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Abstract

Light-matter interactions have always been an essential aspect of research. They cover
the main properties of light and matter in atomic and molecular systems, in condensed
phase, in chemical reactions, and in optics. This thesis presents a feasible implementation
to simulate three-dimensional, real-time, real-space self-consistently coupled light-matter
systems based on the theoretical background of a generalized Pauli-Fierz �eld theory. Due
to the one-to-one correspondence between external �elds and internal variables, we use
a Kohn-Sham construction to approach the many-body problem in a non-relativistic low
energy regime. The formalism leads in mean-�eld and e�ective nuclei approximation to
coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations.

In the �rst part of the thesis, we use a complex bilinear representation of the classical
microscopic and macroscopic Maxwell's equations based on the Riemann-Silberstein vector.
Maxwell's equations in Riemann-Silberstein representation have the form of an inhomo-
geneous Schrödinger equation, which allows to introduce time-evolution operators similar
to quantum mechanics and to use existing time-evolution algorithms. In this manner,
the Riemann-Silberstein propagation scheme can solve the microscopic Maxwell's equation
in vacuum and the macroscopic ones in linear media. Such a Riemann-Silberstein im-
plementation for propagating electromagnetic �elds requires proper boundary conditions.
Therefore, we introduce incident plane wave boundaries to simulate incoming plane waves,
as well as perfectly matched layer boundaries for e�cient absorption. We demonstrate our
novel Riemann-Silberstein Maxwell propagation implementation for di�erent typical elec-
tromagnetic applications, for instance, external current densities, plane wave propagation
and �eld scattering in a linear medium. Our approach provides an alternative method of
simulating electromagnetic �elds compared to the standard �nite-di�erence time-domain
approach.

In the second part of the thesis, we couple the Kohn-Sham current density from our
generalized Pauli-Fierz Hamiltonian self-consistently to the Riemann-Silberstein propaga-
tor, and in turn the electromagnetic �eld to the Kohn-Sham Hamiltonian. Including the
back reaction of the matter on the electromagnetic �eld goes beyond what is typically
considered in literature. Starting with full minimal coupling, we derive for the Kohn-Sham
Hamiltonian a multipole expansion based on the Power-Zienau-Woolley transformation.
We introduce a predictor-corrector scheme that provides a practical method to simulate
self-consistent light-matter systems. Propagating both, the matter wavefunctions as well
as the electromagnetic �elds alongside, allows to improve the e�ciency by exploiting the
di�erent length- and time-scales of light and matter. As consequence of taking the back-
reaction of the electromagnetic �eld into account, we are able to de�ne electromagnetic
detectors next to the absorbing boundaries, which allows to analyze directly spectroscopic
signals in the outgoing radiation in the far-�eld of the simulation box.

We present a �rst application of our novel approach by inducing plasmons in a nanoplas-
monic system by an external laser and investigate the corresponding nano-optical e�ects,
in particular the electromagnetic �eld enhancements in the vicinity of the nanoparticles. It
reveals that the self-consistent fully coupled forward-backward simulations lead to signif-
icant changes in observables compared to a conventional forward-only coupling. The dif-
ferences are larger than the ones found between using local density and gradient corrected
approximations for the exchange-correlation functionals. Additionally, the directly mea-
sured outgoing electromagnetic �elds show also harmonic generation only beyond dipole
approximation.
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Overall, the presented implementation is a comprehensive tool to handle fully coupled
light-matter systems, especially for nano-optics, nano-plasmonics, (photo) electrocatalysis,
light propagation with orbital angular momentum or light-tailored chemical reactions in
optical cavities.
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Deutsche Zusammenfassung

Die Wechselwirkung zwischen elektromagnetischen Feldern und Materie bildet die Basis für
den Zusammenhalt von Atomen, Molekülen und Festkörpern. Während eine fundamen-
tale Beschreibung der elementaren gekoppelten Gröÿen, geladene Teilchen und Photonen,
durch die Mitte des 20. Jahrhunderts entwickelten Quantenelektrodynamik die Wechsel-
wirkung sehr exakt beschreibt, so wird der Ein�uss und die Berechnung mit steigender
Teilchenzahl immer schwieriger. Aus diesem Grund werden oft vereinfachte Modelle oder
Näherungen angewendet, bei denen nicht die volle Wechselwirkung berücksichtigt wird.
So wird meist die Rückkopplung der Materie auf das elektromagnetische Feld vernachläs-
sigt. In dieser Arbeit wird auf Basis eines generalisierten Pauli-Fierz Hamiltonians die
vollständige Licht-Materie Kopplung betrachtet und mit Hilfe der quantenelektrodynamis-
chen Dichtefunktionaltheorie eine Methode und Implementierung vorgestellt, die realistis-
che, dreidimensionale Licht-Materie Vielteilchensysteme simulieren kann.

Zu Beginn der Arbeit stellen wir eine alternative Beschreibung der inhomogenen
Maxwell'schen Gleichungen mit Hilfe des komplexen bilinearen Riemann-Silberstein Vek-
tors vor. In dieser Darstellung wird das mikroskopische elektromagnetische Feld durch
zwei linear unabhängige Riemann-Silberstein Vektoren beschrieben, die einmal selbst und
deren Riemann-Silberstein Maxwell Gleichungen durch komplexe Konjugation ineinander
übergehen. Es kann gezeigt werden, dass mit diesen zwei verschiedenen Vektordarstel-
lungen die Spin-Natur, hier in Form der Helizität, des Photonfeldes dargestellt wird.
Im Falle der mikroskopischen Gleichungen, koppeln die beiden unterschiedlichen Heliz-
itätsvektoren nicht, erst bei der Bestimmung der makroskopischen Riemann-Silberstein
Maxwell-Gleichungen im linearen Medium �ndet eine Kopplung statt. In der Riemann-
Silberstein Darstellung haben die kombinierten Ampère'schen und Faraday'schen Gle-
ichungen eine zur Schrödinger Gleichung äquivalente Form. Damit lässt sich die zeitliche
Entwicklung des elektromagnetischen Feldes durch eine quantenmechanische Propagation
darstellen. Basierend auf dieser Riemann-Silberstein Formulierung stellen wir eine Imple-
mentierung vor, die die Zetentwicklung elektromagnetischer Felder simuliert. Dazu gehören
verschiedene Randbedingungen, wie einfallende Ebene Wellen und absorbierende Box-
Ränder, die ausgehende Signale möglichst ohne Re�exionen simuliert. Anhand mehrerer
typischer Beispielanwendungen demonstrieren wir, dass unsere Implementierung eine Alter-
native zu der gängigen Finite-Di�erenzen-Methode im Zeitbereich für elektromagnetische
Felder bietet.

Im weiteren Verlauf der Arbeit wird die klassische Stromdichte der Maxwell Gleichun-
gen durch die quantenmechanischen Betrachtung der Materie bestimmt. Dazu nutzen
wir, ausgehend von einem verallgemeinerten Pauli-Fierz Hamiltonian, einen Kohn-Sham
Hamiltonian, dessen Stromdichte direkt an das elektromagnetische Feld gekoppelt ist. In
umgekehrter Richtung beein�usst das Elektromagnetische Feld durch die minimale Kop-
plung die Materie. Ausgehend vom Prinzip der minimalen Kopplung gehen wir mit Hilfe
der Power-Zienau-Woolley Transformation in einen Hamiltonian über, dessen Wechsel-
wirkung zwischen elektromagnetischen Feld und Materie durch Multipolterme des elek-
tromagnetischen Feldes dargestellt wird. Damit die beiden Systeme, Materie und elek-
tromagnetisches Feld, selbstkonsistent propagagiern, führen wir eine Prädiktor-Korrektor-
Verfahren ein. Zusätzlich nutzen wir die unterschiedlichen Längen- und Zeitskalen der
Systeme aus, um eine bessere E�zienz der Implementierung vor allem bei groÿ Systemen
zu erhalten.

Im letzten Teil der Arbeit zeigen wir den Ein�uss der vollständigen Vorwärts-Rückwärts-
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Kopplung am Beispiel eines nanoplasmonischen Dimers. Wir vergleichen konventionelle
rein vorwärts gekoppelten Licht-Materie Simulationen mit der hier neu entwickelten voll-
ständigen selbstkonsistenten Licht-Materie Kopplung. Die zum Teil stark abweichenden
Ergebnisse werden anschaulich dargestellt und verdeutlichen die Notwendigkeit der Be-
trachtung einer vollständigen Licht-Materie Kopplung. Diese Einschätzung wird auch
durch unsere Berechnungen mit unterschiedlichen Dichtefunktionalen verdeutlicht, bei der
die Unterschiede der Ergebnisse zwischen den Funktionalen der lokalen und gradientkor-
rigierten Dichtenäherung kleiner waren als die Unterschiede zwischen vorwärts- und voll-
ständiger Kopplung.

Insgesamt bietet die Implementierung damit eine praktikable Möglichkeit vollständig
gekoppelte Systeme zu simulieren, z.B. für die Nanooptik, Nanoplasmonik oder Elek-
trokatalyse, um nur einige zu nennen.
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Introduction

The complexity of light-matter interactions for realistic systems is very challenging for a
full ab initio theoretical description. In this work, we present a �rst feasible methodology
to simulate fully coupled systems. First, we summarize in the following the state of the
art how complex light-matter systems are usually considered. One common way to de-
scribe the interaction of electromagnetic �elds with matter relies on the reduction of the
considered degrees of freedom. The choices for what is considered relevant depends on the
aspects of interest. Historically as a consequence of this, the description of light-matter
interactions has developed into di�erent sub�elds. In case of quantum physics, one large
area of research considers low-energy quantum physics which is again divided into di�erent
topics, i.e., quantum chemistry, quantum optics and solid-state physics. Each of these
research areas is focussing on di�erent aspects of low-energy physics and is based on the
assumption that the e�ects that are in the focus of the respective other �elds are rather
small. The two main di�erent aspects in this case can be summarized as follows. In quan-
tum chemistry and solid state physics, the electromagnetic �eld is typically treated as as
given environment that determines material science and a focus is on a detailed description
of matter. On the other hand in quantum optics, certain matter properties are prescribed
and a focus is placed on the electromagnetic �elds. In this context, it becomes clear, that
the theoretical methodology of considering the two topics depends on the corresponding
sub�eld. Hence, some literature describes the matter degrees of freedom more detailed
[1, 2, 3, 4], or in turn the electromagnetic �elds [5, 6, 7].

While both research directions have reached signi�cant progress in the past decades,
mostly relying on the assumption of neglecting one main part, recent experiments go be-
yond this conventional picture into the regime, where both, light and matter, reveal a
strong mutual correlation. Such strongly coupled systems, e.g., polaritons as light-matter
hybrid states, can be observed when molecules are placed into nanocavities [8], microcavi-
ties [9] or other large nanostructures [10]. The large number of atoms inside nanostructures
or molecules causes in most cases strong coupling e�ects [11], which has also an e�ect on
a larger scale for chemical properties. As a consequence, strong electromagnetic �elds can
modify chemical reactions [12], changes in commonly used selection rules can be observed
[13], or energy transfer can be altered [14]. Similar to chemical reactions, the optical be-
havior changes signi�cantly in strongly coupled systems. New features in spectroscopy
have been found, e.g., the enhancement of Raman processes [15], creation of polariton con-
densates [16] or retardation e�ects like energy transfer induced by attosecond laser pulses
[17]. Indeed, research in strongly coupled systems has revealed neglected properties and
new materials. We emphasize along these lines, e.g., detailed optical responses [18, 19], or
a new color (Vantablack) arising for long nanotubes, which absorb almost any visual light
[18]. Additionally, photons carrying angular momentum [20, 21, 22] have been proposed
for large volume and long distance information transport [23], and even some processes in
living bacteria show strong coupling e�ects [24].

1



The common underlying basis of all previously listed examples is the triad of particle
species of electrons, nuclei, and photons. The ab-initio description of all three kinds of
particle species together in one picture is in most cases considered in a reduced form to
consider only the important ones [25], since all their corresponding degrees of freedom lead
to a non-feasible problem. One way to reduce the degrees of freedom is based on the limit of
a one- or two-dimensional spatial description, while keeping the full particle interactions.
Here, the full rotational symmetry is missing, and all its corresponding e�ects. Model
systems are another option to simplify the considered degrees of freedom, which still try
to catch most relevant features of the real system, but they neglect also per construction
some e�ects. Consequently, the choice of a model system is pre-decision which e�ects can
be observed. In a third way, one particle species and the corresponding degrees of freedom
are only considered as an external perturbation of the system. Hence, the back-reaction
on this external particle species is neglected, which always breaks in the conservation of
energy. The driven matter system gains too much energy when the get excited since they
cannot screen the external electromagnetic �eld due to their induced current. However,
in electronic structure theory, for example, photons and nuclei are typically only external
variables, which leads to solvable systems [1] with di�erent kinds of methods [26, 27, 28, 29,
30, 31, 32]. Due to the simpli�cation of the full problem, many e�ects cannot be observed,
which are caused by the neglected back-reaction. As a consequence, some techniques
add more degrees of freedom, e.g., the electron-nucleus interaction via exact-factorization
[33, 34] or trajectory-based solutions [35, 36, 37], but taking all three interactions into
account including the photon �eld, is up to now only considered in a very limited set of
approaches. Only very recently some theoretical developments have emerged that attempt
to treat matter and electromagnetic radiation on an equal ab-initio footing. Examples
include cases where light-matter coupling is treated classically [38, 39, 40, 41, 42, 43, 44,
45, 46] or as a quantized �eld [47, 48, 49, 50, 51, 52, 53, 54]. Up to now only a few works
describe all three particle types on the same level of description [55, 56, 57, 58]. This
leads to interesting light-matter behavior, e.g. due to modi�ed Maxwell's equations in
vacuum [59], as well as polariton states with new potential-energy surfaces [60] or detailed
chemical structures [61]. These researches followed the bottom-up direction to describe the
fully coupled picture in terms of quantum electrodynamics. They provide applications to
investigate the full particle interactions, but their applications are limited to few particle
systems. This is where the present work is framed and follow the opposite top-down
direction of handling with a large number of particles with mass. Since it is not possible to
consider the full quantum nature of such large systems especially the degrees of freedom of
the photons, we introduce a semi-classical method of coupled electromagnetic mean-�eld
and quantum-mechanical matter. This �rst approximation should give us an impression
how strong the electromagnetic back-reaction change the results compared to conventional
simulations. Additionally such a mean-�eld simulation provides a basis which can be
expand and modi�ed by new developed QED approaches to catch more quantum e�ects.

The previously discussed methods to simplify the complete problem, like neglecting nu-
clear motion or using the dipole approximation of the Maxwell-matter coupling or are not
applicable to larger realistic (three-dimensional, non-model) systems. The present work
aims at describing electrons, nuclei and photons on an equal ab-initio level. The starting
point for our approach is a generalized Pauli-Fierz Hamiltonian for non-relativistic quan-
tum electrodynamics (QED) [62, 25]. Using density functional theory, this formulation in a
multi-species and multi-scale ansatz leads to coupled Maxwell-Pauli-Kohn-Sham equations
(MPKS) [63]. In a �rst numerical application for a nanoplasmonic dimer, we demonstrate
the di�erence of considering only the forward coupling of electromagnetic �elds to matter
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and compare to self-consistent forward and backward coupling between light and matter.
Taking this feature and varying di�erent options, e.g., the degrees of freedom of ion mo-
tion or the multipole expansion terms for Maxwell to matter coupling, and di�erent density
functionals, gives a �rst overview of new e�ects and perspectives for self-consistent light-
matter coupling. We show that common stating that missing correlations among one type
of particles (e.g. electrons) is the cause for a disagreement between theory and experiment
can be misleading. Instead, the cause for a discrepancy might also be the convention-
ally omitted self-consistent light-matter coupling. Our �rst implementation based on the
newly introduced theoretical technique is a comprehensive tool to investigate experimen-
tal results, or design and control novel materials. Additionally we emphasize here, that
simulating the physically electromagnetic �eld including the back-reaction of the matter
superposed with the external �eld, has the advance to be directly detected. For instance,
we can analyze the outgoing electromagnetic �eld at the simulation box boundaries. In
contrast, conventional simulations obtain the corresponding spectroscopy indirectly by in-
vestigating only the matter reaction. Therefore, our implementation can measure the error
between such usual "indirect" spectroscopy and the "real" emitted electromagnetic �eld.

The present PhD focuses on the combination of propagating the quantum mechanical
matter, the corresponding internal and external electromagnetic �elds, and their mutual
coupling. Hence, we provide a mathematical and physically consistent framework to deal
with in interactions of classical light with matter at arbitrary strength, length and time
scales. We have organized the thesis as follows. Using the Riemann-Silberstein vector of
classical electrodynamics, we show in chapter 1 how to rewrite the microscopic Maxwell's
equations in Schrödinger like form. Additionally in a similar manner, we obtain the macro-
scopic Maxwell's equations in linear media which requires a linear combination of the two
electromagnetic helicity states of the electromagnetic �eld, i.e., Riemann-Silberstein vec-
tors, which refer to di�erent spin states. Following the usual construction of quantum-
mechanical time-evolution operators, we show in chapter 2 how to construct the Riemann-
Silberstein time-evolution operators for homogeneous and inhomogeneous propagations in
vacuum or linear media. In this representation, the implemented code provides a method
for simulating the propagation of electromagnetic �elds which is an alternative to the
commonly used �nite di�erence time domain method (FDTD) [64, 65]. Consequently,
in chapter 3 we describe the practical details of the Maxwell implementation on a three-
dimensional grid including useful boundary conditions as absorbing boundaries, a perfectly
matched layer formulation for the Riemann-Silberstein case, incident plane waves and a
combination of both. For each of these features, we demonstrate some applications to
demonstrate the stand-alone electromagnetic �eld propagation simulation.
After introducing the novel Riemann-Silberstein electromagnetic �eld simulation, we sum-
marize and introduce in chapter 4 the fundamentals of quantum electrodynamics to ob-
tain the generalized many-body Pauli-Fierz Hamiltonian, which forms the basis to couple
quantized matter variables like current and charge densities to the classical electromag-
netic �elds. Furthermore, we employ this Pauli-Fierz Hamiltonian to develop a density-
functional theory (DFT) [66, 67] for non-relativistic QED for photons, electrons and e�ec-
tive nuclei on the level of a generalized quantum-electrodynamical density-functional theory
(QEDFT) [62, 49, 25]. Taking the mean-�eld approximation of the electromagnetic �eld
and nuclei, we arrive at coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham (EMPKS) equations
that build the basis for our coupled light-matter implementation, which is introduced in
detail in chapter 5. This chapter also includes a discussion for using multi-scale grids and
time steps to properly handle the di�erent features of the systems, as well as full minimal-
coupling and the multipole expansion, and a predictor-corrector scheme for self-consistent

3



forward-backward coupling of light and matter. In chapter 6, the signi�cance of the en-
tire forward-backward coupling is taken into account and compared to the commonly used
forward-coupling in a �rst Maxwell-Kohn-Sham application for a nanoplasmonic system
excited by a laser. Applying di�erent simulation options, we investigate the near-�eld
e�ects of the electromagnetic �elds, especially their �eld enhancements. Furthermore, we
decompose the total �eld into a longitudinal and transverse �elds, and investigate the inter-
ference of both transverse internal and external �elds with corresponding frequency shift.
The advantage of propagating the total electromagnetic �elds on a numerical grid allows us
to de�ne corresponding electromagnetic detectors to analyze the outgoing electromagnetic
radiation in the far-�eld. This provides a novel simulation tool to record commonly em-
ployed spectroscopies that are used in experiments. In the Summary and the Outlook, we
recapitulate the complex work that was required to achieve our novel introduced method-
ology of considering electromagnetic �eld and matter fully coupled. Further, we emphasize
the main aspects and results of our �rst applications which demonstrate that we provide a
proper ab initio implementation which opens a new research area in material science and
optics. Stepping forward in a �eld that was thought of being non-reachable means that a
lot of new arising problems can be tackled in the near future. Hence, the insights of this
thesis can be seen as a basic ingredient for future theoretical developments, for instance,
�nding methods to include QEDFT e�ects [52, 54, 57, 58, 25, 48].
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Chapter 1

Maxwell's equations in

Riemann-Silberstein formalism

Classical electrodynamics describes the evolution of electric and magnetic �elds, deter-
mined by the four Maxwell's equations, separately known as Ampère's law, Faraday's law,
electric and magnetic Gauss law. All equations are �rst order di�erential equations. They
can be classi�ed into two groups. The two Gauÿ laws, which belong to the �rst group,
contain only �rst order spatial derivatives (second order in time if working with the poten-
tial and vector �elds, as in standard text books). On the other hand, Ampère's law and
Faraday's law, which belong to the second group, include a �rst order time derivative and
determine the time evolution as the underlying equations of motion for Maxwell �elds.
In non-relativistic quantum mechanics, the determining time-evolution equation is the
Schrödinger equation which has also a �rst order time derivative but second order spatial
derivatives. Historically it was noticed very early that Ampère's law and Faraday's law can
be cast in an equivalent Schrödinger-like form [68, 69, 70, 71]. Since electromagnetic �elds
are given in terms of three-component vectors, the Schrödinger-form of Maxwell's equa-
tions contains a matrix-valued Hamiltonian. Taking this into account and the fact that
the Maxwell's equations are Lorentz-invariant, the corresponding Maxwell Hamiltonian
matrix has similarities to the four-dimensional Dirac Hamiltonian. Indeed, we illustrate
in the following that the basic form of the Maxwell-Schrödinger Hamiltonian is based on
spin-1 matrices that are analogous to the Dirac gamma matrices. Based on these features,
we highlight mathematical similarities of a classical Maxwell �eld description and quantum
mechanics to emphasize the utility of this alternative representation of electrodynamics.
The mathematical similarity of both physical systems become increasingly important when
we consider quantum electrodynamics (QED) in chapter 4.

1.1 Riemann-Silberstein microscopic Maxwell's equations

The microscopic Maxwell's equations describe both electromagnetic �elds and the matter
variables i.e, charge and current density in vacuum. In 1907, Ludwik Silberstein de�ned
a six-dimensional bilinear complex vector for the two real three-dimensional electric and
magnetic �elds [68]. To set up a whole basis set for arbitrary electromagnetic �eld super-
positions, it is necessary to de�ne two di�erent kinds of such complex vectors, which di�er
only in the sign of the imaginary part. We discuss later, that both vectors can be referred
to positive respectively negative helicity of light [72]. Based on the Riemann-Silberstein
vector, we transform the Maxwell's equations into two complex equations by combining
Faraday's law and Ampère's law and equally the two Gauÿ laws into one [73]. We combine
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the positive and negative helicity Riemann-Silberstein vectors in a six-dimensional vector
and describe a formalism similar to quantum mechanics. Therefore, we introduce a curl op-
eration identity using quantum mechanical spin-1 matrices to replace the curl operations in
Faraday's and Ampère's law as well as in the Riemann-Silberstein combination. The spin-1
matrix operation is not the only similarity to equations in quantum mechanics. We deduce,
that the Riemann-Silberstein combination of Faraday's and Ampère's law is equivalent to
a homogeneous time-dependent Schrödinger equation, that becomes inhomogeneous in the
presence of current densities. Our formalism is based on the considerations in Ref. [72, 73].
In case of Maxwell's equations in vacuum, it is su�cient to use either the positive helicity
Riemann-Silberstein vector and its Maxwell Riemann-Silberstein equations or vice versa
the negative version to determine the electromagnetic �elds and their propagation in time.

1.1.1 De�nition of the microscopic Riemann-Silberstein vectors

The Riemann-Silberstein approach of classical electrodynamics maps both three-dimensio-
nal electromagnetic �elds into one bilinear complex vector, called Riemann-Silberstein
vector and generally expressed by ~F (~r, t) [68, 73, 74]. Due to unit considerations it is
useful to multiply real part and imaginary part of ~F by di�erent factors depending on the
permittivity ε in the real part and permeability µ in the imaginary part. In general, two
complex vectors ~a + i~b and ~a− i~b with real ~a, and ~b are linearly independent. Hence, the
Riemann-Silberstein vector can be written in two linearly independent versions, where the
plus respectively minus sign between real and imaginary part is shown by a superscript sign
index. We start with the two variants of Riemann-Silberstein vectors in vacuum, denoted
as ~F+ and ~F−. In the vacuum case, the electric permittivity and magnetic permeability
are equal to the natural constants ε0, µ0, hence the two Riemann-Silberstein vectors in
vacuum are de�ned by

~F+(~r, t) =

√
ε0
2
~E(~r, t) + i

√
1

2µ0

~B(~r, t) , (1.1.1)

~F−(~r, t) =

√
ε0
2
~E(~r, t)− i

√
1

2µ0

~B(~r, t) , (1.1.2)

in terms of the electric �eld ~E(~r, t) and magnetic �eld ~B(~r, t) at position ~r at time t.
We note here a general form for the indices notation in this thesis. Italic letters indices
denote a component or running index, whereas non-italic letters and symbols names the
considered variable. In the following, we denote often ±, which means + or − and ∓ vice
versa as two possible options for the sign. The upper sign option is linked to formulas for
the positive de�ned ~F+(~r, t), and consequently the lower sign option represents the ones
for the negative de�ned ~F−(~r, t). The two vectors ~F±(~r, t) are directly linked since they
are always the complex conjugate ~F ∗±(~r, t) of each other

~F− = ~F ∗+ , ~F+ = ~F ∗− . (1.1.3)

The two prefactors
√
ε0/2 and

√
1/2µ0 are selected such that the square of the absolute

value of ~F+(~r, t) or ~F−(~r, t) results in the classical energy density u(~r, t) of the Maxwell
�elds

u(~r, t) =
1

2

(
ε0 ~E

2(~r, t) +
1

µ0

~B2(~r, t)

)
. (1.1.4)

6



Therefore, the energy density u(~r, t) in Eq. (1.1.4) is equal to the scalar product of two
complex Riemann-Silberstein vectors with

u(~r, t) = ~F ∗+(~r, t) · ~F+(~r, t) = ~F ∗−(~r, t) · ~F−(~r, t) . (1.1.5)

The back transformation to obtain the electromagnetic �elds ~E(~r, t) and ~B(~r, t) from the
Riemann-Silberstein vectors ~F+(~r, t) can be written as

~E(~r, t) =

√
1

2ε0

(
~F+(~r, t) + ~F ∗+(~r, t)

)
=

√
1

2ε0

(
~F+(~r, t) + ~F−(~r, t)

)
, (1.1.6)

~B(~r, t) = −i

√
µ0

2

(
~F+(~r, t)− ~F ∗+(~r, t)

)
= −i

√
µ0

2

(
~F+(~r, t)− ~F−(~r, t)

)
. (1.1.7)

1.1.2 Microscopic Maxwell's equations

Based on the previously de�ned vectors ~F+(~r, t), it is possible to describe two equations
which are equivalent to the microscopic Maxwell's equations with electric �eld ~E, magnetic
�eld ~B, charge density ρ(~r, t) and current density ~j(~r, t) in vacuum. The well known
microscopic Maxwell's equations in SI units are given by [75]

∇ · ~E(~r, t) = ε−1
0 ρ(~r, t) , (1.1.8)

∇ · ~B(~r, t) = 0 , (1.1.9)

∇× ~E(~r, t) = − ∂

∂t
~B(~r, t) , (1.1.10)

∇× ~B(~r, t) = µ0

(
~j(~r, t) + ε0

∂

∂t
~E(~r, t)

)
. (1.1.11)

The electric charge density contribution ~ρ(~r, t) on the right-hand side of the electric Gauÿ
law in Eq. (1.1.8) causes a longitudinal �eld component. Conversely, the contribution of
the charge density can be obtained by the longitudinal �eld component of the electric �eld.
In contrast, the magnetic �eld Gauÿ law in Eq. (1.1.9) shows that the magnetic �eld is
always solenoidal at all times. Taking these Gauÿ law conditions into account, the two
remaining equations, Eq. (1.1.10) and Eq. (1.1.11), determine the time-evolution of the
Maxwell �eld. In Eq. (1.1.10) the curl of the electric �eld describes the time variation of
the magnetic �eld. In contrast to Faraday's law, the time variation of the electric Field
in Ampère's law depends in general on the curl of the magnetic �eld but also on the
displacement current density ~j(~r, t). In case of mapping the two relevant electromagnetic
�eld vectors into a complex Riemann-Silberstein vector ~F±(~r, t), it is possible to combine
the electric and magnetic Gauÿ laws as well as the remaining Faraday's and Ampère's law
into one equation.

The two divergence conditions in Eq. (1.1.8) and Eq. (1.1.9) represented by the two
Riemann-Silberstein vectors ~F±(~r, t) are given by

∇ · ~F±(~r, t) =

√
1

2ε0
ρ(~r, t) . (1.1.12)

Although we obtained two equations here, one for ~F+(~r, t) and one for ~F−(~r, t), both Gauÿ
laws hold in both equations simultaneously. Furthermore, the right-hand side is equal
irrespectively of applying the divergence operation to positive ~F+(~r, t) or negative ~F−(~r, t),
and emphasizes the solenoidal magnetic vector �eld in the imaginary part. The di�erence
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between the positive or negative version of Eq. (1.1.12) consists of the intrinsic positive
helicity described by the ~F+(~r, t) version or negative helicity for the ~F−(~r, t) version which
we consider later in this section.

In a similar way, the two time-derivative Maxwell's equations, Faraday's law in
Eq. (1.1.10) and Ampère's law in Eq. (1.1.11), can be written in terms of the Riemann-
Silberstein vectors de�ned in Eq. (1.1.1) and Eq. (1.1.2) and the speed of light in vacuum
c0 = 1√

ε0µ0
. We arrive at the form

i
∂

∂t
~F±(~r, t) = ±c0

~∇× ~F±(~r, t)− i
1√
2ε0

~j(~r, t) . (1.1.13)

The comparison of the plus and minus version of the combined Faraday's and Ampère's
laws in Eq. (1.1.13) shows that the signs of the terms on the right-hand side are not equal
for both cases. The ~F− version of Eq. (1.1.13) requires a change of sign for all terms on
the right-hand side compared to the ~F+(~r, t) equation. This change in sign is contrary to
the previously discussed Gauÿ laws in Riemann-Silberstein representation in Eq. (1.1.12).
However, this becomes more clear later in this section, when we consider the corresponding
helicity of ~F±(~r, t).

1.1.3 Curl operation in representation of Spin-1 matrices

Now, after combining Maxwell's equations with a bilinear vector, we search for a relation
of these Riemann-Silberstein equations with the well known ones in quantum mechanics,
especially the time-dependent Schrödinger form. The curl operation in Eq. (1.1.13) is
equivalent to a spin-1 matrix-vector operation. This operation obeys the following cross
product for general vectors ~a and ~b [73]

~a×~b = −i
(
~S · ~a

)
~b , (1.1.14)

where the vector ~S of spin-1 matrices is de�ned in Cartesian representation by

~S =

 S1

S2

S3

 , (1.1.15)

with

S1 =

 0 0 0
0 0 −i
0 i 0

 , S2 =

 0 0 i
0 0 0
−i 0 0

 , S3 =

 0 −i 0
i 0 0
0 0 0

 .

(1.1.16)

The corresponding Cartesian basis vectors are denoted as

~e1 =

1
0
0

 , ~e2 =

0
1
0

 , ~e3 =

0
0
1

 (1.1.17)

so that the identity of the cross product in Eq. (1.1.14) can readily be seen, and an arbitrary
~a with its components

~a =

axay
az

 (1.1.18)
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is expressed with Cartesian basis set by

~a = ax~e1 + ay~e2 + az~e3 . (1.1.19)

However, there is a second representation, the spherical representation, which is discussed
in greater detail in Ref. [71] and which we brie�y introduce here. In quantum mechanics,
the spherical representation is the common Spin representation, where one coordinate axis
is distinguished. One spin-matrix is chosen such that its eigenvalues are on the diagonal
and that the corresponding eigenvector is parallel to this distinguished axis. We denote
the spherical representation with a tilde above the letters. It is common to chose the
eigenvector axis along the z-axis and therefore ~̃e3 = ~e3. Furthermore, the eigenvalues of
the spin-1 matrix are 1, 0, −1, so that the S̃3 matrix is

S̃3 =

 1 0 0
0 0 0
0 0 −1

 . (1.1.20)

The two other matrices S̃1, and S̃2 are obtained by a proper rotation using the Wigner-D
rotation matrices D(j)(α, β, β) in Ref. [76] with rotation angles α, β, β and j = 1 which
corresponds to spin 1. The proper rotations for S̃1, and S̃2 are in accord with [71] given
by

S̃1 = D(1)(0, π/2, 0)S̃3D(1)(0,−π/2, 0) =
1√
2

 0 1 0
1 0 1
0 1 0

 , (1.1.21)

S̃2 = D(1)(0, 0, π/2)S̃1D(1)(0, 0,−π/2) =
i√
2

 0 −1 0
1 0 −1
0 1 0

 , (1.1.22)

Consequently, we have to transform the basis vectors in Eq. (1.1.17) to the corresponding
spherical basis vectors ~̃e1, ~̃e2, ~̃e3

~̃e1 =


− 1√

2

−i 1√
2

0

 , ~̃e2=


1√
2

−i 1√
2

0

 , ~̃e3 =


0

0

1

 . (1.1.23)

Hence, the arbitrary vector ~a in Eq. (1.1.18) can be transformed into spherical representa-
tion ~̃a using the spherical basis set in Eqs. (1.1.23) with

~̃a = ax~̃e1 + ay~̃e2 + az~̃e3 . (1.1.24)

Finally, the Riemann-Silberstein vectors ~F±(~r, t) and their underlying operations can be
expressed in both representations, the Cartesian or the spherical. However, it is more
convenient to use the Cartesian representation of the cross product with three equivalent
coordinates. If we substitute the vector ~a in Eqs. (1.1.14) by a nabla vector ~∇ and ~b by the
Riemann-Silberstein vectors ~F±(~r, t), we get a curl operation described by spin-1 matrices

~∇× ~F±(~r, t) = −i
(
~S · ~∇

)
~F±(~r, t) . (1.1.25)
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Hence, the combined Ampère's and Faraday's law in Eq. (1.1.13) result in

i
∂

∂t
~F±(~r, t) = ∓ic0

(
~S · ~∇

)
~F±(~r, t)− i

1√
2ε0

~j(~r, t) , (1.1.26)

with the upper sign for positive helicity and lower sign for negative helicity. Without any
loss of generality, we can multiply the whole equation in Eq. (1.1.26) by Planck's constant
~ to get an inhomogeneous Schrödinger like Maxwell equation

i~
∂

∂t
~F±(~r, t) = ∓i~c0

(
~S · ~∇

)
~F±(~r, t)− i

~√
2ε0

~j(~r, t) , (1.1.27)

one for ~F+(~r, t) and another one for ~F−(~r, t).

1.1.4 Riemann-Silberstein Maxwell Hamiltonian and eigensystem

Owing to the replacement of the curl operation by spin-1 matrix representation, the quan-
tum mechanical momentum operator ~̂p

~̂p = −i~~∇ (1.1.28)

appears in Eq. (1.1.27). It is also well known that the energy-momentum relation of a
photon is

E = c0
~̂p . (1.1.29)

Thus, with all these similarities, we can de�ne a Hamiltonian-like operator HMx

HMx = −i~c0

[
~∇ · ~S

]
= ~c0


0 − ∂

∂z
∂
∂y

∂
∂z 0 − ∂

∂x

− ∂
∂y

∂
∂x 0

 . (1.1.30)

Expressed in the Riemann-Silberstein formalism, Faraday's and Ampère's law can be writ-
ten as an inhomogeneous Schrödinger equation

i~
∂

∂t
~F±(~r, t) = ±HMx

~F+(~r, t)∓ i
~√
2ε0

~j(~r, t) . (1.1.31)

The bilinear Riemann-Silberstein complex vectors ~F+(~r, t) describe the Maxwell's �eld
vectors, i.e the electric and magnetic �eld, analogously to wave functions in quantum
mechanics. In case of homogeneous Maxwell's equations without any current or charge
densities in space, the combined Faraday's and Ampère's equation takes directly the form
of a time dependent Schrödinger equation

i~
∂

∂t
~F±(~r, t) = ±HMx

~F±(~r, t) . (1.1.32)

It combines all Maxwell's equations that contain temporal derivatives into only one equa-
tion and reveals another important feature of quantum mechanical equations for the
Maxwell's equations. In such a spin-1 matrices representation with �rst order time deriva-
tive multiplied by imaginary unit and Planck constant ~ acting on the Riemann-Silberstein
vector on the left-hand side as well as a Hamiltonian-like operator acting on the same
Riemann-Silberstein vector on the right-hand side, it is possible to construct a time-
evolution operator for Maxwell's �elds. In addition, analogous to the stationary solution of
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the Schrödinger equation in quantum mechanics, the stationary solution of the Maxwell's
wave equation in Eq. (1.1.32) can be considered as a factor of spatial dependent function
and a time-dependent phase factor

~F±(~r, t) = e−iωt ~F±(~r, t0) , (1.1.33)

with constant eigenmode frequency ω. This separation of ~F±(~r, t) leads to the eigenvalue
problem for the Riemann-Silberstein Maxwell's wave equation

i~
∂

∂t
~F±(~r, t) = ±HMx

~F±(~r, t) ⇔ ω~~F±(~r, t)= c0

(
± ~S · ~̂p

)
~F±(~r, t) , (1.1.34)

which is the stationary Riemann-Silberstein wave equation similar to the one in quantum
mechanics. Thus, it is equally possible to expand the Riemann-Silberstein �elds by a
superposition in terms of their eigenfunctions with eigenmodes ω. In case of positive ω
in Eq. (1.1.34), the helicity, de�ned as the projection of the momentum ~p on the spin
vector ~S, is positive for ~F+(~r, t) and negative for ~F−(~r, t). Consequently ~F+(~r, t) and its
corresponding equation is referred to positive helicity and ~F−(~r, t) to negative helicity.

1.1.5 Combined six-component helicity Riemann-Silberstein vector

For all previously considered Riemann-Silberstein Maxwell's equations, we always found
two equivalent expressions, one equation for ~F+(~r, t) and one for ~F−(~r, t). Similar to the
works of Ref. [73, 77], we introduce a formalism which combines both vectors. Instead of
writing two equations, both variants can be expressed combined into one by building a
six-dimensional vector F and its complex conjugate one F† which contains both ~F+(~r, t)
and ~F−(~r, t) and are given by

F(~r, t) =

(
~F+(~r, t)

~F−(~r, t)

)
, F†(~r, t) =

(
~F−(~r, t)

~F+(~r, t)

)
. (1.1.35)

We call F(~r, t) the six-component Riemann-Silberstein vector of a system. All Maxwell
equations can be written in terms of F(~r, t) which always contain the positive and negative
helicity equations. The �rst three components of F(~r, t) correspond to the positive helicity
equations of ~F+(~r, t) whereas the last three components represent the negative helicity
equations of ~F−(~r, t).

Next, we want to express the microscopic Maxwell's equations in terms of the newly
introduced six-dimensional vector F(~r, t) in Eq. (1.1.35). In addition to the introduced
F(~r, t), other variables have to be adapted in a similar way. Hence, the two-dimensional
Riemann-Silberstein charge density Q(~r, t) can be written as

Q(~r, t) =

(
1
1

)
2×1

⊗
(

1√
2ε0

ρ(~r, t)

)
1×1

. (1.1.36)

Furthermore, the 2x6 dimensional Riemann-Silberstein divergence operator, built by a
Kronecker product of a 2x2 matrix and the 1x3 transposed nabla operator vector, is

D =

(
1 0
0 1

)
2×2

⊗
(
~∇
)ᵀ

1×3

=

(
∂
∂x

∂
∂y

∂
∂z 0 0 0

0 0 0 ∂
∂x

∂
∂y

∂
∂z

)
. (1.1.37)

The two equations in Eq. (1.1.12) which represent the Gauÿ laws condition are equivalent
to

D · F(~r, t) = Q(~r, t) , (1.1.38)
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where we use a dot product formalism denoted by a bold dot product symbol ·. The
introduced Riemann-Silberstein dot product acts as a 6x2 matrix V on the six-dimensional
F with its two three-dimensional vectors ~F±. The 6x2 V contains four arbitrary three-
dimensional vectors ~V1, ~V2, ~V3, and ~V4. We de�ne the dot product with

V · F =

(
~V ᵀ

1
~V ᵀ

2
~V ᵀ

3
~V ᵀ

4

)
2×6

·
(
~F+

~F−

)
6×1

=

(
~V1 · ~F+ + ~V2 · ~F−
~V3 · ~F+ + ~V4 · ~F−

)
2×1

. (1.1.39)

The small dot product symbols on the very right-hand side of Eq. (1.1.39) represent com-
mon three-dimensional scalar products. Hence, this dot product maps a 6x2 matrix and a
six-dimensional vector into in a two-dimensional vector. where the upper component again
represents the positive helicity, and the lower component the negative one.

Furthermore, the two Riemann-Silberstein combined Ampère's and Faraday's laws
given in Eq. (1.1.31) take the form

i~
∂

∂t
F(~r, t) = HF(~r, t)− i~J (~r, t) . (1.1.40)

Here, the Hamiltonian-like 6x6 matrix H is a Kronecker product of a diagonal 2x2 matrix
and the 3x3 HMx matrix of Eq. (1.1.30). It is given by

H =

(
1 0
0 −1

)
2×2

⊗
(
− i~c0

[
~∇ · ~S

])
3×3

=

(
1 0
0 −1

)
2×2

⊗
(
HMx

)
3×3

, (1.1.41)

which yields a six-dimensional vector after acting on F(~r, t). The remaining current density
inhomogeneity in Eq. (1.1.31) is substituted by J (~r, t)

J (~r, t) =

(
1
1

)
2×1

⊗
(

1√
2ε0

~j

)
3×1

(1.1.42)

in equation (1.1.40). In case of J (~r, t) equal zero, Eq. (1.1.40) becomes a homogeneous
Schrödinger-like form with

i~
∂

∂t
F(~r, t) = HF(~r, t) . (1.1.43)

Following the HF(~r, t) operation, we emphasize some properties of general O(~r, t)F(~r, t)
operations de�ned by a general operator O, which contains four 3x3 matrices

O(~r, t) =

(
O1,1(~r, t) O1,2(~r, t)

O2,1(~r, t) O2,2(~r, t)

)
. (1.1.44)

Therefore, O(~r, t)F(~r, t) yields(
F ′+(~r, t)
F ′−(~r, t)

)
=

(
O1,1(~r, t)~F+(~r, t) +O1,2(~r, t)~F−(~r, t)

O2,1(~r, t)~F−(~r, t) +O2,2(~r, t)~F+(~r, t)

)
. (1.1.45)

Obviously the di�erent helicity vectors ~F+(~r, t) and ~F−(~r, t) couple to each other, if the
terms O12(~r, t) and O21(~r, t) are non-zero. Without loss of generality we can express the
general operator O(~r, t) by a Kronecker product of the two matrices mi and i(~r, t)

O(~r, t) =
∑
i

(mi)2×2 ⊗ (oi(~r, t))3×3 . (1.1.46)
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The pre�x 2x2 matrix mi only consists of elements 1 or −1, the second oi(~r, t) contains all
other necessary operations so that Eq. (1.1.46) is satis�ed. We already used this formalism
in Eq. (1.1.41) to de�ne the Hamiltonian-like H. Consequently, if the o�-diagonal entries of
mi are zero and only the diagonal entries are 1 or −1, it can readily be seen that oi(~r, t) do
not couple the two helicity vectors. In the following, we therefore call the �rst 2x2 matrix in
Eq. (1.1.46) "coupling" matrix, as it shows if the two Riemann-Silberstein vectors ~F±(~r, t)
couple to each other. The second 3x3 "operation" matrix contains all necessary physical
variables and operations to satisfy the underlying Maxwell's equations.

With respect of Eq. (1.1.31), we have in principle two independent equations combined
into one in Eq. (1.1.40). Hence, there is per construction no coupling between the two linear
independent Riemann-Silberstein vectors ~F+(~r, t) and ~F−(~r, t). Note, this is only valid for
the common classical microscopic Maxwell's equations shown in Eqs. (1.1.8)-(1.1.11). We
show in the next section, that a correct description of Maxwell's equation in a linear medium
requires a coupling between the positive and negative Riemann-Silberstein vectors. In
summary, Eq. (1.1.40) gives us a general and clear form to describe the Maxwell's equations
in vacuum as a Schrödinger-like equation well known for describing quantum mechanical
wave functions. However, there is one di�erence to quantum mechanical systems. The
Maxwell �elds have to satisfy the two Gauÿ laws as secondary condition. We focus on this
condition and how it is conserved during time propagation in chapter 2.

1.1.6 Photon - anti-photon relation of the six-component Riemann-Sil-
berstein vector

We now have a general form with both helicity Riemann-Silberstein vectors in one equation,
but this expression of Maxwell vectors in form of a six-dimensional Riemann-Silberstein
vector requires some considerations, which are extensively elaborated in Ref. [73, 72]. The
six-component vector F(~r, t) without any relation between the upper and the lower three-
vector doubles the degrees of freedom. This extra freedom has to be constrained to satisfy
the photon particle antiparticle relation. Solutions of relativistic quantum mechanics,
especially plane wave solutions can have in general positive frequencies that corresponds
to particles with positive energy or negative frequencies that correspond to antiparticles
with negative energies. In contrast to the di�erent particle antiparticle pairs for matter
wavefunctions, the anti-photons are identical with photons. Hence, this condition reduces
the degrees of freedom. First, we take the electric �eld ~E

(+)
pw (~r, t) and magnetic �eld

~B
(+)
pw (~r, t) for positive frequencies and ~E

(−)
pw (~r, t), ~B(−)

pw (~r, t) for negative frequencies of an

electromagnetic plane wave [75] with initial electric �eld ~̃E0(~k), initial magnetic �eld ~̃B0(~k),
wave vector ~k and ω as the absolute value of the frequency. Hence, the plane waves with
positive frequencies take the form

~E(+)
pw (~r, t) = ~̃E0(~k)exp

[
i
(
~k · ~r − ωt

)]
, (1.1.47)

~B(+)
pw (~r, t) = ~̃B0(~k)exp

[
i
(
~k · ~r − ωt

)]
, (1.1.48)

whereas the ones with negative frequencies are given by

~E(−)
pw (~r, t) = ~̃E0(~k)exp

[
i
(
~k · ~r + ωt

)]
, (1.1.49)

~B(−)
pw (~r, t) = ~̃B0(~k)exp

[
i
(
~k · ~r + ωt

)]
. (1.1.50)
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The electromagnetic plane waves additionally obey the relations [75]

~k · ~E(±)
pw (~r, t) = ~k · ~B(±)

pw (~r, t) ,= 0 (1.1.51)

~B(±)
pw (~r, t) =

1

c0

~k

|~k|
× ~E(±)

pw (~r, t) . (1.1.52)

Using the de�nitions of the Riemann-Silberstein vectors in Eq. (1.1.1) and Eq. (1.1.2) for

building the corresponding initial vectors ~̃F+(~k) and ~̃F−(~k) for a given wavevector ~k leads
to the Riemann-Silberstein plane wave expressions ~F (+)

pw (~r, t) for positive frequencies

~F
(+)
pw,+(~r, t) = ~̃F+(~k)exp

[
i
(
~k · ~r − ωt

)]
= ~̃F ∗+(~k)exp

[
i
(
−~k · ~r − ωt

)]
, (1.1.53)

~F
(+)
pw,−(~r, t) = ~̃F−(~k)exp

[
i
(
~k · ~r − ωt

)]
= ~̃F ∗−(~k)exp

[
i
(
−~k · ~r − ωt

)]
, (1.1.54)

and ~F
(−)
pw (~r, t) for negative frequencies

~F
(−)
pw,+(~r, t) = ~̃F+(~k)exp

[
i
(
~k · ~r + ωt

)]
= ~̃F ∗+(~k)exp

[
i
(
−~k · ~r + ωt

)]
, (1.1.55)

~F
(−)
pw,−(~r, t) = ~̃F−(~k)exp

[
i
(
~k · ~r + ωt

)]
= ~̃F ∗−(~k)exp

[
i
(
−~k · ~r + ωt

)]
. (1.1.56)

The last equivalence Eqs. (1.1.53)-(1.1.56) follows from the plane wave conditions
in Eq. (1.1.51) and Eq. (1.1.52) for the wave vector ~k and magnetic �eld ~Bpw(~r, t). Since ev-
ery electromagnetic �eld and therefore every Riemann-Silberstein vector can be expressed
by a in�nite sum of plane waves, we can �nd a Riemann-Silberstein vector ~F (+)

± (~r, t) which
only contains positive frequencies by

~F
(+)
± (~r, t) =

∞∫
0

d3k ~̃F±(~k)exp
[
i
(
−~k · ~r − ω~kt

)]
, (1.1.57)

and a negative counterpart ~F (−)
± (~r, t) by

~F
(−)
± (~r, t) =

∞∫
0

d3k ~̃F±(~k)exp
[
i
(
−~k · ~r + ω~kt

)]
, (1.1.58)

where ω~k depends implicitly on the wave vector ~k with ω~k = c|~k|. In principle, with using
Eq. 1.1.57 and Eq. 1.1.58, we can build two separate Riemann-Silberstein six-vectors, one
for positive frequencies F (+)(~r, t)

F (+)(~r, t) =

(
~F

(+)
+ (~r, t)
~F

(+)
− (~r, t)

)
, (1.1.59)

and another F (−)(~r, t) for negative frequencies

F (−)(~r, t) =

(
~F

(−)
+ (~r, t)
~F

(−)
− (~r, t)

)
. (1.1.60)

However, as mentioned before, this degree of freedom is reduced due to the fact that photon
and anti-photon are described by the same F(~r, t). According to quantum mechanical
particle-antiparticle conjugation [78, 77] the anti-photon vector Fa(~r, t) has to obey

Fa =

(
0 1
1 0

)
F∗ , (1.1.61)
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and the antiparticles are de�ned as the particles corresponding to negative energy. In
terms of electromagnetic �elds, this corresponds to photons with negative frequencies.
Therefore, if we substitute F(~r, t) on the right-hand side of equation (1.1.61) by positive
energy referred F (+)(~r, t), we obtain the constraint condition for F (+)(~r, t) with

F (+)(~r, t) =

(
0 1
1 0

)
F (−)∗(~r, t) . (1.1.62)

As a consequence, F (+)(~r, t) can always be constructed from an arbitrary Riemann-Silber-
stein vector ~F±(~r, t) by splitting ~F (~r, t) into positive and negative frequency parts and
inserting the positive frequency part ~F (+)

± (~r, t) and the complex conjugate part ~F (−)
± (~r, t)

into F(~r, t) [73]

F (+)(~r, t) =

(
F

(+)
± (~r, t)

F
(−)∗
± (~r, t)

)
. (1.1.63)

Since F (−)(~r, t) can be directly obtained from F (+)(~r, t), we use in the following only
F (+)(~r, t) for F(~r, t) and drop the index (+).

1.1.7 Scalar product of the six-component Riemann-Silberstein vector

In analogy to quantum mechanics, we introduce a scalar product formalism for the six-
component Riemann-Silberstein vector F(~r, t) similar to Ref. ([77]). With the previous
considerations, we can de�ne the scalar product for an arbitrary 6x6 dimensional operator
O(~r, t) which contains four three times three matrices

O(~r, t) =

(
O1,1(~r, t) O1,2(~r, t)
O2,1(~r, t) O2,2(~r, t)

)
. (1.1.64)

Hence, the scalar product for F(~r, t) based on Eq. (1.1.35) is de�ned as

〈
F(t)

∣∣O∣∣F(t)
〉

=

∞∫
−∞

d3rF†(~r, t)H−1O(~r, t)F(~r, t)

=


∞∫
−∞

d3r ~F−(~r, t)
[
H−1

]
1,1
O1,1(~r, t)~F+(~r, t) + ~F−(~r, t)

[
H−1

]
2,1
O1,2(~r, t)~F−(~r, t)

∞∫
−∞

d3r ~F+(~r, t)
[
H−1

]
1,2
O2,1(~r, t)~F+(~r, t) + ~F+(~r, t)

[
H−1

]
2,2
O2,2(~r, t)~F−(~r, t)

 .

(1.1.65)
The right-hand side of Eq. (1.1.65) uses the inverse of H given in Eq. (1.1.41) and in
principle can be expressed in terms of four submatrices by

H−1 =

([
H−1

]
1,1

[
H−1

]
1,2[

H−1
]
2,1

[
H−1

]
2,2

)
, (1.1.66)

which is also used on the right-hand side in Eq. (1.1.65). Unfortunately, H is a non-
invertible singular matrix. However, we keep the expressions in Eq. (1.1.65) and Eq. (1.1.66)
since relevant physical operators for O(~r, t) can be expressed or factorized by H, which
means, that it cancels the corresponding inverse H expression in Eq. (1.1.65) [73]. In
contrast to the usual scalar product with only one scalar number as result, our de�ned
scalar product consists of two scalar numbers representing the upper and lower helicity
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vectors ~F+(~r, t) and ~F−(~r, t) of F(~r, t). Since ~F ∗+(~r, t) = ~F−(~r, t) and ~F ∗−(~r, t) = ~F+(~r, t),
the �rst integral of the upper component on the right-hand side and the second integral
of the lower component on the right-hand side represent the usual integrals to obtain the
physical scalar products. However, in our de�nition, if O1,2(~r, t) and O2,1(~r, t) are non-
zero, we obtain additional scalars for each component that concerns coupling between the
helicity vectors. Another di�erence to usual scalar products in quantum mechanics is the
inverse H operator in Eq. (1.1.65). The reason for this modi�cation is based on the energy
density u(~r, t) formula in the Riemann-Silberstein formalism. From Eq. (1.1.67) we already
explained the prefactors for the real and imaginary part of the Riemann-Silberstein vector
and it is equivalent to (

u(~r, t)

u(~r, t)

)
=

(
~F−(~r, t) · ~F+(~r, t)

~F+(~r, t) · ~F−(~r, t)

)
. (1.1.67)

Hence, the electric energy of a system is given by(
E(t)

E(t)

)
=

(∫
d3r ~F−(~r, t) · ~F+(~r, t)∫
d3r ~F+(~r, t) · ~F−(~r, t)

)
, (1.1.68)

which could equivalently be expressed similar to a quantum mechanical expectation value
with 〈

E(t)
〉

=
〈
F(t)

∣∣H∣∣F(t)
〉
, (1.1.69)

if the scalar product of the six-dimensional Riemann-Silberstein formalism is de�ned like in
Eq. (1.1.65). Therefore, the introduced Riemann-Silberstein scalar product can be used
for other operators similar to the one in quantum mechanics. Most physical operators can
be expressed in terms of H with additional operators, so that it eliminates the inverse of
H in Eq. (1.1.65). If O in Eq. (1.1.64) is a physical operator, the upper and lower value on
the left-hand side of Eq. (1.1.65) are always equal since the photon-anti-photon relation in
Eq. (1.1.63) holds. An overview of some physical operators for the photon �eld, which has
similarities to the corresponding quantum operators is given in [73].

In quantum mechanics, the expectation value describes the mean expectation value for a
large number of measurements, whereas the Riemann-Silberstein scalar product calculates
the integrated mean �eld value. We note here, that the mean �eld value of the Maxwell
�elds at a certain point in space can be seen as the quantum mechanical expectation value
of the �eld, which is obtained by a very large photon number. In this picture, it is su�cient
to approximate the Maxwell �eld by a mean �eld vector and neglect photon �uctuations
[79].

1.1.8 Eigenstate expansion of the Riemann-Silberstein six-vector

We already considered stationary solutions for the Riemann-Silberstein vectors ~F±(~r, t),
which are given in Eq. (1.1.33) and satisfy the corresponding eigenvalue problem in
Eq. (1.1.34). Consequently, the corresponding stationary solution ansatz of the six-compo-
nent Riemann-Silberstein vector takes the form

F(~r, t) = e−iωtF(~r, t0) , (1.1.70)

This solves the updated eigenvalue problem of Eq. (1.1.34) for six-component Riemann-
Silberstein vectors with operator H in Eq. (1.1.41)

HF(~r, t) = ~ωF(~r, t) . (1.1.71)
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Following the usual quantum mechanical wave function expansion, we can use an eigenvalue
and eigenstate expansion of the Riemann-Silberstein six-vector by

F(~r, t) =
∑
j

e−iωjtFj(~r) (1.1.72)

to expand the six-component Riemann-Silberstein vector in terms of its eigenvalues ωj and
eigenstates Fj(~r). The corresponding eigensystem can be numerically calculated using an
adequate basis set and the scalar product in Eq. (1.1.65) with O = H to get a Hamiltonian
matrix, which can be diagonalized to obtain the requested eigenvalues ωj and eigenstates
Fj(~r).

1.2 Riemann-Silberstein approach for macroscopic Maxwell's

equations

The previously considered microscopic Maxwell's equations describe the Maxwell �elds,
charge, and current density in vacuum. In large matter systems with a huge amount of
atoms, the correct Maxwell �elds can be obtained in principle by solving Maxwell's equa-
tions in vacuum. Finding a solution or a proper approximation is barely reachable due to
the large particle number with corresponding charge densities and current densities that
have to be taken into account. However, quite a lot of atoms are bound by cores and
additionally the atomic cores are often bound in a structure, whereas some electrons are
able to move freely inside the matter. Thus, the current density inside the matter can be
split into two parts. One part describes the bound charge density ρbound(~r, t), whose distri-
bution and motion in terms of a bound current density ~jbound(~r, t) is only visible on atomic
scale and ensures the stability of the bound system. The remaining free charge density
ρfree(~r, t) can move through the whole matter and causes a free current density ~jfree(~r, t),
which both are macroscopically measurable in contrast to the bound variables. The ef-
fects of the bound charges and currents are summarized in additional vector �elds, the
electric displacement �eld ~D(~r, t) and the H-�eld ~H(~r, t). Both �elds and the electromag-
netic �elds, ~E(~r, t), ~B(~r, t), determine the macroscopic Maxwell's equations. In contrast
to the microscopic Maxwell's equations, we show that the macroscopic description in a
linear medium in terms of Riemann-Silberstein vectors requires a linear combination of
both helicity vectors ~F± [73, 74]. Now, the macroscopic Riemann-Silberstein six-vector
Flm becomes more important since the corresponding 6x6 matrices couple the upper ~F+,lm

and the lower ~F−,lm vectors of Flm. In this section we follow the previously considered
steps of the microscopic Riemann-Silberstein Maxwell's equations in Sec. (1.1) to �nd the
correspond macroscopic ones. To get a more general form, we assume a time-dependent
linear medium and add electric and magnetic loss.

1.2.1 Riemann-Silberstein Maxwell's equations for linear media

In a linear medium, the total charge density ρ(~r, t) and current density ~j(~r, t) are split into
two components, one microscopically bound and one free component. The sum of both
components corresponds of course still to the total values of the system, so that the total
ρ(~r, t) and ~j(~r, t) of the system are given by

ρ(~r, t) = ρbound(~r, t) + ρfree(~r, t) , (1.2.1)

~j(~r, t) = ~jbound(~r, t) +~jfree(~r, t) . (1.2.2)
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If the requested Maxwell �elds are more of interest on a macroscopic scale, where the
detailed behavior of the Maxwell �elds inside the matter system is negligible, it is su�cient
not to take into account all bound charges and currents and to use a macroscopic mean
value for the �elds instead. It is shown in common textbooks like Ref. [75, 80], that
the in�uence of the bound charge density ρbound(~r, t) and current density ~jbound(~r, t) on
the total electric and magnetic �eld can be expressed by two additional vector �elds, the
polarisation ~P (~r, t) and the magnetization ~M(~r, t). Hence, the relevant mean �elds, the
displacement �eld ~D(~r, t) and magnetic ~H(~r, t) �eld, are a superposition of the electric and
magnetic �eld ~E(~r, t), ~B(~r, t) in vacuum with ~P (~r, t) or ~M(~r, t), and take the form [80]

~D(~r, t) = ε0 ~E(~r, t) + ~P (~r, t) , (1.2.3)

~H(~r, t) =
1

µ0

~B(~r, t)− ~M(~r, t) . (1.2.4)

In general, the brie�y introduced vectors ~P , and ~M are given by a series expansion with
matter speci�c tensors [75]. In the following, we consider only linear isotropic media,
where ~P (~r, t) and ~M(~r, t) are always parallel to ~E(~r, t) and ~B(~r, t). Hence, ~D and ~B
depend linearly on ~E(~r, t) and ~B(~r, t), which turns Eq. (1.2.3) and Eq. (1.2.4) into

~D(~r, t) = ε0 (1 + χel(~r, t)) ~E(~r, t) , (1.2.5)

~B(~r, t) = µ0 (1 + χmag(~r, t)) ~H(~r, t) , (1.2.6)

with the electric susceptibility χel(~r, t) and magnetic susceptibility χmag(~r, t) which are
matter speci�c and in general depend on space and time [80]. All scalar prefactors in front
of ~E(~r, t) and ~H(~r, t) can be summarized in a corresponding linear coe�cient, namely
the electric permittivity ε(~r, t) and magnetic permeability µ(~r, t). Using the equations
Eq. (1.2.3-1.2.6) the variables ε(~r, t), µ(~r, t), ~P (~r, t), and ~M(~r, t) for a linear medium are
given by

ε(~r, t) = ε0 (1 + χel(~r, t)) , (1.2.7)

µ(~r, t) = µ0 (1 + χmag(~r, t)) , (1.2.8)

~P (~r, t) = ε0χel(~r, t) ~E(~r, t) , (1.2.9)

~M(~r, t) = µ0χmag(~r, t) ~H(~r, t) . (1.2.10)

1.2.2 De�nition of the macroscopic Riemann-Silberstein vectors

The macroscopic Riemann-Silberstein vectors in a linear isotropic medium have a similar
form like the previously introduced microscopic ones in Eqs. (1.1.1-1.1.2). Since the elec-
tric permittivity ε(~r, t) and the magnetic permeability µ(~r, t) now depend on space and
time, the electric constant ε0 as well as the magnetic constant µ0 in the de�nitions are re-
placed by their time and space dependent corresponding variables form Eqs. (1.2.7)-(1.2.8).
Therefore, the Riemann-Silberstein vectors ~F±,lm in a linear medium are de�ned as [73]

~F+,lm(~r, t) =

√
ε(~r, t)

2
~E(~r, t) + i

√
1

2µ(~r, t)
~B(~r, t) (1.2.11)

for the positive helicity vector ~F+,lm(~r, t) , and

~F−,lm(~r, t) =

√
ε(~r, t)

2
~E(~r, t)− i

√
1

2µ(~r, t)
~B(~r, t) (1.2.12)
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for the negative helicity vector ~F−,lm(~r, t) where the subindex ”lm” stands for "linear
medium". Similar to the microscopic electromagnetic energy density u in Eq. (1.1.67)
in terms of the microscopic Riemann-Silberstein vector, the macroscopic electromagnetic
energy density ulm(~r, t) in a linear medium is given by [75]

ulm(~r, t) =
1

2

(
~E(~r, t) · ~D(~r, t) + ~B(~r, t) · ~H(~r, t)

)
. (1.2.13)

Using the Eqs. (1.2.5)-(1.2.8) and Eq. (1.2.11 - 1.2.12) leads directly to the equivalent
form of the electromagnetic energy density ulm(~r, t) in terms of the macroscopic Riemann-
Silberstein vectors

ulm(~r, t) = ~F ∗±,lm(~r, t) · ~F±,lm(~r, t)

= ~F∓,lm(~r, t) · ~F±,lm(~r, t) .
(1.2.14)

Again, with Eqs. (1.2.5)-(1.2.8) we obtain the four underlying macroscopic Maxwell �elds
~E(~r, t), ~D(~r, t), ~B(~r, t), and ~H(~r, t)

~E(~r, t) =

√
1

2ε(~r, t)

(
~F ∗+,lm(~r, t) + ~F+,lm(~r, t)

)
=

√
1

2ε(~r, t)

(
~F−,lm(~r, t) + ~F+,lm(~r, t)

)
,

(1.2.15)

~D(~r, t) =

√
ε(~r, t)

2

(
~F ∗+,lm(~r, t) + ~F+,lm(~r, t)

)
=

√
ε(~r, t)

2

(
~F−,lm(~r, t) + ~F+,lm(~r, t)

)
,

(1.2.16)

~B(~r, t) = i

√
µ(~r, t)

2

(
~F ∗+,lm(~r, t)− ~F+,lm(~r, t)

)
= i

√
µ(~r, t)

2

(
~F−,lm(~r, t)− ~F+,lm(~r, t)

)
,

(1.2.17)

~H(~r, t) = i

√
1

2µ(~r, t)

(
~F ∗+,lm(~r, t)− ~F+,lm(~r, t)

)
= i

√
1

2µ(~r, t)

(
~F−,lm(~r, t)− ~F+,lm(~r, t)

)
.

(1.2.18)

1.2.3 Macroscopic Maxwell's equations

Based on the microscopic Maxwell's equations in Eq. (1.1.8-1.1.11), and by applying a
macroscopic �eld averaging for the Maxwell �elds inside a medium, we arrive at the macro-
scopic Maxwell's equations [75, 80]

~∇ · ~D(~r, t) = ρfree(~r, t) , (1.2.19)

~∇ · ~B(~r, t) = 0 , (1.2.20)

~∇× ~E(~r, t) = − ∂

∂t
~B(~r, t) , (1.2.21)

~∇× ~H(~r, t) =
∂

∂t
~D(~r, t) +~jfree(~r, t) . (1.2.22)

Similar to the Riemann-Silberstein Maxwell's equation in section Sec. 1.1.2 we want now
to combine the four Maxwell's equation in a linear medium (1.2.19) - (1.2.22) to arrive
at Riemann-Silberstein equations. Only the unbounded free part of the charge density
and current density determine the electromagnetic �eld on a macroscopic scale. Based on
those four Maxwell's equations in a medium there is an equivalent description in terms of
bilinear Riemann-Silberstein vectors and spin-1 matrices, which can be obtained similar to
the vacuum considerations.
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We start wtih a complex addition of the two Gauÿ laws in Eqs (1.2.19)-(1.2.20)

~∇ · ~D(~r, t)± i~∇ · ~B(~r, t) = ρfree(~r, t) . (1.2.23)

This equation can expressed in terms of the Riemann-Silberstein vectors ~F±,lm(~r, t) and is
equivalent to

~∇ · ~F±,lm(~r, t) + ~K∓(~r, t) · ~F+,lm(~r, t) + ~K±(~r, t) · ~F−,lm(~r, t) =
1√

2ε(~r, t)
ρfree(~r, t) ,

(1.2.24)

with

~K±(~r, t) =

(
~∇ε(~r, t)

)
4ε(~r, t)

±
(
~∇µ(~r, t)

)
4µ(~r, t)

, ~K∓(~r, t) =

(
~∇ε(~r, t)

)
4ε(~r, t)

∓
(
~∇µ(~r, t)

)
4µ(~r, t)

. (1.2.25)

Note, that the macroscopic Gauÿ laws conditions in Eq. (1.2.24) can only be obeyed by
a linear combination of both, ~F+,lm(~r, t) and ~F−,lm(~r, t), which is in contrast to the mi-
croscopic equation Eq. (1.2.24), where already only one of the di�erent helicity vectors
~F±,lm(~r, t) satis�es the Gauÿ conditions. Hence, the correct macroscopic Maxwell's equa-
tions require a coupling of the two helicity Riemann-Silberstein vectors. The same situation
arises, when we consider the transformation of the macroscopic Faraday's and Ampère's
laws in Eqs. (1.2.21)-(1.2.22) for the corresponding Riemann-Silberstein equation. Later
in chapter 3, we need a more general form of Faraday's and Ampère's law. Therefore, we
expand both equations in Eq. (1.2.21-1.2.22) by an additional term to describe a damp-
ing of the electromagnetic �eld, e.g. in a lossy medium region. The damping terms are
assumed to be proportional to the electromagnetic �eld. The underlying constants of pro-
portionality are the electric conductivity σe(~r, t) and the magnetic conductivity σm(~r, t).
Therefore, Faraday's law and Ampère's law in Eq. (1.2.21-1.2.22) with lossy electric and
magnetic layer are given by

~∇× ~E(~r, t) = −
( ∂
∂t

+ σm(~r, t)
)
~B(~r, t) , (1.2.26)

~∇× ~H(~r, t) =
( ∂
∂t

+ σe(~r, t)
)
~D(~r, t) +~jfree(~r, t) . (1.2.27)

By separating the temporal derivative terms on the right-hand side and adding Eq. (1.2.26)
as imaginary part to Eq. (1.2.27) and multiplying the whole equation by the imaginary
unit leads to

i
∂

∂t

(
ε(~r, t) ~E(~r, t)± i ~B(~r, t)

)
= ±~∇× ~E(~r, t) + i~∇× 1

µ(~r, t)
~B(~r, t)

± σm(~r, t) ~B(~r, t)− iσe(~r, t) ~D(~r, t)− i~jfree(~r, t) .

(1.2.28)

As before in the Gauÿ Riemann-Silberstein equation in a medium, it is not possible to
describe the Faraday's and Ampère's law only with one of the Riemann-Silberstein vectors,
either ~F+,lm(~r, t) or ~F−,lm(~r, t). Therefore, after substituting the Maxwell �elds with the
corresponding Riemann-Silberstein vector expressions, multiplying Eq. (1.2.28) and using
the curl opeator in spin-1 matrix representation in Eq. (1.1.25) with the Planck constant
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~, the �nal form of Faraday's and Ampère's law as Riemann-Silberstein equation is

i~
∂

∂t
~F±,lm(~r, t) = ±~c(~r, t)~∇× ~F±,lm(~r, t)− i~

1√
2ε(~r, t)

~jfree(~r, t)

∓ ~c(~r, t) ~K±(~r, t)× ~F+,lm(~r, t)∓ ~(~r, t)c(~r, t) ~K∓(~r, t)× ~F−,lm(~r, t)

− i~σe,m,±(~r, t)~F+,lm(~r, t)− i~σe,m,∓(~r, t)~F−,lm(~r, t)

− i~βε,µ,±(~r, t)~F+,lm(~r, t)− i~βε,µ,∓(~r, t)~F−,lm(~r, t) .
(1.2.29)

Here ~K±, ~K∓ are de�ned by Eq. (1.2.25) and σe,m,±(~r, t), σe,m,∓(~r, t), βε,µ,±(~r, t), βε,µ,∓(~r, t)
are de�ned by

σe,m,±(~r, t) =
1

2
[σe(~r, t)± σm(~r, t)] , σe,m,∓(~r, t) =

1

2
[σe(~r, t)∓ σm(~r, t)] (1.2.30)

βε,µ,±(~r, t) =
ε̇(~r, t)

4ε(~r, t)
± µ̇(~r, t)

4µ(~r, t)
, βε,µ,∓(~r, t) =

ε̇(~r, t)

4ε(~r, t)
∓ µ̇(~r, t)

4µ(~r, t)
. (1.2.31)

All terms in Eq. (1.2.29) agree with the result of Ref. [74] for the macroscopic Riemann-
Silberstein equations in a linear medium, except the lossy layer terms in the third line
of this equation, which contain the layer property functions σe,m,±(~r, t) and σe,m,∓(~r, t).
These terms will become relevant later when we introduce a perfectly matched layer to
absorb outgoing electromagnetic radiation.

To summarize, in contrast to the previous microscopic considerations, the additional
spatial dependency due to the media properties requires an important modi�cation in both
Riemann-Silberstein Maxwell's equations, in the combined two Gauÿ laws as well as in the
combined Faraday's and Ampère's laws. In both cases, it is not possible anymore to �nd
a form obeying Maxwell's equations depending on only one of the ~F+,lm(~r, t) or ~F−,lm(~r, t)
terms. As a consequence, Riemann-Silberstein Maxwell's equations in a medium have to
be formulated as a six-dimensional problem which we consider in the next section.

1.2.4 Combined helicity Riemann-Silberstein six-vector in linear medium

The fact that macroscopic Riemann-Silberstein vectors ~F±,lm(~r, t) couple to each other
in the macroscopic Riemann-Silberstein equations in Eq. (1.2.24) and Eq. (1.2.29) demon-
strates clearly the necessity of the six-dimensional representation of the Riemann-Silberstein
Maxwell's vector, like previously considered in section Sec. 1.1.5. Referring to the micro-
scopic de�nition of F(~r, t) in Eq. (1.1.35), the corresponding macroscopic six-component
Riemann-Silberstein vector Flm(~r, t) is de�ned as

Flm(~r, t) =

(
~F+,lm(~r, t)
~F−,lm(~r, t)

)
. (1.2.32)

Therefore, the corresponding total combined Maxwell Riemann-Silberstein Gauÿ law takes
with the scalar product de�nition of Eq. (1.1.39) the form [73]

Dlm(~r, t) · F(~r, t) = Qlm(~r, t) (1.2.33)

with the six-dimensional Riemann-Silberstein free charge density Q)lm(~r, t)

Qlm(~r, t) =

(
1
1

)
2×1

⊗
(

1√
2ε0(~r, t)

ρfree(~r, t)

)
1×1

(1.2.34)
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and a six-dimensional operator Dlm(~r, t)

Dlm(~r, t) =

(
1 0
0 1

)
2×2

⊗
(

~∇
)ᵀ

1×3

+

(
1 1
1 1

)
2×2

⊗

((
~∇ε(~r, t)

)
4ε(~r, t)

)ᵀ

1×3

+

(
−1 1

1 −1

)
2×2

⊗

((
~∇µ(~r, t)

)
4µ(~r, t)

)ᵀ

1×3

(1.2.35)

that corresponds to the divergence operator in the common Gauÿ laws. The Gauÿ laws in
the Riemann-Silberstein representation does not only depend on the electric permittivity
ε(~r, t) and magnetic permeability µ(~r, t), but also on their spatial derivatives ~∇ε(~r, t) and
~∇µ(~r, t).

Next, we convert the remaining Riemann-Silberstein equation in Eq. (1.2.29) into a
six-dimensional representation. First, we de�ne similar to the six-dimensional Riemann-
Silberstein charge density Q(~r, t) in Eq. (1.2.34) an adequate six-dimensional Riemann-
Silberstein current density J (~r, t) with

Jlm(~r, t) =

(
1
1

)
2×1

⊗
(

1√
2ε(~r, t)

~jfree(~r, t)

)
3×1

. (1.2.36)

Let us de�ne HMx,lm(~r, t)

HMx,lm(~r, t) = −i~c(~r, t)~∇ · ~S , (1.2.37)

which depends explicitly on time and spatial coordinates due to the speed of light c(~r, t)
inside the linear medium. The combined coupled equations in Eq. (1.2.29) can be expressed
in a similar inhomogeneous Schrödinger like form as in Eq. (1.1.40) with

i~
∂

∂t
F(~r, t) = Hlm(~r, t)F(~r, t)− i~Jfree(~r, t) , (1.2.38)

where Hlm(~r, t) consists of

Hlm(~r, t) = Hlm,(0)(~r, t) +Klm(~r, t) . (1.2.39)

The operator Hlm,(0)(~r, t) only contains the uncoupled part with the spin-curl operation
representing the �rst term on the right-hand side of Eq. (1.2.29), and could also be ex-
pressed as a Kronecker product of HMx,lm(~r, t)

Hlm,(0)(~r, t) =

(
1 0
0 −1

)
2×2

⊗
(
HMx,lm(~r, t)

)
3×3

. (1.2.40)

Note, that the macroscopic Hlm(~r, t) only locally depends on space and time. We see
in chapter 5, that this fact changes if we consider the Maxwell-matter coupling in the
fundamental microscopic regime and some non-localized terms arise. Finally, all remaining
terms except the �rst one on the right-hand side of Eq. (1.2.29) are represented by Klm(~r, t)
and it includes all coupling terms which determine mainly the properties of the linear
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medium and is explicitly given by

Klm(~r, t) =

(
−1 −1

1 1

)
2×2

⊗
(
− i~

c(~r, t)

4ε(~r, t)

[
~S ·
(
~∇ε(~r, t)

)])
3×3

+

(
−1 1
−1 1

)
2×2

⊗
(
− i~

c(~r, t)

4µ(~r, t)

[
~S ·
(
~∇µ(~r, t)

)])
3×3

+

(
−1 −1
−1 −1

)
2×2

⊗
(

i~
ε̇(~r, t)

4ε(~r, t)
13

)
3×3

+

(
−1 1

1 −1

)
2×2

⊗
(

i~
µ̇(~r, t)

4µ(~r, t)
13

)
3×3

+

(
−1 −1
−1 −1

)
2×2

⊗
(

i~
σe

2
13

)
3×3

+

(
−1 1

1 −1

)
2×2

⊗
(

i~
σm

2
13

)
3×3

.

(1.2.41)
We replaced again all occurring cross products and curl operations by the corresponding
spin-1 representation in Eq. (1.1.14) and Eq. (1.1.25). In a medium without any electro-
magnetic loss, both conductivities σe(~r, t) and σm(~r, t) are equal to zero and the remaining
equation is equal to the common Maxwell Faraday's and Ampère's law shown in (1.2.21)
and (1.2.22) which agrees with the corresponding equations in Ref. [73].

In principle, the common expression of the macroscopic Maxwell's equations in
Eqs. (1.2.19)-(1.2.22) and the Riemann-Silberstein correspondence representation in
Eqs. (1.2.33) and (1.2.38) are exactly equal for an isotropic linear medium, but in case
of border surfaces with sharp edges, e.g. between two di�erent homogeneous media, the
spatial derivatives of ~∇ε(~r, t) and ~∇µ(~r, t) are not continuous. Hence, the spatial deriva-
tives at the border surface are not de�ned. This fact has to be taken into account in case
of numerical calculations of the spatial derivatives. However, in a homogeneous medium
with constant ε(~r, t) and µ(~r, t), the extra terms are equal to zero due to the fact that
~∇ε(~r, t) = 0 and ~∇µ(~r, t) = 0.

In section Sec. 1.1.7 and Sec. 1.1.8, we introduced the Riemann-Silberstein scalar prod-
uct and the eigenstate expansion of the Riemann-Silberstein six-vectors. Note, that both
can also be applied for the macroscopic Riemann-Silberstein six-vector Flm(~r, t) in isotropic
linear media, if F(~r, t) is replaced by Flm(~r, t) and the operator H by Hlm(~r, t) from
Sec. 1.1.7 and Sec. 1.1.8.

So far, our considerations have shown that if the Maxwell �elds are de�ned as a complex
bilinear Riemann-Silberstein vector, the microscopic and macroscopic Maxwell's equations
can be expressed in Schrödinger form. The main di�erence to matter wavefunctions is the
additional constraint that the Riemann-Silberstein vector has to obey the Gauÿ law. We
show in chapter 4 that this constraint automatically arises for the homogeneous Maxwell's
equations, if we consider the Maxwell �elds as quantum mechanical relativistic spin-1 �elds.
In this picture, the Riemann-Silberstein vector ful�lls the relativistic energy-momentum
relation only if the Gauÿ laws hold.
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Chapter 2

Riemann-Silberstein time-evolution

of Maxwell �elds in Schrödinger-like

form

The underlying fundamental equations, which determine the electromagnetic �eld in time
are Faraday's and Ampère's law, since they describe the temporal changes of the corre-
sponding �eld. Both equations are directly coupled to each other so that both equations
have to be consistent. This circumstance makes it di�cult to �nd an analytic solution for
the time-evolution of the electromagnetic �eld. We introduce in this chapter a consistent
and e�cient propagation scheme to solve these coupled equations numerically.

Based on the transformed Maxwell's equations in Schrödinger-like form that we intro-
duced in the previous chapter, we develop here a Schrödinger-like time-evolution of the
electromagnetic �elds for three di�erent cases. The �rst one describes simple homogeneous
microscopic Maxwell's equations without any charge or current densities, the second one
adds microscopic charge and current densities to an inhomogeneous Schrödinger-like time
evolution operator. Finally, both of these two derivations for a Maxwell time-evolution op-
erator can be combined to �nd the corresponding one for Maxwell's equations in a linear
medium including lossy layers.

2.1 Time-evolution of homogeneous microscopic Maxwell's

equations

In chapter 1, we have used the Riemann-Silberstein vector to transform the common mi-
croscopic Maxwell's equations into two combined equations, one for the Gauÿ laws and one
for Ampère's and Faraday's laws. Whereas the Gauÿ laws constitute a side condition which
has to be valid for all times, the combined Ampère's and Faraday's laws which contains
�rst order time derivative determine the propagation of the �eld.

First, we use the six-dimensional microscopic Riemann-Silberstein six-vector F(~r, t) de-
�ned in Eq. (1.1.35) and start with the simplest case without charge and current densities.
Hence, all Eqs. (1.1.8)-(1.1.11) reduce to homogeneous di�erential equations. The micro-
scopic Riemann-Silberstein Gauÿ law in Eq. (1.1.38) with Q(~r, t) equal to zero becomes

D · F(~r, t) = 0 . (2.1.1)

We request this condition for an initial Riemann-Silberstein six-vector F(~r, t0) with initial
time t0 and show in section Sec. 2.4 that the time-evolution in Eq. (1.1.40) preserves this
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constraint, if it is given for an initial time. For the homogeneous case without any current
density J (~r, t) as inhomogeneity, Eq. (1.1.40) can be rewritten as

∂

∂t
F(~r, t) = − i

~
HF(~r, t) . (2.1.2)

Obviously, this equation is formally equivalent to the general quantum mechanical time-
dependent Schrödinger equation [81, 82]

i~
∂

∂t
ψ(~r, t) = Ĥqmψ(~r, t) (2.1.3)

with a scalar quantum mechanical wavefunction ψ(~r, t) and a quantum mechanical Hamil-
tonian Ĥqm. For a given wavefunction ψ(~r, t0) at time t0 and a general given time-
independent Hamiltonian Ĥqm, that describes the system, the future wavefunction for
t > t0 is determined by the well known time-evolution operator Ûqm(t, t0) [82]

Ûqm(t, t0) = exp

[
−i(t− t0)Ĥqm

~

]
, (2.1.4)

such that the wave function at time t can be obtained by

ψ(~r, t) = Ûqm(t, t0)ψ(~r, t0) . (2.1.5)

Our purpose here is to derive the corresponding time evolution operator U(t, t0) for the
Riemann-Silberstein six-vector F(~r, t) to get the time evolved F from starting time t0 to
time t with

F(~r, t) = U(t, t0)F(~r, t0) . (2.1.6)

Similar to the derivation of the quantum mechanical time-evolution operator Ûqm, we start
with the properties of the evolution operator to ensure the correct form of U(t, t0). All fol-
lowing requested time-evolution properties are equivalent to those in quantum mechanics,
which are listed in Ref. [83]. First, for time t equal to t0 the operator U(t0, t0) has to obey

U(t0, t0) = 16 , (2.1.7)

with 16 being the six-dimensional unity matrix so that the initial F(~r, t0) remains identical.
In quantum mechanics, all wavefunctions have to be normalized at all times. Consequently
the quantum mechanical time-evolution operator is unitary. In case of Maxwell �elds, we
do not have exactly the normalization condition, but the total �eld energy E =< F|F >
has to be constant in time if there is no coupling to matter or any loss. Using Eq. (1.1.69)
and Eq. (2.1.6) to get the energy of the �eld yields the condition〈

F(t0)
∣∣E∣∣F(t0)

〉
≡
〈
F(t)

∣∣H∣∣F(t)
〉〈

F(t0)
∣∣E∣∣F(t0)

〉
≡
〈
U(t, t0)F(t0)

∣∣H∣∣U(t, t0)F(t0)
〉

∞∫
−∞

d3rF†(~r, t0)F(~r, t0) ≡
∞∫
−∞

d3r (U(t, t0)F(~r, t0))† U(t, t0)F(~r, t0)

∞∫
−∞

d3rF†(~r, t0)F(~r, t0) ≡
∞∫
−∞

d3rF†(~r, t0)U†(t, t0)U(t, t0)F(~r, t0) ,

(2.1.8)
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where we used the de�nition of the Riemann-Silberstein scalar product in Eq. (1.1.65).
Therefore, to satisfy the equation in Eq. (2.1.8) the Riemann-Silberstein time-evolution
operator has to obey the unitary condition

U†(t, t0)U(t, t0) = 16 . (2.1.9)

Furthermore, the time evolution operator has the composition property. Two intermediate
operators propagating a vector �rst from time t0 to t′ and afterwards from t′ to the �nal
time t, are equal to

U(t, t0) = U(t, t′)U(t′, t0) . (2.1.10)

We request the same properties for the time-evolution operator like in quantum mechan-
ics, and chose the same in�nitesimal ansatz for the Riemann-Silberstein vector F(~r, t).
Consequently, the Maxwell time-evolution operator U(t, t0) is a operator-valued 6 times 6
matrix. Starting with an in�nitesimal small time propagation t + dt, we assume that the
di�erence between the identity matrix 16 and U(t0 + dt, t0) is linear and �rst order of dt.
Similar as in quantum mechanics, we chose the �rst order of an exponential series with the
exponent − i

~

U(t0 + dt, t0) = 16 −
i

~
Hdt . (2.1.11)

with the Maxwell Hamiltonian operatorH in Eq. (1.1.41) as an linear approximated ansatz.
Eq. (2.1.11) is clearly the unity operator for dt→ 0. Due to the Hermitian operator H the
unitary condition yields

U†U =

(
16 +

i

~
Hdt

)(
16 −

i

~
Hdt

)
= 16 +

1

~2
H2(dt)2 , (2.1.12)

which is equal to 16 after truncating all non-linear higher order terms in dt for in�nitesimal
considerations. The composition U(t0 + dt + dt, t0) applied to the ansatz in Eq. (2.1.11)
gives

U(t0 + dt+ dt, t0) = U(t0 + dt+ dt, t0 + dt)U(t0 + dt, t0)

=

(
16 −

i

~
Hdt

)(
16 −

i

~
Hdt

)
= 1− 2

i

~
Hdt− 1

~2
H(dt)2 .

(2.1.13)

The required composition condition holds if we take only �rst order terms in dt into account.
Hence, U(t0 + dt + dt, t0) di�ers only by a linear term in dt from the identity operator.
Next, each time interval t0 to t can be separated in N time steps with ∆tN = (t− t0)/N .
In the limit N → ∞, ∆t reaches the in�nitesimal time step dt. Obviously, if we apply
Eq. (2.1.11) N times to the latest updated Riemann-Silberstein six-vector, the total time-
evolution operator from t0 to t in one operation is obtained by

lim
N→∞

(
16 −

i

~
H
(
t− t0
N

))N
= exp

[
− i

~
(t− t0)H

]
. (2.1.14)

This provides us with the Riemann-Silberstein time-evolution operator U

U(t, t0) = exp

[
− i

~
(t− t0)H

]
. (2.1.15)
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2.2 Time-evolution of inhomogeneous microscopic Riemann-

Silberstein six-vector

Any charge or current density in vacuum makes Maxwell's equations inhomogeneous and
the inhomogeneous contributions have a main in�uence on the Maxwell �eld propaga-
tion. In the presence of charge and current densities, the underlying Riemann-Silberstein
equations in the six-dimensional representation in Eq. (1.1.38) and Eq. (1.1.40) have also
charge and current density terms, which make them inhomogeneous as well. The Riemann-
Silberstein divergence condition is now equal to Eq. (1.1.38), given by

D · F(~r, t) = Q(~r, t) , (2.2.1)

with operator D from Eq. (1.1.37) and the six-component Riemann-Silbersten current
density Q(~r, t) in Eq. (1.1.36). According to the previous section Sec. 2.1, we consider
Eq. (2.2.1) is given for the initial F(~r, t0) at the initial time t0 and this constraint is
conserved after applying the time-evolution operator and obtaining F(~r, t). We show the
proof for this assumption later in section Sec. 2.4.

As before in section Sec. 2.1, the main time-evolution equations are Faraday's and Am-
père's equations in Eq. (1.1.40). Including the inhomogeneous contributions, the equation
of motion then reads

∂

∂t
F(~r, t) = − i

~
HF(~r, t)− J (~r, t) . (2.2.2)

Again, also here a mathematical analogy to quantum mechanics can be drawn. As shown
in Ref. [84, 85], one can construct time-evolution schemes for inhomogeneous Schrödinger
equations. In the following, we apply these considerations for our propagation of Maxwell's
�elds in the Riemann-Silberstein form. Let us start with the substitution of the inhomo-
geneity term J (~r, t) in Eq. (2.3.7) with

J (~r, t) = A(~r, t)F(~r, t0) , (2.2.3)

with the initial F(~r, t0) and a six-times-six-dimensional matrix A given by

A(~r, t) =

(
1 0
0 0

)
2×2

⊗ 1√
2ε0


jx(~r,t)F ∗+,x(~r,t0)

|F+,x| 0 0

0
jy(~r,t)F ∗+,y(~r,t0)

|F+,y | 0

0 0
jz(~r,t)F ∗+,z(~r,t0)

|F+,z |


3×3

+

(
0 0
0 1

)
2×2

⊗ 1√
2ε0


jx(~r,t)F ∗−,x(~r,t0)

|F−,x| 0 0

0
jy(~r,t)F ∗−,y(~r,t0)

|F−,y | 0

0 0
jz(~r,t)F ∗−,z(~r,t0)

|F−,z |


3×3

,

(2.2.4)
where we assume that the initial Riemann-Silberstein vector F(~r, t0) is non-zero for all
~r. In analogy to the homogeneous time evolution ansatz in Eq. (2.1.6), we assume that
F(~r, t) can be obtained by the inhomogeneous time-evolution operator W(t, t0) and the
initial F(~r, t0) by

F(~r, t) =W(t, t0)F(~r, t0) (2.2.5)

Using Eq. (2.2.5) and Eq. (2.2.3) in Eq. (2.3.7) leads to

∂

∂t
W(t, t0)F(~r, t0) = − i

~
HW(t, t0)F(~r, t0)−A(~r, t)F(~r, t0) . (2.2.6)
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Hence, the corresponding equation for the inhomogeneous time-evolution operator without
the initial Riemann-Silberstein six-vector F(~r, t0) is

∂

∂t
W(t, t0) = − i

~
HW(t, t0)−A(~r, t) . (2.2.7)

The ansatz for the inhomogeneous time-evolution operator is to factorize W(t, t0) into the
homogeneous time-evolution operator U(t, t0) Eq. (2.1.15) and a second operator Z(t) so
that

W(t, t0) = U(t, t0)Z(t) . (2.2.8)

The time evolution operator depends on times t and t0, whereas the additional factor Z(t)
depends only on time t. If we directly take the time derivative of W(t, t0) and compare
the result with Eq. (2.2.7), we arrive at the di�erential equation

A(~r, t) = U(t, t0)
∂

∂t
Z(t) (2.2.9)

which leads us, after integrating, to the solution for Z(t)

Z(t) = Z(t0) +

t∫
t0

dτU−1(τ, t0)A(τ) = 16 +

t∫
t0

dτU(t0, τ)A(τ) . (2.2.10)

The initial value Z(t0) is equal to the identity operator 16 if we take into account, that
W(t0, t0) also has to be the identity operator 16 in this case since W has to hold the time-
evolution property in Eq. (2.1.7). Finally, the appropriate solution for the inhomogeneous
time-evolution operator W(t, t0) is given by [84, 85]

W(t, t0) = U(t, t0)−
t∫

t0

dτU(t, τ)A(~r, τ) (2.2.11)

including the homogeneous Riemann-Silberstein time-evolution operator U(t, τ) of
Eq. (2.1.15). Note, although the solution in Eq. (2.2.11) of the inhomogeneous time-
propagation in Eq. (2.3.7) obeys the initial condition W(t0, t0) = 16, W(t, t0) breaks in
general the composition criterion in Eq. (2.1.10) of a valid time-evolution operator which
means that

W(t, t0) 6=W(t, t′)W(t′, t0) . (2.2.12)

Nevertheless, we can use Eq. (2.2.5) and Eq. (2.2.11) to obtain a formal solution of the
Riemann-Silberstein six-vector F with

F(~r, t) = U(t, t0)F(~r, t0)−
t∫

t0

U(t, τ)A(τ)F(~r, t0) . (2.2.13)

Using again the auxiliary term for expressing the current density in Eq. (2.2.3) and reverting
the substitution means that the condition in Eq. (2.2.4) which implies that F(~r, t0) has to
be non-zero for all ~r is no restriction any more. The following �nal explicit expression

F(~r, t) = U(t, t0)F(~r, t0)−
t∫

t0

dτU(t, τ)J (~r, τ) (2.2.14)
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describes the time propagation of F(~r, t) in vacuum with a current density contribution. It
can be seen that for a vanishing current density with J equal to zero, the remaining part
in Eq. (2.2.14) is consistent with the homogeneous time evolution described by Eq. (2.1.6).

If we analyze the structure of U(t, t0) in Eq. (2.1.15) in more detail, we �nd that the
time evolution operator U(t, t0) does not couple the di�erent Riemann-Silberstein vectors
~F+ and ~F−. The reason for this is based on the structure of H in Eq. (1.1.41). Its
o�-diagonal blocks are zero. This block structure with zero o� diagonal blocks holds for
the exponential series expansion in Eq. (2.1.15). This means, in case of the microscopic
Maxwell propagation it is su�cient to consider only one Riemann-Silberstein vector and
its corresponding diagonal block of U(t, t0) for the full propagation. This reduction is
very useful to reduce signi�cantly computational cost in an actual implementation of the
approach.

2.3 Time-evolution of macroscopic Maxwell's equations in

linear medium

The time-evolution equations derived previously in Sec. 2.1 and Sec. 2.2 can also be used for
the macroscopic time evolution of the Riemann-Silberstein six-vector Flm in isotropic linear
media. The homogeneous Schrödinger-like time-evolution equation for the macroscopic Flm

is with Eq. (1.2.38) given by

∂

∂t
Flm(~r, t) = − i

~
Hlm(~r, t)Flm(~r, t) . (2.3.1)

In contrast to the previously considered microscopic equation in Eq. (2.1.2), the present
Eq. (2.3.1) includes the time-dependent operatorHlm(~r, t) given in Eq.(1.2.39), which leads
in general to a modi�ed time-evolution operator compared to Eq. (2.1.15). Using the same
steps and properties as in Sec. 2.1 results in the homogeneous macroscopic time evolution
operator ansatz Ulm(t0 + dt, t0)

Ulm(t0 + dt, t0) = 16 −
i

~
Hlm(~r, t0)dt (2.3.2)

for an in�nitesimal time step. The �rst order linear approximation for the time evolution
operator
Ulm(t0 + ∆t, t0) with a time step ∆t = t− t0 is

Ulm(t0 + ∆t, t0) ≈ − i

~

t0+∆t∫
t0

Hlm(~r, τ)dτ . (2.3.3)

Again, we split a time interval t0 to t in N small intervals with ∆tN = (t − t0)/N , which
gives us for the limit N →∞ for Ulm(t, t0) the following Dyson series

Ulm(t, t0) = N→∞

16 +
N∑
k=1

(
− i

~

)k k∏
m=1

m∆tN∫
t0

dτmHlm(~r, τm)

 . (2.3.4)

The Dyson series in Eq. (2.3.4) can be simpli�ed by symmetric considerations of the inte-
grals and their limits so that we can use for each time integral the lower limit with t0 and
the upper one with t. However, we have to add a factor to correct double counting. This
rearrangement of the Dyson series is derived in Ref. [83]. In general, the medium Hamilto-
nian Hlm(t) has the property of [Hlm(t1),Hlm(t1)] 6= 0, which means that the ordering of
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Hlm(τm) is relevant and the times have to be time ordered. Therefore, we use in the �nal
expression for Ulm(t, t0) the time ordering operator which is de�ned also in Ref. [83]

Ulm(t, t0) = N→∞

16 +
N∑
k=1

1

k!

(
− i

~

)k
T

k∏
m=1

t∫
t0

dτmHlm(τm)


= T exp

− t∫
t0

dτ
i

~
Hlm(~r, τ)

 .

(2.3.5)

In case of a time independent static isotropic linear medium, the Hamiltonian operator
in Eq. (1.2.39) is constant in time and therefore the integral in Eq. (2.3.5) can be di-
rectly calculated and the time-evolution operator results in the same simple form as in the
microscopic case in Eq.(2.1.15)

Ulm(t, t0) = exp

[
− i

~
(t− t0)Hlm(~r )

]
. (2.3.6)

Until now, we have only considered the time-evolution of the homogeneous Maxwell's
equations in linear media, which is a very restricted assumption since free charges and
free current densities are not allowed in this case. In general, the free charge density in
Eq. (1.2.34) and free current density in Eq. (1.1.42) lead to the underlying divergence
condition in Eq. (1.2.33) and the inhomogeneous Schrödinger-like equation of Eq. (1.2.38),
which is equal to

∂

∂t
Flm(~r, t) = − i

~
HlmFlm(~r, t)− Jfree(~r, t) . (2.3.7)

All steps for the derivation in section Sec. 2.2 are also valid here. Hence, replacing the
microscopic Hamiltonian H and current density term J in the general microscopic time
evolution equation in Eq. (2.2.14) by the macroscopic Hamiltonian Hlm in Eq. (1.2.39)
and current density Jlm of Eq. (1.1.42) leads directly to the time-evolution equation in
isotropic linear media

Flm(~r, t) = Ulm(t, t0)Flm(~r, t0)−
t∫

t0

dτUlm(t, τ)Jlm(~r, τ) . (2.3.8)

The included homogeneous time evolution operator Ulm(t, t0) is given by either Eq. (2.3.5)
or Eq. (2.3.7), depending on the time-dependent properties of the medium.

Note, in this section we do not consider the Maxwell Gauÿ laws side conditions, As
before in the previous considered cases, if the condition Eq. (1.2.33) holds for F(~r, t0), the
divergence side condition is satis�ed during the time propagation. We prove this important
property for the Maxwell time propagation in the following section.

2.4 Conservation of electric and magnetic Gauÿ laws in time

In the previous three sections Sec. 2.1-2.3, we have always assumed that the corresponding
divergence constraints hold if they are given for an initial Maxwell Riemann-Silberstein
six-vector F(~r, t0). Finally, in this section we prove our assumption for all previously
considered cases.
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Since the homogeneous divergence condition in Eq. (2.1.1) is a special case of the
inhomogeneous divergence condition, we start with the more general microscopic inhomo-
geneous divergence condition in Eq. (2.2.1)

D · F(~r, t0) = Q(~r, t0) , (2.4.1)

which we request to hold for a given Maxwell Riemann-Silberstein vector F(~r, t0) at t0.
Now, we have to show that the same condition is holds at later times t with

D · F(~r, t) = Q(~r, t) , (2.4.2)

if we use the inhomogeneous Maxwell time-evolution operator in Eq. (2.2.14) to reach
F(~r, t) from the starting vector F(~r, t0). Therefore, inserting Eq. (2.2.14) into Eq. (2.4.2)
yields

D · F(~r, t) = D ·

 U(t, t0)F(~r, t0)

−D ·
 t∫
t0

dτU(t, τ)J (~r, τ)

 . (2.4.3)

In the following, we use that the Riemann-Silberstein dot product in Eq. 1.1.39 with the
divergence operator D acting on HF(~r, t) is equal to zero

D ·
(
HF(~r, t)

)
=

(
0
0

)
(2.4.4)

for all times and for all F(~r, t). Using this property and expanding U(t, τ) in Eq. (2.1.15)
in terms of the de�ning exponential series, we see that only the �rst term of the series, the
identity operator returns a non-zero value. All other terms are obtained by a Riemann-
Silberstein dot product after the Hamiltonian H was applied on a certain updated F(~r, t)
vector. Thus, the �rst term in Eq. (2.4.3) results exactly in the initial condition

D ·
[
U(t, t0)F(~r, t0)

]
= D · F(~r, t0) = Q(~r, t0) . (2.4.5)

Here, we can already see that the special case of homogeneous divergence conditions in
Eq. (2.1.1) holds with Eq. (2.4.5). For the general inhomogeneous divergence condition,
we have to consider the inhomogeneity term in Eq. (2.4.3). This term has to contribute
to the charge density and to Q(~r, t0) in such way, that it updates the charge density,
in time considering always the divergence constraint of Eq. (2.4.2). The inhomogeneity
term includes the current density which is directly connected to the charge density by the
continuity equation [75]

∂tρ(~r, t) + ~∇ ·~j(~r, t) = 0 . (2.4.6)

In terms of the Riemann-Silberstein charge and current density J (~r, t) and Q(~r, t) of
Eq. (1.1.36) and Eq. (1.1.42), it takes the form

∂

∂t
Q(~r, t) +D · J (~r, t) = 0 . (2.4.7)

Finally, we move the divergence operator inside the integral in Eq. (2.4.3) and use the
series expression of U(t, τ) to conclude, that only the identity operator term of the series
leads to a contribution. Hence, Eq. (2.4.3) takes the form

D · F(~r, t) = Q(~r, t0)−
t∫

t0

dτD · J (~r, τ) . (2.4.8)
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In a last step, using the continuity equation in Eq. (2.4.7), we substitute (D · J (~r, τ)) by
the time, derivative of the Riemann-Silberstein charge density Q(~r, t) and obtain

D · F(~r, t) = Q(~r, t0) +

t∫
t0

∂

∂t
Q(~r, τ)dτ = Q(~r, t) . (2.4.9)

This result is directly the equation in Eq. (2.4.2) and proves our assumption, that the
divergence side conditions in Eq. (2.1.1) and Eq. (2.2.1) hold during evolution of time, if
the initial vector obeys this condition.

All previous steps can be repeated by using the corresponding macroscopic variables
Flm(~r, t), Dlm(~r, t), Hlm(~r, t), Jlm(~r, t), and Ulm(~r, t) from Sec. (1.2.4) and Sec. (2.3) to
prove that also the divergence condition for a linear medium in Eq. (1.2.33) holds for a
time propagation with Eq. (2.3.8).
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Chapter 3

Implementation of the

Riemann-Silberstein Maxwell

propagation in the real-time

real-space code Octopus

The time-evolution of classical electromagnetic �elds has been discussed extensively in
literature during the last decades. In general, solving the Maxwell's equations in three-
dimensional space takes some e�ort.
In only very view special cases, e.g. electromagnetic plane waves, or Gaussian beams in
the paraxial limit, it is possible to �nd a closed-form analytical expression that describes
exactly the electromagnetic �elds in time. But there are several techniques to evolve the
�elds in time approximately. A commonly used method in classical electrodynamics is
the so called Yee-algorithm [64] or �nite-di�erence-time-domain (FDTD) method. This
method splits the electric �eld and magnetic �eld into two separated grids. Both grids
have the same spacing but they are shifted by half of the spacing in each direction so that
no point of the two di�erent grids lies on the top of each other. In a similar way, one full
propagation step in time is split in two steps, each propagates half of the time interval. For
each half time step, the Yee-algorithm provides an update of either Faraday's or Ampère's
law.
In contrast, our considered Riemann-Silberstein propagation scheme is based on only one
grid for the complex Riemann-Silberstein six-vector and both, Faraday's and Ampère's
law, are evolved simultaneously in one step. In case of considering only the electromag-
netic �elds, the Yee algorithm is one of the most popular and e�cient Maxwell-propagation
methods. On the other hand, time evolution in quantum mechanics is very well described
and implemented in quantum mechanical simulations in terms of time-evolution opera-
tors. In chapters 1 and 2, we have shown how to transform the Maxwell's equation into
a Schroödinger-like form and how to evolve them with time-evolution schemes similar to
quantum mechanics. We exploit here this mathematical similarity to implement the elec-
tromagnetic �eld propagation in Octopus, a open-source code that simulates quantum me-
chanical many-body problems using time-dependent density functional theory (DFT) [66].
Since Octopus provides e�cient algorithms to evolve quantum mechanical wavefunctions,
i.e. Kohn-Sham (KS) orbitals [86], in time, we treat each dimension of the six-component
Riemann-Silberstein vector as one KS orbital. Additionally, we adapt and expand the
quantum mechanical time-evolution algorithms in Octopus to solve Maxwell's equations in
Riemann-Silberstein form.
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In this chapter, we introduce our implementation of a Maxwell propagation scheme in Oc-
topus. Furthermore, we show two di�erent methods for absorbing boundaries. The �rst
one is equivalent to mask absorption in quantum mechanics and easier to implement than
the second one, the perfectly matched layer absorption. Based on the Bérenger method in
Ref. [87] for a perfectly matched layer in FDTD, we adapt this scheme for the Riemann-
Silberstein time evolution.
After introducing these features, we compare our implementation with the MIT Electro-
magnetic Equation Propagation (MEEP) [88], a program to simulate classical electromag-
netic problems.

3.1 Discretized three-dimensional grid for the Maxwell �eld

In this section, we discuss the three-dimensional grid and spatial derivative operations for
the six-component Riemann-Silberstein vector F(~r, t). After introducing the basic setup of
the grid and operations, we describe the parallelization strategy to divide the computational
tasks into separate partitions to speed up the calculation.

3.1.1 Riemann-Silberstein Maxwell grid

We describe the electromagnetic �eld as complex Riemann-Silberstein vector �eld, dis-
cretized on a three-dimensional Cartesian grid. Hence, in contrast to FDTD, the grid
points of both �elds are not shifted and lie on top of each other. The whole simulation
box is divided into inner and boundary regions. In the inner box region, the real physical
equations are applied to simulate "free" Riemann-Silberstein propagation. The boundary
region is adjusted to ful�ll the corresponding simulation condition, for example absorbing
boundaries or incident plane waves. A two-dimensional slice of the simulation box and the
boundary region is shown in Figure 3.1, where the grid points with light-grey background
illustrate the inner region of the simulation box. The outer grid points are marked by the
dark-grey background. The outer box limits are determined by Lu for direction u ∈ (x, y, z)
and the boundary region is limited by bu. We note, that Lu and bu are always positive
and the box center is always located at the Cartesian origin. The total box dimension in
each direction is −Lu to +Lu, and the inner borders of the free propagation region are
−bu and +bu, whereas the area between bu < |u| < Lu describes the boundary regions. In
general, the points are always equidistant in the same dimension but the spacing in each
direction can be chosen independently. All mathematical spatial operators, for example
spatial derivatives are determined by the grid points.

3.1.2 Finite di�erence stencil

As shown in chapter 2, the Riemann-Silberstein time-evolution depends on �rst order
spatial derivatives. Such derivatives for each grid point can be obtained by the �nite-
di�erence method which is explained in detail in Ref. [89, 90, 91] and brie�y summarized
in the next steps. For a given function f(x), it is assumed that the function value f(x0+∆x)
at point x0 + ∆x with small ∆x and the known function value f(x0) at x0 correspond to
a Taylor expansion of nth order

f(x0 + ∆x) = f(x0) +

∞∑
n=1

1

n!

dnf(x)

dxn
(∆x)n . (3.1.1)
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Figure 3.1: The �gure shows a two-dimensional slice of the three-
dimensional simulation box with di�erent simulation regions. The in-
ner light-grey region shows all grid points where Maxwell's equations
are propagated. The dark-grey region contains the grid points to simu-
late the correct boundary conditions. The underlying equations in this
case are arti�cial modi�ed Maxwell's equations to satisfy the boundary
conditions. The inner free Maxwell propagation area is limited by the
boundary box limits bx and by of the boundary region and the whole box
is limited by the outer limits Lx and Ly.

The n! factor denotes the factorial of n. Without loss of generality the function f(x) can
also be expanded at point x0 −∆x, which modi�es equation (3.1.1) to

f(x0 −∆x) = f(x0) +

∞∑
n=1

(−1)n
1

n!

dnf(x)

dxn
(∆x)n . (3.1.2)

In both cases, solving for the �rst derivative f ′(x) leads to

f ′(x) =
f(x+ ∆x)− f(x)

∆x
−
∞∑
n=2

1

n!

dnf(x)

dxn
(∆x)n−1 =

f(x+ ∆x)− f(x)

∆x
+O(∆x) ,

(3.1.3)
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and

f ′(x) =
f(x)− f(x−∆x)

∆x
−
∞∑
n=2

(−1)n
1

n!

dnf(x)

dxn
(∆x)n−1 =

f(x)− f(x−∆x)

∆x
+O(∆x),

(3.1.4)

where the remaining term O(∆x) represents the di�erence between the exact value f ′(x)
and the �nite di�erence term in Eq. (3.1.4). For an equidistant regular grid, the small ∆x
is equal to the spacing between two grid points, i.g. xi and xi+1 or xi and xi−1

∆x = xi+1 − xi = xi − xi−1 . (3.1.5)

Therefore, by using the function values f(xi) at the grid points xi−1, xi, xi+1, the Taylor
series in Eq. (3.1.3) can be expressed as

f ′(xi) =
f(xi+1)− f(xi)

∆x
+O(∆x) , (3.1.6)

which is called forward expansion. Consequently the backward expansion of Eq. (3.1.4)
takes the form

f ′(xi) =
f(xi)− f(xi−1)

∆x
+O(∆x) , (3.1.7)

A third formula, called center di�erence formula, is given by subtracting Eq. (3.1.6) from
Eq. (3.1.7) and solving for f ′(xi)

f ′(xi) =
f(xi+i)− f(xi−1)

2∆x
+O(∆x3) . (3.1.8)

In contrast to the forward and backward di�erence formula, the even terms of ∆x2,∆x4...
in the center di�erence formula vanish. Therefore, the remaining term in equation (3.1.8)
has the order of ∆x3, which means that the center di�erence formula is more accurate.
The accuracy can also be increased by using additional grid points. Assuming the spatial
derivative f ′(xi) at point xi can be expressed as a linear combination of the grid point
function values of f(xi) and the next nearest ones, the ansatz for the formula in center
di�erence calculation with accuracy of order n is given by

f ′(xi) = ai−nf(xi−n) + . . .+ ai−1f(xi−1) + aif(xi) + ai+1f(xi+1) + . . .+ ai+nf(xi+n) .
(3.1.9)

Therefore the required number of grid points is 2n+1. The coe�cients ai−n...ai+n have to
be determined by 2n equations, n forward and n backward Taylor series of order n of the
functions f(xi−n), ..., f(xi−1), f(xi+1), ..., f(xi+n). For a given order n the Taylor series
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takes the form

f(xi+n) = f(xi + n∆x) = f(xi) +
n

1!
f ′(xi)∆x+ . . .+

nn

n!
f (n)(xi)∆x

n +O(∆xn+1)

...

f(xi+2) = f(xi + 2∆x) = f(xi) + 2f ′(xi)∆x+ . . .+
2n

n!
f (n)(xi)∆x

3 +O(∆xn+1)

f(xi+1) = f(xi + ∆x) = f(xi) + f ′(xi)∆x+ . . .+
1n

n!
f (n)(xi)∆x

3 +O(∆xn+1)

f(xi) = f(xi)

f(xi−1) = f(xi − ∆x) = f(xi)− f ′(xi)∆x+ . . .− 1n

n!
f (n)(xi)∆x

3 +O(∆xn+1)

f(xi−2) = f(xi − 2∆x) = f(xi)− 2f ′(xi)∆x+ . . .− 2n

n!
f (n)(xi)∆x

3 +O(∆xn+1)

...

f(xi−n) = f(xi − n∆x) = f(xi)−
n

1!
f ′(xi)∆x+ . . .+

(−n)n

n!
f (n)(xi)∆x

n +O(∆xn+1) .

(3.1.10)
The functions f(xi−n), ..., f(xi−1), f(xi+1), ..., f(xi+n) on the right-hand side of equation
(3.1.9) can be substituted by the equations in (3.1.10). Hence, the �rst derivative f ′(xi) is
given by

f ′(xi) = b0f(xi) + b1f
′(xi) + b2f

′′(xi) + ...+ f (n)(xi) (3.1.11)

with

b0 = ai−n + ...+ ai−1 + ai + ai+1 + ...+ ai+n

b1 = (nai−n + ...+ 2ai−2 + ai−1 + ai+1 + 2ai+2 + ...+ nai+n) ∆x

b2 =
1

2

(
n2ai−n + ...+ 4ai−2 + ai−1 + ai+1 + 4ai+2 + ...+ n2ai+n

)
∆x2

...

bn =
1

n!
(nnai−n + ...+ 2nai−2 + ai−1 + ai+1 + 2nai+2 + ...+ nnai+n) ∆xn .

(3.1.12)

Equating left-hand and right-hand side in equation (3.1.11) leads to the condition, that
only b1 in Eq.(3.1.13) is equal to one. Whereas all other remaining coe�cients bi are equal
to zero. Consequently, the coe�cients ai in equation (3.1.9) can be obtained by a system
of linear equations

0 = ai−n + ...+ ai−1 + ai + ai+1 + ...+ ai+n ,

1 = (nai−n + ...+ 2ai−2 + ai−1 + ai+1 + 2ai+2 + ...+ nai+n) ∆x ,

0 =
1

2

(
n2ai−n + ...+ 4ai−2 + ai−1 + ai+1 + 4ai+2 + ...+ n2ai+n

)
∆x2 ,

...

0 =
1

n!
(nnai−n + ...+ 2nai−2 + ai−1 + ai+1 + 2nai+2 + ...+ nnai+n) ∆xn .

(3.1.13)
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Of course, the whole system of linear equations can be expressed equivalently as a matrix
vector product


1 ... 1 1 1 ... 1

−n∆x ... −2∆x 0 2∆x ... n∆x
−1

2n
2∆x2 ... −4∆x2 0 4∆x2 ... 1

2n
2∆x2

...
− 1
n!n

n∆xn ... 2n∆xn 0 2n∆xn ... 1
n!n

n∆xn





ai−n
...

ai−1

ai
ai+1
...

ai+n


=


0
1
0
...
0

 . (3.1.14)

There are several techniques shown in Ref. [92] to solve Eq. (3.1.14). The resulting coe�-
cients ai−n, ..., ai+n de�ne a one-dimensional stencil which is here a (2n + 1)-dimensional
vector. Multiplying this vector with the function values that correspond to the stencil
coe�cient yields with Eq. (3.1.9)

f ′(xi) ≈
(
ai−n · · · ai · · · ai+n

)
·


f(xi−n)

...
f(xi)
...

f(xi+n)

 . (3.1.15)

In the previous steps, we brie�y introduced the �nite di�erence method to derive the
approximated �rst derivative of a function on a discrete grid in one dimension. Since
we consider the Maxwell �eld propagation in three dimensions, we have to extend the
one-dimensional stencil to a three-dimensional one. While the one-dimensional stencil
is a chain, the two- and three-dimensional stencils form a two-dimensional respectively
three-dimensional cross stencil. Figure 3.2 illustrates such a cross stencil in the xy-plane.
For a given three-dimensional function f(xi, yj , zk) at the grid points xi, yj , zj , the cor-
responding �nite di�erence coe�cients are ax,i−n...ax,i+n for the partial derivative in x,
and ay,j−n...ay,j+n, respectively az,k−n...az,k+n for the remaining two partial derivatives.
Similar to Eq. (3.1.15), the approximation for the spatial partial derivatives take the form

∂

∂x
f(x, y, z) ≈

(
ax,i−n · · · ax,i+n 0 · · · 0 0 · · · 0

)
·



f(xi−n)
...

f(xi+n)
f(yj−n)

...
f(yj+n)
f(zk−n)

...
f(zk+n)


, (3.1.16)

∂

∂y
f(x, y, z) ≈

(
0 · · · 0 ay,j−n · · · ay,j+n 0 · · · 0

)
·



f(xi−n)
...

f(xi+n)
f(yj−n)

...
f(yj+n)
f(zk−n)

...
f(zk+n)


, (3.1.17)
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∂

∂z
f(x, y, z) ≈

(
0 · · · 0 0 · · · 0 az,k−n · · · az,k+n

)
·



f(xi−n)
...

f(xi+n)
f(yj−n)

...
f(yj+n)
f(zk−n)

...
f(zk+n)


. (3.1.18)

The stencil and grid point vectors in Eqs. (3.1.16)-(3.1.18) have the size 6n + 1. All
operations are independent in each dimension, since we do not consider mixed derivatives
for the Maxwell time propagation.

3.1.3 Parallelization strategy in the �rst principles code octopus

Large grids increase the computational cost. To speed up the calculations, it is useful to
divide the computational task into several partitions and use parallel processors. Taking
the grid setup from Sec. (3.1.1), we employ a domain parallelization. A schematic plot of
a divided grid into four domains is shown in Figure 3.3. Each of the four partitions covers
only a part of the whole grid. The partial grids have to take the boundary region of the
total grid into account. Furthermore, to achieve a correct calculation which is equivalent
to the serial case, the derivative operation has to be equivalent. In the boundary region,
the operation stencils contain several stencil points which are located on another domain.
The cross stencil in Figure 3.3 illustrates this case, where two stencil points lie in partition
1 and one point in partition 2. To obtain a correct parallelization, the processors send

Figure 3.2: Two-dimensional stencil. All grid points which determine
the �rst derivative of fi,j at point xi,j build a cross of 2n+ 1 grid points
in each dimension, where n denotes the accuracy order of the derivative.
The �gure shows an example for such a two-dimensional stencil for n = 4.
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Figure 3.3: Parallelization scheme for dividing the Maxwell grid into four
partitions. The cross in partition 1 illustrates a two-dimensional stencil
of order n = 4. Some stencil points are located in di�erent partitions,
which has to be taken into account. For each propagation step, the
necessary variables at the grid boundaries are sent and received by the
neighbouring partitions.

and receive the necessary data for each time step. Octopus uses domain parallelization
[93] for the Kohn-Sham orbitals. Therefore, we adapt this scheme for the six-component
Riemann-Silberstein vector and treat each vector component as a Kohn-Sham orbital.

3.2 Discretized Riemann-Silberstein time-evolution operators

In section 2.2, we derived the time-evolution equation in (2.2.14) to evolve the six-component
Riemann-Silberstein vector F(~r, t), which has the explicit form

F(~r, t) = U(t, t0)F(~r, t0)−
t∫

t0

dτU(t, τ)J (~r, τ) . (3.2.1)

In general, the solution of the Riemann-Silberstein time-evolution is not analytical. How-
ever, a recursive time-evolution of the Riemann-Silberstein vector with a rather small time
step ∆t yields a numerical solution. The size of ∆t is chosen such that the propagation
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stays stable. Therefore, the recursive form to obtain the next Riemann-Silberstein vector
F(~r, (m + 1)∆t) from a given F(~r,m∆t) at the discrete time m∆t leads from Eq.(3.2.1)
to

F(~r, (m+ 1)∆t) = U((m+ 1)∆t,m∆t)F(~r,m∆t)−
(m+1)∆t∫
n∆t

dτU(τ,m∆t)J (~r, τ) . (3.2.2)

The integral on the right-hand side is approximated by the trapezoidal rule. This leads to
the discrete time evolution equation

F(~r, (m+1)∆t) ≈ Û((m+1)∆t,m∆t)F(~r,m∆t)− ∆t

2
Û((m+1)∆t,m∆t)J (~r,m∆t)

− ∆t

2
J (~r, (m+ 1)∆t) ,

(3.2.3)
We put the Riemann-Silberstein vector and the Riemann-Silberstein current density J (~r, t)
on a three-dimensional Cartesian grid as it is introduced in Sec. (3.1.1). Hence, both
variables at the grid position ~ri,j,k are denoted by F(xi, yj , zk) and J (xi, yj , zk). The time-
evolution operator U that is required in Eq. (3.2.1), has been introduced in Eq. (2.1.15).
This operator is a matrix exponential that acts on the Riemann-Silberstein vector. For
our electromagnetic time-evolution simulation, we truncate the series expansion. Some
stability tests versus e�ciency have shown, that the fourth order of the exponential series
leads in most cases to stable and e�cient runs. Furthermore, the spatial partial derivative is
calculated with the three-dimensional derivative stencil, which we discussed in Sec. (3.1.2).
To speed up large system calculations, we use the parallelization in domain strategy from
Sec. (3.1.3)

The location of the grid points is determined by the dimensions of the simulation box
and by the grid spacing ∆x,∆y,∆z, which can be selected independently. On the other
hand, the time step parameter ∆t has to be chosen such that the propagation remains
stable and accurate. A very well-known criterion for ∆t that always leads to stable runs
is described by the Courant-Friedrichs-Lewy (CFL) condition [94, 95]

∆tMx,CFL ≤
SCFL,max

c0

√
1

∆x2 + 1
∆y2 + 1

∆z2

, (3.2.4)

and depends basically on the grid point spacing ∆x, ∆y, ∆z, and the Courant number
SCFL,max. The SCFL,max number changes for di�erent propagation methods. In case of
FDTD in three dimensions, SCFL,max is equal to one [94, 95] which we used for all of
our simulations. We have performed convergence tests for our implemented Riemann-
Silberstein Maxwell time-evolution and have found that also Courant numbers a little
larger than one leads to stable and accurate simulations. However, we could not �nd a
�xed value for SCFL > SCFL,max which is valid universally. The actual maximal value
varies and depends on the grid spacing.

3.3 Maxwell-propagation with Octopus

After introducing the Maxwell-Riemann-Silberstein propagation scheme on a three-dimen-
sional grid, we show in this section the �rst electromagnetic �eld simulations performed
with our new implementation. We consider as example a case where a given external
current density is prescribed for the solution of Maxwell's equations. The current density
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has a Gaussian shape and is located in the center of the simulation box. The box size is
chosen large enough such that the electromagnetic �elds do not reach the box boundaries
within the simulation time. For a validation of our implementation, we compare our results
with the electromagnetic evolution program MEEP. We also show for this example that
the Gauÿ laws are obeyed in time.

3.3.1 Comparison of the Octopus Maxwell-propagation with the elec-
tromagnetic propagation program MEEP

The program MIT Electromagnetic Equation Propagation (MEEP) [88] is a common sim-
ulation package for electromagnetic �eld propagations. The implemented Maxwell �eld
propagation in MEEP is based on the Finite Di�erence Time Domain method (FDTD)
and the Yee-algorithm [64]. The underlying electromagnetic simulation grid is split into
two grids shifted by half of the grid spacing of the corresponding direction. As a conse-
quence, the required spatial and time derivative points for the propagation equation are in
the middle of two sample grid points. Therefore, the center �nite di�erence method leads
to the �rst derivative equation, here for simplicity discussed in one dimension

f ′(x0) =
f(x0+ ∆x

2 )−f(x0−∆x
2 )

∆x
− 1

3!
f ′′′(x0)

(
∆x

2

)2

+ · · · . (3.3.1)

In case of the Yee grid, there are no grid points at the derivative point x0 but next to
it at x0 −∆x/2 and x0 + ∆x/2. We also use the center �nite di�erence discretization in
Octopus, but the derivative points lie always on top of a sample grid point. Thus, the
derivative equation takes the form

f ′(x0) =
f(x0+∆x)−f(x0−∆x)

2∆x
− 1

3!
f ′′′(x0)(∆x)2 + · · · , (3.3.2)

which means that the error of f ′(x0) is smaller for the Yee-algorithm if we consider the
same order terms of the �nite di�erence method. However, the MEEP �nite di�erence
stencil operation is always of order two whereas the Octopus stencil order can be set to
higher orders to obtain better accuracy for the derivative operators. The MEEP internal
unit for the speed of light is equal one. Consequently, the electric permittivity in vacuum
ε0 and the magnetic permeability in vacuum µ0 are also equal to one. To compare our
electromagnetic �eld propagation with MEEP, we set our internal constants in Octopus
equal to the MEEP internal units, which means that ε0 = µ0 = c0 = 1 with �nite di�erence
order of two for the runs in this section. Additionally, the exponential series expansion
order is four.

As test scenarios, we simulate four di�erent spatial and temporal shaped external cur-
rent densities inside a box and plot several relevant physical variables. For all runs, we use
the same spatial current density distribution ~j0(~r)

~j0(~r) = ~ezexp

(
−x2 − y2 − z2

2

)
. (3.3.3)

The external current �ows along the z-axis and has a three-dimensional Gaussian shape.
Figure 3.4 visualizes the spatial current amplitude in the xy-plane. We chose the following
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Figure 3.4: The spatial external current density distribution for the com-
parison calculation with MEEP is a three-dimensional Gaussian function
represented in equation (3.3.3). The only contribution is along the z-axis.
The �gure shows a two-dimensional cut through the xy-plane.

four spatial and time dependent current densities ~ji(~r, t), with i = {1, 2, 3, 4}

~j1(~r, t) = ~j0(~r) exp
(
− (t−10.0)2

8

)
, (3.3.4)

~j2(~r, t) = ~j0(~r)
[
exp

(
− (t−10.0)2

8

)
− exp

(
− (t−12.0)2

8

)]
, (3.3.5)

~j3(~r, t) = ~j0(~r) exp
(
− (t−10.0)2

8

)
sin (2.0 (t− 10.0)) , (3.3.6)

~j4(~r, t) = ~j0(~r) exp
(
− (t−10.0)2

8

)
cos (2.0 (t− 10.0)) . (3.3.7)

We select a cubic simulation box of length 80.0, i.e., the box length parameter referring to
the simulation box scheme in Figure 3.1 are given by Lx = Ly = Lz = 40.0. We use a zero
boundary condition, which means that the �eld variables are set to zero at the simulation
box limits. We select a su�ciently large box that the boundary e�ects cannot in�uence the
simulation during the simulation time. Four all four test currents in Eqs. (3.3.4)-(3.4.51),
we evaluate the electric �eld, the magnetic �eld, the electromagnetic energy density at the
box point (5, 0, 0), as well as the integrated electromagnetic energy inside the simulation
box. The grid spacing in each dimension is ∆x = ∆y = ∆z = 0.2, which leads to a mutual
time step in MEEP and Octopus of ∆t = 0.1. An overview of all relevant parameters for
both simulations is shown in Table 3.1.
Figure 3.5 shows the comparison of our Maxwell propagation implementation in Octopus
and MEEP for the di�erent current densities in Eqs (3.3.4)-(3.4.51). All results are evalu-
ated at point (5, 0, 0).
In the �rst panels 1 - a) to 4 - a), we plot the initial current density ~j(~r, t) in z-direction.
Due to the spatial shape of the current density, the maximum value of ~j(~r, t) is damped
by the factor e−52/2. The next panels 1 - b) to 4 - b) and 1 - c) to 4 - c) show the electric
�eld in z-direction and the magnetic �eld in y-direction also both at coordinate (5, 0, 0).
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variable MEEP units
Lx 40.0
Ly 40.0
Lz 40.0

∆x,∆y,∆z 0.2
�nite di�erence order 2
exponential order 4

∆t 0.1
ε0 1
µ0 1
c0 1

Table 3.1: Simulation parameters for the
Octopus and MEEP comparison run.

The Maxwell energy densities at this point calculated by Octopus and MEEP also match,
and are plotted in the panels 1 - c) to 4 - c). The last panels 1 - d) to 4 - d) illustrate
the total Maxwell energy inside the box of size −40.0 ≤ x ≤ 40.0, −40.0 ≤ y ≤ 40.0, and
−40.0 ≤ z ≤ 40.0.
As a �rst summary, we can con�rm, that our implementation of a Maxwell propagation
yields the same results as MEEP. Each curve of the electric and magnetic �elds in Fig-
ure 3.5 in panels b) respectively c), and the Maxwell energy density in d), calculated by
Octopus, is covered by the corresponding MEEP curve. Additionally, all four total ener-
gies inside the two simulation boxes match and con�rm that our implementation leads to
similar results like MEEP.
Next, we consider some �eld reactions in more detail. According to Eqs. (3.3.4)-(3.4.51),
the spatial center is at the origin of the box and the temporal center of the current densities
is at time t = 10.0. Therefore, the electromagnetic �eld reaction is shifted by ∆t = 5.0
time in MEEP units to reach the evaluation point at (5,0,0).
In contrast to all other electric �elds, which return to zero later in time, the electric �eld
in Figure 3.5 1 - b) takes a constant value around t = 25.0. At this point, we refer to
Sec. 2.4, where we show that the Maxwell side condition, the electric and magnetic Gauÿ
laws, hold during our Maxwell propagation. The reason for this feature is based on the
continuity equation which we discuss in the next section.
Looking at the Gaussian pulse with sine carrier wave in 3 - a), we notice that it is very
similar shaped to the electric �eld reaction of the Gaussian pulse with cosine carrier wave
in 4 - b). In the same way, the magnetic �eld reaction in 3 - c) is similar to the current
density in 4 - a). This similarity can be explained by taking Faraday's and Ampère's laws
with Eq.(2.3.7), rearranged to

i~
∂

∂t
F(~r, t) + i~J (~r, t) = HF(~r, t) . (3.3.8)

In principle, the current density term can be expressed by

J (~r, t) =
∂

∂t
FJ (~r, t) , ⇒ FJ (~r, t) =

t∫
t0

dτJ (~r, τ) , (3.3.9)

where FJ (~r, t) denotes the integral of J (~r, τ). Consequently, Eq. (3.3.8) becomes

i~
∂

∂t
(F(~r, t) + FJ (~r, t)) = HF(~r, t) . (3.3.10)
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1) Gaussian current density: 2) Two inverse Gaussian densities:

3) Gaussian pulse current density with sine: 4) Gaussian pulse current density with cosine:

Figure 3.5: Electromagnetic variables at grid point (5,0,0) for a Gaussian external
current signal, calculated by the Octopus and MEEP simulations. The external
current density, shown in a), causes an electromagnetic �eld reaction, which is
plotted as electric �eld in b), magnetic �eld in c), and energy density in d).
The last curves in e) show the total electromagnetic energy inside the simulation
box. Both simulation results, Octopus and MEEP agree, and di�erences are of
negligible magnitude.

Since the integral of the Gaussian shaped pulse with sine carrier wave is given by a Gaussian
shaped pulse with cosine carrier wave and vice versa, the previously described similarity
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of the corresponding signals become clear. The fact, that both shapes are only similar
and not equal can be understood with the �rst Riemann-Silberstein �eld variable F(~r, t)
in Eq. (3.3.10) which in�uences slightly the resulting �eld.

3.3.2 Longitudinal and transverse electromagnetic �elds and currents

To demonstrate the properties of longitudinal and transverse current densities, we take
a further look at the four calculations in Sec. 3.3.1. Using Eq. (3.3.23) for the current
densities ~j1(~r, t) - ~j2(~r, t) from Eqs. (3.3.4)-(3.4.51) gives the corresponding motion of
charge densities ρ1(~r, t) - ρ2(~r, t), which we express approximately since they contain more
error functions with constant arguments, i.e,

ρ1(~r, t) ≈
√

2π z |~j0(~r )|
[
Erf

(
t− 10.0

2
√

2

)
+ 1

]
, (3.3.11)

ρ2(~r, t) ≈
√

2π z |~j0(~r )|
[
Erf

(
t− 10.0

2
√

2

)
− Erf

(
t− 12.0

2
√

2

)]
, (3.3.12)

ρ3(~r, t) ≈
√
π

2
z |~j0(~r )|e−8

[
Erf

(
t− (10.0 + 8.0i)

2
√

2

)
− Erf

(
t− (10.0− 8.0i)

2
√

2

)
+ 2.677e−3

]
,

(3.3.13)

ρ4(~r, t) ≈
√
π

2
z |~j0(~r )|e−8

[
Erf

(
t− (10.0 + 8.0i)

2
√

2

)
− Erf

(
t− (10.0− 8.0i)

2
√

2

)
+ 2.0

]
.

(3.3.14)

with the error function Erf(t). For large time t→∞, Eqs. (3.3.11)-(3.3.14) yield approxi-
mately

ρ1(~r, t→∞) ≈ 2
√

2π z |~j0(~r )| , (3.3.15)

ρ2(~r, t→∞) ≈ 0 , (3.3.16)

ρ3(~r, t→∞) ≈ 0 , (3.3.17)

ρ4(~r, t→∞) ≈ 0 . (3.3.18)

Consequently, the current density ~j1(~r, t) moves charges just along one direction, which
leads to a permanent positive charge density distribution ρ1(~r, t) inside the simulation box,
whereas the remaining current densities ~j2(~r, t) − ~j4(~r, t) also move charges, but in both
directions so that they in total approximately cancel out and leave an almost zero charge
density. The charge density ρ1(~r, t) causes an static electric �eld for t → ∞, whereas the
remaining three charge densities are very close to zero. Therefore, the electric �eld in
Figure 3.5 1-b) reaches approximately a constant electric �eld at time t = 25.0, and the
three other electric �elds in Figures 3.5 2-b) to 4-b) decrease to zero. Figure 3.6 illustrates
some snapshots of the electric �eld propagation polarized in z-direction for selected time
steps. All four snapshots of the panels a) are taken at time t = 16.0. They all show a
spherical outgoing wave of di�erent shapes. The number of oscillations depend on the
corresponding number of temporal oscillations of the current pulses given in Eqs. (3.3.4)-
(3.4.51). The spherical waves propagates to the outside, which can be seen in the four
panels 1-4 a), until they left the box in panels 1-4 b) at time t = 25.0, and 1-4 c) at time
t = 30.0. Again, according to Eqs. (3.3.15)-(3.3.16) the current density ~j1(~r, t) causes a
permanent charge density. Consequently, besides the outgoing wave in Figure 3.6 1-a) to
1-c), a permanent electric �eld with Gaussian shape arises which is centered at the origin.
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Figure 3.6: Contour snapshots along the xy-plane of the electric �eld in z-
direction for the electromagnetic �eld propagation using the four external cur-
rents of Eqs. (3.3.4)-(3.4.51). The �rst panels 1-4 a) show the electric �eld at
time t = 16.0. The arising spherical waves move radially to the outside, which
is illustrated in panels 1-4 b) at t = 25.0. The last snapshots in panels 1-4 c)
taken at t = 30.0 visualize that the electric �elds return to zero after the current
pulse. An exception is the �rst one, where the permanent charge density causes
a corresponding static electric �eld.

In the above examples the question arises, what kind of �eld, i.e., longitudinal or trans-
verse, leads to the outgoing waves or localized �eld inside the simulation box. Therefore
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in the following, we decompose the Maxwell's equations in Riemann-Silberstein represen-
tation into a longitudinal and transverse set of equations.
Due to the continuity equation, a given external current density leads to an implicit motion
of charge, which also ensures that the Maxwell constraint, i.e., the two Gauÿ laws hold.
The continuity equation relates the current density and charge density by [75]

~∇ ·~j(~r, t) = − ∂
∂t
ρ(~r, t) . (3.3.19)

Without loss of generality, the current density can be split via the Helmholtz decomposition
into a longitudinal component ~j‖(~r, t) and a transverse one ~j⊥(~r, t) [75]

~j(~r, t) = ~j‖(~r, t) +~j⊥(~r, t) . (3.3.20)

Using the Helmholtz decomposition leads to

~∇ ·~j⊥(~r, t) = 0 , ~∇ ·~j‖(~r, t) = − ∂
∂t
ρ(~r, t) . (3.3.21)

As a consequence, we split the Riemann-Silberstein current density J (~r, t) into the longi-
tudinal Riemann-Silberstein part J‖(~r, t), build by ~j‖(~r, t), and the transverse one J⊥(~r, t)

using ~j⊥(~r, t). Taking the Riemann-Silberstein current density Q(~r, t), Eq. (3.3.19) is
equivalent to

D · J (~r, t) = D · J‖(~r, t) = − ∂
∂t
Q(~r, t) . (3.3.22)

Using Eq. (2.4.9) leads to

Q(~r, t) = Q(~r, t0)−
t∫

t0

dτ D · J‖(~r, τ) = Q(~r, t0) +

t∫
t0

dτ
∂

∂t
Q(~r, t) . (3.3.23)

Since the Riemann-Silberstein Maxwell's Eqs. (1.1.38) and (1.1.40) are linear and the
continuity equation has to hold, we can separate the �eld equations into longitudinal and
transverse equations with F = F‖ + F⊥, D · F‖ = Q, and D · F⊥ = 0

D · F‖(~r, t) = Q(~r, t) = Q(~r, t0)−
∫ t

t0

dτ D · J‖(~r, τ) , (3.3.24)

i~
∂

∂t
F‖(~r, t) = HF‖(~r, t)− i~J‖(~r, t) , (3.3.25)

D · F⊥(~r, t) = 0 , (3.3.26)

i~
∂

∂t
F⊥(~r, t) = HF⊥(~r, t)− i~J⊥(~r, t) . (3.3.27)

According to Eq. (3.3.9) we introduce the two auxiliary six-component Riemann-Silberstein
vectors FJ‖(~r, t) and FJ⊥(~r, t)

FJ‖(~r, t) =

t∫
t0

dτJ‖(~r, τ) , (3.3.28)

FJ⊥(~r, t) =

t∫
t0

dτJ⊥(~r, τ) , (3.3.29)
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Figure 3.7: Spatial distribution of a transverse current density along
the xy-plane. The �gure on the right-hand side shows the x-component
of the current density vector, whereas the �gure on the left-hand side
illustrates the y-component.

which are longitudinal respectively transverse. In terms of these Riemann-Silberstein vec-
tors, Eqs. (3.3.25)-(3.3.27) become

i~
∂

∂t

(
F‖(~r, t) + FJ‖(~r, t)

)
= HF‖(~r, t) , (3.3.30)

i~
∂

∂t
(F⊥(~r, t) + FJ⊥(~r, t)) = HF⊥(~r, t) . (3.3.31)

As a consequence, the charge density and the longitudinal part of the current density con-
tribute to the longitudinal Riemann-Silberstein vector, whereas only the transverse current
density causes a transverse electromagnetic �eld. Additionally, due to the continuity equa-
tion, a longitudinal current implies always a motion of charge, which can be obtained only
by inspecting the underlying electromagnetic �eld. In turn, a transverse current density
means that although the current density can change in time, there is no motion of charge
and the charge density stays always constant.

Using our previous considerations for Figure 3.6 means that only the transverse part
of the total current leads to the observed outgoing waves in all four cases. In contrast, the
longitudinal part of the current density causes the localized electromagnetic �eld. This can
only be seen in Figure 3.6 1-a) to 1-c) since the corresponding current density �ows only
into the positive z-direction. The remaining three current densities in 2-4 have a reverse
current that moves the charge density almost back into its initial state at the end of the
current pulse.
To investigate the relation of transverse and longitudinal contributions further, we show
in the following two simulations with one longitudinal and one transverse current density.
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As longitudinal ~jlong(~r, t) and transverse ~jtrans(~r, t) current densities we select

~jlong(~r, t) = ~jlong,0(~r) exp

(
−(t− 10.0)2

8

)
, (3.3.32)

~jtrans(~r, t) = ~jtrans,0(~r) exp

(
−(t− 10.0)2

8

)
, (3.3.33)

with

~jlong,0(~r) =

−x−y
−z

 exp

(
−x2 − y2 − z2

2

)
, (3.3.34)

~jtrans,0(~r) =

−yx
0

 exp

(
−x2 − y2 − z2

2

)
. (3.3.35)

To illustrate the spatial distribution of the current density we plot the x- and y-component
of the transverse current ~jtrans,0(~r) in Figure 3.7. The z-component for the transverse cur-
rent is zero and the shape of all components of the longitudinal current density are very
similar to the transverse ones presented in Figure 3.7 and only di�er in their orientation,
so that we do not illustrate them. Using the same simulation parameters as in Sec. 3.3.1,
we run the two longitudinal and transverse current simulations. The results in Figure 3.8
for the longitudinal case agree with our previous considerations, where the current den-
sity causes only a localized �eld without any radiation. The plot sequence for a) with
t = 7.0, b) with t = 10.0, and c) with t = 30.0 shows that the electric �eld increases in
time without any outgoing signal. In contrast, the transverse snapshot sequence in Fig-
ure 3.9 demonstrate a radial anti-symmetric wave form that propagates to the outside and
leaves almost no localized �eld inside the simulation box. In panel a) at time t = 16.0 the
wave is still inside the box, and almost outside the plot section at time t = 25.0 in panel b).

Figure 3.8: Snapshots of the electric �eld in z-direction for the longitudinal current
density at times t = 7.0, t = 10.0 and t = 30.0.

Taking Eq. (3.3.19) for the longitudinal current density ~jlong(~r, t) gives the charge density
with

ρlong(~r, t) ≈
√

2π e−
1
2(−x2−y2−z2)(−3 + x2 + y2 + z2)

[
Erf

(
t− 10.0

2
√

2

)
+ 1

]
, (3.3.36)

that corresponds to the electric �eld snapshots in Figure 3.8. In turn, the charge density for
the transverse current density ~jtrans(~r, t) is constant for all three snapshots in Figure 3.9.
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Figure 3.9: Snapshots of the electric �eld in z-direction for the transverse current
density at times t = 16.0, t = 25.0 and t = 30.0.

In a last plot in Figure 3.10, we evaluate the electric �eld, the magnetic �eld for
di�erent relevant directions, as well as the absolute value of the �elds for the grid point
(5.0,0,0). Panel a) shows only the time-dependent part of the current pulse which follows
the intensity behavior of the external current. In panel b) both graphs give the electric
�eld in z-direction, whereas panel c) shows the corresponding magnetic �eld in the y-
direction. Comparing all four curves emphasizes the wave character of the transverse
current propagation, where the electric �eld and the magnetic �eld are very similar in
shape and magnitude for our selected unit system. The longitudinal current density causes
only an electric �eld, which can be seen in panel e), where the absolute value of the
magnetic �eld is plotted and returns zero for the longitudinal current run. In addition,
panel d) illustrates the absolute value of the electric �eld, which con�rms, that the main
contribution of the electric �eld is polarized along the z-axis.

Figure 3.10: Electric and magnetic �eld reaction in z-direction for the
longitudinal and transverse current density detected at point (5.0,0,0).
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The decomposition of the electromagnetic �eld into longitudinal and transverse �elds
with di�erent radiative features becomes an important ingredient when we consider later
the electromagnetic �elds in quantum electrodynamics (QED). In QED using Coulomb
gauge, the longitudinal matter current density operator couples only to the quantized
longitudinal �eld, whereas the transverse matter current density operator couples to the
quantized transverse �eld. We focus on this aspect in more detail by using the longitudinal-
transverse �eld decomposition in chapter 4.

3.4 Maxwell boundaries

To properly de�ne di�erent boundary conditions, we already introduced in Sec. (3.1.1)
and illustrated in Figure 3.1 di�erent regions in the simulation box which we discuss here
more in detail. The inner free Maxwell-propagation region obeys the physical Maxwell's
equations whereas the outer boundary region obeys speci�ed Maxwell's equations to ful�ll
the appropriate simulation condition. In the following sections we introduce two di�er-
ent schemes for absorbing boundaries to simulate open Maxwell systems, where outgoing
Maxwell �elds are damped with almost no re�ections. For example in Sec. 3.3.1, we have
shown an external current density in the box center that causes Maxwell �elds which are
moving to the box limits. In case of absorbing boundaries, we can use a much smaller sim-
ulation box to get the same results. As a third boundary option, we show incident wave
boundaries to simulate incident plane waves, which arise at the boundaries and propagate
as free plane waves through the box, if the whole box describes vacuum. In contrast, in
presence of a linear medium inside the simulation box the electromagnetic waves couple
and scatter. To avoid further scatter and re�ection e�ects at the box boundaries, we have
to combine the incident wave boundaries with the absorbing boundaries which we employ
as another boundary option.

3.4.1 Absorbing boundaries by mask function

A simple method to implement and simulate absorbing boundaries is the mask absorption
method, in which the Riemann-Silberstein vector is multiplied by a real mask function. The
simulation box is split into two regions as shown in Figure 3.1, an inner free propagation
region and an outer absorbing boundary region. Consequently the mask function is always
equal to one inside the free propagation region. The shape of the weight function in the
outer boundary region has to be chosen such that it simulates absorption in a proper way.
It is clear that the mask function has to be continuous at the transition from the edge to
the inner region. In addition to the simulation box limit, the mask function has to damp
the Riemann-Silberstein vector to zero along the boundaries. To avoid almost all re�ection
and scatter e�ects in the free propagation region, the negative damping slope has to be
smooth. A possible mask function f1D

mask(u) in one dimension that ful�lls all that conditions
is given by

f1D
mask(u) =

{
1 for |u| ≤ bu
1− sin

(
π|u−bu|

2|Lu−bu|

)2
for |u| > bu , |u| ≤ Lu,

(3.4.1)

where u represents one of the three possible dimensions x, y, z, and the length bu denotes
the limit of the inner free propagation box and Lu the outer simulation box limit. The
total shape of the mask function f1D

mask(x) with box limits bx and Lx is illustrated in �gure
(3.11).
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Figure 3.11: Mask function along a cartesian axis u = x, y, z with its
characteristic pro�le. Inside the inner simulation box limit [−bu, bu] the
mask function is equal to one, whereas the function decreases smoothly
to zero in the mask boundary region [−Lu,−bu[ , and ] + bu,+Lu]. The
decreasing function has a turning point and is point-symmetric to that
point.

For numerical grids in more than one dimension, the total mask function is simply a
product of all corresponding one-dimensional mask functions. Hence, the two-dimensional
and three-dimensional mask functions f2D

mask(x, y) and f3D
mask(x, y, z) are given by

f2D
mask(x, y) = f1D

mask(x) · f1D
mask(y) (3.4.2)

f3D
mask(x, y, z) = f1D

mask(x) · f1D
mask(y) · f1D

mask(z) (3.4.3)

A three-dimensional contour plot of a two-dimensional mask function f2D
mask(x, y) or a cut

through a three-dimensional mask function f3D
mask(x, y, z) with constant z is shown in �gure

(3.12). It can be seen in this �gure that due to the factorization of the mask function with
corresponding one-dimensional mask functions, the overlap regions are continuous and
smooth. Furthermore, the damping in the vertex regions is stronger than at the edges
of the box, which avoids scatter e�ects especially in those more sensitive parts of the
simulation box.
In case of a mask function as de�ned in equation (3.4.1), it is clear that only the distance
of |Lx − bx| determines the shape of the function and therefore the ability to absorb the
outgoing electromagnetic �elds. Consequently, for larger absorbing boundary regions, the
decreasing slope of the mask function is weaker and the e�ciency of the simulated absorbing
boundaries increases.

3.4.2 Absorbing boundaries by perfectly matched layer

A more accurate method for open Maxwell systems is the perfectly matched layer (PML)
absorbing boundary condition. We have implemented such a PML analogous to the
Berènger layer for the Yee �nite di�erence time domain algorithm [65, 87], but now modi-
�ed for the Riemann-Silberstein Maxwell propagation. The basic idea of the Berènger layer
is to complement Maxwell's equations with an arti�cial lossy layer, which is described by
a non-physical electric conductivity σel and a non-physical magnetic conductivity σmag.
These conductivities are de�ned such as to yield minimal re�ections at the boundaries,
but have no physical meaning otherwise. The loss due to the conductivity parameters is
linear in the corresponding ~E(~r, t) and ~B(~r, t). Therefore, the modi�ed k-vector compo-
nent of Faraday's and Ampère's laws without current density takes with Eqs. (1.1.10) and
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Figure 3.12: A three-dimensional contour plot of the mask function on
the x-y plane. The inner plateau with the mask value equal to one marks
the inner free Maxwell propagation region. The plot shows the smooth
slope towards zero in the outer region and addtionally the round corners
at the overlapping x and y mask regions.

(1.1.11) the form

∂tBk(~r, t) = −
∑
l,m

εklm∂lEm(~r, t)− σmagBk(~r, t) , (3.4.4)

∂tEk(~r, t) =
1

ε0µ0

∑
l,m

εklm∂lBm(~r, t)− σelEk(~r, t) , (3.4.5)

where εklm denotes the Levi-Civita symbol. We note here, that the PML is in principle not
restricted to vacuum conditions but also valid for other homogeneous dielectric conditions.
In other words, the Riemann-Silberstein PML that we have implemented also works in a
linear medium, but with the constraint that ε(~r, t) and µ(~r, t), and consequently c(~r, t) are
constant at the border and inside the boundaries for all time. According to Eq. (1.2.29)
with

ε(~r, t) = ε , µ(~r, t) = µ , ⇒ ~F±,lm(~r, t) = ~F±(~r, t) =
√

ε
2
~E(~r, t) + i

√
1

2µ
~B(~r, t)

(3.4.6)

and

~∇ε = ~∇µ = ε̇ = µ̇ = 0 , c =
1√
εµ

(3.4.7)

Eqs. (3.4.4) and (3.4.5) combined into the Riemann-Silberstein representation yields

i~
∂

∂t
~F±(~r, t) = ±~c~∇×~F±(~r, t)− i~σe

1

2

(
~F+(~r, t)+ ~F−(~r, t)

)
∓ i~σm

1

2

(
~F+(~r, t)− ~F−(~r, t)

)
.

(3.4.8)
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Transforming Eq. (1.1.6)-(1.1.2) to frequency domain, and using the Riemann-Silberstein

vector in frequency space ~̃F±(~r, ω) with

~̃F±(~r, ω) =

∫
dt eiωt ~F±(~r, t) (3.4.9)

leads to the underlying Riemann-Silberstein Maxwell's equation for the kth component in
time-harmonic form [96, 97] of Eqs. (3.4.5) and (3.4.4) for the absorbing layer

− ω~F̃±,k(~r, ω) = ∓~c
∑
l,m

εklm∂lF̃±,m(~r, ω)

− i~
1

2
σe

(
F̃+,k(~r, ω) +F̃−,k(~r, ω)

)
∓ i~

1

2
σmag

(
F̃+,k(~r, ω)−F̃−,k(~r, ω)

)
,

(3.4.10)

where the �rst term on the right-hand side describes the curl operation. The principle
of a PML is to propagate the respective �eld components in the absorbing boundary
region which are necessary for a correct propagation inside the free Maxwell region, and
to damp the remaining components without causing strong re�ections back into the free
Maxwell region. For this purpose, Berènger's method splits up Maxwell's equations for each
direction in two equations which form the basis for the so-called split PML [98, 87, 65].
The �eld component in k-direction is split into one component for l and one for m with
k 6= l 6= m, so that the vector k component F̃ k± is given by

F̃±,k(~r, ω) = F̃±,k,(l)(~r, ω) + F̃±,k,(m)(~r, ω) . (3.4.11)

The �eld component F̃±,k is split such that the F̃±,k,(l) part is responsible for the �eld
propagation parallel to direction l and accordingly F̃±,k,(m) parallel to direction m. In
other words, there are two separate propagations which simulate only the free propagation
along the corresponding direction. Thus, one propagation could be where the �eld enters
the PML region while the other part is still in the free propagation box. The damping
of the �elds is applied by the electric and magnetic conductivities σel, σmag which are
arti�cially modi�ed and depend now on the splitted direction, i.e., l direction for F̃±,k,(l),
not the �eld direction. In addition, each equation only contains one part of the two
curl terms. Applying all these considerations to the six components of the Maxwell's
equations in Riemann-Silberstein form yields twelve relations for the PML. Explicitly, the
two equations for the x component in equation (3.4.10) are

−ω~F̃±,x,(y)(~r, ω) = ±~c∂y
(
F̃±,z,(x)(~r, ω)+F̃±,z,(y)(~r, ω)

)
− i~

1

2
σel,(y)

(
F̃+,x,(y)(~r, ω)+F̃−,x,(y)(~r, ω)

)
∓ i~

1

2
σmag,(y)

(
F̃+,x,(y)(~r, ω)−F̃−,x,(y)(~r, ω)

)
,

(3.4.12)

−ω~F̃±,x,(z)(~r, ω) = ∓~c∂z
(
F̃±,y,(x)(~r, ω)+F̃±,y,(z)(~r, ω)

)
− i~

1

2
σel,(z)

(
F̃+,x,(z)(~r, ω)+F̃−,x,(z)(~r, ω)

)
∓ i~

1

2
σmag,(z)

(
F̃+,x,(z)(~r, ω)−F̃−,x,(z)(~r, ω)

)
,

(3.4.13)
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for the y component

−ω~F̃±,y,(z)(~r, ω) = ±~c∂z
(
F̃±,x,(y)(~r, ω)+F̃±,x,(z)(~r, ω)

)
− i~

1

2
σel,(z)

(
F̃+,y,(z)(~r, ω)+F̃−,y,(z)(~r, ω)

)
∓ i~

1

2
σmag,(z)

(
F̃+,y,(z)(~r, ω)−F̃−,y,(z)(~r, ω)

)
,

(3.4.14)

−ω~F̃±,y,(x)(~r, ω) = ∓~c∂x
(
F̃±,z,(x)(~r, ω)+F̃±,z,(y)(~r, ω)

)
− i~

1

2
σel,(x)

(
F̃+,y,(x)(~r, ω)+F̃−,y,(x)(~r, ω)

)
∓ ~i

1

2
σmag,(x)

(
F̃+,y,(x)(~r, ω)−F̃−,y,(x)(~r, ω)

)
,

(3.4.15)

and for the z component

−ω~F̃±,z,(x)(~r, ω) = ±~c∂x
(
F̃±,y,(x)(~r, ω)+F̃±,y,(z)(~r, ω)

)
− i~

1

2
σel,(x)

(
F̃+,z,(x)(~r, ω)+F̃−,z,(x)(~r, ω)

)
∓ i~

1

2
σmag,(x)

(
F̃+,z,(x)(~r, ω)−F̃−,z,(x)(~r, ω)

)
,

(3.4.16)

−ω~F̃±,z,(y)(~r, ω) = ∓~c∂y
(
F̃±,x,(y)(~r, ω)+F̃±,x,(z)(~r, ω)

)
− i~

1

2
σel,(y)

(
F̃+,z,(y)(~r, ω)+F̃−,z,(y)(~r, ω)

)
∓ i~

1

2
σmag,(y)

(
F̃+,z,(y)(~r, ω)−F̃−,z,(y)(~r, ω)

)
.

(3.4.17)

Similar to Berènger's split �eld PML derivation for the Yee-Algorithm, we want to include
also in our case the frequency ω and the electric and magnetic conductivity σel and σmag

in a factor multiplied by the corresponding split �eld [98, 87, 65] before we recombine the
two split �eld equations. Using the two factors

η̃(l)(ω) = −
iω(σel,(l) + σmag,(l) − 2iω)

2(σel,(l) − iω)(σmag,(l) − iω)
, (3.4.18)

ξ̃(l)(ω) =
iω(σmag,(l) − σel,(l))

2(σel,(l) − iω)(σmag,(l) − iω)
, (3.4.19)

the system of the split equations in Eqs. (3.4.12)-(3.4.17) can be rearranged equivalently
to

−ω~F̃±,x,(y)(~r, ω) = ±~cη̃(y)(ω)∂y

(
F̃±,z,(x)(~r, ω)+F̃±,z,(y)(~r, ω)

)
± ~cξ̃(y)(ω)∂y

(
F̃∓,z,(x)(~r, ω)+F̃∓,z,(y)(~r, ω)

)
,

(3.4.20)

−ω~F̃±,x,(z)(~r, ω) = ∓~cη̃(z)(ω)∂z

(
F̃±,y,(x)(~r, ω)+F̃±,y,(z)(~r, ω)

)
∓ ~cξ̃(z)(ω)∂z

(
F̃±,y,(x)(~r, ω)+F̃±,y,(z)(~r, ω)

) (3.4.21)

for the x component, and

−ω~F̃±,y,(z)(~r, ω) = ±~cη̃(z)(ω)∂z

(
F̃±,x,(y)(~r, ω)+F̃±,x,(z)(~r, ω)

)
± ~cξ̃(z)(ω)∂z

(
F̃∓,x,(y)(~r, ω)+F̃∓,x,(z)(~r, ω)

)
,

(3.4.22)

56



−ω~F̃±,y,(x)(~r, ω) = ∓~cη̃(x)(ω)∂x

(
F̃±,z,(x)(~r, ω)+F̃±,z,(y)(~r, ω)

)
∓ ~cξ̃(x)(ω)∂x

(
F̃±,z,(x)(~r, ω)+F̃±,z,(y)(~r, ω)

) (3.4.23)

for the y component, and

−ω~F̃±,z,(x)(~r, ω) = ±~cη̃(x)(ω)∂x

(
F̃±,y,(x)(~r, ω)+F̃±,y,(z)(~r, ω)

)
± ~cξ̃(x)(ω)∂x

(
F̃∓,y,(x)(~r, ω)+F̃∓,y,(z)(~r, ω)

)
,

(3.4.24)

−ω~F̃±,z,(y)(~r, ω) = ∓~cη̃(y)(ω)∂y

(
F̃±,x,(y)(~r, ω)+F̃±,x,(z)(~r, ω)

)
∓ ~cξ̃(y)(ω)∂y

(
F̃±,x,(y)(~r, ω)+F̃±,x,(z)(~r, ω)

) (3.4.25)

for the z component. Finally, adding each of the two Eqs. (3.4.20)-(3.4.21), Eqs. (3.4.23)-
(3.4.22), and Eqs. (3.4.24)-(3.4.25) using Eq. (3.4.11) yields the PML equations in frequency
domain for the Riemann-Silberstein representation

−ω~

(
F̃+,k(~r, ω)

F̃−,k′(~r, ω)

)
= ~~c


∑
l,m

εklmη̃(l)(ω)∂lF̃+,m(~r, ω)∑
l′,m′
−εklmη̃(l′)(ω)∂l′F̃−,m′(~r, ω)



+ ~c

 ~
∑
l,m

εklmξ̃(l)(ω)∂lF̃−,m(~r, ω)

~
∑
l′,m′
−εk′l′m′ ξ̃(l′)(ω)∂l′F̃+,m′(~r, ω)

 .

(3.4.26)

In our PML implementation for simplicity, we do not introduce new correction terms in
η̃(l) or ξ̃(l) to improve the PML and to reduce low-frequency re�ections like it is commonly
applied for the Yee algorithm [98, 87, 65]. While such extensions are possible in future
re�nements of our implementation, we found the simple form without correction terms
already to provide good absorbance at the boundaries. By back transforming Eq. (3.4.26)
from frequency domain into time domain, we arrive at

η(l)(t) = δ(t)− 1

2

(
σel,(l)e

−σel,(l)t + σmag,(l)e
−σmag,(l)t

)
Θ(t)

= δ(t) + ζ(t)Θ(t) ,

(3.4.27)

ξ(l)(t) = −1

2

(
σel,(l)e

−σel,(l)t − σmag,(l)e
−σmag,(l)t

)
Θ(t)

= ξ(t)Θ(t) .

(3.4.28)

The electric conductivity σel and the magnetic conductivity σmag have to be chosen such
that the re�ection becomes minimal. As is well-known in FDTD [98, 87, 65], the relation
between the electric conductivity σel and the magnetic conductivity σmag to minimize the
re�ection coe�cient has to obey

σel

ε
=
σmag

µ
(3.4.29)

at the border between the free Maxwell simulation box and the absorbing boundaries.
Using this relation between the two conductivities, it is convenient to use only one con-
ductivity with σ = σel, and the updated forms of the expressions ζ(l)(t), and ξ(l)(t) are

ζ(l)(t) = −1

2
σ(l)e

−σ(l)t
(

1 +
µ

ε
e−(µ/ε−1)σ(l)t

)
, (3.4.30)
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ξ(l)(t) = −1

2
σ(l)e

−σ(l)t
(

1− µ

ε
e−(µ/ε−1)σ(l)t

)
, (3.4.31)

As a result, the back transformation of Eq. (3.4.26) becomes

i~c∂0

(
F+,k(~r, t)

F−,k′(~r, t)

)
= ~c


∑
l,m

εklm

(
δ ∗ ∂lF+,m(~r )

)
(t)∑

l′,m′
−εk′l′m′

(
δ ∗ ∂l′F−,m′(~r )

)
(t)



+ ~c


∑
l,m

εklm

(
ζ(l) ∗ ∂lF+,m(~r )

)
(t)∑

l′,m′
−εk′l′m′

(
ζ(l′) ∗ ∂l′F−,m′(~r )

)
(t)



+ ~c


∑
l,m

εklm

(
ξ(l) ∗ ∂lF−,m(~r )

)
(t)∑

l′,m′
−εk′l′m′

(
ξ(l′) ∗ ∂l′F+,m′(~r )

)
(t)

 .

(3.4.32)

which contains several convolutions in time. Whereas the �rst convolution on the right-
hand side in Eq. (3.4.32) is simply(

δ ∗ ∂lF±,m(~r )
)

(t) = ∂lF±,m(~r, t) , (3.4.33)

the remaining convolutions are explicitly given by

(
ζ(l) ∗ ∂lF±,m(~r)

)
(t) =

t∫
0

ζ(l)(t− τ)F±,m(~r, τ)dτ , (3.4.34)

(
ξ(l) ∗ ∂lF±,m(~r)

)
(t) =

t∫
0

ξ(l)(t− τ)F±,m(~r, τ)dτ . (3.4.35)

This completes the construction of the PML for our Riemann-Silberstein formulation when
we use the curl operation in Eq. (1.1.25) with spin matrices to obtain

i~c∂0

(
~F+(~r, t)

~F−(~r, t)

)
= ~c


(
−i~S · ~∇

)
~F+(~r, t)(

i~S · ~∇
)
~F−(~r, t)



+ ~c


t∫

0

dτ

[
−i
∑
k

ζ(k)(t− τ)Sk∂k

]
~F+(~r, τ)

t∫
0

dτ

[
i
∑
k

ζ(k)(t− τ)Sk∂k

]
~F−(~r, τ)



+ ~c


t∫

0

dτ

[
−i
∑
k

ξ(k)(t− τ)Sk∂k

]
~F−(~r, τ)

t∫
0

dτ

[
i
∑
k

ξ(k)(t− τ)Sk∂k

]
~F+(~r, τ)

 .

(3.4.36)
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Since we have already illustrated how to include a linear medium in the Riemann-Silberstein
time-evolution in the previous sections, it becomes now straightforward to combine the
PML with our existing implementation. Adding the PML expressions to the Riemann-
Silberstein Hamiltonian H in Eq. (1.1.41) and using

F(~r, t) =

(
~F+(~r, t)
~F−(~r, t)

)
, (3.4.37)

we arrive at a propagation scheme with perfectly matched layer boundaries

HPML(~r, t) = H(~r, t) + G(~r, t)F(~r, τ) , (3.4.38)

where the 6x6 PML operation G(~r, t)F(~r, τ) is given by

G(~r, t)F(~r, τ) =

( 1 0

0 −1

)
2×2

⊗

−i~c
t∫

0

dτ
∑
k

[
ζ(k)(t− τ)Sk∂k

]
3×3

F(~r, τ)

+

( 0 1

−1 0

)
2×2

⊗

−i~c
t∫

0

dτ
∑
k

[
ξ(k)(t− τ)Sk∂k

]
3×3

F(~r, τ) .

(3.4.39)
The left factor of the second Kronecker product in Eq. (3.4.39) has entries in the o�-
diagonal, and therefore the two Riemann-Silberstein vectors ~F± always couple in the PML
region.
In principle, the PML terms in Eq. (3.4.38) have to be calculated for each time step, which
massively increases computational cost. However, taking a closer look at Eqs. (3.4.34) and
(3.4.35), we notice that the two functions ζ(k)(t − τ) and ξ(k)(t − τ) contain exponential
factors. Therefore it is possible to obtain a rather accurate approximation of the terms
by using a recursive-convolution method [99] with �nite time steps ∆t. The recursive-
convolution method allows to express integrals of the form

g(t) =

t∫
0

dτe−α(t−τ)f1(t− τ)f2(τ) (3.4.40)

in terms of

g(m∆t) =

m∆t∫
0

dτe−α((m+1)∆t−τ)f1((m+ 1)∆t− τ)f2(τ)

= e−α∆t

(m−1)∆t∫
0

dτe−α((m−1)∆t−τ)f1((m− 1)∆t− τ)f2(τ)

︸ ︷︷ ︸
g((m−1)∆t)

+

m∆t∫
(m−1)∆t

dτe−α((m−1)∆t−τ)f1((m− 1)∆t− τ)f2(τ)

= e−α∆tg((m− 1)∆t) +

m∆t∫
(m−1)∆t

dτe−α((m+1)∆t−τ)f1((m+ 1)∆t− τ)f2(τ) ,

(3.4.41)
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where we have taken t = m∆t. For �nite yet su�ciently small time steps ∆t, it can
be assumed that the function f2(τ) in the last integral term on the right-hand side of
Eq. (3.4.41) is constant. This allows to take f2((m− 1)∆t) outside of the integral. In the
next step, we substitute α = σ, and the functions f1(t) and f2(t) with the corresponding
ones in Eq. (3.4.38)

f1,±,l(t) = −1

2
σ(l)

(
1± µ

ε
e−(µ/ε−1)σ(l)t

)
, (3.4.42)

f2,±,l(t) = ∂lF±,l(~r, t) . (3.4.43)

However, the above recursive convolution applied to Eqs. (3.4.38) and Eq. (3.4.39) does
not allow to express the term GF in Eq. (3.4.38) as a matrix vector multiplication with
an approximated matrix G and vector F . Nevertheless, it is possible to replace the whole
GF term by a 6x6 dimensional matrix, denoted as G̃

G̃(m∆t) = i~c0

(
g̃k,l(m∆t) g̃k,l′(m∆t)
g̃k′,l(m∆t) g̃k′,l′(m∆t)

)
. (3.4.44)

The matrix G̃ contains four 3x3 dimensional matrices, which are de�ned recursively and de-
pend on the current t = j∆t and the previous time t′ = (j−1)∆t. With using Eqs. (3.4.39)-
(3.4.43), these recursive matrices are given by

g̃k,l(m∆t) = akg̃k,l((m−1)∆t)δkl − b+,kεqlp∂pF+(~r,m∆t)δkq ,

g̃k,l′(m∆t) = akg̃k,l′((m−1)∆t)δkl′ − b+,kεql
′p∂pF+(~r,m∆t)δkq ,

g̃k′,l(m∆t) = −ak′ g̃k′,l((m+1)∆t)δk′l − b−,k′εqlp∂pF−(~r,m∆t)δk′q ,

g̃k′,l′(m∆t) = −ak′ g̃k′,l′((m+1)∆t)δk′l′ − b−,k′εqlp∂pF−(~r,m∆t)δk′q .

(3.4.45)

The auxiliary variables ak and b±,k result from the last line of Eq. (3.4.41) after taking
f2,±,k((m− 1)∆t) outside the integral. Hence, the factor ak is the exponential function

ak = e−σ(k)∆t , (3.4.46)

and b±,k is the result of the integral

b±,k =

m∆t∫
(m−1)∆t

dτe−σ(k)((m+1)∆t−τ)f1,±,k((m+ 1)∆t− τ)

=
1

2
e−2σ(k)∆t

(
1− eσ(k)∆t

)
± 1

2
e−2

µ
ε σ(k)∆t

(
1− e

µ
ε σ(k)∆t

)
.

(3.4.47)

Collecting all steps, we can express the Maxwell Riemann-Silberstein Hamiltonian
HPML from Eq. (3.4.38) in discretized form

HPML(~r,m∆t) = H+ G̃(~r,m∆t) . (3.4.48)

With this de�nition it is then straightforward to insert the above PML expression HPML

in the Maxwell propagator U of the numerical propagation equations in Eq. (5.3.3) or
Eq. (5.3.4) to enable the simulation of open Maxwell systems via PML absorption.
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In the last step, we have to determine the conductivity σ(u) adequately to get an optimal
PML. In FDTD, several useful pro�les for the conductivity σ(u) were found and we have
chosen for our Riemann-Silberstein PML the FDTD polynomial grading pro�le which has
the form [65]

σ(u)(u) =

(
|u| − bu
Lu − bu

)q
σ(u),max (3.4.49)

with direction coordinate u ∈ (x, y, z) where bu and Lu denote the corresponding boundary
dimensions in Fig. 3.1. The last variable σ(u),max for the grading pro�le is determined by

σ(u),max = −ε(q + 1)ln(R(0))

2µ(Lu − bu)
, (3.4.50)

where the tolerated re�ection error for normal angle incidence equal to zero can be set man-
ually. The only parameter that we still have to determine is the exponent q in Eq. (3.4.49),
which can only be done by a numerical screening. Therefore, we use the same simulation
setup as described in Sec. (3.3.1) also in MEEP units (ε = µ = c = 1), but select a smaller
cubic simulation box with perfectly matched layers and a �nite di�erence order of eight.
The total size of the box depends on the width of the absorbing boundaries since the in-
ner simulation box is in all cases equally sized. Additionally, the grid spacing is always
∆x = ∆y = ∆z = 0.2 and the simulation time ∆t = 0.1. We employ a series of runs by
using the external current density given in Eq. (3.4.51)

~jext,4(~r, t) = ~jext,0(~r) exp
(
− (t−10.0)2

8

)
cos (2.0 (t− 10.0)) . (3.4.51)

to compare the impact of the absorbing boundaries. The parameters except q, but including
the absorbing width wab, that we change for each run are shown in Table 3.2.

variable run 1 run 2 run 3 run 4 run 5 reference run
wab 0.5 1.0 1.5 2.0 2.5 4.0
Lx 10.5 11.0 11.5 12.0 12.5 54.0
Ly 10.5 11.0 11.5 12.0 12.5 54.0
Lz 10.5 11.0 11.5 12.0 12.5 54.0
bx 10.0 10.0 10.0 10.0 10.0 50.0
by 10.0 10.0 10.0 10.0 10.0 50.0
bz 10.0 10.0 10.0 10.0 10.0 50.0

∆x,∆y,∆z 0.2 0.2 0.2 0.2 0.2 0.2
�nite di�erence order 8 8 8 8 8 8
exponential order 4 4 4 4 4 4

∆t 0.1 0.1 0.1 0.1 0.1 0.1
ε 1 1 1 1 1 1
µ 1 1 1 1 1 1
c 1 1 1 1 1 1

Table 3.2: Physical and simulation parameters of external current simu-
lation for screening the parameters of the PML absorbing boundaries

To evaluate the quality of the absorbing boundary, we apply a reference run with a box
that is chosen so large (Lx = Ly = Lz = 54.0) that boundary e�ects do not arise. In
the following the index i denotes the run number referring to Table (3.2), except the
reference which denoted by an "ref" index. First, we take a look at the energy inside the
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Figure 3.13: Relative variation of the energy and the electric �eld at
two points for di�erent parameters q. Panel a) shows the quotient of the
Maxwell energy inside the box at time t2 = 40.0, when the energy should
be approximately zero, and time t1 = 14.7, when the box energy reaches
its maximum. Additionally, panel 2) gives the re�ection coe�cients at
point ~r1 and ~r2.

box. Since we know that the external current causes electromagnetic waves that leave the
box, the electromagnetic energy should fall to zero when the wave reaches the boundaries.
Therefore, we plot the quotient of the box energies 〈E(t)〉 at time time t1 = 14.7 and
t2 = 40.0 using Eq. (1.1.69) with the inner box limits

CE =
|〈Ei(t2)〉|
|〈Ei(t1)〉|

. (3.4.52)

According to Figure 3.5, time t1 corresponds to the maximum box energy. Additionally, we
evaluate the re�ection coe�cient based on the electric �eld at two grid points ~r1 = (8, 0, 0)
and ~r2 = (8, 8, 0). In our case, we calculate the re�ection coe�cient via the energy density
u(t) using Eq. (1.1.67) at the corresponding point ~r1/2 and the re�ection coe�cient given
by

R1/2 =
max |ui(t)− uref(t)|

max |uref(t)|
(3.4.53)

for the corresponding grid point and a maximum time of t = 40.0. Both variables, CE
and R1/2, depending on the PML exponent parameter q is shown in Figure 3.4.2. The
impact of the PML does not simply increase with the width of the absorbing boundaries.
The exponential factor q is more relevant for the absorbing e�ciency. According to our
�ve runs, the optimal setting for q is between two and three, and the width of the PML
region or equivalently the number of grid points along the axis (wab/∆x, wab/∆y, wab/∆z)
should be larger than seven.
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Figure 3.14: Comparison of absorbing mask and perfectly matched layer
boundary conditions. Similar to Figure 3.4.2, the energy quotient of the
box energy at t2 = 40.0 divided by the box energy at time t1 = 14.7 is
plotted in panel a), and the re�ection coe�cients at ~r1 and ~r2 in panel
b).

3.4.3 Comparison of absorbing mask and perfectly matched layer boundaries

In this section, we compare the two di�erent absorbing boundary schemes, the absorbing
mask boundary and the perfectly matched layer. For this reason, we use the same simu-
lation setup as for �nding the optimal parameters for the PML in Sec. 3.4.2. Again, we
simulate �ve runs plus one reference run for each absorbing scheme using the parameters
given in Table 3.2 and calculate the energy coe�cient CE of Eq.(3.4.52) and re�ection
coe�cient R1/2 of Eq. (3.4.52). Besides the width of the absorbing mask, there is no other
characteristic parameter. For the PML we select for the comparison the parameter q = 2,
which corresponds to the minimum re�ection e�ects according to Figure 3.4.2. The com-
parison of CE and R1/2 for both absorbing methods as function of the absorbing boundary
width wab is illustrated in Figure 3.14. It reveals that in case of the absorbing mask an
increasing boundary width does not improve signi�cantly the result. The CE-Factor stays
almost constant, and the re�ection constant R1/2 decreases slightly. In contrast, the PML
absorbing improves all absorbing features for larger wab and becomes signi�cantly better
than the mask method. Only if the width wab is rather small, this behavior reverses.

3.4.4 Incident plane waves boundaries

Very common experimental setups to examine optical properties are based on disturbing
a molecular system with various kinds of external electromagnetic pulses. In most cases,
the used light pulse has a mathematically closed description and can be evolved in time
analytically. For this situation, it is not necessary to chose such a large Maxwell simulation
box so that the external light signal is completely inside the box. In addition, some
analytical waves i.g. plane waves are in in principle only terminated parallel to their
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wavevector ~k, but conceptually constant in space and periodic in time in the direction
perpendicular to ~k. A convenient method to simulate such waves in the Maxwell simulation
box can be obtained by using a boundary region as a frame where the grid point values
are calculated via their analytical formula.
Figure FIG. 3.15 illustrates in a 2D cut the analytically calculated outer frame around the
simulation box and a Gaussian shaped plane wave propagates parallel to the corresponding
wavevector ~k. All grid points which are inside the green frame boundary region are set
by the analytical values of the plane wave function at the respective points. The number
of necessary boundary grid points in each dimension is coupled to the given accuracy
order of the spatial derivative operator. It is not su�cient to set only the points next
to the box border, since we also have to take care of the discrete derivative operator
and the corresponding stencil. The two-dimensional stencil in �gure (3.2) shows that the
spatial derivative of accuracy order n at the point xi,j is determined by the point values
of xi−n,j , ..., xi+n,j and xi,j−n, ..., xi,j+n. Therefore, the width of the plane wave region has
to be chosen, such that it contains n points in each direction.

Figure 3.15: The green analytical wave region in this two-dimensional cut
surrounds the free Maxwell propagation area to simulate incident waves
and their propagation through the simulation box. The simulation box
dimensions are denoted as Lx and Ly, and the inner free propagation
box dimensions are bx and by. The boundary width is determined by the
size of the �nite di�erence grid stencil. The �gure shows schematically
a Gaussian wave with wavevector ~k propagating through the simulation
box.

A single analytical wave with wave vector ~k and corresponding frequency ω can be
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expressed in terms of the six-component Riemann-Silberstein vector F(~r, t) that depends
on the scalar propagation relation (−~k ·~r−ωt). In general, an arbitrary shaped analytical
wave can be obtained by a superposition of di�erent linear independent waves with

Fpw(~r, t) =
∑
i

Fpw,(i)(~r )exp
(

i(~k(i)~r − ω(i)t)
)
, (3.4.54)

where the ith wave is represented by its wavevector ~k(i) and frequency ω(i) and by a
Riemann-Silberstein vector Fpw,(i) as initial vector.

In the following, we illustrate as example a simulation of two Gaussian light pulses,
which enter the simulation box, interfere and leave the box. Speci�cally, we select the two
electric �eld functions

~Epw,(1)(~r1, t) = E0,1,z

0
0
1

 cos
(
~k1 · (~r1 − ~r1,0)− c0|~k1|t

)
exp

−
(
~r1 − ~r1,0 − c0|~k1|t

)2

2w2
1

 ,

(3.4.55)

~Epw,(2)(~r2, t) = E0,2,z

0
0
1

 cos
(
~k2 · (~r2 − ~r2,0)− c0|~k2|t

)
exp

−
(
~r2 − ~r2,0 − c0|~k2|t

)2

2w2
2

 ,

(3.4.56)

Both electric �elds have only a polarization along the z-direction and the corresponding
wavevectors

~k1 =

√
2

2

 1
−1

0

 , ~k2 =
1

2
√

5

−2
−1

0

 . (3.4.57)

with corresponding frequencies ω1 = c0|~k1| and ω2 = c0|~k2|. They are shifted by the vectors
~r1,0 and ~r2,0 with

~r1,0 = 25.0

√
2

2

−1
1
0

 , ~r2,0 = 25.0
1√
5

−2
1
0

 . (3.4.58)

The Gaussian width for the �rst one is w1 = 4.0, the second one w2 = 6.0, and the
�eld amplitudes are given by E0,1,z = 0.5 and E0,2,z = 0.5 . The laser pulses propagate
perpendicular to their wavevectors and since the electric-�eld polarization is oriented along
the z-axis the corresponding magnetic �elds have the form

~Bpw,(1)(~r1, t) =
E0,1,z

c0

√
2

−1
−1

0

 cos
(
~k1 · (~r1 − ~r1,0)− c0|~k1|t

)
exp

−
(
~r1 − ~r1,0 − c0|~k1|t

)2

2w2
1

 ,

(3.4.59)

~Bpw,(2)(~r2, t) =
E0,2,z

c0

√
5

−1
2
0

 cos
(
~k2 · (~r2 − ~r2,0)− c0|~k2|t

)
exp

−
(
~r2 − ~r2,0 − c0|~k2|t

)2

2w2
2

 .

(3.4.60)
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Figure 3.16: Incident plane wave simulation of two interfering plane waves. The
panels a1 - a4 illustrate the box simulation scheme with the incident plane wave
boundaries in green and the two Gaussian signals, which propagate into the di-
rection of the box. On the right-hand side, denoted by b1 - b4, we show the
two-dimensional cut of the simulation results. The four screenshots show relevant
points in time, e.g., the two signals enter the box [a2, b2], their maximum inter-
ference in the middle of the box [a3, b3], and when they leave the box again [a4,
b4].
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Using the electric and magnetic �elds in Eqs. (3.4.55)-(3.4.56) and (3.4.59)-(3.4.60), we
can build the underlying Riemann-Silberstein vector Fpw(~r, t) for the superposition of the
waves according to

Fpw(~r, t) =

√ ε0
2

(
~Epw,1(~r, t) + ~Epw,2(~r, t)

)
+ i
√

1
2µ0

(
~Bpw,1(~r, t) + ~Bpw,2(~r, t)

)
√

ε0
2

(
~Epw,1(~r, t) + ~Epw,2(~r, t)

)
− i
√

1
2µ0

(
~Bpw,1(~r, t) + ~Bpw,2(~r, t)

)
 .

(3.4.61)

This equation determines all Riemann-Silberstein values inside the plane wave boundary
region. The remaining values inside the free propagation region are calculated by the
homogeneous time-evolution Eq. (2.1.15), since we only consider a propagation in vacuum.
As before, we use ε0 = µ0 = c0 = 1 for the electromagnetic constants. The simulation box
limits are Lx = Ly = Lz = 10.0 with spacing ∆x = ∆y = ∆z = 0.25. We select a �nite
di�erence order of n = 8 and since the width wpw of the plane wave boundaries are coupled
to this order with wpw = n∆x = n∆y = n∆z, the plane wave boundary limits are given
by bx = by = bz = 8. All simulation parameters are given in Table (3.3). Two-dimensional

variable MEEP units
Lx 10.0
Ly 10.0
Lz 10.0

∆x,∆y,∆z 0.25
�nite di�erence order 8
exponential order 4

∆t 0.144
ε0 1
µ0 1
c0 1

variable MEEP units
kx,1 0.707
ky,1 -0.707
kz,1 0.000
E0,1,z 0.500
w1 4.000
kx,2 -0.447
ky,2 -0.223
kz,2 0.000
E0,2,z 0.500
w2 6.000

Table 3.3: Simulation parameters for the incident plane waves run with
two interfering incident waves.

snapshots of the electric �eld in z-direction in the xy-plane are illustrated in Figure 3.16.
All panels denoted by ai) on the right-hand side of that �gure, give the schematic setup
of the simulation with a corresponding analytical calculation. The cut through the cubic
simulation box is surrounded by the incident plane wave boundaries in green. In other
words, the simulation box represents only a small section of the total environment and the
boundaries ensure that the plane waves arise and propagate correctly through the box.
The �gures b1) - b4) on the right-hand side show a cut through the simulation box which
corresponds to the section in a1) - a4). In contrast to the left-hand side, the given contour
shows the simulation output calculated by Octopus. In a1) and b1), we display the initial
Gaussian pulses at time t0 = 0. Since the signi�cant signal amplitludes are located outside
the simulation box, the Riemann-Silberstein vector inside the box and on the plane wave
frame is almost zero.
After several time steps at time t1 = 10.0, in a2) and b2), the two Maxwell plane waves hit
the simulation box. The plane wave region with the predetermined analytical values based
on the given initial Maxwell plane waves ensure that the two electromagnetic signals arise
at the border of the simulation box, when the signi�cant signal amplitude reaches the box
limits. The two plane waves propagate through the inner simulation region and start to
interfere.
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While one plane wave propagates from the upper left to the lower right side, and the other
one in the opposite direction from the upper left to the lower right, the interference pattern
moves from the upper to the lower box boundary. At the time t2 = 25.0, shown in a3) and
b3), the electric �eld reaches a maximum of the two interfered plane waves, which is in the
middle of the simulation box. Due to the linearity of Maxwell's equations, the two plane
waves continue their propagation independently.
Finally, in a4) and b4), at time t3 = 35.0, both Maxwell plane waves passed the simulation
box and are outside again, but contrary to the initial state in a1) and b1). The �rst
Gaussian plane wave pulse with higher carrier frequency reached the lower right side and
whereas the second Gaussian plane wave pulse with lower carrier frequency is in the lower
left side. Without any Maxwell-matter coupling, the Maxwell �elds return to zero inside
the simulation box.
Comparing both cases, the analytical plotted �gures ai) and the numerically calculated
ones of ai) show, that both propagation results agree very well. In the next section, we
compare more quantitatively the di�erence and error between the exact analytical and
numerical propagation of plane waves.

3.4.5 Numerical dispersion for plane wave propagation

In this section we evaluate our Riemann-Silberstein Maxwell-propagation method by bench-
marking the numerical propagation with analytical wave solutions. As a simulation setup,
we chose a Maxwell simulation box with incident plane waves boundaries where a Gaus-
sian shaped wave is shifted outside the box and propagates through the simulation box
over time similar to Sec 3.4.4. It can be assumed that the error between the numerical
and exact propagation depends on the wavelength of the plane wave. To get systematic
results, we simulate a batch of di�erent wavelengths λ for the Gaussian plane wave where
we also couple the Gaussian width to the wavelength. The wavevector is set parallel to the
x-axis and the polarization direction of the wave is chosen along the z-axis. The analytical
formula for the Gaussian plane wave electric �eld ~Epw(~r, t) takes the form

~Epw(~r, ~r0, t) = ~ezexp

(
(x− x0)2

2λ2

)
cos(2π/λ(x− x0)− ωt) , (3.4.62)

with corresponding magnetic �eld

~Bpw(~r, t) = −~ey
1

c0

~Epw(~r, t) , (3.4.63)

which leads to the plane wave Riemann-Silberstein six-vector Fpw(~r, t)

Fpw(~r, t) =

√ ε0
2
~Epw(~r, t) + i

√
1

2µ0

~Bpw(~r, t)√
ε0
2
~Epw(~r, t)− i

√
1

2µ0

~Bpw(~r, t)

 . (3.4.64)

The shift parameter x0 is set such that the Gaussian amplitude exp
(

(x−x0)2

2λ2

)
is lower than

1e−6 inside the whole simulation box. Consequently, we get two distinguished times, the
�rst one tstart represents the time, where the Gaussian amplitude at the origin is lower
than 1e−6 before the light pulse passes the box and in turn tend gives the time, when
the whole Gaussian amplitude is again lower than 1e−6 inside the box after the light
pulse propagation. The outer dimensions of the parallelepiped simulation box is 35.0 in
x-direction and 10 in y- and z-direction.
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variable MEEP units
Lx 10.0
Ly 10.0
Lz 10.0

exponential order 4
∆t 0.144
ε0 1
µ0 1
c0 1

Table 3.4: Simulation box and time parameters for the numerical dis-
persion run with an incident wave pulse.

In addition to the wave length dependency for the numerical Riemann-Silberstein prop-
agator, we examine the di�erences of our Maxwell simulation for two di�erent grid spacings
and four di�erent �nite di�erence orders for the spatial �rst derivative operation. There-
fore, we perform a series of runs with di�erent selected wavelengths. The wavelength with
corresponding run number can be found in Table 3.5.

Figure 3.17: The graph of the numerical dispersion shows that the numerical
accuracy depends on the wavelength of the propagated plane waves. Except the
three graphs for grid spacing 0.5 and higher derivative accuracy order of n = 2,
the accuracy of the free Maxwell plane wave propagation increases approximately
linearly with the wavelength dispersion on a log-log scale. The excepted three
graphs feature a knee around λ = 25.0 where the accuracy begins to decrease for
higher wavelengths.

Since we evaluate the quality of the plane wave propagation we have to �nd a scalar
variable that represent the variation between the exact analytical propagation and our
numerical simulation. In a �rst step we have to take into account, that the wavelength
dependency of Eq. (3.4.62) scales the length and time of the signal. Therefore, we map each
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run number 1 2 3 4 5 6 7 8 9
wavelength λ 1.0 2.0 3.0 4.0 5.0 10.0 15.0 20.0 25.0

run number 10 11 12 13 14 15 16 17
wavelength λ 30.0 35.0 40.0 45.0 50.0 100.0 500.0 1000.0

Table 3.5: Simulation box and time parameters for the numerical dispersion run
with an incident wave pulse.

Gaussian plane wave pulse to normalized times with tstart → 0 and tend → 1. Consequently,
each Gaussian pulse has the same shape and temporal scale. After that, we take the
calculated mapped Riemann-Silberstein vector Fmap(~r, t, λi) and the analytical mapped
Riemann-Silberstein vector Fpw,map(~r, t, λi) of run i and de�ne the integral

vari =

1∫
0

dt

√(
Fmap(~r0, t, λi)−Fpw,map(~r0, t, λi)

)2

=

(
1
1

) 1∫
0

dt

√(
~Fmap,+(~r0, t, λi)− ~Fpw,map,+(~r0, t, λi)

)(
~Fmap,−(~r0, t, λi)− ~Fpw,map,−(~r0, t, λi)

)
,

(3.4.65)
where ~r0 denotes the origin of the simulation box. The variance vari characterizes the
numerical dispersion relation, which means it determines the error between the exact ana-
lytical and the calculated light pulse propagation since it depends on the wavelength λ. In
Figure 3.17 we plot in log-log scale the variance vari for all considered wavelengths from
Table 3.5 and di�erent �nite di�erence orders and grid spacings. The plot reveals that the
variance is rather signi�cant for small wavelengths. This corresponds to the general feature
of numerical grids that the resolution of waves are of low quality when the wavelength is
near the same magnitude as the grid spacing. Therefore, the variance decreases for in-
creasing wavelength and in most cases, a �ner grid spacing leads to a smaller variance.
Whereas the log-log graph of the 0.25 grid spacing shows a linear decrease, the variances
for the 0.5 grid spacing increases for wavelengths larger than 50.0.

3.4.6 Incident waves boundaries plus absorbing boundaries

The incident waves boundaries simulate a signal that enters the simulation box. In contrast,
the perfectly matched layer damps all outgoing electromagnetic �elds. For our purpose, we
want to combine both boundary condition. We know, due to the analytical behavior of the
incident waves, the incoming �elds for all times. In addition, the outgoing electromagnetic
signals should not cause any re�ection at the boundaries. In the previous section, we have
seen how the PML looks like only for the absorbing boundary condition. Hence, since we
know how an undisturbed wave passes the simulation box, we can subtract this wave in
the entire simulation box from the total disturbed �eld and apply the PML. For proper
incident waves with absorbing boundaries, we split the boundary region into two regions,
one outer region for the incident waves frame, and an inner one for the PML as it is shown
in �gure FIG. (3.18). The limits of the inner boundary region are still represented by
bx, by, bz, the outer boundaries are denoted by ax, ay, az and are located between the inner
boundary region and the total box limits Lx, Ly, Lz.

Now, a combined wave plus PML step applies �rst a subtraction of the undisturbed
wave. After that the PML acts on the remaining �eld. As a last step, the undisturbed wave
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Figure 3.18: In the 2-dimensional cut of the simulation box with total di-
mensions Lx, and Ly, the boundary region is split into two subareas with
analytical waves and PML boundary conditions. The outer boundaries
with the limits Lx, bx, and Ly, by are the analytical waves boundaries,
whereas the inner boundaries determined by ax, bx, and ay, by belong to
the PML region.

is added again to the �eld. We note, that there are two options to get the values of the
incident wave which have to be subtracted. First, one can use simply the analytical wave
values for the current time step. The second option requires a second auxiliary propagation
which has to be performed concurrently with the full system propagation. In this case,
the unperturbed wave propagation is calculated by the discretized Maxwell time-evolution
operator. This method avoids numerical re�ection artefacts at the boundary due to the
fact, that there is always a numerical error between the analytical wave and a numerically
simulated one.

3.5 Riemann-Silberstein Maxwell propagation for linear me-

dia

After introducing in the previous sections electromagnetic simulations based on the micro-
scopic Maxwell's equations, we demonstrate in this section our implementation for elec-
tromagnetic �eld propagations in the presence of a linear medium. As set up we consider
a laser pulse in vacuum that hits a simulation box which contains a linear medium which
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scatters the light pulse. To describe the incident laser pulse, we take a simulation box
with incident plane waves boundaries to propagate the light pulse starting outside the box
and entering at the boundaries. Since we simulate an open system, we have to absorb the
scattered light by the combined incident plane waves boundaries plus perfectly matched
layer, which we introduced in Sec. 3.4.6. A two-dimensional cut through the simulation
box with corresponding relevant coordinates can be seen in Figure 3.19. The simulation
box is similar to Figure 3.18, but in addition we include the perpendicular medium box
centered at the origin. The corresponding box dimensions are determined by llm,x, llm,y,
llm,z, which is half of the box length in each direction. The medium box size parameters
for the simulations that we present in the following are llm,x = llm,y = llm,z = 5.0 and
the total simulation box sizes are given by Lx = Ly = Lz = 20.0 with the grid spacing
∆x = ∆y = ∆z = 0.1. To obtain a high quality of electromagnetic �eld absorption at
the boundaries, we chose an absorbing boundary width wab = 4.2. Furthermore, taking a
derivative order of eight for the �nite di�erence operation leads with the selected grid spac-
ing to a width wpw = 0.8. Hence, the total boundary width becomes wb = wab +wpw = 5.0
and the inner free simulation box area dimensions are bx = by = bz = 15.0.
Inside the medium box, the electric permittivity εlm and the magnetic permeability µlm

di�er from the vacuum constants ε0, µ0. We keep the electromagnetic constants equal to
one (ε0 = µ0 = c0 = 1) as before in the previous sections and chose the corresponding
medium values εlm = µlm = 2.0, and clm = 0.5. All necessary box and medium parameters
are listed in Table 3.6 on the left-hand side.

The external laser pulse is given by the incident wave of Eq. (3.4.54) parallel to the
x-axis. Instead of a Gaussian shaped pulse like in Sec. 3.4.6, we select a cosinusoidally
shaped pulse, which is given in closed form by

~Epw(~r, t) =

~ezE0,z cos

(
kx(x−x0)− 2π

λ
t

)
cos

(
π(x−2ξ−x0−c0t)

2ξ
+ π

)
· θ

(
ξ−
|kx(x−x0)− 2π

λ t|
|kx|

)
,

(3.5.1)
and determines the electric �eld. The arising θ(x) denotes the usual Heaviside theta
function. The wavevector ~k has only a kx component, the light pulse is shifted by x0,
and the pulse shift is determined by its characteristic width parameter ξ. The orthogonal
condition between electric �eld, magnetic �eld and electromagnetic wave yields for the
magnetic �eld

~Bpw(~r, t) = −~ey
1

c0

~Epw(~r, t) . (3.5.2)

Therefore the plane wave six-component Riemann-Silberstein vector Fpw(~r, t) takes the
form

Fpw(~r, t) =

√ ε0
2
~Epw(~r, t) + i

√
1

2µ0

~Bpw(~r, t)√
ε0
2
~Epw(~r, t)− i

√
1

2µ0

~Bpw(~r, t)

 . (3.5.3)

The corresponding laser parameters together with the medium parameters can be taken
from the right-hand side of Table 3.6.

In case of an electromagnetic propagation with a linear medium, the underlying Maxwell's
equations in Riemann-Silberstein representation are given by Eq (1.2.38). Since we have
no external current density, they take here the simpler form

i~
∂

∂t
F(~r, t) = Hlm(~r, t)F(~r, t) , (3.5.4)
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Figure 3.19: Simulation box illustration with an linear medium box in
the center and combined incident waves and perfectly matched layer
boundaries. The used parameters are equal to the ones of Figure 3.18. In
addition we consider here the medium box limits lx, ly which correspond
to half the length of the box.

where Hlm(~r, t) of Eq. (1.2.39) gives

Hlm(~r, t) = Hlm,(0)(~r, t) +Klm(~r, t) , (3.5.5)

with

Hlm,(0)(~r, t) =

(
1 0
0 1

)
2×2

⊗
(
− i~c(~r, t)~∇ · ~S

)
3×3

. (3.5.6)

For our medium we take a linear medium constant in time without any losses. Therefore,
the time derivatives of εlm and µlm as well as the electric and magnetic conductivity σe and
σm are equal to zero. Hence, the medium matrix function Klm(~r, t) of the total Hlm(~r, t)
simpli�es with Eq. (1.2.41) to

Klm(~r, t) =

(
−1 −1

1 1

)
2×2

⊗
(
− i~

c(~r, t)

4ε(~r, t)

[
~S ·
(
~∇ε(~r, t)

)])
3×3

+

(
−1 1
−1 1

)
2×2

⊗
(
− i~

c(~r, t)

4µ(~r, t)

[
~S ·
(
~∇µ(~r, t)

)])
3×3

.

(3.5.7)
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variable MEEP units
Lx 20.0
Ly 20.0
Lz 20.0
bx 15.0
by 15.0
bz 15.0
ax 19.2
ay 19.2
az 19.2

∆x,∆y,∆z 0.25
�nite di�erence order 8
exponential order 4

∆t 0.144

variable MEEP units
kx 0.628
E0,z 0.001
ξ 10.0
x0 - 40.0
ε0 1
µ0 1
c0 1
llm,x 5.0
llm,y 5.0
llm,z 5.0
εlm 2.0
µlm 2.0
clm 0.5

Table 3.6: Simulation parameters for the laser pulse run that hits a cubic
linear medium box.

The six-dimensional Hamiltonian-like matrixHlm(~r, t) determines the time-evolution, which
is given by the time-evolution operator Eq. (2.3.6) for a constant linear medium

Ulm(t, t0) = exp

[
− i

~
(t− t0)Hlm(~r )

]
. (3.5.8)

Finally, we take this time evolution operator and use the recursive time-evolution Eq. (3.2.2)
and adapt it for the present simulation, which leads to

Flm(~r, (m+ 1)∆t) = Ulm((m+ 1)∆t,m∆t)Flm(~r,m∆t) . (3.5.9)

Based on the previous considerations, we run our Riemann-Silberstein implementation
in Octopus and present some snapshots of the electric �eld motion. All �gures have the
same color table limits between −0.300 and +0.300 to ease the comparison of the presented
electric �elds. Figure 3.20 shows a sequence of electric �elds for a time interval of 6.0
starting at time t = 20.0. At that time, the incident plane wave enters the simulation box
and is reaching the beginning of the medium as can be seen in Figure 3.20 a). Following
the propagation further in panel b) at time t = 26.0, we can see the scattering e�ects of the
medium. Due to the selected medium parameters, the speed of light is half compared to the
speed of light in vacuum. Consequently, the wave front outside the medium box already
passed the box, whereas the wave front inside passed one half of the box. Shortly later in
panel c) at time t = 32.0, the center of the external laser pulse passed the medium box.
The wave front is dented around the box area and the light di�racts. The �gure clearly
visualizes the di�erent wave lengths of the laser pulse inside the box, which corresponds
to the dispersion rule for a linear medium λlm = λ/

√
εlmµlm. The next snapshot in panel

d) at time t = 38.0 demonstrates one consequence of the retarded light pulse propagation
inside the medium box. When the light pulse passed through the box it interferes with
the external di�racted light and here the maxima meet and cause a large electric �eld
enhancement right outside the medium box. The electric �eld is more than three times
larger compared to the incident pulse maximum. The same snapshot shows that the
external laser left already half of the free Maxwell simulation area and hit the absorbing
perfectly matched layer region. The last two panels e) and f) at times t = 44.0 respectively
t = 50.0 visualize the electric �eld reaction when the external laser left the simulation box.

74



Figure 3.20: Sequence of the electric �eld simulated by a Riemann-Silberstein
Maxwell propagation including a linear medium box. The snapshots were taken
for a time interval of 6.0 starting at time t = 20.0. The light pulse has already
entered the simulation box and hits the medium box in panel a). Following the
propagation further in panel b) and c) shows the scattering e�ects of the medium.
The incoming external signal plus the scattered and di�racted �eld causes a �eld
enhancement, which is shown in panel d). The last two panels e) and f) show the
emitted �eld radiation of the medium box.
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Due to the interaction with the medium, there is still a signi�cant electric �eld inside the
box which radiates and slowly decrease in time since the PML absorbs the outgoing �eld.

The present example of a Maxwell propagation with a linear medium demonstrates that
the implemented code can handle arbitrary simulation box designs with a linear medium
geometry. In addition to the medium parameters εlm, µlm and clm that we used in the
application, the implemented Riemann-Silberstein propagator also handles electric σe and
magnetic conduction σm. These parameters are useful to setup mirrors, semi-transparent
mirrors or perfect electric conductor mirrors, to simulate cavities or waveguides. Since
we considered the Riemann-Silberstein propagation in a more general form, the geometry
parameters can be time-dependent which leads us to the important aspect to consider the
matter more in detail in the following chapter. Up to now, we only considered matter as
a classical linear medium which leads to helicity coupling for the six-component Riemann-
Silberstein vector according to Sec. 1.2.4. The question how to replace the classical linear
medium as well as the external current density by adequate quantum mechanical variables
and proper coupling is discussed in the following chapters 4-6.
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Chapter 4

Theoretical fundamentals of

light-matter coupling

Quantum electrodynamics (QED) extends the classical electrodynamics that we consid-
ered in the previous chapters to a quantum �eld theory for coupled light-matter systems.
In a non-relativistic setting, we use in the present chapter the Pauli equation to build a
general Pauli-Fierz Hamiltonian for di�erent species of charged particles which couple to
the quantized electromagnetic �eld. Based on this starting point, we discuss construc-
tively the di�erent levels of Hamiltonians, starting from a non-interacting many-particle
Hamiltonian, then a Photon Hamiltonian coupled to a classical current, the longitudinal
interaction Hamiltonian and the transverse interaction Hamiltonian. By combining these
building blocks, we introduce a multi-species many-particle Hamiltonian for nuclei, elec-
trons, and photons. For this Hamiltonian we establish a quantum electromagnetic density
functional theory (QEDFT) for multi-species systems. In the mean-�eld limit this den-
sity functional approach reduces to coupled Maxwell-Pauli-Kohn-Sham equations. In these
equations the classical electromagnetic �eld is determined by the Maxwell's equations in
Riemann-Silberstein representation taking the Kohn-Sham current density as the inho-
mogeneous Maxwell current term. The novel Maxwell-Kohn-Sham equations with Pauli
magnetization term are simpli�ed in a last step by considering classical nuclei which obey
Ehrenfest dynamics.

4.1 Relativistic covariant notation

In the previous chapters it was convenient to use standard vector notation to describe clas-
sical electrodynamics (ED) and non-relativistic quantum mechanics (QM). To extend our
level of theory to quantum electrodynamics (QED), it is now bene�cial to use additionally
relativistic covariant notation.

In relativistic notation the position of the vector component indices matters. Upper
and lower indices distinguish two vector types (co- and contravariant vectors) that are
connected by the Minkowski metric with the signature g ≡ (+,−,−,−), and matrix form

g = gµν = gνµ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (4.1.1)

A vector in relativistic theories is a four-component vector denoted with upper Greek
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indices. An arbitrary vector aµ with µ = 0, 1, 2, 3 is given by

aµ =


a0

a1

a2

a3

 , (4.1.2)

whereas a vector with roman indices, i.e., ak with k = 1, 2, 3, is used in the following to
represent only the three spatial dimensions

~a =

a1

a2

a3

 . (4.1.3)

The contravariant counterpart of aµ is denoted with lower indices aµ. It is a standard
convention to use the Einstein summation convention to sum over repeated upper and
lower indices. In general, the contravariant version aµ of a four-component covariant vector
aµ can be obtained per de�nition by

aµ = gµνa
ν . (4.1.4)

Additionally to the full Minkowski metric gµν , we de�ne the corresponding spatial subma-
trix gkl with k = {1, 2, 3}, l = {1, 2, 3}, and εklm the anti-symmetric Levi-Civita tensor.
The following table of equations summarizes the relations between the standard vector
notation and the relativistic notation, where we use two four component vectors aµ, bµ

and a 3x3 matrix Mk
l

~a ≡ ak , (4.1.5)

M~a ≡Mk
l a

l (4.1.6)

~a ·~b ≡ −akbk = −akbk = −akblglk , (4.1.7)

~∇ · ~a ≡ ∂kak , (4.1.8)

ak = gkla
l ≡ −~a , (4.1.9)

~∇× ~a ≡ −εklm∂lam (4.1.10)

εklm = εabcgakgblgcm (4.1.11)

In section Sec. (1.1.3), we introduced the curl operation in terms of spin-1 matrices, which

appears on the right-hand side of Eq. (1.1.25). It is given by the scalar product
(
~S · ~∇

)
of the spin matrices vector ~S from Eq. (1.1.15) and the Nabla vector. This scalar product
in relativistic notation takes the form(

~S · ~∇
)

= Sk∂k . (4.1.12)

Hence, the k-component of the corresponding curl operation in terms of the spin-1 matrices
in relativistic notation is with Eq. (4.1.10) expressed by[

~∇× ~a
]k

=
[
−i
(
S · ~∇

)
~a
]k

= −i
(
Sl∂l

)k
m
am . (4.1.13)

In the following, to distinguish the covariant indices from other used indices we put the
non-covariant indices in parenthesis.
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4.2 Relativistic decomposition of spin particles and deriva-

tion of Maxwell's equations

Relativistic particles obey the energy-momentum relation

E2 = m2c2
0 + c2

0pkp
k (4.2.1)

for particles with mass like electrons and nuclei, and

E2 = pkpkc
2
0 (4.2.2)

for massless particles like photons. Substituting E = i~ ∂
∂t and p

k = −i~∂k leads to the
wave equations(

E2 − c2
0pkp

k −m2c2
0

)
Ψ(~r, t) = c2

0

(
−~2

c2
0

∂2
t + ~2∂k∂k −m2c2

0

)
Ψ(~r, t) = 0 , (4.2.3)

and (
E2 − c2

0pkp
k

)
Ψ(~r, t) = c2

0

(
−~2

c2
0

∂2
t + ~2∂k∂k

)
Ψ(~r, t) = 0 . (4.2.4)

Both equations are second order di�erential equations and in general their solutions are
scalar plane wave functions and describe spinless particles. In Eq. (4.2.4) the particles are
massless and the Klein-Gordon equation in Eq. (4.2.3) takes additionally particle masses
into account. Due to the squared expressions in Eqs (4.2.4) and (4.2.3), both terms can
be decomposed into

c2
0

(
− ~
c0
∂t + ~∂k −m

)(
− ~
c0
∂t − ~∂k +m

)
Ψ(~r, t) = 0 . (4.2.5)

and

c2
0

(
− ~
c0
∂t + ~∂k

)(
− ~
c0
∂t − ~∂k

)
Ψ(~r, t) = 0 , (4.2.6)

Considering di�erent spin-types, the fundamental energy-momentum relation does not hold
for scalar wavefunctions ψ(~r, t), hence each type of spin requires a speci�c matrix algebra
that transforms the corresponding second order di�erential equations into a �rst order
di�erential equation. Dirac used such an ansatz to describe free spin-1/2 particles in space
with respect to the relativistic energy-momentum relation and introduced the well known
γ matrices with [100]

γ0 =

(
12 0
0 12

)
, γk =

(
0 σk

−σk 0

)
. (4.2.7)

The 12 denotes the two-dimensional identity matrix and σk the three Pauli-matrices [100]

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
1 −1

)
. (4.2.8)

The Pauli-matrices are related to each other by

σkσl =
1

2

({
σk, σl

}
+
[
σk, σl

])
= δkl12 − iεkljσj .

(4.2.9)
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Due to the four-dimensional Dirac-matrices, the corresponding wavefunctions Ψ4(~r, t) have
four spinor components. The underlying relativistic energy-momentum relation is with help
of Eq. (4.2.3) given by(

14E
2 − 14c

2
0pkp

k − 14m
2c2

0

)
Ψ4(~r, t) = c2

0

(
−14

~
c2

0

∂2
t + 14~∂k∂k − 14m

2

)
Ψ4(~r, t) = 0 .

(4.2.10)

Using the Dirac-matrices leads to the corresponding decomposition of Eq. (4.2.10) [100]

c2
0

(
−γ0

~
c0
∂t + ~γk∂k − 14m

)(
−γ0

~
c0
∂t − ~γk∂k + 14m

)
Ψ4(~r, t) = 0 . (4.2.11)

This decomposition of the basic relativistic wave function can also be applied to massless
spin-1 particles, e.g. photons. Photon wave functions ψ3(~r, t) are three-dimensional and
the energy-momentum relation takes with the three-dimensional identity operator 13 the
form (

13E
2 − 13c

2
0pkp

k

)
Ψ3(~r, t) = ~2c2

0

(
13∂

k∂k − 13
1

c2
0

∂2
t

)
Ψ3(~r, t) = 0 . (4.2.12)

The corresponding decomposition requires spin-1 matrices. We introduced them in Eq.(1.1.3)
to express an identity operation for the curl, here given by their covariant notation

S1 =

 0 0 0
0 0 −i
0 i 0

 , S2 =

 0 0 i
0 0 0
−i 0 0

 , S3 =

 0 −i 0
i 0 0
0 0 0

 .

(4.2.13)

Similar to the Pauli-matrices, the spin-1 matrices obey the following algebra[
Sk, Sl

]
= −iεklmSm , ~S2 = 13 . (4.2.14)

Although, the spin-1 matrices and higher-order spin-matrices obey the same algebra as
the spin-1/2 matrices, their decomposition cannot be written in a pure binomial form.
We have to add an additional term as a side condition for the three-dimensional Ψ3(~r, t)
wavefunctions. The spin-1 decomposition form has been considered in Ref. [69, 70], and is
given by

~2c2
0

(
−13

1

c0
∂t + Sk∂k

)(
−13

1

c0
∂t − Sk∂k

)
Ψ3(~r, t) + ~2c2

0

 ∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂2
3

Ψ3(~r, t) = 0 ,

(4.2.15)

with Sk from Eq. (1.1.3) and the relativistic scalar product of Eq. (4.1.7). The correspond-
ing complex conjugate of Eq. (4.2.15) is

~2c2
0

(
−13

1

c0
∂t − Sk∂k

)(
−13

1

c0
∂t + Sk∂k

)
Ψ∗3(~r, t) + ~2c2

0

 ∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂2
3

Ψ∗3(~r, t) = 0 .

(4.2.16)
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The two brackets inside the �rst terms of the left-hand side of Eq. (4.2.15) and Eq. (4.2.16)
commute, so that both can be combined into one six-dimensional equation by

~2c2
0

[(
1 0
0 1

)
2×2

⊗
(
13

-1
c0
∂t

)
3×3

+

(
1 0
0 -1

)
2×2

⊗
(
Sk∂k

)
3×3

][(
1 0
0 1

)
2×2

⊗
(
13

-1
c0
∂t

)
3×3

−
(

1 0
0 -1

)
2×2

⊗
(
Sk∂k

)
3×3

](
Ψ3(~r, t)

Ψ∗3(~r, t)

)

+~2c2
0

(1 0
0 1

)
2×2

⊗

 ∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂2
3


3×3

(Ψ3(~r, t)

Ψ∗3(~r, t)

)
= 0 .

(4.2.17)
This equation holds if both terms are equal to zero independently, but other combinations
are also possible [70]. The �rst term on the left-hand side of Eq. (4.2.17) is equal to zero,
if either[(

1 0
0 1

)
2×2

⊗
(
− 13~∂t

)
3×3

−
(

1 0
0 -1

)
2×2

⊗
(
c0~Sk∂k

)
3×3

](
Ψ3(~r, t)
Ψ∗3(~r, t)

)
= 0 . (4.2.18)

or[(
1 0
0 1

)
2×2

⊗
(
− 13i~∂t

)
3×3

+

(
1 0
0 -1

)
2×2

⊗
(
− ic0~Sk∂k

)
3×3

](
Ψ3(~r, t)
Ψ∗3(~r, t)

)
= 0 . (4.2.19)

In Eq. (4.2.11), the corresponding spin-1/2 4-spinor wavefunction obeys the one particle
relativistic equation of motion for a fermion. As before, we consider Eq. (4.2.17) as the
relativistic spin-1 equation of motion and Ψ3(~r, t) its one particle photon wavefunction.
Comparing Eq. (4.2.18) with Eq.(1.1.43) shows that both are equivalent if the Riemann-
Rilberstein vectors ~F+(~r, t), Ψ∗3(~r, t), and F(~r, t) correspond directly to the one photon
wavefunction

~F+(~r, t) = Ψ3(~r, t) , ~F−(~r, t) = Ψ∗3(~r, t) , F(~r, t) =

(
Ψ3(~r, t)
Ψ∗3(~r, t)

)
. (4.2.20)

The term on the left-hand side of Eq. (4.2.18) multiplied by the imaginary unit leads to
the combined Ampère's and Faraday's law in Riemann-Silberstein representation[(

1 0
0 1

)
2×2

⊗
(
− 13i~∂t

)
3×3

+

(
1 0
0 -1

)
2×2

⊗
(
− ic0~Sk∂k

)
3×3

]
F(~r, t) =

[
H− 16i~∂t

]
F(~r, t) = 0 ,

(4.2.21)

with H given in Eq. (1.1.41). Considering the second terms on the left-hand side of
Eq. (4.2.15) and Eq. (4.2.16), they describe a side condition for each equation. Both terms
have to be equal to zero for all times and can be expressed in component notation by

~2c2
0

 ∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂2
3

Ψ3(~r, t) = ∂k∂lΨ
l
3(~r, t) , (4.2.22)

~2c2
0

 ∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂2
3

Ψ∗3(~r, t) = ∂k∂lΨ
∗l
3 (~r, t) . (4.2.23)

Using Eqs. (4.2.20) and de�ning the component vector notation for a six-component vector
with

F(~r, t) =

(
Ψk

3(~r, t)

Ψ∗k
′

3 (~r, t)

)
=

(
F k+
F ∗k

′
−

)
, (4.2.24)
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the two Eqs. (4.2.22) and (4.2.23) can be combined to a six-component vector by

~2c2
0

(
∂k∂lF

l
+(~r, t)

∂k′∂l′F
l′
−(~r, t)

)
= 0 . (4.2.25)

This equation holds if (
∂lF

l
+(~r, t)

∂l′F
l′
−(~r, t)

)
= D · F(~r, t) = 0 (4.2.26)

where we use the six-component divergence operator D in Eq. (1.1.37) and the dot product
de�nition in Eq. (1.1.39).
We emphasize here, that we thus have derived the classical homogeneous Maxwell's equa-
tions starting with Dirac's decomposition Eq.(4.2.17) for the relativistic spin-1 energy-
momentum relation and ending with the combination of the homogeneous Faraday's and
Ampère's laws in Eq. (4.2.21) and the combination of the homogeneous Gauÿ laws in
Eq.(4.2.26). In contrast to the spin-1/2 particle wavefunction, where its spinor compo-
nents refer to spin states, the spinor components of the photon wavefunction F refer to
positive and negative helicity. The previous considerations can be repeated for arbitrary
spins and particles with mass, but it is not always possible to �nd simple and physical side
conditions.

4.3 Multi-species Hamiltonian

In this section, we use the di�erent parts of the multi-species Hamiltonian which is dis-
cussed in Appendix A to build the corresponding total Pauli-Fierz Hamiltonian of the
multi-species system. First, we use the matter Hamiltonian of Eq. (A.3.6) coupled to the
vector potential Âk(~r, t) instead of Akext(~r, t). In contrast, we take only the external zero-
component A0

ext(~r, t) for the second term, since the zero-component of the internal vector
potential appears in the longitudinal interaction Hamiltonian term in Eq. (A.5.5). The
external scalar potential interaction Hamiltonian Ĥ(n)

mat,int,ext is given by

Ĥ
(n)
mat,int,ext(t) =

∫
d3r qA0

ext(~r, t)
∑
s

Φ̂†(n)(~r, s)Φ̂(n)(~r, s) . (4.3.1)

The free Photon-Hamiltonian ĤPh,free for the electromagnetic �eld does not depend on N
and is equal to Eq. (A.4.17)

ĤPh,free =

∫
d3r : F̂+,⊥,k(~r )F̂ k−,⊥(~r ) : . (4.3.2)

The transverse interaction Hamiltonian Ĥ⊥int of Eq. (A.5.14) includes the total current
ĵk(~r, t) of the system given in Eq.(A.5.12) that arises from the N species plus the external
current, and reads

Ĥ⊥int(t) =
1

c0

∫
d3r ĵk(~r, t)Âk(~r, t) . (4.3.3)

Taking Eqs. (A.5.5) and (A.5.4) gives the longitudinal interaction Hamiltonian Ĥ‖int with

Ĥ
‖
int(t) =

1

2c0

∫
d3r

∑
n

: ĵ0
mat,(n)(~r )Â0

int,(n)(~r ) :

+
1

2c2
0

∫
d3rd3r′w(~r, ~r ′)

∑
n

: ĵ0
mat,(n)(~r )ĵ0

mat,(n)(~r
′) : .

(4.3.4)
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Finally, adding all previous terms and summing over all di�erent N species leads to the
complete N-species Pauli-Fierz Hamiltonian

Ĥ =
N∑
n=1

{
Ĥ

(n)
mat,kin(t) + Ĥ

(n)
mat,int,ext(t) + Ĥ

(n)
mat,Stern(t)

}
+ ĤPh,free + Ĥ⊥int(t) + Ĥ

‖
int(t) .

(4.3.5)
The total vector potential Âµ(~r, t)

Âµ(~r, t) = Âµmat(~r, t) + Âµext(~r, t) (4.3.6)

and the total current density ĵµ(~r, t)

ĵµ(~r, t) = ĵµmat(~r, t) + ĵµext(~r, t) (4.3.7)

are coupled in Coulomb gauge by the inhomogeneous Maxwell's Eqs. (A.5.7) and (A.4.13).
Hence, we obtain

Â0(~r, t) =
1

c0

∫
d3r′w(~r, ~r ′)

(
ĵ0
mat(~r

′, t) + j0
ext(~r

′, t)
)

+A0
ext(~r, t) , (4.3.8)

(∂2
0 + ∂l∂

l)Âk(~r ) = µ0c0

(
ĵkmat(~r, t) + jkext(~r, t)

)
− ∂k∂0 1

c0

∫
d3r′w(~r, ~r )ĵ0

mat(~r, t) .

(4.3.9)

Substituting the last term in Eq. (4.3.9) with the longitudinal current density Eq. (A.4.14),
here in terms of the internal current density jkmat leads to

(∂2
0 + ∂l∂

l)Âk(~r, t) = µ0c0

(
ĵkmat(~r, t) + jkext(~r, t)

)
− µ0c0ĵ

k
mat,‖(~r, t)

⇔ (∂2
0 + ∂l∂

l)Âk(~r, t) = µ0c0

(
ĵkmat,⊥(~r, t) + jkext(~r, t)

)
.

(4.3.10)

Referring Eq. (A.5.7), the zero-component of the external current modi�es the external
A0

ext, and therefore it does not appear in Maxwell's equations. According to Appendix A.4,
we can equivalently express the inhomogeneous Maxwell's equations, Eq. (4.3.9), in terms
of the Riemann-Silberstein vector. Adapting Eqs. (A.4.18)-(A.4.21) with the total �eld
vectors ~Fµ±(~r, t) and current density ĵµ(~r, t) leads to the underlying quantized Maxwell's
equations in Riemann-Silberstein representation

i~∂tF̂ k±(~r, t) = ∓i~c0

(
Sl∂l

)k
m
F̂m± (~r, t)− i

~√
2ε0

(
ĵkmat(~r, t) + jkext(~r, t)

)
, (4.3.11)

∂kF̂
k
±(~r, t) =

√
1

2ε0
ĵ0
mat(~r, t) . (4.3.12)

In principle, the N-species Pauli-Fierz Hamiltonian in Eq. (4.3.5) determines the non-
relativistic light-matter system that consists of N di�erent species. Since the Hamiltonian
is described in Fock-space, the corresponding wave function Ψ has no �xed particle num-
ber, for both particles with mass and for photons. Due to the arising in�nite degrees of
freedom, it is not possible to apply the common wavefunction-based Hamiltonian formal-
ism to solve the problem. Even the constraint of a �xed particle number does not lead to
a solution, since the photon degrees of freedom are still in�nite.
However, to deal with such systems, one can also �x the photon particle number by de-
scribing few photon modes, e.g. in a photon cavity [48, 57]. Another possible way is to
describe such a large number of photons with arbitrary modes, that their electromagnetic
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�eld expectation value becomes classical [101]. In this case, the corresponding vector po-
tential becomes also classical. The matter system is still quantized, but trying to solve the
many-body problem is very restricted to only few particles since the degrees of freedom of
all particles, which are coupled to each other, increase exponentially. One method to deal
with such problems of large coupled many-particle systems is density functional theory
(DFT) [66]. In recent work the standard density functional theory has been extended to
quantum-electrodynamical density-functional theory (QEDFT). In the following section,
we transform the N-species Pauli-Fierz Hamiltonian of Eq. (4.3.5) into a multi-species
Hamiltonian of quantum-electrodynamical denstiy-functional theory.

4.4 Quantum-electrodynamical density-functional theory for

multi species

Many-body Schrödinger equations are not solvable for a large number of particles to obtain
the corresponding wavefunctions due to their amount of degrees of freedom. To circumvent
this situation, the common density functional formalism [66, 67] circumvents the actual
degrees of freedom by calculating all measurable observables Ô(n) in terms of the particle
densities n(n) of species n instead of the many-body wave functions Ψ(n). The species
wavefunction Ψ(n) depends on 3N(n) coordinates

Ψ(n) = Ψ(n)(~r, ~r2, ..., ~rN(n)
) , (4.4.1)

whereas the corrsponding particle density

n(n)(~r ) = N(n)

∫
d3r2...d

3rN(n)
|Ψ(n)(~r, ~r2, ..., ~rN(n)

)|2 (4.4.2)

depends only on 3 coordinates. Using the Hohenberg-Kohn theorem [102], there is a one-to-
one correspondence between the ground state wavefunction Ψ(n,0)(~r, ~r2, ..., ~rN(n)

) expressed

by the coordinates and Ψ̃(n,0)

[
n(n)(~r )

]
given in terms of the particle density n(n)(~r )

Ψ(n,0)(~r, ~r2, ..., ~rN(n)
)→ Ψ̃(n,0)

[
n(n)(~r )

]
. (4.4.3)

This means that all ground state observables Ô, which are usually expressed in terms of
Ψ(n,0)(~r, ~r2, ..., ~rN(n)

) with〈
Ô(n)

〉
=
〈

Ψ(n,0)(~r, ~r2, ..., ~rN(n)
)
∣∣∣Ô(n)

∣∣∣Ψ(n,0)(~r, ~r2, ..., ~rN(n)
)
〉

(4.4.4)

can be also expressed in terms of the particle density n(n)(~r )〈
Ô(n)

〉
=
〈

Ψ̃(n,0)

[
n(n)(~r )

] ∣∣∣Ô(n)

∣∣∣ Ψ̃(n,0)

[
n(n)(~r )

] 〉
. (4.4.5)

Consequently, the species current density ~j(n) can be described in terms of Ψ̃(n,0)

[
n(n)(~r )

]
.

This gives us the opportunity to employ the Runge-Gross theorem [103, 67], here on the
non-relativistic level of the Pauli-Fierz Hamiltonian. The one-to-one correspondence using
the Pauli-Fierz Hamiltonian for one species was proofed in Ref. [104], in that case for
electrons. Following those steps conceptually and expanding the proof by using properties
of the total wavefunctions Ψ, which solve the Schrödinger equation using the multi-species
Hamiltonian of Eq. (4.3.5), leads to the corresponding proof for N species [63]. We note,
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the proof is based on the assumptions that the external vector potential ~Aext(~r, t) is given
in Coulomb gauge by

∂k ~A
k
ext(~r, t) = 0 , (4.4.6)

and the external current density has also to be transverse

∂k~j
k
ext(~r, t) = 0 . (4.4.7)

This important one-to-one correspondence is the basis of constructing a Maxwell-Pauli-
Kohn-Sham scheme in the next section.

4.5 Coupled Maxwell-Pauli-Kohn-Sham equations

Explicitly solving for the wavefunction of the generalized N -species Pauli-Fierz Hamilto-
nian in Eq. (4.3.5) is computationally not feasible. However, instead of solving the full
problem, we can �nd an auxiliary e�ective non-interacting system that has the same den-
sities. In the following the index s represents the variables of this non-interacting system.
This so called Kohn-Sham construction [105, 106, 104, 107] exploits the previously dis-
cussed one-to-one correspondence in Sec. 4.4, which leads to a bijection between external
and internal matter pairs (

Aµext,(s) , j
k
ext,(s)

)
↔
(
jµmat , A

k
mat

)
. (4.5.1)

Since the one-to-one correspondence also holds for the non-interacting system, we can �nd
two mappings with (

jµmat , A
k
mat

)
7→
(
Aµmat , j

k
ext

)
(
jµmat , A

k
mat

)
7→
(
Aµmat,(s) , j

k
ext,(s)

)
,

(4.5.2)

which maps the internal matter variables jµmat and A
k
mat to external external ones based on

�rst the interacting species wavefunction Ψ(n) and second on the non-interacting wavefunc-
tion Φ(s,n). At this point, the extended Runge-Gross theorem for multi-species of Sec. 4.4
shows that the full coupled problem is equivalent to the non-interacting problem using
e�ective currents and potentials. This non-interacting Kohn-Sham picture includes an un-
coupled photon �eld. Instead of solving this photon �eld with in�nitely many degrees of
freedom, we equivalently use the classical inhomogeneous Maxwell's equations [104], since
both descriptions, the classical �eld as well as the full quantized �eld lead per construc-
tion to the same internal matter vector potential Akmat. As a consequence, we select a
non-interacting wavefunction Φ(s,n,0), which obeys [63]〈

Ψ(n,0)

∣∣∣ ĵ0
matΨ(n,0)

〉
=
〈

Φ(s,n,0)

∣∣∣ ĵ0
matΦ(s,n,0)

〉
. (4.5.3)

Since this expectation value is equivalent to the initial matter charge density j0
mat = ρmat

[63], this condition determines the initial Maxwell �eld by using the Gauÿ law. Next, we
consider the relations of the external current densities jkext, j

k
ext,(s). Using the linearity

of Maxwell's equations both mappings of the interacting external current density and the
non-interacting current density are equal, and hence

jkext

[
jνmat , A

l
mat

]
= jkext,(s)

[
jνmat , A

l
mat

]
. (4.5.4)
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Taking all previous considerations into account, we can follow the Kohn-Sham construction
of Ref. [107], which requires the introduction of a mean-�eld exchange-correlation (mxc)
potential Amxc

Amxc = Aµext,(s)

[
jνmat , A

l
ext

]
−Aµext

[
jνmat , A

l
ext

]
. (4.5.5)

The non-interacting potential Aµext,(s) is usually denoted as Kohn-Sham potential AµKS and
reads with Eq. (4.5.5)

AµKS = Amxc +Aµext . (4.5.6)

We emphasize, that in case of having an exact mean-�eld exchange-correlation potential
Amxc, the solution of the coupled MPKS problem leads to the exact internal matter pair(
jµmat, A

k
mat

)
for a given generalized Pauli-Fierz Hamiltonian Ĥ

[
Aµext, j

k
ext

]
.

Finally, the initial wavefunctions Ψ, or Φ(s) of the considered species have to be distin-
guished between anti-symmetric ones describing fermions and symmetric ones for bosons.
Tensor products of Slater determinants and permanents obey the corresponding feature
[108] Taking this and the Kohn-Shame scheme into account, we can �nd the auxiliary
Maxwell-Pauli-Kohn-Sham (MPKS) equation

i∂tφ(n,i)(~r,s(n),t) =

{
P(n),k Pk(n) − qA

0
KS +

q~
2M(n)c0

S
(n)
k εklm∂lA

m
KS

}
φ(n,i)(~r, s(n), t) .

(4.5.7)
with the canonical momentum

Pk(n) = −i~∂k − q

c0
AkKS . (4.5.8)

The MPKS equation describes the Schrödinger equation with Pauli term for non-interacting
one-particle Kohn-Sham orbitals φ(n,i)(~r, s(n), t). Depending on bosons or fermions, total
wavefunction is symmetric or anti-symmetric. In case of bosons, the corresponding sym-
metric wavefunction of N -particles of species n is a normalized permanent [108]

Φsym,(n)(~r1, s(n,1); ... ;~rN , s(n,N )) =

√
1

N ! Πkmk!

∑
p

φ(n)(~rp(1), s(n,1)) ... φ(n)(~rp(N ), s(n,N ))

(4.5.9)

with permutations p acting on N -particles. The product symbol Π multiplies the factorial
mk, the quantity for the number of times each single particle states k appears in the state.
The fermion wavefunction is antisymmetrized by the normalized Slater determinant with

Φa−sym,(n)(~r1, s(n,1); ... ;~rN , s(n,N )) =

√
1

N !

∑
p

sgn(p)φ(n)(~rp(1), s(n,1)) ... φ(n)(~rp(N ), s(n,N ))

(4.5.10)

where sgn(p) denotes the sign of each permutation. The Kohn-Sham orbitals are spin-
dependent according to their species spin and represented by the index s(n) .

From Eqs. (4.4.4), (4.4.5) and the one-one-correspondence Eq. (4.5.1), we know that
for the ground state we have〈

Ψ(n,0)

∣∣∣ ĵµmat

∣∣∣Ψ(n,0)

〉
=
〈

Φ(s,n,0)

∣∣∣ ĵµmat

∣∣∣Φ(s,n,0)

〉
, (4.5.11)
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which gives the initial classical current density. However, in general for arbitrary excited
states the classical exact current density cannot be obtained by the non-interacting state
Φ(s,n). In principle, the current density has to be described by current density functionals
[109], which is not included in our implementation. Nevertheless, we approximate the
exact current density by taking the non-interacting wavefunctions Φ(s,n) to get jµmat also
beyond the ground state. Taking the operator valued Maxwell's Eqs. (4.3.8) and (4.3.10)
classically, turns to the classical Maxwell's equation in terms of the total vector potential
Aµ of the system

A0(~r, t) =
1

c0

∫
d3r′w(~r, ~r ′)

(
j0
mat(~r

′, t) + j0
ext(~r

′, t)
)

+A0
ext(~r, t) , (4.5.12)

(∂2
0 + ∂l∂

l)Ak(~r, t) = µ0c0

(
jkmat,⊥(~r, t) + jkext(~r, t)

)
. (4.5.13)

Consequently, the operator valued Riemann-Silberstein Maxwell's Eqs (4.3.11)-(4.3.12)
become classical equations with

i~∂tF k±(~r, t) = ∓i~c0

(
Sl∂l

)k
m
Fm± (~r, t)− i

~√
2ε0

(
jkmat(~r, t) + jkext(~r, t)

)
, (4.5.14)

∂kF
k
±(~r, t) =

√
1

2ε0
j0
mat(~r, t) , (4.5.15)

which determines the classical electromagnetic �eld of the total system.
We emphasize here that only the two coupled systems together, i.e., the electron-nucleus

system and the photon �eld, without external �elds are invariant with respect to the
total momentum and total angular momentum of the coupled matter-photon system [62].
Consequently, translating or rotating only the matter system breaks this symmetry.

Due to the Kohn-Sham potential AµKS used in Eq. (4.5.7) and the physical total potential
Aµ in Eq. (4.5.13), we have in principle to �nd a relation between those two potentials.

At this point we note that we have quite some freedom in establishing the mappings
as well as the MPKS systems. For instance, we can look at each individual particle-
species' internal current and �nd that also each species' internal current can be used to
establish a mapping individually. We could then (unphysically) assume that each species
sees a di�erent external �eld and then establish purpose built Aµmxc,(n). Building the
complete mxc potentials step by step could lead to an easier established and more accurate
approximation for the mxc potentials. We do not discuss this issue in this work, but try
to �nd a �rst approximation to simplify the MPKS construction, because even solving the
coupled generalized Pauli-Fierz problem in terms of single-particle equations. Furthermore,
for the initial states, which can be determined from a ground-state reformulation of the
generalized Pauli-Fierz problem following Ref. [50], it is often bene�cial to make the Born-
Oppenheimer approximation and treat the nuclei semi-classically.

Since �nding Aµmxc,(n) is a non-trivial problem, we use later in the applications the
mean-�eld approximation

A0
KS = A0

mat +A0
ext +A0

xc , (4.5.16)

AkKS ≈ Akmat +Akext = Ak , (4.5.17)

where A0
xc denotes the scalar exchange correlation functional [67].

4.6 Classical limit for Nuclei

In general, nuclei consists of protons and neutrons, which are have almost the same mass
as protons. The fact that nuclei are much heavier than the electrons leads to very di�erent
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time scales of motion, which means that the electrons are signi�cantly faster than the
nuclei. This feature is usually exploited by treating the nuclei classical. Although there are
more advanced alternatives, e.g., factorization of electron-nuclear wavefunctions [33, 34],
we illustrate in the present section how to simplify our MPKS scheme by describing the
nuclei classically.

As a �rst step, we neglect the Stern-Gerlach term, since this term is suppressed with
respect to the other �elds by 1/M(n). In a next step, we express the spatial orbitals in
polar representation

φ(n,i)(~r, t) = |φ(n,i)(~r, t)|e(i/~)S(n,i)(~r,t), (4.6.1)

and substitute Eq. (4.6.1) into the MPKS Eq. (4.5.7). After dropping the last term (Stern-
Gerlach term), we �nd a Hamilton-Jacobi-type equation for the phase S(n,i)(~r, t) [110]

∂tS(n,i)(~r, t) = −

(
~∇S(n,i)(~r, t)−

q(n)

c0
~AKS(~r, t)

)2

2M(n)
− q(n)A

0
KS(~r, t) +

~2

2M(n)

~∇2|φ(n,i)(~r, t)|
|φ(n,i)(~r, t)|

,

(4.6.2)
In a next step, we express the classical observables by their quantum variables. Starting
with the matter current

j̃kmat(~r, t) = jpmc(~r, t) + jdmc(~r, t) (4.6.3)

from Eq.(A.5.8) without the magnetization current jkmc,, we �nd

~j(n,i)(~r, t) = ~j(n,i)
pmc (~r, t) +~j

(n,i)
dmc (~r, t)

=
q(n)

M(n)
|φ(n,i)(~r, t)|~∇S(n,i)(~r, t)−

q2
(n)

M(n)c0

~AKS(~r, t)|φ(n,i)(~r, t)| .
(4.6.4)

Furthermore, the total velocity �eld becomes

~v(n,i)(~r, t) =
~j(n,i)(~r, t)

q(n)|φ(n,i)(~r, t)|
=

1

M(n)

(
~∇S(n,i)(~r, t)−

q(n)

c0

~AKS(~r, t)

)
, (4.6.5)

and accordingly we can de�ne the total momentum �eld ~p(n,i) = ~v(n,i)/M(n). Next, we
take the classical limit ~→ 0 for the nuclei, and the quantum-potential contribution (last
term) in Eq. (4.6.2) goes to zero. The remaining terms can be expressed by

∂tS(n,i)(~r, t) = −
(
~v(n,i)(~r, t) · ~∇

)
~p(n,i)(~r, t)− q(n)A

0
KS(~r, t) +

q(n)

M(n)
~p(n,i)(~r, t)× ~BKS(~r, t),

(4.6.6)
where ~BKS(~r, t) = 1

c0
~∇× ~AKS(~r, t). Next, we add the partial time-derivative of the Kohn-

Sham vector potential to both sides and de�ne the total derivative for a co-moving reference
frame that moves with the velocity �eld ~v(n,i) with

~̇p(n,i)(~r, t) = ∂t~p(n,i)(~r, t) +
(
~v(n,i)(~r, t) · ~∇

)
~p(n,i)(~r, t). (4.6.7)

Using both, turns Eq. (4.6.7) into the classical Lorentz equation

~̇p(n,i)(~r, t) = q(n)~v(n,i)(~r, t)× ~BKS(~r, t) + q(n)
~EKS(~r, t) . (4.6.8)

We exploit here, that −∂0
~AKS = EKS,⊥ and −~∇AKS0 = ~EKS,‖ gives the transverse and

longitudinal Kohn-Sham electric �eld such that EKS = EKS,⊥+ ~EKS,‖. It can be solved by
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the method of characteristics, i.e., we can follow a speci�c classical trajectory that starts
at ~r(n,i) and ~p(n,i). The initial wave function then gives us the initial distribution of these
trajectories. This classical approximation determines the charge current of the nuclei that
contributes to the total current and also to the Kohn-Sham vector potential AµKS. We
denote this limit of classical nuclei for our MPKS scheme the Ehrenfest-Maxwell-Pauli-
Kohn-Sham (EMPKS) approach, analogous to matter-only quantum dynamics.
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Chapter 5

Maxwell-Pauli-Kohn-Sham

propagation on a three-dimensional

grid

In chapter 4, we introduced a theory to describe molecular many-body systems in terms of
a density-functional theory based on quantum electrodynamics (QED). Furthermore, we
argued why a full QED calculation is not feasible for large systems. As a consequence, we
�rst assume slowly moving particles (Pauli description) and a semiclassical description of
the Maxwell �elds. In this way, we have two coupled systems, the quantum mechanical
Kohn-Sham system and the classical Maxwell system.

Usually the semiclassical picture is simpli�ed further by considering only the electro-
magnetic �eld-to-matter coupling, but no back reaction, i.e., matter does not in�uence the
transverse electric �eld. In this case, the Maxwell �eld has an external component and a
purely longitudinal internal component. The external �eld interacts with the matter, i.e.,
induces electric currents and charge motion inside the matter, but the matter does not
act back on the transverse degrees of the electric �eld. Thus, the external electromagnetic
�eld propagates freely. In this approximation, the total electromagnetic �eld is a superpo-
sition of the external �eld and the internal �eld is purely longitudinal due to the Coulomb
interaction. This approach is valid for many cases, especially small systems. But the in�u-
ence of the external electric �eld can be large enough to induce a signi�cant back-reaction
of matter such that an e�ective screening or polarization appears. This happens when
signi�cant currents are present in the system. Hence, the backward coupling of matter
to light becomes important. In the chapters 1-3, we introduced the Riemann-Silberstein
formalism of Maxwell �elds and developed a numerical propagation scheme to solve inho-
mogeneous Maxwell equations in a similar manner as is done in quantum mechanics for
the time-dependent Schrödinger equation. We can use the same time-evolution method for
the propagation of Kohn-Sham orbitals. We consider the electrons as the only quantum
mechanical species, which we described in chapter 4. The nuclei are treated as classical
particles, which obey the Ehrenfest equations [111].

In this chapter, we introduce our full coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham sys-
tem. Therefore, we use the Kohn-Sham charge and current density as the inhomogeneity.
We use them to adapt the microscopic Riemann-Silberstein Maxwell's equation, such that
these quantum-mechanical based variables couple to the classical electromagnetic �eld.
In turn, we use the 'minimal coupling' for the electromagnetic �eld to matter coupling.
Additionally, we transform the Kohn-Sham Hamiltonian with the Power-Zienau-Woolley
transformation to get a gauge independent light-matter coupling in terms of the electro-
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magnetic �eld variables instead of the gauge dependent vector potential. The electric
multipole interaction terms in turn require only transverse components of the electromag-
netic �eld, which we obtain by a Helmholtz decomposition by solving a Poisson equation
for each �eld dimension. Our full propagation on two separated coupled grids leads to
various combination possibilities for the di�erent grids which we introduce. Furthermore,
the di�erent physical length and time scales for light and matter demand a multi-scale
consideration in space an time. In order to solve the coupled Maxwell-Kohn-Sham propa-
gation, we describe a e�cient self-consistent propagation scheme. In the �nal part of this
chapter, we consider the Maxwell-matter system as an open quantum system and introduce
electromagnetic detectors to measure directly the outgoing electromagnetic �eld.

5.1 Riemann-Silberstein Maxwell's equations with Kohn-Sham

current density

In section Sec. 1.1.5 we have introduced the microscopic Riemann-Silberstein Maxwell's
equations and the six-component vector F(~r, t). They describe the Maxwell �elds in vac-
uum in the presence of the charge density ρ(~r, t) and the current density ~j(~r, t) which are
represented by the Q(~r, t) in Eq. (1.1.36) and by the J (~r, t) in Eq. (1.1.42). Since we
want to describe coupled Maxwell-Kohn-Sham systems, we apparently have to express the
classical variables Q(~r, t) and J (~r, t) in Eq. (1.1.40) and Eq. (1.1.37) in terms of the corre-
sponding quantum-mechanical Kohn-Sham expectation values. All Kohn-Sham variables
for the selected species n depend on the Kohn-Sham density n(n,i)(~r, s(n)). According to
Sec. 4.5 each species is described by auxiliary one-particle Kohn-Sham orbitals φ(n,i)(~r, s(n))
and the particle density n(n,i)(~r, s(n)) is given by

n(n,i)(~r, s(n)) =
∣∣φ(n,i)(~r, s(n))

∣∣2 . (5.1.1)

Using Eqs. (A.5.1) with the Kohn-Sham wavefunctions leads to j0(~r )

j0(~r, t) =

N∑
n=1

c0q(n)

I(n)∑
i

∑
s(n)

n(n,i)(~r, s(n), t) . (5.1.2)

With the Riemann-Silberstein charge density Eq. (1.1.36), Q(~r, t) reads

Q(~r, t) =

(
1
1

)
2×1

⊗
(

1

c0
√

2ε0
j0(~r, t)

)
1×1

. (5.1.3)

For the Riemann-Silberstein current density in terms of the k-component of the quantum-
mechanical current density jµ(~r, t) we have to follow some considerations, starting with
Eq. (A.5.8) plus an external current jµext(~r, t)

jk(~r, t) = jkpmc(~r, t) + jkdmc(~r, t) + jkmc(~r, t) + jkext(~r, t) . (5.1.4)
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The paramagnetic current jkpmc(~r, t) , the diamagnetic current jdmc(~r, t), and the magne-
tization current jkmc(~r, t) in terms of the Kohn-Sham orbitals are explicitly given by

jkpmc(~r, t) =
N∑
n=1

~q(n)

i2M(n)

I(n)∑
i

∑
s(n)

[(
∂kφ†(n,i)(~r,s(n),t)

)
φ(n,i)(~r, s(n), t)−φ

†
(n,i)(~r,s(n),t)

(
∂kφ(n,i)(~r,s(n),t)

)]
,

(5.1.5)

jkdmc(~r, t) = −
N∑
n=1

q2
(n)

M(n)c0

I(n)∑
i

∑
s(n)

n(n,i)(~r, s(n), t)

Ak(~r, t), (5.1.6)

jkmc(~r, t) = −
N∑
n=1

I(n)∑
i

∑
s(n)

εklm∂lφ
†
(n,i)(~r, s(n), t)

(
q(n)~
2M(n)

S(n)
m

)
φ(n,i)(~r, s(n), t)

 . (5.1.7)

All three current contributions depend on the particle charge q(n), particle mass M(n),
and the single-particle wavefunctions. While the paramagnetic current and magnetization
current do not depend explicitly on the Maxwell �eld, the diamagnetic current does depend
on the vector potential Ak(~r, t). The vector potential is implicitly given by the Riemann-
Silberstein vectors F k±(~r, t). It can be expressed in two ways.

First, using the relation between the vector potential Ak(~r, t) and the magnetic �eld in
Eq. (A.1.3) leads, after solving for Ak(~r, t), to [75, 80]

Ak(~r, t) = −c0

∫
d3r′

εklm∂l
′Bm(~r ′, t)

4π|~r − ~r ′|

= i

√
c2

0µ0

2

∫
d3r′

εklm∂l
′

4π|~r − ~r ′|
(
F+,m(~r ′, t)− F−,m(~r ′, t)

)
︸ ︷︷ ︸

Solution of poisson equation

.
(5.1.8)

The integral operation in Eq. (5.1.8) is a simple Poisson equation. E�cient methods exists
to solve the Poisson equation which makes this equation easy to handle. In the second
possibility is to use the electric �eld in terms of the vector and scalar potential in Eq. (5.1.8).
In Coulomb gauge with ∂k ~Ak = 0, it can be reduced to

Ek(~r, t) = −∂kΦ(~r, t) +
1

c0

∂

∂t
Ak(~r, t)

⇔ Ek⊥(~r, t) + Ek‖ (~r, t) = −∂kΦ(~r, t) +
1

c0

∂

∂t
Ak(~r, t)

⇔ Ek⊥(~r, t) =
1

c0

∂

∂t
Ak(~r, t) .

(5.1.9)

Hence, we have to split the electric �eld in its transverse ~E⊥(~r, t) and longitudinal ~E‖(~r, t)
components. We use the general vector �eld properties [112] that the gradient of a scalar
�eld is always a longitudinal vector and Ak is purely transverse due to the Coulomb gauge
condition. The last expression in Eq. (5.1.9) after replacing ~E⊥(~r, t) by the corresponding
Riemann-Silberstein vector expression of Eq. (1.1.6) and integrating from time t0 to time
t leads to

Ak(~r, t) = −

√
c2

0

2ε0

t∫
t0

dt′
(
F k+(~r, t′) + F k−(~r, t′)

)
⊥

+Ak(~r, t0) . (5.1.10)
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Here, the initial vector potential is Ak(~r, 0). Thus, the diamagnetic current term can be
obtained by the two di�erent vector potential calculations, and therefore jkdmc(~r, t) and its
corresponding Riemann-Silberstein vector Jdmc(~r, t) is either non-local in space or time.
Consequently, taking Eq. (1.1.40) leads to the Riemann-Silberstein equation

i~
∂

∂t
F(~r, t) = H(~r, t)F(~r, t)− i~Jloc(~r, t) . (5.1.11)

Since the diamagnetic current term Jloc(~r, t) depends on the Riemann-Silberstein vector
F(~r, t), we can combine the right-hand side of Eq. (5.1.23), which in turn means the
we cannot simply use the matrix-times-vector operation HF(~r, t) which we introduced in
Eq. (1.1.40). The diamagnetic current contributes as an integral operation. Therefore it is
necessary to generalize HF(~r, t) to

H̄(~r, t)F(~r, t) :=

∫
d3r′

t∫
t0

dt′H̄(~r, ~r ′, t, t′)F(~r ′, t′) . (5.1.12)

Hence we denote this integration operation in short form with two bold calligraphic let-
ters H̄(~r, t)F(~r, t). The �rst operator with "bar" represents the operator kernel and the
second one the six-component Riemann-Silberstein vector. Note, that for an initial time
t0, Eq. (5.1.12) becomes

H̄(~r, t0)F(~r, t0) =

∫
d3r′H̄(~r, ~r ′, t0, t0)F(~r ′, t0) . (5.1.13)

The operator H̄(~r, t) is determined by its corresponding integral kernel H̄(~r, ~r ′, t, t′) with
four variables, the two position vectors ~r, ~r ′, and the two times t, t′. We can express
H̄(~r, ~r ′, t, t′) as a sum of the two linear operators H̄(0)(~r, ~r

′, t, t′) and K(~r, ~r ′, t, t′)

H̄(~r, ~r ′, t, t′) = H̄(0)(~r, ~r
′, t, t′) + K̄(~r, ~r ′, t, t′) . (5.1.14)

The kernel H̄(0) includes the curl operation in Eq. (1.1.25) with the spin-1 matrices of
Eq. (1.1.15), but without any diamagnetic current term, i.e.,

H̄(0)(~r, ~r
′, t, t′) =

(
1 0
0 −1

)
2×2

⊗
(

i~c0δ(~r−~r ′)δ(t−t′)
[
Sm∂

′
m

])
3×3

, (5.1.15)

and represents the corresponding integral kernel for the microscopic Maxwell Hamiltonian
H given in Eq. (1.1.41). Due to the delta functions, integrating Eq. (5.1.15) over ~r ′ and t′

results in

H̄(0)(~r, t)F(~r, t) = HF(~r, t) . (5.1.16)

The diamagnetic current operator kernel in equation (5.1.14) can be determined by the
above two ways. The �rst is based on Eq. (5.1.8) which uses the magnetic �eld of the sys-
tem. Hence, the integral kernel K(~r, t) for the diamagnetic current yields with Eq. (A.5.10)

K(~r, ~r ′, t, t′) =

(
1 −1

1 −1

)
2×2

⊗

(
~
√

2µ0δ(t− t′)κ(~r, t)
Sm∂

′
m

4π|~r − ~r ′|

)
3×3

. (5.1.17)

The second option is in principle also expressible as a integral kernel. But since we obtain
non-locality in space and time, we do not consider this version in the present work. The
factor κ(~r, t) includes all common matter speci�c variables with

κ(~r, t) =
N∑
n=1

q2
(n)

M(n)

 I(n)∑
i=1,s(n)

n(n,i)(~rs(n), t)

 . (5.1.18)
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Now, the Riemann-Silberstein diamagnetic current Eq. (A.5.10) is with Eq. (5.1.12), Eq. (5.1.17),
and Eq. (5.1.8) given by

Jdmc(~r, t) =

∫
d3r′

t∫
t0

dt′K̄(~r, ~r ′, t, t′)F(~r ′, t′). (5.1.19)

The remaining current densities Jkpmc and J
k
mc in Eq. (A.5.9) and Eq. (5.1.7) together with

an external current jkext lead to Jloc(~r, t)

Jloc(~r, t) =

(
1
1

)
2×1

⊗
(

i√
2ε0

(
jkpmc(~r, t) + jksc(~r, t) + jkext(~r, t)

))
3×1

. (5.1.20)

Consequently, the six-component Riemann-Silberstein vector J (~r, t) for the total Kohn-
Sham current is

J (~r, t) = Jloc(~r, t) + Jdmc(~r, t) (5.1.21)

Finally, the complete Ampère's and Faraday's Maxwell's equations in Riemann-Silberstein
representation with microscopic quantum mechanical current densities can be expressed
with Eq. (1.1.40), Eq. (5.1.14), and Eq. (5.1.20) in terms of the total current J (~r, t) by

i~
∂

∂t
F(~r, t) = H(~r, t)F(~r, t)− i~J (~r, t) , (5.1.22)

where the J implicitly depend on the actual Riemann-Silberstein vector due to Eq. (5.1.19).
Secondly, the diamagnetic current contribution Jdmc can be separated from J and com-
bined with with the Hamiltonian function which leads to Eq. (5.1.12). In this case, the
corresponding Riemann-Silberstein Maxwell's equation reads

i~
∂

∂t
F(~r, t) = H̄(~r, t)F(~r, t)− i~Jloc(~r, t) , (5.1.23)

which is equivalent with Eq. (5.1.22). The non-local Hamiltonian in this expression requires
some adaptations for the real-time propagation, which is the subject of the next section.

In future publications, we will examine the relation between the coupling in a linear
medium determined by Klm(~r, t) in Eq. (1.2.41) and K̄ in Eq. (5.1.17), since both terms
couple the two helicity Riemann-Silberstein vectors ~F+ and ~F−.

5.2 Riemann-Silberstein Maxwell propagation coupled to the

Kohn-Sham current density

In the previous section, we expressed in Eq. (5.1.22) the Ampère's and Faraday's law as an
inhomogeneous Schrödinger-like equation in the Riemann-Silberstein formalism. To get a
general expression for the Riemann-Silberstein time-propagation with quantum-mechanical
current density, we derive the corresponding equation in two steps. First, we start with
only diamagnetic current contribution Jdmc(~r, t) and the corresponding Eq. (5.1.23). In
this form, using the inhomogeneous time-evolution Eq. (2.2.14) leads directly to

F(~r, t) = U(t, t0)F(~r, t0)−
t∫

t0

dτU(t, τ)Jloc(~r, τ) (5.2.1)
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On the other hand, in case of Jloc(~r, t) equal to zero and a non-zero Jdmc(~r, t) the
Eq. (5.1.23) becomes homogeneous

i~
∂

∂t
F(~r, t) = H̄(~r, t)F(~r, t) , (5.2.2)

Consequently, we can also provide an homogeneous expression for a time-evolution op-
erator Ū(t, t0), that propagates the Maxwell's �elds from a given time t0 to t similar
to chapter (2), but considering the non-local integral kernel H̄(~r, ~r ′, t, t′) of Eq. (5.1.14).
The time-evolution operator Ū(t, t0) has to obey the group composition laws known from
quantum mechanics [113]

1.) Ū†Ū = 1 ,

2.) lim
t→t0
Ū(t, t0) = 1 ,

3.) Ū(t2, t0) = Ū(t2, t1)Ū(t1, t0) .

(5.2.3)

Let us �rst consider the homogeneous case. The operator Ū(t, t0) should then obey the
evolution equation

∂

∂t
Ū(t, t0)F(~r, t0) = − i

~
H̄(~r, t)Ū(t, t0)F(~r, t0) . (5.2.4)

This leads via integration to

Ū(t, t0)F(~r, t0) = F(~r, t0) +
i

~

t∫
t0

dt′H̄(~r, t′)Ū(t′, t0)F(~r, t0) , (5.2.5)

and satis�es the conditions in Eq. (5.2.3). Iterating Eq. (5.2.5) leads to a series expansion
for the time evolution operation Ū(t, t0)F(~r, t0)

Ū(t, t0)F(~r,t0) = F(~r, t0) +
∞∑
k=1

1

k!

(
-

i

~

)k
T

k∏
p=1

t∫
t0

dτp

∫
d3rp

τp∫
t0

dtpH̄(~rp−1, ~rp, tp, t0)F(~rp, t0),

(5.2.6)
where we used Eq. (5.1.12), ~r0 = ~r, and T is the time-ordering operator such that earlier
times go to the right. For the simplest case, where also the diamagnetic current and J are
zero, the time evolution equation in (5.2.6) reduces and the underlying Riemann-Silberstein
Maxwells time-evolution equation in (5.1.22) becomes

i~
∂

∂t
F(~r, t) = HF(~r, t) , (5.2.7)

which is equivalent to Eq. (2.1.2). The corresponding time-evolution equation is given in
Eq. (2.1.15), i.e,

F(~r, t) = U(t, t0)F(~r, t0) , (5.2.8)

U(t, t0) = exp

[
− i

~
H(t− t0)

]
. (5.2.9)

Since the two underlying Eqs. (5.1.23) and Eq. (5.1.12) are equivalent, the corresponding
two di�erent time-evolution Eqs (5.1.12) and (5.2.6) are also equivalent.
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In a second step, we consider a non-zero current densities Jdmc(~r, t) and Jloc(~r, t)
and start without loss of generality with Eq.(5.1.22) In this case, the Riemann-Silberstein
Maxwell's equation takes

∂

∂t
F(~r, t) = − i

~
HF(~r, t)− J (~r, t) . (5.2.10)

Using Eq. (2.2.14) as before gives

F(~r, t) = U(t, t0)F(~r, t0)−
t∫

t0

dτU(t, τ)J (~r, τ) . (5.2.11)

including all quantum-mechanical current densities of Eqs. (A.5.9)-(5.1.7). If we consider
the separation of J (~r, t) from Eq. (5.1.21), we can rewrite Eq. (5.2.11) to

F(~r, t) = U(t, t0)F(~r, t0)−
t∫

t0

dτU(t, τ)Jdmc(~r, τ)−
t∫

t0

dτU(t, τ)Jloc(~r, τ) . (5.2.12)

The �rst two terms of the right-hand side of this equation are equivalent to Eqs. (5.2.1),
and Eq. (5.2.6). Hence, we can �nd for Eq. (5.2.13) the equivalent expression

F(~r, t) = Ū(t, t0)F(~r,t0)−
t∫

t0

dτU(t, τ)Jloc(~r, τ) , (5.2.13)

which is our requested general form of a time-evolution equation for quantum-mechanical
current.

In Sec. (2.4) we show that the Maxwell Gauÿ laws as side conditions hold during
the time-propagation. This property is also given for the microscopic time-evolution in
Eq. (5.2.11). To show this we apply the D operator from Eq. (1.1.37) on Eq. (5.2.11) to
get D · F(~r, t) with

D · F(~r, t) = D · U(t, t0)F(~r, t0)−
t∫

t0

dτD · U(τ, t0)J (~r, τ) , (5.2.14)

Since the current density J (~r, τ) is classical, and U(t, t0) in its containing Hamiltonian H
is equivalent to the ones considered in Sec. 2.4, we can directly conclude that the Gauÿ side
condition for the electromagnetic �elds hold, if it holds for the initial Riemann-Silberstein
vector.

5.3 Discretized time-evolution and Time-reversal symmetry

of the Maxwell system

Our previously considered discretized time-evolution operator in Eq. (3.2.2) takes with the
time-evolution Eq. (5.2.11) coupled to Kohn-Sham current densities the recursive form

F(~r, (m+ 1)∆t) = Ū((m+ 1)∆t,m∆t)F(~r,m∆t)−
(m+1)∆t∫
m∆t

dτ Ū(τ,m∆t)Jloc(~r, τ) .

(5.3.1)
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Using this equation, the six-component Riemann-Silberstein vector F(~r,m∆t) at the dis-
crete time m∆ with m ∈ N, evolves the system for a small time step ∆t. Unfortunately
this direct propagation scheme breaks the fundamental time-symmetry of the system.

The Pauli-Fierz Hamiltonian in (4.3.5), describing the full coupling Maxwell-Matter
system, and the corresponding Maxwell-Kohn-Sham equation are in principle symmetric
under a time reversal transformation t → −t. This constraint is only strictly given, if
we consider the whole coupled Maxwell-matter system where both systems in�uence each
other. Considering only forward coupling breaks the symmetry. Consequently, in the time-
evolution step for full Maxwell-matter coupling, the time-evolution equation has to obey
the property that a reverse time step from F(~r,m∆t) leads again to the previous result
F(~r, (m− 1)∆t). In general, this constraint is not ful�lled for simple time evolution steps.
However, we can construct a numerical time-evolution equation based on the enforced time-
reversal symmetry (ETRS) [114] for quantum mechanic systems. The underlying condition
requires that a propagation forward starting from F(~r,m∆t) with ∆t/2 and one backwards
starting from F(~r, (m+ 1)∆t) with ∆t/2 has to give the same value of F(~r, (m+ 1/2)∆t).
A modi�ed numerical recursive time-evolution equation for ETRS based on (3.2.2) takes
the form

F(~r, (m+ 1)∆t) = Ū((m+ 1)∆t,m∆t)F(~r, t)

−

(m+ 1
2

)∆t∫
m∆t

dτU(m∆t, τ)Jloc(~r, τ) +

(m+ 1
2

)∆t∫
m∆t

dτU((m+ 1)∆t, τ)Jloc(~r, τ) .

(5.3.2)
The included integrals in (3.2.2) and (5.3.2) can be approximated by trapezoidal rule so
that the numerical time-evolution equations take the explicit forms

F(~r, (m+1)∆t) ≈ Ū((m+1)∆t,m∆t)F(~r ′,m∆t)

− ∆t

2
U((m+1)∆t,m∆t)Jloc(~r

′, (m+1)∆t)

− ∆t

2
Jloc(~r,m∆t) ,

(5.3.3)

for the simple direct propagation, and

F(~r,(m+1)∆t) ≈ Ū((m+1)∆t,m∆t)F(~r,m∆t)

− ∆t

4
U((m+1)∆t,m∆t)Jloc(~r

′,m∆t)

− ∆t

4
U((m+1)∆t,(m+1/2)∆t)Jloc(~r,(m+1/2)∆t)

− ∆t

4
Jloc(~r,(m+1)∆t)

− ∆t

4
U(m∆t,(m+1/2)∆t)Jloc(~r,(m+1/2)∆t)

(5.3.4)

for the ETRS propagation.

5.4 Discretized time-evolution and Time-reversal symmetry

of the matter system

In contrast to our novel quantum mechanical like time-evolution equation for the six-
component Maxwell-Riemann-Silberstein vector in chapter 2, various types of time-evolution
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schemes for Kohn-Sham orbitals are considered in the literature [114, 115] and implemented
in quantum mechanical computer programs like octopus. In the present work, we use con-
sistently the ETRS time-evolution method for both, matter and Maxwell, propagations.
According to Eq. (4.5.7) the one-particle MPKS Hamiltonian ĥ(n)

MPKS for species n is

ĥ
(n)
MPKS = − 1

2M(n)
P̃k(n)P̃(n),k + q(n)A

0
KS −

q(n)~
2M(n)c0

S
(n)
k

[
εklm∂lAKS,m

]
, (5.4.1)

where the canonical momentum is given by

P̃k(n) = −i~∂k +
q(n)

c0
AkKS . (5.4.2)

The total non-interacting many-body MPKS Hamiltonian is the sum over all one-particle
Hamiltonian ĥ(n)

MPKS(~ri) of species n

Ĥ
(n)
MPKS(t) =

∑
i

ĥ
(n)
MPKS(~ri, t) . (5.4.3)

The time evolution equation of the Kohn-Sham orbitals φ(n,i) from starting time t0 to time
t is given by

φ(n,i)(~r, t) = û
(n)
MPKS(t, t0)φ(n,i)(~r, t0) (5.4.4)

with the corresponding time-ordered MPKS time evolution operator û(n)
MPKS(t, t0)

û
(n)
MPKS(t, t0) = T̂ exp

−i

t∫
t0

dτ ĥ
(n)
MPKS(τ)

 . (5.4.5)

The total Kohn-Sham wavefunction Φ(n) of species n evolves in time by

Φ(n)(t) = Û (n)(t, t0)Φ(n)(t0), (5.4.6)

based on its time evolution operator

Û (n)(t, t0) = ⊗N(n)

q=1 û
(n)
MPKS(~rq, t, t0). (5.4.7)

It is a Kronecker product of N (n) occupied Kohn-Sham orbitals for species (n). The
evolution operators do not need to be (anti-)symmetrized, since the symmetry of the initial
state is preserved.

We use for both subsystems, light and matter, the same propagation scheme and con-
struct also a numerical enforced-time-reversal-symmetry propagation for the Kohn-Sham
orbitals. The numerical ETRS time-evolution equation for the (m+1)∆t time step for the
Kohn-Sham orbital φn,i(m∆t) is given by

φ(n,i)(~r, (m+ 1)∆t) = Û
ETRS,(n)
MPKS ((m+ 1)∆t,m∆t)φi(~r,m∆t) (5.4.8)

with the corresponding ETRS time-evolution operator [114]

Û
ETRS,(n)
MPKS ((m+ 1)∆t,m∆t) = exp

[
− i

∆t

2
Ĥ

(n)
MPKS((m+ 1)∆t)

]
exp

[
− i

∆t

2
Ĥ

(n)
MPKS(m∆t)

]
.

(5.4.9)
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Similar to the Maxwell time-evolution, the time step parameter ∆t has to yield to a
stable and quite accurate propagation. In contrast to the Maxwell system, there is no
CFL criterion for the Kohn-Sham evolution since in our non-relativistic approximation the
speed of matter waves is not capped by a �xed velocity. However, for our applications we
have a non-relativistic low energy region for the electrons in mind for which the Kohn-
Sham orbitals motion is much slower than the speed of light. Hence, the maximum ∆t is
in most cases much larger than the one for the Maxwell �elds. We focus on this issue later
in Sec. 5.6 when we discuss di�erent propagation levels.

5.5 Kohn-Sham interaction Hamiltonian

The electromagnetic �eld interaction with matter is in principle described by extending the
Dirac equation with the full minimal coupling term. The full minimal coupling takes both,
the Lorentz- and gauge-invariance into account. The non-relativistic MPKS approach of
Sec. 4.3 breaks this symmetry. However, it is still an accurate approximation for particles
in a low energy limit. Higher order extension of the Pauli-Fierz Hamiltonian exists that
consider relativistic corrections. But for most applications, the MPKS approach leads to
su�ciently accurate results.
In this section, we derive the multipole expansion as one possible approximation, which
gives in �rst order the most commonly used Maxwell-to-matter interaction term, the dipole
approximation. We introduce additionally electric quadrupole and magnetic dipole cou-
pling to investigate later e�ects beyond the dipole coupling to show the in�uence of this
approximation.

5.5.1 Full minimal coupling

The full minimal coupling was applied by substituting the canonical momentum transfor-
mation Eq. (A.2.1) into the Dirac Eq. (4.2.10). Based on the Pauli and QEDFT approaches,
we get the full minimal coupling Kohn-Sham Hamiltonian from Eq. (5.4.1). Next, we sepa-
rate the Hamiltonian into a kinetic Hamiltonian Ĥkin and an interaction Hamiltonian Ĥint

which includes Maxwell and matter variables

Ĥ
(n)
MPKS = Ĥ

kin,(n)
MPKS + Ĥ

int,(n)
MPKS =

∑
i

ĥ
kin,(n)
MPKS +

∑
i

ĥ
int,(n)
MPKS , (5.5.1)

where the kinetic piece is given by

ĥ
kin,(n)
MPKS =

~2

2M(n)
∂k∂k , (5.5.2)

and the light-matter coupling is contained in

ĥ
int,(n)
MPKS =

−i~q(n)

M(n)
AkKS∂k +

q2
(n)

2M(n)
AkKSAKS,k + q(n)A

0
KS −

q(n)~
2M(n)c0

σkε
klm∂lAKS,m .

(5.5.3)
From Sec. 4.5 we know that we get the physical total vector potential Ak with the Riemann-
Silberstein propagation. Finding accurate approximations for the corresponding Kohn-
Sham potential AkKS is one aspect for future work. As a �rst approximation for AkKS, we
use here Eq. (4.5.17). The mean �eld vector potential Ak is determined by the Riemann-
Silberstein vector via Eq. (5.1.8). We note here, that the total vector potential especially
the scalar potential componentA0

KS, given in Eq. (4.5.16), in principle includes all electronic
and nuclear potentials.
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5.5.2 Multipole expansion

In many applications, the correct full minimal coupling is expensive to calculate or not
needed since the length scales of matter and radiation di�er vastly. Therefore, the minimal
coupling is often approximated by a multipole expansion using the electric and magnetic
�elds variables. As is well-known, the ubiquitous electric dipole approximation is equivalent
to the lowest order term of the multipole expansion. In the following, we brie�y summarize
the derivation of the multipole expansion based on the Power-Zienau-Woolley transforma-
tion (cf. chapter 5.2 of Ref. [116]) and adapt it to the present Maxwell-Pauli-Kohn-Sham
case. As �rst step, we introduce the polarization ~P (n)(~r)

~P (n)(~r) =
q(n)

c0

∑
i

~ri

1∫
0

δ(~r − α~ri)dα . (5.5.4)

In Coulomb gauge with ~∇ · ~AKS = 0, the vector potential is always transverse and hence
the unitary Power-Zienau-Woolley transformation Û (n)

PZW is de�ned by

Û
(n)
PZW = exp

[
i

~

∫
d3r ~P

(n)
⊥ (~r) · ~AKS(~r)

]

= exp

 iq(n)

~
∑
i

1∫
0

~ri · ~AKS(α~ri)dα

 .

(5.5.5)

Next, we transform the MPKS Hamiltonian Ĥ(n)
MPKS from Eq. (5.5.1) using Û (n)

PZW into

Ĥ
′(n)
MPKS = Û

(n),−1
PZW Ĥ

(n)
MPKSÛ

(n)
PZW (5.5.6)

In this case, the nabla operator of particle i transforms to

Û−1
PZW

~∇i ÛPZW = ~∇i +
iq(n)

~c0

1∫
0

(
~∇i~ri · ~AKS(α~ri, t)dα

)
. (5.5.7)

According to the Power-Zienau-Woolley transformation, the corresponding wavefunctions
are given by Φ′(n) = Û−1

PZWΦ(n), and the transformed Kohn-Sham equation reads

i~∂tφ′(n,i)(~r, s(n), t) =

 1

2M(n)

−i~~∇+
q(n)

c0

1∫
0

α~r × ~BKS(α~r, t)dα

2

+ q(n)A
0
KS(~r, t)

φ′(n,i)(~r, s(n), t)

+

q(n)

1∫
0

~r · ~EKS,⊥(α~r, t)dα−
q(n)~
2M(n)

~S(n) · ~BKS(~r, s(n), t)

φ′(n,i)(~r, t)

(5.5.8)
Rewriting the transformed Hamiltonian of the previous equation leads to the multipole
expansion of the Kohn-Sham Hamiltonian with

Ĥ
′(n)
MPKS = Ĥ

kin,(n)
MPKS + Ĥ

ED,(n)
MPKS + Ĥ

MD,(n)
MPKS + Ĥ

EQ,(n)
MPKS + ...︸ ︷︷ ︸

Ĥ
′int,(n)
MPKS

, (5.5.9)
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where the kinetic Hamiltonian Ĥkin,(n)
MPKS is given in Eq. (5.5.2). The remaining multipole

terms until second order are the electric dipole term Ĥ
ED,(n)
MPKS

ĥ
ED,(n)
MPKS (~r, ~r0) = e~r · ~E⊥(~r0) (5.5.10)

Ĥ
ED,(n)
MPKS =

∑
i

ĥ
ED,(n)
MPKS (~ri, ~r0) , (5.5.11)

the magnetic dipole term Ĥ
MD,(n)
MPKS

ĥ
MD,(n)
MPKS (~r, ~r0) =

(
−i

e~
2m

~B(~r0) ·
(
~ri × ~∇

))
(5.5.12)

Ĥ
MD,(n)
MPKS =

∑
i

ĥ
MD,(n)
MPKS (~ri, ~r0) , (5.5.13)

and the electric quadrupole term Ĥ
EQ,(n)
MPKS

ĥ
EQ,(n)
MPKS (~r, ~r0) =

1

2
e
(
~r · ~∇

)
~r ·
(
~E⊥(~r)

) ∣∣∣∣
~r=~r0

(5.5.14)

Ĥ
EQ,(n)
MPKS =

∑
i

ĥ
EQ,(n)
MPKS (~ri, ~r0) . (5.5.15)

They are all expanded around the expansion point ~r0, which can be chosen in good ap-
proximation either as center of mass or center of charge of the matter system. We note
here, that we employed the Power-Zienau-Woolley transformation on classical Kohn-Sham
�elds. For quantized �elds, the result di�er and a usual Taylor expansion is not applicable
[5, 117, 62].

5.5.3 Transverse Riemann-Silberstein vector calculation

The Power-Zienau-Woolley transformed Hamiltonian results in Maxwell-matter coupling
in terms of the electric and magnetic �eld. Whereas the magnetic dipole term depends
on the total magnetic �eld, the electric dipole and quadrupole terms depend only on
the transverse component of the electric �eld. Consequently, we have to decompose the
Riemann-Silberstein vector into its transverse and longitudinal components. In general,
the Helmholtz-decomposition [112] formula for the Riemann-Silberstein vector is given by

~F⊥± (~r, t) = ~∇×
∫
V

d3r′
~∇~r′ × ~F±(~r ′, t)

4π|~r − ~r ′|︸ ︷︷ ︸
Solution of poisson equation

− 1

4π

∮
S

dS′~̂n×
~F±(~r ′, t)

4π|~r − ~r ′|
.

(5.5.16)

The �rst term on the right-hand side of Eq. (5.5.16) can be computed e�ciently by a
Poisson solver since it is the solution of the Poisson equation. Octopus provides several
e�ective Poisson solvers [93, 118] to obtain Kohn-Sham potentials for matter systems,
which we adapt here for the Riemann-Silberstein decomposition. The second integral in
Eq. (5.5.16) is a surface integral which is necessary, if the Riemann-Silberstein vector does
not vanish at the simulation box boundaries. Since the Riemann-Silberstein vector in the
multipole expansion Hamiltonian in Eq. (5.5.9) does only depend on the expansion point
~r0 of the multipole expansion and its corresponding Riemann-Silberstein vector inside the
box, it is su�cient to calculate the values of the surface integral only for the stencil points
that correspond to the expansion center ~r0 of the multipole expansion. This reduces the
computational cost for the boundary term signi�cantly.
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Note, that in principle the �eld decomposition of coupled Maxwell-matter systems can
be achieved by calculating the longitudinal electric �eld caused by the Kohn-Sham orbitals
of all species. But some of the simulations for large matter systems that we have performed
have shown instabilities after a long time of propagation. Therefore, we decompose the
�eld for each time step when it couples to the matter to avoid small errors, which possibly
result in an incorrect simulation run.

5.6 Maxwell-Kohn-Sham multi-scale implementation

Up to now, we have seen in the previous sections that both physical systems, matter and
Maxwell, can be expressed mathematically very similar. Both can be propagated in time
by a Schrödinger-like equation. Nevertheless some fundamental di�erences require di�erent
physical parameters to simulate each system properly, especially for length and time scale.
Some examples are molecular systems interacting with infrared, optical or ultraviolet laser
pulses. In all cases, the matter wavefunctions are localized in a small volume compared to
the laser �eld. Additionally, the wavefunctions �uctuate rather strongly, whereas typical
experiments show that the Maxwell �elds reaction is often smoother. The length scale
di�erence of Maxwell radiation and matter motion can di�er by about some orders of mag-
nitude. Although our implementation is not restricted to such simulations, we introduce
some grid types which are especially designed for laser-molecule interactions.

5.6.1 Multi-grid types

In Figure 5.1, we illustrate di�erent kinds of combined matter and Maxwell grids, and
consider without loss of generality only matter grid spacings smaller or equal to the Maxwell
grid spacing. In principle, our implementation can also reverse this grid relation to simulate
high frequency Maxwell signals, e.g. x-rays.
The grids in Figure 5.1 a) and b) represent equal sized grid for both systems. In general,
the Maxwell grid points do not necessarily have to lie on the top of a matter grid point,
illustrated in a). For both grid types a) or b), it is not possible to use the grid point values
directly in the respective coupling terms of the propagation equations. For example, the
�ner matter grid points have to be sorted in clusters which map to the next nearest Maxwell
grid point and di�erent methods to get the weighted mean value yield the coupling value
for that Maxwell point. Vise versa, a Taylor series extrapolation of the Maxwell values can
be used to obtain the coupling values for the matter points. These grid types of equally
sized dimensions are well suited to simulate periodic systems.
The two schemes in Figure FIG. 5.1 c) and d) show matter grid types, in �rst case without
common grid points, and in second case with common grid points, but compared to the
previous grids with smaller dimensions for the matter grid than for the Maxwell one. As
before, the values for the corresponding coupling terms have to be calculated by weighted
mean and interpolation. Those grid types can describe e�ciently bound molecules and
nanoparticles, especially when focussing on electromagnetic far-�elds.
In case of near �eld e�ects, where the electromagnetic �eld �uctuation correlate strongly
with the matter wavefunctions, it is consequently a good choice to select the same grid
spacings for both grids and to place matter and Maxwell grid points on top of each other
as shown in Figure 5.1 e) and f). In this case, the values for both respective coupling
terms can be obtained directly from the �eld point at the respective grid point. Besides
the near-�eld simulation, the grid type f) with larger Maxwell grid dimensions is suited
to study the onset of the electromagnetic far-�eld and allows to de�ne electromagnetic
detectors at the box boundaries.
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Figure 5.1: An overview over some multiscale grid types. The red dots represent
grid points for the Kohn-Sham wavefunctions and the blue dots show the grid
point for the Maxwell �eld variables. In most relevant applications, the Kohn-
Sham grid is �ner than the Maxwell grid, like in a), b), c), d), and g). The grid
types e) and f) represent special cases, where both grids lie on top of each other,
but they are not necessarily of same size which is given in f). Only the equal sized
grids in a), b), and e) are suitable for periodic systems, whereas the remaining
types describe proper bound non-periodic systems.
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The last grid type in Figure 5.1 g) illustrates the case, where the matter grid is chosen
much �ner than the Maxwell grid. Only one Maxwell grid point lies in the middle of the
matter grid. Here, it is assumed that the Maxwell �eld is approximately constant for all
matter grid points. Vice versa, the coupling value for the Maxwell grid is obtained by the
mean value of all matter points.

5.6.2 Multi-scales in time

After setting up the two spatial system grids and their di�erent length scales, we focus
in this section on the di�erent time scales. The di�erent scales for matter and radiation
in time require a more detailed consideration about the propagation time steps of each
subsystem.
In principle, it is possible to chose identical parameters with the condition that both
propagators have to run stable in time, but this is for most physical cases not the most
e�cient choice. According to the underlying Maxwell Hamiltonian-like operator in HMx

Eq. (1.1.30), which forms the 6x6 H operator in Eq. (1.1.41) for the Maxwell propagation,
the gradient operation is multiplied by the speed of light c0 (roughly 137 in atomic units).
This factor imposes the speed for the electromagnetic waves on the grid.
On the other hand, the matter Hamiltonian in our non-relativistic Pauli limit is lacking
the factor of c0 and yields a much smaller spectral range of the maximum and minimum
eigenvalue of the Hamiltonian. Consequently, the underlying time step variables have to
propagate "fast" photon motion and "slow" motion of matter. This results in a much
smaller maximum time step ∆tKS,max for the Maxwell propagation compared to the max-
imum time step of the matter ∆tKS,max.
A similar situation of di�erent physical time scales is already known in electron-nuclear dy-
namics, where the large nuclear mass leads to a rather slow motion of the nuclei compared
to the faster motion of the lighter electrons. Now, the propagation of the Maxwell �elds
also with electron-nuclear dynamics adds a third timescale. In our numerical time-stepping
scheme, we exploit the di�erent time scales explicitly to increase the computational e�-
ciency.
Several test simulations that we have performed have shown, that the coupled propagation
of nuclei, electrons and Maxwell �elds keeps relatively accurate, stable and converged, if we
perfom several Maxwell propagation steps ∆tMx as intermediate steps between the Kohn-
Sham propagation steps ∆tKS and Ehrenfest steps for the nuclei. We select the Kohn-Sham
time steps ∆tKS < ∆tKS,max as the basic time step parameter for the entire MPKS system.
The number NMx−steps of intermediate Maxwell steps is automatically chosen such that

∆tKS ≤ NMx−steps∆tMx,CFL , (5.6.1)

where ∆tMx,CFL denotes the Courant time step given in equation (3.2.4).
Performing these intermediate Maxwell time steps, assumes that the intermediate Maxwell
propagation between the m∆KS time step and the following (m + 1)∆KS time step dos
not a�ect the matter propagation signi�cantly. Therefore, the current density for the
corresponding ith is we approximated by the linear expansion

Jloc(~r,m∆tKS + i∆tMx) = Jloc(~r,m∆tKS) +

[
Jloc(~r, (m+ 1)∆tKS)− Jloc(~r,m∆tKS)

NMx−steps

]
i .

(5.6.2)
The recursive ETRS time-evolution equation for the ith step then takes with Eq. (5.3.4)
the form
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F(~r, tm,i+1) ≈ Ū(tm,i+1, tm,i)F(~r, tm,i)

− ∆tMx

4
U(tm,i+1, tm,i)Jloc(~r, tm,i)

− ∆tMx

4
U(tm,i+1, tm,i+1/2)Jloc(~r, tm,i+1/2)

− ∆tMx

4
U(tm,i, tm,i+1/2)Jloc(~r, tm,i+1/2)

− ∆tMx

4
Jloc(~r, tm,i)

(5.6.3)

with

tm,i = m∆tKS + i∆tMx ,

tm,i+1 = m∆tKS + (i+ 1)∆tMx ,

tm,i+1/2 = m∆tKS + (i+ 1/2)∆tMx .

(5.6.4)

To reduce computational cost even further, we can assume in most cases that the last for
inhomogeneity terms in Eq. (5.6.3) are approximately constant for all intermediate time
steps during the time interval ∆tKS. Thus, we use in this case for all occuring Jloc(~r, t)
in equation (5.6.3) the arithmetic mean of Jloc(~r,m∆t), and Jloc(~r, (m + 1)∆t) which
reduces the amount of necessary computational expensive Ū operations. These considered
approximations to the full time-evolution requires always a check of convergence for a given
application.

5.6.3 Finite di�erence operators and parallelization strategy

Figure 5.2: Domain parallelization of matter and Maxwell grid. Both schematic drawings
show the same two matter and Maxwell grids, and represent grid type f) in Figure (5.1).
The matter grid points are bold green dots, and the Maxwell grid points are the smaller
purple dots. The left one emphasize partition of the matter grid, and the right one the
partition of the Maxwell grid. Both grid partitions have common points with more than
one other partition, since each division is independent from each other.

The previously introduced grids provide the basis to express approximately the matter
wavefunctions and the Maxwell �eld variables. In addition, the grid point values deter-
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mine the spatial derivatives of both systems. In Sec. 5.3 and Sec. 5.4, we show both
time-evolution equations, which we use to propagate the corresponding system. Their
underlying time-evolution operations depend on �rst-order spatial derivatives in case of
the Maxwell �elds and second-order spatial derivatives in case of the matter wavefunc-
tions. We obtain both operations with the �nite-di�erence method [89, 90, 91]. Since
we introduce and consider mainly the Maxwell �eld propagation the present work, which
have a Schrödinger-like form, but with �rst-order derivatives, we introduce the �rst deriva-
tive �nite-di�erence stencil in Sec. 3.1. The second derivatives, which we need for the
kinetic operator of the Pauli-Fierz Hamiltonian, are established and discussed in literature
[93, 118]. Finite di�erence routines for �rst and second derivatives for selectable accuracy
order are implemented in octopus [118].

We also considered in Sec. 3.1 the parallelization scheme for the Maxwell propagation.
In case of coupled Maxwell-matter simulations, we speed up the time-evolution by using
additionally a parallel propagation scheme for the matter. Octopus provides an optimized
parallelization in domains and in "states" or "orbitals/k-points" [93]. Since the Riemann-
Silberstein vector is always a six-dimensional vector whose components are considered as
six states in the routines of the code, parallelization in states is not so e�ective in this case.
As already described in Sec. 3.1, Octopus has to share the values from some grid points
of the grid partition and share them with other partitions to get the correct derivative
operations. This technique is illustrated in Figure 3.3 for the Maxwell grid. Furthermore,
this communication of shared data has to be expanded now. Both system grids could
vary in size, grid points and they are partitioned independently from each other. As a
consequence, the point mapping between the grids leads in general to a mapping between
di�erent partitions.
Figure 5.6.3 illustrates an example for such a partitioning of a Maxwell-matter system.
The matter grid points are marked with large dots and divided into four domains also
highlighted in green on the left in Figure 5.6.3 . The Maxwell grid partitions with their
grid points are plotted and highlighted in purple on the right in Figure 5.6.3. It can be seen
in both �gures, that the matter grid points of partition 1 maps on Maxwell partitions 1 and
4. On the other hand, the Maxwell partition 1 has common grid points with the matter
partitions 1 and 2. We have implemented a mapping, that considers the parallelization
in domains of each grid and arranges the necessary data shares to get the right coupling
values from the respective other subsystem.

5.6.4 Predictor-corrector method

Previously, in Sec. 5.3 and Sec. 5.4 we described the two propagation schemes for matter
and electromagnetic �elds separately. In the following, we show a predictor-corrector
method that enforces a self-consistent propagation of the system.

5.6.5 Forward coupling

In most studies in the literature, light-matter coupling is restricted to forward Maxwell-
matter coupling. The electromagnetic �elds in�uence the matter, but the induced back-
reaction due to charge motion does not in�uence the propagation of the electromagnetic
�elds. In only forward coupling simulations, the external electromagnetic �eld propagates
without any perturbation by the matter and is calculated separately either analytically or
numerically. Such a propagation scheme for one time step is illustrated on the left-hand
side in FIG. 5.6.4.
According to the time-evolution operator in Eq. (5.4.9), the operator ÛETRS,(n)

MPKS ((m +
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Figure 5.3: The �gure on the left-hand side illustrates the most common coupling
situation for light-matter coupling in quantum mechanical many-body simula-
tions. The electromagnetic �elds (in blue) propagate freely and only in�uence
the propagation of the matter (in red). The back reaction of the matter cur-
rents on the electromagnetic �elds is neglected. As a consequence, the Maxwell
propagation is not calculated numerically, since in most cases, the time-evolution
is taken from analytical solutions of Maxwell's equations or the paraxial wave
equation. In case of taking the back reaction into account, the Maxwell propa-
gation is in general not solvable analytically and requires a numerical propaga-
tion as for the matter evolution. In the �gure on the right-hand side, we show a
fully self-consistent predictor-corrector scheme for a coupled Maxwell-Pauli-Kohn-
Sham time step. As before, the electromagnetic �eld in�uence the propagation
of the matter (forward coupling), and additionally the arising currents in�uence
the electromagnetic �elds and their time-evolution (backward coupling). Both
propagations have to be self-consistent, and therefore, a given coupled time-step
is repeated with successively corrected variables until self-consistency is found.
Only then the simulation continues to perform the next time step.

1)∆tKS,m∆tKS) depends on the Hamiltonian operator Ĥ(n)
MPKS((m+1)∆tKS) at the future

time t = (m + 1)∆tKS. This future Hamiltonian is not only determined by the external
Maxwell �elds but also by the motions of the ions and electrons and their interactions.
Therefore, it is necessary to apply a predictor corrector cycle for the matter propagation.
In a �rst step, the future Hamiltonian is estimated by an extrapolation [119] and the
calculated time propagation returns an estimated Kohn-Sham potential which is again
used for an updated extrapolation of the Hamiltonian. These steps are repeated until the
absolute value of the variance of two subsequently Kohn-Sham potenials falls below a small
threshold value. For our calculations, we set a threshold value of 1e−6 in atomic units for
the potential variance and adjust the time step ∆tKS for the propagation so that the matter
system is converged in at least two iterations if the system is only disturbed very weakly
by the external �eld. During the full run and stronger perturbations, we notice that the
number of iterations is barely larger than �ve.

5.6.6 Forward and backward coupling

The back-reaction of matter on the Maxwell �eld appears in the MPKS formulation due to
the current density in Eq. (5.1.21) which is caused by the motion of matter. The three cur-
rent types, paramagnetic, diamagnetic and magnetization current, in�uence the Maxwell
propagation Eq. (5.2.11). The in�uence of the paramagnetic current, the magnetization
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current and optional external currents result directly summed up in the inhomogeneity
Jloc(~r, t) term in Eq. (5.1.20). The diamagnetic current implicitly e�ects the time-evolution
due to the modi�ed Maxwell time-evolution operator Ū for this case given in (5.2.6). The
full forward and backward coupling scheme is shown on the right-hand side in �gure FIG.
5.6.4.
In a fully self-consistent scheme, both systems and accordingly their time-evolution prop-
agation equations in (5.2.11) and (5.4.4) couple to each other. First we apply the extrap-
olation of the future matter Hamiltonian to get a prediction for the Kohn-Sham orbitals.
These orbitals and the initial ones give us the necessary current density, which couple to
the Maxwell �elds. Using the �rst predicted updated current density at time (m+ 1)∆tKS

leads to an updated Riemann-Silberstein vector. At this point, the predictor-corrector loop
restarts by updating the Kohn-Sham orbitals, but now with a corrected matter Hamil-
tonian, which includes the updated Riemann-Silberstein vector. As a consequence, the
previously predicted variables get a correction closer to the values which make the cou-
pled system self-consistent. We additionally check the consistency of the Maxwell �elds
by comparing the Maxwell energy inside the simulation box for two successive updated
Riemann-Silberstein vectors. Therefore, we use the same threshold value 1e−6 like for
the matter convergence. Additonally, we chose the system propatagion time ∆t that the
predictor-corrector step iterates at least two times until the self-consistency thresholds are
ful�lled for weak perturbations. Again, the number of iterations for strong perturbation
periods should not be larger than �ve steps.

5.7 Simulation of open quantum systems with the Maxwell-

Kohn-Sham propagation

In Sec. 3.4 we introduced absorbing boundaries for the electromagnetic �eld to simulate
outgoing �elds. While this is a standard procedure in FDTD simulations, we emphasize
here that such absorbing boundaries e�ectively allow to turn our coupled light-matter sys-
tem into an open quantum system from �rst principles. Therefore, the forward-backward
coupled light-matter simulation damps the quantum-mechanical system, due to the fact
that the matter transfers energy to the electromagnetic �eld, which in turn transfers the
energy via radiation to the absorbing boundaries. Consequently, no arti�cial bath de-
grees of freedom have to be introduced in our simulation scheme as commonly done in the
description of open quantum systems.

5.8 Electromagnetic detectors

Due to the self-consistent forward-backward coupling, we have established a methodology
to investigate the local �eld distribution of the electromagnetic �elds inside the simulation
box. Hence, we can measure the optical properties of the matter directly from the elec-
tromagnetic observables. Since we can evaluate the �eld values at each grid point, we can
examine in this way near �eld e�ects of the �eld. Furthermore, if the matter system is sur-
rounded by vacuum, the outgoing waves propagate analytically. In other words, whatever
arrives in the boundary region would propagate to the far �eld and contributes to what
can be measured in the far �eld by a detector. For this purpose, we de�ne right before
the boundary region a small closed area as a far �eld detector. This detector region can
consist of only a closed surface to get �eld values, e.g., the energy �ow through the surface,
or the region builds a three-dimensional frame box. We illustrate such a detector frame
region in Figure 5.4, where we use the incident plane wave plus PML boundaries simula-
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Figure 5.4: A small blue closed area at boundaries of the inner free
Maxwell propagation area illustrates the detector region, where the in-
cluded grid point values are used to analyze the Maxwell far-�eld.

tion box from Sec. 3.4.6. Hence, the electromagnetic �eld inside the detector box can be
used to extrapolate the far �eld beyond the simulation box. Detecting the electromagnetic
�eld directly and not indirectly by matter variables, as it is done in common methods of
spectroscopy, is a paradigm shift to measure optical spectra, to avoid possible errors and
to reveal new e�ects.

5.9 Broken time reversal symmetry

In Secs. 5.3 and 5.4 we discuss the time-reversal symmetry of the total Pauli-Fierz Hamil-
tonian of our system given in Eq. (4.3.5). This property only holds if we consider the
total Maxwell-matter system as a closed system. For instance, the incident plane wave
boundaries simulate an open system since energy enters the system through the analyti-
cal calculated boundaries. The time-reversal symmetry does not hold for open systems,
especially in presence of magnetic �elds [67], and consequently the ETRS propagator in
equation (5.3.4) does not hold. However, we assume in the present work that the full
coupled Hamiltonian stays time-reversal since the main breaking of the symmetry arises if
we consider the magnetic �eld propagation without any back-reaction of the matter.
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Chapter 6

Applications

In this section, we demonstrate the signi�cance of simulating the fully self-consistent cou-
pling of the time-dependent Kohn-Sham equations for the electrons, Ehrenfest dynamics
for the nuclei, and Maxwell's equations for the electromagnetic �elds. We use our EMPKS
implementation in the Octopus code, which we introduced in the previous sections to
simulate di�erent scenarios and coupling levels. They range from conventional forward
light-matter coupling in dipole approximation with �xed nuclei to a theory level with
forward-backward self-consistent light-matter coupling including electric quadrupole and
magnetic dipole terms. In addition, we can include the motion of the ions and classical
Lorentz forces on the ions. An overview of the various EMPKS theory levels, that we use
in the present work, is shown in Table 6.1. The advantage of switching on and o� di�erent
degrees of freedom and coupling levels lies in the direct study of the impact and signi�cance
of physical mechanisms.

Acronym Description

F@ED Forward coupling with Electric Dipole term

FB@ED Forward and Backward coupling with Electric Dipole term

F@(ED+MD+EQ)
Forward coupling with Electric Dipole, Magnetic Dipole and

Electric Quadrupole term

FB@(ED+MD+EQ)
Forward and Backward coupling with Electric Dipole,

Magnetic Dipole and Electric Quadrupole term

Table 6.1: Table of acronyms that are used in the present work to indicate the level of
EMPKS theory.

6.1 Laser pulse simulation scheme for a plasmonic nanopar-

ticle system and simulation parameters

In a typical experimental setup, a molecule gets excited by an incoming laser pulse. The
molecule gets excited, absorbs and emits light. The absorbed and emitted light is detected
by the outgoing electromagnetic �elds. Analyzing the incident and outgoing light draws
conclusions about the optical properties of the studied molecule. In the following, we apply
our novel ab-initio EMPKS propagation to simulate such laser pulse experiments.

In principle, the simulation setup is very similar to the one in Sec. 3.6, where we hit
a linear medium box with a laser pulse. Instead of the medium box, we can place any
matter system inside the simuation. Hence, according to the medium box simulation, we
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Figure 6.1: Simulation scheme of a laser pulse excitation of a quantum-mechanical
system. a) Inside the simulation Box, the quantum mechanical system is grounded
in its initial state. Outside the box we place a laser pulse that propagates into
the direction of the matter system. Due to the incident waves. b) The incident
wave boundaries simulate the incoming wave and the matter system gets excited.
c) Due to this excitation, the induced charge motion and current cause an elec-
tromagnetic reaction. d) The induced motion of charges leads still to a radiation
although the laser pulse left the box.

use a simulation box with combined incident plane waves and perfectly matched layer
boundaries, which we introduced in Sec. 3.4.6. In addition to the boundaries, we de�ne
a small detector region as it is described in Sec. 5.8. A schematic overview of the entire
simulation is presented in Figure 6.1. The �rst illustration a) shows the initial setup. The
matter system in its ground state is placed in the center of the simulation box. In the
beginning, the external laser pulse is outside the box, here represented by its electric �eld
polarized perpendicular to the drawing plane. The wave vector is perpendicular to the
laser wave front and heads into the direction of the matter. After several time steps shown
in b), the laser pulse enters the simulation box and excites the matter system. Due to the
electric �eld oscillation, the electrons and hence the corresponding charge density starts to
oscillate, which induce an electric current density. This arising current density in�uences
the total Maxwell �eld. The external laser �eld and the induced inner Maxwell �eld, both
interfere which is illustrated in c). Since our implementation solves the forward-backward
Maxwell-matter coupling, we can directly analyze the localized electromagnetic �eld inside
the simulation box to examine near-�eld e�ects. If we drive the molecule by its resonance
frequency, the charge oscillation of the electrons will continue even when the laser passed
the simulation box. As shown in d) the corresponding electromagnetic radiation can be
measured at the detector region to get information about far-�eld e�ects. Although the
driven laser left the simulation box, the matter system still radiate a electromagnetic
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�eld. Due to this radiation, energy from the excited matter system transfers via the
electromagnetic �eld to the boundaries of the box. The Maxwell PML simulates the
outgoing waves and as a consequence, the matter loses energy, in principle until it returns
into the ground state.

6.1.1 Na297-dimer geometry and optical spectra

Recent experiments and theoretical considerations have revealed that large nanoparticles,
excited by a laser pulse, create large induced currents. Hence, to test and demonstrate our
EMPKS implementation, we select a nanoplasmonic particle, which was already examined
in previous work by Alejandro Varas et. al. [120].

The system consists of two almost spherical nanoparticles with 297 sodium atoms each,
which are arranged in a dimer con�guration. A corresponding illustration of the dimer
geometry with two di�erent distances between the dimer is shown in Figure 6.2. Both
nanoclusters have together 594 sodium atoms with 594 valence electrons [121, 122]. All
inner electrons of the inner electron shell and the valence electron are approximated by
Troullier-Martins pseudo-potentials in Octopus [93, 118, 123].

Figure 6.2: Geometry of the Na297 dimer in E2E con�guration with di�erent
distances d1 = 0.1nm and d2 = 0.5nm between the two e�ective spheres of the
clusters which are illustrated by the black dashed circle.
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The icosahedral polyhydron is the most stable geometry for one sodium dimer. After
performing standard geometry optimization with octopus, we obtain some characteristic
parameters of the dimer geometry. The quite large polyhydron is approximately a sphere
with an e�ective diameter of 2R, with an e�ective radius R ≈ 2.61nm, given by the
optimization calculation. Further geometry parameters describe the distance between the
two nanoparticles. First, the parameter b gives the distance between the two centered
sodium atoms of each icosahedron so that d is de�ned as d = b− 2R, and does not depend
on the relative orientation of the two clusters to each other. The two icosahedrons can be
orientated in several constellations. We use a relative orientation such that the 3-atoms
edge of the hexagons are lying face to face. This so called E2E con�guration is illustrated
in �gure FIG. 6.2. The dimer axis is oriented parallel to the z-axis, therefore the dimer is
symmetric in x- and y-axis.

To investigate the e�ect of internal dipole and quadrupole of the system on the coupled
time-evolution, we consider two di�erent distances d1 = 0.1nm and d2 = 0.5nm. The
maximum absorbing frequency of the corresponding optical absorption cross sections in
Ref. [120] shows a quadrupole (Q mode) localized surface plasmon resonance (LSPR) for
the d1 dimer, and a dipole (D mode) resonance for the d2 dimer.

6.1.2 Simulation boxes and grid alignement

According to Sec. 6.1, we place the Na297-dimer in the middle of the Maxwell-Kohn-Sham
simulation box which corresponds to grid type f) in �gure Figure. 5.1. The matter Kohn-
Sham grid is smaller than the Maxwell grid, but both grids have the same grid spacing
in each direction and all Kohn-Sham grid points lie on top of a Maxwell grid point. The
Kohn-Sham grid geometry is based on the so called minimum box construction [93]. The
minimum box of a molecule consists of the union all of Cartesian grid points which lie
inside a �xed radius around each ion of the system. For all simulations, we select a radius
of Rmin = 0.794 nm (15 a.u.). Taking the corresponding geometries for d1 and d2 into
account, we obtain maximal extensions LKS,x, LKS,y, LKS,z in each direction given in
the tables Table 6.2. The matter grid is surrounded by a signi�cant larger parallelepiped
shaped box for the Maxwell grid points with the extensions LMx,x, LMx,y, LMx,z in negative
and positive direction which is illustrated in �gure Figure. (5.4). As grid spacing for both
grids we select 0.053 nm (1.0 a.u.).

For the Kohn-Sham grid we use a zero Dirichlet boundary condition, whereas for the
Maxwell grid we employ the combined incident plane wave plus absorbing boundaries via
PML as introduced in section 3.4.6. Hence, the Maxwell simulation grid is separated into
two areas, one outer for the incident plane wave boundaries and one inner for the PML.
The incident plane wave boundary width depends on the derivative order for the operation
stencil times the grid spacing. In the present case, we use a �nite di�erence order of four,
which corresponds to the width of the plane wave boundary region of 0.212 nm (4.0 a.u.).
Additionally, we use 0.265 nm (5.0 a.u.) as PML region. The total inner siulation box for
the free Maxwell propagation is therefore limited by bMx,x, bMx,y, and bMx,z also given in
table 6.2.

6.1.3 Measurement and detector regions

As mentioned before in Sec. 6.1 for the simulation scheme description, we can measure the
electromagnetic �eld at all points inside the free Maxwell simulation region. However, in
principle to show the main properties of the near-�eld and far-�eld e�ects it is su�cient to
evaluate the variables only at distinguished points, which give characteristic information
about the e�ects. Instead of taking just one point, we can integrate over several points,
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distance d1 distance d2

variable conv. units [a.u.] conv. units [a.u.]
ω 3.05 eV 0.112 2.83 eV 0.104
kx 1.55 e−11 m−1 8.17 e−4 1.43 e−11 m−1 7.59 e−4

λ 406.5 nm 7681.84 438.1 nm 8279.02
E0,z 5.142 e7 V/m 1.0 e−4 5.142 e7 V/m 1.0 e−4

Intensity 3.51 e12 W/m2 5.45 e−4 3.51 e12 W/m2 5.45 e−4

ξ 2034.08 nm 38438.5 2034.08 nm 41395.1
x0 4068.16 nm 76877.0 4381.07 nm 82790.2

LKS,x 1.993 nm 37.658 1.993 nm 37.658
LKS,y 1.993 nm 37.658 1.993 nm 37.658
LKS,z 3.347 nm 63.258 3.547 nm 67.037
LMx,x 2.646 nm 50.000 2.646 nm 50.000
LMx,y 2.646 nm 50.000 2.646 nm 50.000
LMx,z 4.498 nm 85.000 4.498 nm 85.000
aMx,x 2.170 nm 41.000 2.170 nm 41.000
aMx,y 2.170 nm 41.000 2.170 nm 41.000
aMx,z 4.022 nm 76.000 4.022 nm 76.000
∆xKS 0.053 nm 1.000 0.053 nm 1.000
∆xMx 0.053 nm 1.000 0.053 nm 1.000
∆tKS 5.096 e−3 fs 0.211 5.096 e−3 fs 0.211
∆tMx 1.019 e−4 fs 4.21 e−3 1.019 e−4 fs 4.21 e−3

Table 6.2: Simulation parameters for the sodium dimer for distances
d1 = 0.1 nm and d2 = 0.5 nm.

surfaces or volumes of interest to get a mean value for evaluating the �eld.
For this application, we de�ne three distinguished points, the mid point ~rmp at the origin
of the box

~rmp = (0, 0, 0) , (6.1.1)

which is the junction between the two dimer spheres to analyze the near-�eld. To measure
the far-�eld, we select two far-�eld points, one along the x-axis with

~rffpx = (1.957 nm, 0, 0) = (37.0 a.u., 0, 0) , (6.1.2)

and one along the y-axis with

~rffpy = (0, 1.957 nm, 0) = (0, 37.0 a.u., 0). (6.1.3)

Furthermore, we de�ne a detector surface given by the parametrization

~rsfx(α, β) = ~rffpx + α~ey + β~ez,

{
−37.0 ≤ α ≤ 37.0
81.0 ≤ β ≤ 71.0

. (6.1.4)

The detector surface for calculating a mean value of a measurable variable includes the
far-�eld point ~rffpx and the extension is determined by the box limits. We choose the limits
such that all points have su�cient distance to the absorbing PML region.

6.1.4 Laser pulse shape

The external laser pulse propagates with a wavevector ~k = (kx, 0, 0) along the x-axis. The
electric �eld polarization is oriented along the z-axis and consequently the magnetic �eld
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oscillates parallel to the y-axis. The spatial and time-dependent analytical expression for
the external laser electric �eld ~Epw(~r, t) has a cosinoidal envelope and is given by

~Epw(~r, t) =~ezE0,z cos(kx(x−x0)− 2π

λ
t) cos

(
π(x−2ξ−x0−c0t)

2ξ
+ π

)
· θ

(
ξ−
|kx(x−x0)− 2π

λ t|
|kx|

)
.

(6.1.5)
We used the Heaviside-theta function θ(x). Since the wavevector ~k = (kx, 0, 0) contributes
only along the x-axis and the direction of the electric �eld ~Epw polarization is along the
z-direction, the corresponding magnetic �eld ~Bpw reads

~Bpw(~r, t) = −~ey
1

c0

~Epw(~r, t) . (6.1.6)

Using ~Epw(~r, t) and ~Bpw(~r, t), we can build the Riemann-Silberstein six-vector Fpw(~r, t)

Fpw(~r, t) =

√ ε0
2
~Epw(~r, t) + i

√
1

2µ0

~Bpw(~r, t)√
ε0
2
~Epw(~r, t)− i

√
1

2µ0

~Bpw(~r, t)

 , (6.1.7)

which is used to update the incident plane wave boundaries for each propagation time step.
The laser pulse parameter di�er for the two runs, since we drive both systems with their
corresponding resonance frequency of maximum absorption. In case of the d1 = 0.1nm
dimer, the Q-mode plasmon frequency reads ω1 = 3.05eV , and ω2 = 2.83eV for D-mode
frequency of the d2 = 0.5nm dimer [120]. The cosinoidal envelope width ξ of the laser
pulse is coupled to the frequency respectively the corresponding wavelength. Both pulses
are placed by x0 outside the simulation box. All laser pulse parameters can be taken from
Table 6.2

6.1.5 Propagators

Inside the Maxwell propagation region with (−lMx,x ≤ x ≤ lMx,x), (−lMx,y ≤ y ≤ lMx,y),
(−lMx,z ≤ z ≤ lMx,z), we propagate the Kohn-Sham system with the matter ETRS prop-
agator from Eq. (5.4.9) using the Power-Zienau-Woolley transformed MPKS Hamiltonian
from Eq. (5.5.9) with multipole expansion. The Maxwell system is evolved in time by the
Maxwell ETRS propagator from Eq. (5.3.4) with corresponding Hamiltonian kernel H̄ from
Eq. (5.1.14), where we use only H̄ and switch o� the internal diamagnetic current kernel K̄.
The current density term Jloc given in Eq. (5.1.20) only contains the paramagnetic current
contribution. For all exponential operators inside the Maxwell and matter propagators a
series expansion of the exponential of order of four is used, and we chose a �nite di�erence
stencil order of four for the derivative operations.

We propagate the Riemann-Silberstein vector corresponding to the total vector poten-
tial Ak = Akmat +Akext of external and internal �elds. The nuclei are treated classically and
are propagated with Ehrenfest equations of motion [111]. Since we have the electromag-
netic �elds available in the simulation box, we also include the classical Lorentz force that
acts on the ions. For the transversal Kohn-Sham �eld we use the mean-�eld approximation
AkKS ≈ Akmat + Akext as well as the physical mass of the particles to take into account the
bare vacuum �uctuations of the photon �eld. For the longitudinal Kohn-Sham �eld we use
A0

KS ≈ A0
mat +A0

ext +Axc,LDA, where Axc,LDA is the adiabatic local density approximation
(LDA) exchange-correlation approximation [124, 118].
In addition to the fully coupled EMPKS simulation, we propagate in addition the unper-
turbed Maxwell system inside the inner simulation box to get the required values for the
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incident plane wave plus PML boundaries according to section 3.4.6. Hence, the Maxwell
Hamiltonian has to be updated inside the PML boundaries by the additional PML matrix
G̃ according to Eq. (3.4.48).

6.2 Results from Ehrenfest-Maxwell-Pauli-Kohn-Sham simu-

lations

After introducing the simulation scheme with external laser and the nanoplasmonic sodium
dimer in the previous section, we provide in the following the most relevant results of the
actual EMPKS simulations of the dimer for di�erent theory levels according to Table 6.1.
We compare the results of self consistently coupled light-matter propagation with conven-
tional forward-coupling once with dipole approximation and beyond.

First, we produced a movie of four representative variables to visualize vividly the
arising dynamics of the dimer interacting with the laser pulse. The full movies for the two
di�erent cluster distances d are provided in Ref. [125] for d1 = 0.1nm and Ref. [126] for
d2 = 0.5nm. Two representative snapshots of the �rst movie are presented in Figures 6.3 -
6.4. The �rst one was taken at time 6.89fs when the external laser maximum reached the
center of the dimer, and the second one at time 8.33fs, when the internal induced electric
�eld enhancement becomes maximal. Both snapshots are divided into �ve �gure panels.
On the top we �nd schematically the location of the laser pulse and a two-dimensional
enlarged picture of the ion geometry. The four remaining plots are 2D contour plots along
the x-y plane of the 3D simulation box. The upper left one shows the induced paramagnetic
current density. The other three plotted variables illustrate the di�erences of the current
time step values and the ground state values since the di�erences are distinctly smaller than
their ground state values. Therefore, we present the di�erences of the electron localization
function (ELF) on the upper right, of the electric �eld on the lower left, and of the Maxwell
density. The di�erent opposed ampli�ed ELF contour regions which are located outside
the clusters shows clearly the induced surface plasmons. Since we see four extrema, two
minima and two maxima, regions, the ELF contour plots emphasizes that the laser excites
the dimer with Q-mode plasmons.

6.2.1 Electric �eld enhancement

The work of Varas et. al. reveals a large �eld enhancement right at the mid point ~rmp

between the two nanoplasmonic clusters. This �eld enhancement is purely caused by the
only longitudinal electric �eld of the matter plus the transverse external laser. In such
conventional time-dependent Kohn-Sham calculations, the longitudinal component of te
electric �eld can be obtained from the scalar Kohn-Sham potential. Solving Eq. (4.5.16)
for the external potential plus the matter potential (Hartree potential), i.e., Amat(~r, t) +
Aext(~r, t) = AKS(~r, t)−Axc(~r, t), gives

~E‖(~r, t) = −~∇ (Amat(~r, t) +Aext(~r, t)) . (6.2.1)

The total electric �eld ~Efw for conventional forward-coupling simulations is the superpo-
sition of the longitudinal �eld from the matter plus the external transverse �eld, i.e., the
laser

~Efw(~r, t) = ~E‖(~r, t) + ~Epw(~r, t) . (6.2.2)

In case of a forward-backward simulation, we assume that also the transverse compo-
nent of the total �eld in�uences the �eld enhancement. To investigate this, we use our
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Figure 6.3: In the supplemental material we provide a movie that shows the real-
time dynamics of the nanoplasmonic dimer with distance d1 = 0.1 nm. In the
�gure, we show a frame of the movie at time 6.89 fs. The upper two panels show
contour plots of matter variables, the absolute value of the current density and
the electron localized function (ELF). The most relevant Maxwell �eld variables,
the electric �eld along the laser polarization direction z and the total Maxwell
energy are presented in the lower panels. In the top of the �gure, we show the
incident laser pulse and at the center the geometry of the nanoplasmonic dimer.

EMPKS approach to study the fully coupled electromagnetic �eld. An overview of the
signi�cant electric �eld behavior for the dimer d1 = 0.1nm is presented in Figure 6.5. The
system is driven by its resonance frequency that induces quadrupole surface plasmons on
the dimer. The initial external laser amplitude is plotted in panel a), and the induced
current in panel b). The following three panels c) - e) show the electric �eld enhancement,
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Figure 6.4: Similar movie frame as Fig. 6.3, but with the frame at time 8.33 fs.

�rst for the mid point ~rmp, the far �eld at point ~rffpx and last the average electric �eld
over the detector surface (~rsfx), respectively. All blue curves in that �gure refer to the
forward coupling theory level with dipole approximation (F@ED) and are identical with
the previous results of Varas et. al, but calculated with our EMPKS implementation by
switching o� the matter to Maxwell back-reaction. The overlap with the data of Varas et.
al. provides a consistency-check of our implementation.
The black curve in panel a) and the light gray curve in panel b) display the same initial
cosinoidal shaped free laser that passes through the box without any matter interaction.
We include the pulse from panel a) again in panel c) to facilitate the comparison of the
incident �eld amplitude (gray) with the actual �eld values when light-matter coupling is
taking place (blue and green). The blue curve in panel c), our forward coupling simulation
F@ED, con�rms a �eld enhancement of Varas. et. al. at the mid point of about a factor
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Figure 6.5: Electric �eld values and current density in z-direction in the center
between the two Sodium clusters for d1 = 0.1nm. The �rst panel a) illustrates
the incident cosinusoidal laser pulse with frequency ω1 = 3.05 eV (0.112 a.u)
λ1 = 406.5 nm (7681.84 a.u.) and amplitude of E0

z = 5.142 ∗ 107 V/m (10−4

a.u.) which drives the system. The second panel b) displays the electric �eld
enhancement in dipole approximation and only in forward coupling, while the
red curve includes electric dipole, magnetic dipole and electric quadrupole terms
and takes light-matter forward and backward coupling into account. The curve in
bright gray illustrates the initial unperturbed laser. The last plots in panel c) show
the corresponding current densities at the center point between the dimer and in
panel d) the current density di�erences. The period T1 = 1.36 fs corresponding
to the laser frequency is ω1 is indicated with grey vertical lines.

of three compared to the incident laser amplitude. Additionally, we see the same delay of
the total induced electric �eld maximum compared to the maximum �eld amplitude of the
driving laser. This shift of maxima can also be seen in panel c) by comparing the maxima
of the gray and blue cureves. For longer times, the mid point �eld in c) shows a signi�cant
beating signal, whereas the far �eld panels d) and e) present only a weak reaction.

The green curves in Figure 6.5 represent the run including the back-reaction of the
matter on the electromagnetic �elds in dipole approximation (FB@ED). The full forward-
backward coupled system reveals in panel c) a similar enhancement for very short time,
a slightly increased enhancement for intermediate times and a smaller beating for longer
times. While the laser drives the dimer, the back-reaction is increasing the �eld at the mid
point. The increasing e�ect still holds with a small delay when the external laser already
decrease. Taking a look at the far �eld panels d) and e), the di�erences between the two
runs are more signi�cantly. The forward-backward coupled simulation in e) returns a �eld
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Figure 6.6: Similar to �gure Fig. 6.5, we show here the electric �eld enhancements
and current densities for the Sodium dimer with d2 = 0.5nm.

at the far-�eld point ~rffpx twice as large as the one of the forward coupling run. This e�ect
is a bit weaker when we take the average �eld over the surface in f). Comparing the phases
and frequencies of all evaluated �elds, we notice that the far-�elds are almost in phase with
the incident laser whereas the near-�eld shows a small phase and frequency shift, for both
the forward and forward-backward simulations.

The result of electric �eld for the second dimer con�guration with delimiter d2 = 0.5nm
is illustrated in Figure. 6.6. The laser pulse a resonance frequency that induces D-mode
surface plasmons. We present the same characteristic variables and use the same ordering
as before in Figure. 6.5. Due to the larger distance between the two Sodium clusters, the
absolute value of the current density is signi�cantly smaller than the one in d1 = 0.1nm
run. The induced current densities in Figure 6.6 panel b) of the forward coupling F@ED
case are larger than for the forward and backward coupled FB@ED case. The electric
near-�eld enhancement in panel c) shows a opposite behavior than in Figure 6.5, where
the forward-backward coupled �eld enhancement induces larger �elds for short times. In
case of the d2 = 0.5nm run with D-mode plasmons, we �nd a signi�cantly smaller �eld
enhancement for the forward-backward coupled run compared to the only forward coupling
simulation. In turn, the far �eld behaviors shown in panel d) and e) show a similar picture
as for the �rst dimer con�guration. The full coupled system returns a stronger �elds at
our far �eld boundary. As before in the case of the d1 separation, we �nd here that the
average of the electric �eld over the detector surface in the far �eld as shown in panel e) is
mostly locked to the phase of the inident laser. In contrast, the near �eld at the mid point
between the two nanoparticles shows phase and frequency shifts. They are larger for the
F@ED coupling at short times and the phase turns even to the opposite sign compared to
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FB@ED coupling for intermediate times.
Due to the electric �eld construction in Eq. (6.2.2) for the forward coupling runs we know,
that all related �eld enhancements are only longitudinal. To analyze further the nature
of the �eld enhancement for the forward-backward coupling simulations, we performed
a Helmholtz-decomposition of the electric �eld in the fully-coupled FB@ED case. The
corresponding decomposed �elds can be seen in Figures 6.7 and 6.7, for the d1 = 0.1nm
dimer and d2 = 0.5nm dimer, respectively. In both �gures, panels a) and c) illustrate the
total �eld as a reference and their corresponding longitudinal �elds. Since the transverse
component is in all cases a magnitude smaller than the total or longitudinal �elds, we plot
them separately in b) and d). The plots in panel a) and c) respectively b) and d) di�er in
their evaluation point. The �rst two upper plots show the �eld decomposition at the mid
point ~rmp, whereas the lower ones evaluate the �elds at the far-point ~rffpx. In general, we
�nd that the main contribution of the forward-backward coupled �eld enhancement arises
also from the longitudinal �eld as in the forward coupled case. Besides the fact that the
longitudinal enhancement is about one order of magnitude larger for the d1 distance and
even two orders of magnitude larger for the d2 distance, we see some phase and frequency

Figure 6.7: Decomposition of the total electric �eld into transverse and longi-
tudinal components. Panel a) shows the total (solid lines) and the longitudinal
(dashed lines) electric �eld in z-direction at ~rmp. The corresponding transverse
�eld (dotted lines) is plotted in b). The same �eld decomposition at the surface
point ~rffpx is plotted in c) and d).
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shifts between the di�erent �elds. The phase shift between the longitudinal and the total
�eld in Figure 6.7 a) and Figure 6.7 b) is very small for both distances. Although the phase
shoft to the transverse �eld is rather large, its small amplitude leads to a minor contribution
for the total �eld. This behavior di�ers at the detector surface point ~rffpx illustrated in
Figure 6.7 c) and Figure 6.8 c). Here, both the longitudinal and the transverse �eld have
almost the same magnitude and show a clear phase shift. The behaviour in the far �eld in
Figure 6.7 d) and Figure 6.8 d) exhibits besides a phase shift also a slight frequency shift.
Consequently, the incident laser pulse interferes with the induced transverse �eld wich
results in a frequency modi�cation of the outgoing laser. Since the transverse �eld, which
reaches the far-�eld detector region, propagates freely, our detector point measures this
frequency shift. Figure 6.13 panel d) we shows the Fourier transform of the transverse �eld
at point ~rffpx which is plotted in the decomposition Figure 6.8. It directly visualizes the
frequency shift of the emitted respectively passed electromagnetic �eld due to the dimer
caused electromagnetic �elds. The e�ect is similar to a classical medium.
Up to now, we have looked at the electric �eld enhancement as function of time. In Fig. 6.9,
we show contour plots of the transversal electric �eld enhancement as function of space in
the x-z plane of the nanoplasmonic dimer. The two plots in the top row correspond to the
point in time where the incoming laser pulse reaches its maximum, whereas the two plots
in the bottom row correspond to the point in time where the electric �eld enhancement

Figure 6.8: Decomposition of the electric �eld as in �gure Fig. 6.7 for the sodium
dimer with d2 = 0.5 nm.
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F@(ED+MD+EQ), t= 6.80 fs FB@(ED+MD+EQ), t= 6.80 fs

F@(ED+MD+EQ), t= 8.33 fs FB@(ED+MD+EQ), t= 8.33 fs

Figure 6.9: Contour plots for the electric �eld enhancement in the x-z plane of the
nanoplasmonic dimer with d1 = 0.1nm. The upper two panels show the �eld en-
hancement when the external laser reaches its maximum and in the lower two pan-
els show the electric �eld when the �eld enhancement itself reaches its maximum.
The two panels on the left (top and bottom) correspond to the F@(ED+MD+EQ)
theory level, whereas the two panels on the right (top and bottom) correspond to
FB@(ED+MD+EQ) coupling.

reaches its maximum. The two plots in the left column have been computed with light-
matter forward coupling only and in the two plots in the right column we have used self-
consistent forward-backward coupling. As can be seen, the forward coupled cases show a
rather uniform electric �eld in the plane which is due to the dipole approximation and the
fact that the incident wavelength is rather large on the scale of the dimer. On the other
hand for the fully coupled case on the right hand side local �eld e�ects are clearly visible.
In particular in the plot on the bottom right it can be seen that at the maximum of the
�eld enhancement the transversal �eld contribution in fact counter acts the longitudinal
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Figure 6.10: Matter and electromagnetic energies for the sodium dimer with d1 =
0.1nm separation. Panel a) illustrates the external laser amplitude, panel b)
displays the electronic energy and in c) we show the corresponding Maxwell energy
inside the simulation box.

contribution since it has turned to a negative sign in most regions of space.

6.2.2 Next order in multipole coupling and energies

In the previous section, we only focused on the electric dipole Maxwell to matter coupling,
since higher order coupling terms do not change the results in Sec. 6.2.2 signi�cantly. This
turns when we consider for instance the corresponding matter and Maxwell energies. In
that case, higher ordered coupling terms of the Kohn-Sham Hamiltonian, i.e., magnetic
dipole (MD) and electric quadrupole (EQ), lead to di�erent energy spectra, which we
present in Figures 6.10 and 6.11. As before, we compare only forward coupling (F@ED)
and the self-consistent forward-backward coupling (FB@(ED+MD+EQ), but add here also
the theory levels F@(ED+MD+EQ) and FB@(ED+MD+EQ) of higher multipole Hamil-
tonian terms.
First, we consider the corresponding simulations of the d1 con�guration in Figure 6.10.

For referencing the amplitude of the actual external laser �eld on the system, we plot as
before the laser pulse curve in panel a). The next panel b) shows the energy of the Kohn-
Sham system, which splits signi�cantly in time and stay constant when the laser has passed
the simulation box. Similar to the enhanced �elds, which exhibit a clear delay of reaction
to the initial laser, the energy gain for the matter is very immediate to the external laser
intensity. The blue curve shows the conventional F@ED in dipole approximation without
back reaction of the matter to the �eld. If we add the second order multipole coupling
terms, the corresponding F@(ED+MD+EQ) run gains more energy than in dipole approx-
imation. This e�ect can readily be understood, since we drive the system with a Q mode
resonance frequency, such that the quadrupole nature of the plasmons results in a larger
transfer of energy to the elctrons.
Switching on backward coupling reduces the energy absorption of the matter. Both en-
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ergies of the forward-backward runs remain below the reference F@ED run. Again, the
additional multipole terms in the FB@(ED+MD+EQ) run increase the energy curve com-
pared to the FB@ED run, which con�rms the higher in�uence of the magnetic dipole and
the electric quadrupole term on the system. If we focus the behavior all increasing curves
in detail they are in most cases shaped like cascades with small plateaus between one laser
period. This feature indicates that we excite the system with a proper resonance frequency,
otherwise the cascades would show some dips due to emitting energy, before the system
absorbs energy of the next laser oscillation. Such small dips between the laser periods can
only been seen in the red curve of the FB@(ED+MD+EQ) which leads to the assumption
that the forward and backward coupling system with second order multipole expansion is
not exactly resonant to the driven frequency ω1 = 3.05eV .
In panel c) we show the total electromagnetic energy inside the simulation box, which cor-
responds to an integration of the Maxwell energy inside the free Maxwell region (bx, by, bz)
of the simulation box (bx, by, bz, cf. Figure 5.4). First, we note that all Maxwell energies
oscillate with twice the frequency of the initial laser due to the squared electric and mag-
netic �eld expression of the energy density. The peak positions depend on the phase shift
between electric and magnetic �elds. Our coupled self consistent forward-backward cou-
pling propagation shows, that the main magnetic �eld contribution bases on the external
plane wave magnetic �eld. Only very small �eld ampli�cations in z and y direction are
measured, but negligible. Hence, the magnetic �eld propagates almost like a plane wave
through the simulation box. Further detailed observations have shown that the magnetic
�eld increases the total energy peaks only a little. As we already noticed for the electric
�eld enhancement, the dominant part of the total electric �eld is given by the longitudinal
component. This means, that the largest contribution of the Maxwell energies also origi-
nates from the longitudinal electric �eld. This can be seen by comparing the scale of the
black curve, which corrsponds to the energy of the purely transversal incoming laser pulse,
with the blue curve which shows the Maxwell energy for the forward coupled case in dipole
approximation. Adding the higher order multipole terms to the Hamiltonian exceeds the
Maxwell energy, which corresponds again to the Q mode excitation.
In turn, we focus at the second dimer con�guration with d2 = 0.5 nm, which is driven in
D mode, which has dipole character. This fact can directly be seen in the corresponding
Figure 6.11. While overall a similar situation emerges as for the smaller d1 distance, the
di�erences between higher order Maxwell to matter coupling and dipole coupling is less sig-
ni�cant as before. The small added energies of the MD and EQ terms has only small e�ects
on the electron energies and the electromagnetic �elds. The F@Ed and F@(ED+MD+EQ)
energies as well as the FB@ED and FB@(ED+MD+EQ) energies are almost on top of each
other. Therefore, if we couple to a dipole mode of the system, the MD and EQ terms have
almost no e�ect. This corresponds to a perturbative analysis of the system and considering
the selection rules of the MD and EQ coupling Hamiltonians. This two exemplary runs
show, that the underlying symmetry of the excited modes if higher order multipole terms
become important.
The common fact, that for both distances d1 and d2 the forward- and backward coupling
matter energies remain always below the forward coupling runs demonstrates that the mat-
ter absorbs less energy if the back-reaction is taken into account. In addition to the larger
absorption of energy, the forward coupling causes larger Maxwell energy amplitudes inside
the simulation box. This is remarkable since we observed in Fig. 6.5 and Fig. 6.6 that
the self-consistent forward-backward coupling yields a larger enhancement of the �eld. As
consequence, in some regions of the dimer large �eld enhancements occur, but the mean
ampli�cation is clearly weaker than for the only forward coupled cases. Furthermore, the
forward coupling runs break energy conservation, since the laser pumps the matter system
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Figure 6.11: Similar to Figure 6.10, we present the matter and electromagnetic
energies for the sodium dimer with d2 = 0.5nm separation.

without any loss. In the forward-backward coupled simulations this is not as severe any-
more, and explains that the energy absorption and the mean Maxwell �eld enhancement
is always smaller compared to the forward coupling runs. The situation would be entirely
di�erent if we could enclose the laser pulse completely in the Maxwell box. Then the pulse
would not be external anymore and in the forward-backward case full energy conservation
holds. For optical wavelengths this requires enormous Maxwell simulation boxes if atomic
scale grid spacings are used. But it becomes feasible for hard x-rays, where much smaller
Maxwell grids are needed due to the shorter wavelength.

6.2.3 Electromagnetic detectors and harmonic generation

It is a common practice in most quantum simulations to use matter expectation values to
approximate optical spectra. For instance, the Fourier transform of the dipole expecta-
tion value is often used to compute absorption spectra in the linear case of high-harmonic
spectra in the non-linear calse. Since we propagate besides the matter system the coupled
electromagnetic system, it becomes feasible to directly analyze the emitted radiation. In
that sense it is not necessary take the matter observables and the assumption that their
properties give approximately the emitted Maxwell �eld. According to Sec. 5.8, we de�ne
electromagnetic detector regions in the far-�eld close to the box boundaries, which provides
a paradigm shift to perform numerical simulations that very closely resemble the experi-
mental situation. To demonstrate this, we analyzed once the dipole expectation values of
the dimer d2 = 0.5 nm separation in Figure 6.12 b) - e) and the x-component of the elec-
tric �eld far �eld. Panel a) visualizes the external laser �eld and we notice that the same
frequency appears in the corresponding dipole expectation values as well as in the electric
�eld component. According to common optical theoretical methodology, this means the
matter oscillates resonantly with its excitation signal, and in turn since we hit the reso-
nance frequency, it is assumed that it emits electromagnetic light with the same frequency
perpendicular to the oscillation axis. For further concrete frequency analysis, we performed
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Figure 6.12: Position expectation values 〈x〉, 〈y〉, and 〈z〉 of the nanoplasmonic
dimer with d1 = 0.1 nm. In panel a) we show the linital laser pulse as reference
signal and in b) - e) the dipoles of the dimer along di�erent axis. Only beyond
dipole approximation coupling reveals higher-order harmonics, which is directly
detected by the Ex �eld component at the far-�eld point ~rffpy along the y-axis.

a Fourier transform of panels e) and f), which are shown in Figure 6.13 in panel a) respec-
tively b). Comparing the forward coupling cases, F@ED and FB@(ED+MD+EQ), with
the fully coupled ones, FB@ED and FB@(ED+MD+EQ), show the same frequencies, but
slightly phase shifted and with di�erent strength. The oscillation amplitudes correspond
with our previous considerations about the electric �eld enhancements and the energies.
Adding the additional multipole Hamiltonians reveals new optical features of the system,
which can directly be seen in panel e) in Figure 6.12. The two dipole expectation values
along the x-axis shows in both cases, the forward and fully coupled runs, oscillate with twice
the frequency of the incoming laser. Therefore, second harmonic generation is only found
in beyond dipole Maxwell to matter couplings. We emphasize here, that both frequen-
cies, the can directly measured in the electric �eld x-component at the far-�eld point ~rffpy,
which we present in panel f). Both runs, F@(ED+MD+EQ) and FB@(ED+MD+EQ),
reproduce clearly the incoming frequency of the external laser. However, if we look at the
FB@(ED+MD+EQ) curve, the �eld oscillation shows a small distortion compared to the
F@(ED+MD+EQ) run, which looks more correctly cosinoidal. Subtracting both �elds vi-
sualizes directly the reason for the deformed FB@(ED+MD+EQ) signal. It is superposed
by the second harmonic frequency, which we do not see in the F@(ED+MD+EQ) curve,
since we neglect the full coupled back-reaction of the matter to the electromagnetic �eld.
We note here, that F@(ED+MD+EQ) includes indeed some back-reaction of the matter,
namely the longitudinal �eld of the matter charge distribution. Otherwise, we would not
see any oscillation in the yellow curve, since the x-component of the external laser �eld is
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Figure 6.13: Fourier transform of the dipole expectationvalues and the
electric �eld at the far-�eld detectors. Panel a) and b) show the Fourier
transform of the dipole and the electric �eld ath the far-�eld point ~rffpy

from panels e) and f) in Figure 6.12 respectively. While in the matter ob-
servable in a) only the second harmonic peak is visible, the Fourier spec-
trum of the electric �eld in b) contains the fundamental laser frequency
and the second harmonic. In panel d) we show the Fourier transform of
the electric �eld at the far-�eld point ~rffpx along the laser propagation
axis in dipole approximation. The �eld is shifted in frequency when self-
consisten forward-backward coupling is used. The matter dipoles for this
case are shown in panel e). The Fourier transform of panel d) correspond
to the transverse �elds shown in Figure 6.8. In the forward coupled case
a spurious peak appears at the energy of the incoming laser (2.83 eV).
This peak is surpressed in the forward-backward coupled case and the
dipole spectrum also matches better the actual emitted radiation �eld in
panel d).

zero. Consequently, we can deduce, that the second harmonic signal is a transverse radia-
tion oscillating along the x-axis but propagating in y-direction, whereas the �rst harmonic
oscillation in that direction(!) seems to be only longitudinal and hence localized to the
matter.

6.2.4 Ion motion

In all the simulations that we have considered so far, we have used the Born-Oppenheimer
approximation and clamped the classical nuclei at the optimized ground state. In this
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Figure 6.14: Same as Fig. 6.10 but now including the motion of the ions in classical
Ehrenfest approximation.

section, we release this constraint. According to Sec. 4.6, we can propagate the classi-
cal motion of the nuclei using Ehrenfest equations of motion [111] and the Lorentz force,
which we introduced in Eq. (4.6.8). In our case, we get the Lorentz forces in terms of the
Riemann-Silberstein electric and magnetic �eld that we propagate in time. This allows to
capture nuclear foreces due to local �eld e�ects. For all the following cases, we take as
initial condition for the Ehrenfest equations the atomic positions of the optimized ground
state and set the initial velocities to zero. This e�ectively corresponds to a rather â��-
coldâ�� nuclear subsystem. More sophisticated velocity distributions could be used, e.g.
thermalized velocity distributions from molecular dynamics runs coupled to a thermostat,
but we leave such temperature studies for the future.
The ionic motion does not signi�cantly change the behavior of the electromagnetic �eld
within the �rst 50 fs, which is not quite remarkable, since typically ionic e�ects take place
on a pico-second time scale. Nevertheless, taking a look at the corresponding energies re-
veals a strong di�erence that we present in Figure 6.14 for the nanoparticle distance d1 and
which corresponds to the clamped ions run in Figure 6.10. As before, panel a) shows the
incoming laser, panel b) panel b) the matter energies and panel c) the Maxwell energies.
In addition we we add panel d) which illustrates the sum of kinetic energy of all nuclei as
function of time. The additional ionic motion causes some additional �uctuations to the
matter energy evolution, but the main behavior is very similar to the �xed ions simulation.
Looking at the Maxwell energies in c) reveals a strong decrease of the Maxwell energy in
the forward coupling and a rather strong decrease in the self-consistent forward-backward
case. Since the electronic energy remains almost identical to the case of clamped ions, the
losses in the Maxwell energy are directly transferred to the nuclei. As a consequence, the
kinetic energy of the nuclei grows. This rather strong increasing of the ionic kinetic energy
is remarkable, since it implies an untypical fast motion of the nuclei.
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Figure 6.15: In the �gure we show in panel a) the electric �eld at the origin, in
panel b) the integrated Maxwell energy in the simulation box, and in panel c)
the dipole expectation value in z-direction. We compare TDPBE results (dashed
lines) with the TDLDA results (solid lines). The di�erence between TDPBE and
TDLDA (dashed vs. solid lines) is much smaller than the di�erence between only
forward coupling and self-consistent forward-backward coupling (blue vs. green
lines). In particular, for forward-backward coupling a clear frequency shift is
visible already after a short time.

6.2.5 Comparison of di�erent density functionals

So far, all previous presented results have been computed with TDLDA functionals [124,
118] as choice for the approximate exchange-correlation functional that build the scalar
potential for the longitudinal part of the light-matter interaction. In this section we asses
the relative importance of exchange-correlation e�ects versus self-consistent light-matter
interaction. For this purpose, we repeat the previous simulations, but using this time
the PBE functional [127, 118]. To demonstrate the di�erence between the two di�erent
exchange-correlation runs, we plot in Figure 6.15 some characteristic variables like the
electric �eld at the origin in panel a), the Maxwell energy inside the free-Maxwell region
in panel b), and one dipole expectation value in panel c). In all panels, we compare
the TDPBE results (dashed lines) with the TDLDA results (solid lines). In all cases
the di�erence between the two di�erent functionals (dashed vs. solid lines) is signi�cantly
smaller than the di�erence between the forward coupled and fully coupled simulation (blue
vs. green lines). In case of Maxwell energy and dipole expectation value, the di�erence
between the TDLDA and TDPBE run is rather small, whereas the electric �eld behaviors
are only very similar in the beginning, but di�er more and more when the electric �eld
envelope decreases. However, our presented nanoplasmonic example reveals that it is more
important in case of large induced currents and electromagnetic �elds to use the self-
consisten forward-backward light-matter interactions than to include further exchange-
correlation contributions to the e�ective Kohn-Sham potentials. This supports the need
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for a self-consistent coupling to Maxwell's equations to achieve a comprehensive description
of light-matter interactions.
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Summary, conclusion and outlook

In this thesis, we have faced the challenge of �nding a feasible methodology and a �rst
implementation of three-dimensional fully forward and backward coupled light-matter in-
teractions. As a �rst key step, we have transformed the common Maxwell's equation into a
Riemann-Silberstein representation, which provides the underlying equation of motion for
the electromagnetic �eld in a inhomogeneous Schrödinger-like equation. This crucial step,
gives us the opportunity to use quantum-mechanical time-evolution operators to propagate
the electromagnetic �eld similar to matter wavefunctions. We use this advantage to im-
plement a fundamental real-time real-space classical electromagnetic equation propagation
into the existing quantum-mechanical simulation code Octopus. First, we implemented
a stand-alone electromagnetic �eld simulation, which handles external current densities
and linear media. We validate our novel propagation scheme and implementation with
the established electromagnetic simulation program MEEP, which uses a standard �nite-
di�erence time-domain method for the Maxwell �eld propagation. The considered test
simulations agree very well with the results of MEEP, also with regard to stability and
e�ciency of the runs.
To extend the possibilities for applications, we have considered adequate electromagnetic
boundary conditions. As a �rst important boundary condition, we considered absorbing
boundaries to simulate open Maxwell systems. We employ two di�erent methods, �rst a
mask absorption function which is easy to implement, and secondly a perfectly matched
layer propagation. Our comparison of both di�erent techniques has shown, that the PML
provides a signi�cantly better absorbing boundary and qualitatively better wave propa-
gations in the simulation box. To simulate incoming signals which enter the simulation
box, we have introduced incident plane wave boundaries, which we also combined with
the perfectly matched layer boundaries to simulate incoming waves and scattered outgoing
�elds. This feature is useful to simulate pump-probe experiments or a particle excitation
from several laser pulses and di�erent incident angles. One possible way to get scattered
�elds from plane waves, for instance, is based on the interaction of the plane wave in vac-
uum and a linear medium, as we have shown in a �rst propagation example coupled to a
linear medium. Our implemented propagator considers besides space- and time-dependent
electric permittivity and magnetic permeability electric and magnetic conductivities. With
this feature at hand, one can design a large set of purpose tailored simulation boxes, e.g.,
perfect and semi-transparent mirrors, wave guides, lossy layers, just to list a view options.
Overall, the purely Maxwell propagation based on quantum-mechanical time-evolution op-
erations is an equivalently alternative scheme to common electromagnetic time propagation
via �nite di�erence time domain, and it builds the �rst pillar for simulating fully coupled
three-dimensional light-matter systems.

The second pillar is based on the many-body considerations for large matter systems.
Starting on the theory level of quantum electrodynamics, we have deduced a multi-species
auxiliary system, the Kohn-Sham system on a Pauli level to describe a non-relativistic low
energy regime and based on density-functional theory (DFT). Using DFT instead of the
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full many-body particle problem leads to a feasible but still very computational expensive
problem. Hence, the underlying Maxwell-Pauli-Kohn-Sham equations determine the cor-
responding matter current density, which is used as the classical current inhomogeneity
term of our Maxwell propagation equation. In that way, we coupled the matter reaction
to the surrounded electromagnetic �eld.
Furthermore, we have considered the in�uence of the electromagnetic �eld on the Kohn-
Sham Hamiltonian. Starting with the non-relativistic Pauli equation, we end up at the
full minimal coupled Hamiltonian for the quantum mechanical system. We have solved the
issue that the full minimal coupling term depends on the gauge dependent vector potential
by transforming the Kohn-Sham Hamiltonian with a Power-Zienau-Woolley transforma-
tion to get multipole coupling terms, which depend now only on the electromagnetic �elds.
Since in this picture, only the transverse components of the �elds couple to the matter,
we use a Poisson solver and solve the Poisson equation which is part of a Helmholtz-
decomposition to obtain the correct transverse �elds. In a last step, we have handled the
problem of a self-consistent time-step of the fully coupled light-matter system by introduc-
ing a predictor-corrector scheme. Taking into account, that the dynamics of our considered
triad, nuclei, electron, and photon, di�er fundamentally, we exploit these properties to get
an e�cient and accurate approach of the full coupled multi-scale problem. We employ our
corresponding implementation to demonstrate fully coupled light-matter e�ects compared
to only conventional forward coupling simulations.

Since nanoplasmonic systems reveal often a remarkable optical activity, we select a
sodium dimer cluster as a �rst test system for our novel approach. Our �rst simulation
uses only a simple subset of the presented full Ehrenfest-Pauli-Kohn-Sham scheme. Using
only the paramagnetic current density, no spin matter states, static pseudopotentials and
only mean-�eld vector potentials as a �rst approximation for the Kohn-Sham vector poten-
tial, the corresponding results show clearly the importance of simulating the light-matter
system in a fully self-consistent description. All measurable variables, where we only se-
lected the most relevant ones, i.e., energy, dipole, and electric �eld, reveal a signi�cant
di�erent behavior compared to the conventional forward coupling runs. In addition, the
direct performed measurements of the electromagnetic �elds at our de�ned electromag-
netic detectors to analyze the far �eld attributes has shown, that the usual approximation
to deduce optical properties only indirectly by using matter variables in general does not
hold. Furthermore, we observed that the di�erence of computed observables between lo-
cal density approximation and gradient-corrected functional was minor compared to the
di�erence of calculating only forward coupling and the self-consistent forward-backward
coupling. Hence, our results contradict the often argued position in common literature,
that the discrepancies between theory and experiment are based on missing exchange-
correlation e�ects.
To sum up, based on our results, we come to the conclusion that self-consistent forward-
backward couplings should always be included. Their e�ects can easily reach the magnitude
of longitudinal exchange-correlation contributions or even exceed them.

The Ehrenfest-Maxwell-Pauli-Kohn-Sham scheme that we have introduced in this the-
sis as a mean-�eld limit of the exact density-functional formulation of the Pauli-Fierz �eld
theory is only a �rst step. Future investigations have to focus on better approximations
closer to the full �eld theory to go beyond the mean-�eld limit and to simulate and reveal
more quantum e�ects. However, even in the EMPKS limit ensuing steps are the imple-
mentation of remaining mean-�eld features that we already discussed in this work. For
instance, providing a propagation with total system current which includes the diamag-
netic current and magnetization current. Taking the magnetization current into account,
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the electromagnetic �eld back-reaction becomes spin-dependent, and we can investigate
magnetic e�ects from a fully resolved magnetization of the system. To complete the total
current density and get the full back-coupling, we have to add the ionic current of the
nuclei.

We already found a relatively strong dispersion with shifted phase and frequency of
the transverse electromagnetic �eld while it passes the dimer. The diamagnetic current
should increase this e�ect since the corresponding current term couples directly the two
Riemann-Silberstein helicity states similar to the coupling terms in the Riemann-Silberstein
description of a linear medium. In general, since our implemented Maxwell propagation
couples to quantum mechanical matter as well as linear media, the interesting question
arises, to �nd a relation between these two di�erent description of matter. In other words,
a quantum mechanical simulation leads to classical space- and time-dependent electric
permittivity and magnetic permeability, which approximately reproduce the electromag-
netic �eld propagation replacing the quantum system by an arti�cially designed linear
medium. In this case, we can exploit that our propagation can combine both, microscopic
and macroscopic systems, in one simulation.

According to our observations for the sodium dimer, the fully coupled system induces
e�ects on every system variable. Therefore, conventional used variables have to be modi-
�ed to reach accurate approximated simulations. One important task is the construction
of adapted exchange-correlation scalar and vector potentials to go beyond the classical
mean-�eld approximation for photons to consider their quantum nature, for instance, vac-
uum �uctuations. In turn, the quantum nature of the matter can be shown by correcting
the physical-mass approximation. Besides the scalar and vector exchange-correlation po-
tentials, the pseudo-potentials require a dependency on the electromagnetic �elds, starting
from an all-electron consideration, since they have to take the full coupled electromagnetic
�eld into account. Further, our nanoplasmonic simulations including ion motion and their
remarkable raise in kinetic energy show that the electromagnetic �elds very close to the
ions is not correct. It seems that the calculated Lorentz-forces acting on the ions are too
strong, which could be a consequence of the incorrect pseudo-potential behavior at that
level.

Additionally, referring to the vector potential, which we already calculate in a �rst
mean-�eld approxmation using the Poisson solver, we can employ in principle the full
minimal coupling interaction instead of the multipole expansion terms. However, having
both interaction levels gives us the opportunity to �nd the order of the multipole expansion
that shows the main responsibility of an observed e�ect. In our presented nanoplasmonic
example we already show, that only the beyond dipole coupling terms cause the detected
radiation of the second harmonic generation.

In this work, we found the nanoparticle groundstate by a conventional diagonalization
of the Hamiltonian, since we focused on the electromagnetic time-propagation. However,
fully coupled light-matter interactions should also already be considered to �nd the correct
groundstate. This requires to solve stationary Maxwell equations self-consistently coupled
to the stationary Kohn-Sham equations. The groundstate can also be modi�ed by starting
from a thermal initial state for the ions to catch temperature e�ects.
Expanding our so far used simulation box for �nite quantum systems to in�nite periodic
systems in one, two or three dimensions also opens a whole new class of possibilities. For
instance, the investigation of the in�uence of the self-consistent forward-backward reaction
for large crystal structures, e.g., to improve the e�ciency of solar cells.

As a �nal conclusion, we note that our fully coupled Ehrenfest-Maxwell-Pauli-Kohn-
Sham implementation provides a rather practicable, �exible, and comprehensive simu-
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lation approach to push research forward in optical material science (nano-optics, nano-
plasmonics, (photo) electrocatalysis), in condensed matter or even in understanding chemi-
cal reactions, since they are mainly determined by the electromagnetic interactions between
ions and electrons.
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Appendix A

Non-relativistic Pauli Hamiltonian in

Coulomb gauge

In this appendix, we introduce step-by-step the full QED Hamiltonian. First, we brie�y
summarize the basic relativistic wave equations and their properties, which lead to the
free matter Hamiltonians for di�erent matter species and the free photon Hamiltonian.
The full Hamiltonian includes an additional interaction Hamiltonian that is due to the
minimal-coupling prescription.

A.1 Vector potential and Coulomb gauge

Instead of the common Maxwell's Eqs. (1.1.8)-(1.1.11) or the Riemann-Silberstein complex
vector expression in Eq. (1.1.38) and Eq. (1.1.43), the Maxwell's equations can also be
described by the more common four-vector potential Aµ(~r, t). The general inhomogeneous
form with non-zero charge density ρ(~r, t) = c0j

0(~r, t) and current density jk(~r, t) is [75]

∂µ∂µA
k(~r, t) = −µ0j

k(~r, t) +
1

c0
∂k∂0A

0(~r, t) . (A.1.1)

This equation determines the Maxwell variables Ek(~r, t) and Bk(~r, t). In contrast to the
physical measurable electromagnetic �elds, the vector potential Aµ(~r, t) has a gauge free-
dom since the �eld variables and the vector potential are connected by

Ek(~r, t) = −∂kA0(~r, t)− ∂0A
k(~r, t) , (A.1.2)

Bk(~r, t) = − 1

c0
εklm∂lAm(~r, t) . (A.1.3)

Therefore, Ek(~r, t) and Bk(~r, t) are invariant under the vector potential transformation
[75]

A0(~r, t)→ A
′0(~r, t) = A0(~r, t)− ∂χ(~r, t)

∂t
, (A.1.4)

Ak(~r, t)→ A
′k(~r, t) = Ak(~r, t) + ∂kχ(~r, t) , (A.1.5)

where χ(~r, t) is a scalar di�erentiable function. If ρ(~r, t) and jk(~r, t) are equal to zero,
Eq. (A.1.1) becomes homogeneous, i.e.,

∂µ∂µA
k(~r, t) = 0 . (A.1.6)
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and Eq. (A.1.1) is equivalent to the Riemann-Silberstein Maxwell's Eqs. (4.2.21) and
(4.2.26).

The Maxwell-matter coupling that we discuss in the following sections is determined
in most cases by the gauge-dependent vector potential. Taking into account, that our
Riemann-Silberstein description for the homogeneous case allows only two independent
polarizations, we remain using the vector potential in Coulomb gauge, when we couple to
matter. In coulomb gauge Aµ obeys [101]

∂kA
k(~r, t) = 0 . (A.1.7)

In Coulomb gauge, Eq. (A.1.1) can be simpli�ed to [75](
∂2

0 + ∂l∂
l
)
Ak(~r, t) = −µ0j

k
⊥(~r, t) , (A.1.8)

where jk⊥(~r, t) represents the transverse �eld of the total current density jk(~r, t).

A.2 Pauli-equation as non-relativistic limit of coupled light-

matter systems

In Sec. (4.2), we introduced the relativistic equations of motion for di�erent spin particles
with and without mass. We mentioned that the same considerations can be repeated for
other spins, but they are restricted due to not �nding simple and physical side conditions
similar to the one for spin-1 particles. Another feature of the Dirac-like description leads to
an unfeasible method for numerical calculations. The energy spectrum of the full relativistic
description of the system is in general unbound from below [128]. Therefore, we continue in
the following by using the non-relativistic Pauli-equation for all di�erent spins and particles
with mass. For the Pauli-equation, we can �nd stable ground states and have a well-de�ned
non-perturbative theory [62]. The Pauli-equation describes a particle with mass including
an external Maxwell �eld, which is determined by its vector potential Aµext. Replacing
the Dirac operator by the corresponding one coupled to Aµext with the minimal coupling
prescription

∂µ → ∂µ + i
q

~c0
Aext,µ(~r, t) (A.2.1)

leads in �rst order of 1
Mc20

to the Pauli equation [129]

ĥ(~r, t) =
1

2M

(
−i~~∇− q

c0

~Aext(~r, t)

)2

+ qA0
ext(~r, t)−

q~
2M

~S · ~Bext(~r, t). (A.2.2)

Here, q denotes the charge of the particle species with corresponding mass M and the
general spin-matrices Sk, which also depend on the species. We use this generalized Pauli
equation for particles with mass, i.e., electrons and nuclei, together with the homogeneous
Maxwell's equations for photons to build our basic theory, a generalized form of the Pauli-
Fierz Hamiltonian [62]. Although, there are some further developments beyond the Pauli-
Fierz limit to deal with semi-relativistic problems [130, 131, 132], our considerations in the
present work stay in the non-relativistic limit for matter.
We continue by considering �rst the non-interacting Hamiltonians with external Maxwell
�elds for particles with mass and the free Maxwell Hamiltonian before we discuss the
interacting Hamiltonians between the di�erent species including the interacting Maxwell
�elds.
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A.3 Free matter Hamiltonians

In general, many-body Hamiltonians without forcing a �xed particle number for the total
system are described in Fock-space, where particles can be created and annihilated by
corresponding operators for the matter and photon �elds [101]. To �nd a fundamental
form for our many-body system coupled to Maxwell �elds, we consider �rst non-interacting
particles in Fock-space, but note here, that the description in Fock space is mathematically
problematic [133]. However, since it eases formal derivations, we work in Fock space here.
Later, we use particle conserved Hamiltonians of particle number N, so that we can switch
back to the N-particles Hilbert space, where every object is well-de�ned.
The Fock space �eld operators for particle creation, Φ̂†(~r, s), and annihilation, Φ̂(~r, s),
obey the the common QED commutation and anti-commutation rules [101][

Φ̂(~r, s), Φ̂†(~r ′, s ′)
]
±

= δ(ss ′)δ
3(~r − ~r ′) , (A.3.1)

where s denotes the possible spin states, and + represents the anti-commutation relation
for fermions, and − the commutation relation for bosons. Using these �eld operators, we
can construct the non-interacting many-particle Hamiltonian according to

Ĥ
(n)
mat,ext(t) =

∫
d3r

∑
s

Φ̂†(n)(~r, s)ĥ(~r, t)Φ̂(n)(~r, s)

= −
∫

d3r
1

2M(n)

∑
s

Φ̂†(n)(~r, s)

(
−i~∂k+

q(n)

c0
Aext,k(~r, t)

)(
−i~∂k+

q(n)

c0
Akext(~r, t)

)
Φ̂(n)(~r, s)

+

∫
d3r q(n)A

0
ext(~r, t)

∑
s

Φ̂†(n)(~r, s)Φ̂(n)(~r, s)

−
∫

d3r
q(n)~
2M(n)

∑
s,s′

Φ̂†(n)(~r, s)
[
S

(n)
k

]
s,s′

Φ̂(n)(~r, s
′)

(
1

c0
εklm∂lAext,m(~r, t)

)
,

(A.3.2)
where [Sk]s,s′ denotes the s, s′ components of the spin matrix Sk and the index n enu-
merates di�erent particle species (electrons and e�ective nuclei here). The single-particle
Hamiltonian ĥ(~r, t) corresponds to the Pauli Hamiltonian in Eq. (A.2.2) and we allow for
a coupling to an external Maxwell �eld Aext(~r, t). The �rst term in Eq. (A.3.2) represents
the non-interacting kinetic Hamiltonian Ĥ(n)

mat,kin,ext

Ĥ
(n)
mat,kin,ext(t) =

−
∫

d3r
1

2M(n)

∑
s

Φ̂†(n)(~r,s)

(
−i~∂k+

q(n)

c0
Aext,k(~r,t)

)(
−i~∂k+

q(n)

c0
Akext(~r,,t)

)
Φ̂(n)(~r,s).

(A.3.3)
The second term in Eq. (A.3.2), denoted by Ĥ

(0)
mat,int,ext, gives the interaction with an

external electromagnetic �eld, and the last term represents the Stern-Gerlach Hamiltonian
Ĥ

(0)
mat,Stern,ext. Both are given by

Ĥ
(n)
mat,int,ext(t) =

∫
d3r qA0

ext(~r, t)
∑
s

Φ̂†(n)(~r, s)Φ̂(n)(~r, s) , (A.3.4)

and

Ĥ
(n)
mat,Stern,ext(t) = −

∫
d3r

q~
2M

∫
d3r

∑
s,s′

Φ̂†(n)(~r, s)
[
S

(n)
k

]
s,s′

Φ̂(n)(~r, s
′)

(
1

c0
εklm∂lAext,m(~r, t)

)
.

(A.3.5)
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Since we consider all particles here as non-interacting, we can use Eq. (A.3.2) for each
species of particles. Therefore, for N di�erent particle species, i.e., electrons and di�erent
e�ective nuclei species, the total non-interacting Hamiltonian Ĥmat,ext is de�ned in a sum
of Fock spaces and given by

Ĥmat,ext(t) =
N∑
n

Ĥ
(n)
mat,ext(t) =

N∑
n

Ĥ
(n)
mat,kin,ext +

N∑
n

Ĥ
(n)
mat,int,ext +

N∑
n

Ĥ
(n)
mat,Stern,ext

=
N∑
n

−
∫

d3r
1

2M

∑
s

Φ̂†(n)(~r, s)

(
−i~∂k +

q

c0
Aext,k(~r, t)

)(
−i~∂k +

q

c0
Akext(~r, t)

)
Φ̂(n)(~r, s)

+
N∑
n

∫
d3r qA0

ext(~r, t)
∑
s

Φ̂†(n)(~r, s)Φ̂(n)(~r, s)

+
N∑
n

−
∫

d3r
q~

2M

∑
s,s′

Φ̂†(n)(~r, s)
[
S

(n)
k

]
s,s′

Φ̂(n)(~r, s
′)

(
1

c0
εklm∂lAext,m(~r, t)

)
,

(A.3.6)
which uses the corresponding set of �eld operators, masses, charges and spin matrics{

Φ̂(n) ; Φ̂†(n) ; M(n) ; q(n) ; S(n)

}
. (A.3.7)

We note, that the di�erent particles do not interact, but they are all in�uenced by the
same classical �eld Aµ in Coulomb gauge. Later in this chapter, we change the classical
�eld to a quantum �eld and consider the particles interacting via the gauge bosons, i.e.,
the photons.

A.4 Free photon Hamiltonian

In chapters 1-3 we have treated the electromagnetic �eld only classically. To build the
coupled Photon-matter Hamiltonian that we use in the next chapter, we start here from the
fundamental QED Hamiltonian for photons [101]. Additionally, we show the connection to
the Riemann-Silberstein formulation of QED which is discussed in more details in Ref. [78].
Quantizing the Maxwell �eld vector potential ~A(~r) in Coulomb gauge shows that only the
transverse �elds, i.e., Êk⊥(~r) are a�ected [101], since in Coulomb gauge ∂0A

k = −Êk⊥(~r).
The resulting canonical commutation relations read[

Âk(~r ); ε0Ê⊥,l(~r
′)
]

= −i~c0δ⊥,kl(~r − ~r ′),

where we employed the transversal delta distribution

δ⊥,kl(~r − ~r ′) =

(
δkl∂k

1

~∇2
∂l

)
δ3(~r − ~r ′) . (A.4.1)

The longitudinal part of the electromagnetic �eld stays classical and does not in�uence the
quantized degrees of freedom. The vector-potential operator Âk(~r) in terms of creation
and annihilation �eld operators â†(~k, s), â(~k, s) in momentum space reads [101]

Âk(~r ) =

√
~c2

0

ε0(2π)3

∫
d3k√
2ωk

2∑
s=1

~ε (~k, s)
[
â(~k, s)ei~k·~r + â†(~k, s)e−i~k·~r

]
. (A.4.2)

In Eq. (A.4.2) we use ωk = c0|~k|, k = |~k|, and ~ε (~k, s) is the transversal polarization vector
with ~k ·~ε(~k, s) = ~ε(~k, 1) ·~ε(~k, 2) = 0 [101]. The momentum-space annihilation and creation
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�eld operators obey the usual commutation relations. The transversal electric �eld is in
accordance to the classical case given by by ∂0Â

k = −Êk⊥, i.e., as [101]

Êk⊥(~r ) =

√
~c2

0

ε0(2π)3

∫
d3kiωk√

2ωk

2∑
s=1

~ε (~k, s)
[
â(~k, s)ei~k·~r − â†(~k, s)e−i~k·~r

]
, (A.4.3)

and the magnetic �eld is B̂k = − 1
c0
εklm∂lÂm, i.e., [101]

B̂k(~r ) =

√
~c2

0

ε0(2π)3

∫
d3k√
2ωk

2∑
s=1

i~k × ~ε (~k, s)
[
â(~k, s)ei~k·~r − â†(~k, s)e−i~k·~r

]
. (A.4.4)

Following the classical de�nition of the energy of the electromagnetic �eld including an
external current density jµext, we �nd

ĤPh(t) =
ε0
2

∫
d3r :

(
Ê2
⊥(~r ) + c2

0B̂
2(~r )

)
: −ε0

2

∫
d3r ~E2

‖(~r, t)

+
1

c0

∫
d3rjkext(~r, t)Âk(~r ) +

1

c0

∫
d3rj0

ext(~r, t)A0(~r, t)

=
2∑
s=1

∫
d3k ~ωkâ†(~k, s)â(~k, s)− ε0

2

∫
d3r ~E2

‖(~r, t)

+
1

c0

∫
d3rjkext(~r, t)Âk(~r ) +

1

c0

∫
d3rj0

ext(~r, t)A0(~r, t) .

(A.4.5)

Here we use normal ordering, denoted as ::, to discard the constant energy shift [101]. The
zero-component of the vector potential A0(~r, t) depends only on the zero component of the
external current density jµext(~r, t), which can be seen by using the Green's function of the
Laplacian in real-space representation

G(~r, ~r ′) =
〈
~r
∣∣(~∇−2)~r ′

〉
, (A.4.6)

and

w(~r, ~r ′) = − 1

ε0
G(~r, ~r ′) =

1

4πε0|~r − ~r ′|
. (A.4.7)

Therefore, A0 is given by [101]

A0(~r, t) =
1

ε0c0

∫
Ω

d3r′
(
−G(~r, ~r ′)

)
j0
ext(~r

′, t) =
|

Ω=R3

1

c0

∫
R3

d3r′
j0
ext(~r

′, t)

4πε0|~r − ~r ′|
. (A.4.8)

Hence, with Ek‖ (~r, t) = −∂kA0(~r, t) and partial integration, the free electromagnetic Hamil-

tonian ĤPh can be written as [101]

ĤPh(t) =
∑
s

∫
d3k ~ωkâ†(~k, s)â(~k, s) +

1

c0

∫
d3r jkext(~r, t)Âk(~r )

+
1

2c2
0

∫ ∫
d3rd3r′ w(~r, ~r ′)j0

ext(~r
′, t)j0

ext(~r, t) .

(A.4.9)

The �rst term on the right-hand side of Eq. (A.4.9) represents free photons and does not
couple to the external current. This operator term ĤPh,free creates or annihilates only
transverse photons, which propagate through the vacuum, and reads

ĤPh,free =
ε0
2

∫
d3r :

(
Ê2
⊥(~r ) + c2

0B̂
2(~r )

)
: =

∑
s

∫
d3k ~ωkâ†(~k, s)â(~k, s) . (A.4.10)
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The second term in Eq. (A.4.9) couples the photon �eld with transverse degrees of freedom
of the external vector potential which we therefore denote by Ĥ⊥Ph,int,ext

Ĥ⊥Ph,int,ext(t) =
1

c0

∫
d3r jkext(~r, t)Âk(~r ) (A.4.11)

The last term in Eq. (A.4.9) corresponds to the longitudinal degrees of freedom of the
�eld and gives rise to the longitudinal interaction to an external vector potential, which
we discuss in Appendix A.5.1. The longitudinal Ĥ‖Ph,int,ext reads

Ĥ
‖
Ph,int,ext(t) =

1

2c2
0

∫ ∫
d3rd3r′ w(~r, ~r ′)j0

ext(~r
′, t)j0

ext(~r, t) . (A.4.12)

Since j0
ext(~r, t) is a classical �eld, the operator Ĥ‖Ph,int,ext commutes with all observables.

Using the Hamiltonian of Eq. (A.4.9), which describes a photon �eld coupled to a
classical external current, the operator form of the inhomogeneous Maxwell equation in
Coulomb gauge can be derived by applying the Heisenberg equation of motion twice, i.e.,

(∂2
0 + ∂l∂

l)Âk(~r ) = µ0c0j
k
ext(~r, t)− ∂k∂0 1

c0

∫
d3r′w(~r, ~r )j0

ext(~r, t) . (A.4.13)

We assume that the external current density jµext obeys the continuity equation ∂µj
µ
ext(~r, t) =

0 and the external current density splits by jkext(~r, t) = jkext,‖(~r, t) + jkext,⊥(~r, t) into a lon-

gitudinal current density jkext,‖(~r, t) and transverse one jkext,⊥(~r, t). Therefore the last term
of Eq. (A.4.13) becomes [75]

∂k∂0 1

c0

∫
d3r′w(~r, ~r )j0

ext(~r , t) = µ0c0j
k
ext,‖(~r, t) , (A.4.14)

and the inhomogeneous Maxwell equation in terms of the vector potential in Coulomb
gauge is

(∂2
0 + ∂l∂

l)Âk(~r ) = µ0c0j
k
ext,⊥(~r, t) . (A.4.15)

As a consequence of Eq. (A.4.13), only the transverse current density jiext,⊥ couples to the
transverse photon �eld. Additionally, the operator valued Eq. (A.4.13) is equivalent to the
classical one in Eq. (A.1.8).

To build a bridge from the QED photon Hamiltonian to the Riemann-Silberstein for-
mulation, we can de�ne the Riemann-Silberstein transverse �eld operator by [78]

F̂ k±,⊥(~r ) =

√
ε0
2

(
Êk⊥(~r )± ic0B̂

k(~r )
)
. (A.4.16)

Using this de�nition, we can express Eq. (A.4.10) by

ĤPh,free =
ε0
2

∫
d3r :

(
Ê2
⊥(~r ) + c2

0B̂
2(~r )

)
: =

∫
d3r : F̂+,⊥,k(~r )F̂ k−,⊥(~r ) : . (A.4.17)

Similar to Eq. (A.4.13), which represents the inhomogeneous Maxwell's equation in terms
of the scalar and vector potential Âµ(~r), we can apply the Heisenberg equation of motion to
the Riemann-Silberstein vector F̂ k±,⊥(~r ) and obtain the Maxwell's equation with �rst-order
derivatives

i~∂tF̂ k±,⊥(~r) = ∓i~c0

(
Sl∂l

)k
m
F̂m±,⊥(~r)− i

~√
2ε0

jkext,⊥(~r, t) (A.4.18)
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for the transverse electromagnetic �eld. It obeys the divergence side condition

∂kF̂
k
±,⊥(~r, t) = 0 . (A.4.19)

Therefore, only the transverse component of the classical current density jµ(~r, t) couples
to the transverse quantized electromagnetic �eld. Since the longitudinal electromagnetic
�eld stays classical in Coulomb gauge, it is determined classically by the longitudinal part
of the classical current density with

i~∂tF k±,‖(~r, t) = ∓i~c0

(
Sl∂l

)k
m
Fm±,‖(~r, t)− i

~√
2ε0

jkext,‖(~r, t) (A.4.20)

The divergence side condition leads now to the inhomogeneous Gauÿ law

∂kF
k
±,‖(~r, t) =

1√
2ε0

j0
ext,‖(~r, t) , (A.4.21)

which gives the zero-component of the external current density. Consequently, similar to
Sec. (3.3.2), we split up the electromagnetic �eld into a longitudinal with corresponding
classical Eqs. (A.4.20)- (A.4.21) and transverse Eqs. (A.4.18)-(A.4.19), so that the total
electromagnetic �eld is the sum of both.

The Riemann-Silberstein operator F̂ k±,⊥(~r ) expressed by creation and annihilation �eld
operators is given with Eqs. (A.4.3) and (A.4.4) by

F̂ k±,⊥(~r ) =

√
~c2

0

2(2π)3

∫
d3k√
2ωk

2∑
s=1

[
∓c0

~k × ~ε (~k, s) + iωk~ε (~k, s)
] [
â(~k, s)ei~k·~r − â†(~k, s)e−i~k·~r

]
(A.4.22)

In Sec. 1.1.6, we discussed that the classical Riemann-Silberstein vectors can be decom-
posed in positive and negative frequency parts. This can also be applied to Eq. (A.4.22)
(cf. [78]). First, the transversal polarization vector times the creation and annihilation op-
erator expressed in spin states, can be equivalently expressed in helicity states. Using the
helicity unit vectors ~̃ε(~k,+) and ~̃ε(~k,−), we get the identity for the spin sum in Eq. (A.4.22)
[78]

â(~k, 1)~ε(~k, 1) + â(~k, 2)~ε(~k, 2) = ˆ̃a(~k,+)~̃ε(~k,+) + ˆ̃a(~k,−)~̃ε(~k,−) , (A.4.23)

â†(~k, 1)~ε(~k, 1) + â†(~k, 2)~ε(~k, 2) = ˆ̃a†(~k,+)~̃ε(~k,+) + ˆ̃a†(~k,−)~̃ε(~k,−) . (A.4.24)

The creation and annihilation operators â†(~k, s),â(~k, s) transform to ˆ̃a†(~k, s),ˆ̃a(~k, s) with
[78]

ˆ̃a(~k,+) =
1√
2

(
â(~k, 1)− iâ(~k, 2)

)
, ˆ̃a(~k,−) =

1√
2

e−iδ
(
−iâ(~k, 1) + â(~k, 2)

)
,

(A.4.25)

ˆ̃a†(~k,+) =
1√
2

(
â†(~k, 1) + iâ†(~k, 2)

)
, ˆ̃a†(~k,−) =

1√
2

eiδ
(

iâ†(~k, 1) + â†(~k, 2)
)
,

(A.4.26)

where δ denotes a free parameter. Hence, using the identities of Eqs (A.4.23), (A.4.24) and
the relation ~k/|~k]×~̃ε± = ∓i~̃ε± for Eq.(A.4.22) leads to the positive and negative frequency
decomposition of the Riemann-Silberstein operator [78]

F̂ k±,⊥(~r ) = F̂
(+),k
±,⊥ (~r ) + F̂

(−),k
±,⊥ (~r ) (A.4.27)
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with

F̂
(+),k
±,⊥ (~r ) = i

√
~c2

0

4(2π)3

∫
d3k
√
ωk ~̃ε (~k,±)ˆ̃a(~k,±)ei~k·~r, (A.4.28)

F̂
(−),k
±,⊥ (~r ) = i

√
~c2

0

4(2π)3

∫
d3k
√
ωk ~̃ε (~k,±)ˆ̃a†(~k,±)e−i~k·~r. (A.4.29)

The positive frequency Riemann-Silberstein operator F̂ (+),k
±,⊥ (~r ) annihilates a photon in case

of F̂ (+),k
+,⊥ (~r ) with positive helicity or in turn F̂ (+),k

−,⊥ (~r ) with negative helicity. In contrast,

F̂
(−),k
±,⊥ (~r ) creates a photon with corresponding helicity.

A.5 Interaction Hamiltonians

After introducing the non-interacting Hamiltonians for di�erent species in Eq. (A.3.6) and
uncoupled Photons in Eq. (A.4.9), we consider in this section the corresponding interaction
Hamiltonians. According to QED with minimal coupling interaction [101], the conserved
total current jµ of all species couples to the total vector potential operator Âµ [104].
Being in Coulomb gauge allows us to separate the total interaction into a longitudinal and
transverse one.

A.5.1 Longitudinal (Coulomb) interactions

The last term on the right-hand side of Eq. (A.4.9) represents the longitudinal interaction
of the matter in Coulomb gauge. Replacing the classical zero component of j0

mat leads to
an operator-valued contribution to the Photon Hamiltonian. The zero component of the
internal matter four-current density operator ĵ0

mat, caused by n di�erent species, is given
by

ĵ0
mat(~r) =

N∑
n=1

c0q(n)

∑
s

Φ̂†(n)(~r, s)Φ̂(n)(~r, s) =

N∑
n=1

ĵ0
mat,(n)(~r) . (A.5.1)

It is based on the internal matter charge density

ρ̂mat,(n)(~r) =
N∑
n=1

q(n)

∑
s

Φ̂†(n)(~r, s)Φ̂(n)(~r, s) (A.5.2)

multiplied by the speed of light c0 due to unit consistency. We note here, that we use the
zero-component of the matter current density ĵ0

mat(~r) as the one of the total �eld and do not
add a classical jext(~r, t) at this point. We consider an external current density including its
zero-component when discussing transverse interaction in the following. Adding an external
zero-component current density in both cases would lead to double counting e�ects which
we want to avoid. Thus, by replacing the matter charge density operator ĵ0

mat with the
classical external current density j0

ext in Eq. (A.4.12), we arrive at the total longitudinal
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interaction Hamiltonian of the system

Ĥ
‖
int =

1

2c2
0

∫
d3rd3r′w(~r, ~r ′) : ĵ0

mat(~r)ĵ
0
mat(~r

′) :

=
1

2c2
0

∫
d3rd3r′w(~r, ~r ′)

∑
n,n′

: ĵ0
mat,(n)(~r)ĵ

0
mat,(n′)(~r

′) :

=
1

c2
0

∫
d3rd3r′w(~r, ~r ′)

∑
n>n′

ĵ0
mat,(n)(~r)ĵ

0
mat,(n′)(~r

′)

+
1

2c2
0

∫
d3rd3r′w(~r, ~r ′)

∑
n

: ĵ0
mat,(n)(~r)ĵ

0
mat,(n)(~r

′) : ,

(A.5.3)

with normal ordering for the usual Coulomb form. The �nal expression in the last line
of Eq. (A.5.3) consists of two terms. The �rst one describes the interaction of di�erent
e�ective nuclei and electrons with longitudinal photons, which we call the inter-species
Coulomb interaction. Since their operators commute, the normal ordering does not a�ect
this term. In contrast, the operators in the second term of the last line do not commute and
require a time ordering. This intra-species Coulomb interaction describes the longitudinal
interaction of particles within each species with each other. Since w(~r, ~r ′) denotes the
Green's function of the Poisson equation, given in Eq. (A.4.7), we can de�ne an internal
scalar potential operator Â0

mat,(n) with

Â0
mat,(n)(~r ) =

∑
n′

n′ 6=n

1

c0

∫
d3r′w(~r, ~r ′)ĵ0

mat,(n′)(~r
′) . (A.5.4)

It describes the scalar potential that acts on species n, caused by all remaining species, and
it commutes with all the electromagnetic �eld variables, and Eq. (A.5.3) can be expressed
as

Ĥ
‖
int =

1

2c0

∫
d3r

∑
n

: ĵ0
mat,(n)(~r )Â0

mat,(n)(~r ) :

+
1

2c2
0

∫
d3rd3r′w(~r, ~r ′)

∑
n

: ĵ0
mat,(n)(~r )ĵ0

mat,(n)(~r
′) : .

(A.5.5)

A.5.2 Transverse interactions

For considering the transverse contribution of light-matter interaction, we use the cor-
responding Hamiltonian term given in Eq. (A.4.11). The arising total vector potential
Ak(~r, t) of the coupled system is the sum of the internal vector potential operator Âkmat(~r )
from the matter and an external one Akext(~r, t)

Âk(~r, t) = Âkmat(~r ) +Akext(~r, t) . (A.5.6)

In the same way, the zero-component of Â0(~r, t) is a sum of an external scalar potential
A0

ext(~r, t) plus an external charge density j0
ext(~r, t)

Â0
ext(~r, t) =

1

c0

∫
d3r′w(~r, ~r ′)j0

ext(~r
′, t) +A0

ext(~r, t) . (A.5.7)

We note here that with Eq. (A.5.7), the external charge density j0
ext(~r, t) becomes part of

the total scalar potential. We use the total vector potential in Eq. (A.5.6) and replace the
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external current density in Eq. (A.4.11) by the total conserved current density jµmat(~r, t)
of the matter system. After using the continuity equation ∂µj

µ
mat(~r, t) = 0 and the Pauli

Hamiltonian in Eq.(A.3.6), the total matter current density consists of three di�erent terms
[134, 135]

ĵkmat(~r, t) = ĵkpmc(~r ) + ĵkdmc(~r, t) + ĵkmc(~r ) . (A.5.8)

The �rst term is the paramagnetic current density operator ĵkpmc(~r ), which depends only
on matter variables and reads

ĵkpmc(~r) =
N∑
n=1

∑
s

~q(n)

2M(n)i

[(
∂kΦ̂†(n)(~r, s)

)
Φ̂(n)(~r, s) + Φ̂†(n)(~r, s)

(
∂kΦ̂(n)(~r, s)

)]
. (A.5.9)

In contrast, the second term, the diamagnetic current density operator ĵkdmc(~r, t), depends
additionally on the vector potential operator Âk(~r, t) of the total electromagnetic �eld and
is given by

ĵkdmc(~r, t) =
N∑
n=1

−
q(n)

M(n)c
2
0

ĵ0
(n)(~r )Âk(~r, t) . (A.5.10)

The fact that the Maxwell �eld is part of the diamagnetic current density is based on
the quadratic expression of the Pauli-Hamiltoian, which arises due to the anti-particle
(positronic) contribution in the non-relativistic Pauli approximation [104]. The last current
density term ĵkmc(~r ) is the magnetization current

ĵkmc(~r) =

N∑
n=1

∑
s,s′

−εklm∂lΦ̂†(n)(~r, s)

(
q(n)~
2M(n)

[
S(n)
m

]
s,s′

)
Φ̂(n)(~r, s

′) , (A.5.11)

which comes from the Stern-Gerlach term of the Pauli-equation.
The total current density ĵktot(~r, t) of the system includes ĵkmat(~r, t) plus an classical

external current density jkext(~r, t)

ĵk(~r, t) = ĵkmat(~r, t) + jkext(~r, t) . (A.5.12)

Therefore, the external current interaction Hamiltonian Ĥ⊥ext,int(t) reads

Ĥ⊥ext,int(t) =
1

c0

∫
d3r ĵkext(~r, t)Âk(~r, t) . (A.5.13)

Replacing the external current density in Eq. (A.5.13) by the system current density
ĵkmat(~r, t) leads to the transverse interaction Hamiltonian Ĥ⊥mat,int(t)

Ĥ⊥mat,int(t) =
1

c0

∫
d3r ĵkmat(~r, t)Âk(~r, t) . (A.5.14)

Substituting ĵkmat(~r, t) with all current terms from Eq. (A.5.8) and integrating by parts
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yields

Ĥ⊥mat,int(t) = −
N∑
n=1

∫
d3r

i~q(n)

2M(n)c0

∑
s,s′

Φ̂†(n)(~r, s)∂kÂ
k(~r, t)Φ̂(n)(~r, s)

−
N∑
n=1

∫
d3r

i~q(n)

2M(n)c0

∑
s,s′

Φ̂†(n)(~r, s)Âk(~r, t)∂
kΦ̂(n)(~r, s)

+
N∑
n=1

∫
d3r

q2
(n)

2M(n)c
2
0

∑
s,s′

Φ̂†(n)(~r, s)Âk(~r, t)Â
k(~r, t)Φ̂(n)(~r, s)

+

N∑
n=1

∫
d3r

q~
2M(n)

∑
s,s′

Φ̂†(n)(~r, s)[S
(n)
k ]s,s′Φ̂(n)(~r, s

′)

(
1

c0
εklm∂lÂm(~r, t)

)
(A.5.15)

Comparing Eq. (A.5.15) with Eq. (A.3.6) reveals that adding the zero-�eld Maxwell kinetic
Hamiltonian Ĥ(n)

mat,kin,0

Ĥ
(n)
mat,kin,0 =

∫
d3r

~2

2M(n)

∑
s,s′

Φ̂†(n)(~r, s)∂k∂
kΦ̂(n)(~r, s) (A.5.16)

allows to combine both into the kinetic energy Hamiltonian Ĥ
(n)
mat,kin with Maxwell �eld

plus the Stern-Gerlach term. Hence,

Ĥmat,kin =

N∑
n=1

Ĥ
(n)
mat,kin,0(t) + Ĥ⊥mat,int(t) , (A.5.17)

=
N∑
n=1

Ĥ
(n)
mat,kin(t) +

N∑
n=1

Ĥ
(n)
mat,Stern(t) , (A.5.18)

with the speci�c species kinetic Hamiltonian Ĥ
(n)
mat,kin and Stern-Gerlach Hamiltonian

Ĥ
(n)
mat,Stern

Ĥ
(n)
mat,kin(t)

= −
∫

d3r
1

2M(n)

∑
s

Φ̂†(n)(~r, s)

(
−i~∂k +

q

c0
Âk(~r, t)

)(
−i~∂k +

q

c0
Âk(~r, t)

)
Φ̂(n)(~r, s) ,

(A.5.19)

Ĥ
(n)
mat,Stern(t) =

∫
d3r

q~
2M(n)

∑
s,s′

Φ̂†(n)(~r, s)[S
(n)
k ]s,s′Φ̂(n)(~r, s

′)

(
1

c0
εklm∂lÂm(~r, t)

)
(A.5.20)

That means that the transverse interaction of the considered matter with the photon �eld
is implied in terms of the canonical kinetic energy Hamiltonian, only complemented by the
Stern-Gerlach term.

In quantum electrodynamics to get physically correct results, M(n) has to be renormal-
ized by the electromagnetic mass δM(n)

, so that M(n) = Mbare,(n) + δM(n)
. The electromag-

netic mass depends on the photon energy, which means that the matter couples implicitly
to the transverse photon �eld and vice versa via the electromagnetic mass δM(n)

. In many
cases, if the electromagnetic mass contribution is rather small compared to the bare mass
of the species, we can approximate M(n) ≈ Mbare,(n). We use this approximation in our
applications later in this work.
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