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ROOTED TREE MAPS AND THE DERIVATION RELATION FOR

MULTIPLE ZETA VALUES

HENRIK BACHMANN AND TATSUSHI TANAKA

Abstract. Rooted tree maps assign to an element of the Connes-Kreimer Hopf

algebra of rooted trees a linear map on the noncommutative polynomial algebra in

two letters. Evaluated at any admissible word these maps induce linear relations

between multiple zeta values. In this note we show that the derivation relations for

multiple zeta values are contained in this class of linear relations.

1. Introduction

In [T] the second named author introduced rooted tree maps, which assign to a rooted

forest a linear map on the space H = Q〈x, y〉 of words in x and y. One application

of these maps is that any admissible word evaluated at a rooted forest map gives

a Q-linear relation between multiple zeta values. In [IKZ] the authors introduced

a derivation ∂n on H (with respect to the concatenation product), which also gives

linear relation between multiple zeta values when evaluated at an admissible word.

The purpose of this note is to show, that the derivation ∂n can be written as linear

combination of rooted tree maps. In particular the derivation relation of multiple zeta

values is a special case of the linear relations of multiple zeta values obtained in [T].

A rooted tree is as a finite graph which is connected, has no cycles, and has a distin-

guished vertex called the root. We draw rooted trees with the root on top and we just

consider rooted trees with no plane structure, which means that we for example do

not distinguish between and . A product (given by the disjoint union) of rooted

trees will be called a (rooted) forest and by H we denote the Q-algebra of forests

generated by all trees. The unit of H, given by the empty forest, will be denoted by

I. Since we just consider trees without plane structure the algebra H is commutative.

Due to the work of Connes and Kreimer ([CK]) the space H has the structure of a

Hopf algebra. To define the coproduct on H we first define the linear map B+ on H,

which connects all roots of the trees in a forest to a new root. For example we have
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B+ ( ) = . Clearly for every tree t ∈ H there exists a unique forest ft ∈ H with

t = B+(ft), which is just given by removing the root of t. The coproduct on H can

then be defined recursively for a tree t ∈ H by

∆(t) = t⊗ I+ (id⊗B+) ◦∆(ft)

and for a forest f = gh with g, h ∈ H multiplicatively by ∆(f) = ∆(g)∆(h) and

∆(I) = I⊗ I. For example we have

∆( ) = ⊗ I+ ⊗ + 2 ⊗ + I⊗ .

In [T] the second named author uses the coproduct ∆ to assign to a forest f ∈ H a

Q-linear map on the space H = Q〈x, y〉, called a rooted tree map, by the following:

Definition 1.1. For any non-empty forest f ∈ H, we define a Q-linear map on H,

also denoted by f , recursively: For a word w ∈ H and a letter u ∈ {x, y} we set

f(wu) := M(∆(f)(w ⊗ u)) ,

where M(w1 ⊗w2) = w1w2 denotes the multiplication on H. This reduces the calcula-

tion to f(u) for a letter u ∈ {x, y}, which is defined by the following:

i) If f = , then f(x) := xy and f(y) := −xy.

ii) For a tree t = B+(f) we set t(u) := RyRx+2yR
−1
y f(u), where Rv is the linear map

given by Rv(w) = wv (v, w ∈ H).

iii) If f = gh is a forest with g, h 6= I, then f(u) := g(h(u)).

The rooted tree map of the empty forest I is given by the identity.

In [T, Theorem 1.1] it is proven that this definition, in particular ii), is well-defined.

Let H0 = Q+ xHy ⊂ H be the subspace of admissible words and define the Q-linear

map Z : H0 → R on a monomial w = zk1 . . . zkr with zk = xk−1y ∈ H (k ≥ 1) by

(1.1) Z(w) = ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 . . .mkr

r

.

The ζ(k1, . . . , kr) are called multiple zeta values and one particular interests in these

real numbers is to understand their Q-linear relations. Note that zk1 . . . zkr ∈ H0

implies that k1 ≥ 2, k2, . . . , kr ≥ 1, which ensures that the sum on the right of (1.1)

converges. One application of the rooted tree maps is the following result in [T].

Theorem 1.2. ([T, Theorem 1.3]) For any non-empty forest f ∈ H we have

f(H0) ⊂ kerZ.



ROOTED TREE MAPS AND THE DERIVATION RELATION FOR MULTIPLE ZETA VALUES 3

Example 1.3. For the tree f = and the word w = xy we obtain for f(w)

(xy) = M(∆( )(x⊗ y)) = M( (x)⊗ y + (x)⊗ (y) + x⊗ (y)).

Together with (x) = xy and (x) = RyRx+2yR
−1
y (x) = x(x+ 2y)y we get

(xy) = 2xyyy − xyxy − xxxy − xxyy = 2z2z1z1 − z2z2 − z4 − z3z1 ,

which by Theorem 1.2 gives the linear relation 2ζ(2, 1, 1) = ζ(4) + ζ(2, 2) + ζ(3, 1).

In [IKZ] the authors define the derivation ∂n on H by ∂n(x) = x(x + y)n−1y and

∂n(y) = −x(x + y)n−1y. Also ∂n gives linear relation between multiple zeta values,

since for all n ≥ 1 we have ∂n(H
0) ⊂ kerZ ([IKZ, Corollary 6]). These relations are

known as the derivation relations for multiple zeta values.

The main result of this note is to show that the derivation relations are just a special

case of Theorem 1.2, by giving an explicit description of ∂n in terms of rooted tree

maps. For this just trees without any branches are needed, i.e. we will consider for

m ≥ 1 the ladder trees

λm = m

and set λ0 = I. With this the main result of this work is the following.

Theorem 1.4. For all n ≥ 1 the derivation ∂n is given by

(1.2) ∂n =
n

2n − 1

n
∑

d=1

(−1)d+1

d

∑

m1+···+md=n
m1,...,md≥1

λm1
. . . λmd

.

Recall that by λm1
. . . λmd

we denote the rooted tree maps corresponding to the forest

of ladder trees with heights m1, . . . , md. By Definition 1.1 iii) we have λm1
λm2

=

λm2
λm1

, so we get for the first few values of n (w ∈ H)

∂1(w) = (w) , ∂2(w) =
2

3
(w)−

1

3
(w) , ∂3(w) =

3

7
(w)−

3

7
(w) +

1

7
(w) .

Rewriting (1.2) gives the following recursive formula for the rooted tree map λn

nλn =
n
∑

j=1

(

2j − 1
)

λn−j∂j .
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2. Dynkin operator for ladders

By S we denote the antipode of H and by Y we denote the grading operator on H

given by Y (f) = deg(f)f . Here deg(f) is the degree of f ∈ H given by the number

of vertices. To prove Theorem 1.4 we define for all f ∈ H the Dynkin operator D by

D(f) := (m ◦ (S ⊗ Y ) ◦∆)(f) ,

where m denotes the multiplication on H. First we give an explicit expression for

D(λn), then show that the associated rooted tree map D(λn) is a derivation on H and

finally prove D(λn)(x) = (2n − 1)∂n(x). From this we obtain for all words w ∈ H the

equality D(λn)(w) = (2n − 1)∂n(w) and the identity in Theorem 1.4.

Lemma 2.1. For all n ≥ 1 we have

∆(λn) =
n
∑

j=0

λj ⊗ λn−j ,(2.1)

S(λn) =

n
∑

d=1

(−1)d
∑

m1+···+md=n
m1,...,md≥1

λm1
. . . λmd

,(2.2)

D(λn) = n

n
∑

d=1

(−1)d+1

d

∑

m1+···+md=n
m1,...,md≥1

λm1
. . . λmd

.(2.3)

Proof. The first formula follows inductively by definition of the coproduct, since

∆(λn) = λn ⊗ I+ (id⊗B+) ◦∆(λn−1). The condition for S being an antipode means

in particular that (m ◦ (S ⊗ id) ◦ ∆)(λn) = 0. With (2.1) this gives the condition

S(λn) = −
∑n−1

j=0 S(λj)λn−j, from which (2.2) follows by induction on n. To prove the

third statement we get by the first and second equation

D(λn) = (m ◦ (S ⊗ Y ) ◦∆)(λn) = (m ◦ (S ⊗ Y ))

(

n
∑

j=0

λj ⊗ λn−j

)

=
n
∑

j=0

(n− j)S(λj)λn−j =
n
∑

d=1

(−1)d+1
∑

m1+···+md=n
m1,...,md≥1

mdλm1
. . . λmd

.

Since the last sum is symmetric in the m∗, we can replace the factor md by any other

mj with 1 ≤ j ≤ d. Averaging over all d choices for j gives (2.3). �

Lemma 2.2. For all n ≥ 1 the rooted tree map D(λn) is a derivation on H.

Proof. By Proposition 3.8 in [T] we have for any words v, w ∈ H and any forest f ∈ H,

f(vw) = M(∆(f)(v ⊗ w)). In the definition of rooted tree maps this is just given for
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the case w being a letter, but it can be proven inductively on the number of letters

of the word vw. We need to show that (m ◦ (S ⊗ Y ) ◦∆)(λn) is primitive, since for a

primitive element f ∈ H, we get

f(vw) = M(∆(f)(v ⊗ w)) = M(f(v)⊗ w + v ⊗ f(w)) = f(v)w + vf(w) .

In [PR, Theorem 5] it is shown that the Dynkin operator m ◦ (S ⊗ Y ) ◦∆ applied to

a cocommutative element gives an primitive element. By (2.1) the λn are cocommu-

tative from which the statement follows. �

Lemma 2.3. For all n ≥ 1 we have D(λn)(x) = (2n − 1)∂n(x).

Proof. Let H[[u]] be the formal power series ring over H with indeterminate u and

let ∆u be the automorphism of H[[u]] whose images on the generators is given by

∆u(u) = u, ∆u(x) = x(1 + yu)−1 and ∆u(y) = y + x(1 + yu)−1. By direct calculation

one checks that

(2.4)
(

∆−2u ◦∆
−1
−u

)

(x) = x+ x
u

1 − (x+ 2y)u
y .

In [IKZ, Theorem 4] it is proven that

∆u = exp

(

∞
∑

n=1

(−1)n
∂n

n
un

)

,

which together with (2.4) gives

(2.5) exp

(

∞
∑

n=1

(2n − 1)
∂n(x)

n
un

)

= x+ x
u

1− (x+ 2y)u
y .

Now define on H[[u]] the automorphism Λu =
∑

n≥0 λnu
n and calculate

log(Λu) =
∑

d≥1

(−1)d+1

d

(

∑

n≥1

λnu
n

)d

=
∑

n≥1

∑

d≥1

(−1)d+1

d

∑

m1+···+md=n
m1,...,md≥1

λm1
. . . λmd

un .

By Lemma 2.1 this gives log(Λu) =
∑

n≥1
D(λn)

n
un. The definition of rooted tree maps

implies λn(x) = RyRx+2yR
−1
y λn−1(x) = · · · = RyR

n−1
x+2yR

−1
y λ1(x) = x(x + 2y)n−1y.

Therefore the image of x under Λu is given by

Λu(x) =
∑

n≥0

λn(x)u
n = x+

∑

n≥1

x(x+ 2y)n−1yun = x+ x
u

1− (x+ 2y)u
y .

Since this equals exp(
∑

n≥1
D(λn)(x)

n
un) we obtain the desired identity by (2.5). �



6 HENRIK BACHMANN AND TATSUSHI TANAKA

Proof of Theorem 1.4. By Lemma 2.2 the rooted tree map D(λn) is a derivation on

H, which satisfies (as every rooted tree map) D(λn)(y) = −D(λn)(x). By Lemma 2.3

and because of ∂n(y) = −∂n(x) the derivations D(λn) and (2n − 1)∂n are the same

on the generators of H and hence they are equal. The explicit formula for ∂n in (1.2)

now follows from (2.3) in Lemma 2.1. �

Remark 2.4. As seen in Lemma 2.2 the Dynkin operator of any cocommutative

element in H gives a derivation on H. A natural question therefore is, if there are

other cocommutative elements in H, which gives rise to derivations on H. For example

the element λn
1 is cocommutative, since ∆(λn

1 ) =
∑n

j=0

(

n

j

)

λ
j
1⊗λ

n−j
1 . But with S(λn

1 ) =

(−1)nλn
1 one checks that D(λn

1 ) =
∑n

j=1

(

n

j

)

(−1)j(n− j)λn
1 = 0 for n ≥ 2, which does

not give an interesting example of a derivation.
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