Cell Reports, Volume 23

Supplemental Information

Volume EM Reconstruction of Spinal Cord Reveals Wiring Specificity in Speed-Related Motor Circuits

Fabian N. Svara, Jörgen Kornfeld, Winfried Denk, and Johann H. Bollmann

1 MMNs are maximally recruited at maximal speeds (compare Fig. 1a, b). That is, it must be possible for $\mathrm{D}-\mathrm{CiD} \rightarrow \mathrm{MMN}+$ Disp.-CiD $\rightarrow \mathrm{MMN}$ to sum to \square, therefore D-CiD/Disp.-CiD \rightarrow MMN cannot be ($\square / 0$), ($0 / \square$), ($0 / _$) , ($\quad / 0$) or ($0 / 0$).

2 The population firing rate of MMNs does not yet reach maximal levels when only V-CiDs or D-CiDs are maximally recruited (compare Fig. 1a, b), i.e. V-CiD \rightarrow MMN and $\mathrm{D}-\mathrm{CiD} \rightarrow \mathrm{MMN}$ are not \square.

3 LMNs are maximally recruited at maximal speeds (compare Fig. 1a, b). That is, it must be possible for D-CiD \rightarrow LMN + Disp.-CiD \rightarrow LMN to sum to \square, therefore $\mathrm{D}-\mathrm{CiD} / \mathrm{Disp} .-\mathrm{CiD} \rightarrow \mathrm{LMN}$ cannot be ($\square / 0$), ($0 / \square$), ($0 / \square$), ($\quad / 0$) or ($0 / 0$).

4 LMNs are not recruited maximally at 40 Hz (compare Fig. 1a, b), i.e. D-CiD \rightarrow LMN $\neq \square$.

5 LMNs are not recruited below 40 Hz (compare
Fig. 1a, b) i.e. V-CiD \rightarrow LMN cannot be \square or \square.

Figure S1. Exclusion of potential wiring models by physiological arguments. Related to Figure 6 (Legend on next page)

Figure S1. Exclusion of potential wiring models by physiological arguments. Related to Figure 6
Enumeration of all potential wiring models between CiDs ($\mathrm{V}-\mathrm{CiDs}, \mathrm{D}-\mathrm{CiDs}$ and displaced CiDs) and MNs (medium and large). Entries in each box indicate for a given CiD population, to what degree its recruitment alone would evoke spiking activity in a typical MN in the MMN or LMN class.
It is assumed that: MN synaptic input from recruitment of the V-CiD population is maximal in the $25-35 \mathrm{~Hz}$ band with negligible input from dorsal CiDs; MN synaptic input from recruitment of D -CiDs predominates in the 40-60 Hz band with increasing contribution from displaced CiDs; and MN synaptic input from D-CiDs and displaced CiDs is maximal in the $60-80 \mathrm{~Hz}$ band, when both of these CiD types are maximally active. An empty box indicates there is no synaptic connection. A white horizontal bar (ص) indicates the MN receives, from a given CiD population, synaptic input that is nonzero, but too weak to trigger action potentials when active alone ("weak"). A white square (\square) indicates that the MN receives input from a CiD population that is sufficiently strong to trigger action potentials alone, but not at the maximal firing reliability of 100%, i.e. at least one spike in phase with each (fictive)
tail bend (McLean et al., 2008) ("strong"). A gray square (\square) indicates that synaptic input from a given CiD population is, alone, strong enough to drive the MN at maximal firing reliability of 100% ("saturating"). A saturating connection means that the maximal firing rate of the motoneuron is reached, which may or may not coincide with a saturating excitatory current.
Red crossed out models are incompatible with physiological prior knowledge based on the arguments \#1-\#5. Note: The V-CiDs are the only CiD-type active at slow frequencies ($<30 \mathrm{~Hz}$), which suggests that their connectivity to MMNs cannot be zero or subthreshold. However, a distinct population of excitatory commissural interneurons active at very slow speeds (MCoDs) could provide synaptic drive in the range 15-40 Hz (McLean et al., 2008), which is why we cannot rule out zero or weak connections between V -CiDs and MMNs based on physiology.

Figure S2. Exclusion of potential wiring models by connectivity arguments. Related to Figure 6
All models that remained after exclusion by physiological arguments (Supplemental Fig. S1). Blue crossed out models are incompatible with our connectivity results (due to arguments \#6-\#12). The remaining models are compatible both with physiology and with our wiring data, and cannot be distinguished further based on wiring alone.

Figure S3. Properties of CoBL synapses by dorso-ventral soma position. Related to Figure 7
(A) Synapse count $v s$. CoBL soma dorso-ventral position.
(B) Mean synaptic contact area per MN $v s$. CoBL soma dorso-ventral position.
(C) Mean synaptic contact area per synapse $v s$. CoBL dorso-ventral position. Correlation and significance refers to Pearson's correlation coefficient.

A

B

Figure S4. Correlation of number and total area of synapses between different interneuron types (CiDs, CoBLs) and MNs. Related to Figure 5 and Figure 7
Count of synaptic contacts $v s$. summed synaptic contact area between an interneuron and a MN for (A) all pairs of CiDs and MNs, and (B) all pairs of CoBLs and MNs. r- and p-values refer to Pearson's correlation coefficient.

SUPPLEMENTAL REFERENCES

Supplemental Acknowledgments

We thank the following annotators for contributing neuron reconstructions: E. A. Boasiako, A. Bamberg, I. Bartsch, E. Bau, J. Bauer, A. Becker, J. Benzinger, A. Biswas, M. Bochenek, G. Boeing, A. Brings, A. Buntjer, K.

Bustamente, K. Böhm, V. Chevyreva, M. Cieciera, R. Dietrich, S. Dorkenwald, W. Dürichen, K. Eckel, J.-D. Eckert, N. Engler, R. Erich, K. Ernst, L. Felgner, A. Fischer, K. Fischer, S. Flassbeck, S. Frei, S. Fried, S. Gippert, R.-I. Glavan, F. Golibrzuch, K. Gundel, M. Hanelt, W. Hartmann, K. Hasch, S. Hendricks, J. Herrmann, S. Hess, M. Heumannskaemper, T. Hondrich, L. Hornung, P. Hottinger, U. Häusler, F. Hüting, F. Inturrisi, K. Juaire, E. Kang, H. Kettner, B. Khakimov, S. Klaus, R. Knorr, C. Koellen, S. Kwakman, H. Landerer, L. Lehmann, J. Lehmann, B. Lohrer, M. Lütge, M. Mastall, C. Mauch, L. Merz, J. Meyer, N. Münster, N. Nasresfahani, A. Ochs, S. Oumohand, B. Peter, M. Pohrath, M. Prokscha, S. Rafique, A. Reiling, T. Reimann, M. Reinert, M. Rimmler, L. Riso, M. Salem, V. Saratov, V. Sauer, S. Schaffer, L.-M. Schmitt, L. Schubert, R. Schumann, C. Schönfeld, M. Sebastian, E. Serger, J. Sieber, S. Simon, R. Specht, A. Steinmann, S. Tamyalew, K. Tessmer, D. Ulmer, F. Viehweger, J. Walden, N. Waltrich, A. Weber, J. Weber, M. Werr, K. Wiegert, M. Witzenberger, P. Worst, A. Zegarra, T. Ziegler and K. Ziegler.

