Cell Reports, Volume 23

Supplemental Information

Volume EM Reconstruction of Spinal Cord Reveals

Wiring Specificity in Speed-Related Motor Circuits

Fabian N. Svara, Jörgen Kornfeld, Winfried Denk, and Johann H. Bollmann

- **1** MMNs are maximally recruited at maximal speeds (compare Fig. 1a, b). That is, it must be possible for D-CiD → MMN + Disp.-CiD → MMN to sum to \square , therefore D-CiD/Disp.-CiD → MMN cannot be $(\square / 0), (0 / \square), (0 / \square), (\square / 0) or (0 / 0).$
- 2 The population firing rate of MMNs does not yet reach maximal levels when only V-CiDs or D-CiDs are maximally recruited (compare Fig. 1a, b), i.e. V-CiD → MMN and D-CiD → MMN are not ■.
- 3 LMNs are maximally recruited at maximal speeds (compare Fig. 1a, b). That is, it must be possible for D-CiD \rightarrow LMN + Disp.-CiD \rightarrow LMN to sum to \blacksquare , therefore D-CiD/Disp.-CiD \rightarrow LMN cannot be (\Box / 0), (0/ \Box), (0/ \Box), (\ominus / 0) or (0/ 0).
- 4LMNs are not recruited maximally at 40 Hz (compare Fig. 1a, b), i.e. D-CiD → LMN ≠ □.
- 5 LMNs are not recruited below 40 Hz (compare Fig. 1a, b) i.e. V-CiD → LMN cannot be □ or ■.

Figure S1. Exclusion of potential wiring models by physiological arguments. Related to Figure 6 (Legend on next page)

Figure S1. Exclusion of potential wiring models by physiological arguments. Related to Figure 6

Enumeration of all potential wiring models between CiDs (V-CiDs, D-CiDs and displaced CiDs) and MNs (medium and large). Entries in each box indicate for a given CiD population, to what degree its recruitment alone would evoke spiking activity in a typical MN in the MMN or LMN class.

It is assumed that: MN synaptic input from recruitment of the V-CiD population is maximal in the 25-35 Hz band with negligible input from dorsal CiDs; MN synaptic input from recruitment of D-CiDs predominates in the 40-60 Hz band with increasing contribution from displaced CiDs; and MN synaptic input from D-CiDs and displaced CiDs is maximal in the 60-80 Hz band, when both of these CiD types are maximally active. An empty box indicates there is no synaptic connection. A white horizontal bar (=) indicates the MN receives, from a given CiD population, synaptic input that is nonzero, but too weak to trigger action potentials when active alone ("weak"). A white square

 (\Box) indicates that the MN receives input from a CiD population that is sufficiently strong to trigger action potentials alone, but not at the maximal firing reliability of 100%, i.e. at least one spike in phase with each (fictive)

tail bend (McLean et al., 2008) ("strong"). A gray square (\blacksquare) indicates that synaptic input from a given CiD population is, alone, strong enough to drive the MN at maximal firing reliability of 100% ("saturating"). A saturating connection means that the maximal firing rate of the motoneuron is reached, which may or may not coincide with a saturating excitatory current.

Red crossed out models are incompatible with physiological prior knowledge based on the arguments #1 - #5. Note: The V-CiDs are the only CiD-type active at slow frequencies (<30 Hz), which suggests that their connectivity to MMNs cannot be zero or subthreshold. However, a distinct population of excitatory commissural interneurons active at very slow speeds (MCoDs) could provide synaptic drive in the range 15-40 Hz (McLean et al., 2008), which is why we cannot rule out zero or weak connections between V-CiDs and MMNs based on physiology.

	А	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	
LMN MMN	7896	98106	896	896		896	896		8106	86	86		86	86	1
LMN MMN	796	96	96	96		96	96		6						2
LMN MMN	7896	81096	896	896		896	896				86		86		3
LMN MMN	7896	81096	896	896		896	896				86		86		4
LMN MMN	796	96	96	96		96	96								5
LMN MMN	796	9106	96	96		96	96								6
LMN MMN	7896	81096	896	896		896	896			86	86		86	86	7
LMN MMN	78912	9810													8
LMN MMN		9	9	9		9	9								9
LMN MMN	789			89		89	89						8		10
LMN MMN	789		89												11
LMN MMN	79	9	9	9			9								12
LMN MMN			9				9								13
LMN MMN			89				89								14
LMN MMN		981012								812					15
LMN MMN				912											16
LMN MMN															17
LMN MMN															18
LMN MMN		9	9	9		9	9								19
LMN MMN			9												20
LMN MMN															21
	- 7 '0' '0'	2,00	2000	200	, 7 080	200	- 7 G	, , , , , , , , , , , , , , , , , , ,	- 7 9	, , , , , , , , , , , , , , , , , , ,	300	- 7 . 		1 2 3	

 $\textbf{6} \text{ V.-CiD} \rightarrow \text{MMN} \neq 0$

 $\fbox{T} D.\text{-CiD} \rightarrow LMN \neq 0$

9 V.-CiD \rightarrow LMN \neq 0

[10] The contact area from Disp. CiDs to LMN is much larger than that onto MMN (by a factor of 42, compare Fig. 6D). If, despite of this, Disp. CiD → LMN has to be subthreshold with Disp. CiD → MMN being suprathreshold, the ratio between the LMN firing threshold and the MMN firing threshold would have to be unrealistically large (compare Menelaou et al., 2012). Therefore, Disp. CiD → $\begin{bmatrix} LMN \\ mM \end{bmatrix}$ cannot be $\begin{bmatrix} -1 \\ mm \end{bmatrix}$ or $\begin{bmatrix} -1 \\ mm \end{bmatrix}$.

 $\label{eq:constraint} \begin{array}{l} \fbox{11} \quad D.-CiD \rightarrow LMN \leq Disp.-CiD \rightarrow LMN, \ therefore \\ D-CiD/Disp. \ CiD \rightarrow LMN \ cannot \ be \ (\Box/\Box). \end{array}$

 $\label{eq:V-CiD} \hline U.-CiD → MMN ≈ D.-CiD → MMN (≠ 0), therefore V-CiD/D-CiD → MMN cannot be$ (¬/ 0), (¬/ 0) or (¬/ ¬).

Figure S2. Exclusion of potential wiring models by connectivity arguments. Related to Figure 6 (Legend on next page)

Figure S2. Exclusion of potential wiring models by connectivity arguments. Related to Figure 6

All models that remained after exclusion by physiological arguments (Supplemental Fig. S1). Blue crossed out models are incompatible with our connectivity results (due to arguments #6 - #12). The remaining models are compatible both with physiology and with our wiring data, and cannot be distinguished further based on wiring alone.

(A) Synapse count vs. CoBL soma dorso-ventral position.

(B) Mean synaptic contact area per MN vs. CoBL soma dorso-ventral position.

(C) Mean synaptic contact area per synapse *vs*. CoBL dorso-ventral position. Correlation and significance refers to Pearson's correlation coefficient.

Count of synaptic contacts *vs.* summed synaptic contact area between an interneuron and a MN for (A) all pairs of CiDs and MNs, and (B) all pairs of CoBLs and MNs. r- and p-values refer to Pearson's correlation coefficient.

SUPPLEMENTAL REFERENCES

Supplemental Acknowledgments

We thank the following annotators for contributing neuron reconstructions: E. A. Boasiako, A. Bamberg, I. Bartsch, E. Bau, J. Bauer, A. Becker, J. Benzinger, A. Biswas, M. Bochenek, G. Boeing, A. Brings, A. Buntjer, K. Bustamente, K. Böhm, V. Chevyreva, M. Cieciera, R. Dietrich, S. Dorkenwald, W. Dürichen, K. Eckel, J.-D. Eckert, N. Engler, R. Erich, K. Ernst, L. Felgner, A. Fischer, K. Fischer, S. Flassbeck, S. Frei, S. Fried, S. Gippert, R.-I. Glavan, F. Golibrzuch, K. Gundel, M. Hanelt, W. Hartmann, K. Hasch, S. Hendricks, J. Herrmann, S. Hess, M. Heumannskaemper, T. Hondrich, L. Hornung, P. Hottinger, U. Häusler, F. Hüting, F. Inturrisi, K. Juaire, E. Kang, H. Kettner, B. Khakimov, S. Klaus, R. Knorr, C. Koellen, S. Kwakman, H. Landerer, L. Lehmann, J. Lehmann, B. Lohrer, M. Lütge, M. Mastall, C. Mauch, L. Merz, J. Meyer, N. Münster, N. Nasresfahani, A. Ochs, S. Oumohand, B. Peter, M. Pohrath, M. Prokscha, S. Rafique, A. Reiling, T. Reimann, M. Reinert, M. Rimmler, L. Riso, M. Salem, V. Saratov, V. Sauer, S. Schaffer, L.-M. Schmitt, L. Schubert, R. Schumann, C. Schönfeld, M. Sebastian, E. Serger, J. Sieber, S. Simon, R. Specht, A. Steinmann, S. Tamyalew, K. Tessmer, D. Ulmer, F. Viehweger, J. Walden, N. Waltrich, A. Weber, J. Weber, M. Werr, K. Wiegert, M. Witzenberger, P. Worst, A. Zegarra, T. Ziegler and K. Ziegler.