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Abstract
Purpose of Review Global cloud-resolving models (GCRMs) are a new type of atmospheric model which resolve nonhydrostatic
accelerations globally with kilometer-scale resolution. This review explains what distinguishes GCRMs from other types of
models, the problems they solve, and the questions their more commonplace use is raising.
Recent Findings GCRMs require high-resolution discretization over the sphere but can differ in many other respects. They are
beginning to be used as a main stream research tool. The first GCRM intercomparison studies are being coordinated, raising new
questions as to how best to exploit their advantages.
Summary GCRMs are designed to resolve the multiscale nature of moist convection in the global dynamics context, without
using cumulus parameterization. Clouds are simulated with cloud microphysical schemes in ways more comparable to obser-
vations. Because they do not suffer from ambiguity arising from cumulus parameterization, as computational resources increase,
GCRMs are the promise of a new generation of global weather and climate simulations.

Keywords Global cloud-resolving model . Cloud microphysics scheme . Cumulus parameterization . Deep convection .

Convective aggregation .Multiscale structure

Introduction

Global cloud-resolving models (GCRMs) are a new category
of atmospheric global models designed to solve different
flavors of the nonhydrostatic equations through the use of
kilometer-scale global meshes. GCRMs make it possible to
explicitly simulate deep convection, thereby avoiding the
need for cumulus parameterization and allowing for clouds
to be Bresolved^ by microphysical models responding to
grid-scale forcing. GCRMs require high-resolution
discretization over the globe, for which a variety of mesh
structures have been proposed and employed. The first

GCRM was constructed 15 years ago [1], and in recent years,
other groups have also begun adopting this approach, enabling
the first intercomparison studies of suchmodels. Because con-
ventional general circulation models (GCMs) suffer from
large biases associated with cumulus parameterization (e.g.,
[2]), GCRMs are attractive tools for researchers studying
global weather and climate. In this review, GCRMs are de-
scribed, with some emphasis on their historical development
and the associated literature documenting their use. The ad-
vantages of GCRMs are presented, and currently existing
GCRMs are listed and described. Future prospects for
GCRMs are also presented in the final section.
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What Is in a Name?

The term BCloud-ResolvingModel̂ orCRM, a term that emerged
in the late 1980s (e.g., [3]) andwhich became popularized through
the strategy proposed by the GEWEXCloud System Study [4–6],
is loosely used to refer to models to study the statistical proper-
ties of cloud systems. The initialism C-R-M is often used syn-
onymously with the phrases Bcumulus ensemble model^—a
phrase which predates it [7, 8]—or Bcloud system resolving
model,^ phrases introduced with the aim of distinguishing
models designed to study the statistics of clouds, from models
developed to study the transient dynamics of a single cloud.

No consensus has emerged as to the resolution at which a
model can be considered cloud-resolving, but typical grid-
resolutions are informed by early studies with a (single) cloud
model and which suggest that models with grid spacings of
about 1 km begin to resolve many important features of con-
vection. For instance, [9] used the mesh size of 100 m in the
horizontal and vertical directions, to simulate a cloud bubble;
likewise, [10] used 1 km horizontal spacing to study convective
bubbles in three dimensions. Later, [11] chose 1 km for the
horizontal and 500 m for the vertical grid intervals for simula-
tions of convective storms and hence cloud systems. Early
cloud-scale models in cloud physics research have used similar
range of the resolutions: [12] chose 3.2 km for the horizontal
and 0.7 km for the vertical grid intervals; [13] used 0.6 km for
the horizontal and 0.25 km for the vertical grid intervals at the
finest; and [14] set 0.375 km for the horizontal and 0.25 m for
the vertical grid intervals. Later studies, involving more system-
atic comparisons of different resolutions (e.g., [15–17]), support
the kilometer-scale premise of these early studies.

An important step forward in the evolution of cloud-
resolving models took place in the late 1980s and 1990s when
increasing computational resources made it possible to simu-
late larger domains (in three-dimensional configuration with
several hundreds of kilometers) and longer integration periods
(with several days) and thereby supplement idealized simula-
tions of individual clouds and cloud ensembles by simulations
of observed events, forced by field observations over realisti-
cally configured domains [18–21]. This approach was espe-
cially important for, and gained momentum from, the
GEWEX Cloud Systems Studies framework [6].

The ability to simulate over larger domains without
compromising on resolution also emboldened idealized stud-
ies over longer periods of times. Examples of the application
of CRMs for this purpose included their use for radiative-
convective equilibrium (RCE) simulations, first in two dimen-
sions with a mesh of 1 km [22] and later in three dimensions
with a somewhat coarser (3 km) mesh [23]. More recent stud-
ies of RCE have used even larger domains, but the typical grid
spacing has remained surprisingly constant—consider that the
recent RCE Model Intercomparison Project (RCEMIP) sug-
gests the use of 1–3 km for the horizontal grid interval [24].

As many people are eager to point out, cloud-resolving
models do not resolve all clouds. In reality, clouds have a de-
tailed multiscale structure and a complicated morphology col-
ored by a variety of cloud microphysics characteristics (phase,
size distribution, shape, etc.). This makes it difficult to charac-
terize them as resolved by most CRMs, as even for important
cloud systems, large-eddy simulations (LES), with mesh size of
10–100 m, are not enough. Direct numerical simulations
(DNS), which are starting to become feasible for some cloud
studies [25], suggest that Reynolds number similarity provides
statistical convergence at a resolution of about 0.5 m [26], for
adequately representingmixing at cloud boundaries [27]. This is
a factor of 100 coarser than would be required to resolve scales
down to the Kolmogorov scale but still far out of reach on larger
domains, even for most idealized studies.

Technically, CRMs can be thought of as a more evocative
way to describe nonhydrostatic equation solvers, which calculate
the buoyancy acceleration associated with convective clouds.
Because the nonhydrostatic regimes become important with a
mesh size less than about 5 km [15], which also happens to be
the scale required to resolve convective circulations (deep pre-
cipitating clouds) whose scale is commensurate with the scale of
the troposphere (10–15 km), this often sets a basic scale for a
CRM and the fact that such models, almost by construction,
forgo the parameterization of deep convection. Hence, what a
CRM really resolves is less the cloud and more the mesoscale
dynamics of precipitating storm systems, which is why in recent
studies (e.g., [28, 29]), the term storm-resolving model (SRM) is
sometimes used as a substitute for CRM. Stevens et al. [30], for
instance, chose the term Bglobal storm-resolving model^
(GSRM) to refer to SRM over the global domain instead of
GCRM. The term Bconvection-permitting model^ is also fre-
quently used to denote the above type of the models.

Although GCRM generally refers to a global nonhydrostatic
model with mesh size less than about 5 km, and thereby forgo-
ing the use of cumulus parameterization, some exceptions to
this rule are noteworthy. For instance, on scales of a few kilo-
meters, some groups continue to report satisfactory results when
integrating the hydrostatic equations, and other groups are re-
luctant to forgo the use of cumulus parameterization entirely.
Looking toward the future, and yet finer resolution, simulations
with a GCRM using a sub-kilometer (870 m) mesh for a period
of 2 days have been performed [31]. Global LES simulations for
a period of a few hours and with an O(100 m) numerical mesh
are thus becoming conceivable and the first such simulations
may be realized in the next few years.

History of GCRMs

From a certain perspective, GCRMs are just global extensions of
commonly used nonhydrostatic models as have long been im-
plemented in regional domains. Yet, because of the complexity

Curr Clim Change Rep



of the grid configuration for the spherical geometry [32, 33], and
the computational expense they imply, GCRMs require consid-
erably more development, both in terms of their formulation and
computational implementation, than would be implied by simply
increasing the domain of pre-existing models. For this reason,
and due to a lack of access to Tier-0 computational resources,
GCRMs remain the remit of a rather limited number of groups,
which include developments around: the Nonhydrostatic
Icosahedral Atmospheric Model (NICAM) [1, 34, 35] in Japan,
ICOsahedral Nonhydrostatic (ICON) [36, 37] in Germany, the
Model for Prediction Across Scales (MPAS) [38], Finite-Volume
Dynamical Core on the Cubed Sphere (FV3) [39], the Goddard
Earth Observing System Model, Version 5 (GEOS-5) [40], the
global version of the System for Atmospheric Modeling (Global
SAM) [41] in the USA, and the Integrated Forecast System (IFS)
by the European Centre for Medium-Range Weather Forecasts
(ECMWF) which is available as a spectral (IFS-ST [42]) and
finite-volume model (IFS-FVM [43, 44]). Before the first
GCRMs listed above, there was considerable effort toward
GCRMs, as described in earlier reviews, e.g., [34, 45, 46].

Avariety of paths led to the development of the present stable
GCRMs. Both ICON and NICAM were developments which
began at the turn of the millennium but followed very different
trajectories. NICAM was developed in part as a new model,
targeted to run on a dedicated super computer, the Earth
Simulator (https://www.jamstec.go.jp/es/en/index.html), and
was completed in 2002. The summary of the early
development of NICAM can be found in [34, 47–49]. ICON
on the other hand was designed with more varied purposes in
mind, as it was to replace the dynamical core of the German
Weather Service’s global forecast system and the Max-Planck-
Institute’s Earth System model, which greatly complicated and
delayed its development [36, 37, 50]. Whereas NICAMwas, at
the outset, designed to as a GCRM, ICON was developed as
more general-purpose dynamical core, and only through the
course of its development did the idea of using it to represent
kilometer and finer scales of motion gain traction (e.g., [51]).

In the USA, for a long time, a different strategy was follow-
ed. Super-parameterization, which embedded CRMs in tradi-
tional coarse resolution global models, endeavored to realize
many of the advantages of GCRMs at a fraction of the com-
putational cost of GCRMs [6, 52]. The application of Super-
Parameterized Global Models was pioneered by the Center for
Multiscale Modeling of Atmospheric Processes (CMMAP;
[53]; http://kiwi.atmos.colostate.edu/cmmap/index.html) and
for many years provided the only effort outside of Japan
which sought to explore the advantages of explicitly
resolving most convection for the purpose of global modeling.

Only more recently did the NASA group begin exploiting the
scalability of the dynamical core of FV3 developed in the mid-
2000s [39, 54], to configure the Goddard Earth Observing
System (GEOS) model as a GCRM. Limited processes studies
with GEOS at 3 km [40] and then at 1.5 km in 2014 provided the

groundwork for this development and showed the value—
particularly in support of Observing System Simulation
Experiments or OSSEs [55]—of modeling Earth system process-
es at resolutions approaching those of themodern satellite observ-
ing system [56, 57]. Subsequent work with GEOS has covered a
range of applications, including tropical cyclones [58], convective
gravity waves and the quasi-biennial oscillation [59], orographic
gravity waves [60], and global chemistry transport [61].

Most experience in the application of GCRMs has been col-
lected through the application of NICAM to various problems,
as it was the first, and for a long time, the only GCRM [35, 62,
63]. Its first global simulations using the nonhydrostatic equa-
tions employed a horizontal 3.5 km [64] in a 1-week aqua planet
configuration. Later, Miura et al. [65] conducted a global simu-
lation with a realistic land-ocean distribution for 1 week, also
with a 3.5-kmmesh, to study themultiscale evolution of tropical
convection in the framework of the Madden-Julian oscillation
(MJO).With advances in algorithm efficiency and computation-
al resources, the length of these simulations has increased steadi-
ly, and NICAM is increasingly being used for climate studies, to
perform even higher resolution simulations with a sub-
kilometer range [31, 66–69]. Experience has demonstrated that
even when run at somewhat coarser (7 and 14 km) grid scales,
NICAM retains many of the advantages found when run at a
more traditional GCRM grid spacing.

Experience with NICAM suggests that even at a seemingly
too coarse a resolution (7 to 14 km), many of the desirable
properties of GCRMs already become apparent. For instance,
simulations with 3.5, 7, and 14 km mesh show similar
multiscale structure of convective systems embedded in
super-cloud clusters or MJOs [64, 65, 70]. Hence, this multi-
resolution approach is proving to be a popular way to accel-
erate GCRM studies and enabling the use of NICAM over
multi-decadal timescales [71–73], for larger ensemble simula-
tions [74, 75], for collaborative studies with Earth observa-
tions [28, 76, 77], and to explore the impact of increased
complexity of physics schemes and coupling to other ocean
and land models [78].

Intercomparison Projects and International
Collaboration

Even before GCRMs became computationally feasible for
groups outside of Japan, CMMAP, using its Super-
Parameterized GlobalModels, began a program of intercompar-
ison with the NICAM group. Along with this, the Dynamical
Core Model Intercomparison Project (DCMIP; held also as
DYCORE-2008) initiated a series of workshops in 2008,
2012, and 2016 [79], defining test cases that became important
for the development and testing of GCRMs. The Icosahedral-
gridModels for Exascale Earth System Simulations (ICOMEX)
provided an additional framework for comparison of
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icosahedral dynamical core models (ICON, NICAM,
DYNAMICO, and MPAS), most of which have since been
developed into full-fledged GCRMs.

NICAM also joined the Aqua Planet Experiment Project
[80, 81], where it was compared to traditional, low-resolution
hydrostatic climate and global weather models, and two
Coupled Model Intercomparison Project Phase 6 (CMIP6)
projects: the Cloud Feedback Model Intercomparison Project
(CFMIP, CFMIP2 [82]) and HighResMIP [83] where its sim-
ulations are compared to those by conventional climate
models. For CFMIP, NICAM contributed aqua planet simula-
tions, and realistic configurations are used for HighResMIP.
More recently, NICAM has been used, along with ICON, to
compare to CRMs in the framework for the RCEMIP [24].

NICAM has also been evaluated in more realistic/
operational settings for studies of the MJO [84], tropical cy-
clones (TYMIP-G7 [85]), and contributed to the Athena
Project [86] in which it was compared to higher resolution
hydrostatic integrations with IFS [87]. For operational models,
the High Impact Weather Prediction Project (HIWPP; https://
hiwpp.noaa.gov/) was coordinated by the National
Oceanographic and Atmospheric Administration (NOAA) in
the USA, to prepare GCRMs for use operationally.

Today, with GCRMs having been developed by a number of
groups outside of Japan, it has become possible, for the first
time, to compare GCRMswith each other, so as to identify their
generic versus particular features. This intercomparison, called
DYnamics of the Atmospheric general circulation Modeled On
Nonhydrostatic Domains (DYAMOND, https://www.esiwace.
eu/services/dyamond), compares 40-day simulations of eight
nonhydrostatic models ICON, NICAM, SAM, FV3, GEOS-5,
MPAS, ARPEGE-NH, and the Unified Model (UM) [30].
Within DYAMOND, the GCRMs are also being compared to
the hydrostatic version of IFS-ST, and all output is being made
available for open use by the community through the Center for
Excellence in Simulation of Weather and Climate in Europe, a
Horizon 2020 project funded by the European Union (https://
www.cmcc.it/projects/esiwace-centre-of-excellence-in-
simulation-of-weather-and-climate-in-europe).

The first results (precipitation from a subset of these models)
from DYAMOND are presented in Fig. 1. This shows global
distributions of 1-month averaged precipitation for the integra-
tion period of the DYAMOND simulation (August 10 to
September 10, 2016). The Intertropical Convergence Zone
(ITCZ) is located at almost the same latitudinal zone and the
zonal mean precipitation is very comparable to that of the
satellite-based observation as indicated by Fig. 5 of [30], which
compares the zonal average of precipitation between the
GCRMs and the observation. Figure 1 also indicates globally
averaged values of the precipitation, which are within the range
between 3.05 and 3.25 mm day−1. An overall similarity across
models in terms of geographical distribution and quantities is
impressive, especially when it is realized that some of themodels

are being run for the first time as GCRMs, that no specific tuning
of precipitation has been applied and that the energy balance
does not severely constrain precipitation. The first result shown
by Fig. 1 provides one aspect of the advantages of GCRMs,
which is described in more detail in the next section.

Advantages of GCRMs

GCRMs better represent physical understanding than do tra-
ditional climate and global numerical weather prediction
models because they solve the correct equations over a larger
range of scales. Only practical (computational) issues inhibit
their more widespread use. This and other, less appreciated,
advantages of GCRMs are summarized below, as follows
(Table 1, [88]), in the form of a top ten list, including substan-
tiating references for each point. Most references are taken
from the literature describing NICAM, as until recently it
was the only GCRM in active use.

1. Representation of the global mesoscale: An irony of
modern climate science is that circulation systems that
most impact humans and the environment are largely
ignored—neither are they parameterized nor are they ex-
plicitly represented—by climate models. These circula-
tions define the atmospheric mesoscale [89], and phenom-
ena and GCRMs are designed to resolve exactly these
scales which include as exemplified by the long literature
on the application of CRMs to studies of organized con-
vective systems, wind-storms, and squalls. GCRMs have
likewise been applied to studies of diurnal circulations [69,
86, 90, 91] and are beginning to be used to study local
topographic effects on precipitating systems (e.g., [92]).
GCRMs are designed to resolve exactly this range of
scales, the scale of storms, and their impacts. The better
coupling with cloud, radiation, and land-surface processes
are introduced in the global mesoscale.

2. Multiscale scale interactions of convection: GCRMs
naturally simulate the multiscale structure of convective
systems that is particularly important for their evolution
in the tropics, from individual deep convection, cloud
clusters, and large-scale organized convective systems,
as already demonstrated by [64], including a realistic
representation of the MJO as a famous example [65,
70, 74]. The inner structures of tropical cyclones, such
as the eye-wall and associated convective extremes, are
simulated together with the large-scale and synoptic
scale environmental fields which affect evolution of
tropical cyclones [73, 93, 94].

3. Circulation-driven microphysical processes: Unlike
models with parameterized convection and clouds,
GCRMs explicitly link the cloud-scale circulations to
cloud microphysical processes. This is giving new
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impetus to questions about the role of cloud microphys-
ical processes and the amount of complexity they must
entail to represent the climate (cf. [95, 96]) and the na-
ture of its extremes.

4. Turbulence and gravity waves: Kilometer-scale
disturbances—for instance from topographic effects
and ensuing wave excitation—are captured globally
and their characteristics and effects on larger-scale cir-
culations can be analyzed as exemplified by studies with
GEOS-5 [59, 60]. GCRMs also allow the tropopause
dynamics with mesoscale disturbances to be simulated
[97–101]. Energy spectra of GCRMs also convincingly
reproduce the observed transition from the synoptic to
the mesoscale regimes [102, 103].

5. Synergy with satellite observations: Conventional cli-
mate models struggle to make critical use of observa-
tions. In contrast, because cloud properties are compara-
ble in scale to those provided by satellite observations
(e.g., Himawari-8 [104]) and more comparable in scale
to surface observations, and the link to circulations are
direct, GCRMs make it easier to critically evaluate glob-
al simulations of the distribution of clouds, rain, and

winds in GCRMs. Examples of such efforts are myriad:
particularly, the use of instrument simulators to interpret
satellite measurements is an area of increasing inquiry
(e.g., [28, 76, 77, 95, 105–107]) but also to point mea-
surements as in [108].

6. Nature runs as a source of empiricism: With their
kilometer-scale global mesh, GCRM simulations can
be used as a source of empiricism, which is why we call
them nature runs. A nature run is a free-running numer-
ical model simulation with minimal knowledge of any
realistic atmospheric state but with a realistic climatolo-
gy consisting of realistic weather patterns [109]. In this
fashion, they function as natural laboratories for devel-
oping and testing algorithms in three-dimensional and
time continuous space—something that is not possible
with observations [110]. The GEOS 7-km Nature Run is
widely used for the OSSE community [55, 58], for this
purpose. Using a NICAM simulation in a similar vein,
Miyakawa et al. [111] discovered the threefold structure
of convective momentum transport associated with the
MJO, something that would have been difficult to be
captured by observation.

Fig. 1 Global distribution of the
average precipitation simulated
by six GCRMs for the
DYAMOND project between
August 10 and September 10,
2016. From top to bottom with
left to right: NICAM 3.5 km,
ICON 2.5 km, SAM 4.3 km, FV3
3.3 km, IFS 4 km, and MPAS
3.8 km. Numbers just above each
figure are averaged precipitation
over the sphere
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7. Toward global cloud-resolving earth system models:
Now GCRMs are beginning to be coupled with ocean
and land models with similar (kilometer scale) resolu-
tion. They provide a consistent basis for linking the hy-
drological cycle to the carbon cycle. The first
atmosphere-ocean coupled GCRMs are in development.
In the case of NICAM, the coupled model NICOCO,
albeit at coarser resolution, has been used to investigate
an MJO effect on ENSO [78]. Next-generation models
will fully resolve both the atmosphere and ocean meso-
scale and improve the physical foundation for climate
prediction.

8. Consistent downscaling for impact studies:
Historically, two, or more, models with high-resolution
regional and coarse resolution global models have been
used for impact studies. This approach requires a lot of
efforts of maintenance or development of multi-models
and introduces spurious forcings arising from different
physical parameterizations for each model. GCRMs are
being used as a singlemodel to seamlessly couple, either
through regional stretching [112–115] or nesting [29,
116] kilometer to hectometer scale circulations of inter-
est to impact communities.

9. Tracer transport: High-resolution flow fields including
simulated upward convective mass flux together with
detailed topography channeling greatly affect transport

processes and cannot be captured by GCMs; thus,
GCRMs provide a more natural link between emissions
and resultant concentrations of a variety of substances,
from CO2—which will be important for tracking emis-
sion inventories [61]—to particulate matter, which is
important for air quality and quantifying aerosol cloud
interactions [117].

10. Advancing computational infrastructure: For new
computer projects, GCRMs provide applications with
the highest resolution and producing huge amounts of
output. They thus require massive computational nodes
and disks and spur innovative computational technolo-
gies, both in hardware and software. In fact, many of the
computational tools we will use in the future may well
have their origins in efforts to effectively run and analyze
GCRMs, examples include the BK computer^ [118, 119]
and post-K computer in Japan. Likewise in Europe,
GCRMs are providing the underpinnings for new tech-
nology projects under the framework of the Extreme
Earth initiative (http://www.extremeearth.eu/).

What Is in a Model?

We define GCRMs to be models that can represent
nonhydrostatic vertical accelerations associatedwith deep pre-
cipitating convection globally. By directly simulating the mo-
tions associated with the bulk of the vertical heat transport in
convective storms, GCRMs forgo the need for convective
parameterization. As GCRMs come into more commonplace
use, for instance nine models contributed output to the
DYAMOND intercomparison [30], differences in approaches
are becoming apparent. Here and in Appendix 1, we briefly
describe seven of the DYAMOND models with the aim of
highlighting differences and similarities among GCRMs.

The main quality that GCRMs share is the space and time-
scales which they explicitly simulate. The equations they
solve, the methods they use to solve them, and their approach
to representing unresolved processes all differ, sometimes
substantially. Table 2 summarizes some important distinctions
which are elaborated upon below. The fluid-dynamical repre-
sentation (the dynamical core) can be categorized both by
approximations applied in deriving a set of governing
(continuous) equations to be solved and approximations made
in constructing the discrete analogs from which numerical
solutions are eventually constructed. The representation of
unresolved processes (radiation, cloud processes, turbulence,
land-surface processes) introduces yet further distinctions.
Most GCRMs solve the fully compressible equations using
discrete analogs constructed in physical space and include
parameterizations for cloud processes, turbulence, radiative

Table 1 Top ten reasons why GCRM is a great leap

1. Represents the mesoscale (2 to 2000 km) and its link to the general
circulation

2. Represents the multiscale physics and scale interactions inherent in
atmospheric moist convection

3. Represents the dynamic and thermodynamic drivers of cloud
microphysical processes

4. Represents themean state to which small scale turbulence responds and
captures gravity, and inertial-gravity waves, and thereby main mecha-
nisms of wave mean flow interaction

5. Simulates the same quantities that the satellites observe, enabling the
critical application of these observations

6. Provides an additional source of empiricism using Bnature runs^ with
hector or kilometer-scale simulations on short time periods

7. Opens the possibility of global cloud-resolving earth systemmodels by
enabling important coupling pathways to the ocean

8. Allows for one model and avoids the need for (and challenges of)
downscaling thereby providing a direct link to application and impact
communities

9. Represents main constituent transport mechanisms, thus linking
observed concentrations of important trace species to their sources and
sinks

10. Advances information science, by spurring developments in both
hardware and software, e.g., to deal with data flows, or hierarchical
computational architecture

This list is modified from that presented by [88] at the 2018 General
Assembly of the European Geosciences
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energy transfer, and surface processes, but substantial differ-
ences exist among models as outlined below.

Most models solve the fully compressible equations and
hence account for sound waves. This can be done in different
ways, but most models take the horizontally explicit and ver-
tically implicit method with the split-explicit technique
adopted following [11]. SAM is an exception as it is an an-
elastic model. The anelastic equations [12, 13] solve for per-
turbations around a uniform basic state and are thus best jus-
tified for atmospheres with small departures about this mean
state. They are thus historically used for limited-area simula-
tions. There is an extensive literature on the foundations (and
errors) associated with assumptions made in the anelastic
models [120–122] but only now has it become possible to
assess these errors in comparison to other uncertainties in
the model formulation on global scales. If similarities in
Fig. 1 are any guide, the effects of these errors are likely to
be subtle. The IFS-ST also differs from the other models
through its use of the quasi-static (primitive) equations
[123], but even in this case, where nonhydrostatic vertical
accelerations are neglected, errors are either compensated by
other approximations or are likewise subtle. Because some of
the approximate representations of the continuous equations
can be computationally advantageous, a better understanding
of errors that are caused by these approximations in full-scale
global simulations is desirable.

Considerable differences are evident (Table 2) in how the
grids are constructed, how variables are distributed on these
grids, and how numerical discrete approximations to differen-
tial operators are constructed. Icosahedral grids (NICAM,
ICON, MPAS), cubic grids (FV3, GEOS-5), and octahedral
grids are popular because they provide a quasi-uniform mesh
[45]. This minimizes the number of grid points required to
achieve a given resolution and also leads to a quasi-uniform
balance between the chosen time-step and advective time-
scale. Of the models we review, only SAM uses a regular
latitude-longitude grid, and the IFS uses a spectral-transform

method.Most models use a staggered (C-grid) grid in physical
space, and NICAM and IFS-FVM use a collocated (A-grid)
grid. FV3 is based on C-D staggering for optimal potential
vorticity (PV) advection. Even for the same horizontal grid,
models would still differ in their representation of the vertical
coordinate and the distribution of vertical degrees of freedom.
This particularly impacts their ability to represent orographic
influences on the flow, and even for the same horizontal
discretization, it can lead to substantial differences in the rep-
resentation of orographic features (see, e.g., [30]). The con-
siderable differences in how the continuous equations are ap-
proximated make it challenging to separate the influence of
the particular implementation of a given set of equations, from
inherent differences in the equations themselves.

Each of the seven GCRMs reviewed here chooses its own
combination of methods to represent unresolved processes.
Differences among schemes are, particularly as related to the
representation of cloud processes, more similar to differences
in cloud-resolving (or LES) models than among climate and
weather forecast models. Notable are differences in the repre-
sentation of convective transports. Here, an important ques-
tion that arises is when the distortions introduced by parame-
terizations are less deleterious than those introduced by a poor
resolution of the requisite scales of motion. Similar questions
could be posed in terms of the representation of orographic
gravity-wave drag. Although the microphysical approaches
adopted by the GCRMs reviewed here are quite similar, this
likely reflects consensus as to the importance of computation-
al expediency, as a major open question is to what extent must
microphysical degrees of freedom be simulated to adequately
simulate larger-scale circulation features. A similar question
arises in the representation of mixing by unresolved turbulent
motions, but in contrast to conventional climate models, the
more direct link between these small scale processes and the
resolved state encourages renewed attempts to understand in
what way uncertainties on small scales influence the large-
scale structure of the climate system.

Table 2 Configuration of GCRMs used in DYAMOND

Grid Time integration scheme dx [km] Lev Top [km] References

NICAM ICO, A-grid [2] Fully compressible, split-explicit, vertically implicit 3.5 78 50 [3, 4]

ICON ICO [5] Fully compressible, split-explicit, vertically implicit 2.5 90 75 [6]

MPAS Voronoi, C-grid [7] Fully compressible, split-explicit, vertically implicit 3.8 75 40 [7, 8]

FV3 Cube, C-D staggering for
optimal PVadvection [9]

Fully compressible, forward-in-time finite-volume scheme,
vertically Lagrangian

3.3 79 39 [10, 11]

GEOS-5 Same as FV3 Same as FV3 3.3 132 80 [9, 12]

SAM Lat-Lon, C-grid [13] Anelastic 4.3 74 37 [41]

IFS-ST Octo, spectral [14] Semi-implicit semi-Lagrangian 4.8 137 80 [14, 15]

ICO icosahedral grid, Voronoi Voronoi tessellation, Cube cubed sphere, Lat-Lon latitude-longitude grids, Octo cubic octahedral reduced grid, dx the
horizontal grid size is defined by a square of the largest area of a grid cell, Lev number of vertical levels, Top model top
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Conclusions

GCRMs are becoming a common tool for atmospheric stud-
ies. The transition from GCMs to GCRMs is a step change of
global modeling mainly because the cumulus parameteriza-
tion scheme is no longer prerequisite but also because oro-
graphic drag is much better resolved. With GCRMs, global
atmospheric circulations can be understood in terms of meso-
scale systems and a variety of disturbances including gravity
waves and turbulences are embedded in GCRM simulations.
Clouds represented by GCRMs are more directly comparable
to satellite observations and they can be evaluated and im-
proved in terms of cloud microphysics. GCRMs are currently
being used for ever wider areas of research, and they will be
also more adapted for operational weather forecasts and cli-
mate projection studies [124].

Although GCRMs possess many good points, almost as
much can be learned for the improvements they bring as
the ones they do not. For example, in what (by GCRMs
standards) is rather coarse resolution, a long-term simula-
tion by [71] showed that global precipitation distributions
have a double ITCZ structure, which is known a common
bias in many GCMs [125–127]. Work is ongoing to estab-
lish to what extent this represents structural deficiencies in
the model, or the influence of parameterizations that do
not go away as the grid is refined. Global cloud distribu-
tions are less ambiguously sensitive to cloud microphysics
schemes and suitable choice of parameters or processes in
the schemes is generally required to obtain realistic cloud
amount or thickness [63, 128]. It is also appreciated that
even at a 1-km grid scale, the magnitude of the vertical
motions within convective cores has not yet converged—
something the representation of microphysical processes
may need to account for [31]. The sub-grid processes such
as shallow convection, lateral mixing including
entrainment/detrainment of convective clouds, and bound-
ary layer processes are also issues requiring further con-
sideration in GCRMs. GCRMs do not solve all the prob-
lems, but they solve some problems and create a more
physical basis for framing and resolving the issues that
remain.

Further higher resolution GCRMs, that is global LES
models with mesh size of O(100 m), will be a next target
of high-resolution modeling to resolve the abovementioned
sub-grid processes. Toward this end, ICON has been tested
for a wide area LES for the whole Germany [116]. We
expect for a first global LES simulation to emerge in the
near future, but the use of global LES models for research
and operations will take considerably longer [46]. Although
further increase of the spatial resolution of global models
will be continuously demanded, GCRMs will be a major
player for the new type of global atmospheric models for
the coming decade.
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Appendix 1

Description of GCRMs

NICAM

The NICAM (http://nicam.jp/) has a dynamical core of the
icosahedral mesh structure with the conservative
nonhydrostatic equation system [1, 34, 35]. Development of
NICAM began around 2000 and the first global cloud-
resolving simulation with the mesh size about 3.5 km was
conducted by [64] for the aqua planet configuration. Then,
the MJO simulation with the same resolution was conducted
by [65] with the realistic land and ocean distribution. The
overall description of NICAM is given by [34, 35]. The recent
outcomes of NICAM are described by [35, 62, 63].

ICON

Similar to NICAM, ICON adopts a triangular tiling of the sphere,
progressively refined from an icosahedral [36, 37, 50]. ICON
development, which also began in 2000, emphasized the provi-
sion of a flexible modeling environment, as it allows multi-level
two-way nesting over both global and limited-area domains. It has
physics packages that allow it to perform idealized (e.g., [129])
and realistic domain simulations [116] as an LESmodel using the
Smagorinsky sub-grid-scale closure [51], to run at storm-
resolving scales [29], as an operational weather forecast model
[36] and as a component of a coupled climate model [130]. The
first storm-resolving (2.5 km horizontal mesh) global simulations
were performed in support of the DYAMOND project.
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MPAS

MPAS (https://mpas-dev.github.io) is a collaborative
project for developing atmosphere, ocean, and other
Earth system simulation components for use in climate,
regional climate, and weather studies. At the heart of the
atmospheric component, MPAS-A [38] lies a global
nonhydrostatic atmosphere solver developed at the
National Center for Atmospheric Research (NCAR).
Like the other MPAS components, MPAS-A uses finite-
volume numerics discretized on centroidal Voronoi
meshes. MPAS-A is intended to expand the ability of
the weather and climate community to conduct fine-scale
modeling of moist convection. To facilitate this goal,
MPAS-A supports quasi-uniform resolution meshes,
which are similar to icosahedral (hexagonal) meshes,
and variable horizontal resolution meshes with local mesh
refinement. Quasi-uniform meshes with O(1 km) resolu-
tion are able to resolve motions on scales from severe
thunderstorms to global modes of variability and therefore
ideal for GCRM applications.

FV3

GFDL’s GCRM is FV3 [54, 131]. The FV3 dynamical core
uses the forward-in-time finite-volume scheme [132], pres-
sure gradient force of [133], and vertically Lagrangian
discretization of [39]. Vertically propagating sound waves
are treated semi-implicitly. Advection of scalars (ozone and
water species) uses the positive-definite two-dimensional
advection scheme of [134] based on the piecewise-
parabolic method. In the dynamics, grid-scale noise is dis-
sipated through the use of an eighth-order divergence
damping, Smagorinsky (second order) damping, and a weak
sixth-order damping on the vorticity and potential
temperature.

GFDL’s participation to the DYAMOND project is per-
formed with the so-called finite-volume Global Forecast
System (fvGFS). For physics, GFDL six-category cloud mi-
crophysics [135] is used. The rest of the modeling system is
from NCEP’s Global Forecast System (GFS), including the
planetary boundary layer scheme, the shallow convection
scheme, and the Noah land model. In all experiments, the
deep convective scheme and all forms of gravity-wave drag
are disabled, but a scale-aware mountain blocking parame-
terization (due to the unresolved sub-grid orography) is
applied.

GEOS-5

The GEOS model is a comprehensive earth system
model developed for diverse applications in climate
and weather. These appl ica t ions inc lude da ta

assimilation, numerical weather predication, sub-
seasonal to seasonal prediction, and full tropospheric
and stratospheric chemistry modeling. The diverse con-
figurations of GEOS are assembled from a unified li-
brary of modular components using the Earth System
Modeling Framework (ESMF).

GEOS-5 is based on the same dynamical core FV3. GEOS
is designed to be a scale-aware modeling system with a seam-
less capability to support global climate simulations at hori-
zontal resolutions of 50–100 km down to global cloud-
resolving resolutions approaching 1 km [40]. A scalable suite
of physics components is built around FV3 dynamical core
[54].

SAM

The SAM is formulated on the latitude-longitude grid using
the code recently refactored from the original limited-area
code on the Cartesian grid [41]. Unlike most other GCRMs,
SAM solves the nonhydrostatic momentum equations in the
anelastic approximation, which eliminates sound waves. Also
in contrast to many other GCRMs, SAM represents terrain
using a box-fill method, when the grid cells below the topog-
raphy are forced to have zero velocity. The version used for
the DYAMOND uses solid walls poleward of 89°, to avoid the
Bpole problem.^ The development version of SAM resolves
motions at the pole.

IFS-ST and IFS-FVM

The IFS-ST is used for operational weather prediction at
ECMWF, currently with a global resolution of 9 km for
10-day deterministic forecasts and 18 km for a 50-
member 15-day ensemble prediction. The IFS-ST is a
spectral-transform model that uses spherical harmonics
to represent physical fields on the sphere. The spectral
representation is combined with a cubic octahedral
Gaussian grid to calculate nonlinear terms and physical
parameterizations in grid-point space. The model is opti-
mized to be as computationally efficient as possible, for
instance through the use of a semi-implicit semi-
Lagrangian time stepping scheme that permits very large
timesteps [42, 136], and efforts to match the information
content in the simulation with the numerical precision of
its representation [137, 138].

IFS-FVM is developedwith approaches more similar to the
other GCRMs in that it solves the compressible equations in
physical space [43, 139, 140], on an A-Grid similar to
NICAM. The equations are solved using semi-implicit time
stepping. The IFS-FVM shares the physical parameterizations
with IFS-ST [44].
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