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We analyze the constraints imposed by gauge invariance on higher-order interactions between massless
bosonic fields in three-dimensional higher-spin gravities. Focusing on the transverse-traceless part, we
show that vertices of quartic and higher order that are independent of the cubic ones can only involve
scalars and Maxwell fields. As a consequence, the full nonlinear interactions of massless higher-spin fields
are completely fixed by the cubic vertex.
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Introduction.—In this Letter, we start an investigation
aimed at a Lagrangian formulation of three-dimensional
(3D) higher-spin (HS) gravities [1] beyond cubic order.
HS gravity theories are generalizations of gravity, where

higher-spin gauge fields are introduced. In 3D, a free spin-s
gauge field is a symmetric tensor field ϕμ1���μs with gauge
transformation

δð0Þϕμ1���μs ¼ s∂ðμ1ϵμ2���μsÞ; ð1Þ

similar to Maxwell or Chern-Simons vector gauge fields
(s ¼ 1) and linearized gravity (s ¼ 2). It is described by the
quadratic Fronsdal Lagrangian L2 [2]. We collectively
denote massless fields with spin s > 1 and Chern-
Simons vector fields as “massless HS fields.” In 3D, these
do not possess propagating degrees of freedom; however,
they can have interesting boundary dynamics at the
conformal boundary of asymptotically anti–de Sitter
(AdS) space-times. Up to now, no nonlinear Lagrangian
of interacting Fronsdal fields is known, but there is a
systematic perturbative approach to construct such
Langrangians. This is known as the Noether-Fronsdal
program, which we follow in this work and review below.
There are different motivations to study HS gravities.

Most prominently, they constitute generalizations of grav-
ity for which holographic dualities can be investigated: a

(dþ 1)-dimensional HS gravity theory on asymptotically
AdS space-times is related to a d-dimensional conformal
field theory (CFT). This HS AdS=CFT correspondence
[3,4] is a priori independent of the string-theoretic
AdS=CFT correspondence, and possesses distinct features
as it does not require supersymmetry and is accessible to
perturbative checks. It becomes particularly interesting for
3D HS gravities [5], because for 2D CFTs many exact
results are available. These also allow one to study the
relation between the tensionless limit of string theory and
HS theories via their CFT dual [6,7].
To perform computations on the HS side, finding a

Lagrangian formulation is crucial. For the nonpropagating
sector (i.e., without scalars or Maxwell fields), a nonlinear
action is available in Chern-Simons form [8–10] (which is a
generalization of the Chern-Simons formulation of 3D
gravity [11]). There, one uses the framelike formulation
of HS fields in terms of generalized vielbein fields and spin
connections. In this formulation, coupling to matter is not
straightforward. It can be achieved by following the
Vasiliev approach [12] which uses infinitely many auxiliary
fields and for which no standard action is known.
The metriclike formulation of HS gravity [13–17] (based

on Fronsdal fields) is more suitable for matter coupling. For
example, the cubic interactions of massless HS fields are
well studied both in flat [18–28] and ðAÞdS spaces [29–34]
of dimensions D ≥ 4. However, the main challenge in
formulating the action in arbitrary dimensions arises at
quartic order (see, e.g., Refs. [35–42]) and this is also
expected in the 3D case with matter.
In the Noether procedure one starts with the free

quadratic Lagrangian L2 and builds vertices order by order,
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including matter couplings. For a given HS theory, we
expand the Lagrangian in powers of small parameters gn,

L ¼ L2 þ
X

n≥3
gnLn þOðg2nÞ;

where we suppress a sum over the different kinds of n-point
vertices Ln. Altogether, Lmust be gauge invariant, δL ¼ 0,
up to boundary terms, where δ is obtained by deforming the
transformation of the free fields [see Eq. (1)],

δ ¼ δð0Þ þ δð1Þ þ � � � ;

expanded in powers of the fields.
Cubic gauge invariant vertices in 3D have been classified

[16,17]. In this work, we study higher-order vertices of
massless fields that are independent of the ones of lower
order. Because of gauge invariance, they satisfy the
following Noether equations:

δðn−2ÞL2 þ δð0ÞLn ¼ 0 up to total derivatives: ð2Þ

Assuming that nontrivial vertices are nonzero when
restricted to the transverse-traceless sector, we show that
after suitable field redefinitions in 3D there are no inde-
pendent vertices of order n ≥ 4 that contain massless
higher-spin fields.
Preliminaries.—The Lagrangian L is written in terms of

massless Fronsdal fields, subject to nonlinear gauge trans-
formations. For the classification, we focus on the traceless
and transverse (TT) part of the vertices, i.e., the part that
does not contain divergences and traces of the fields. We
briefly comment on the relation to the full vertices in the
conclusion. Hence, from now on we assume that the fields
are parametrized by symmetric, traceless, and divergence-
free tensors ϕμ1���μsðxÞwith μi ∈ ð0; 1; 2Þ; s denotes the spin
of the field and the corresponding free equation of motion
(EOM) is the Klein-Gordon equation with zero mass (see,
e.g., Ref. [17]).
For convenience, one contracts the tensor indices each

with an auxiliary vector variable aμ. This defines

ϕðsÞðx; aÞ ¼ 1

s!
ϕμ1���μsðxÞaμ1 � � � aμs ð3Þ

and the properties of ϕμ1���μsðxÞ translate to the Fierz
equations for ϕðsÞðx; aÞ:

A2ϕðsÞ ¼ A · PϕðsÞ ¼ P2ϕðsÞjfree EOM ¼ 0;

where Pμ ¼ ∂xμ and Aμ ¼ ∂aμ .
We analyze the general form of the deformations Ln for

n ≥ 4, which can be written as

Ln ¼ V
�Yn

i¼1

ϕiðxi; aiÞ
�����

xi¼x
ai¼0

; ð4Þ

where we abbreviated ϕi ¼ ϕðsiÞ. The vertex generating
operator V performs the index contractions via the oper-
ators Pμ

i ¼ ∂xμi
and Aμ

i ¼ ∂aμi
. Let us first concentrate on

parity even vertices Ln; hence V is a polynomial in the
commuting variables

zij ¼ Ai · Aj; yij ¼ Ai · Pj; sij ¼ Pi · Pj:

These contract two indices each: One from ϕi with one
from ϕj (zij); one from ϕi with one from a derivative acting
on ϕj (yij); and two from derivatives acting on ϕi and ϕj

(sij). The sij are the familiar Mandelstam variables. In the
end, we set ai ¼ 0 to ensure Lorentz invariance. Whenever
appropriate, we use an n-periodic index notation,
e.g., sinþj ¼ sij.
Equivalence relations.—We say that two vertex generat-

ing operators V and V 0 are equivalent, V ≈ V 0, if and only if
the two resulting Lagrangians Ln and L0

n, constructed via
Eq. (4), describe the same theory. Hence, we seek the most
general form of V, up to equivalence.
For example, field redefinitions ϕi ↦ ϕi þ δϕi, such

that δϕi is of order n − 1 in the fields, do not alter the
theory, but change Ln by terms proportional to the free
equation of motion of ϕi whose TT part is just the massless
wave equation. Choosing δϕi properly, we can remove all
appearances of sii ¼ P2

i in the TT part of Ln for any n and
all i ¼ 1;…; n. This generalizes the so-called Metsaev
basis for cubic vertices [17,20,21,28] to higher n.
Since we are interested in the TT part of the

vertex, V does not depend on zii and yii. So far, we
summarize that V is an element in the polynomial ring
R ¼ R½zijji<j; yijji≠j; sijji<j�.
Furthermore, acting with Dμ ¼ P

n
j¼1 P

μ
j on the expres-

sion in brackets in Eq. (4) results in a total derivative term in
the Lagrangian which does not affect the theory. We may
hence remove any dependence of V on Ai ·D and Pi ·D. In
other words, we impose the equivalence relations

Xn

j¼1

yij ≈ 0;
Xn

j¼1

sij ≈ 0;

which generate an ideal ID ⊂ R.
A final class of equivalence relations is given by

Schouten identities, which stem from over-antisymmetri-
zation of space-time indices within the Lagrangian. They
translate to an ideal IS of equivalence relations in R as
follows: Consider the vector of derivative operators b ¼
ðP1;…; Pn; A1;…; AnÞ and the symmetric 2n × 2n matrix
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B ¼ ðbK · bLÞjK;L∈ð1;…;2nÞ ¼
�
S YT

Y Z

�
:

Here, S ¼ ðsijÞ, Y ¼ ðyijÞ, Z ¼ ðzijÞ are n × n matrices
with elements inR (hence, their diagonal elements vanish).
Now, remove 2n − 4 rows and columns from B and call the
resulting 4 × 4 matrix M. Acting with detM on the term in
brackets in Eq. (4) yields an expression with four anti-
symmetrized space-time indices, which vanishes in three
dimensions. All such 4 × 4 minors of B form a generating
set for the ideal IS.
All in all, V is a representative of an equivalence class in

the quotient ring ½V� ∈ R=ðID þ ISÞ and we are free to
choose a convenient one, since all generating operators in
one equivalence class describe the same vertex. However, it
is hard to find simple representatives, because the ideal IS
is too complicated. In the next section, we show that it is
easier to get a hold on representatives of ½ΔV�, where we
multiply V by an appropriate product Δ of Mandelstam
variables sij. The operator ΔV corresponds to acting with
contracted space-time derivatives on the vertex generated
by V. Then, by choosing a simple representative for ½ΔV�,
we can impose strong constraints on the vertex generating
operator V itself. We show this shortly.
V andΔV generate physically distinct vertices. However,

if one of them is trivial, so is the other. In particular, as we
show in the rest of this section,

ΔV ≈ 0 ⇒ V ≈ 0: ð5Þ

This can be seen in Fourier space, where the operators sij
can be treated as numbers. If Δ is a product of sij (i ≠ j),
then it is generically nonzero on the subvariety in k space
defined by k2i ¼ 0 and

P
ki ¼ 0. The property ΔV ≈ 0

translates in Fourier space to the condition that ΔV applied
on any product of fields ϕ̂iðki; aiÞ (evaluated at ai ¼ 0)
vanishes on this subvariety. As Δ is nonvanishing almost
everywhere and V only depends polynomially on kμi , one
concludes that V applied on the fields ϕ̂i vanishes,
hence V ≈ 0.
Choice of representatives.—In this section, we use

Schouten identities to choose a convenient representative
of ½ΔV� for a given vertex generating operator V multiplied
by a suitable product Δ of Mandelstam variables sij. First,
let M be a 4 × 4 submatrix of B containing the first three
rows and columns, as well as the (nþ i)th row and
(nþ j)th column with i ≠ j. Using the corresponding
Schouten identity

0 ≈ detM ¼ 2s12s23s31zij þ ðterms independent of zklÞ;

we can replace zij in ΔV by the ykl and skl variables if Δ is
chosen to contain high enough powers of s12s23s31. Doing
this for all pairs (i ≠ j) allows us to choose a representative

for ½ΔV� that does not depend on any zij. In a similar
fashion we can reduce the number of ykl variables: Pick out
a 4 × 4 submatrix M of B including the columns i, iþ 1,
iþ 2 (modulo n) and (nþ i), such that the latter contains
the elements yii ¼ 0, yiiþ1, yiiþ2 and any other, say yij.
Then the Schouten identities detM ≈ 0 can be used to
replace all of the operators yij in ΔV by yiiþ1, yiiþ2 and the
Mandelstam variables. Finally, we perform a change of
variables by replacing each yiiþ2 in ΔV by a linear
combination of yiiþ1 and Yi ≔ siiþ2yiiþ1 − siiþ1yiiþ2.
The reason for this replacement becomes more apparent
in the next section, but note for now that Y2

i ≈ 0 due to
Schouten identities. Indeed, the 4 × 4 minor detM of B,
which consists of the rows and columns i, iþ 1, iþ 2

(modulo n), and iþ n, satisfies detM ¼ Y2
i .

We conclude that for a given vertex generating operator
V, there exists a product of Mandelstam variables Δ, such
that

ΔV ≈QVðyiiþ1; Yi; sijÞ; ð6Þ

and the polynomial QV is at most linear in each Yi (a term
YiYj with i ≠ j is still possible, but Y2

i is not). We note that
the polynomial might not be unique. It can be seen as a
representative of an equivalence class

½QV � ∈
R½yiiþ1; Yi; sij�
IR þ hY2

i i
;

where the ideal IR ⊂ R½yiiþ1; Yi; sij� is generated by all
remaining equivalence relations (total derivatives and
Schouten identities).
Constraints from gauge invariance.—In this section, we

show that gauge invariance implies that the polynomial QV
in Eq. (6) does not depend on yiiþ1. To this end, we
consider the 0th order gauge transformations of the fields
[see Eq. (1)],

δð0ÞϕðsÞðx; aÞ ¼ a · Pϵðs−1Þðx; aÞ;

where the gauge parameter ϵðs−1Þ, constructed as in Eq. (3),
also satisfies the Fierz equations.
In the condition for gauge invariance, Eq. (2), the first

term vanishes when the free equations of motion are
applied. Hence,

δð0Þk Ln ¼ Vak · Pk

�
ϵkðxk; akÞ

Yi≠k

1≤i≤n
ϕiðxi; aiÞ

�����
xi¼x
ai¼0

must vanish up to total derivatives when the Fierz equations
forϕi and ϵk are imposed.We deduce that the corresponding
vertex generating operator V ∈ R satisfies ½V; ak · Pk� ≈ 0
for k ¼ 1;…; n. The operators ak · Pk commute with sij,
hence, ½ΔV; ak · Pk� ≈ 0 for any product Δ of Mandelstam
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variables, and since the ideal IS þ ID is gauge invariant, we
find that

½QVðyiiþ1; Yi; sijÞ; ak · Pk� ≈ 0:

Using

½yiiþ1; ak · Pk� ¼ δiksiiþ1; ½Yi; ak · Pk� ¼ 0;

this reduces to

skkþ1∂ykkþ1
QVðyiiþ1; Yi; sijÞ ≈ 0; ð7Þ

where Yi is now treated as an independent variable:
∂ykkþ1

Yi ¼ 0.
Note that all remaining equivalence relations in IR are

gauge invariant; hence, the generators of IR can be chosen
to be polynomials only in Yi and sij. We conclude that
because of Eq. (7), QV can be chosen to be independent
of yiiþ1.
Parity-odd vertices.—So far, we have only discussed

parity-even deformations. The most general form of a
parity-odd n-point vertex Ln is also given by Eq. (4),
but with the vertex generating operator V replaced
by a linear combination W of operators VBIJK , where
V ∈ R and

BIJK ¼ ϵμνρb
μ
I b

ν
Jb

ρ
K; I; J; K ¼ 1;…; 2n

contains a single epsilon tensor. Let s3 be the 3 × 3 matrix
that consists of the first three rows and columns of S.
Then, det s3 ¼ 2s12s13s23 is a product of Mandelstam
variables and

det s3 · BIJK ¼ 1

6
ðB1IB2JB3K � 5 termsÞ·B123:

This relation is proved using det s3 ¼ ðB123Þ2.
We can now conclude along the lines of the previous

sections: For a given parity-odd n-point vertex Ln, there
exists a product Δ of Mandelstam variables, such that the
corresponding vertex generating operator W satisfies

ΔW ≈ QWðYi; sijÞ · B123;

where the polynomial QW is linear in the Yi’s. The only
additional input along this proof is that B123 is gauge
invariant (½B123; ak · Pk� ¼ 0).
Final steps.—Let us summarize: A Lorentz and gauge

invariant parity-even n-point vertex Ln is given by Eq. (4)
and there exists a product Δ of Mandelstam variables, such
that the vertex generating operator ΔV is equivalent to a
polynomial QVðYi; sijÞ, which is linear in each Yi. This
means that there is no product Aμ

i A
ν
i left, when we writeQV

in terms of the operators Pμ
i and Aμ

i . The equivalence

relations do not change the number of those operators, so
this must also be true for ΔV. Finally, sij (and thus, Δ) only
consist of the operators Pμ

i . We conclude that V cannot
contain any product Aμ

i A
ν
i , meaning that the corresponding

n-point vertex Ln, constructed via Eq. (4), may only
involve fields whose spin is at most one. Note that for
this argument, Eq. (5) is essential.
For a parity-odd vertex, we use an analogous reasoning,

except that ΔW is equivalent to a polynomial QWðYi; sijÞ
multiplied with Q123. But since Q123 does not contain any
Aμ
i operator, this does not alter the conclusion.
Finally, we find the extra equivalence relations Yi ≈ 0 for

Chern-Simons fields ϕi, which stem from the correspond-
ing free EOM. Hence, Ln may only contain massless
scalars and Maxwell fields, i.e., fields with propagating
degrees of freedom. This completes the proof of the
statement in the Introduction: there are no independent
vertices of order n ≥ 4 that contain massless HS fields.
Conclusions.—We have shown in this Letter that in three

dimensions gauge invariance strongly constrains the
higher-order interactions that involve massless fields. In
particular, vertices that are independent of the cubic ones
can only contain scalars and Maxwell fields, but no
massless HS fields. Our argument even applies when we
extend the set of propagating fields by massive bosons
(scalar, Proca, or higher-spin massive fields): Gauge
invariance is so strong that it forbids massless HS fields
from entering any independent higher-order vertex irre-
spective of the remaining field content of the theory. The
proof goes along the same way, except that for Δ in Eq. (5)
we have to consider a more general nonzero polynomial
(instead of a monomial) in the Mandelstam variables. We
will elaborate on this case in Ref. [43]. Furthermore,
although the results were derived in flat space-time, they
also hold for (A)dS (or even any Einstein background) due
to an argument given for the cubic vertices in Ref. [16].
In the classification we concentrated on the TT part of

the vertices. By our analysis it is not excluded that there are
higher order vertices with vanishing TT part. However,
there are several reasons to expect that the TT part contains
the relevant physical information about interactions: First,
most of the individual terms containing a trace and/or a
divergence can be set to zero by a gauge choice (even all of
them when the fields are on shell), so it seems that such
terms do not carry gauge-invariant information. Second, in
the Fronsdal formulation no case of a vertex with a
vanishing TT part is known. In a different formulation
such a possibility is known (see Section IV. 5 of Ref. [34]),
but also there it was observed that the corresponding vertex
does not affect physics. Therefore, we ignore potential
subtleties related to the non-TT part.
Our result implies that in any nonlinear theory with a HS

spectrum, all higher-order vertices that only include mass-
less HS fields arise by the completion of the cubic ones to
the full nonlinear Lagrangian (as in Yang-Mills theory or
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general relativity). This has an interesting consequence in
holography. In Refs. [16,17] it was observed that cubic
vertices satisfy triangle inequalities for the spins. Our result
implies that the only higher-order vertices are the com-
pletions of the cubic ones, and they can be shown to satisfy
polygon inequalities. This is in agreement with the CFT
prediction [44] and establishes a one-to-one map between
bulk vertices and boundary correlators in the context
of AdS3=CFT2.
HS fields are known to admit a Chern-Simons descrip-

tion in three dimensions, in a first-order formulation. The
findings of this Letter imply that all the fields that do not
carry bulk propagating degrees of freedom, cannot partici-
pate in independent higher-order interactions. This is
consistent with the statement on the absence of higher-
order self-interactions of Chern-Simons fields [45] and may
indicate an exact equivalence of the Chern-Simons and
metric descriptions of HS fields in the gauge sector. It is
therefore tempting to speculate that any nonlinear action of
massless HS fields without matter can be written in a
Chern-Simons form. Such an equivalence cannot extend to
the matter sector though.
It would be interesting to extend this work to higher

dimensions. In that case there will be independent higher-
order interactions for HS gauge fields. The classification of
the vertices satisfying Eq. (2) in arbitrary dimensions will
be given in Ref. [43].
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