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PRIMARY INVARIANTS OF HURWITZ FROBENIUS MANIFOLDS

P. DUNIN-BARKOWSKI, P. NORBURY, N. ORANTIN, A. POPOLITOV, AND S. SHADRIN

ABSTRACT. Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius struc-
ture. In this review, we recall the construction of such Hurwitz Frobenius manifolds as well as the correspondence
between semisimple Frobenius manifolds and the topological recursion formalism. We then apply this correspon-
dence to Hurwitz Frobenius manifolds by explaining that the corresponding primary invariants can be obtained
as periods of multidifferentials globally defined on a compact Riemann surface by topological recursion. Finally,
we use this construction to reply to the following question in a large class of cases: given a compact Riemann
surface, what does the topological recursion compute?
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1. INTRODUCTION

Consider a diagonal flat metric on a complex manifold M with local coordinates u = (u1, ..., un)

(1) ds2 =
N

∑
i=1

ηi(u)du2
i is flat,

generated by a potential H : M → C

(2) ηi(u) = ∂ui
H, i = 1, ..., N.
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Metrics satisfying (1) and (2) are known as Darboux-Egoroff metrics [5]. Condition (1) is equivalent to a
nonlinear PDE in ηi(u) which gives vanishing of the Riemann curvature tensor Rijkl = 0. The PDE becomes
integrable when condition (2) is added. By a metric we mean a smooth family of complex non-degenerate
symmetric bilinear forms on the tangent space TmM, so in particular it is not Riemannian.

Analogous to K. Saito’s construction [22] of flat coordinates on unfolding spaces of singularities, Dubrovin
[5] and Krichever [17] produced beautiful families of Darboux-Egoroff metrics on moduli spaces of pairs
(Σ, x) consisting of an algebraic curve Σ equipped with a meromorphic function x : Σ → C. Such a pair

(Σ, x) is a point in a Hurwitz space Hg,µ which parametrises covers x : Σ → P1 of genus g with points above
infinity marked and with fixed ramification profile (µ1, . . . , µd). Further, choose a symplectic basis of cycles

(Ai,Bi)i=1,...,g on Σ to define a point in a cover H̃g,µ of a Hurwitz space. Namely, H̃g,µ consists of the data of
a point in a Hurwitz space together with the data of a Torelli marking. One goes from one sheet of the cover

H̃g,µ to another one through the action of modular transformations Sp(2g, Z).

Definition 1.1. Given (Σ, x, {Ai,Bi}i=1,...,g) define a set of generalised contours D on Σ as follows. Choose

representatives for {Ai,Bi}i=1,...,g in H1(Σ \ x−1(∞)) and choose a set of relative homology classes γi ∈
H1(Σ, x−1(∞)), i = 2, ..., d such that γi ⊂ Σ \ {A1, ...Ag,B1, ...,Bg} runs from ∞i to ∞1 where the poles of x

are given by x−1(∞) = {∞1, ..., ∞d} with respective orders {µ1, ..., µd}. Let C∞i
, i = 1, ..., d be small circles

around each pole ∞i of x. Then define

(3) D = {xA1, ..., xAg,B1, ...,Bg}
⋃

i=2,...,d

{γi, xC∞i
}

⋃

k = 1, ..., µi − 1,
j = 1, ..., d

{xk/µ jC∞ j
}.

If x has only simple poles, so each µi = 1, then the contours are built out of classes in H1(Σ \ x−1(∞)) and

H1(Σ, x−1(∞)). A contour C acts on a differential ω by ω 7→
∫
C ω, and by xC we mean ω 7→

∫
xC ω :=

∫
C xω.

We often enumerate the elements of D by Cα ∈ D for α = 1, ..., N = |D|. Note that N = dim Hg,µ—see (39).

Definition 1.2. On any compact Riemann surface (Σ, {Ai}i=1,...,g) with a given set of A-cycles, define a

Bergman kernel B(p, p′) to be a symmetric bidifferential, i.e. a tensor product of differentials on Σ × Σ,
uniquely defined by the properties that it has a double pole on the diagonal of zero residue, double residue
equal to 1, no further singularities and normalised by

∫
p∈Ai

B(p, p′) = 0, i = 1, ..., g. It satisfies the Cauchy

property for any meromorphic function f on Σ

(4) d f (p) = Res
p′=p

f (p′)B(p, p′).

On Σ, choose a Bergman kernel B(p, p′) normalised to have zero periods over the A-cycles in the Torelli
marking {Ai,Bi}. For any Cα ∈ D define a primary differential by

(5) φα(p) =
∮

p′∈C∗
α

B(p, p′)

where C∗
α is a cycle dual to Cα defined in section 4. Each primary differential is locally holomorphic on

Σ \ x−1(∞).
Denote by Pi ∈ Σ the finite critical points of x, i.e. dx(Pi) = 0. For a generic point in H̃g,µ the critical

points of x are simple and the critical values ui = x(Pi), i = 1, ..., N of x are local coordinates in the open

dense domain of H̃s
g,µ ⊂ H̃g,µ defined by ui 6= uj for i 6= j and {A1, ...Ag,B1, ...,Bg} avoid x−1(∞).

Define a metric on H̃s
g,µ by

(6) η =
N

∑
i=1

du2
i · Res

Pi

φ · φ

dx

for any choice of primary differential φ = φα on Σ obtained from Cα ∈ D via (5).

Theorem 1 (Dubrovin [5]). (i) The metric η defined in (6) is flat with local flat coordinates given by

(7) tβ =
∫

Cβ

φ, Cβ ∈ D, β = 1, ..., N

i.e. the metric is constant with respect to the coordinates tβ.
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(ii) The flat metric η forms part of a Frobenius manifold structure on H̃g,µ with multiplication on the tangent space

of H̃s
g,µ defined using the local basis of vector fields ∂ui

by

(8) ∂ui
· ∂uj

= δij∂ui
.

The theorem was proven by Dubrovin in [5] using a definition of primary differential via deformations
of yαdx—see Lemma 4.2. As stated here we use an equivalent definition of primary differential (5) proven
by Shramchenko [25].

Recall that a Frobenius manifold M comes equipped with a a flat metric η together with a commutative,
associative product · on its tangent space satisfying the compatibility condition η(u · v, w) = η(u, v · w) for
all u, v, w ∈ Tp M. Associated to each semi-simple point p of a Frobenius manifold M is a cohomological
field theory [12, 14, 18, 27] defined on (H, η) = (Tp M, η|Tp M), which is a sequence of Sn-equivariant maps

Ig,n : H⊗n → H∗(Mg,n)

that satisfy gluing conditions on boundary divisors in Mg,n given explicitly in Section 2.2. For any collection

of vectors v1, ..., vn ∈ Tp M, the integral
∫
Mg,n

Ig,n(v1 ⊗ ... ⊗ vn) ∈ C (which is a function of p ∈ M) is known

as a primary invariant of M.
Recently, [8] explained that one can compute the primary (and ancestor) invariants of a semisimple Frobe-

nius manifold efficiently using the topological recursion procedure of [11]. The present review explains how
this result can be applied to Hurwitz Frobenius manifolds.

The main observation of this text is that just as the flat coordinates can be obtained as periods of a primary
differential along cycles taken from D via (7), the primary invariants of the Hurwitz Frobenius manifolds
can also be obtained as periods along cycles taken from D. Since we need multiple insertions of vectors
into the primary invariants, we need to take periods of symmetric multidifferentials on Σ which are tensor
products of differentials on Σn = Σ × ... × Σ.

Theorem 2. Given a point p = (Σ, x, {Ai,Bi}) ∈ H̃s
g,µ and a choice of primary differential dyα that determines a

Frobenius manifold structure on H̃s
g,µ, there exist multidifferentials ωg,n defined on Σ whose periods along contours

in D give the primary invariants of the Frobenius manifold at p. More precisely, for flat coordinates {t1, ..., tN}, put

eα = ∂tα and define the dual vector with respect to the metric (6) by eα = ∑
β

ηαβeβ. Then

∫

Cα1

...
∫

Cαn

ωg,n =
∫

Mg,n

Ig,n

(
eα1 ⊗ ... ⊗ eαn

)

where Cαi
and eαi

= ∂tαi
are related by (7)

Theorem 2 is a consequence of the more general Theorem 3 that proves that the ωg,n store all ancestor
invariants of the Frobenius manifold, using a larger class of cycles than those in D.

Remark 1.3. The statement and conclusion of Theorem 2 can be made for any point in H̃g,µ not just the

semisimple points H̃s
g,µ ⊂ H̃g,µ. It would be interesting to prove the theorem with these weaker hypotheses.

There are candidate multidifferentials, such as those defined in [3] where the zeros of dx are not required to
be simple, or in the case of Dubrovin’s superpotential, studied from the perspective of topological recursion
in [7], which applies to any semi-simple Frobenius manifold, and where there may be multiple zeros of dx
above a critical value.

The multidifferentials ωg,n in Theorem 2 are obtained from the topological recursion procedure associated
to the spectral curve (Σ, x, yα, B) where B = B(p, p′) is the Bergman kernel defined in Definition 1.2 using
the Torelli marking and yα is a function defined on Σ \ {Ai,Bi} such that locally φα = dyα . In general [11],
the ωg,n are a family of symmetric multidifferentials on the spectral curve that encode solutions of a wide

array of problems from mathematical physics, geometry and combinatorics. By a spectral curve1 we mean
the data of (Σ, x, y, B) given by a Riemann surface Σ equipped with a meromorphic function x and a locally

1The term spectral curve is inherited from the matrix model origin of this formalism. In the general formalism, this term is expected to
make sense due to the probable existence of an associated integrable system.
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defined meromorphic function y : Σ → C such that the zeros of dx given by {P1, ...,PN} are simple and dy is
analytic and non-vanishing on {P1, ...,PN}, and equipped with a symmetric bidifferential B on Σ × Σ, with
a double pole on the diagonal of zero residue, double residue equal to 1, and no further singularities. The
spectral curve may be a collection of N open disks, known as a local spectral curve, because ωg,n are defined
using only local information about x, y and B around zeros of dx—see Section 3. On a compact spectral
curve we relax the condition on y being globally defined, and instead require that dy is a locally defined
meromorphic differential (a connection) ambiguous up to dy + d f (x) for any rational function f . This gives
rise to a locally defined function y on Σ which is sufficient to apply topological recursion.

In [8, 19], it was proven that, starting from a semi-simple CohFT, or equivalently a semi-simple Frobe-
nius manifold M, it is possible to compute its correlation functions by the topological recursion procedure
applied to a specific local spectral curve:

(9) {semisimple CohFT} −→ {topological recursion applied to a local spectral curve}
Under this correspondence whose details are reviewed in Section 3.1, the number of zeros of dx on the local
spectral curve (Σ, x, y, B) is equal to the dimension N of the Frobenius manifold M. It was then proven
in [7] that, under some additional assumptions on the Frobenius manifold M, it is possible to arrange that
the image of (9) is a compact spectral curve producing the same correlation functions. This compact Rie-
mann surface is given by Dubrovin’s superpotential [5, 6] which is a family of compact Riemann surfaces
parametrised by the semi-simple points of M and constructed out of flat coordinates of a pencil of metrics
on M.

We can now try to reverse the direction of the arrow in (9). Given a compact spectral curve, when does
it lie in the image of (9), and can we reconstruct the corresponding CohFT (or, equivalently, the Frobenius
manifold)? The following theorem answers this question. It begins with the observation that a compact
spectral curve gives a point (Σ, x) in a Hurwitz space Hg,µ.

Theorem 3. Given a generic point (Σ, x) ∈ Hg,µ, equip it with a bidifferential B normalised over a given set of

A-cycles, and choose C ∈ D to define a locally defined function y on Σ by dy(p) :=
∮
C B(p, p′). The topological

recursion procedure applied to the spectral curve (Σ, x, y, B) computes the ancestor invariants of the CohFT associated

to Dubrovin’s Frobenius manifold structure on the cover H̃s
g,µ via:

(10) ωg,n(p1, ..., pn) = ∑
i1,...,in
d1,...,dn

∫

Mg,n

Ig,n(ei1, . . . , ein)
n

∏
j=1

ψ
d j

j ·
n⊗

j=1

V
i j

d j
(pj)

where Vi
k(p), i = 1, ..., N, k = 0, 1, ..., are canonical differentials on Σ defined by (36) in Section 3.1.

The proof of Theorem 3—contained in Section 4.3—is a simple combination of results from [6, 8, 13, 26]
which are reviewed in this paper. The main tool in the proof is the map (9) from [8] which shows how
topological recursion relates to Givental’s construction [13] of the total ancestor potential associated to each
semi-simple point of a Frobenius manifold. To apply the reverse construction of (9) one needs a specific
relationship between the Bergman kernel B on the spectral curve and the R-matrix of the Frobenius manifold
which is proven in [26].

Remark 1.4. Theorem 3 also answers the following question. Given a compact spectral curve, what does
the topological recursion procedure compute? For a large class of spectral curves—where B and y are de-
termined almost canonically by Σ and x—the answer is that it produces generating functions for ancestor
invariants of a Hurwitz space to which the branched cover underlying the spectral curve belongs. In partic-
ular, it completes the picture drawn by Zhou in [28] for relating Frobenius manifolds and spectral curves.

Remark 1.5. Theorem 2 concerns only the primary invariants in (10), corresponding to dj = 0, j = 1, ..., n.

One can also construct generalised contours Cα,k = pk(x)Cα, for Cα ∈ D and pk(x) = xk + ... a monic
polynomial of degree k in x, so that the ancestor invariants, corresponding to dj ≥ 0, appear as periods thus
generalising Theorem 2:

(11)
∫

Cα1,k1

...
∫

Cαn,kn

ωg,n =
∫

Mg,n

Ig,n

(
eα1 ⊗ ... ⊗ eαn

)
·

n

∏
j=1

ψ
k j

j .
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Theorems 2 and 3 enable one to generate primary invariants and all ancestor invariants of H̃s
g,µ of all

genera. Previously only genus 0 and genus 1 primary invariants were known. Theorems 2 and 3 also have
applications to the topological recursion procedure. Using the generalised contours in D one gets a direct
map from ωg,n to primary invariants via integration over the cycles.

The paper is organised as follows. In Sections 2 and 3, we remind the reader of the general theory of
Frobenius manifolds and topological recursion, as well as the correspondence between the two, following
[8]. In Section 4, we describe the construction of Dubrovin of Frobenius manifold structures on covers of
Hurwitz spaces and prove Theorems 2 and 3. In Section 5, we discuss an extension of the results to non-
semi-simple points.

1.1. Acknowledgement. The authors would like to thank Gaetan Borot for fruitful discussions on the sub-
ject of this paper. N.O. would like to thank the KdV-Institute where part of this work was done. P.N. would
like to thank Ludwig-Maximillians-Universitát, Munich and the Max-Planck-Insititut für Mathematik, Bonn
for hosting him while part of this work was carried out. A.P. and S.S. were supported by the Netherlands
Organisation for Scientific Research. P.D.-B. was partially supported by RFBR grants 16-31-60044-mol-a-dk
and 15-01-05990, and by joint RFBR-India grant 16-51-45029-Ind. A.P. was partially supported by RFBR
grant 16-01-00291. P.D.-B. and A.P. were also partially supported by RFBR grant 15-31-20832-mol-a-ved and
by joint RFBR-Japan grant 15-52-50041-YaF.

2. FROBENIUS MANIFOLDS

In this section we give a short introduction to Frobenius manifolds. An important construction for this
paper is Givental’s R-matrix defined in Section 2.3.

2.1. Frobenius manifold.

Definition 2.1. A Frobenius algebra (H, η, ·) is a finite-dimensional vector space H equipped with a metric
η = 〈 , 〉 and a commutative, associative product · satisfying 〈u · v, w〉 = 〈u, v · w〉.
Example 2.2.

H ∼= C ⊕ C ⊕ ... ⊕ C, 〈ei, ej〉 = δijηi, ei · ej = δijei

for any ηi ∈ C \ {0}, i = 1, ..., N and where {ei} is the standard basis. Conversely any semisimple Frobenius
algebra is determined uniquely by N non-zero complex numbers {ηi} and is isomorphic to this example.

A Frobenius manifold is defined by the data of a Frobenius algebra on the tangent space at each point of
the manifold and such that the metric is flat. In terms of flat coordinates {tα} a Frobenius manifold can be
defined locally as follows. Consider a function F(t1, . . . , tN) defined on a ball B ⊂ C

N and a constant inner

product ηαβ such that the triple derivatives of F with one raised index,

(12) C
γ
αβ :=

∂3F

∂tα∂tβ∂tλ
ηλγ,

are the structure constants of a commutative associative Frobenius algebra with the scalar produce given

by ηαβ. We can think about this structure as defined on the tangent bundle of B ⊂ CN (and we denote the
corresponding multiplication of vector field by ·), and we require that ∂t1 is the unit of the algebra in each
fibre.

We further consider structures (almost) homogeneous under a vector field E := ∑
N
α=1((1− qα)tα + rα)∂tα ,

where qα and rα are constants for α = 1, . . . , N, satisfying q1 = 0 and rα 6= 0 only in the case 1 − qα = 0. We

require that there exists a constant d such that E.F − (3− d)F is a polynomial of order at most 2 in t1, . . . , tN.
The triple (F, η, E) that satisfies all conditions above gives us the structure of a (conformal) Frobenius

manifold of rank N and conformal dimension d with flat unit. The function F is called the prepotential;
the vector field E is called the Euler vector field. The coordinate-free description of this structure requires
a flat metric with associated Levi-Civita connection, unit and Euler vector fields satisfying compatibility
conditions—see [5] for details.

In this paper we only consider semi-simple Frobenius manifolds, that is, we require that the algebra
structure at each point on an open subset Bss ⊂ B is semi-simple hence isomorphic to Example 2.2. In a
neighborhood of a semi-simple point we have a system of canonical coordinates u1, . . . , uN , defined up to
permutations, such that the vector fields ∂ui

, i = 1, . . . , N, are the idempotents of the algebra product, and
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the Euler vector field has the form E = ∑
N
i=1 ui∂ui

. This gives rise to two important systems of coordinates:
flat coordinates, leading to a fixed metric and varying product, and canonical coordinates, leading to a fixed
product and varying metric. With respect to the canonical coordinates, the flat metric on M is diagonal with
diagonal terms generated by a potential H : M → C via (2) which satisfies (1).

Define the rotation coefficients

(13) βij =
∂uj

ηi
√

ηiηj
.

Then (1) and (2) imply that βij(u) satisfy the Darboux-Egoroff system

βij = β ji,(14)

∂uk
βij = βikβ jk.(15)

Flatness of the identity and conformality imply

∑
k

∂uk
βij = 0,(16)

∑
k

uk∂uk
βij = −βij.(17)

Assemble the rotation coefficients into a symmetric N × N matrix Γ = Γ(u)—whose diagonal is not a part
of the structure—by Γij = βij. Then equations (15-17 ) are equivalent to the Darboux-Egoroff equation

(18) d[Γ, U] = [[Γ, U], [Γ, dU]]

where U = diag(u1, . . . , uN).
The rotation coefficients give less information than the metric, i.e. there are different solutions of (1) and

(2) that give rise to the same rotation coefficients. The system

∂uj
ψi = βijψj, i 6= j

N

∑
j=1

∂uj
ψi = 0, i = 1, ..., N

has an N-dimensional space of solutions ψ = (ψ1(u), ..., ψN(u)) which enables one to retrieve a metric for
each solution from the rotation coefficients. Put N independent solutions of this system into the columns of
a matrix Ψ, so the system becomes

(19) dΨ = [Γ, dU]Ψ.

The canonical coordinate vector fields ∂ui
are orthogonal but not orthonormal. We can normalise them to

produce a so-called normalised canonical frame in each tangent space, that is, if ηi = η(∂ui
, ∂ui

), then the

orthonormal basis is given by ∂vi
:= η−1/2

i ∂ui
, i = 1, . . . , N. The matrix Ψ in (19) is the transition matrix

from the flat basis to the normalised canonical basis.

2.2. Cohomological field theory. A cohomological field theory is a pair (H, η) composed of a finite-dimensional
complex vector space H equipped with a metric η and a sequence of Sn-equivariant maps.

Ig,n : H⊗n → H∗(Mg,n)

that satisfy compatibility conditions from inclusion of strata:

ψ : Mg−1,n+2 → Mg,n, φI : Mg1,|I|+1 ×Mg2,|J|+1 → Mg,n, I ⊔ J = {1, ..., n}
given by

φ∗
I Ig,n(v1 ⊗ ... ⊗ vn) = Ig1,|I|+1 ⊗ Ig2,|J|+1

(⊗

i∈I

vi ⊗ ∆ ⊗
⊗

j∈J

vj

)
(20)

ψ∗ Ig,n(v1 ⊗ ... ⊗ vn) = Ig−1,n+2(v1 ⊗ ... ⊗ vn ⊗ ∆)(21)

where ∆ ∈ H ⊗ H is dual to the metric. In local coordinates it is given by ∆ = ηαβeα ⊗ eβ.

The metric η = 〈·, ·〉 and the 3-point function I0,3 induce a product · on H via

〈u · v, w〉 = I0,3(u, v, w) ∈ H∗(M0,3) ∼= C.



PRIMARY INVARIANTS OF HURWITZ FROBENIUS MANIFOLDS 7

Correlators, or ancestor invariants, of the CohFT make use of the Chern classes ψj = c1(Lj) of the tauto-

logical line bundles Lj, j = 1, ..., n over Mg,n. The correlators are defined by:

(22) 〈τk1
(eν1)...τkn

(eνn)〉g :=
∫

Mg,n

Ig,n(eν1, ..., eνn) ·
n

∏
j=1

ψ
k j

j

for ki ∈ N, {eν, ν=1,...,N } ⊂ H. When ki = 0, i = 1, ..., n the ancestor invariants are also known as primary
invariants of the CohFT.

Givental [13] introduced a group action on genus 0 potentials of a CohFT, and used it to propose a formula
for higher genera. Faber, Zvonkine and the last author [12] proved that the higher genera formula satisfies
all properties that might be imposed to correlators of CohFT, hence the Givental group acts on partition
functions of CohFTs in all genera. The interpretation of the action on correlators as an action on cohomology
classes was constructed by several people independently, namely, by Teleman [27], Katzarkov-Kontsevich-
Pantev (unpublished), and Kazarian (unpublished)—see [23]. There is a good account of this action on
cohomology classes by Pandharipande-Pixton-Zvonkine [20]. Hence we can associate a CohFT to a semi-
simple point of a Frobenius manifold. Conversely a CohFT gives rise to a Frobenius manifold structure on
(a neighborhood inside) H using the constant metric η as the flat metric and a varying family of products
using I0,n in place of I0,3. See [18] for details.

If the Frobenius manifold has flat identity—meaning that the identity vector field for the product on the
tangent bundle is parallel with respect to the Levi-Civita connection of the flat metric η—then this is realised
on the CohFT level by an extra relation involving the forgetful map

π : Mg,n+1 → Mg,n

given by

(23) Ig,n+1(v1 ⊗ · · · ⊗ vn ⊗ 11) = π∗ Ig,n(v1 ⊗ · · · ⊗ vn), I0,3(v1 ⊗ v2 ⊗ 11) = η(v1 ⊗ v2)

where 11 is the unit vector for the product.

2.3. Classification of semi-simple cohomological field theories. The Givental-Teleman theorem [13, 27]
states that a semi-simple CohFT is equivalent to the pair (H, η) together with a so-called R-matrix. An
R-matrix

R(z) =
∞

∑
k=0

Rkzk

is a formal series whose coefficients are N × N matrices where N = dim H is the rank of the Frobenius
manifold. Givental used R[z] to produce a differential operator, a so-called quantisation of R[z], which acts
on a known tau-function to produce a generating series for the correlators of the CohFT.

The coefficients Rk are defined using Ψ, the transition matrix from flat coordinates to normalised canoni-
cal coordinates determined by (19), via R0 = I and the inductive equation

(24) d (R(z)Ψ) =
[R(z), dU]

z
Ψ

which uniquely determines R(z) up to left multiplication by a diagonal matrix D(z) independent of u with
D(0) = I. We recall that this equation is a consequence of the fact that R(z) is the regular part of the
expansion of the solution of a linear system associated by Dubrovin to any semisimple Frobenius manifold
around its essential singularity (see for example lecture 3 in [5] for more details).

Using dΨ = [Γ, dU]Ψ one can write

d (R(z)Ψ) = d [R(z)]Ψ + R(z)dΨ = d [R(z)]Ψ + R(z) [Γ, dU]Ψ.

Together with equation (24) and the invertibility of Ψ, this gives

(25) dR(z) =
[R(z), dU]

z
− R(z) [Γ, dU] .

This re-expresses the equation for R(z) in terms of the rotation coefficients, which uses less information than
the full metric, encoded in Ψ. Since dU(11) = I, an immediate consequence of (25) is

(26) 11 · R(z) = 0.
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If the theory is homogenous, then invariance under the action of the Euler field

(27) (z∂z + E) · R(z) = 0

fixes the diagonal ambiguity in R(z).
The first non-trivial term R1 of R(z) is given by the rotation coefficients

(28) R1 = Γ.

This follows from comparing the constant (in z) term in (24) which is

dΨ = [R1, dU]Ψ

to equation (19) given by dΨ = [Γ, dU]Ψ. Since dU is diagonal with distinct diagonal terms, we see that
(28) holds for off-diagonal terms, and the ambiguity in the diagonal term for both is unimportant—it can be
fixed in R1 by (24) together with E · R1 = −R1.

3. TOPOLOGICAL RECURSION AND COHOMOLOGICAL FIELD THEORY

In this section, we give a brief overview of topological recursion defined in [11]. Consider a Riemann
surface Σ equipped with meromorphic functions x, y : Σ → C such that the zeros of dx, given by {P1, ...,PN}
are simple and dy is analytic and non-vanishing on {P1, ...,PN}. Let B be a Bergman kernel on Σ × Σ as in
definition 1.2.

Define a sequence of symmetric multidifferentials ωg,n(p1, . . . , pn) on Σ×n by the following recursion:

ω0,1(p) := y(p)dx(p);(29)

ω0,2(p1, p2) := B(p1, p2);(30)

ωg,m+1(p0, p1, . . . , pn) :=(31)

N

∑
i=1

Res
p=Pi

∫ σi(p)
p ω0,2(•, p0)

2(ω0,1(σi(p))− ω0,1(p))
ω̃g,2|n(p, σi(p)|p1, . . . , pn),

where σi is the local involution defined by x near the point Pi, i = 1, . . . , N, and ω̃g,2|n is defined by the

following formula:

ω̃g,2|n(p′, p′′|p1, . . . , pn) :=ωg−1,n+2(p′, p′′, p1, . . . , pn)+(32)

∑
g1+g2=g

I1⊔I2={1,...,n}
2g1−1+|I1|≥0
2g2−1+|I2|≥0

ωg1,|I1|+1(p′, pI1
)ωg2,|I2|+1(p′′, pI2

).

Here we denote by pI the sequence pi1, . . . , pi|I | for I = {i1, . . . , i|I|}.

Remark 3.1. The recursion was defined on so-called local spectral curves in [9] as follows. Consider small
neighborhoods Ui ⊂ Σ of the points Pi. If we look at just the restrictions of ωg,n to the products of these
disks, Ui1 × · · · ×Uin

, we can still proceed by topological recursion, using as an input the restrictions of ω0,1

to Ui, i = 1, . . . , N, and ω0,2 to Ui × Uj, i, j = 1, . . . , N. Indeed, Equation (31) uses only local expansion data
around the points Pi. Hence, the word local refers to the unique knowledge of these local data.

Remark 3.2. In the topological recursion on a compact spectral curve we also allow y to be the (multivalued)
primitive of a differential ω on Σ. The ambiguity in y consists of periods and residues of ω and hence the
ambiguity is locally constant. Since y appears in the recursion formula (32) only via y(σi(p))− y(p) (and
there are no poles of ω at the zeros of dx) the locally constant ambiguity disappears and the recursion is well-
defined. We go even further and allow ω to be a locally defined meromorphic differential (a connection)
ambiguous up to dy + d f (x) for any rational function f . In this case the ambiguity y 7→ y + f (x) is no
longer constant, but again y(σi(p))− y(p) is unchanged.
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3.1. Topological recursion from CohFTs. We recall the relation (9) of topological recursion on a local spec-
tral curve to the Givental formulae for cohomological field theories obtained in [8].

Definition 3.3. For a Riemann surface equipped with a meromorphic function (Σ, x) we define evaluation
of any meromorphic differential ω at a simple zero P of dx by

ω(P) := Res
p=P

ω(p)√
2(x(p)− x(P))

where we choose a branch of
√

x(p)− x(P) once and for all at each P to remove the ±1 ambiguity.

Theorem 4. [8] Given a semi-simple CohFT presented via the R-matrix R(z) = ∑
∞
k=0 Rkzk and constants η1, ..., ηN

define a local spectral curve (Σ, x, y, B), presented as (the Laplace transform of) local series for dy(p) and B(p, p′)
around each zero p = Pi, p′ = Pj of dx (which is locally canonical) as follows:

[
R−1(z)

]i

j
= −

√
z√

2π

∫

Γj

B(Pi, p) · e
(uj−x(p))

z(33)

N

∑
k=1

[
R−1(z)

]k

i
· η1/2

k =
1√
2πz

∫

Γi

dy(p) · e
(ui−x(p))

z(34)

(35)
1

2π
√

z1z2

∫

Γi

∫

Γj

B(p1, p2)e
(ui−x(p1))

z1
+

(uj−x(p2))

z2 = −
∑

N
k=1

[
R−1(z1)

]k
i

[
R−1(z2)

]k
j

z1 + z2

where Γi is a path containing ui = x(Pi). Then the multidifferentials ωg,n(p1, ..., pn) obtained via topological recur-

sion applied to the local spectral curve (Σ, x, y, B) are polynomials in differentials Vi
k(pj) defined by

(36) Vi
0(p) = B(Pi, p), Vi

k+1(p) = d

(
Vi

k(p)

dx(p)

)
, k = 0, 1, 2, ...

with coefficients given by ancestor invariants of the CohFT:

ωg,n(p1, ..., pn) = ∑
i1,...,in
d1,...,dn

∫

Mg,n

Ig,n(ei1 , . . . , ein
)

n

∏
j=1

ψ
d j

j ·
n⊗

j=1

V
i j

d j
(pj).

Remark 3.4. The spectral curve thus obtained is local, i.e. a collection of open sets Ui each containing a
unique zero Pi of dx. Thus Γi is defined only locally, which is fine since we are interested only in the asymp-
totic expansion for R around z = 0. Let us also remind the reader that this result is valid for any semisimple
Frobenius manifold. We shall see in the next section that, in the case of Hurwitz Frobenius manifolds, one
can make these Laplace transform globally well-defined by choosing carefully the integration cycles to con-
sider.

Remark 3.5. This data (the constants ηi and the matrix R(z)
j
i) determine for us a semi-simple CohFT {Ig,n}

with an N-dimensional space of primary fields V := 〈e1, . . . , eN〉 corresponding to a chosen point (u1, ..., uN)
on a Frobenius manifold—see Section 2.3. In terms of the underlying Frobenius manifold structure, the basis
e1, . . . , eN corresponds to the normalised canonical basis

Remark 3.6. Note that the limit of (34) at z = 0 yields:

(37) η1/2
i = dy(Pi)

which tells us that dy encodes the metric.

Remark 3.7. Compatibility of (33) and (35) is a condition on the bidifferential B, not satisfied in general,
nevertheless always satisfied if the spectral curve is compact and the differential dx is meromorphic. Com-
patibility for compact spectral curves uses a general finite decomposition for B(p1, p2) proven by Eynard in
Appendix B of [10] together with (33). This is recalled in section 5.1.
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Theorem 4 produces a map

{semisimple CohFT} −→ {topological recursion applied to a local spectral curve}
with image consisting of spectral curves with B and y necessarily satisfying compatibility conditions—
compatibility of (33), (34) and (35). A general spectral curve will not satisfy such compatibility conditions,

i.e. in general one can choose B and y independently. For example, the rational spectral curve (P1, x, y, B)
for x = z + 1/z, B = dzdz′/(z − z′)2, dy = zmdz, m ∈ {−1, 0, 1, 2, ...}, lies in the image of the map only for
m = −1 or 0.

Compatibility of (33) and (35) is discussed in Remark 3.7 and compatibility of (33) and (34) is charac-
terised by the following theorem.

Theorem 5 ([7]). Equations (33) and (34) are compatible (as equations for the unknown variables R−1 and ηi),
i = 1, . . . , N) if and only if the 1-form

(38) ω(p) = d

(
dy

dx
(p)

)
+

N

∑
i=1

Res
p′=Pi

dy

dx
(p′)B(p, p′).

is invariant under each local involution σi, i = 1, . . . , N.

The characterisation in Remark 3.7 and Theorem 5 allows a converse construction of semisimple CohFTs
from compact spectral curves. The following is a sufficient condition for compatibility of (33) and (34).

Definition 3.8. We say that a compact spectral curve (Σ, x, y, B) is dominant if x and dy are meromorphic
and the poles of dx dominate the poles of dy.

Corollary 3.9. A dominant compact spectral curve (Σ, x, y, B) lies in the image of (9) and hence gives rise to a
semisimple CohFT.

Proof. Any Bergman kernel satisfies the Cauchy property (4). If the poles of dx dominate the poles of dy
then dy/dx has poles only at the zeros Pi of dx. Then ω(p) ≡ 0 since

N

∑
i=1

Res
p′=Pi

dy

dx
(p′)B(p, p′) = − Res

p′=p

dy

dx
(p′)B(p, p′) = −d

(
dy

dx
(p)

)

and hence it is invariant under each local involution σi. Since the Riemann surface Σ is compact it automati-
cally satisfies (35) hence the claim is proven. �

Remark 3.10. In fact Corollary 3.9 allows a weaker hypothesis which we will need. We can instead allow
dy to be a locally defined meromorphic differential, essentially a connection, which is ambiguous up to

dy 7→ dy + λdx. The conclusion of Corollary 3.9 still holds since d
(

dy
dx

)
is globally defined.

4. HURWITZ FROBENIUS MANIFOLDS

In this section we first remind the reader of Dubrovin’s construction of a Frobenius manifold on a cover
of Hurwitz space and then prove a number of deformation lemmas, which will be useful in the following
sections.

4.1. Dubrovin’s construction. As defined in the introduction, denote by H̃g,µ the moduli space of tuples

(Σ, x, {Ai,Bi}i=1,...,g) consisting of covers x : Σ → P
1 of genus g with fixed ramification profile above

infinity µ = (µ1, . . . , µn) together with a choice of a symplectic basis of cycles (Ai,Bi)i=1,...,g and marked
branches of x at each point above ∞.

Given such a generic cover x, we denote its simple branch points

∀i = 1, . . . , N , ui = x(Pi) where dx|Pi
= 0.

By the Riemann-Hurwitz formula:
N = 2g − 2 + n + |µ|

and since an element of the Hurwitz space is defined up to a finite information by its critical values, this
gives the dimension

dimC H̃g,µ = 2g − 2 + n + |µ|.
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In the introduction we claimed that

(39) #D = N = #{p | dx(p) = 0}

i.e. the number of generalised contours, defined by D in (3), coincides with dimC H̃g,µ. This follows from
the fact that dx is a meromorphic differential so its divisior (dx) = Z − P has degree 2g − 2, where Z and P
are the zeros and poles of dx. Hence

dimC H̃g,µ = |Z| = 2g − 2 + |P| = dim H1(Σ, x−1(∞))− 1 +
d

∑
i=1

µi = #D.

The last equality is clear since the elements of D consist of firstly {xA1, ..., xAg,B1, ...,Bg, γi, i = 2, ..., d}
which has cardinality equal to dim H1(Σ, x−1(∞)) = 2g − 1 + d, together with −1 + ∑i µi = |P| − d − 1

extra elements xk/µiC∞i
, k = 1, ..., µi, i = 1, ..., d remove xC∞1 .

We use the critical values ui as local coordinates in an open dense domain of H̃s
g,µ ⊂ H̃g,µ where ui 6= uj

for i 6= j. The vector fields ∂ui
give a basis of TH̃g,µ and define a multiplication · given by:

(40) ∂ui
· ∂uj

= δij∂ui
.

We denote the unity and the Euler vector fields:

(41) e =
N

∑
i=1

∂ui
, E =

N

∑
i=1

ui∂ui
.

Let us now define one-forms on H̃g,µ. For any quadratic differential Q on Σ, define the one-form

ΩQ =
N

∑
i=1

dui Res
p=Pi

Q(p)

dx
.

Dubrovin defines a set of differentials φ on Σ, defined in (5) and described in more detail below, which
have poles dominated by the poles of dx. They are known as primary differentials and used to produce a

quadratic differential Q = φ2.

Theorem 6 (Dubrovin [5]). For any primary differential φ, H̃s
g,µ
⋂{u | φ(Pi) 6= 0} is equipped with a structure of

a Frobenius manifold with multiplication (40), unity and Euler vector fields (41) and metric

(42) η :=
N

∑
i=1

du2
i · Res

p=Pi

φ2(p)

dx(p)
=

N

∑
i=1

du2
i · φ(Pi)

2

where we used the notation of definition 3.3 for the evaluation of a one-form at a point. In addition, the corresponding
flat coordinates (tα)α=1,...,N can be explicitly written in terms of periods of φ via

tα =
∫

Cα

φ

for any Cα ∈ D.

This means that the data of such a Frobenius manifold structure on H̃g,µ is given by the choice of a
primary differential φ. The definition of a primary differential uses the Torelli marking of Σ as follows. Fix

a point in H̃g,µ, i.e. a pair (Σ, x) (a point in a Hurwitz space) together with a basis (Ai,Bi)i=1,...,g (a sheet of

H̃g,µ seen as a cover). Recall from the introduction that there is a unique Bergman Kernel B(p, p′) which is
a bidifferential of the second kind normalised to have zero periods over the A-cycles in the Torelli marking
{Ai,Bi}. For any generalised contour Cα ∈ D we define a primary differential by

φα(p) = dyα(p) =
∮

C∗
α

B(p, p′)

which is locally holomorphic on Σ \ x−1(∞). Here, the dual C∗
α = ηαβCβ with respect to the metric η.

Following Dubrovin, let us classify these cycles in 5 types:
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• Type (1): for i = 1, . . . , d and k = 1, . . . , µi − 1 :
∫

p∈Cti,k

f (p) =
1

µi − 1
Res

p→∞i

x(p)
k

µi f (p);

• Type (2) : for i = 2, . . . , d: ∫

p∈Cvi

f (p) = Res
p→∞i

x(p) f (p);

• Type (3): for i = 2, . . . , d:
∫

p∈Cwi

f (p) = v.p.
∫ ∞i

∞1

f (p);

• Type (4): for i = 1, . . . , g: ∫

p∈Cri

f (p) = −
∮

Ai

x(p) f (p);

• Type (5): for i = 1, . . . , g:
∫

p∈Csi

f (p) =
1

2iπ

∮

Bi

f (p).

We see that the two important systems of coordinates—flat coordinates and canonical coordinates—
correspond to cycles in D, respectively zeros of dx. These sets have the same cardinality by (39).

4.2. Vector fields, cycles and meromorphic differentials. Let us now introduce a correspondence between
vector fields and meromorphic forms using the Bergman kernel B which allows us to express all the quanti-
ties defining the Hurwitz Frobenius manifold in terms of meromorphic forms. For flat coordinates

∂tα 7→ φα(p) =
∫

p′∈C∗
α

B(p, p′).

By linearity, for any vector field v, we can define a cycle Cv by

(43) Cv = ∑
α

〈v, ∂tα〉η Cα

a meromorphic differential

φv(p) =
∫

p′∈Cv

B(p, p′)

and the metric η by

(44) 〈v1, v2〉φ = ∑
i

Res
p=Pi

φv1φv2

dx(p)
.

Note that (43) and (44) are proven by verifying them on a basis. We choose the flat basis, to prove (43).

Substitute v = ∂tα into (43) to get C∂tα
= ∑β

〈
∂tα , ∂tβ

〉
η
Cβ = ∑β ηαβCβ = C∗

α as required. We choose the

canonical basis to prove (44) as follows.
Apply (43) to the canonical vector fields to get

C∂ui
= ∑

α

〈∂ui
, ∂tα〉η Cα = ∑

α

φ(Pi)Ψ
i
αCα

and hence

φ∂ui
(p) =

∫

C∂ui

B(p, p′) = ∑
α

φ(Pi)Ψ
i
α

∫

Cα

B(p, p′) = ∑
α,β

φ(Pi)Ψ
i
αηαβ

∫

C∗
β

B(p, p′) = ∑
α,β

φ(Pi)Ψ
i
αηαβφβ(p)

We will study φ∂ui
via evaluation at Pj.

φ∂ui
(Pj) = ∑

α,β

φ(Pi)Ψ
i
αηαβφβ(Pj) = ∑

α,β

φ(Pi)Ψ
i
αηαβΨ

j
β = δijφ(Pi)
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which uses the relation φβ(Pj) = Ψ
j
β proven in Proposition 4.3. Since φ∂ui

(p) vanishes at Pj for j 6= i, (44)

becomes rather simple:
〈

∂ui
, ∂uj

〉

φ
= ∑

k

Res
p=Pk

φ∂ui
φ∂uj

dx(p)
= δi,j Res

p=Pi

φ2(p)

dx(p)

in agreement with (42) and hence proving (44) for all vector fields.
The product in terms of the canonical basis gives us a formula in terms of the matrix Ψ of change of basis

from flat to canonical which takes the form of the Verlinde formula, or Krichever formula depending on
the context. (The Verlinde formula is actually for the degree 0 part of the theory.) This can be written for
example following [5] equation (5.61)

(45) Cαβγ = ∑
i

Res
p=Pi

φα(p)φβ(p)φγ(p)

dx(p)φ(p)
.

This depends on the choice of Frobenius structure through φ which appears in the denominator and a point
in the Frobenius manifold through the dependence on x.

Let us finally identify the identity and the Euler field. The consistency condition for the identity vector
field 11 = ∂tα0 〈

∂tα , ∂tβ

〉
φ
= Cαβα0

imposes

φ11 = φα0 = φ

and the Euler vector field

φE = −E · ydx|x fixed = E · xdy|y fixed = xdy = xφ

uses variations of the structures which are described below.

4.3. Rauch variational formula. An important tool used in this paper is Rauch variational formula express-
ing the variation of the Bergman kernel with respect to the position of the critical values.

(46)
∂

∂ui
B(p1, p2) = Res

p=Pi

B(p, p1)B(p, p2)

dx(p)
.

Rauch originally derived the dependence of the Riemann matrix of periods of a Hurwitz cover on the critical
values of the covering map in [21]. It later led to the expression of the variation of the Bergman kernel in
[16].

In the present context, the meaning of the variation is as follows. Over the Frobenius manifold M = H̃g,µ

we have a universal curve π : C̃ → M and a function x : C̃ → M × C satisfying:

(i) Each fibre C = Cu = π−1(u) is a Riemann surface.
(ii) x is meromorphic on each fibre C.

(iii) The critical values {u1, ..., un} of x on each fibre above a semi-simple point are canonical coordinates
for M.

For any vector field ∂ ∈ Γ(TM), we choose a lift ∂̃ ∈ Γ(TC) so that ∂̃x = 0. We abuse terminology and

write ∂̃ = ∂. Hence we make sense of variations of a function f (p1, p2) on C × C by identifying pi ∈ Cu with
p′i ∈ Cu′ when x(p1) = x(p′1).

Rauch’s variational formula for the Bergman kernel leads to variational formulae for other quantities, in
particular primary differentials.

(47) ∂ui
dy(p) = ∂ui

∫

Cα

B(p, p′) =
∫

Cα

∂ui
B(p, p′) =

∫

Cα

B(p,Pi)B(p′,Pi) = dy(Pi)B(p,Pi).

We apply this to give a short proof of flatness of the metric (42) and refer to [5] for the full proof of Theorem 6

which gives a different proof of flatness. The tangent space to H̃g,µ is spanned by primary differentials
constructed from contours in D. Hence the following lemma proves flatness of the metric.

Lemma 4.1. When C , C ′ ∈ D then 〈φC , φC ′〉φ is constant in {u1, ..., uN}.
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Proof. From the Rauch’s variational formula (46), we have ∂ui
φC(p) = φC(Pi)B(p,Pi). This uses the fact that

the contour C depends only on a geometric contour independent of the choice of ui, and possibly a function
of x which is constant, i.e. ∂ui

x = 0 by assumption. Hence

∂uj
〈φC , φC ′〉 = ∑

i

Res
p=Pi

∂uj
(φC(p)φC ′(p))

dx(p)
= ∑

i

Res
p=Pi

B(p,Pj)(φC(Pj)φC ′(p) + φC(p)φC ′(Pj))

dx(p)
= 0.

Note that the integrand potentially has poles at Pj and ∞k but since each φC(p) is dominated by dx(p) at
each p = ∞k the poles at ∞k are removable. Hence the last equality uses the fact that the integrand has poles
only at Pi, i = 1, ..., N so that the sum of its residues at Pi is 0. �

The following theorem proven by Shramchenko identifies the R(z) matrix of the Hurwitz Frobenius
manifold with the Laplace transform of the Bergmann kernel. It uses the Rauch’s variational formula.

Theorem 7 (Shramchenko, [26]). Given a point
(
Σ, x, (Ai,Bi)i=1,...,g

)
in the cover of a Hurwitz space with B(p, p′)

normalised on the A-cycles together with a choice of admissible differential φ the R(z) matrix of the Hurwitz Frobenius
manifold is given by:

(48)
[

R−1(z)
]i

j
:= −

√
z√

2π

∫

Γj

e−
(x(p)−uj)

z B(p,Pi).

The resemblance of (48) and (33) means we are now in a position to prove Theorem 3. Let us also remark
that Shramchenko’s result goes further than a formal series in z. Indeed, [26] defines integration cycles Γi

such that R(z) is the regular part of the expansion of a solution to Dubrovin’s linear system which is well
defined in a half plane.

Proof of Theorem 3. The proof combines Theorem 4, Theorem 5 and Theorem 7.
Define the spectral curve (Σ, x, y, B) by a generic point (Σ, x) ∈ Hg,µ equipped with a bidifferential B

normalised over a given set of A-cycles, and a primary differential by dy(p) :=
∮
C B(p, p′) for some C ∈ D,

defined in (3). If the spectral curve satisfies the conditions (33)-(35) of Theorem 4 for the R(z) matrix of the
Hurwitz Frobenius manifold then topological recursion applied to the spectral curve produces the ancestor
invariants of the Frobenius manifold via the decomposition of ωg,n given by (10) and the theorem is proven.

By Theorem 7 the R(z) matrix of the Hurwitz Frobenius manifold is given by (48) hence condition (33)
is satisfied. Next we need to show that the choice of y is the correct one. But since dy(p) :=

∮
C B(p, p′)

the poles of dy are dominated by the poles—the pole behaviour of the integrals over generalised cycles
described in Section 4.1 is given in [5]—hence the spectral curve is dominant and Corollary 3.9 applies,
proving that condition (34) is satisfied. Finally condition (35) is satisfied by Lemma 5.4 since Σ is compact
and x is meromorphic.

�

4.4. Shramchenko’s deformation. Following methods of Kokotov-Korotkin [15], Shramchenko [24] de-

fined deformations of Dubrovin’s Frobenius manifold structures on H̃g,µ. See also Buryak-Shadrin [4]. Re-
call that once we are given (Σ, x, {Ai,Bi}i=1,...,g) and D, we define a Bergman kernel and use that to define

primary differentials φα for α ∈ D. Instead of the Bergman kernel B(p, p′) Shramchenko considered arbi-

trary Bergman kernels ω
[κ]
0,2(p, p′) on Σ which is a symmetric bidifferential on Σ × Σ, with a double pole

on the diagonal of zero residue, double residue equal to 1, and no further singularities. The set of such

kernels is parameterised by symmetric matrices κ of size g × g. We denote by ω
[0]
0,2 = B the Bergman kernel

normalised in the basis of cycles chosen, i.e.

∀i = 1, . . . , g ,
∮

Ai

ω
[0]
0,2 = 0.

The key ingredients in the proofs of Theorems 2 and 3 are Rauch’s variational principle for B(p, p′) which
holds more generally for Bergman kernels normalised on geometric cycles and Eynard’s formula (35) which

is valid for any B = ω
[κ]
0,2.



PRIMARY INVARIANTS OF HURWITZ FROBENIUS MANIFOLDS 15

Theorem 8. The conclusion of Theorems 2 and 3 holds for Frobenius manifold structures on H̃g,µ defined by ω
[κ]
0,2(p, p′)

when κ is such that there exist a basis of geometric cycles
(
A[κ]

i ,B[κ]
i

)
i

satisfying

∀i = 1, . . . , g ,
∮

p′∈A[κ]
i

ω
[κ]
0,2(p, p′) = 0.

4.5. Landau-Ginzburg model. In Section 4.2 we described a map from the tangent space at p ∈ H̃g,µ to

the vector space spanned by primary differentials, denoted by V
prim
p . It was defined via a map to contours

which are linear combinations of contours in D. For v ∈ Tp H̃g,µ we defined

v 7→ Cv 7→ φv(p)

A more direct path uses variations. It is known as a Landau-Ginzburg model for (Σ, x, dy) and defined by:

TpH̃g,µ → V
prim
p

v 7→ v · (−ydx)
.

So the claim is that the variation gives the composition of the two maps above, i.e. ·(−ydx(p)) = φ·(p). We
prove this relation in terms of flat coordinates.

Lemma 4.2. For Cα ∈ D, the coordinate tα =
∫
Cα

dy is associated to the differential φα(p) via

∂tα [−y(p)dx(p)] = φα(p) =
∫

C∗
α

B(p, p′).

Proof. The main idea of the proof is to consider evaluation of ∂tα ydx(p) at p = Pi in order to be able to
integrate by parts. From the variation of dy with respect to canonical coordinates given in (47) we have

(49) ∂tα dy(p) = ∑
i

Ψi
α∂vi

dy(p) = ∑
i

Ψi
α

dy(Pi)
∂ui

dy(p) = ∑
i

Ψi
α

dy(Pi)
dy(Pi)B(p,Pi) = ∑

i

Ψi
αB(p,Pi).

Then

∂tα [−ydx](Pi) = − Res
p=Pi

1√
2(x(p)− ui)

∂tα [ydx] = Res
p=Pi

√
2(x(p)− ui)∂tα dy

= Res
p=Pi

√
2(x(p)− ui)∑

j

Ψ
j
αB(p,Pj)

= Res
p=Pi

√
2(x(p)− ui)B(p,Pi)Ψ

i
α

= Ψi
α = φα(Pi)

where the second line uses (47), the third line uses the fact that B(p,Pj) has no pole at Pi for j 6= i, the third

line uses Res p=Pi

√
2(x(p)− ui)B(p,Pi) = 1, and the final equality uses Proposition 4.5.

Hence

∂tα [ydx](Pi) = φα(Pi), i = 1, ..., N

which is nearly enough to guarantee that the differentials ∂tα ydx and φα agree. Define the function on Σ by

f (p) =
∂tα ydx(p)− φα(p)

dx(p)
.

Then f (p) has no poles since the numerator of f (p) vanishes at p = Pi and dx(p) has simple zeros at
p = Pi. Also, from (49) we see that ∂tα ydx has no poles at x = ∞ hence ∂tα ydx − φα has poles only at x = ∞,
dominated by poles of dx, since this is true of φα. In particular f (p) has no poles at x = ∞.

Thus f (p) = c constant and ∂tα ydx(p) = φα(p) + cdx(p). In [5] Dubrovin proves that the differential

φα(p) is either strictly dominated by dx at at least one point ∞i ∈ x−1(∞), in which case f (∞i) = 0, or φα(p)
is a connection with ambiguity given by cdx for any constant c. Hence we may assume c = 0 and the lemma
is proven. �
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We can now identify the transition matrix Ψ between flat and normalised canonical vector fields in an
elegant way. Flat coordinates correspond to periods along generalised contours while canonical coordinates
correspond to (finite) critical points of x. The Bergman kernel allows a natural marriage of the two.

Proposition 4.3 ([24]). The transition matrix Ψ between flat and normalised canonical vector fields, defined in (19)
is given by

Ψi
α =

∫

p∈C∗
α

B(p,Pi) = φα(Pi).

As usual the indices i = 1, ..., N are associated to the canonical coordinates and α = 1, ..., N are associated
to the flat coordinates.

Proof. We have

∂ui
tα = ∂ui

∫

Cα

dy =
∫

Cα

∂ui
dy = dy(Pi)

∫

Cα

B(p,Pi)

where the last equality uses (47), hence

(50) ∂vi
= ∑

α

∫

Cα

B(p,Pi) ∂tα .

Now

[∂v1 , ..., ∂vN ]Ψ = [∂t1 , ..., ∂tN ]

and since ΨTΨ = η, or Ψη−1ΨT = I we have

[∂v1 , ..., ∂vN ] = [∂t1 , ..., ∂tN ]η
−1ΨT

hence

∂vi
= ∑

α,β

ηαβΨi
β · ∂tα

and comparing this with (50) we see that

∑
β

ηαβΨi
β =

∫

Cα

B(p,Pi)

so

Ψi
γ = ∑

α,β

ηγαηαβΨi
β = ∑

α

ηγα

∫

Cα

B(p,Pi) =
∫

∑α ηγαCα

B(p,Pi) =
∫

C∗
γ

B(p,Pi)

as required. The second equality in the statement of the proposition simply uses the definition φα(p) :=∫
p∈C∗

α
B(p, p′). �

Remark 4.4. The column of Ψ corresponding to the vector field gives the square root of the diagonal coeffi-

cients η1/2
i of the metric η in canonical coordinates. From Proposition 4.3, we have ηi = φ(Pi)

2 which agrees
with (42).

The transition matrix Ψ gives rise to the R matrix of the Frobenius manifold built from a choice of point(
Σ, x, (Ai,Bi)i=1,...,g

)
in H̃g,µ given in Theorem 7 together with a choice of admissible differential η.

4.6. Flat coordinates. Let us now explain how to recover the expression of the correlators of the CohFT in
flat coordinates out of integration along contours in D.

Lemma 4.5. For any generalised contour C ∈ D and any (g, n) ∈ N × N∗, the map

ωg,n 7→
∫

C
ωg,n

defining the action of integration of the correlation functions is well defined.

Proof. Since C is only an isotopy class of contours (with coefficients that are functions of x) in Σ \ x−1(∞)
and ωg,n has poles in Σ \ x−1(∞) we need to prove that the integral is independent of the choice of contour.
This is a consequence of the fact that ωg,n and xωg,n have zero residues at Pi. Note that the residues at ∞j

might not be zero, but the contours are not allowed to deform through ∞j. �
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Proposition 4.6. For any C ∈ D define φC(p) =
∫
C B(p, p′) = d fC where fC is locally valued. As operators acting

on ωg,n for 2g − 2 + n > 0,

∑
i

Res
Pi

fC · =
∫

C
·

in other words,

∑
i

Res
p=Pi

fC(p)ωg,n(p, p2, ..., pn) =
∫

p∈C
ωg,n(p, p2, ..., pn).

Proof. Recall Riemann’s bilinear relation. For meromorphic differentials φ and ω such that φ is residueless

(51) ∑
P

Res
P

f · ω =
1

2πi

g

∑
j=1

[∮

Ai

φ
∮

Bi

ω −
∮

Bi

φ
∮

Ai

ω

]

where d f = φ for a locally defined primitive f and the sum is over all poles P of φ and ω.
Primary differentials φC of types 1, 2 and 5, with respect to the classification given in Section 4.1, are

residueless so apply (51) to φ = φC and ω = ωg,n.

For C = Bj, i = j, ..., g, φC(p) =
∫
Bj

B(p, p′) = θj = d fC ( f defined locally) is a holomorphic differential

satisfying
∫
Ak

θj = 2πi · δjk. Then (51) becomes:

∑
i

Res
Pi

fC · ωg,n =
1

2πi

g

∑
k=1

[∮

Ak

φC
∮

Bk

ωg,n −
∮

Bk

φC
∮

Ak

ωg,n

]
=
∮

Bj

ωg,n =
∮

C
ωg,n

since
∮
Ak

ωg,n = 0.

For C = xk/(ni+1)Ci, k = 1, ..., ni + 1, i = 1, ..., d, (which this includes both types 1 and 2) then φC =

Res ∞i
xk/(ni+1)B = d fC is residueless and normalised so that

∫
Ai

φC = 0. Then (51) becomes

∑
P=Pk,∞ℓ

Res
P

fC · ωg,n =
1

2πi

g

∑
j=1

[∮

Aj

φC
∮

Bj

ωg,n −
∮

Bj

φC
∮

Aj

ωg,n

]
= 0

⇒ ∑
k

Res
Pk

fC · ωg,n = − Res
∞i

fC · ωg,n =
∮

C
ωg,n

where the last equality uses the fact that fC ∼ −xk/(ni+1) near ∞i.
For C = xCi, i = 1, ..., d, φC =

∫
Γi

B is a differential of the 3rd kind with simple poles at ∞1 and ∞i

normalised so that
∫
Ak

φC = 0. Since ωg,n is residueless we switch the roles of φ and ω in (51). Choose Fg,n

such that dFg,n = ωg,n, i.e. a primitive with respect to one variable. Then

∑
p=Pk,∞ℓ

Res
p

Fg,n(p, p2, ..., pn)φC(p) =
1

2πi

g

∑
j=1

[∮

Aj

φC
∮

Bj

ωg,n −
∮

Bj

φC
∮

Aj

ωg,n

]
= 0

⇒ ∑
k

Res
Pk

fC(p)ωg,n(p, p2, ..., pn) = −∑
k

Res
Pk

Fg,n(p, p2, ..., pn)φC(p)

= Res
p=∞i

Fg,n(p, p2, ..., pn)φC(p) + Res
p=∞1

Fg,n(p, p2, ..., pn)φC(p)

= Fg,n(∞i, p2, ..., pn)− Fg,n(∞1, p2, ..., pn)

=
∫ ∞i

∞1

ωg,n =
∫

C
ωg,n

For C = xAi, i = 1, ..., g, we cannot apply (51) directly since φC is not a globally defined differential.
Instead we need to apply the proof of (51) as follows. Cut Σ along A and B cycles meeting at a common
point P0 to leave a simply-connected region R ⊂ Σ on which φC and a primitive (with respect to one variable)

Fg,n(p) of ωg,n(p) (suppress variables p2, ..., pn) are well-defined. As in the proof of (51) integrate 1
2πi φCFg,n
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along the boundary of R given by the A and B cycles to get

∑
p=Pk

Res
p

Fg,n(p)φC(p) =
g

∑
j=1

[∮

Aj

φC
∮

Bj

ωg,n −
∮

Bj

φC
∮

Aj

ωg,n

]
−
∫ P0+Bi+Ai

P0+Bi

Fg,n(p)dx(p)

= −
∫ P0+Bi+Ai

P0+Bi

Fg,n(p)dx(p)

= −
∫

Ai

x(p)ωg,n(p) = −
∫

C
ωg,n(p)

⇒ ∑
p=Pk

Res
p

fC(p)ωg,n(p) =
∫

C
ωg,n(p).

�

Theorem 3 proved that topological recursion applied to the spectral curve
(
Σ, x, (Ai,Bi)i=1,...,g

)
with a

choice of admissible differential φ = dy and ω0,2 = B, stores the ancestor invariants of the Hurwitz Frobe-
nius manifold and hence proves Theorem 2. We now prove the remainder of the statement of Theorem 2 by
showing how to extract the ancestor invariants via integration over generalised contours.

Proposition 4.7. Integration over flat contours Cα ∈ D produces primary invariants:

∫

Cα1

...
∫

Cαn

ωg,n =
∫

Mg,n

Ig,n

(
eα1 ⊗ ... ⊗ eαn

)

Proof. We will prove the dual statement

(52)
∫

C∗
α1

...
∫

C∗
αn

ωg,n =
∫

Mg,n

Ig,n

(
eα1 ⊗ ... ⊗ eαn

)
.

For k > 0,

∑
i

Res
Pi

yα · Vi
k = 0, k > 0

where Vi
k are defined in (36) and dyα = φα. Hence the operator ∑i Res Pi

yα· only detects coefficients of

Vi
0(p) = B(Pi, p) in ωg,n which stores the primary invariants by (10). Now

Res
P j

yα(p) · Vi
0(p) = Res

P j

yα(p) · B(Pi, p) = δijφα(Pj) = Ψi
α

since B acts as a Cauchy kernel which sends yα to evaluation of dyα. Hence ∑
i

Res
Pi

yα· acts as insertion of

the vector

Ψi
α · ∂vi

= ∂tα = eα

into the ancestor invariant. Thus, using Proposition 4.6 we see that as an operator on ωg,n

∫

C∗
α

· = ∑
i

Res
Pi

yα·

acts as insertion of the vector eα into the ancestor invariant and in particular (52) holds. Note that since
C∗

α = ∑β ηαβCβ is a constant linear combination of contours in D, then Proposition 4.6 applies also to C∗
α . �



PRIMARY INVARIANTS OF HURWITZ FROBENIUS MANIFOLDS 19

Remark 4.8. Let us apply Proposition 4.7, or more precisely (52), to the simplest case of ω0,3 to get the
following.

Cαβγ =
∫

M0,3

I0,3

(
eα ⊗ eβ ⊗ eγ

)

=
∫

C∗
α

∫

C∗
β

∫

C∗
γ

ω0,3

=
∫

C∗
α

∫

C∗
β

∫

C∗
γ
∑

i

Res
p=Pi

B(p1, p)B(p2, p)B(p3, p)

dx(p)dy(p)

= ∑
i

Res
p=Pi

∫

C∗
α

∫

C∗
β

∫

C∗
γ

B(p1, p)B(p2, p)B(p3, p)

dx(p)dy(p)

= ∑
i

Res
p=Pi

φα(p)φβ(p)φγ(p)

dx(p)dy(p)

which agrees with (45) as expected. Here we have used the formula

ω0,3(p1, p2, p3) = ∑
i

Res
p=Pi

B(p1, p)B(p2, p)B(p3, p)

dx(p)dy(p)

proven in [11].

The following proposition generalises Theorem 2.

Proposition 4.9. There exist generalised contours Cα,k = pk(x)Cα, for Cα ∈ D and pk(x) = xk + ... a monic
polynomial of degree k in x, so that the ancestor invariants, corresponding to dj ≥ 0, appear as periods.

(53)
∫

Cα1,k1

...
∫

Cαn,kn

ωg,n =
∫

Mg,n

Ig,n

(
eα1 ⊗ ... ⊗ eαn

)
·

n

∏
j=1

ψ
k j

j .

Proof. Using integration by parts, we see that the contour xkCi acts on the differential Vi
k(p) by

∫

xkCi

Vi
k(p) =

∫

Ci

Vi
0(p).

Hence there exists a monic polynomial pk(x) = xk + ... of degree k in x such that
∫

pk(x)Ci

V
j
m(p) = δijδkm.

Define C∗
α,k = pk(x)C∗

α , for Cα ∈ D then we have

(54)
∫

C∗
α1,k1

...
∫

C∗
αn,kn

ωg,n = 〈
n

∏
j=1

τk j
(eαj

)〉.

�

5. TOPOLOGICAL RECURSION FOR COMPACT SPECTRAL CURVES

In this section we associate to a spectral curve a so-called R̂(z) matrix, which in the case of spectral
curves lying in the image of the map (9) from CohFTs to spectral curves, coincides with the R(z) matrix of
the Frobenius manifold.

Definition 5.1. Given a spectral curve (Σ, x, y, B) define a formal series

R̂(z) =
∞

∑
k=0

R̂kzk

with coefficients N × N matrices where N = number of zeros of dx by

(55)
[

R̂−1(z)
]i

j
:= −

√
z√

2π

∫

Γj

e−
(x(p)−uj)

z B(p,Pi).
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In fact R̂(z) depends only on (Σ, x, B). This definition begins with the spectral curve and produces R̂(z)
which reverses the direction of (33) where one begins with a Frobenius manifold and its associated R(z) and

produces a spectral curve. In general R̂(z) will not arise out of a Frobenius manifold.

Remark 5.2. Note that
[
R̂−1(z)

]i
j

is well-defined for i = j because the integrand has a pole of residue zero

at Pi, so Γi can be deformed to avoid Pi in a well-defined manner.

Remark 5.3. The paths Γi were defined only locally in a neighbourhood of Pi in Section 3.1. That is also

sufficient here, because again we are only concerned with the asymptotic expansion of R̂(z) at z = 0. Nev-
ertheless, we can choose paths along which x/z → ∞ in both directions, such as a path of steepest descent

of −x/z so that the series R̂(z) converges.

Let us denote
[
R̂(z)

]i
j
= ∑k

[
R̂k

]i

j
z−k. In particular, one has

(56)
[
R̂1

]i

j
= B

i,j
0,0 = B(Pi,Pj).

5.1. Factorisation property. On a compact spectral curve R̂(z) shares the symplectic property of any R(z)
associated to a Frobenius manifold. This is proven below as a consequence of a factorisation formula for the

(Laplace transform of the) bidifferential B in terms of R̂(z). The factorisation formula is also required in the
proof of Corollary 3.9.

Lemma 5.4 (Eynard, [10]). Whenever the spectral curve is a Hurwitz cover of P1 with dx a meromorphic form with

simple zeroes, R̂(z)—defined in (55)—satisfies the symplectic condition

(57) R̂(z)R̂T(−z) = Id.

Furthermore, the Laplace transform of a Bergman kernel

B̌i,j(z1, z2) =
e

ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

∫

Γj

B(p, p′)e−
x(p)
z1

− x(p′)
z2 .

satisfies

(58) B̌i,j(z1, z2) = −
∑

N
k=1

[
R̂−1(z1)

]k
i

[
R̂−1(z2)

]k
j

z1 + z2
.

This means that the coefficients B
i,j
k,l of the expansion of the Bergman kernel around the branch points Pi

and Pj can be defined recursively in terms of the initial data B
i,j
k,0. We give a proof here that differs from the

proof in [10].

Proof. We have

N

∑
i=1

Res
q=Pi

B(p, q)B(p′, q)

dx(q)
= − Res

q=p

B(p, q)B(p′, q)

dx(q)
− Res

q=p′

B(p, q)B(p′, q)

dx(q)
(59)

= −dp

(
B(p, p′)
dx(p)

)
− dp′

(
B(p, p′)
dx(p′)

)

where the first equality uses the fact that the only poles of the integrand are {p, p′,Pi, i = 1, ..., N}, and the
second equality uses the Cauchy formula (4) satisfied by the Bergman kernel. The Laplace transform of the
LHS of (59) is

e
ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

∫

Γj

e
− x(p)

z1
− x(p′)

z2

N

∑
k=1

Res
q=Pk

B(p, q)B(p′, q)

dx(q)
=

N

∑
k=1

e
ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

e
− x(p)

z1 B(p,Pk)
∫

Γj

e
− x(p′)

z2 B(p′,Pk)

=
N

∑
k=1

[
R̂−1(z1)

]k
i

[
R̂−1(z2)

]k
j

z1z2
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and the Laplace transform of the RHS of (59) is

− e
ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

∫

Γj

e
− x(p)

z1
− x(p′)

z2

{
dp

(
B(p, p′)
dx(p)

)
+ dp′

(
B(p, p′)
dx(p′)

)}
= −

(
1

z1
+

1

z2

)
B̌i,j(z1, z2)

since the Laplace transform satisfies

∫

Γi

d

(
ω(p)

dx(p)

)
e−

x(p)
z =

1

z

∫

Γi

ω(p)e−
x(p)

z .

for any differential ω(p), by integration by parts. Hence we see that the Laplace transform of (59) gives (58)

as required. Then (57) is a consequence of (58) and the finiteness of B̌i,j(z1, z2) at z2 = −z1. �

5.2. Defining equation for R̂ij(z). In the preceding section we defined an R̂-matrix from which is equiv-
alent to the Bergman kernel. When the Bergman kernel is normalised on a basis of geometric cycles, we

can go further and compute all the terms
[
R̂k

]
ij

in terms of some minimal quantities. This uses the Rauch

variational formula (46) which allows us to derive an equation for the R̂ matrix.
When a spectral curve lies in the image of the map (9) from CohFTs to spectral curves, the following

theorem is a consequence of the properties (25), (26), (27) of the R matrix of a CohFT. For compact spectral

curves, by Theorem 7 generically R̂ = R, but R̂ is a little more general, and for example exists when critical
values ui coincide and R is problematic, since it is defined over the semi-simple part of the Frobenius man-

ifold. The outcome of the following theorem is that R̂ resembles R and it can be used to give an alternative
proof of Theorem 3.

Theorem 9. Given a triple (Σ, x, B) consisting of a compact Riemann surface Σ, a meromorphic function x : Σ → C

with zeros of dx simple, and a Bergman kernel B, then R̂(z) satisfies (25), (26), (27), i.e.

dR̂(z) =

[
R̂(z), dU

]

z
− R̂(z) [Γ, dU] ,(60)

11 · R̂(z) = 0,(61)

(z∂z + E) · R̂(z) = 0.(62)

Proof. Although (61) is a consequence of (60) we first prove (61) and use this to prove (60).

Proof of (61): Differentiate Eynard’s formula (58)

B̌i,j(z1, z2) =
e

ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

∫

Γj

B(p, p′)e−
x(p)
z1

− x(p′)
z2 =

N

∑
k=1

[
R̂−1(z1)

]i
k

[
R̂−1(z2)

]j

k

z1 + z2
.

to get

N

∑
k=1

∂

∂uk
B̌i,j(z1, z2) =

N

∑
k=1

e
ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

B(p,Pk)e
− x(p)

z1

∫

Γj

B(p′,Pk)e
− x(p′)

z2 +

(
1

z1
+

1

z2

)
B̌i,j(z1, z2)

=
N

∑
k=1

[
R̂−1(z1)

]i
k

[
R̂−1(z2)

]k
j

z1z2
−

N

∑
k=1

[
R̂−1(z1)

]i
k

[
R̂−1(z2)

]j

k

z1z2
= 0.

Since
[
R̂−1(z1)

]i

j
= −zB̌i,j(z, 0), we have

11 ·
[

R̂−1(z1)
]i

j
=

N

∑
k=1

∂

∂uk

[
R̂−1(z1)

]i

j
= −z

N

∑
k=1

∂

∂uk
B̌i,j(z, 0) = 0, ∀i, j

and since 11 · R̂(z) = 0 ⇔ 11 · R̂−1(z) = 0 this proves (61).
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Proof of (60): For k 6= i,

∂
[
R̂−1(z)

]i
j

∂uk
= − ∂

∂uk

√
z√

2π

∫

Γj

e−
(x(p)−uj)

z B(p,Pi)(63)

= δk,j
1

z

[
R̂−1(z)

]i

j
−

√
z√

2π

∫

Γj

e−
(x(p)−uj)

z B(p,Pk)B(Pk,Pi)

= δk,j

[
R̂−1(z)

]i
j

z
+
[

R̂−1(z)
]k

j
βki.

For k = i, by (61),

∂
[
R̂−1(z)

]i
j

∂ui
= − ∑

m 6=i

∂
[
R̂−1(z)

]i
j

∂um
= (δi,j − 1)

[
R̂−1(z)

]i
j

z
− ∑

m 6=i

[
R̂−1(z)

]m

j
βmi

which gives the (i, j) component of the equation

dR̂−1(z) =

[
R̂−1(z), dU

]

z
+ [Γ, dU] R̂−1(z).

Hence

dR̂(z) = −R̂(z)dR̂−1(z)R̂(z) = −R̂(z)

([
R̂−1(z), dU

]

z
+ [Γ, dU] R̂−1(z)

)
R̂(z) =

[
R̂(z), dU

]

z
− R̂(z) [Γ, dU]

and (60) holds.
Proof of (62): We begin with a variation of the proof of (58), replacing the identity vector field with the Euler
vector field. We have

∑
i

ui
∂

∂ui
B(p, p′) =

N

∑
i=1

ui Res
q=Pi

B(p, q)B(p′, q)

dx(q)
=

N

∑
i=1

Res
q=Pi

x(q)B(p, q)B(p′, q)

dx(q)
(64)

= − Res
q=p

x(q)B(p, q)B(p′, q)

dx(q)
− Res

q=p′

x(q)B(p, q)B(p′, q)

dx(q)

= −dp

(
x(p)B(p, p′)

dx(p)

)
− dp′

(
x(p′)B(p, p′)

dx(p′)

)
.

Then

(
1 + z1

∂

∂z1
+ z2

∂

∂z2
+

ui

z1
+

uj

z2

)
B̌i,j(z1, z2) =

e
ui
z1
+

uj
z2

2π
√

z1z2

(
z1

∂

∂z1
+ z2

∂

∂z2

) ∫

Γi

∫

Γj

e
− x(p)

z1
− x(p′)

z2 B(p, p′)

= − e
ui
z1
+

uj
z2

2π
√

z1z2

∫

Γi

∫

Γj

∑
k

uk
∂

∂uk
B(p, p′)

=

(
ui

z1
+

uj

z2
− ∑

k

uk
∂

∂uk

)
B̌i,j(z1, z2)

where the second equality uses (64) and integration by parts to show that for any differential ω(p) the
Laplace transform satisfies

∫

Γi

e−
x(p)

z d

(
x(p)ω(p)

dx(p)

)
= z

d

dz

∫

Γi

e−
x(p)

z ω(p).

Hence we are left with the following equation which is essentially the Laplace transform of (64):

(65)

[
1 + z1

∂

∂z1
+ z2

∂

∂z2
+∑

i

ui
∂

∂ui

]
B̌(z1, z2) = 0.
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We will now take the z2 → 0 limit of (65). From Eynard’s formula (58) we see that ∂
∂z2

B̌(z1, z2) is well-defined

at z2 = 0, hence lim
z2→0

z2
∂

∂z2
B̌(z1, z2) = 0. We also have B̌j,k(z1, 0) = − 1

z1

[
R̂−1(z1)

]j

k
. Thus the z2 → 0 limit of

(65) becomes

0 =

[
1 + z1

∂

∂z1
+∑

i

ui
∂

∂ui

]
1

z1

[
R̂−1(z1)

]j

k
=

1

z1

[
z1

∂

∂z1
+ ∑

i

ui
∂

∂ui

] [
R̂−1(z1)

]j

k

which gives (62). �

Remark 5.5. A spectral curve (Σ, x, y, B) with dy a primary differential is dominant—see Definition 3.8—
hence by Corollary 3.9 it corresponds to a CohFT, which we have identified with the Hurwitz Frobenius
manifold corresponding to primary differential. More generally we can take dy to be any linear combination
of primary differentials, which is no longer a primary differential hence Theorem 3 does not apply, but the
spectral curve is still dominant and hence corresponds to a CohFT.

6. TOPOLOGICAL RECURSION FOR FAMILIES OF SPECTRAL CURVES

Vector fields on the Frobenius manifold H̃g,µ can give rise to recursion relations between ancestor invari-
ants. In this section we show how the vector fields act on the multidifferentials ωg,n arising out of topological
recursion and give rise to the recursion relations between ancestor invariants.

Over the Frobenius manifold H̃g,µ is a universal curve which is a family of spectral curves constructed via
the underlying Hurwitz map (Σ, x) together with natural cycles on Σ used to define the full spectral curve
(Σ, x, y, B). Note that topological recursion applied to a single spectral curve produces a CohFT which
extends uniquely to a family of CohFTs, nicely encoded in a Frobenius manifold, and each giving rise to
a corresponding spectral curve. Hence in this way the family of spectral curves is reconstructed from any
single spectral curve in the family.

Consider the family of multidifferentials ωg,n obtained by applying topological recursion to the universal
curve. We can differentiate the multidifferentials ωg,n with respect to vector fields on the Frobenius manifold

H̃g,µ. As usual, for any vector field v ∈ Γ(TH̃g,µ) we choose a lift ṽ ∈ Γ(TC) where C is the universal curve

over H̃g,µ, so that ṽ · x = 0. We abuse terminology and write ṽ = v.
First order deformations of topological recursion are described in [11]. There it is shown that deforma-

tions of ω0,1 propagate via the recursion to determine deformations of ωg,n. Specifically, for v a vector field

on H̃g,µ, if we can express the variation of ydx as an integral of B over a generalised contour C , then the
variation of ωg,n uses the same contour as follows.

(66) v · ydx(p) =
∫

C
B(p′, p) ⇒ v · ωg,n(p1, ..., pn) =

∫

C
ωg,n+1(p′, p1, ..., pn).

Deformations with respect to natural vector fields on the Frobenius manifold correspond to relations
between correlators in the CohFT. In the remainder of this section we describe the dictionary between defor-
mations by the unit and Euler vector fields and their realisations via topological recursion.

6.1. Identity vector field. When v = 11 is the identity vector, we have

11 · ydx|x fixed = −11 · xdy|y fixed = −dy = − Res
p′=p

y(p′)B(p, p′) = ∑
P

Res
p′=P

y(p′)B(p, p′)

where the sum is over the poles P of y. Hence by (66)

(67) 11 · ωg,n = ∑
P

Res
p′=P

y(p′)ωg,n+1 = −∑
i

Res
p′=Pi

y(p′)ωg,n+1.

We can calculate the action of 11 on ωg,n in a different way via the lift of 11 to the universal curve. Note
that there are flat coordinates t1, ., , .tN such that 11 = ∂/∂t1 where t1 appears in x as x = x0 + t1 for x0

independent of t1. The lift 11 necessarily annihilates x so with respect to a local parameter z on Σ

0 = 11 · x = x′(z)11 · z + 1 ⇒ 11 · z = −1/x′(z)

where we used the explicit partial derivative ∂t1 x = 1. Hence for any differential ξ with no explicit t1

dependence, locally ξ = d f so we have

11 · ξ(z) = d11 · f (z) = d( f ′(z)11 · z) = −d( f ′(z)/x′(z)) = −d(d f /dx) = −d(ξ/dx).
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In other words the lift of 11 coincides on fibres with the operator

11 = − d

dx

which acts on functions or differentials. In particular, ξα
k have no explicit t1 dependence so

11 · ξα
k = −d

(
ξα

k

dx

)
= −ξα

k+1.

Furthermore ωg,n has no explicit t1 dependence since topological recursion is unchanged under x 7→ x + t1.
Hence

11 · ωg,n = −
n

∑
j=1

d

(
ωg,n(p1, ..., pn)

dx(pj)

)
.

The relation

∑
i

Res
p′=Pi

y(p′)ωg,n+1 = −
n

∑
j=1

d

(
ωg,n(p1, ..., pn)

dx(pj)

)

is proven in a different way in [11] as a direct consequence of topological recursion. Here we have shown it
to be a consequence of the action of the lift of the identity vector field on the universal curve.

The Hurwitz Frobenius manifold from Section 4 have flat identity hence the CohFT satisfies the pull-back
relation (23). A consequence of (23) on correlators is known as the string equation which expressed in tau
notation: 〈

n

∏
i=1

τki
(vi)

〉

g

:=
∫

Mg,n

Ig,n(v1 ⊗ · · · ⊗ vn)
n

∏
i=1

ψ
ki
i

is given by
〈

τ0(1)τk1
(v1) · · · τkn

(vn)
〉

g
=

n

∑
i=1

〈
τk1

(v1) · · · τki−1(vi) · · · τkn
(vn)

〉
g

.

But this is precisely equivalent to the relation (67) since

d

(
ξα

k

dx(pj)

)
= ξα

k+1

where coefficients of ξα
k correspond to insertions of the vector field ∂/∂tα.

6.2. Euler vector field. When v = E is the Euler vector field, we have

(68) E · ydx|x fixed = −E · xdy|y fixed = −xdy = Res
p′=p

(Φ − xy)(p′)B(p, p′) = −∑
P

Res
p′=P

(Φ − xy)B(p, p′)

where dΦ = ydx and the sum is over the poles P of Φ − xy. Hence

E · ωg,n = −∑
P

Res
p′=P

(Φ − xy)ωg,n+1 = ∑
i

Res
p′=Pi

(Φ − xy)ωg,n+1(69)

= (2g − 2 + n)ωg,n(p1, ..., pn)−
n

∑
j=1

d

(
x(pj)ωg,n(p1, ..., pn)

dx(pj)

)

where the last equality uses the dilaton and second string equation satisfied quite generally by the ωg,n,
proven in [11]. Analogous to the string equation above, which enables one to remove or insert the identity
vector field, this last expression enables one to remove or insert the Euler vector field in correlators. For
example, in the Gromov-Witten case, it is given by the divisor equation.

A conformal Frobenius manifold corresponds to a homogeneous CohFT. A CohFT is homogeneous of
weight d if
(70)

((g − 1)d + n)Ig,n = deg Ig,n(v1 ⊗ ... ⊗ vn)−
n

∑
j=1

Ig,n(v1 ⊗ ... ⊗ [E, vj]⊗ ... ⊗ vn) + π∗ Ig,n+1(v1 ⊗ ... ⊗ vs ⊗ E)

where E is the Euler vector field and π : Mg,n+1 → Mg,n is the forgetful map. Equation (70) allows one to
remove or insert the Euler vector field in correlators and (68) is equivalent to this relation.
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