mGene: A Novel Discriminative Gene Finding System

Gabriele Schweikert

Max Planck Institutes Tübingen, Germany

Worm Genomics and Systems Biology Workshop, Cambridge, July 24, 2008

Introduction

- 1998: *C. elegans* genome completed
- Today: several more genome projects finished / underway
- Genomes have to be annotated!

Mitreva, 2005

- Creation of cDNA libraries; selection of random clones
 - ⇒ High-copy-number mRNAs overrepresented
 - \Rightarrow Low-copy-number mRNAs missed entirely
 - \Rightarrow Mostly ESTs (single sequencing reads 500-700 nucleotides)
- Alignment of EST cDNA sequences against genome
 - \Rightarrow Cis-alignment; mostly corect
 - \Rightarrow Trans-alignment of homologous genes
- Typical cDNA sequencing project 20-40% of transcripts sequenced incorrectly or not at all
- \Rightarrow Use cDNA and EST alignments as labeled training set

⇒ Predict mRNA & gene products

- Creation of cDNA libraries; selection of random clones
 - ⇒ High-copy-number mRNAs overrepresented
 - \Rightarrow Low-copy-number mRNAs missed entirely
 - \Rightarrow Mostly ESTs (single sequencing reads 500-700 nucleotides)
- Alignment of EST cDNA sequences against genome
 - \Rightarrow Cis-alignment; mostly corect
 - \Rightarrow Trans-alignment of homologous genes
- Typical cDNA sequencing project 20-40% of transcripts sequenced incorrectly or not at all
- \Rightarrow Use cDNA and EST alignments as labeled training set

⇒ Predict mRNA & gene products

- Creation of cDNA libraries; selection of random clones
 - ⇒ High-copy-number mRNAs overrepresented
 - \Rightarrow Low-copy-number mRNAs missed entirely
 - \Rightarrow Mostly ESTs (single sequencing reads 500-700 nucleotides)
- Alignment of EST cDNA sequences against genome
 - \Rightarrow Cis-alignment; mostly corect
 - \Rightarrow Trans-alignment of homologous genes
- Typical cDNA sequencing project 20-40% of transcripts sequenced incorrectly or not at all
- ⇒ Use cDNA and EST alignments as labeled training set
 ⇒ Predict mRNA & gene products

- Creation of cDNA libraries; selection of random clones
 - ⇒ High-copy-number mRNAs overrepresented
 - \Rightarrow Low-copy-number mRNAs missed entirely
 - \Rightarrow Mostly ESTs (single sequencing reads 500-700 nucleotides)
- Alignment of EST cDNA sequences against genome
 - \Rightarrow Cis-alignment; mostly corect
 - \Rightarrow Trans-alignment of homologous genes
- Typical cDNA sequencing project 20-40% of transcripts sequenced incorrectly or not at all
- $\Rightarrow\,$ Use cDNA and EST alignments as labeled training set
- \Rightarrow Predict mRNA & gene products

Why Yet Another Gene Finder?

- GENSCAN, Burge 1997
- Twinscan, Korf 2001
- Augustus, Stanke 2003
- Contrast, Gross 2007

Ο ...

Why Yet Another Gene Finder?

- GENSCAN, Burge 1997
- Twinscan, Korf 2001
- Augustus, Stanke 2003
- Contrast, Gross 2007

What's the Difference?

Traditionally: Generative models (HMM)

• Learn complete generative model

DNA CGTATAAGCTTATAACCGATTAAGTATGTAGTCTGTTAAGTGTAGCATAGTAGAAGAAGTAATAAACGTCAACC

New approach: Discriminative setting

- Vapnik 1998: Never solve a more general problem as an intermediate step
- Solve the classification problem directly. much easier!

What's the Difference? Friedrich Miescher Laboratory Traditionally: Generative models (HMM) Learn complete generative model DNA CGTATAAGCTTATAACCGATTAAGTATGTAGTCTGTTAAGTGTAGCATAGTAGAGAAGTAATAAACGTCAACC Intergenic 5' UTR Exon Intron Exon 3' LITR Intergenic New approach: Discriminative setting Vapnik 1998: Never solve a more general problem as an intermediate step Solve the classification problem directly. much easier! CGTATAAGCTTATAACCGATTAAGTATGTAGTCTGTTAAGTGTAGCATAGTAGAGAAGTAATAAACGTCAACC

Our Approach: 2 Discriminative Steps

Step 1: State-of-the-art SVM Classifiers

Predict signals on DNA:

- Transcription start and cleavage, polyA, trans-splice sites
- Translation initiation sites and stop codons
- Donor and acceptor splice sites

Recognize segment types:

- Exons
- Introns
- Intergenic

Step 2: Hidden Markov SVMs

Combine Predictions to a valid gene structure

Gabriele Schweikert (MPI, Tübingen) mGene: A Novel Discriminative Gene Finding System July 24, 2008 6 / 21

Our Approach: 2 Discriminative Steps

Step 1: State-of-the-art SVM Classifiers

Predict signals on DNA:

- Transcription start and cleavage, polyA, trans-splice sites
- Translation initiation sites and stop codons
- Donor and acceptor splice sites

Recognize segment types:

- Exons
- Introns
- Intergenic

Step 2: Hidden Markov SVMs

Combine Predictions to a valid gene structure

Step 1: Splice Site Recognition

	Worm		Human	
	Acc	Don	Acc	Don
Markov Chain				
auPRC(%)	92.1	90.0	16.2	26.0
SVM				
auPRC(%)	95.9	95.3	54.4	56.9

[Sonnenburg, Schweikert, Philips, Behr, Rätsch, 2007]

7 / 21

Gabriele Schweikert (MPI, Tübingen) mGene: A Novel Discriminative Gene Finding System July 24, 2008

Step 1: Predictions in UCSC Browser

Gabriele Schweikert (MPI, Tübingen) mGene: A Novel Discriminative Gene Finding System July 24, 2008 8 / 21

Step 1: Predictions in UCSC Browser

Gabriele Schweikert (MPI, Tübingen) mGene: A Novel Discriminative Gene Finding System July 24, 2008 8 / 21

Step 2: Signal Integration

- Controlled competition conditions:
 - 10% of the genome for training methods
 - 10% of the genome for evaluation
- 4 Categories:
 - Cat 1: Ab initio gene finders
 - Cat 2: Dual/Multi-genome gene finders
 - Cat 3: Gene finders that use EST/cDNA alignments
 - Cat 4: Combining algorithms
- Evaluation on WS160 genes

- Controlled competition conditions:
 - 10% of the genome for training methods
 - 10% of the genome for evaluation
- 4 Categories:
 - Cat 1: Ab initio gene finders
 - Cat 2: Dual/Multi-genome gene finders
 - Cat 3: Gene finders that use EST/cDNA alignments
 - Cat 4: Combining algorithms
- Evaluation on WS160 genes

- Controlled competition conditions:
 - 10% of the genome for training methods
 - 10% of the genome for evaluation
- 4 Categories:
 - Cat 1: Ab initio gene finders
 - Cat 2: Dual/Multi-genome gene finders
 - $\bullet\,$ Cat 3: Gene finders that use EST/cDNA alignments
 - Cat 4: Combining algorithms

• Evaluation on WS160 genes

- Controlled competition conditions:
 - 10% of the genome for training methods
 - 10% of the genome for evaluation
- 4 Categories:
 - Cat 1: Ab initio gene finders
 - Cat 2: Dual/Multi-genome gene finders
 - Cat 3: Gene finders that use EST/cDNA alignments
 - Cat 4: Combining algorithms
- Evaluation on WS160 genes

nGASP Evaluation

How to evaluated predictions?

nGASP Evaluation

How to evaluated predictions?

Nucleotide evaluation:

Sensitivity = True Predicted/True Specificity = True Predicted/Predicted

nGASP Evaluation

How to evaluated predictions?

Exon evaluation:

Sensitivity = True Predicted/True Specificity = True Predicted/Predicted

nGASP Cat. 1 Evaluation (prelim.)

Gabriele Schweikert (MPI, Tübingen)

mGene: A Novel Discriminative Gene Finding System

July 24, 2008 12 / 21

Results: *mGene* on Wormbase

- Very good on nucleotide and exon level
- Substantial improvements on transcript level
- Re-annotation of C. elegans in official wormbase annotation
 - total: 19532 genes predicted
 - 635 new genes
 - 350 unconfirmed genes are not predicted
- Wetlab confirmations (preliminary results)
 - Confirmed 55 of 103 newly predicted genes
 - Confirmed only 4 of 50 annotated genes that were not predicted

- High accuracy on constitutively spliced genes for nematodes
- Wet-lab experiments confirm good performance of mGene
- Re-annotation of other nematode genomes genomes
- Preliminary results on new information transfer methods improve performance on related organisms
- Integrate new experimental data
 - New sequencing technologies
 - Tiling arrays
- Computational challenge: predict alternative splicing

- Gunnar Rätsch, Bernhard Schölkopf, Detlef Weigel
- Georg Zeller, Alexander Zien, Cheng Soon Ong, Sören Sonnenburg, Petra Philips, Jonas Behr, Christian Widmer