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ABSTRACT: Ensemble refinement produces structural en-
sembles of flexible and dynamic biomolecules by integrating
experimental data and molecular simulations. Here we present
two efficient numerical methods to solve the computationally
challenging maximum-entropy problem arising from a
Bayesian formulation of ensemble refinement. Recasting the
resulting constrained weight optimization problem into an
unconstrained form enables the use of gradient-based
algorithms. In two complementary formulations that differ in
their dimensionality, we optimize either the log-weights
directly or the generalized forces appearing in the explicit
analytical form of the solution. We first demonstrate the
robustness, accuracy, and efficiency of the two methods using
synthetic data. We then use NMR J-couplings to reweight an all-atom molecular dynamics simulation ensemble of the
disordered peptide Ala-5 simulated with the AMBER99SB*-ildn-q force field. After reweighting, we find a consistent increase in
the population of the polyproline-II conformations and a decrease of α-helical-like conformations. Ensemble refinement makes
it possible to infer detailed structural models for biomolecules exhibiting significant dynamics, such as intrinsically disordered
proteins, by combining input from experiment and simulation in a balanced manner.

1. INTRODUCTION

To infer structures and functions of biological macromolecules,
we combine information from diverse experimental and
theoretical sources.1−3 However, in many experiments the
observables reporting on biomolecular structure are averaged
over ensembles. Nuclear magnetic resonance (NMR) and
pulsed electron paramagnetic resonance (EPR) experiments
provide ensemble-averaged high-resolution information about
distances (e.g., using the nuclear Overhauser effect, para-
magnetic relaxation enhancement, or double electron−electron
resonance (DEER))4−9 and angles (e.g., using J-couplings and
residual dipolar couplings).10,11 Small-angle X-ray scattering
(SAXS) experiments provide ensemble-averaged information
about macromolecular size and shape,12 and wide-angle X-ray
scattering (WAXS) experiments report on secondary structure
and fold.13 Ensemble refinement promises faithful descriptions
of the true ensemble of structures underlying the experimental
data even for highly dynamic systems.8,14−17

The conformational diversity of the ensemble can be
described in terms of a set of representative reference structures.
The relative weights of the ensemble members are then
determined by ensemble refinement against experimental data.
To regularize this inverse problem one can, for example, restrict
the number of conformers as is done in minimal-ensemble

refinement8,18 or replica simulations,15,19,20 limit the weight
changes relative to the reference ensemble as is done in
maximum-entropy approaches14,15,21,22 or in Bayesian formula-
tions,4,21 or limit both ensemble size and weight changes.8 See
ref 15 for an in-depth discussion and further references.
The reference ensemble is often defined in terms of a

molecular simulation force field, that is, a classical potential
energy function for which one has some confidence that it
captures essential features. The experimental data can then be
used directly as a bias in molecular dynamics (MD)
simulations5,19,23−28 or a posteriori to reweight an unbiased
ensemble in a way that improves the agreement with
experiment.8,18,21,29,30 Biased simulations improve the coverage
of the configuration space but suffer from finite-size effects due
to a limited ensemble size in simulations. Reweighting requires
good coverage but can handle much larger ensemble sizes. The
“Bayesian inference of ensembles” (BioEn) approach21 makes it
possible to combine, if needed, biased sampling and subsequent
reweighting to ensure both good coverage of the configuration
space and a well-defined, converged ensemble.
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Ensemble refinement by reweighting is a computationally
challenging optimization problem because the number of
structures in the ensemble, usually generated in simulations,
and the number of experimental data points provided by
experiments can both be large. Simulations can easily create
hundreds of thousands of structures. In general, we would like to
include as many structures as possible in ensemble refinement,
not only to avoid artifacts due to the finite size of the ensemble21

but also to ensure that we pick up small but significant
subensembles. Experiments like NMR, SAXS/WAXS, and
DEER can provide thousands of data points. The numbers of
pixels or voxels in electron-microscopy projection images or 3D
maps, respectively, are of even larger magnitude. More than ten
thousand data points are thus common when integrating data
from different experimental sources.
With respect to computational efficiency, we also have to take

into account that we usually want to perform multiple
reweighting runs for different subensembles and subsets of the
experimental data, while at the same time varying the confidence
that we have in the reference ensemble. Consequently, we have
to be able to efficiently solve the optimization problem
underlying ensemble refinement by reweighting for large
numbers of structures and data points.
The paper is organized as follows. In section 2, “Theory”, we

present two complementary numerical methods to calculate the
optimal ensemble by reweighting based on the “ensemble
refinement of SAXS” (EROS) method,14 which is a special case
of BioEn.21 In both methods, positivity and normalization
constraints on the statistical weights are taken into account
implicitly such that we can take advantage of efficient gradient-
based optimization algorithms. In the first method, we solve for
the logarithms of the N statistical weights, where N is the
number of structures. In the second method, we solve for M
generalized forces, whereM is the number of experimental data
points. The efficiency of the two methods depends onN andM.
For both methods, we derive analytical expressions for the
gradients that render gradient-based optimization algorithms
highly efficient. In section 4, “Results”, we systematically
investigate the efficiency and accuracy of these methods using
synthetic data. For illustration, we then refine fully atomisticMD
simulations of Ala-5 using J-couplings. In the Supporting
Information, we present a detailed derivation of the gradients
for correlated Gaussian errors.

2. THEORY
We first present the BioEn posterior,21 whose maximum
determines the optimal statistical weights of the structures in
the ensemble. We then show that the optimal solution is unique.
To be able to apply gradient-based optimization methods to the
constrained optimization problem, we recast the posterior as a
function of log-weights and as a function of the generalized
forces, as already introduced in ref 21. For both formulations, we
calculate the respective gradients analytically, facilitating
efficient optimization. We focus here on uncorrelated Gaussian
errors. Supporting Information contains a detailed derivation of
the gradients for correlated Gaussian errors, which includes the
expressions for uncorrelated Gaussians in the main text as
special cases.
2.1. Background. In the BioEn method,21 which is a

generalization of the EROS method,14 we determine the
optimum of the posterior probability as a function of the
statistical weights, wα, where α is the index of the N ensemble
members (α = 1, ..., N) given the experimental data,

| ∝ |P P Pw w w( data) ( ) (data ) (1)

P(data|w) is the likelihood function, and w is the vector of
weights wα. The prior is given by
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is the Kullback−Leibler divergence.31 Both refined weights (wα

> 0) and reference weights (wα
0 > 0) are normalized, ∑α=1

N wα =
∑α=1

N wα
0 = 1. The parameter θ expresses the confidence in the

reference ensemble. Large values of θ express high confidence,
and the optimal weights will be close to the reference weights.
Instead of maximizing the posterior with respect to wα, we can

minimize the negative log-posterior given by
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The optimization problem is constrained by

α≤ αw0 for all (5)

and
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that is, the weights lie in a simplex. For uncorrelated Gaussian
errors, σi, of the ensemble-averaged measurements, Yi, of the
observables i = 1, ..., M, the likelihood is given by
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Here, yi
α is the calculated value of observable i for the individual

structure α. Note that the measurements Yi can stem from
different experimental methods, for example, from SAXS and
NMR, and that σi

2 = (σi,exp)
2 + (σi,calc)

2 is the sum of
uncertainties in the experiment and in the calculation of the yi

α.4

The negative log-posterior then becomes
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Note that for Gaussian errors the negative log-posterior L
corresponds to the EROS free energy χ2− θS, where S =−SKL is
the negative Kullback−Leibler divergence.14 The BioEn and
EROS formulations differ by a factor 1/2 scaling χ2, which is
equivalent to a trivial rescaling of θ.
To solve this optimization problem efficiently, we first show

that the negative log-posterior is convex such that there is a
unique solution. The gradient of eq 8 is given by
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where angular brackets indicate the average over the reweighted
ensemble, that is, ⟨yi⟩ = ∑α=1

N wαyi
α. The Hessian is given by
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where δαγ = 1 if α = γ and δαγ = 0 otherwise. By casting the
Hessian in this form, as a sum of a positive definite diagonal
matrix and of dyadic products of vectors, it is straightforward to
show that the quadratic form xThx is positive definite,
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for |x|2 = ∑α=1
N xα

2 = 1. The Hessian is thus positive definite
everywhere, and the optimal solution is unique.
A possible concern is that the optimal solution is on the

boundary of the simplex, that is, wα = 0 for some α, because the
Kullback−Leibler divergence is bounded. One might then not
be able to use gradient-based methods without modification.
However, because of the nonanalytical character of the
logarithm, the partial derivatives of L with respect to every wα

diverge to negative and positive infinity at wα = 0 and 1,
respectively, and are monotonic in between. Therefore, the
optimal solution is contained within the simplex, not on its
surface.
Another concern is that to find the unique optimal solution,

we have to take into account the constraints acting on the
weights given by eqs 5 and 6. One could optimize the log-
posterior given by eq 8 using algorithms for constrained
optimization like LBFGS-B that take advantage of the
gradient.32 To avoid the performance penalty associated with
treating constraints explicitly, we instead recast the optimization
problem into an unconstrained form.
2.2. Optimization via Log-Weights. To optimize the log-

posterior given by eq 8 under the constraints given by eqs 5 and
6 and to determine the optimal values of the weights wα > 0 by
gradient-based minimization, we introduce log-weights

=α αg wln (12)

which are only determined up to an additive constant. This
constant cancels in the normalization of wα. We can then write

=
∑α

γ=

α

γ
w

e
e

g

N g
1 (13)

Without loss of generality, because all wα > 0, we can set gN = 0.
For the gradient of L with respect to the remaining gμ (μ = 1, ...,
N − 1), we have
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where Gα = ln wα
0 and angular brackets indicate the average over

the reweighted ensemble, for example, ⟨g⟩ = ∑α=1
N wαgα. We

simplified the expressions by taking advantage of the normal-
ization condition.
Importantly, we need tominimize L only with respect to theN

− 1 variables gμ (μ = 1, ...,N − 1). A starting point of a gradient-
based minimization of L could be the normalized prior wα

0,

corresponding to gα = ln(wα
0/wN

0 ) = Gα − GN. In a practical
implementation, a procedure to evaluate L and its gradients,
called with gμ (μ = 1, ..., N − 1) as arguments, would do the
following:

(1) define gN = 0,
(2) evaluate wα according to eq 13 for α = 1, ..., N,
(3) evaluate L according to eq 8 or eq 17 below, and
(4) evaluate the gradient according to eq 14.

Both L and its gradient can be evaluated efficiently using
vector-matrix operations. Given the gα, we define vα = egα, s =
∑α=1

N vα = ∑α=1
N egα, s0 = ∑α=1

N eGα, and wα = vα/s (all being
efficiently evaluated in vector form). The averages can be
calculated as vector dot products:

⟨ ⟩ = ·g g w (15)

⟨ ⟩ = ·G G w (16)

We then have
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where ỹ is anM×Nmatrix with components ỹiα = yi
α/σi, and Ỹ is

a vector with M components Yi/σi that can be precalculated.
To evaluate the gradient, the averages in eq 14 can be

evaluated as dot products. The first part on the right-hand side of
eq 14 can then be evaluated as an in-place vector operation. The
second part can also be evaluated by a combination of matrix-
vector multiplication (for ⟨yi⟩), vector dot products (for the sum
over i), and in-place vector operations (for the different μ).

2.3. Optimization via Generalized Forces. We showed
previously21 that the weights at the maximum of the log-
posterior can be expressed in terms of generalized forces
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Note that these generalized forces correspond to Lagrange
multipliers in closely related maximum entropy (MaxEnt)
approaches to ensemble refinement.25,30,33−35 See ref 21 and the
Discussion (section 5) below concerning the relation between
MaxEnt and BioEn methods. In many practical cases, we have
fewer observables than weights,M≪ N. In such cases, one may
want to take advantage of eq 19 and minimize L with respect to
theM generalized forces Fk instead of theNweights. By applying
the chain rule, we obtain the gradient with respect to the
generalized forces as
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In a numerical minimization of L with respect to the M
generalized forces, one would thus at each iteration step do the
following:

(1) calculate the current weights wα from the forces according
to eq 19;
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(2) evaluate L according to eq 8 or eq 17;

(3) evaluate the gradient according to eq 20.

Equations 8, 19, and 20 can be evaluated efficiently by using
vector-matrix methods in NumPy etc., using precalculated
vectors of intermediates. However, for largeM × N, care should
be taken tominimize thememory requirements by avoidingM×
N matrices other than yi

α.
2.4. Optimization Strategies. Small θ values are more

challenging than large θ values because the optimal weights will
deviate more from the reference weights. In practice, we usually
do not know how to set θ a priori. In such cases, we recommend
to perform an L-curve analysis.36 In an L-curve or elbow plot, we
plot χ2 or the reduced chi-square value, χ2/M, as a function of the
relative entropy SKL for the optimal solutions at different θ
values. The χ2 values will decrease with increasing relative
entropy SKL, and we can choose a θ value corresponding to the
elbow in this plot.
Finding optimal solutions for a series of θ values also has the

advantage that we can use the more rapidly converging optimal
solutions at large θ values as starting points for optimizations at
smaller θ values.

3. METHODS
3.1. Implementation. With the analytical expressions for

gradients in the log-weights and forces formulations derived
above, we can take advantage of highly optimized gradient-based
optimization methods. The BioEn optimize package, which can
be downloaded from https://github.com/bio-phys/BioEn,
provides Python and C implementations of the log-posterior
and its gradient for both methods and a selection of different
gradient-based optimizers and implementations.
The reference implementation is based on Python and on the

packages NumPy and SciPy in particular. The log-posterior and
its derivatives are written in NumPy notation, and the BFGS
minimizer from SciPy is used to compute the minimum.37

Thanks to the fact that NumPy is typically linked to high-
performance mathematical libraries such as MKL, the Python-
based implementation is capable of exploiting vectorization and
multithreading on state-of-the-art hardware. On the other hand,
there is some overhead associated withNumPy related to the use
of temporary buffers during expression evaluation.
To improve the performance, we provide C-based imple-

mentations of the log-posterior functions and their derivatives,
largely avoiding temporary buffers by using explicit loops to
implement the expressions. OpenMP directives are used to
explicitly leverage vectorization and thread parallelization. The
Python interfaces are written in Cython. While these kernels are
significantly faster than the NumPy-based code, there is still
some overhead when the BFGS minimizer from SciPy is used
because it is written in plain Python.
To eliminate the bottleneck caused by the SciPy minimizer,

we have implemented a Cython-based interface to the
multidimensional minimizers of the GNU Scientific Library
(GSL), that is, conjugate gradient, BFGS, and steepest descent
minimizers.38 In doing so, the minimization is performed
completely in the C layer without any overhead from the Python
layer. Additionally, the C implementation of Jorge Nocedal’s
Fortran implementation of the limited-memory BFGS algo-
rithm39,40 by Naoaki Okazaki (https://github.com/chokkan/
liblbfgs) can be used.
A test suite is provided to check the implementations against

each other. During code development work, we noticed that

performing parallel reductions can lead to numerically slightly
different results. The reason is that parallel reductions introduce
nondeterministic summation orders such that round-off errors
vary between runs. Therefore, we also provide parallelized C
kernels where we eliminated any nonreproducibility effects.

3.2. Simulation Details. Ala-5 was simulated at pH 2, using
the AMBER99SB*-ildn-q force field matching the experimental
solution conditions.41 To describe the protonated C-terminus at
a low pH, we took partial charges from the protonated aspartate
side chain. Excess charges were distributed across the C-terminal
residue. The simulations of Ala-5 were run for 1 μs using
simulation options previously described.42 J-couplings were
calculated as in previous work43 for the 50000 structures used for
the BioEn reweighting. Chemical shifts were calculated with
SPARTA+44 using MDTraj.45 MD simulations were analyzed
using MDAnalysis.46,47

4. RESULTS

We first investigate the stability, accuracy, and efficiency of the
optimization methods using log-weights and generalized forces
by applying them to synthetic data. We then refine molecular
dynamics simulation ensembles for Ala-5 using J-couplings.

4.1. Accuracy and Performance of Optimization
Methods. We investigate how accuracy and efficiency of the
log-weights and forces methods depend on the size of the
ensemble N and the number of data points M using synthetic
data. To generate a data set, we drew M experimental values Yi
from a normal distribution, that is, ≈Y (0, 1)i . We generated
calculated observables yiα by drawing Gaussian numbers from
N(Yi + 1, 2), where the offset of 1 mimics systematic deviations
due to force field inaccuracies. We set the experimental error for
all data points to σ = 0.5. For each combination of fiveM-values,
M = 102, 316 (∼102.5), 103, 3162 (∼103.5), and 104, and nine N-
values, N = 102, 316 (∼102.5), 103, 3162 (∼103.5), 104, 31623
(∼104.5), 105, 316228 (∼105.5), and 106, we generated randomly
four sets, giving us 5 × 9 × 4 = 180 data sets in total.
To fully define the optimization problem, we chose uniform

reference weights wα
0 = 1/N and a value for the confidence

parameter θ = 0.01. The latter expresses little confidence in our
reference ensemble, such that the optimal weights will be
significantly different from the reference weights, rendering this
optimization more challenging than for large values of θ. We
minimize the negative log-posterior L given by eq 8 for each data
set using the log-weights and forces methods.
The efficiency and accuracy of gradient-based optimization

methods depends strongly on their detailed parametrization.
Here, we present results for the limited-memory BFGS
(LBFGS) algorithm.39,40 Due to its memory efficiency, we can
refine larger ensembles using more data points compared to
other algorithms like BFGS or conjugate gradients. Specifically,
we explored the effect of the choice of the line search algorithm
and the convergence criteria on the convergence behavior. We
found that using the backtracking line search algorithm applying
the Wolfe condition48,49 in connection with a convergence
criterion acting on the relative difference of the log-posterior
with respect to a previous value (relative difference 10 iterations
before the current one <10−6) strikes the best balance between
accuracy, efficiency, and robustness. We used these parameters
to obtain the results we show in the following. From all optimal
solutions found in our exploration of the parameter space of the
LBFGS algorithm, we chose for each data set the solution with
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the lowest negative log-posterior to compare with. We call these
solutions the most optimal solutions in the following.
To characterize the optimization problem for the synthetic

data sets considered here, we plot the optimal reduced χ2 value
as a function of the optimal relative entropies, SKL, in Figure 1.

The larger the value of the relative entropy SKL, the more the
optimal weights differ from the reference weights and the more
challenging is the optimization problem. In general, we found
that the optimal values for the log-weights and forces methods
agree well with each other. Due to the nature of the synthetic
data sets, results for individual (M, N) can be visually identified
as clusters, especially for large ensemble sizes N. Note that for
the data sets considered here, the clusters for large N pose more
challenging optimization problems because the optimal weights
are further from the initial weights.
The optimal weights obtained with the two methods are

highly correlated and correlate excellently with the most optimal
weights found in our exploration of parameter space of the
LBFGS algorithm. We quantify these correlations using
Pearson’s correlation coefficient r,50 which for two sets of
weights wα

(1) and wα
(2) is given by

=
∑ − ∑ −

∑ − ∑ −

α α γ γ

α α γ γ

=
−

=
−

=
−

=
−

r
w N w N

w N w N

( ) ( )

( ) ( )

N N

N N

1
(1) 1

1
(2) 1

1
(1) 1 2

1
(2) 1 2

(21)

We find that the cumulative distribution functions of the
correlation coefficient for the forces and log-weights methods
with respect to the most optimal weights found are strongly
peaked at r = 1 (see Figure 2). For the forces method, 91% of all
samples have a correlation coefficient of r > 0.99. For the log-
weights method, the peak at r = 1 is even narrower as 95% of all
samples have a correlation coefficient of r > 0.99. However, the
log-weights solutions of fewer than 10 out of 180 samples have a
correlation coefficient of r < 0.9 and thus show poorer
correlation with the most optimal weights.
A more detailed analysis of the accuracy shows that the log-

weights method performs not as well in cases where the
ensemble size is much larger than the number of data points, N
≫ M. To quantify the accuracy, we calculate the difference in
log-posterior, ΔL, obtained with the forces and log-weights

methods to the most optimal negative log-posterior, L(opt),
found. An average over all samples for given M and N indicates
that the forces method performs well (see Figure 3, top left).
Only whenM ≈N, we find occasional small deviations from the
most optimal values. The log-weights method performs
excellently for M ≈ N, but not as well where N ≫ M. This
behavior is also reflected in theminimum value of the correlation
coefficients over the four random samples at givenM andN (see
Figure 3, bottom).
For the chosen convergence criterion and line search

algorithm, the log-weights method is computationally more
efficient than the forces method (Figure 4). We performed
benchmark calculations on a single node with two E5-2680-v3
CPUs, 12 cores each, and 64 GB RAM using OpenMP. For the
largest system considered, (N, M) = (106, 105) we used a
machine with identical CPUs but 128 GB RAM. For all values of
the number of data points M, the run time as a function of the
ensemble size N shows a step where the matrix of calculated
observables y has reached a size of∼107 elements, that is, atM×
N = 102× 105, 103× 104, and 104× 103. At this size, the matrix y
no longer fits into the CPU cache. However, for larger sizes the
run time again depends linearly on the ensemble size. In Table 1,
we summarize the average run times for the largest ensemble size
considered here (N = 106). For M = 100 the log-weights
methods is ∼20 times faster than the forces method (∼12 s
versus ∼4 min on a single node; see Table 1).
In conclusion, for the chosen convergence criterion and line

search algorithm, optimization using the LBFGS algorithm is
stable, efficient, and accurate for both the forces method and the
log-weights method. In cases where the ensemble size is much
larger than the number of data points,N≫M, the forcesmethod
is more accurate but also less efficient. In cases whereN≈M, the
log-weights method is both more efficient and more accurate
than the forces method. The BioEn optimization library has
been written to make it easy and straightforward not only to
choose from a variety of optimization algorithms, but also to
fine-tune the chosen optimization algorithms to further improve
accuracy or efficiency or both.

4.2. Refinement of Ala-5 Using J-Couplings. As a
realistic example for a biomolecular system, we have conducted
BioEn refinement of the disordered peptide penta-alanine (Ala-
5) against NMR J-couplings.41 The Ala-5model system is simple
enough that well converged simulations can be obtained
straightforwardly. Nevertheless, it displays much of the

Figure 1. Scatter plot of the optimal reduced χ2 and the optimal relative
entropy, SKL, obtained with the log-weights method (circles) and the
forces method (crosses) for 5 × 9 = 45 values of (M, N) and θ = 0.01.
For each value of (M, N), we show results for four synthetic data sets
drawn at random as specified in the text. Crosses on top of circles
indicate excellent agreement of the twomethods. Optimal values for the
four data sets for a specific (M, N) can be visually identified as clusters,
especially for large N.

Figure 2. Cumulative distribution functions of Pearson’s correlation
coefficient r given by eq 21 of the optimized weights obtained with the
log-weights and forces methods with respect to the most optimal
weights found in optimizations with different parameters for the
LBFGS algorithm. The lowest r values for particular (M, N)
combinations are shown in Figure 3.
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complexity encountered in MD simulations of intrinsically
disordered proteins (IDPs) with a myriad of shallow free energy
minima. Hence, details of the force field matter greatly for such
systems, and simulations do not provide results at a level
routinely achieved for well-ordered proteins. NMR observables
such as J-couplings, which report on dihedral angle equilibria,
provide accurate information on disordered systems.51

We assessed the quality of a 1 μs simulation of Ala-5 with the
AMBER99SB*-ildn-q force field by comparison to experimental

J-couplings.41 J-couplings were calculated from the MD
trajectory using the Karplus parameters from the original
publication41 and two sets of Karplus parameters determined
from DFT calculations (DFT1 and DFT2).52 The DFT2
parameters were used to define the AMBER99SB*-ildn-q force
field, and hence we initially focused on this set of Karplus
parameters.
Even without refinement, the MD simulation gives very good

agreement with the experimental J-couplings with χ2/M ≈ 1.0
(1.1 and 0.8 for original and DFT1 Karplus parameters,
respectively) using the error model of ref 43. For uncorrelated
errors, χ2/M < 1 would signify agreement within the
experimental uncertainty on average. However, a closer
inspection of measured and calculated J-couplings shows that
there are systematic deviations. For the 3JHNHα and 3JHαC′

Figure 3.Optimality of solutions as a function of the ensemble sizeN (horizontal axis) and number of experimental data pointsM (vertical axis) with
respect to the most optimal solutions found with different convergence criteria and line search algorithms. (top) Difference of negative log-posterior
values to optimum for the forces method (left) and the log-weights method (right). (bottom) Minimum value of the Pearson correlation coefficient r
over the four samples at a given (M, N) with respect to the optimal weights for the forces method (left) and log-weights method (right).

Figure 4. Run times for the log-weights (circles) and forces (crosses)
optimization methods as a function of ensemble size N for different
numbers of data points M = 100, 1000, and 10000 (in green, orange,
and blue, respectively). Run times have been averaged (bold symbols)
over four different synthetic data sets each (light symbols).

Table 1. Average Single-Node Run Time in Minutes and
Minimum and Mean Value of the Pearson’s Correlation
Coefficient, r, Calculated for the Optimized and Most
Optimal Weights for the Largest Ensemble Size, N = 106 and
M = 100, 1000, and 10000 Data Points

run time [min] min./avg. r

M log-weights forces log-weights forces

102 0.2 4 0.63/0.78 1.00/1.00
103 1.5 7 0.98/0.99 1.00/1.00
104 48 140 1.00/1.00 0.98/0.99
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couplings, which report on the ϕ-dihedral angle equilibrium, the
simulations predict larger couplings than in experiments (Figure
5A,C). In addition, for the 2JNCα couplings, which are sensitive to
the ψ-dihedral angle equilibrium, couplings calculated from
simulations are all smaller than the experimental couplings
(Figure 5G).
With BioEn reweighting, we refined the weights of 50000

structures from the 1 μs simulation of Ala-5 against 28
experimental J-couplings. Optimizing the effective log-posterior
at different values of the confidence parameter θ (Figure 6A), we
see the expected drop in χ2 as θ is decreased. At small values of θ,
we find only marginal improvements in χ2, but start to move
away from the reference weights as indicated by a substantial
increase in the relative entropy. At θ = 6.65, we find a good
compromise between reducing χ2 and staying close to the
reference weights. The agreement with experiment increased or
stayed the same for all J-couplings (Figure S6) except for 3JHNC′
and 3JHNCβ of residue 2 for which the already very good
agreement got somewhat worse (Supporting Information). The
overall improvement demonstrates that the different experi-

ments are consistent with each other. In particular, for the
3JHNHα (Figure 5A) and 3JHαC′ (Figure 5C) couplings, which
report on the ϕ dihedral angle, and the 2JNCα couplings (Figure

Figure 5. Comparison of J-couplings measured by NMR41 (black squares) and calculated from MD simulation with the AMBER99SB*-ildn-q force
field (red squares) and the optimal BioEn ensemble (blue circles, θ = 6.65). The DFT2 set of Karplus parameters was used to calculate J-couplings.

Figure 6. BioEn optimization for Ala-5. (A) L-curve analysis to
determine the optimal value of the confidence parameter θ by plotting
χ2 as a function of SKL for different values of θ. (B) Cumulative weight of
rank-ordered wα for the uniformly distributed reference weights wα

0

(red) and for optimized weights (blue) at θ = 6.65 with SKL ≈ 0.5.
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5G), reporting on the ψ dihedral angles, systematic deviations
from the experiment disappear with the refinement. The
changes in the weights are associated with an entropy SKL ≈
0.5 (Figure 6A). The weights of most structures were changed
only slightly by the reweighting. In the optimal BioEn ensemble,
themost important 20% of the structures constitute∼60% of the
refined ensemble (Figure 6B). The weights of these structures
approximately double with the refinement. After refinement
∼20% of the structures contribute negligibly to the ensemble,
with weights close to zero. As expected, the optimal weights
from the log-weights or generalized forces methods were highly
correlated (Figure S1), confirming the equivalence of the two
methods to solve the BioEn reweighting problem. Using the
LBFGS algorithm, the run times of the forces and log-weights
optimizations for all θ values are comparable, at 42 and 33 s,
respectively, on a standard workstation.
The polyproline-II (ppII) conformation at ϕ≈−60° and ψ≈

150° becomes more populated in the optimal ensemble (Figure
7D), irrespective of the choice of Karplus parameters. The shift
to ppII is in agreement with the original analysis of the J-
couplings for Ala-5,41 where it was concluded that the ppII state
dominates the conformational equilibrium, and with infrared
(IR) spectroscopy.53 The same conclusion was drawn from
refining Ala-3 MD simulation ensembles against 2D-IR data.54

The 3JCC′ coupling for residue 2 has been highlighted as
potentially spurious by Best et al.55 because the reported
coupling is atypical for a polyalanine. Leaving out this observable
from the BioEn refinement results in an essentially unchanged
refined ensemble (Figure S5). Using alternative Karplus
parameters to calculate the J-couplings (Figure S2) also leads
to a shift to the ppII state (original and DFT1 in Figures S3 and
S4, respectively), and in all cases, the ppII state becomes more

favorable at the expense of α-helical like conformations (Figure
S5). For the original Karplus parameters, we also find a
reduction in β-strand like conformations and an even larger ppII
population than for DFT1 and DFT2. While the choice of
Karplus parameter model somewhat affects the optimal
ensemble, the overall conclusions are robust.
The ensemble refinement improves and preserves the

agreement with experimental data not included in the
refinement, Protein Data Bank (PDB) statistics, and the
experimental chemical shifts. The distribution of ϕ and ψ angles
for Ala residues outside of regular secondary structure from the
PDB,11 while clearly not reflective of the structure of a specific
disordered protein in solution, provides a measure of conforma-
tional preferences of disordered proteins. Indeed, the BioEn
reweighting of the α and ppII conformations leads to a
Ramachandran plot agreeing more closely with the PDB
statistics, with a large reduction in the population of left-handed
α-helical conformations as is apparent from Figure 7D, Figure
S3, and Figure S4. No information from PDB statistics was
included in the refinement and the improved agreement with an
independent data set is encouraging. As a second independent
data set, which was not included in the BioEn refinement, we
compare the experimental chemical shifts for Ala-541 to the
initial ensemble and the optimal ensemble. The chemical shifts
predicted by SPARTA+44 are within the prediction error before
and after ensemble refinement (Figure S7). The comparison
shows the following for Ala-5: (1) Chemical shifts cannot be
used to refine the ensemble because the initial ensemble already
agrees with experiment within the large prediction error. (2)
Ensemble refinement either improves or leaves unchanged
predictions for observables not included in the refinement.

Figure 7. Ala-5 Ramachandran maps. (A) Free energy surface G(ϕ,ψ) = −ln p(ϕ, ψ) from MD simulation with the AMBER99SB*-ildn-q force field
averaged over the central residues 2−4. (B) Ramachandran plot for Ala residues outside of regular secondary structure from the PDB.11 (C) Free
energy surface for the optimal BioEn ensemble with DFT2 Karplus parameters. (D) Free energy differences between initial ensemble and the optimal
BioEn ensemble.
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The BioEn reweighting leads to a better description of the
disordered peptide Ala-5 and highlights the trade-offs inherent
even in the most advanced force fields. Current fixed-charge
protein force fields underestimate the cooperativity of the helix−
coil equilibrium56 because force fields describe the formation
hydrogen bonds relatively poorly. To compensate for the lack of
cooperativity of helix formation, the formation of α-helices was
favored by the “star” correction to the ψ torsion potential with
the aim to define a force field balanced between helix and coil
conformations. The slight rebalancing of the AMBER force
field56 enabled the folding of both α-helical and β-sheet
proteins.57 Here BioEn reweighting compensates for an adverse
effect of the overall very successful rebalancing of the AMBER
force field, that is, the overestimation of the helix content for
short peptides such as Ala-5. BioEn reweighting can thus serve as
a system specific correction to the force field, which is a
promising avenue to tackle systems such as intrinsically
disordered proteins where the details of the force field are
critical.58,59

5. DISCUSSION
We have presented two separate approaches to optimizing the
BioEn posterior, the log-weights and generalized forces
methods. Both approaches have in common that the resulting
optimization problem is unconstrained, that is, both log-weights
and forces can take on any real value in principle (with positivity
of the weights enforced by the Kullback−Leibler divergence).
For such unconstrained optimization problems, efficient
gradient-based optimization methods exist. We take advantage
of these by deriving analytical expressions for the gradients in
both formulations.
The main differences between the log-weights and the forces

methods concerns the dimensionality of the underlying
optimization problem. Usually, higher-dimensional problems
are harder to optimize. We can either optimize for N − 1 log-
weights, where N is the ensemble size, or for M generalized
forces, where M is the number of data points. We have shown
here for the memory efficient LBFGS optimization algo-
rithm39,40 and synthetic data sets that optima corresponding
to identical weights are reliably and efficiently found with both
formulations.
Importantly, the BioEn method contains solutions of

traditional MaxEnt approaches to ensemble refinement as
special cases (see Figure 8). These methods either treat
experimental observables as strict constraints20,22,61,62 or
consider errors explicitly.25,30,60 If solutions for these methods
exist then they correspond to different choices of the value of the
confidence parameter θ: The BioEn optimal ensemble
approaches the traditional MaxEnt solution with strict
constraints forcing deviations from the experimental values to
vanish, that is, χ2 = 0, in the limit of θ → 0+. Note that if an
experimental observable does not fall within the range of the
calculated observables, such a strict constraint cannot be fulfilled
and the MaxEnt method in principle fails to give a solution
(though, in practice, methods such as replica sampling20 will still
give a result). In these cases where theMaxEnt solution does not
exist, the limit of θ → 0+ corresponds to the least-χ2 solution
under the constraints that all weights are positive and
normalized. As for MaxEnt approaches that account for
Gaussian errors, the method of Cesari et al. gives the same
solution as BioEn for θ = 1.25,30 TheMaxEnt method of Gull and
Daniell60 includes errors but uses a strict constraint by
demanding that the reduced χ2 is equal to one. If such a

solution exists, then this condition determines a particular value
of θ.
Reweighting relies on good coverage of the conformational

space such that the true ensemble underlying the experimental
data is a subensemble of the simulation ensemble.63 In coarse-
grained simulations, sampling is efficient and the free-energy
landscapes are smooth such that good coverage can be achieved.
In atomistic simulations, where sampling is more expensive and
the free energy landscape is rougher, we often have to apply
enhanced sampling methods to obtain good coverage.
Independent of the details of the enhanced sampling method
and with or without steering by experimental values, one can use
binless WHAM42,64 or MBAR65 to obtain the reference weights
of the unbiased ensemble, which serve as input for ensemble
refinement by reweighting.21

Here, we demonstrated that even without applying enhanced
sampling methods, refinement of fully atomistic trajectories of
penta-alanine using J-couplings alleviates deficiencies in the
force field and leads to better agreement not only with the NMR
data but also with expectations from experimental structures for
proteins. These results indicate that ensemble refinement via
reweighting is a promising route for highly flexible systems such
as nucleic acids30 and intrinsically disordered proteins.58,59 For

Figure 8. MaxEnt approaches to ensemble refinement as special cases
of BioEn. For BioEn optimal ensembles, we plot the reduced χ2 and the
relative entropy SKL parametrized by the confidence parameter θ (blue).
The solution of Gull−Daniell-type60 methods is given by the
intersection of this curve with χ2 = 1 (orange), of traditional MaxEnt
methods20,22,61,62 by the intersection with χ2 = 0 (green), and of the
method of Cesari et al.25,30 by the BioEn solution for θ = 1 (red). For a
simple model (M × N = 1 × 2, y = (0,1), σ = 0.14), we vary the
experimental value Y, top to bottom. (A) All methods provide a solution
for an experimental value Y = 0.09 within the range of calculated
observables. (B) Traditional MaxEnt methods fail to give a solution for
Y values outside this range (Y = 1.08). (C) Both traditional MaxEnt and
Gull−Daniell-type methods fail to give a solution where a reduced χ2≤
1 cannot be realized by reweighting (Y = 1.16). The vertical gray lines
indicate the maximum value SKL = ln(2) for a two-state system.
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such systems, the number of accessible states can be enormous
and consequently even small inaccuracies in the simulation force
fields can lead to a poor representation of the experimental
ensemble.
Importantly, ensembles do not have to be generated by

simulations to be amenable to ensemble refinement via
reweighting. For example, in the analysis of EPR experiments
like DEER, libraries of the rotameric states of spin labels are
used. For a specific residue, one selects from this library all
rotameric states that do not have steric clashes with the protein
structure. However, the interactions of the spin label with its
surroundings can make some rotameric states in this ensemble
more preferable than others. To account for this uncertainty,
one can perform a BioEn refinement using the DEER data and
the ensemble of rotameric states. This procedure has been used
recently to resolve angstrom-scale protein domain move-
ments.66 BioEn-type ensemble refinement has also been applied
successfully to IDP structural modeling usingNMRdata as input
and coil libraries as reference.10,11

To integrate experimental results, we often have to take
nuisance parameters into account. For refining against SAXS
intensities, we have to consider an unknown scaling parameter
and often use an additive constant to account for inelastic
scattering and, to a first approximation, for differences in the
contrast. Using DEER data, we have to determine the
modulation depths. We can include such nuisance parameters
in the optimization either directly (by minimizing L
simultaneously with respect to the weights and nuisance
parameters) or iteratively. In the iterative approach, we perform
the following: (1) A least chi-squared fit of the calculated
ensemble averages determined by the current weights to the
experimental data sets with the corresponding nuisance
parameters as fit parameters. We have to perform one fit for
every experimental method providing data. (2)With these fitted
values of the nuisance parameters, we adjust the calculated
observables yi

α. These enter another round of optimization from
which we obtain the optimal weights given the values of the
nuisance parameters. (3) We use these weights for another
round starting with step 1 until convergence is achieved. Note
that instead of using least-chi-squared fits, one can also include
priors acting on the nuisance parameters in both the direct and
iterative formulations.
Interestingly, ensemble refinement by reweighting offers a

way to quantify the agreement between simulations and
experiment. After reweighting, we can make a quantitative
statement of how much we would have had to change the
simulated ensemble, expressed by the relative entropy or
Kullback−Leibler divergence to be able to obtain agreement
with experiment. The quantification of the agreement between
simulation and experiment can also be used to identify and
correct deficiencies in molecular dynamics force fields.21 In a
perturbative formulation, one can seek force field corrections
that capture the weight change.25

BioEn accommodates a wide range of error models. With the
gradients of the BioEn log-posterior presented here for Gaussian
error models, with and without correlation, we already cover a
large range of experimental methods. Moreover, in many cases
the Gaussian error model can be used to efficiently obtain an
initial estimate for the optimal weights. These estimates can then
be used as initial weights for an optimization using a more
accurate error model but perhaps a less efficient optimization
method.We provide an open-source implementation at https://

github.com/bio-phys/BioEn at no cost under the GPLv3
license.
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