watershed) (VINCENT & SOILLE 1991, ROERDINK & MEIJSTER 2000). 

The tops of tree canopies are presented on Canopy Height Model (CHM) as the pixels 
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having maximum value. The delineation of tree canopies is implemented from inverted 

CHM, where the tree tops are represented via minimum pixel values, which correspond 

to the basins on landscape model (WANG et al. 2004) (this algorithm is presented in detail 

in methodology section of this thesis). KOCH et al. (2006) used pouring algorithm for tree 

delineation. This algorithm starts from local maxima (tree top) as center of grow and 

appends the neighboring pixels with the lower of the same height value. Overlapping 

regions became a tree crown boundary. POPESCU & ZHAO (2008) applied local maxima 

filtering to CHM in order of tree detection and delineation.  

WANG et al. (2008) presented an alternative approach to delineate the tree crowns 

based on voxelization of point cloud. The points from a normalized point cloud are 

resampled to a local voxel space where a 2D raster image is extracted. The pixels of the 

2D raster image have grey values that correspond to the number of points within the 

voxel. This allow tree crowns to be isolated based on brightness of the pixels (high 

brightness values representing a high point density is interpreted as a tree location.  

Different methods have been proposed to estimate tree height. For example, 

BIENERT et al. (2006) calculated the tree height as the height difference between the 

highest point of the point cloud of a tree and the terrain model. Alternatively, HOPKINSON 

et al. (2004)  estimated the tree height as the vector joining the lowest and highest 

elevation points within an individual tree point cloud. OLOFSSON et al. (2014) classified 

the whole point clouds of single trees into tree stem and tree canopy points and calculated 

height percentiles within the canopy point cloud.  The tree height was estimated as the 

100th height percentile. LEFSKY et al. (2002) pointed out two main difficulties by 

estimation of tree height: i) accurate determining the elevations in a terrain model using 

airborne LiDAR, ii) practical difficulties in detecting the upper layer of a tree canopy -  

for TLS. The largest uncertainties are associated with sites having dense understory, when 

sensor confounds the elevation of understory by the ground level. In addition, tree height 

may be also underestimated due to the widely observed of low point density of upper 

crown that complicates its accurate detection with a sensor.  

Another important tree variable is Diameter at the breast height (DBH). This 

parameter is commonly used in volume functions and in estimating growing stock, 

thinning and increment. Location of the breast height is at 1.3 m from the base point along 

the axis of the stem (GSCHWANTNER et al. 2009). Caliper and diameter tape are typical 

instruments for field measurements  (VAN LAAR & AKÇA 2007).  Some studies have 

reported the estimation DBH from laser scans. The most common approach to retrieve 

DBH is the fitting of a cylinder or circle to the LiDAR point’s slices (from now on we 
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refer it to as cuts) of individual trees. This approach is based on the assumption that a tree 

cut have a circular shape. BIENERT et al. (2006) used the fitting approach to estimate the 

DBH by the fitting circles into the 2D projection of the trunk cuts points. Following this 

approach,  HOPKINSON et al. (2004) selected all LiDAR points lay between 1.25 and 1.75 

m above the lowest point and fitted a cylinder primitive to the data as manner to retrieve 

DBH.  OLOFSSON et al. (2014) proposed so called the Random Sample Consensus 

(RANSAC) method, which models a tree stem as number of cylinders. Fitting the circles 

to the laser points of tree stem, which lie inside of the model, allows to estimate DBH. 

Alternatively, MOSKAL & ZHENG (2011) developed the point cloud slicing algorithm that 

applies 3-D cylinder to the cuts that have been voxelized before the fitting.  

These voxel-based algorithms are commonly used for estimating object volumes 

volume (MOSKAL & ZHENG 2011, HOSOI et al. 2013, BIENERT et al. 2014). The tree 

volume is obtained by integrating the volumes of all voxels (a.k.a. volumetric pixels) that 

represent the tree. Another method to estimate tree volume is via allometric equations, 

where tree volume is a function of different tree structural parameters. For example, 

POPESCU et al. (2004) used LiDAR-derived DBH and tree height to calculate individual 

tree volume. YAO et al. (2012) used crown area, tree height and crown height acquired 

from triangulated point cloud of single trees for the same purposes.  
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4 Methods 

To meet with the proposed objectives of the study the methodology and analysis 

performed are summarized in Figure 4-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Methodology workflow 

 (own illustration) 
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i. Evaluate and develop approaches for the retrieval- of structural parameters of 

vegetation (i.e. tree height, canopy projected area and perimeter, diameter at 

the breast height and canopy clumping index). 

TLS data were obtained from Majadas study site in Spain (39°56´024.68´´ N, 

5°45´50.27´´W; Majadas de Tiétar, Cáceres, Extremadura). After noise removal and 

normalization of TLS point clouds (preprocessing), a Canopy Height Model (CHM) was 

generated. The CHM provides the bases parameter estimates of the vegetation (canopy 

height, perimeter area, DBH and Ω) (Figure 4-2). The next step was the delineation of 

tree crowns, which allowed for the production of a shape file with the tree crown 

projections in the form of spatial polygons. The tree height was calculated from CHM as 

the highest pixel value within the canopy, while the crown projected area and the 

perimeter were obtained from the shape file. Given the observed inconsistences across 

the proposed methods, we test a new delineation-based approach for estimating DBH (see 

details below). On the other hand, we evaluate the sensitivity of the approach proposed 

by GARCÍA et al. (2015) in retrieving the Ω across a set of parameterizations. To this end, 

the Ω was calculated for 10 trees. 
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Figure 4-2: Tree structural parameters, obtained from TLS scans in this study  

(own illustration) 
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ii. Characterize structural properties of ecosystem. The spatial distribution of tree 

structural parameters and their biometrical relationships is evaluated  

A Monte-Carlo technique was used to randomly sample polygons. For each 

polygon, the average values of the main trees structural parameters, as well as canopy 

fraction and tree density were calculated. A 200 runs assured to cover the whole area 

under study (>35 ha). The degree of heterogeneity was studied from the distribution of 

the statistical properties extracted from the resampling analysis as well as the size of the 

polygons. To this end, the analysis was replicated with three different polygons sizes 

20x20m, 50x50m and 100x100m. For each set, we evaluate the biometric correlations 

across the structural parameters. 

4.1 Study site description 

The study site Majadas (Figure 4-3) is located in the west of Spain (39°56´024.68´´ N, 

5°45´50.27´´W; Majadas de Tiétar, Cáceres, Extremadura).  
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Figure 4-3: Study site location. Red triangles – EC towers  

(own illustration) 
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The ecosystem type is savanna, called Spanish Dehesa. Climate is Mediterranean, 

characterized by a hot and dry summer.  The annual precipitation value is 400–800 mm 

(falling mostly in spring and autumn) and mean annual temperature is 16°C.  The study 

site is dominated by grass layer (Vulpia bromoides (L.), Vulpia geniculate (L.), Trifolium 

subterraneum (L.), Ornithopus compressus (L.)) and wood vegetation is also present, i.e. 

evergreen and deciduous holm oak (Quercus ilex ballota) with low tree density (about 20 

trees per ha), average height of 8 m and 0.4 m DBH. Typically for Dehesas, Majadas is 

managed by low-intensity grazing (<0.3 cows per ha). 

Tree eddy-covariance towers are located on study site (main EC tower, north EC 

tower and south EC tower) and used for CO2, nitrogen and phosphorus measurements. 

Main tower (ES-LMa in FLUXNET) is a covariance FLUXNET site Majadas del Tietar 

and has been in operation since 2003. North and south towers (ES-LM1 and ES-LM2) 

have been operated since 2014. 

4.2 Data collection and preprocessing  

4.2.1 Data collection  

For ground-validation, we used a consistent data set containing field DBH measurements 

(more than 200 hundred trees were sampled) against compare the DBH estimates from 

the TLS scans.  Field data are presented in xlsx format. They included tree coordinates 

and DBH in cm obtained during the field campaign of 2015. The measurements were 

taken using tree caliper. The two measurements were taken perpendicular to each other 

and an average value recorded.  Additionally, six trees of NT site were chosen in order to 

validate the method of DBH estimation. Diameter was measured in March 2018 at three 

different heights with measure tape: at the breast height (1.30m above the ground), at low 

level (0.80 m above ground) and at the height of dendrometers mounted on these trees 

(every tree has its own dendrometer height, usually between 0.90 – 1.20m). The diameter 

was calculated from circumference divided by π. 

TLS data included three TLS point clouds acquired at Majadas in August 2016 

using Riegl VZ 2000 laser measurement system (Figure 4-4a,b). This system is 

characterized by a maximum range of 2000 m and a wide field of view of 100° vertically 

and 360° horizontally with  a measurement rate of up to 400000 measurements per second 

(RIEGL-LASER-MANAGEMENT-SYSTEMS-GMBH 2017).  

TLS scans (Figure 4-4c) covered the area of about 19ha around south EC tower 

(ST scan), 23 ha around north EC tower (NT scan) and 25 ha around main EC tower. Area 

around each EC tower was scanned from different scan locations: 36 scan locations for 
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MT scan, 40 – for NT and 37 - for ST site.  The scans have LAS file format, which is 

used to organize and systematize  large LiDAR data (SRINIVASAN et al. 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Preprocessing  

Preprocessing included noise removal and normalization of point clouds. Artificial 

objects such as flux-tower and fence were removed from the TLS data using Cloud 

Compare software. Mistake points (noise) were filtered from the scans using LAStools 

function lasnoise. This function creates a number of cells and looks for isolated points 

inside them according to user-defined criteria: cell size and maximal number of points for 

the cell. All the points, which amount in the cell is less than maximum threshold value, 

are removed. 

100° 

360° 

Figure 4-4: Data collection using TLS in Majadas study site  

a) process of measurements (photo by M. Migliavacca),  

b) Riegl VZ 2000 laser measurement system. Vertical field of view is 100 ˚, 

horizontal – 360 ̊  (modified after RIEGL-LASER-MANAGEMENT-SYSTEMS-GMBH (2017),  

c) TLS point cloud colored by elevation (own illustration) 
 

a 

b 

c 
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Normalization of point clouds was done using LAStools software via command 

line with a batch script. First, the points from a point cloud were classified into ground 

(class 2) and non-ground (class 1) points using the lasground tool. This tool generates a 

Triangulated Irregular Network (TIN) surface from below to the sub-randomly distributed 

laser points and collects statistics about the distance to the TIN facets and angles to the 

nodes (Figure 4-5). These statistics are used to select seed points of ground class (red 

points in the Figure 4-5 ). Then the tool adds additional points to the surface (blue points 

in the Figure 4-5)  using threshold values (AXELSSON 2000).   

Second, elevation above the ground was computed for each point and non-ground 

points were additionally classified to high vegetation (trees) using the lasheight tool. Then 

the point cloud was height-normalized (lasheight): the z-coordinate was corrected for 

ground level value, which means that all the ground points have an elevation of zero and 

all other points have an elevation that equals their height above (or below) the ground. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Lasground tool: principle of generating of Triangulated Irregular 

Network  

(Ludwig Boltzmann Institute 2018) 

Red points – seed points 

of ground class. 

Blue points – additional 

points of ground class.  

 

Thresholds: 

angles to the nodes, 

distance to the TIN facets 
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4.3 Retrieval of structural parameters  

4.3.1 DBH  

Most approaches for DBH estimation are based on the assumption that a tree cross section 

has a circular shape (PULKKINEN 2012). The most common method of DBH estimation is 

fitting a cylinder or circle primitive to the cut of the tree trunk’s point cloud at 1.3 m 

height (HOPKINSON et al. 2004, BIENERT et al. 2007, MOSKAL & ZHENG 2011, OLOFSSON 

et al. 2014). In this study, we developed and tested an approach for estimation DBH based 

on the delineation of point cloud cuts of tree trunks.  

Processing steps are shown in the Figure 4-6. A total of 36 trees were isolated 

from the denoised and normalized point cloud using LAStools: 16 from NT scan, 10 from 

MT scan and 10 from ST scan. Then, the points clouds were cleaned manually in Cloud 

Compare in order to remove the remaining understory vegetation. The point clouds of 

trees were then sliced at a height from 1.25 to 1.35 vertically above the lowest point in 

the file (LAStools). A slice thickness of 10 cm is commonly used for DBH retrieval from 

the laser data as it provides a sufficient number of points (BIENERT et al. 2007, 

SRINIVASAN et al. 2015). Additionally, the point clouds of six trees (NT scan) were sliced 

at the height from 0.75 to 0.85 m (named low level, LL) and at the dendrometer height 

(DH). The dendrometers are the instruments, which are mounted on the tree trunk for 

monitoring precisely small variations of the trunk size associated with tree growth or 

water storage measurements (DESLAURIERS et al. 2007). They are usually located close 

to the breast height. In our case DH varied from 0.88 to 1.20 m above the ground.  

The trunk cuts of each tree are presented as rings of TLS points. Subsequent 

processing was then implemented in command-line form using batch script. The 

LAStools lasboundary tool was applied to delineate each tree cut. This tool computes a 

boundary polygon which encloses the points. The controlling parameter is “concavity”: 

its value determines the minimum distance between points that fall into the generated 

spatial polygon. A concavity value of 0.15 was applied in this study: this value allows 

computing of closed ring-likely boundaries.  This result is a shape file for every tree, 

which contains a spatial polygon with an “interior” hole.   

The shapefiles were processed using SAGA GIS in batch script modus. Because 

the TLS points of tree cuts with different elevation values were projected into a 2D surface 

to get the closed ring-likely boundary of trunk cut, it is difficult to determine exactly 

where the ‘real’ boundary with the elevation 1.30 m is located. We assumed the location 

of this boundary is between the “interior” hole and the “exterior” polygon boundary. 
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Thus, it was decided to generate two polygons for every cut: the “interior” (from hole) 

and the “exterior” (from polygon boundary) and calculate the diameter as an average 

value of the two estimates. Finally, boundaries of these polygons were smoothed using 

Gaussian smoothing for better fitting of the real trunk cut form. Additionally, centroids 

for every polygon were found and saved in separated shape file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: DBH estimation from TLS scans  

(own illustration) 

a) TLS point cloud of a tree, red line on the trunk – location of the breast height (1.3 m);  

b) point cloud of trunk cut (up-down view); c) result of delineation;  

d) result of smoothing  

a 

b 

c d 
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For the further processing R-studio was applied with the packages “rgeos”, 

“rgdal” and “geophere”.  Diameters were calculated using two different methods, based 

on instrumental measurements manner: from circumference and as an average value of 

two taken perpendicular diameters. There are two commonly used field measurement 

methods: measuring with a tape or using a caliper (VAN LAAR & AKÇA 2007). In the case 

of tape measurement, DBH is calculated by dividing circumference by π. In the case of 

caliper, two measurements of diameter are taken and an average value is recorded. In our 

approach, for first calculation method (CM) perimeters of the “interior” and “exterior” 

polygons were divided by π and averaged. For the second method (PM) 10 randomly 

angled perpendiculars passing through the centroid were generated for each polygon 

(package ‘geosphere’), both “interior” and “exterior” (Figure 4-7).  Then the diameter 

was estimated as an average value of lengths of all perpendiculars. Results of the 

calculated diameters were validated against field measurements.  

 

 

 

 

 

 

 

 

 

 

   

4.3.2 Clumping index 

The clumping index (Ω) was determined using the approach proposed by GARCÍA et al. 

(2015). The method is based on the retrieval of the gap size distribution in a 3D voxel-

based model of a TLS point cloud of single trees.  GARCÍA et al. (2015) positioned the 

Figure 4-7: Calculation of diameter using random perpendicular diameters  

(own illustration) 

a) “exterior” (blue) and “interior” (red) polygons with perpendicular diameters, 

presenting trunk cut; b) random perpendiculars in “interior” polygon;  

c) random perpendiculars in “exterior” polygon 

a 

b 

c 
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TLS (Leica HDS-6000) under a tree canopy and scanned the tree twice from opposite 

placements.  They estimated Ω for four trees and compared TLS derived Ω with HP 

derived one. In our study we used scans from Riegl VZ 2000 TLS, where the instrument 

was positioned at different distances from the trees.  

We isolated the canopies of ten trees having a high point density from the 

normalized and noise-free point cloud (MT scan) in Cloud Compare.  Then, the point 

clouds were processed in Matlab using the code developed by Mariano García. First, the 

point clouds of tree canopies were voxelized. The concept of voxel model is shown in 

Figure 4-8. Voxels, or volumetric pixels, enclose laser points within 3D space. The 

LiDAR height bins are a 2D representation of voxels (POPESCU & ZHAO 2008).  

Then a binary image was generated for each height bin within the voxelized 

canopy. A value of 1 was assigned to occupied voxels and value of 0 – to non-occupied 

ones. Non-occupied voxels represent the gaps. To evaluate the effect of voxel size on 

clumping index different resolutions were applied: 5, 10, 15, 20 and 25 cm (Figure 4-9). 

The Ω was calculated for each height bin using Equation 2 and then averaged. Large gaps 

were removed to simulate a random canopy. 

The values of zenith angle were chosen following the study of GARCÍA et al. 

(2015): 30-60° and 55-60°. The range between 30-60˚ was used because the mean 

clumping index for this range and the mean clumping index for all zenith angles are 

similar. The range between 55-60˚ was chosen because at this range “the gap probability 

is nearly independent of the leaf angle distribution” (GARCÍA et al. 2015). 

 

 

 

 

 

 

 

 

 

Figure 4-8: The concept of height bins and LiDAR voxels  

(POPESCU & ZHAO 2008) 

a) laser point cloud in 3-D space, b) vertical distribution of laser points over a 2-D pixel, 

in height bins (voxels) of varied user-defined height. 
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4.3.3 Estimation of tree perimeter, area and tree height 

CHM is a base for tree delineation and estimation of structural parameters:  

maximum height, projected perimeter and projected area. To generate CHM an approach 

of KHOSRAVIPOUR et al. (2016) modified by  ISENBURG (2014) was applied. This 

approach allows creating pit-free canopy model. “Pits” are empty pixels in resulting raster 

(Figure 4-10) that hamper the subsequent analysis, e.g. single tree detection and 

delineation, computing of tree height, projected perimeter and other structural parameters 

(ISENBURG 2014).  

This algorithm uses an efficient combination of the blast2dem and lasgrid 

functions of LAStools. The algorithm consists of two steps. The first step is to keep only 

the highest returns due to Isenburg (lasthin) and interpolate them with a triangulated 

irregular network (TIN) and rasterize them into a grid (blast2dem) with a 5 cm pixel size 

to generate a standard CHM. Then, a number of partial CHMs are generated from highest 

returns on the same manner but below a certain height, so that each CHM represents only 

some higher part of the canopy (Figure 4-11).  Then, all these CHMs are combined 

Figure 4-9: An example of voxelization  

(own illustration) 

a) tree point cloud colored by elevation; b) point cloud after voxelization, voxel size 5 

cm; c) point cloud after voxelization, voxel size 25 cm. Voxels are colored by point 

density from low value (blue) to high value (red). 

a 

b c 
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together into one resulting CHM, presenting interpolated heights of all points in the 

canopy in the form of a raster with 5 cm pixel size (KHOSRAVIPOUR et al. 2016). The 

resulting standard and pit-free CHMs for the area around Main EC tower are shown in 

Figure 4-12 and Figure 4-13. Standard and pit-free CHMs for the area around North and 

South EC towers are presents in Appendix (Figure A-1 - Figure A-4).  

Tree crown delineation was carried out using an approach Segmentation with 

Distance-Transformed Image using watershed algorithm (CHEN et al. 2006). All the 

calculations were implemented in the command line using SAGA GIS in batch script 

modus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10:  Data “pits” in CHM  

(own illustration) 

a) fragment of general CHM with pits; b) fragment of pit-free CHM 

 

a b 

Figure 4-11: Diagram of pit-free algorithm methodology  

(KHOSRAVIPOUR et al. 2014) 

CHM00: all first returns (standard CHM with pits) 

CHM02: first returns with a height of 2 meter and above 

CHM05: first returns with a height of 5 meter and above 

CHM10: first returns with a height of 10 meter and above 

CHM15: first returns with a height of 15 meter and above 
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The idea of watershed algorithm is based on the landscape topography concept: 

watersheds divide the catchment basins filling up with the water (Figure 4-14). The 

Figure 4-12: Standard CHM: area around main EC tower  

(own illustration) 

Height above  
the ground 

Figure 4-13: Pit-free CHM: area around main EC tower  

(own illustration) 

Height above  
the ground 

Main EC 

tower 

Main EC 

tower 
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process begins from local minima and stopped when the water has reached the highest 

peak in the landscape. As a result, the landscape is segmented into basins isolated from 

each other by watersheds (ROERDINK & MEIJSTER 2000). The principle of a watershed 

algorithm for tree delineation is shown in Figure 4-15. A gray-scale image can be 

considered as a landscape model, where the gray tone of each pixel represents the 

elevation at the respective point (VINCENT & SOILLE 1991). The top of the tree has the 

maximum height inside of canopy and is represented on the image via pixel having 

maximum value (so-called local maxima). The inversion of the image converts the local 

maxima to local minima, which represents the basin on landscape model. The algorithm 

builds the watershed between the basins. Thus, the tree canopies on the resulting image 

are presented by closed contours, equivalent to water basins surrounded by watersheds  

(WANG et al. 2004).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4-14: Minima, catchment basins and watersheds  

(VINCENT & SOILLE 1991) 

Figure 4-15: An illustration of watershed segmentation algorithm 

(modified after: CHEN et al. (2006) 

 a) CHM.; b) the complement of the CHM, c) dams built at the divide line  
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A relatively flat Holm oak canopy hamper the detection of the highest top layer 

of the tree from CHM.  Therefore, the detection of the tree tops as local minima for 

application of watershed algorithm was obtained using distance transform of a binary 

image and taking into account the fact that the tree top is located typically around the 

center of the canopy. The Distance transform approach calculates the distance between 

each pixel and nearest non-zero pixels of the image and replace pixel value with distance 

value  (CHEN et al. 2006). 

CHM was loaded into SAGA GIS software as a grid containing values of height.  

The first step was to separate the canopy and background by creating a binary image, 

where all the background cells have value 1. Using a logical ifelse function, the cells 

having value smaller than 1 (1m elevation from ground) are masked with 1, other cells 

get value -99999 (no data in SAGA GIS environment).  The next step was to compute a 

Euclidian distance from each one-value pixel to the nearest one, so the resulting distance 

transformed image have the larger distance values for the crown center.  Then this image 

was inverted, so that the crown center has minimum values, and the background is no 

data. Then the SAGA GIS watershed algorithm was implemented. Segmentation results 

were saved as a shapefile with the polygons as tree crowns.  

The following issues were identified: 1. over-segmentation of some tree crowns, 

if there are more than two main branches. 2. under-segmentation of some trees having 

similar height in areas with high tree densities. Thus, the shapefile was cleaned manually 

using Qgis software.  

Trees at the edges of scans with the low point density causes unaccurate estimation 

of the tree parameters and propagate errors to the spatial analysis. Therefore, it was 

decided to focus on the area close to EC towers with high point density. Finally, three 

sites were produced and named according to EC towers and TLS scans: MT site, ST site 

and NT site (Table 4-1). The MT site is presented in Figure 4-16. The ST site and the NT 

site are shown in Appendix (Figure A-5 and Figure A-6). 

 

Table 4-1: Number of trees and area of each site 

 

Site Number of trees Area of site, ha  

MT site 260 12.8  

ST site 260 12.1 

NT site 298 14.9 
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Each tree in shape files received ID number and coordinates of canopy centroid. 

To calculate crown projection perimeter and area the “Calculate geometry” function of 

the Qgis software was applied. The maximum height was calculated from the standard 

CHM as a maximum pixel value inside of each tree crown polygon. For further spatial 

analysis, field measured DBH was assigned to each tree. 

4.4 Spatial analysis  

The shape file containing the delineated tree crowns and information about tree 

parameters was processed in R-Studio for spatial analysis (packages “sp”, “rgdal”, 

“rgeos”, “raster”). First, the shape file was converted to a raster brick. Raster brick is a 

multi-layer raster object. In our case the raster brick contains five raster layers, due to the 

number of fields in the shape file’s attribute table: perimeter, area, ID, max height, DBH 

(Figure 4-17a). The resolution of each raster layer is 5 cm.  Pixels related to the trees have 

values of correspondent attribute table’s field. The background pixels have no data values 

(NA). Finally, three raster bricks for each sites were generated. 

Figure 4-16: Result of trees delineation for MT site  

(own illustration) 

number of trees 260, area 12.8 ha 
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To extract the information about spatial distribution of tree structural parameters 

from the raster brick, a random sampling technique was applied. Sample spatial quadrate 

polygons were randomly generated for each study site (Figure 4-17b). Sample number 

and polygon size are:  

 for MT site 200 polygons of 100x100m, 200 polygons of 50x50m, 200 

polygons of 20x20m 

 for ST site 200 polygons of 100x100m, 200 polygons of 50x50m, 200 

polygons of 20x20m 

 for NT sit 200 polygons of 50x50m, 20x20m (polygon size 100x100m is 

not suitable for this site: some trees, located in the middle of site, were 

exclude from the study because of low point density of TLS point cloud) 

Figure 4-17: Random Sampling technique  

(own illustration) 

a) structure of raster brick; b) an example of 1ha polygons 

 

a b 
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The information was extracted from the raster brick as a large list containing pixel 

values from each raster layer for each sample polygon. For each polygon number of trees 

was calculated. For the trees located on the border of polygon the threshold value was 

applied: if more than 50% of tree pixel area was located out of the sample polygon, the 

tree was filtered out from this polygon.  

For each polygon mean values of area, perimeter, DBH and maximum height were 

calculated. Ecosystem structural parameters such as tree density and tree canopy fraction 

were also obtained from the data. Tree density was calculated according its definition: the 

number of trees per one ha. The number of trees within a polygon was divided by its area 

and multiplied by one ha. The canopy fraction was obtained in the following way: the 

polygon area occupied by trees was divided by whole polygon area. Areas within sites 

with trees having low point density on TLS scans were avoided by random sampling.  

To determine how tree structural parameters, tree density and canopy fraction 

relate to each other, simple correlation analysis (with the Pearson correlation coefficient) 

was applied to the results of the random sampling using RStudio.   
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5 Results 

5.1 Retrieval of structural parameters 

5.1.1 DBH  

Figure 5-1 demonstrates the relationships between the TLS-derived and measured DBH. 

Validation against field measurements indicates a high R2 value of 0.91 for the 

circumference calculation method CM (RMSE = 2.8 cm, n=36). Another calculation 

method (PM) showed a better accuracy in diameter prediction: R2 = 0.92, RMSE = 2.4 

cm. The proposed approach has a tendency to overestimate measured tree diameter, in 

particular CM method tends to overestimate diameter value more than PM calculation. 

At the same time, no significant differences were found between the diameters obtained 

at LL, DH or at the breast height. Our results suggest that the source of uncertainties is 

associated with irregular (non-circular) shapes of trunk cuts. This was further evaluated 

through a residual analysis where the residuals of DBH, obtained using PM method, were 

plotted against the standard deviation of 10 perpendicular diameters (Figure 5-2a). Based 

on visual inspection, the presence of some outliers is clear from this plot, which belong 

to the cuts with the highest standard deviation of perpendicular diameters. Note that a 

higher standard deviation of perpendicular diameters results from irregular shapes while 

a low value corresponds to cylindrical shapes. To better illustrate this, we have chosen 

four trunk cuts with the high residuals and one with low residual values and plotted their 

shapes (Figure 5-2b). The shape of the cuts with tree id “i-iv” is irregular, while the cut 

with id “v” is regular (circular). Comparison of diameter variation of these cuts shows 

that the diameter variation for irregular shape is significantly higher than one for irregular 

shape (Figure 5-2c). 
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DBH – diameter at the breast height 

DH – diameter at the dendrometer height 

LL –  diameter at the low level  

CM – method of diameter calculation from circumference 

PM – method of diameter calculation from randomly angled perpendiculars  

CM: R2=0.91   RMSE=2.8 cm 

PM: R2=0.92   RMSE=2.4 cm 

   DBH CM 

   DBH PM 

   DH CM 

   DH PM 

   LL CM 

   LL PM 

   1:1 Line 

   Fitted Line CM 

   Fitted Line PM 

 

Figure 5-1: Comparison between field measured tree diameter and TLS derived tree 

diameter  

(own illustration) 
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Figure 5-2: Tree diameter residuals and tree cuts shapes  

(own illustration) 

a) Scatter plot between residuals of DBH, obtained using PM method and standard deviation 

of the ten perpendicular diameters that were taken for each tree cut; b) shapes of trunk slices; 

c) comparison TLS-derived diameter distributions of selected trees 
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Tree diameter residuals as a function of standard 
deviation of the length of perpendiculars 

v 
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5.1.2 Clumping index  

 

Table 5-1 and Table 5-2 include the results of clumping index (Ω) calculated with voxel 

sizes from 5 to 25 cm and zenith angles ranges 30-60˚ and 55-60˚. Apparently, the Ω 

decreases with increasing voxel sizes for both zenith angle ranges.  For instance, the Ω 

for tree SAP4 decreases by 50%: 0.9416 for voxel size 5 cm to 0.2502 (Table 5-1) for 

zenith angle 30-60˚ and 0.8783 to 0.2027 for zenith angle 55-60˚ (Table 5-2). In common, 

the distribution of the Ω values for all trees for a voxel size 5 cm is narrower for a zenith 

angles 30-60˚ than for 55-60˚, whereas the distribution of Ω for 25 cm voxels is wider for 

30-60˚ (Figure 5-3).  

 

 

Table 5-1: Results of clumping index calculation for zenith angle range 30-60 degrees 

Tree ID Clumping index,  zenith angle 30-60 

voxel 5 voxel 10 voxel 15 voxel 20 voxel 25 

SAP1 0.9522 0.8207 0.7397 0.6415 0.5523 

SAP4 0.9416 0.7254 0.5261 0.3950 0.2502 

SAP5 0.9739 0.8824 0.7457 0.5566 0.4466 

SAP6 0.9426 0.7443 0.5470 0.4205 0.3462 

Pot1 0.9886 0.9359 0.8468 0.7284 0.6083 

Pot2 0.9880 0.9543 0.8920 0.8054 0.7340 

Pot3 0.9902 0.9589 0.8628 0.7019 0.5564 

Pot4 0.9807 0.9061 0.7695 0.5727 0.4221 

Pot5 0.9805 0.9086 0.7430 0.5636 0.4494 

Pot6 0.9681 0.8751 0.7252 0.5670 0.4773 

 

 

Table 5-2: Results of clumping index calculation for zenith angle range 55-60 degrees 

Tree ID 
Clumping index, zenith angle 55-60 

voxel 5 voxel 10 voxel 15 voxel 20 voxel 25 

SAP1 0.8965 0.6546 0.5708 0.4959 0.4251 

SAP4 0.8783 0.5981 0.3978 0.2896 0.2027 

SAP5 0.9342 0.7464 0.5842 0.4192 0.3340 

SAP6 0.7923 0.5944 0.4750 0.3783 0.3405 

Pot1 0.9590 0.8274 0.6843 0.5759 0.4717 

Pot2 0.9697 0.8631 0.7523 0.6602 0.6010 

Pot3 0.9446 0.7420 0.5359 0.3903 0.2953 

Pot4 0.9256 0.7391 0.5453 0.3996 0.2692 

Pot5 0.8982 0.6549 0.5113 0.4119 0.3543 

Pot6 0.9045 0.6189 0.4107 0.3173 0.2761 
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5.2 Spatial analysis 

Figure 5-4 shows the distribution of structural parameters of the 260 trees at the MT site. 

The projected perimeters of tree crowns vary from 31 m to 91m, projected areas – from 

34 to 237 m2. Tree height ranged from 5.4 m to 12 m. The observed DBH in 222 trees:  

spanned from 25 cm to 95 cm.  

The spatial distribution of structural parameters for NT and ST sites is shown in 

Figure 5-5 and Figure 5-6. Some trees (shown in white color) were excluded from the 

analysis when the point density of TLS scans were not sufficiently high for a good 

retrieval of tree parameters. The ST site includes 260 trees and the structural parameters 

were calculated for 235 trees. The tallest tree is 10.8 m, the shortest one is 7.3 m. The 

maximum projected perimeter is 75 m with an area of 160 m2. The minimum values are 

45 m and 65 m2 respectively.  Diameters were measured for 219 trees and vary from 21 

to 104 cm. Tree parameters were calculated for 298 trees of NT site (total number of trees 

is 337). Projected perimeter varies from 44 to 80 m, area from 64 to 170m2. Maximum 

tree height 10.3 m, minimum – 6.8 m. DBH was measured for 245 trees. Maximum value 

is 54, minimum - 22.5 cm. 

Figure 5-3: Results of clumping index calculation for different voxel sizes and 

zenith angle ranges 30-60˚ and 55-60˚  

(own illustration) 

Lines are coloured by tree ID 
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MT site 

 Main EC tower 100m 

Figure 5-4: Spatial distribution of structural parameters on MT site  

(own illustration) 

 white trees – no data. 
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 South  
EC tower 

ST site 

Figure 5-5: Spatial distribution of structural parameters on ST site  

(own illustration) 

 white trees - no data 
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NT site 

 North  
EC tower 

100m 

Figure 5-6: Spatial distribution of structural parameters on NT site  

(own illustration) 

white trees – no data 
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Structural parameters are not evenly distributed: there are areas with high and low 

tree densities. From the plot it is clear that the trees with small crown perimeters and areas 

are located in regions with height tree density while the larger crowns concentrated in low 

tree density spots. This confer the degree of heterogeneity of the Dehesa and the 

importance in considering the polygon sizes and number of sampling required for a good 

representativeness. 

Table 5-3 shows the average values together with standard deviation for each 

structural parameter and each plot size. Density distributions of tree structural parameters, 

tree density and tree canopy fraction are shown in Figure 5-7 and Figure 5-8. The 

histograms for each site and polygon size are presented in the appendix (Figure A-7 - 

Figure A-12).  In general, all variables followed a normal distribution and their average 

values do not vary significantly with the polygon size. However, the standard deviation 

increases with a decreasing in polygon sizes. The MT site has the following 

characteristics: mean tree perimeter vary from 55.28 ± 3.71 m to 56.75 ± 9.76 m due to 

size of polygon, mean area - from 99.56 ± 14.25 m2 to 104.41 ± 33.87 m2, mean maximum 

height – from 8.07 ± 0.51 m to 8.25 ± 1.15 m, mean DBH from 46.30 ± 3.38 cm to 47.05 

± 9.10 cm. Tree canopy fraction vary from 18.91 ± 4.84% to 19.36 ± 17.24 %, tree density 

– from 19.40 ± 5.82 trees per ha to 19.38 ± 17.62 trees per ha.  

 

Table 5-3: Results of random sampling 

 

Polygon 

size 

Mean 

Perimeter 

(m) 

Mean Area 

(m2) 

Mean Max 

Height (m) 

Mean DBH 

(cm) 

Mean Tree 

canopy 

fraction (%) 

Mean Tree 

density 

(n*ha-1) 

MT site: number of trees 260, sample size 200 

100 
55.28 

± 3.71 

99.56 

± 14.25 

8.07 

± 0.51 

46.30 

± 3.38 

18.91 

± 4.84 

19.40 

± 5.82 

50 
55.80 

± 6.22 

101.79 

± 21.41 

8.19 

± 0.75 

46.90 

± 5.40 

18.89 

± 7.79 

19.50 

± 9.66 

20 
56.75 

± 9.76 

104.41 

± 33.87 

8.25 

± 1.15 

47.05 

± 9.10 

19.36 

± 17.24 

19.38 

± 17.62 

ST site: number of trees 260, sample size 200 

100 
56.89 

± 2.93 

102.50 

± 9.85 

8.92 

± 0.45 

47.17 

± 3.93 

22.29 

± 3.39 

22.09 

± 4.77 

50 
59.68 

± 5.54 

110.60 

± 17.63 

9.17 

± 0.73 

48.35 

± 5.62 

23.15 

± 7.83 

21.68 

± 8.45 

20 
58.72 

± 9.77 

107.25 

± 31.23 

9.05 

± 1.17 

47.67 

± 10.99 

21.60 

± 20.27 

20.50 

± 18.55 

NT site: number of trees 298, sample size 300 

50 
62.93 

± 6.52 

120.90 

± 20.77 

8.65 

± 0.63 

47.85 

± 3.51 

22.79 

± 6.44 

19.35 

± 6.51 

20 
63.12 

± 9.58 

120.96 

± 32.09 

8.57 

± 1.02 

48.64 

± 6.48 

22.23 

± 19.61 

18.83 

± 16.72 
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Figure 5-7: Density distribution of tree structural parameters  

(own illustration) 

red line – MT site; blue line – ST site; green line – NT site; solid lines – mean values 
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On comparing the three eddy covariance sites under study, the trees at the MT site 

have larger canopies than the trees at the NT site: the mean perimeter of trees of NT site 

for 50x50 m polygon is 62.93 ± 6.52 m, area is 120.90 ± 20.77 m2, while trees of MT site 

are characterized by mean perimeter of 55.80 ± 6.22 m and area of 101.79 ±21.41 m2. At 

the same time, tree density is similar to the MT site: 19.35 ± 6.51 trees per ha. Trees at 

the ST are slightly taller:  mean maximum height is 8.92 ± 0.45 m (polygon size 100x100 

m). The ST site has the higher tree density: 22.09 ± 4.77 trees per ha. There does not 

appear to be any outliers, except for the distribution of tree canopy fraction and tree 

density for a 20x20 m polygon size. Because of the small size of polygon and relative low 

tree density, there are several sample polygons without any trees inside.  

Figure 5-9 shows the relationships between tree structural parameters, tree density 

and tree canopy fraction for all study sites. There is an expected strong correlation 

between mean perimeter and mean area (R=0.95), mean area and mean maximum height 

(R =0.88), mean perimeter and mean height (R =0.84) for the MT site.  

 

Figure 5-8.  Density distribution of ecosystem structural parameters  

(own illustration) 

red line – MT site; blue line – ST site; green line – NT site; solid lines – mean values 
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Figure 5-9: Relationships between tree and ecosystem structural parameters 

(own illustration) 

The matrixes present spearman correlation coefficients, colours indicate the strength of 

the correlation (dark blue for high positive correlation coefficients and dark red for low 

negative correlation coefficients).  

 

Legend: 

PE – mean perimeter 

AR- mean area 

max_HT –mean maximum height 

DBH – mean diameter at the 

breast height 

CF – mean canopy fraction 

TD- mean tree density 
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DBH is negatively correlated with canopy fraction and tree density, as well as with 

perimeter, area and tree height. Changing of the polygon size do not influence largely the 

strength of the relationships between tree height, area, perimeter and tree density.  In 

contrast, correlation between structural parameters and canopy fraction vary from very 

weakly negative for large polygon size to weakly positive for 20x20m size. Similar 

relationships are found for ST and NT sites. 
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6 Discussion 

6.1 Retrieval of structural parameters 

One of the aims of this study was the retrieval of structural parameters of vegetation (tree 

height, canopy projected area and perimeter, diameter at the breast height, canopy 

clumping index) in the Mediterranean savanna ecosystem using TLS.  

6.1.1 DBH  

We have developed an approach to estimate DBH from TLS scans, which is based on 

delineation of the point cloud of trunk cuts. Although the common approach to estimate 

DBH is the cylinder fitting method (MOSKAL & ZHENG 2011, SRINIVASAN et al. 2015) we 

have demonstrated that this method can be subjected to uncertainties associated with the 

irregular cut shapes. Our results revealed that the proposed approaches CM and PM 

methods largely reduced such uncertainties for irregular shapes, where larger 

discrepancies were found between observations and estimates (Figure 5-2a). The results 

obtained from TLS using this approach showed good agreement with field measurements. 

PM seems to be more accurate, though, there is no difference in accuracy between the 

two methods.  However, some factors influence the accuracy: i) the shape of trunk cut 

and ii) the point density of point cloud and slice thickness. 

We have found the shape of tree cut from TLS point cloud is a critical parameter 

for accurate DBH estimation. In this study the shape can be explained from the standard 

deviation of average length of random perpendicular diameters: regular-formed cut 

shapes have the lowest standard deviation, because the length of perpendicular diameters 

is almost equal, at the same time irregular shaped cuts show relative high standard 

deviations. The irregular cut shape is a result of irregular shape of tree trunks that in most 

cases can be explained by tree inclination, i.e. the tree trunk is not perpendicular to the 

ground. This effect has been associated with environmental conditions (wind), 

mechanical damage or the influence of pathogens. Another factor is tree age: old trees 

have common irregular cross section (PULKKINEN 2012).  

TLS point clouds of trees were sliced parallel to ground, while cross section of 

tree (even those that are tilted) is taken during field measurements perpendicular to the 

longitudinal axis of the trunk, i.e. regardless of slope to the ground. This can lead to a 

misrepresentation of cross section shape, e.g. an elliptical shape for a circular trunk cross 

section for non-vertical tree. This problem could be solved by rotating the point cloud of 

each tree to account for the inclination angle. However, this procedure is a higher 
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computational process that requires longer running times, especially in case of high tree 

count.  

Another confounding factor is the density of point cloud and slice thickness. 

Based on visual inspections of point cloud, we concluded that some trees had a 

heterogeneous density along the cuts with more points on the one sides and less on the 

another (a.k.a. TLS occlusions). Although an optimal number of scan positions would 

always reduce this issue, the occlusion problem could be solved by increase slice 

thickness. The slice thickness does not affect trees with straight stems, in the case of tilted 

stem, it might be a source of error. Nevertheless, the low tree density of Dehesas makes 

LiDAR application quite efficient. 

This study shows the ability of LiDAR to accurately determine the shape of cross 

section. This provides a means to evaluate potential pitfall of field techniques. For 

instance, BINOT et al. (1995) compared different measurement methods and concluded 

that the non-circular form of tree trunk cross section might be a reason for overestimation 

as compared to the use of tape, the diameter is determined from a measurement of the 

circumference, as “the circle is the geometric form with the shortest perimeter for a given 

area”. Additionally, PULKKINEN (2012) analyzed the influence of shape of the cross 

section on basal area estimation. She defined convex and non-convex closures of cross 

section concluding that diameter measurements with calipers or measure tape do not take 

in account convexity of the cross section and therefore, this kind of measurements leads 

to an overestimate of the basal area and tree volume in case of non-convex closure. In our 

study tree “i” in Figure 5-2b is an example of non-convex closure. TLS is able to 

determine the “real” non-concavity shape of cross section.  Therefore, estimation of cross 

section shape using TLS could be useful for dendromorphological studies of the influence 

of the cross sectional shape on estimations of basal area and tree volume without cutting 

a tree. Thus, LIANG et al. (2011) estimated the stem curve using TLS. Additionally, the 

standard deviation of perpendicular diameters, which are defined using PM calculation 

method, is an indicator of irregular shape of trunk cut, and, therefore, can be used for 

detection of inclined trees.  

6.1.2 Clumping index  

We have obtained the clumping index (Ω) from TLS scans using a novel approach 

proposed by GARCÍA et al. (2015). The main difference against the study by GARCÍA et 

al. (2015) lies on the fact that scans were performed with a different set up. We have 

demonstrated that the proposed method by GARCÍA et al. (2015) can be applied without 
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the need of taking the scans beneath the trees. This allows an optimal sampling rate for a 

given number of scans. In our case, we have demonstrated that with ~30 scans per site we 

were able to sample ~250 trees per site.  Regardless this consideration, the 3D structure 

of the LiDAR scans provided a good estimation of the canopy architecture, in our case – 

gaps in canopy, because the Ω was calculated based on the gap fraction distribution. In 

order to evaluate the effect of voxel size on Ω, TLS scans of isolated trees were voxelized 

using different voxel sizes. Our results showed that Ω increased with decreasing voxel 

sizes. That corresponds with the results reported by GARCÍA et al. (2015). They compared 

TLS- and HP-derived clumping indices in the same study site (Majadas) and concluded 

that there was better agreement with smaller voxel sizes. This is mostly explained by the 

extent on which the distribution of gap fractions can be accurately determined upon the 

voxel size (small voxel size has more ability to capture small gaps, GARCÍA et al. (2015)). 

In addition, our results showed that Ω was affected by the zenith angle. We used two 

zenith angle ranges to calculate Ω, i.e. 55-60˚ and 30-60˚. According to the proposed 

parametrization, the most accurate result in our study is presented for a voxel size of 5 

cm and a zenith angle range of 55-60˚. The calculated Ω values in 10 trees using these 

parameters were close to 1, which suggests a randomly distribution of the foliage 

elements inside the holm oaks canopies. 

It is worth remarking here that there are some factors affecting the accuracy of Ω 

estimation with TLS: i) high noise at the edges of canopy because of its movement during 

scanning (wind flow), ii) occlusions effect in the upper canopy together with iii) 

decreasing of point cloud resolution with increasing distance from sensor, which tends to 

overestimate the canopy gap fraction (GARCÍA et al. 2015).  

6.2 Spatial distribution of tree structural parameters and biometrical 

relationships 

The second objective of this research was to study the spatial distribution of the vegetation 

structural parameters estimated with TLS and their biometrical relationships.   

The manner that the respective parameters were spatially distributed was 

characterized using the probability distribution function obtained from the Monte Carlo 

analysis, which was used to evaluate the degree of heterogeneity upon the choice of the 

sampling areas. The results showed that the variables were normally distributed with the 

standard error associated with the sampling sizes. The normal distribution demonstrates 

a heterogeneity of structural properties of holm oaks for study area. With the reduction of 

polygon size spatial variability of these characteristics increases, that is demonstrated 
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especially well by polygon sizes of 20x20m. Thus, polygons with size 100x100m seemed 

to be too large to capture the whole spatial heterogeneity, whereas polygon sizes 50x50m 

are more suitable for this purpose.  

Additionally, we tested relationship between tree structural parameters and found 

that tree height is positively related to crown size (area and perimeter) and DBH: the 

higher trees, the larger tree crown and diameter. At the same time a negative correlation 

was found between estimated tree structural parameters and tree density/tree canopy 

fraction.  The trees with low DBH and smallest canopy size are concentrated in areas with 

high tree density, which indicates the presence of a competition between the trees. Our 

findings are in agreement with the research by SCHOLES & ARCHER (1997). They 

reviewed several studies of competition mechanisms in savannas. One of methods was to 

measure the spacing and size of trees. They showed a positive correlation between size 

of neighbouring trees and distance between them. In their research SCHOLES & ARCHER 

(1997) demonstrated self-thinning of trees in savannah as result of competition. They 

compared tree density in stands of trees having different age: young stands with small 

trees were characterized by higher tree density than older stands with large trees. Trees 

compete each other for water and nutrients and a clear spatial patterns is shown as a result 

soil moisture under tree canopies in areas with height density is lower due to an enhanced 

tree transpiration and rainfall interception (ANDERSON et al. 2001).  Additionally, 

PLIENINGER et al. (2003) showed that trees in Dehesa have diameters related to the 

openness of the surrounding area. Result of competition on areas with high tree density 

affects negatively tree production.  ABRAHAMSON & LAYNE (2003) showed lower acorn 

production of cork oak in stands with higher density and conversely trees in stands with 

lower density produced more acorn.  They concluded also that the stand diameter 

distribution is also likely to affect acorn production. GREENBERG (2000) had similar 

conclusions: the larger tree DBH, the higher tree production. 

We estimated tree canopy fraction based on tree delineation from CHM, i.e. 

elevation of canopies. LiDAR with its ability to capture 3D structure of an object has an 

advantage over optical sensors, as it is suitable for this purpose independently of the 

season, whereas the optical sensors focus on the spectral contrast between the trees and 

understory and are best utilized only in the dry season (CARREIRAS et al. 2006). The low 

tree density of study area allows one to delineate the trees accurately as there are fewer 

of the occlusion areas that are common for the areas with high tree density. However, the 

relative flat canopies of holm oaks complicate tree delineation. Further, noise in the data 

at the edge of canopies due to wind effects during measurement times may have an 
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influence on proper tree delineation and therefore perimeter and area estimation. 

Maximum tree height might be underestimated in case of TLS. Another problem of TLS-

data is the large size of scans (for example, the size of MT scan is about 6.5 GB), which 

complicates quality checking of scans and requires high computer memory resources.  

The spatial analysis provides valuable information could be useful for ecosystem 

research. Trees influence the soil structure and composition. Recycling of leaf litter and 

circulation of the nutrients thought the deep root system makes soils beneath the canopy 

rich in organic matter and nutrients (JOFFRE & RAMBAL 1993, VALLADARES & PUGNAIRE 

1999). In particular, soils beneath the canopy are characterized by higher carbon stock in 

comparison to soils under open areas (HOWLETT et al. 2011, SIMÓN et al. 2013). SIMÓN 

et al. (2013) demonstrated that the carbon stock is positively correlated to tree crown 

projection and assume the crown projection to be a mechanism of organic carbon storage 

in soils under canopy cover. Another important factor that helps the understory survive 

during the dry season is tree influence on water balance: complex root system store the 

water during drought (SIMIONI et al. 2003). The trees affect light reaching beneath the 

canopy. Light reduction play an important role during dry season: it protect the plants 

beneath the tree canopy from the overheating and damage of the photosynthetic apparatus 

from too much light (VALLADARES & PUGNAIRE 1999). However, light reduction reaches 

70% close to trunks, that can have negative effect on the photosynthesis of the understory 

plants (MARCOS et al. 2007, MONTERO et al. 2008).   
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7 Conclusions 

We have demonstrated the ability of the TLS technique to retrieve trees structural 

parameters (DBH, clumping index, canopy projected perimeter, canopy projected area 

and tree maximum height) and their spatial distribution in a heterogeneous Mediterranean 

ecosystem characterized by sparse trees. 

We have developed an improved approach to determine DBH from the delineated 

cuts of tree trunk point cloud. The two calculation methods were used: the first one is 

based on perimeter of cut (CM), while the second one is based on the on average value 

of random perpendicular diameters (PM). The PM method allows more accurate DBH 

estimates from TLS scans: the results showed very good agreement with field 

observations (r2= 0.92, RMSE = 2.4 cm). Residuals analysis revealed that factors, such 

as a tree inclination (which led to asymmetrical shapes of the cuts) and a low point density 

of the TLS point cloud are important source of uncertainties, e.g. the irregular shape of a 

cut can lead to residuals up to 5 cm. The proposed approach can be further improved 

using geometrical functions and aid to reduce the uncertainty related to tree inclination.  

We used the method proposed by GARCÍA et al. (2015) to determine the clumping 

index (Ω) in a larger number of trees with different sizes and measurement setups (i.e. 

instruments positioned at different target distances to the trees). Our results were 

consistent with the results reported by GARCÍA et al. (2015): Ω was shown to be affected 

by the choice of critical parameters such as the voxel size and the zenith angle range. 

According to the proposed parameterization (a voxel size of 5 cm and a zenith angle range 

of 55-60˚), the value of Ω was close to 1, which suggests a randomly distribution of the 

foliage elements inside the holm oaks canopies. 

Additionally, a random sampling technique was applied to describe the spatial 

distribution of the structural properties of the oak trees derived from the CHM. Although 

the mean of the main variables did not vary significantly upon the choice of the spatial 

polygon size, the results demonstrated that spatial variability is poorly captured with 

polygon sizes higher than 50x50m.  

Our results also revealed the presence of a positive correlation between tree 

structural parameters among all polygon sizes: the higher trees, the larger tree crown and 

diameter (e.g. for maximum height and tree perimeter R=0.73 and R= 0.84 for polygon 

size 20x20m and 100x100m respectively). At the same time a negative correlation was 

obtained between estimated tree structural parameters and the spatial distribution of 

ecosystem properties (tree density and canopy fraction). The trees with low DBH and 

small canopy size were observed in areas with high tree density, which suggests the effect 
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of the competition between trees (correlation between tree structural properties and tree 

density stay negative with changing polygon size). 

This study can be further applied for ecological modelling (e.g. half-hourly 

footprints of EC towers) and forestry inventory (tree volume and biomass accounting). 

TLS-derived vegetation parameters might be used for estimation biophysical properties 

of vegetation within half-hourly footprints of EC towers, since spatial variability of 

biophysical properties affects the uncertainty of the flux measurements (EL-MADANY et 

al. 2018). Important inventory parameters, such as tree volume and biomass can be 

quantified from allometric equations, which are parameterized with TLS-derived 

structural vegetation properties (e.g. DBH). 
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Figure A-1: Standard CHM: area around north EC tower  

(own illustration) 

Figure A-2: Pitt-free CHM: area around north EC tower  

(own illustration) 
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Figure A-4: Pit-free CHM: area around south EC tower  

(own illustration) 
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Figure A-3: Standard CHM: area around south EC tower  

(own illustration) 
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Figure A-5: Result of trees delineation for MT site  

(own illustration)  

 

Figure A-6: Result of trees delineation for NT site 

(own illustration) 
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Figure A-7: Distribution of mean perimeter 

(own illustration) 

red line – mean value; green line – standard deviation; blue line – density curve 
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Figure A-8: Distribution of mean area  

(own illustration) 

red line – mean value; green line – standard deviation; blue line – density curve 
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Figure A-9: Distribution of mean DBH  

(own illustration) 

red line – mean value; green line – standard deviation; blue line – density curve 
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Figure A-10: Distribution of mean maximum height  

(own illustration) 

 red line – mean value; green line – standard deviation; blue line – density curve 
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Figure A-11: Distribution of Tree density  

(own illustration) 

 red line – mean value; green line – standard deviation; blue line – density curve 
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Figure A-12: Distribution of mean perimeter  

(own illustration) 

 red line – mean value; green line – standard deviation; blue line – density curve 
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