
ar
X

iv
:1

70
5.

01
44

7v
1 

 [
m

at
h.

A
G

] 
 3

 M
ay

 2
01

7

ALGEBRAS OF QUANTUM MONODROMY DATA AND DECORATED

CHARACTER VARIETIES

LEONID CHEKHOV∗, MARTA MAZZOCCO†, AND VLADIMIR RUBTSOV⋆

For the 70th birthday of Nigel Hitchin

1. introduction

The classical Riemann-Hilbert problem deals with Fuchsian systems on the Riemann sphere. Let
us consider a meromorphic system of first order ODEs:

(1.1)
dΨ

dz
=

s
∑

i=1

Ai

z − ai
Ψ,

where z is a coordinate on the sphere Σ0,s := P1\{a1, . . . , as}, where {A1, . . . , As} ⊂ slk(C) are
constant in z.

The Riemann-Hilbert correspondence is defined by associating to each Fuchsian system its mon-
odromy representation class obtained by considering the analytic continuation of a fundamental matrix
Ψ(z) of (1.1) around loops γi, i = 1, . . . , s, encircling each singular point ai:

ρ : π1(P
1 \ {a1, . . . , as}, a0) → SLk(C).

Taking the conjugacy classes one obtains the Betti moduli space of monodromy representations, or
the SLk–character variety:

(1.2) MB = Hom (π1(Σ0,s) → SLk(C)) /SLk(C).

Geometrically, the system (1.1) can be replaced by the meromorphic connection

∇ :=

(

∂

∂z
−A(z)

)

dz = d−

s
∑

i=1

Ai

z − ai
dz.

on the trivial holomorphic vector bundle Ck × P1 → P1 \ {a1, . . . , as}. In this setting the Riemann-
Hilbert correspondence is an isomorphism

(1.3) RH : MDR ≃ MB

where MDR is the de Rham moduli space

MDR = {(∇, E), E → Σ0,s} /S

of logarithmic connections ∇ on holomorphic rank k vector bundles E over the Riemann sphere Σ0,s

with s boundary components and S is the gauge group.

In [36], Hitchin proved that this map is a symplectomorphism. To be precise, denoting by Oi the
conjugacy classes of the residues Ai, i = 1, . . . , s, one can endow MDR with the standard Lie–Poisson
structure on O1 × · · · × Os ∈ slk × slk × · · · × slk obtained by identifying slk with sl∗k. Upon fixing
the conjugacy classes, this Poisson structure restricts to a symplectic structure. On the Betti moduli
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space MB, Hitchin considered the Poisson structure constructed by Audin [5] as follows. Consider
the Atiyah–Bott symplectic structure

Ω =
k

4π
Tr

∫

Σ
δA ∧ δA

on the space Conn(Σ) of all smooth g-valued connections A (for g a simple Lie algebra) on a compact
Riemann surface Σ. When no boundaries are present, one replaces the space Conn(Σ) by the space
M(Σ) = M0(Σ)/S, the quotient of the space M0(Σ) of all flat connections on Σ by the gauge group.
Since Σ is closed, the momentum map is just the curvature, so that the space M(Σ) is just a reduced
level set of the momentum mapping and thus a symplectic manifold. In the presence of boundaries,
the curvature is the momentum map of a smaller group, so one needs to consider a central extension
of the group of gauge transformations in order to construct the Poisson structure. In particular one
needs to add a correction term to the Atiyah–Bott symplectic structure:

Ωc =
k

4π
Tr

∫

∂Σ
φ ∧ δA, dAφ = δA,

The Poisson structure on the Betti moduli space is the result of the Hamiltonian reduction on the zero
level of the momentum map associated to Ω+Ωc. This Poisson structure coincides with the Goldman
bracket on the character variety MB [28, 29].

In this paper, we address the question of what happens to this theory if we allow connections with
higher order poles on holomorphic rank k vector bundles E on Riemann surfaces Σg,s of genus g and
s boundary components.

This question has been addressed by a number of Hitchin’s disciples. In [9] Boalch treated the case
of a system with a regular pole and a pole of order two at infinity by using the Laplace transform
[34, 21, 37] to map it back to the Fuchsian case. More recently he introduced the notion of wild
character variety [10] in which higher order poles are blown up to produce extra regular poles (at
the intersection between a boundary circle and the Stokes directions) and the fundamental group is
replaced by the groupoid of closed loops around these extra regular poles. He defined the Poisson
structure on the wild character variety by using the quasi-Hamiltonian approach by Alexeev and
collaborators [2, 3].

An elegant approach was proposed by Gualtieri–Li-Pym [30]. In this case they start with the space
of meromorphic connections on a smooth curve with a pole divisor D (poles with multiplicity). Let
S be the space such that the parallel transport defined by this connection with poles bounded by the
divisor D exists and is holomorphic (outside of the poles). They then consider the Lie algebroid A
tangent to S and define the Stokes groupoid as the Lie groupoid that integrates this Lie algebroid.
They compute this groupoid in the case of the Airy equation and demonstrate that it is the usual
pairing groupoid with a twist. A similar computation can be carried out for every case in which
total summability works. This result gives a beautiful geometric explanation of Ecalle resummability
theory.

In [18], based on the idea of interpreting higher order poles in the connection as boundary com-
ponents with bordered cuspsa [17] on the Riemann surface, we introduced the notion of decorated
character variety. Let us remind this definition here.

Topologically speaking a Riemann surface Σg,s,n of genus g with s holes and n bordered cusps is

equivalent to a Riemann surface Σ̃g,s,n of genus g, with s holes and n marked points m1, . . . ,mn on
the boundaries. Then one defines the fundamental groupoid of arcs πa(Σg,s,n) as the set of all directed

paths γij : [0, 1] → Σ̃g,s,n such that γij(0) = mi and γij(1) = mj modulo homotopy. The groupoid
structure is dictated by the usual path–composition rules. The SLk decorated character variety is
defined as:

(1.4) Mk
g,s,n := Hom (πa(Σg,s,n), SLk(C)) /∏n

j=1 Uj
,

aWe use the term bordered cusp meaning a vertex of an ideal triangle in the Poincaré metric in order to distinguish
it from standard cusps (without borders) associated to punctures on a Riemann surface.
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where Uj is the unipotent Borel subgroup in SLk(C) (one unipotent Borel subgroup for each bordered
cusp).

Our interest in the representation spaces and their interpretation as decorated character varieties
goes back to study of the moduli space of monodromy representations for the fundamental group of
the 4-holed sphere. This is the SL2−character variety

(1.5) MB = Hom (π1(Σ0,4) → SL2(C)) /SL2(C),

and the above discussed Poisson structure can also be obtained as a reduction of so-called Korotkin–
Samtleben bracket ([32]) on Hom (π1(Σ0,4) → SL2(C)) (which is in fact the quasi-Poisson structure
in sense of [2, 3]). The relation with Teichmüller space parametrisation and a quantisation of this
Poisson character variety was proposed by the first two authors in [15].

This Poisson manifold is also known as the monodromy manifold of the linear system corresponding
to the Painlevé V I equation. Our notion of decorated character variety was motivated by a challenging
problem of giving a definition compatible with the confluence operations that give rise to all other
Painlevé differential equations - in this case the Stokes phenomenon appears- the solutions in the
vicinity of the multiple poles have different asymptotic behaviours in different sectors.

In this paper we study the Poisson structure on the representation space

Rk
g,s,n := Hom (πa(Σg,s,n), SLk(C)) ,

induced by the Fock–Rosly bracket [26] as explained in [4] (see also [12, 13, 40]) and prove that the
quotient by unipotent Borel subgroups giving rise to the decorated character variety (1.4) is a Poisson
reduction. More precisely, we consider the Poisson structure on the matrices M that correspond to
directed arcs in πa(Σg,s,n). We call these matrices monodromy data, because they indeed contain
Stokes matrices, connection matrices and standard monodromy matrices of linear systems on first
order ODEs (see Section 5). We treat classical and quantum case simultaneously, thus providing
a quantisation of the decorated character variety (1.4). It would be interesting to understand the
categorical version of our quantisation along the lines of the recent papers by Ben-Zvi, Brochier and
Jordan [6, 7] - we postpone this to future publications.

In their seminal papers [23], [24], Fock and Goncharov introduced a set of Darboux coordinates
for SLk(R) systems on Riemann surfaces with holes. Nevertheless, to the best of our knowledge, a
comprehensive analysis relating the Fock–Goncharov construction to the Fock–Rosly algebras was still
missing. Elements of this construction (in the classical case, without references to Poisson or quantum
structures) had appeared in papers of Musiker, Schiffler and Williams [38], [39] mostly devoted to
establishing connection to cluster algebras; it was there where lambda-lengths were identified with
upper-left elements of SL2(R)-monodromy data. Shear coordinates associated with decorated bor-
dered cusps were introduced simultaneously and independently by the first two authors in [17] and by
Allegretti [1]. A useful technical tool allowing avoiding most difficulties of the standard combinatorial
description of structures on Riemann surfaces with holes is that, having at least one bordered cusp,
we can consider ideal-triangle partitions of these surfaces with triangles based only at bordered cusps
enclosing all holes without cusps in monogons. We then restrict the set of mapping class group (MCG)
transformations (and the corresponding cluster mutations) to the generalized cluster algebras intro-
duced in [20]. Upon imposing these restrictions we can establish an isomorphism between extended
shear coordinates and lambda-lengths, both enjoying homogeneous Poisson or quantum relations, and
explicitly construct the monodromy data of the system (1.4) for k = 2. The homogeneous Poisson
or quantum relations for shear coordinates then induce classical or quantum Fock–Rosly relations for
elements of monodromy data with the Poisson reduction imposed by the quotient by unipotent Borel
subgroups. All matrix elements of all monodromy data are then sign-definite Laurent polynomials
either of exponentiated shear coordinates or of lambda-lengths.

The paper is organized as follows. In Sec. 2, we briefly recall the hyperbolic geometry description
of Teichmüller spaces of Riemann surfaces with holes and bordered cusps and formulate the main
statement of the paper (Theorem 2.5). We then derive the quantum Fock–Rosly-like algebras of
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monodromy data for SL2 out of coordinate algebras of the quantum Teichmüller spaces. In Sec. 3,
we study Poisson and quantum R-matrix structures of decorated character varieties for general SLk-
monodromy data paying a special attention to the Poisson reduction due to factorization w.r.t. Borel
subgroups. In Sec. 4, we consider in details three important examples of our construction for a general
SLk(R)-monodromy data: Σ1,s+1,1, Σ0,2,2, and Σ0,1,3. Finally, in Sec. 5, keeping in mind the idea of

extending the Riemann–Hilbert correspondence to Zirr
g,s → Mk

g,s,n, where Zirr
g,s is a suitably decorated

moduli space of irregular connections ∇ on a holomorphic rank k-vector bundle E → Σg,s, we propose
a formula linking the number n of bordered cusps on Σg,s,n to the irregular type of the connection.
Because, as explained in [18], the decorated character variety (1.4) contains the wild character variety
as the sub-algebra of functions that Poisson commute with the function associated to certain arcs
connecting bordered cusps, the space Zirr

g,s is in fact an extension of the one considered by Boalch in
his survey on Riemann–Hilbert correspondence in this same issue [11].

Throughout this paper we use the following notation: we denote by M a monodromy datum, or a
matrix in SLk, and by mij its elements.

2. Algebras for SL2(C) monodromy data for surfaces with bordered cusps

2.1. Darboux coordinates in dimension 2. In the case of dimension k = 2, the complex dimension
of the decorated character variety is 6g − 6 + 3s + 2n. In this section we restrict to the real-analytic
sub-variety

RR
g,s,n := Hom (πa(Σg,s,n), SL2(R)) ,

and show how to construct real Darboux coordinates. We then complexify them to define Darboux
coordinates on the complex representation space R2

g,s,n.

Every bordered cusp is endowed with a decoration—a horocycle based at the end of the cusp,
which is a point on an absolute. Such a horocycle cuts out an infinite part of a cusp and we consider
only parts of arcs that are confined between two horocycles decorating two cusps at which this arc
terminates (this can be the same cusp, then the same horocycle).

We split the Riemann surface Σg,s,n into ideal triangles based at bordered cusps; the edges of these
triangles are arcs; if there are holes without bordered cusps, these holes by prescription are always
enclosed in monogons (obviously bordered by arcs starting and terminating at the same bordered cusp.

For every ideal-triangle decomposition as above we consider the dual fat graph Γg,s,n all vertices of
which are three-valent except exactly n one-valent vertices being in 1-1 relation with bordered cusps.
Each (non-directed) edge of Γg,s,n carries an (extended) shear coordinate (denoted by capital Z letters
for internal edges and by πj for edges ending at one-valent vertices) from the set {Zα, πj}; for every
hole without cusps we have an edge dual to the bordering arc and the loop attached to the (inner)

end of this edge carrying the coefficient ω (ω = eP/2 + e−P/2 for a hole with the perimeter P or
ω = 2cos(π/n) for a Zn orbifold point). The shear coordinates {Zα, πj} are either real numbers (in
the classical case) or Hermitian operators (in the quantum case) with constant commutation relations
determined by the graph Γg,s,n. All coefficients ω are Casimirs.

From [20], for any choice of real numbers {Zα, πj} and parameters ωβ, we have a metrisable Riemann
surface Σg,s,n, and vice versa, for any Poincaré uniformizable Σg,s,n, we have a (non-unique) set of
{Zα, πj} and ωβ and a graph Γg,s,n determining the gluing of this surface out of ideal triangles using
the extended shear coordinates {Zα, πj}.

Then, we have an explicit parameterisation of the monodromy data in terms of extended shear

coordinates. To every edge we set into correspondence the edge matrix XA :=

(

0 −eA/2

e−A/2 0

)

where A ∈ {Zα, πj} is the extended shear coordinate of this edge. When an oriented path goes through
the corresponding edge (in any direction) we multiply from the left by the edge matrix. When a path
turns left or right at three-valent vertices, we multiply from the left by the corresponding matrices
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L =

(

0 1

−1 −1

)

and R =

(

1 1

−1 0

)

and when a path goes clockwise around the loop containing

the hole endowed with the coefficient ω we multiply from the left by Fω =

(

0 1

−1 −ω

)

. We always

begin with the edge matrix Xπi of the cusp the arc begins with; the last matrix in the product
is always the edge matrix Xπj of the cusp at which the arc terminates. In the quantum case, the
quantum ordering is the natural ordering in the product provided we scale the left and right turn
matrices: L → q1/4L, R → q−1/4R (if [X,Y ] = 2πi~, then eXeY = qeX+Y , so q = eπi~).

The thus constructed matrix products are invariant under the quantum MCG transformations (mu-
tations of inner edges including those dual to monogons containing holes without cusps) so we can
always reduce a given matrix product to a simpler one: for example, a monodromy datum correspond-
ing to an arc with ends at two different cusps and such that it does not correspond to a bordered
arc can be brought to the form M = XπjLXZRXπi ; every monodromy datum of a bordered arc that
goes clockwise can be brought to the form M = XπjLXπi and the one going counterclockwise can be
brought to the form M = XπjRXπi .

We now define the monodromy data for arc-like paths.

Definition 2.1. For a given set of extended shear coordinates {Zα, πj} and coefficients ωβ associated
with a spine (fat graph) Γg,s,n, the SL2(R)-monodromy data associated to (directed) arcs (directed
paths starting and terminating at bordered cusps) are

(2.6) Ma = Xπ2LXZαn
R · · ·LXZαj

Fωβ
XZαj

R · · ·LXZα1
RXπ1 ,

where π1 and π2 are the extended shear coordinates of the respective starting and terminating bordered
cusps. In the quantum case, the quantum ordering is the natural ordering prescribed by matrix
multiplication and we make a scaling L → q1/4L, R → q−1/4R.

Definition 2.2. We define the λ-length of an arc a to be the upper-left element of Ma defined by
(2.6) (u.r.(M) in [38], [39] or trK(M) in [17]).

Identifying {Zα, πj} with the extended shear coordinates, the thus defined λ-lengths (in the classical

case) are eℓa/2, where ℓa are actual (signed) lengths of stretched between decorating horocycles parts
of geodesic curves that join the corresponding bordered cusps and belong to the same homotopy class
as the arc a. We often just identify these arcs with the corresponding λ-lengths writing merely λa.

Lemma 2.1. [19, 20, 17] The classical and quantum monodromy data Ma are invariant under MCG
transformations (extended cluster mutations) induced by mutations (flips) of inner edges of Γg,s,n.

Definition 2.3. [17] A complete geodesic lamination (CGL) is the set of all the edges of all ideal
triangles constituting an ideal triangle decomposition of Σg,s,n with vertices at bordered cusps. We
call algebraic CGL the collection of all λ-lengths of the elements in the CGL.

Lemma 2.2. [17] Every algebraic CGL can be identified with a seed of a quantum cluster algebra of
geometric type [8, 17]; the corresponding λ-lengths enjoy homogeneous commutation relations among
themselves.

Lemma 2.3. [38, 39, 17] For the fat graph Γg,s,n dual to the corresponding partition of Σg,s,n into
ideal triangles, the relations between λ-lengths from the corresponding CGL and exponentiated extended
shear coordinates {e±Zα , e+πj/2} are 1-1 and monoidal in both directions.

Lemma 2.4. [17] Every λ-length in every CGL (a seed) is a polynomial from Z+[e
±Zα , e+πj/2, ωβ] of

exponentiated shear coordinates of any given seed. Every quantum λ-length is a Hermitian operator
represented by an ordered polynomial from Z+[e

±Zα , e+πj/2, ωβ, q
±1/4].

Note that Lemmata 2.3 and 2.4 then immediately implies the Laurent and positivity phenomenon
for λ-lengths in all seeds.
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The main result of this paper is as follows.

Theorem 2.5. Provided the extended shear coordinates {Zα, πj} enjoy the standard constant commu-
tation or Poisson relations [14, 17], the set of (classical or quantum) monodromy data Ma determined
by formula (2.6) for any (directed) arc a from a fixed CGL satisfies the following properties:

(a) The (classical or quantum) matrices Ma corresponding to arcs from the same CGL satisfy
R-matrix permutation relations of Fock–Rosly type (2.8), (2.9), (2.12) (2.13), (2.14), (2.15),
(2.16), (2.17), (2.18).

(b) All elements of every monodromy datum Ma are polynomials of e±Zα/2, e±πj/2, q±1/4 and ωβ

with integers coefficients and, by Lemma 2.3, are sign-definite Laurent polynomials in λ-lengths
of any given CGL (for any seed of the corresponding cluster algebra of geometric type) and
polynomials in ωβ.

(c) The Borel subgroup restriction (see (1.4)) is realized by reducing all monodromy data Ma

that correspond to paths between two neighbouring bordered cusps (or the same cusp if a hole
contains only one cusp) that go along the hole boundary with the hole being to the left to the
form with entries mai,j = 0,∀i + j ≥ k + 2. This restriction is Poisson for any system of
monodromy data (and survives the generalisation to the case of SLk(R)-monodromy data).

Observe that thanks to Lemma 2.3 and point (b) of Theorem 2.5, the extended shear coordinates
{Zα, πj} can be straightforwardly complexified and therefore the complex representation space R2

g,s,n

is endowed with the same Poisson structure.

In the following subsections we derive point (a) of the theorem (points (b) and (c) will be clear
from construction) in the quantum case (the classical one follows by taking the semi-classical limit).
Let us stress that while the final formulae for the quantum commutation relations have been derived
from the Fock-Rosly bracket [26] already in [4] (see also [12, 13, 40]), our approach allows to express
all matrices in Darboux coordinates. For this reason we repeat the derivation of the relations from [4]
here.

In the following, we call open arc an arc joining different cusps, we call closed arc an arc joining the
same cusp.

2.2. Basic relations. In this subsection we use our geometric construction to find the two Fock–Rosly
commutation relations from which all other commutation relations can be found using the groupoid
property.

The first relation pertains to the case where two different arcs ai and aj start at the same bordered
cusp π and then go to the left and to the right respectively never colliding again, see Fig. 1.

i j

π

Z1 Z2

Figure 1. Fat graph on a Riemann surface with at least one cusp of coordinate π.
We denote the standard shear coordinates by Z1 and Z2. The dashed part is the rest
of the Riemann surface.

The matrices corresponding to arcs are:

(2.7) Mi = QXZ1RXπ; Mj = SXZ2LXπ, i < j
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where we use the notation that i < j when the arc ai is on the left of the arc aj and the matrices Q
and S correspond to portions of the arcs that never intersect the arcs aj and ai respectively, so that

[Q,Mj ] = 0, [S,Mi] = 0, and [S,Q] = 0.

To deduce the commutation relations of the matrices (2.7) we use the following commutation relations:

[Z2, Z1] = [Z2, π] = [π,Z1] = 2πi~,

eZ1/2eπ/2 = q−1/2eπ/2eZ1/2, eZ2/2eπ/2 = q1/2eπ/2eZ2/2, eZ2/2eZ1/2 = q−1/2eZ1/2eZ2/2

Then, by a direct calculation, we obtain the following relations:

1
Mi ⊗

2
Mj =

2
Mj ⊗

1
MiR12(q) i < j,(2.8)

1
Mi ⊗

2
MjR12(q)

T =
2
Mj

1
Mi i > j,(2.9)

where R12(q) =
1
eii ⊗

2
ejjq

(−1)i+j
+

1
e12

2
e21(q

1/2 − q−3/2) is the Kulish–Sklyanin R-matrix; explicitly

(2.10) R12(q) =













q1/2 0 0 0

0 q−1/2 q1/2 − q−3/2 0

0 0 q−1/2 0

0 0 0 q1/2













Observe that as long as the arc ai is on the left of the arc aj , by MCG transformations we can always
flip edges in our fat-graph to match this situation.

We obtain the second basic relation for entries of the same monodromy datum corresponding to
an open arc: every such matrix (except the case where it borders a hole) can be brought by quantum
MCG transformations to the form (see figure 2):

M := Xπ2LXZ1RXπ1 , [π1, Z1] = [π2, Z1] = 2πi~, [π1, π2] = 0,

thus giving the following commutation relation:

(2.11) RT
12

1
M ⊗

2
M =

2
M ⊗

1
MR12

i j

π1

Z1 Z2

π2

Figure 2. Fat graph on a Riemann surface with two cusps of coordinates π1 and π2.
We denote the standard shear coordinates by Z1, Z2, . . . . The dashed part is the rest
of the Riemann surface.

2.3. Composite relations. Here we explain how to obtain all other relations from the basic relations
(2.8) and (2.11) using the groupoid property.

Using basic relation (2.8) we can deduce what happens when two open arcs meet at two different
cusps. Let these arcs be oriented in the same way, i.e. they originate at the same cusp and end at
the same cusp. Inverting orientation corresponds to inverting a matrix. We denote the above two

matrices by M j
i and M l

k, where i and k are in the source cusp and j, l in the target cusp; at each
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cusp we have a linear ordering of indices originated from orientation of the surface. We can think of

M j
i = M j−1

Mi and M l
k = M l−1

Mk where:

[M j ,Mk] = [Mi,M
l] = 0,

and the pairs Mi,Mk and M j,M l enjoy the commutation relations (2.8). In this way we obtain

1

M j
i

2

M l
k = R12

2

M l
k

1

M j
i R12 for i < k, j < l,(2.12)

1

M j
i

2

M l
k = R12

2

M l
k

1

M j
i R

−T
12 for i > k, j < l,(2.13)

1

M j
i

2

M l
k = R−T

12

2

M l
k

1

M j
i R12 for i < k, j > l,(2.14)

1

M j
i

2

M l
k = R−T

12

2

M l
k

1

M j
i R

−T
12 for i > k, j > l,(2.15)

Consider the case of two monodromy data corresponding to two closed arcs (starting and terminating
at the same cusp) having no intersections inside the surface. Then their four ends can be uniquely
enumerated from 1 to 4 depending on the order in which the corresponding arcs enter the cusp, see
Fig. 3, where the index 1 corresponds to the rightmost thread and 4 to the leftmost thread. We have
three different cases all of which can be obtained from basic relation (2.8); Mij indicates the arc that

starts at thread i and terminates at j having the structure M−1
j Mi with Mi and Mj from (2.7). In

all examples below we take i > j, that is, the corresponding arc goes clockwise along the surface:

1
M21R12

2
M43R

−1
12 = R12

2
M43R

−1
12

1
M21(2.16)

1
M41R

−T
12

2
M32R

T
12 = R12

2
M32R

−1
12

1
M41(2.17)

1
M31R

−T
12

2
M42R

−1
12 = R12

2
M42R

−1
12

1
M31(2.18)

1234

π

Z1 Z2

1234

π

Z1 Z2

1234

π

Z1 Z2

Figure 3. Three cases of nonintersecting geodesic arcs terminating at the same bordered cusp.

The last commutation relation is for the entries of the same matrix Mij corresponding to a closed
arc. We can obtain this arc as the product of two arcs: one starts at the same cusp and terminates
at another cusp and the second one starts at the second cusp and terminates at the first cusp going
along a different path in the surface, in such a way that the composition gives the arc that starts and
terminates at the same cusp. We obtain

(2.19) RT
12

1
MijR

−T
12

2
Mij =

2
MijR

−1
12

1
MijR12.

Note that for the R-matrix of form (2.10), we have another, equivalent way of writing the same
quantum commutation relations for elements of the matrix Mij encoded in (2.19):

(2.20)
1

MijR
−T
12

2
MijR

T
12 = R12

2
MijR

−1
12

1
Mij .

We are free to use any of relations (2.19), (2.20) on our discretion.
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Remark 2.4. That (2.20) is equivalent to (2.19) implies the following commutation relation:

RT
12R12

2
MijR

−1
12

1
Mij =

2
MijR

−1
12

1
MijR12R

T
12 and R12R

T
12

1
MijR

−T
12

2
Mij =

1
MijR

−T
12

2
MijR

T
12R12.

3. Classical and quantum R-matrix structures of SLk(C) monodromy data

3.1. R-matrix relations in the SLk(C) case. For generic dimension k, consider the following special
case of trigonometric R-matrix generalizing the Kulish–Sklyanin matrix R12 to the case of SLk(C):

(3.21) R12(q) =
∑

i,j

q−1/2 1
eii ⊗

2
ejj +

∑

i

(q1/2 − q−1/2)
1
eii ⊗

2
eii +

∑

j>i

(q1/2 − q−3/2)
1
eij ⊗

2
eji

Following [4], we use the R-matrix relations (2.8) and (2.11) as well as all “composite” relations (2.16)–
(2.20) to define a quasi-Poisson structure on the representation space Rk

g,s,n. The following theorem
shows that actually this is a Poisson structure - we call it Poisson algebra of monodromy data:

Theorem 3.1. For any R-matrix Rαβ(q) that satisfies the QYBE R12R13R23 = R23R13R12, and such

that RT
αβ = Rβα, relations (2.19) and (2.20) are equivalent and the relations (2.16)–(2.20) satisfy

quantum Jacobi property.

Proof. This is a consequence of the fact that this Poisson algebra comes from the Fock–Rosly one.
However we would like to prove it directly at least in one case for sake of completeness: the case
in which two entries come from the same monodromy datum and the third one comes from another
monodromy datum. We begin with

1
M21R

−T
12

2
M21R13R23

3
M43

We then have the following chain of equalities in which we use the basic QYBE R12R13R23 =
R23R13R12 and its derivatives:

RT
12R23R13 := R21R23R13 = R13R23R21 := R13R23R

T
12

and
R13R

−T
12 R−1

23 = R−1
23 R

−T
12 R13

(we underline the terms in which we use commutation relations or QYBE); note that every
i
M com-

mutes with Rjk if i 6= {j, k}:

1
M21R

−T
12

2
M21R13R23

3
M43 = R−T

12

2
M21R

−1
12

1
M21R12R13R23

3
M43

=R−T
12

2
M21R

−1
12

1
M21R23R13R12

3
M43 = R−T

12

2
M21R

−1
12 R23

1
M21R13

3
M43R12

=R−T
12

2
M21R

−1
12 R23R13

3
M43R

−1
13

1
M21R13R12 = R−T

12

2
M21R13R23R

−1
12

3
M43R

−1
13

1
M21R13R12

=R−T
12 R13

2
M21R23

3
M43R

−1
12 R

−1
13

1
M21R13R12 = R−T

12 R13R23

3
M43R

−1
23

2
M21R23R

−1
12 R

−1
13

1
M21R13R12

=R23R13R
−T
12

3
M43R

−1
23 R

−1
13

2
M21R

−1
12

1
M21R23R13R12 = R23R13R

−T
12

3
M43R

−1
23 R

−1
13 R

T
12

1
M21R

−T
12

2
M21R13R23

=R23R13

3
M43R

−1
13

1
M21R

−1
23 R

−T
12

2
M21R13R23 = R23

1
M21R13

3
M43R

−1
13 R

−1
23 R

−T
12

2
M21R13R23

=R23

1
M21R13R

−T
12

3
M43R

−1
23

2
M21R23 = R23

1
M21R13R

−T
12 R−1

23

2
M21R23

3
M43

=
1

M21R
−T
12

2
M21R13R23

3
M43.

We present one more calculation demonstrating Jacobi property for the same matrix M . We use
just one form (2.19) of the commutation relation. We begin with the same expression

1
MR−T

12

2
MR−T

13 R−T
23

3
M =

1
MR−T

12 R−T
13

2
MR−T

23

3
M
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We first transform the left-hand side:

1
MR−T

12

2
MR−T

13 R−T
23

3
M = R−T

12

2
MR−1

12

1
MR12R

−T
13 R−T

23

3
M

=R−T
12

2
MR−1

12 R
−T
23

1
MR−T

13

3
MR12 = R−T

12

2
MR−1

12 R
−T
23 R−T

13

3
MR−1

13

1
MR13R12

=R−T
12 R−T

13

2
MR−T

23

3
MR−1

12 R
−T
13

1
MR13R12 = R−T

12 R−T
13 R−T

23

3
MR−1

23

2
MR23R

−1
12 R

−1
13

1
MR13R12

=R−T
12 R−T

13 R−T
23

3
MR−1

23

2
MR−1

13 R
−1
12

1
MR23R13R12

We now turn to the right-hand side:

1
MR−T

12 R−T
13

2
MR−T

23

3
M =

1
MR−T

12 R−T
13 R−T

23

3
MR−1

23

2
MR23

=R−T
23

1
MR−T

13

3
MR−T

12 R−1
23

2
MR23 = R−T

23 R−T
13

3
MR−1

13

1
MR13R

−T
12 R−1

23

2
MR23

=R−T
23 R−T

13

3
MR−1

13 R
−1
23

1
MR−T

12

2
MR13R23 = R−T

23 R−T
13

3
MR−1

13 R
−1
23 R

−T
12

2
MR−1

12

1
MR12R13R23

=R−T
23 R−T

13 R−T
12

3
MR−1

23

2
MR−1

13 R
−1
12

1
MR12R13R23 = R−T

12 R−T
13 R−T

23

3
MR−1

23

2
MR−1

13 R
−1
12

1
MR23R13R12,

which coincides with the final expression in transformations of the left-hand side. �

3.2. Decorated character variety. In order to define a Poisson structure on the decorated character
variety

Mk
g,s,n := Rk

g,s,n/
∏n

j=1 Uj
,

we prove that the quotient by unipotent Borel sub-groups is a Poisson reduction.

In the SL2(C) case, we have the following Poisson reduction for monodromy data corresponding to
passing along the hole boundary: if M corresponds to a path along the boundary that goes clockwise
(the hole is to the left w.r.t. the path direction), then m22 = 0, i.e., the lower right element vanishes.

For generic k ≥ 2, we have the following

Lemma 3.2. Consider the monodromy data M ∈ SLk(C) corresponding to paths that go clockwise
along boundaries of holes (they may start and terminate at the same cusp if a hole has only one cusp).
The reduction

(3.22) mi,j = 0, i+ j ≥ k + 2,

i.e., all its entries below the main anti-diagonal vanish, is a Poisson reduction.

Proof. The proof is based on the following observation: if M is a matrix corresponding to a path that
is leftmost at the starting cusp and rightmost at the terminating cusp (examples are M2 in the basic
relation (2.8) and M41 in (2.17)), then (Poisson or quantum) commutation relations of elements mi,j

of this matrix with elements of every other matrix or among themselves are such that every term of
the corresponding commutation relation necessarily contains an element mk,j or mi,l with k ≥ i and
l ≥ j, i.e., k+ j ≥ i+ j and i+ l ≥ i+ j. Therefore imposing a constraint mi,j = 0 for i+ j > k+1 is
consistent: commutation relations of such elements with all other elements of algebra automatically
vanish. �

Remark 3.1. From a purely algebraic standpoint, one may consider other Poisson reductions; the
one for which mi,j = 0 for elements below the main antidiagonal is consistent with factoring out a
gauge freedom associated with Borel subgroups at cusps.

The Poisson reduction in Lemma 3.2 is the quotient w.r.t. unipotent Borel subgroups Ui ⊂ SLk(C)
associated with the cusps, therefore it endows the decorated character variety Mk

g,s,n with a Poisson
structure.
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3.3. Powers of matrices. Using the commutation relations (2.16)–(2.20) in the R-matrix form, we
obtain the following generalizations of these relations to powers of matrices:

1

Mp
21R12

2

Mm
43R

−1
12 = R12

2

Mm
43R

−1
12

1

Mp
21, p,m ∈ Z;(3.23)

1
M41R

−T
12

2

Mp
32R

T
12 = R12

2

Mp
32R

−1
12

1
M41, p ∈ Z(3.24)

1
M31R

−T
12

2
M42R

−1
12 = R12

2
M42R

−1
12

1
M31 no generalization;(3.25)

RT
12

1

Mp
ijR

−T
12

2
Mij =

2
MijR

−1
12

1

Mp
ijR12, p ∈ Z;(3.26)

1
MijR

−T
12

2

Mp
ijR

T
12 = R12

2

Mp
ijR

−1
12

1
Mij, p ∈ Z.(3.27)

Note that for the same matrix Mij we can take powers of only one of the matrices Mij in relations
(2.19) and (2.20) but not powers of both matrices.

3.4. Semiclassical limit. By taking q = exp(−iπ~), we can expand the Kulish–Sklyanin matrix R12

as:

R12(q) = (1 +
iπ~

2
+O(~2))

∑

i,j

1
eii ⊗

2
ejj + (−iπ~+O(~3))

∑

i

1
eii ⊗

2
eii + (−2iπ~+O(~2))

∑

j>i

1
eij ⊗

2
eji

so that we obtain:

R12(q) =
1
1⊗

2
1 + iπ~r +O(~2), R12(1/q) =

1
1⊗

2
1− iπ~r +O(~2),

where:

(3.28) r =
1

2

∑

i,j

1
eii ⊗

2
ejj −

∑

i

1
eii ⊗

2
eii − 2

∑

j>i

1
eij ⊗

2
eji.

Now, using the correspondence principle that [A~, B~] 7→ iπ~{A,B}, we can take the semiclassical
limits of (2.16):

1
M21

2
M43 + iπ~

1
M21r

2
M43 − iπ~

1
M21

2
M43r =

2
M43

1
M21 + iπ~r

2
M43

1
M21 − iπ~

2
M43r

1
M21,

so that (2.16) becomes

(3.29) {
1

M21,
2

M43} = −
1

M21r
2

M43 +
1

M21

2
M43r + r

2
M43

1
M21 −

2
M43r

1
M21,

In the same way (2.17) becomes:

(3.30) {
1

M41,
2

M32} =
1

M41r
T

2
M32 −

1
M41

2
M32r

T + r
2

M32

1
M41 −

2
M32r

1
M41,

while (2.18) becomes:

(3.31) {
1

M31,
2

M42} =
1

M31r
T

2
M42 +

1
M31

2
M42r + r

2
M42

1
M31 −

2
M42r

1
M31,

and (2.19) becomes:

(3.32) {
1

Mij ,
2

Mij} =
1

Mijr
T

2
Mij − rT

1
Mij

2
Mij +

2
Mij

1
Mijr −

2
Mijr

1
Mij .
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We let mα,β
k,l denote the (k, l)-element of the matrix Mα,β. For matrix elements, we have the following

Poisson relations (in the formulas below, double indices imply summations):

{m2,1
i,j ,m

4,3
k,l } = m2,1

i,sm
4,3
s,l δj,kθ(j−s)−m2,1

i,l m
4,3
k,jθ(j−l) +m2,1

s,jm
4,3
k,sδi,lθ(s−i)−m2,1

k,jm
4,3
i,l θ(k−i),

(3.33)

{m4,1
i,j ,m

3,2
k,l } = −m4,1

i,sm
3,2
s,l δj,kθ(s−j) +m4,1

i,l m
3,2
k,jθ(l−j) +m4,1

s,jm
3,2
k,sδi,lθ(s−i)−m4,1

k,jm
3,2
i,l θ(k−i),

(3.34)

{m3,1
i,j ,m

4,2
k,l } = −m3,1

i,sm
4,2
s,l δj,kθ(s−j) −m3,1

i,l m
4,2
k,jθ(j−l) +m3,1

s,jm
4,2
k,sδi,lθ(s−i)−m3,1

k,jm
4,2
i,l θ(k−i)+2m3,1

i,sm
4,2
s,l ,

(3.35)

{mα,β
i,j ,mα,β

k,l } = −mα,β
i,s mα,β

s,l δj,kθ(s−j) +mα,β
s,j m

α,β
k,s δi,lθ(s−i) +mα,β

k,j m
α,β
i,l (θ(l−j) − θ(k−i)),

(3.36)

where θ(k) := sign(k) + 1.

Remark 3.2. Note that quantum commutation relations (2.19) and (2.20) have the same semiclassical
limit (3.36).

For a monodromy datum M1
2 corresponding to an arc starting and terminating at different cusps,

we have

(3.37) {m1
2i,j ,m

1
2k,l

} = m1
2i,jm

1
2k,l

(θ(i− k)− θ(j − l)).

3.5. Casimirs of the Poisson algebra of monodromy data. We now address the problem of
constructing Casimirs for the Poisson algebra of monodromy data. For technical convenience, we do
not impose the restriction detM = 1, although relations (3.33)–(3.36) imply that determinants of all
monodromy data corresponding to arcs starting and terminating at the same cusp are central.

Theorem 3.3. In any system of SLk(C) monodromy data, for a monodromy datum M corresponding
to an arc homeomorphic to circumnavigating a single hole without cusps, all elements tr [Mp], p =
1, . . . , k, are Casimirs of the Poisson algebra of monodromy data.

Proof. The monodromy datum M corresponding to an arc homeomorphic to circumnavigating a single
hole without cusps can be identified with the matrix M21, while all other monodromy data can be
identified with a matrix denoted by M3,[x] that corresponds to a path starting at the same cusp as M21

(to the right of both ends of M21) and terminating at a different cusp (denoted [x]). In the quantum
case, we have the relation

(3.38)
1

M21

2
M3,[x] =

2
M3,[x]R

−1
12

1
M21R12,

which admits an immediate generalization to powers of M12:

(3.39)
1

Mp
21

2
M3,[x] =

2
M3,[x]R

−1
12

1

Mp
21R12, p ∈ Z;

Evaluating traces in space 1 in the semiclassical limits of relations (3.23), (3.24), (3.26), and (3.39), we
find that the traces of the matrix Mn

21 (or Mn
32) Poisson commute with elements of all other matrices

(and elements of the matrix M21 itself), which completes the proof. We do this computation in detail
only for relations (3.39), all other cases are completely analogous.

The semiclassical limit of relation (3.39) reads:

(3.40) {mp
21i,j

m3,[x]k,l
} = −

n
∑

s=1

[mp
21s,j

m3,[x]k,s
δi,lθ(s− i) +mp

21i,l
m3,[x]k,j

θ(j − l)].
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Taking the sum over i with i = j, we obtain
n
∑

i=1

{mp
21i,i

m3,[x]k,l
} = −

n
∑

s=1

n
∑

i=1

[mp
21s,i

m3,[x]k,s
δi,lθ(s− i) +mp

21i,l
m3,[x]k,i

θ(i− l)]

= −
n
∑

s=1

mp
21s,l

m3,[x]k,s
θ(s− l) +

n
∑

i=1

mp
21i,l

m3,[x]k,i
θ(i− l) = 0.

Therefore, trMk are Casimirs for the algebra of elements of any matrix M corresponding to a path
that starts and terminates at the same cusp. �

In Section 4, we address the question of the dimension of the symplectic leaves in some examples.

3.6. Reduction to the SL2 decorated character variety. Let us select the same cusped lamina-
tion as in [17], then for every arc a in the lamination we associate a matrix Ma ∈ SLk. This gives
6g − 6 + 3s + 2n matrices in SLk.

It is easy to prove that the following character

trK : SLk(C) → C

M 7→ tr (MK),
where K =













0 . . . 0 0

. . . . . . . . . . . .

0 . . . 0 0

−1 0 0 0













,

is well defined on Mk
g,s,n. Recall that trK(M) = −m1k.

Define the λ-length of the arc a by trK(Ma) and introduce the following operation:

12
trK(

1
M1

2
M2) :=

12
tr (

1
M 1

1
K

2
M2

2
K)

By taking
12
trK in all relations (2.16), (2.17), (2.18) and (2.19) we obtain the λ-lengths algebra on the

SL2 decorated character variety found in [17].

4. Examples of algebras of monodromy data

4.1. Case of only one monodromy datum. In the case when 2g− 2+ s+n = 1 we only have one
monodromy datum. We have two different situations, the first is when M comes back to the same
cusp, the second when it connects different cusps. In the former case the following lemma holds true:

Lemma 4.1. For a general-position monodromy datum subject to algebra (3.36), the maximum di-
mension of the Poisson leaves is k(k−1). The only Casimirs in this case are tr [Mp] with p = 1, . . . , k.

Proof. The proof is based on the following observation. Let the classical M has a diagonal form
mi,j = δi,jλi with all λi distinct and nonzero. The Poisson brackets are then nonzero only inside the
pairs (mi,j,mj,i) with 1 ≤ i < j ≤ k, for which we have

{mi,j,mj,i} = λj(λj − λi),

so these brackets are non-degenerate. The minimum Poisson dimension of the corresponding leaf is
thus k2 − k, and it is simultaneously the maximum possible Poisson dimension as the traces trMp by
Theorem 3.3 are k algebraically independent Casimirs of the algebra (3.36). �

We next address the problem of Casimirs for the case when the monodromy datum corresponds to
an arc that connects different cusps - algebra (3.37):

Lemma 4.2. [25, 16] The central elements of the algebra (3.37) in the case of nonrestricted matrices
M are ratios MUL

d /MLR
k−d of upper-left and lower-right minors of the respective dimensions d× d and

(k − d)× (k − d) for d = 1, . . . , k.
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0

+1

0

0

0−1

(a)

0

−1

0

0

0+1

(b)

Figure 4. Constructing Casimirs for the restricted matrix M subject to Poisson
algebra (3.37). Numbers in the corresponding rectangles or triangles indicate the
sign of homogeneous commutation relations between elements in the corresponding
region and (a) the ratios of minors MUL

d /MUL
k−d (d < k − d) and (b) the products

∏d
i=1[mi,k+1−imk+1−i,i] of elements on the antidiagonal. We see that these signs are

complementary in all regions.

We now derive analogues of Lemmas 4.1 and 4.2 in the presence of the constraints (3.22).

Lemma 4.3. For a monodromy datum M subject to the algebra (3.36) with restriction (3.22) imposed,
the maximum dimension of Poisson leaves is k(k − 1)/2 − [k/2] and the k Casimirs are tr [Mp],
p = 1, . . . , k, as in the nonrestricted case, plus [k/2] Casimirs defined by

(4.41) Ci := mi,k+1−i/mk+1−i,i, i = 1, . . . , [k/2].

Proof. Traces are Casimirs for the general matrix M and they remain Casimirs for any Poisson reduc-
tion. Anti-diagonal elements of M have homogeneous Poisson relations with all other elements:

{mi,k+1−i,mk,l} = mi,k+1−imk,l

[

−δk+1−i,k + δk+1−i,l + δi,l − δi,k
]

,

so the ratios (4.41) have zero Poisson brackets with all mk,l. It remains to prove that the high-
est Poisson dimension matches the number of already found Casimirs. In order to prove it, take
the reduced matrix M in the form in which the diagonal elements mi,i with 1 ≤ i ≤ [k/2] and
all anti-diagonal elements mi,k+1−i, i = 1, . . . , k, are nonzero and are not algebraically related.
Then it is a direct calculation to check that the commutation relations are closed inside quadru-
ples

(

mi,j,mk+1−i,j,mj,i,mk+1−j,i

)

with 1 ≤ j < i ≤ [k/2], doubles (m(k+1)/2,j ,mj,(k+1)/2) with

1 ≤ j < (k + 1)/2, triples
(

mi,i,mk+1−i,i,mi,k+1−i

)

and singles m(k+1)/2,(k+1)/2. (Of course, doubles
and singles occur only for odd n.) It is then a straightforward calculation to show that quadruples
and doubles have full Poisson dimension whereas triples and singles have zero Poisson dimensions, so
all their elements correspond to Casimirs. But the total number of elements in triples and singles (if
any) is exactly k + [k/2], i.e., the number of Casimirs listed above. �

Lemma 4.4. [25, 16] The central elements of the algebra (3.37) in the case of matrices M with
restrictions (3.22) are

(4.42) Ĉd =
MUL

d

∏d
i=1

[

mi,k+1−imk+1−i,i

]

MUL
k−d

, d = 0, . . . ,
[k − 1

2

]

.

(See Fig. 4.) In this formula, both minors are upper-left, of sizes d× d and (k− d)× (k− d). We have
[(k + 1)/2] such Casimirs and the maximum Poisson dimension is k(k + 1)/2 − [(k + 1)/2].

Proof. As illustrated in Fig. 4, all matrix elements have homogeneous commutation relations with
any minor MUL

d , for the ratio MUL
d /MUL

k−d the coefficients are +1, 0,−1 depending on the region
which this matrix element belongs to. They are depicted in Fig. 4(a). Next, all matrix elements
have homogeneous commutation relations with any element mi,k+1−i on the main antidiagonal. For

the product
∏d

i=1

[

mi,k+1−imk+1−i,i

]

of these elements, the corresponding coefficients are depicted in
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MB

(a)

M1

M2

(b)

M1 M2

M3

(c)

Figure 5. Three cases of monodromy data: Σ0,s+1,1 (a), Σ0,2,2 (b), and Σ0,1,3 (c).

Fig. 4(b). We see that the two patterns are complementary, so the product in the right-hand side of
(4.42) commutes with all matrix elements.

If we again assume that only anti-diagonal elements and upper half of diagonal elements of M are
nonzero, then, as in the proof of Lemma 4.3, we can split the whole set of elements into quadruples,
doubles, triples, and singles; as in the above proof, all quadruples and doubles will then have the
full Poisson dimension, but in contrast to the proof of Lemma 4.3, the Poisson dimension of triples
will be two, not zero (and it obviously remains zero for singles). Thus we are losing exactly 2[k/2]
central elements as compared to the previous case, and the maximum Poisson dimension in this case
is k(k + 1)/2 − [(k + 1)/2]. �

4.2. Monodromy algebras for Σ0,s+1,1. We first address the case of monodromy data for a disc
bounded by a hole with a single bordered cusp and with s holes in the interior (Fig. 5(a)). The basis
of monodromy data is constituted by s (k× k)-matrices M2j,2j−1, j = 1, . . . , s where we order linearly
all 2s ends of cycles corresponding to these monodromy data; the matrix M2j,2j−1 corresponds to the
path that starts and terminates at the bordered cusp and circumnavigates the jth hole inside the disc
going clockwise. The quantum and Poisson algebras of elements of these matrices are described by
relations (2.16), (2.19), (2.20) and (3.33), (3.36).

We introduce also the boundary monodromy datum

(4.43) MB := M21M43 · · ·M2s−2,2s−3M2s,2s−1.

We begin with the lemma describing a nonrestricted case.

Lemma 4.5. The maximum Poisson dimension of leaves of the SLk(C)-algebra of monodromy data
for Σ0,s+1,1 is sk(k − 1). The sk central elements are tr [M2j,2j−1]

p, j = 1, . . . , s, p = 1, . . . , k.

Proof. That the traces of powers of M2j,2j−1 are central was proved in Theorem 3.3. Here we prove
that the general Poisson dimension of a Poisson leaf is sk(k − 1). For this, we again evaluate the
rank of the Poisson bi-vector at a specific point in the phase space. It is convenient to take a point
at which all monodromy data are diagonal and all their diagonal elements are distinct and nonzero,

m2j,2j−1p,l = δp,lλ
(j)
p , with all λ

(j)
p 6= 0 and such that λ

(j1)
p1 = λ

(j2)
p2 only for p1 = p2 and j1 = j2. It is

easy to check that nonzero entries in the Poisson bi-vector correspond to the Poisson brackets between
m2j,2j−1p,l and m2j,2j−1l,p with p 6= l and these brackets, evaluated at the chosen point, are

{m2j,2j−1p,l ,m2j,2j−1l,p} = (λ(j)
p − λ

(j)
l )[λ(j)

p θ(p− l) + λ
(j)
l θ(l − p)];(4.44)

{m2j,2j−1p,l ,m2j,2j−1l,p} = (λ(j)
p − λ

(j)
l )(λ(i)

p − λ
(i)
l )θ(l − p), j < i.(4.45)

So, the Poisson bi-vector at this point has mostly vanishing entries except 2s non-vanishing relations
for every fixed pair (p, l), with p 6= l. We can organise rows and columns by ordering them by the
pairs (p, l), starting from (1, 2) and ending with (k − 1, k). In this way the Poisson bi-vector becomes
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block diagonal with 2s× 2s blocks of non-zero determinant provided all λ
(j)
p are nonzero and distinct.

There are k(k − 1)/2 such blocks, which proves that the ranks is sk(k − 1). �

We now consider the actual situation with the Lagrangian restriction (3.22) imposed on the mon-
odromy datum MB (4.43).

Theorem 4.6. The maximum Poisson dimension of leaves of the SLk(C)-algebra of monodromy data
for Σ0,s+1,1 with the restriction (3.22) imposed on the only boundary monodromy datum MB (4.43)
is sk(k − 1) − k(k − 1)/2 − [k/2]. Besides the standard sk central elements that are trMp

2j,2j−1,

j = 1, . . . , s, p = 1, . . . , k we have [k/2] central elements having the form (4.41) for the matrix MB,
i.e., Ci = mBi,k+1−i

/mBk+1−i,i
.

Proof. We first prove that Ci = [mB]i,k+1−i/[mB ]k+1−i,i are central. Every element [mB ]i,k+1−i has
homogeneous Poisson relations with every matrix element of every matrix M2j,2j−1. In Poisson rela-
tions we can identify MB with M41 and every M2j,2j−1—with M32. Actual Poisson brackets coincide
with those inside the same matrix M41,

{m41i,k+1−i
,m32p,l} = m41i,k+1−i

m32p,l

[

−δk+1−i,p + δk+1−i,l + δi,l − δi,p
]

,

so the ratio (4.41) remains central in this case as well.

To address the problem of actual Poisson dimension, it is technically more convenient to remove
the last monodromy datum M2s,2s−1 from the basis and add MB to it. Then all remaining matrices
are independent and we can take the restriction on MB into account explicitly. We again evaluate
the Poisson bi-vector at the point in which all M2j,2j−1 with 1 ≤ j < s are diagonal and MB has
nonzero anti-diagonal and the upper half-diagonal. We let S[mi,j ] denote the orbit of the matrix
element mi,j under the action of the symmetry group generated by S1[mi,j] = mk+1−i,j and S2[mi,j] =
mj,i. For a generic (i, j) such an orbit comprises eight elements for M2j,2j−1 and four elements
for MB because of the reduction. It is a cumbersome calculation, omitted, to demonstrate that
the Poisson algebra is non-degenerate for the sets ∪s−1

j=1S[m2j,2j−1k,l ] ∪ S[mBk,l
] with 1 ≤ l < k ≤

[(k + 1)/2] and is highly degenerate for the sets ∪s−1
j=1S[m2j,2j−1i,i ] ∪ S[mBi,i ] with i = 1, . . . , [k/2]:

the Poisson dimension of every such set comprising 4s − 1 elements is 2(s − 1). Finally, the set
∪s−1
j=1S[m2j,2j−1(k+1)/2,(k+1)/2

] ∪ S[[mB(k+1)/2,(k+1)/2
] has zero Poisson dimension. So, the total Poisson

codimension for even k is [k/2](2s+1) = sk+k/2 and for odd k it is [k/2](2s+1)+s = sk+(k−1)/2,
that is, we have sk + [k/2] independent Casimirs, as expected. �

4.2.1. Braid-group action in Σ0,s+1,1. Let us denote M2r,2r−1 by M(r) for brevity. The braid group for
π1(Σ0,s+1,1) is generated by the standard operators Bj:

(4.46) Bj :
{

M(j−1) → M(j−1)M(j)M
−1
(j−1); M(j) → M(j−1); M(k) → M(k), k 6= j, j − 1

}

.

Lemma 4.7. The braid-group action (4.46) preserves the quantum commutation relations for mon-
odromy data. In the semiclassical limit, it also obviously preserves the set of central elements (trMk

(r)).

Proof. We have to verify the preservation of quantum commutation relations. Checking this for M(k)

with k 6= j, j − 1 is simple: such M(k) have commutation relations of the same form (2.16) with M(j),
M(j−1) and with all elements of the multiplicative non-Abelian group generated by the matrices M(j)

and M(j−1). The new matrices M ′

(j−1) = M(j−1)M(j)M
−1
(j−1) and M ′

(j) = M(j−1) must satisfy the same

commutation relations as M(j−1) and M(j). For commutation relations of M ′

(j) with itself it trivially
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holds, so we have to check two nontrivial relations. The first one is

1

M ′
(j−1)R12

2

M ′
(j)R

−1
12 =

( 1
M (j−1)

1
M (j)

1
M

−1
(j−1)

)

R12

2
M (j−1)R

−1
12 =

1
M (j−1)

1
M (j)

1
M

−1
(j−1)R12

2
M (j−1)R

−1
12

=
1
M (j−1)

1
M (j)R

−T
12

2
M (j−1)R

T
12

1
M

−1
(j−1)R12R

−1
12 =

1
M (j−1)R

−T
12

2
M (j−1)R

T
12

1
M (j)R

−T
12 RT

12

1
M

−1
(j−1)

=R12

2
M (j−1)R

−1
12

1
M (j−1)

1
M (j)

1
M

−1
(j−1) = R12

2

M ′
(j)R

−1
12

1

M ′
(j−1).

And the second relation is

RT
12

1

M ′
(j−1)R

−T
12

2

M ′
(j−1) = RT

12

1
M (j−1)

1
M (j)

1
M

−1
(j−1)R

−T
12

2
M (j−1)

2
M (j)

2
M

−1
(j−1)

=RT
12

1
M (j−1)

1
M (j)R

−T
12

2
M (j−1)R

−1
12

1
M

−1
(j−1)R12

2
M (j)

2
M

−1
(j−1)

=RT
12

1
M (j−1)

1
M (j)R

−T
12

2
M (j−1)(R

−1
12 R12)

2
M (j)R

−1
12

1
M

−1
(j−1)R12

2
M

−1
(j−1)

=
(

RT
12

1
M (j−1)R

−T
12

2
M (j−1)

)(

RT
12

1
M (j)R

−T
12

2
M (j)

)

R−1
12

1
M

−1
(j−1)R12

2
M

−1
(j−1)

=
2
M (j−1)R

−1
12

1
M (j−1)R12

2
M (j)R

−1
12

1
M (j)(R12R

−1
12 )R

−T
12

2
M

−1
(j−1)R

T
12

1
M

−1
(j−1)R12

=
2
M (j−1)

2
M (j)R

−1
12

1
M (j−1)(R12R

−1
12 )

1
M (j)R

−T
12

2
M

−1
(j−1)R

T
12

1
M

−1
(j−1)R12

=
2
M (j−1)

2
M (j)R

−1
12

1
M (j−1)R

−T
12

2
M

−1
(j−1)R

T
12

1
M (j)(R

−T
12 RT

12)
1
M

−1
(j−1)R12

=
2
M (j−1)

2
M (j)(R

−1
12 R12)

2
M

−1
(j−1)R

−1
12

1
M (j−1)

1
M (j)

1
M

−1
(j−1)R12 =

2

M ′
(j−1)R

−1
12

1

M ′
(j−1)R12

�

4.2.2. IHX-relations. We now probe the algebra of monodromy data corresponding to intersecting
arcs. Our basic example is the case where we have a single intersection of arcs in the case of Σ0,s+1,1.
We let M(k) denote as in the preceding subsection the monodromy datum with endpoints (2k, 2k− 1);
all monodromy data start and terminate at the same bordered cusp. Let us consider the products

of monodromy data M(1)M(2) and M(2)M(3) and take their product
(

1
M(1)

1
M(2)

)

R−T
12

(
2

M(2)

2
M(3)

)

. For
this product, we have:

1
M(1)

1
M(2)R

−T
12

2
M(2)

2
M(3) =

1
M(1)R12

2
M(2)R

−1
12

1
M(2)R

−T
12

2
M(3)

=R12

2
M(2)R

−1
12

1
M(1)

1
M(2)R

−T
12

2
M(3) = R12

2
M(2)R

−1
12

1
M(1)

1
M(2)

(

qR12 − (q3/2 − q−1/2)P12

)
2

M(3)

=qR12

2
M(2)R

−1
12

1
M(1)

1
M(2)R12

2
M(3) − (q3/2 − q−1/2)R12

2
M(2)R

−1
12

1
M(1)

1
M(2)P12

2
M(3)

=qR12

(
2

M(2)

2
M(3)

)

R−1
12

(
1

M(1)

1
M(2)

)

R12 − (q3/2 − q−1/2)R12

(
2

M(2)

)

R−1
12

(
1

M(1)

1
M(2)

1
M(3)

)

P12(4.47)

In this calculation, we use two identities: the first one is

q1/2R12 − q−1/2R−T
12 = (q − q−1)P12,

where P12 =
∑

i,j

1
ei,j⊗

2
ej,i is the standard classical permutation matrix. For this matrix, we have that

1
MP12 = P12

2
M and

2
MP12 = P12

1
M

for any (irrespectively classical or quantum) matrix M . Formula (4.47) is similar to the three-term
IHX-relation that is common in models of directed intersecting paths in knot theory. (This (local)
relation is an unrooted version of the Jacobi identity in the theory of finite type (or Vassiliev) invari-
ants of knots, links and 3-manifolds.) In the right-hand side of (4.47) we have two terms: one is the
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term in which the original monodromy data enter in opposite order, the other is the term containing
new matrices: M(2) and M(1)M(2)M(3) corresponding to nonintersecting paths; these new constitu-
tive monodromy data enjoy commutation relations (2.17). Disregarding the R-matrix structures, we
schematically depict the IHX-relations in the following form (the over-/under-crossing indicates which
monodromy datum stands to the right):

q1/2 −q−1/2 = (q − q−1)

4.3. Monodromy algebras for Σ0,2,2. We consider the example of monodromy data for an “eye” –
the disc with the hole inside and with two bordered cusps on the outer boundary (Fig. 5(b)). This
case is of particular interest as it is a generalization of the modromy data associated to the Dubrovin
connection in the theory of Frobenius manifolds [21]. In this case we have two monodromy data M1

and M2, both subject to restriction (3.22). We then have the following statement about Poisson leaves
of this algebra.

Lemma 4.8. For Σ0,2,2 with two cusps on one hole, the algebra of restricted monodromy data M1 and
M2 has maximum Poisson dimension k(k − 1). The 2k Casimirs are tr [[M1M2]

p], p = 1, . . . , k, and
the ratios m1i,k+1−i

/m2k+1−i,i
, i = 1, . . . , k.

Proof. Anti-diagonal elements of both restricted monodromy matrices have homogeneous commutation
relations with all other elements; it is easy to check that ratios m1i,k+1−i

/m2k+1−i,i
Poisson commute

with all elements. Besides that we have that the productM2M1 is a monodromy data corresponding to
circumnavigating the central hole, so traces of all powers of this product are central elements. (Because
of the trace property, it is irrelevant whether we take the monodromy data to be M2M1 or M1M2.)
We then again consider Poisson bi-vectors over special matrices M1 and M2 with only halves of main
diagonal and both anti-diagonals nonzero; we again split elements into octuplets (orbits of S[m1i,j ] ∪
S[m2i,j ] with 1 ≤ j < i ≤ [k/2]), quadruplets (orbits of S[m1k+1

2 ,j
] ∪ S[m2k+1

2 ,j
] with 1 ≤ j < [(k +

1)/2]), sextets (orbits of S[m1i,i ] ∪ S[m2i,i ] with 1 ≤ i ≤ [k/2]) and doublets {m1k+1
2 , k+1

2

,m2k+1
2 , k+1

2

}.

Octuplets and quadruplets are non-degenerate, sextets have Poisson dimension two and doublets have
Poisson dimension zero, so the total Poisson co-dimension is 4[k/2] for even k and 4[k/2] + 2 for odd
k; it is easy to see that it is 2k in both cases, as expected. �

4.4. Monodromy algebra for Σ0,1,3. The last example pertains to another elementary building
block of monodromy data: the ideal triangle Σ0,1,3 (Fig. 5(c)) that for k = 2 corresponds to the
modromy data of the Airy equation. In this case, we have two monodromy matrices M1 and M2

(here M2 follows M1), both having the reduced (upper-anti-triangular) form - we denote them with
an upper index to distinguish them from the other examples. Plus we have to take into account that
their product, M2M1, has itself lower-anti-triangular form. This imposes k(k − 1)/2 restrictions on
entries of M1 and M2; for the general position situation it is not difficult to see that we can express all
non-anti-diagonal entries of, say, matrix M2 in terms of entries of M1 and the anti-diagonal elements
of M2 and, using relations (2.8), we obtain that, whereas entries of the matrix M1 enjoy commutation
relations (3.37), the Poisson relations for entries of M1 and anti-diagonal entries of M2

(4.48) {m1
i,j,m

2
r,k+1−r} = m1

i,jm
2
r,k+1−rδi,k+1−r, i+ j ≤ k + 1, r = 1, . . . , k,

are homogeneous and all elements of M1 belonging to the same row commute in the same way with
all m2

k,k+1−r. All m
2
k,k+1−r mutually commute. We then have the following statement about Casimirs

of the algebra of the set of elements {m1
i,j , i+ j ≤ k + 1} ∪ {m2

k,k+1−r, r = 1, . . . , k}.
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−2

0

+2

0

−2−2

(a)

+2

0

−2

0

+2+2

(b)

Figure 6. Constructing Casimirs for the restricted matrix M1 subject to Poisson al-
gebra (3.37) and the anti-diagonal entries of the matrix M2. Numbers in the cor-
responding rectangles or triangles indicate the sign of homogeneous commutation
relations between elements of M1 in the corresponding region and (a) the prod-
ucts of minors [M1]UL

d [M1]UL
k−d (d ≤ k − d) divided by the special products of anti-

diagonal elements
∏d

i=1[m
1
i,k+1−i]

2
∏k−d

i=d+1[m
1
i,k+1−i]; (b) by the ratios of products

∏d
i=1

[

[m2
k+1−i,i]

2[m2
i,k+1−i]

−2
]

of elements on the antidiagonal of the matrix M2. We

see that these signs are complementary in all regions. All anti-diagonal entries of M2

mutually commute and commute with the above ratios of elements of M1 because every
term contains equal number of elements from the same row of the matrix M1 in the
numerator and denominator.

Lemma 4.9. For Σ0,1,3 with three bordered cusps on a disc (one outer hole), the algebra of restricted

monodromy data M1 and m2
r,k+1−r has maximum Poisson dimension k(k+1)

2 + k −
[

k
2

]

. The
[

k
2

]

Casimirs are

Cd =
[M1]UL

d [M1]UL
k−d

∏d
i=1[m

1
i,k+1−i]

2
∏k−d

i=d+1[m
1
i,k+1−i]

·

∏d
i=1[m

2
k+1−i,i]

2

∏d
i=1[m

2
i,k+1−i]

2
, d = 1, . . . ,

[k

2

]

,

where [M i]UL
d , i = 1, 2 denote the upper-left minors of size d of the matrix M i.

Proof. The fact that Cd are Casimirs can be verified directly (see Fig. 6). We then again consider a
Poisson bi-vector over the pattern in which nonzero elements arem1

i,i with i ≤ [(k+1)/2], m1
i,k+1−i, and

m2
i,k+1−i. For quadruples of the matrix M1 the Poisson brackets are non-degenerate, whereas the Pois-

son dimension of quintuplets {m1
i,i,m

1
i,k+1−i,m

1
k+1−i,i,m

2
i,k+1−i,m

2
k+1−i,i} for i = 1, . . . , [k/2] is four

(so each quintuplet adds one Casimir) and the Poisson dimension of the doublet {m1
k+1
2

, k+1
2

,m2
k+1
2

, k+1
2

}

is two; the total Poisson codimension therefore matches the above number of Casimirs. �

5. The extended Riemann–Hilbert correspondence

In this section we conjecture how to define a suitably decorated moduli space Zk
irr(Σg,s) of irregular

connections ∇ on a holomorphic rank k-vector bundle E → Σg,s in such a way that the Riemann–
Hilbert correspondence

RH : Mk
irr(Σg,s) → Mk

g,s,n

is a Poisson isomorphism.

Given an irregular connection ∇ on a holomorphic rank k-vector bundle E → Σg,s, choosing a
coordinate z for Σg,s amounts to giving a linear system of differential equations ∇ ∂

∂z
with s poles

a1, . . . , as of Poincaré rank r1, . . . , rs or in other words a meromorphic matrix-valued differential

d−A(z)dz

with fixed multiplicities r1 + 1, . . . , rs + 1 at a1, . . . , as.
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For the sake of simplicity, we restrict to the non-ramified case where A(z) is diagonalisable at each
ap. Then, Krichever proved that the space Eirr(r1, . . . , rs) of all possible meromorphic matrix-valued
differentials of this form modulo the SLk action is (2g+ s+ r1 + · · ·+ rs− 2)(k2 − 1)-dimensional and
is foliated in symplectic leaves by fixing the exponents, with the symplectic form:

ω = −
1

2

kg
∑

t=1

resγtTr
(

Y −1δA ∧ δY
)

−
1

2

s
∑

p=1

resapTr
(

Y −1
p δA ∧ δYp

)

where Yp is the formal local solution of dY = A(z)Y dz at ap and γ1, . . . , γgk are the simple zeroes of
the holomorphic sections of the vector bundle E → Σg,s [33]. This symplectic form induces a Poisson

structure on Zk
irr(Σg,s) := Eirr(r1, . . . , rs) × C(r1+···+rs)(k−1), where C(r1+···+rs)(k−1) is the space of

decorations, or in other words a choice of growth rates of the absolute value of the formal solutions Yp

modulo polynomial growth [41]. Following the ideas by Gaiotto, Moore and Neitzke [27], we impose
n = 2(r1 + · · ·+ rs), so that dim(Zk

irr(Σg,s)) = dim(Mk
g,s,n). We end this paper with the following

Conjecture: The Riemann–Hilbert correspondence

RH : Zk
irr(Σg,s) → Mk

g,s,n

is a Poisson isomorphism.

We have tested this conjecture in the case of g = 0, k = 2 and connections with only one irregular
singularity of Poincaré rank 3. In this case we have the Jimbo-Miwa linear system associated to
the PII equation and n = 6. The decorated character variety M2

0,1,6 has dimension 9 with one

Casimir. As explained in [18], the isomonodromicity condition means that we need to restrict to a
2–dimensional sub–algebra in M2

0,1,6 defined by the set of functions that Poisson commute with the
frozen cluster variables corresponding to arcs connecting pairs of bordered cusps. On the l.h.s. of
the Riemann-Hilbert correspondence, the space Z2

irr(Σ0,1) has also dimension 9 and by imposing the
isomonodromicity condition (where t is the PII independent variable):

∂A

∂t
−

∂B

∂z
= [B,A]

one obtains a restriction to a 2–dimensional space [35] which we denote Z̃2
irr(Σ0,1).

Remark 5.1. The space Z̃2
irr(Σ0,1) is the de Rham side of the Riemann-Hilbert correspondence.

Recently [42] a complete description of the two-dimensional (family of) holomorphic symplectic moduli
spaces of rank 2 Higgs bundles over P1 having a unique pole of order 4 as singularity, and regular
leading-order term was obtained. This moduli (for a fixed choice of parameters) can be interpreted as

the Dolbeault counterpart M2
D,irr of Z̃2

irr(Σ0,1).

Remark 5.2. A general extended Riemann-Hilbert correspondence for related objects (a moduli space
of stable unramified irregular singular parabolic connections on smooth projective curves and a set
˜R(g, k, s) of generalized monodromy data coming from topological monodromies, formal monodromies

and Stokes data) was proposed by M. Inaba and M. Saito in [31]. They proved that the moduli space of
generalized monodromy data is a nonsingular affine scheme R(g, k, s) given by the categorical quotient

R(g, k, s) = ˜R(g, k, s)//G for a natural action of a reductive group G. An immediate comparison of

dimensions for Mk
g,s,n and R̃(g, k, s shows a good correspondence. For example, in the case of M2

0,1,6

(whose dimension is 9) the dimension of ˜R(0, 2, 1) is 8 (9 minus one Casimir) and dimM2
0,1,6 =

dimR(0, 2, 1) = 2.
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