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Spin-polarization of an ultrarelativistic electron beam head-on colliding with an ultraintense laser pulse is
investigated in the quantum radiation-reaction regime. We develop a Monte-Carlo method to model electron
radiative spin effects in arbitrary electromagnetic fields by employing spin-resolved radiation probabilities in the
local constant field approximation. Due to spin-dependent radiation reaction, the applied elliptically polarized
laser pulse polarizes the initially unpolarized electron beam and splits it along the propagation direction into two
oppositely transversely polarized parts with a splitting angle of about tens of milliradians. Thus, a dense electron
beam with above 70% polarization can be generated in tens of femtoseconds. The proposed method demonstrates
a way for relativistic electron beam polarization with currently achievable laser facilities.

Introduction. Spin-polarized electron beams have been ex-
tensively employed to investigate matter properties, atomic
and molecular structures [1–3]. In high-energy physics, rel-
ativistic polarized electron beams can be used to probe the
nuclear structure [4, 5], generate polarized photons [6, 7] and
positrons [6, 8], study parity violation in Møller scattering [9]
and new physics beyond the Standard Model [10]. There are
many methods to generate polarized electron beams at low
energies [1]. However, for relativistic electron beams, there
are mainly two methods [11]. In the first method mostly used
in the Stanford Linear Accelerator, the polarized electrons are
first extracted from a photocathode (illuminated by a circularly
polarized light) [12, 13] and then, accelerated by the linear
accelerator (alternatively one may use polarized electrons from
spin filters [14] or beam splitters [15], with subsequent laser
wakefield acceleration [16]). The second method is a direct
way of polarization of a relativistic electron beam in a storage
ring via radiative polarization (Sokolov-Ternov effect) [17–24].
The polarization time of the latter due to the synchrotron ra-
diation is rather slow (typically from minutes to hours), since
the magnetic fields of a synchrotron are too weak (in the order
of 1 Tesla). The electrons are polarized transversely due to
Sokolov-Ternov effect. As mostly longitudinal polarization
is interesting in high-energy physics, spin rotation systems
are applied [25]. Moreover, for creating polarized positron
beams (also applicable for electrons) Compton scattering or
Bremsstrahlung of circularly polarized lasers and successive
pair creation are commonly used [26–30]. The polarization of
relativistic electrons can be detected by Compton scattering
[31], Møller scattering [32], or other methods.

Strongest fields in a laboratory are provided by lasers, and
the state-of-the-art ultraintense laser technology can reach a
laser peak intensity in the scale of 1022 W/cm2 (magnetic field
strength ∼ 4 · 105 Tesla) [33–36]. Can such strong fields be
employed to polarize electrons, similar to the Sokolov-Ternov
effect? Unfortunately, previous investigations proved that elec-
trons cannot be polarized via asymmetric spin-flip in nonlinear
Compton scattering off a strong monochromatic plane laser
wave [37–39]. In a plane-wave laser pulse the electron polar-

ization properties due to a single photon emission have been
analyzed recently in [40], and 9% degree of polarization has
been shown. It is also known that due to linear Compton scat-
tering the electrons of different spins are scattered off the beam
with different probabilities, and unscattered part of the beam
becomes polarized [41], however, the number of electrons in
the beam is significantly decreased in this process. Further,
recently the strong rotating electric field has been shown to
highly polarize an electron beam analogous to the Sokolov-
Ternov effect in tens of femtoseconds [42, 43]. The rotating
electric field models anti-nodes of the electric field of a stand-
ing laser wave. However, it is known that at available strong
laser intensities the electrons are mostly trapped at nodes of
the electric field, rather than anti-nodes [44, 45].

In this letter, we show that with a proper choice of ellipticity
of the driving strong laser pulse, interacting with a counterprop-
agating unpolarized electron beam in the quantum radiation-
reaction regime [46], the electron beam can be polarized and
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FIG. 1. Scenario of generation of spin-polarized electron beams
via nonlinear Compton scattering. (a) An ultrarelativistic electron
bunch generated by laser wakefield acceleration collides head-on
with an ultraintense elliptically polarized laser pulse. “S y+” (red
point) and “S y−” (blue point) denote the electrons polarized parallel
and anti-parallel to the y direction, respectively. Transverse spin
distributions: for (b) EP, (d) CP, and (f) LP laser pulses. Transverse
momentum distributions: for (c) EP, (e) CP, and (g) LP laser pulses.
The laser pulse propagates along +z direction, and the major axis of
the polarization ellipse is along x-axis.
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splitted along the propagation direction into two parts, which
have opposite transverse polarizations, see the interaction sce-
nario in Fig. 1. The splitting of the electron beam is due to spin-
dependent radiation-reaction effect. After the interaction time
of tens of femtoseconds the splitted electrons are highly po-
larized transversely, and the polarization rate can reach above
70% under currently achievable experimental conditions. It
is interesting to note that the considered effect is damped in
the circularly polarized (CP) and linearly polarized (LP) laser
fields, but is significant in the elliptically polarized (EP) one
with a proper ellipticity, see Figs. 1(b)-(g) and the detailed
explanation below in Fig. 3. For the analysis of radiative spin
effects we have developed a Monte-Carlo simulation method
for photon emissions during the electron semiclassical dynam-
ics in external laser field, which is based on the spin-resolved
radiation probability in the local constant field approximation
[47].

In nonlinear Compton scattering, the invariant parameter
characterizing quantum effects in the strong field processes
is χ ≡ |e|~

√
(Fµνpν)2/m3c4 [48], where Fµν is the field tensor,

~ the reduced Planck constant, c the speed of the light, p =

(ε/c,p) the incoming electron 4-momentum, and −e and m are
the electron charge and mass, respectively. When the electron
counterpropagates with the laser beam, one may estimate χ ≈
2(~ω0/mc2)ξγ. Here, ξ ≡ |e|E0/(mω0c) is the invariant laser
field parameter, E0 and ω0 are the amplitude and frequency of
the laser field, respectively, and γ is the electron Lorentz factor.

Monte-Carlo method for the electron radiative polariza-
tion. We simulate in our Monte-Carlo code the space-time and
the spin dynamics of electrons. Photon emissions are treated
quantum mechanically. In ultraintense laser field, ξ � 1, the
coherence length of the photon emission is much smaller than
the laser wavelength and the typical size of the electron tra-
jectory [48, 49]. As a result, the photon emission probability
is determined by the local electron trajectory, consequently,
by the local value of the parameter χ [50]. The photon emis-
sion spin-dependent probabilities in the local constant field
approximation are employed with the leading order contri-
bution with respect to 1/γ, which are derived with the QED
operator method of Baier-Katkov [51]:

dW f i

dudη
= WR

{
−(2 + u)2

[
IntK 1

3
(u′) − 2K 2

3
(u′)

]
(1 + Si f ) + u2

[
IntK 1

3
(u′) + 2K 2

3
(u′)

]
(1 − Si f ) + 2u2(Si · S f )IntK 1

3
(u′)−

(4u + 2u2)(S f + Si) [β × â] K 1
3
(u′) − 2u2(S f − Si) [β × â] K 1

3
(u′) − 4u2

[
IntK 1

3
(u′) − K 2

3
(u′)

]
(Si · β)(S f · β)

}
, (1)

where WR = αmc/
[
8
√

3πoc (k · pi)(1 + u)3
]
, u′ = 2u/3χ,

u = ~ωγ/
(
εi − ~ωγ

)
, IntK 1

3
(u′) ≡

∫ ∞
u′ dzK 1

3
(z), Kn is the n-

order modified Bessel function of the second kind, α the fine
structure constant, oc = ~/mc the Compton wavelength, ωγ the
emitted photon frequency, εi the electron energy before radia-
tion, η = k · r the laser phase, pi, k, and r are 4-vectors of the
electron momentum before radiation, laser wave-vector, and
coordinate, respectively, β = v/c, â = a/|a| is the acceleration,
Si and S f denote the electron spin polarization vector before
and after radiation, respectively, |Si, f | = 1, and Si f ≡ Si · S f .
Summing over S f , the radiation probability depending on the
initial spin is obtained:

dW f i

dudη
= 8WR

{
−(1 + u)IntK 1

3
(u′) + (2 + 2u + u2)K 2

3
(u′)

−uSi · [β × â] K 1
3
(u′)

}
. (2)

Averaging by the electron initial spin, the widely used radia-
tion probability is obtained [52–55]. Note that the radiation
probabilities in Eqs. (1) and (2) are summed up by photon
polarization.

The spin dynamics due to photon emissions are described
in the spirit of the quantum jump approach [56, 57], applica-
ble when the photon formation time is much smaller than the
typical time of the regular quantum dynamics. After a photon
emission, the electron spin state is collapsed into one of its
basis states defined with respect to the instantaneous spin quan-
tization axis (SQA), which is chosen along the magnetic field

in the rest frame of electron, i.e., along β × â. We consider the
stochastic spin flip at photon emission using three random num-
bers Nr, N′r and N′′r in [0, 1], as follows. First, at each emission
length, as the spin-dependent radiation probability in Eq. (2)
W f i ≥ Nr, a photon is emitted. The emitted photon frequency
ωγ is determined by the condition 1

W f i

∫ ωγ

ω0

dW f i(ω)
dω dω = N′r .

Then, the electron spin flips either parallel (spin-up) or anti-
parallel (spin-down) to SQA with probabilities of W↑f i and W↓

f i,

respectively. Here, W f i = W↑

f i + W↓

f i, and W↑f i and W↓f i are

calculated via Eq. (1). If W↑f i/W f i ≥ N′′r , the spin flips up,
otherwise, down.

Between photon emissions, the electron dynamics in the
external laser field is described by Newton equations, and the
spin precession is governed by the Thomas-Bargmann-Michel-
Telegdi equation [58–61]:

dS
dη

=
eγ

c (k · p)
S ×

[
−

(g
2
− 1

)
γ

γ + 1
(β · B)β

+

(
g
2
− 1 +

1
γ

)
B −

(
g
2
−

γ

γ + 1

)
β × E

]
, (3)

where E and B are the laser electric and magnetic fields, re-
spectively, g is the electron gyromagnetic factor: g (χ) =

2 + 2µ (χ), µ (χ) = α
πχ

∫ ∞
0

y
(1+y)3 L 1

3

(
2y
3χ

)
dy, with L 1

3
(z) =∫ ∞

0 sin
[

3z
2

(
x + x3

3

)]
dx. As χ � 1, g ≈ 2.00232. The accuracy

of our Monte-Carlo code is confirmed by reproducing the well
known results on the radiative polarization [18, 42, 43, 62].
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FIG. 2. (a) Transverse distribution of the electron spin component S y

vs the deflection angles θx = arctan(px/pz) and θy = arctan(py/pz);
(b) Transverse distribution of the electron density log10

(
d2Ne/dθxdθy

)
rad−2. (c) Average spin S y (magenta solid) and electron distribution
log10(dNe/dθy) (black dashed) vs θy. (d) Ratio of polarized electron
number N p

e to total electron number Ne vs the beam average spin
S y. The red (right) and blue (left) curves represent the polarization
parallel and anti-parallel to the +y axis, respectively. And, the points
(-0.65, 0.1) and (0.71, 0.05) indicate (S y, N p

e /Ne) of electrons in the
blue and red boxes in panel (b), respectively. The laser and electron
beam parameters are given in the text.

We employ a tightly-focused EP laser pulse with a Gaussian
temporal profile. And, the spatial distribution of the electro-
magnetic fields takes into account up to (w0/zr)3-order of the
nonparaxial solution [62–64], where w0 is the laser beam waist,
and zr the Rayleigh length.

Results. The considered effect of polarization of an electron
beam is illustrated in Fig. 2. The laser peak intensity I0 ≈

1.37 × 1022 W/cm2 (ξ = 100), wavelength λ0 = 1 µm, the
laser pulse duration τ = 5T0, with the laser period T0, the laser
focal radius w0 = 5 µm, and the ellipticity ε = |Ey|/|Ex| =

0.05. An electron bunch of a cylindrical form collides head-
on with the laser pulse at the polar angle θe = 180◦ and the
azimuthal angle φe = 0◦ with an angular divergence of 0.3
mrad. The electron initial kinetic energy ε0 = 4 GeV (γ ≈
7827.8) with an energy spread ∆ε0/ε0 = 0.06, χmax ≈ 1.5
(the pair production is estimated to be negligible for present
parameters), the electron bunch radius we = λ0, the length Le =

5λ0, and the density ne ≈ 2.6 × 1017 cm−3 with a transversely
Gaussian and longitudinally uniform distribution. This kind
of electron bunch can be obtained by current laser wakefield
accelerators [65, 66].

The simulation results presented in Fig. 2 show that an
initially unpolarized electron bunch is polarized and splitted
into two beams polarizing parallel and anti-parallel to the minor
axis of elliptical polarization (+y axis), respectively, with a
splitting angle of about 20 mrad, see Fig. 2(a), which is much
larger than the angular divergence of the electron beams [62].
The corresponding electron density mainly concentrates in
the beam center, since the transverse ponderomotive force
is relatively small, see Fig. 2(b). Figure 2(c) represents the
average spin S y (magenta-solid curve) and the electron density
distribution (black-dashed curve) integrated over θx. Near
θy = 0, the electron density is rather high, but S y is very low.
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FIG. 3. (a) and (b): The relative magnitude of the spin-dependent
term in the radiation probability of Eq. (2) with χ = 1 and 0.1,
respectively. δWspin ≡ Wspin/(Wrad −Wspin), and, Wrad and Wspin are
the total radiation probability and the spin-dependent term in Eq. (2),
respectively. Red and blue curves denote Si parallel and anti-parallel
to SQA, respectively. (c) and (d): Electron momenta in EP (LP) and
CP plane waves, respectively. The colored circles indicate the photon
emission points in the laser field and the corresponding electron final
momenta. The red-up (blue-down) arrows indicate “spin-up” (“spin-
down”) with respect to +y axis in (c2), (c3) and (d2), and +x axis in
(d3). (e) Scaled py of two sample electrons vs η. (f) Scaled χ (black),
radiation probability Wrad (cyan) and flip probability W f lip (red) vs η
for a sample electron. The laser and electron beam parameters in (e)
and (f) are the same as in Fig. 2.

With the increase of |θy|, the electron density exponentially
declines, however, S y remarkably ascends until about 80%.
Separating the part of the electron beam within θy > 0 (or
θy < 0), one will obtain an electron beam with positive (or
negative) transverse polarization. When splitting the beams
exactly at θy = 0, one obtains |S y| ≈ 34.21% for both of splitted
beams. However, we can increase the polarization of beams if
we exclude the electrons near θy = 0. For instance, as is shown
by blue and red boxes in Fig. 2(b), the corresponding average
spin S y and electron number ratio N p

e /Ne are approximately
(-65%, 10%) and (71%, 5%), respectively, see Fig. 2(d). The
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corresponding splitting angle is of about 3 mrad, which is
much larger than the angular resolution (less than 0.1 mrad)
with current technique of electron detectors [66–69].

Moreover, for experimental convenience, we consider the
cases of larger energy spread ∆ε0/ε0 = 0.1, larger angular
divergence of 1 mrad and different collision angles θe = 179◦

and φe = 90◦, and all show stable and uniform results [62].
The reason for the electron beam polarization and splitting

is analyzed in Fig. 3. The spin effect in the radiation proba-
bility is due to the third term in Eq. (2), and its contribution
is rather significant (about 30%) for high-energy photon emis-
sion, see Figs. 3(a), (b) at ~ωγ/εi ≈ 0.5 ∼ 0.6, which is
negative (positive) for Si parallel (anti-parallel) to SQA. For
simplicity, we analyze the electron radiative dynamics in plane
wave cases, see Figs. 3(c), (d). Let us assume that the rela-
tivistic electrons initially move along −z direction, have no
transverse momentum, and the final polarization along y axis
is detected. When in the laser field the electron emits a pho-
ton (mostly at large χ) with a transverse momentum, finally it
will appear with an opposite one due to the momentum con-
servation. The ultrarelativistic electron is assumed to emit
a photon along its momentum direction, since the emission
angle ∼ 1/γ is rather small. Therefore, the electron final trans-
verse momentum will be opposite by sign to its momentum
at the photon emission point. In the laser field the transverse
momentum p⊥ = eA(η), with the vector potential A(η), is de-
layed by π/2 with respect to the field E(η). The SQA is along
β × â ∝ eβ × E + eβ × (β × B) ∼ e(1 − βz)β × E, and note
that β is negative.

For the LP plane wave polarized along x axis, see Figs. 3(c1),
(c2), χ ∝ ξγ oscillates with |Ex|, and the SQA is along y axis,
with a sign following Ex. According to Eq. (2) and Figs. 3(a),
(b), at points of γ1, γ2, the photon emission is more probable
for spin-up (with respect to +y direction) electrons, because
the corresponding Ex (green curve), and consequently, SQA
are both negative. At points of γ3 and γ4, spin-down electrons
mostly radiate. The final transverse momenta of electrons
emitting photons at γ1 and γ4 are positive and at γ2 and γ3
negative. Consequently, spin-up and spin-down electrons move
symmetrically with respect to the x axis and mix together, as
indicated in Figs. 1(f), (g).

For the CP plane wave, see Figs. 3(d1)-(d3), χ is constant,
and the SQA rotates along the propagation z axis. In Fig. 3(d2),
at points of γ1 and γ2, spin-down (with respect to +y direction)
electrons more probably radiate (since the corresponding Ex

and y component of SQA are both positive), and final px < 0
for γ1 and px > 0 for γ2. The similar analysis applies for
other points, e.g., for γ3 the final px < 0 (spin-up) and for γ4,
px < 0 (spin-down). Thus, spin-up and spin-down electrons
mix together with respect to x axis. Similar electron spin
dynamics exist for py in Fig. 3(d3) as well. Finally, spin-
up and spin-down electrons mix together in x − y plane, as
indicated in Figs. 1(d), (e).

However, for the EP plane wave with a rather small ellipticity
(Ey � Ex), the radiation probability and the SQA both mainly
relies on Ex, and the SQA is along y axis. In Fig. 3(c3), py has
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FIG. 4. Impacts of (a) ellipticity ε, (b) laser intensity ξ, (c) laser
pulse duration τ, and (d) initial kinetic energy of electrons ε0 on the
polarization. Other parameters are the same as in Fig. 2.

a π delay with respect to Ex; at points of γ1 and γ2, Ex and SQA
are both negative, thus, spin-up (with respect to +y direction)
electrons more probably radiate and finally acquire negative py.
And, at points of γ3 and γ4, spin-down electrons more probably
radiate and finally have positive py. Consequently, electrons
split up with respect to the +y axis, see Figs. 1(b),(c) and 2,
in which, since pz is negative, spin-up (spin-down) electrons
move at positive (negative) θy = arctan(py/pz). The trajectories
of sample electrons in Fig. 3(e) illustrate those behaviors.

We underline that the considered effect of the spin-dependent
splitting of the beam relies on the spin-dependent radiation
reaction, rather than on the asymmetric spin flip. Moreover,
multiple flips of spin will smear out the considered effect and
we judiciously have chosen parameters to reduce the flip effect
via limiting the number of emitted photons: Nph ∼ ξατ/T0 ≈

3.65 [46, 62], along with rather small spin flip probability, see
Fig. 3(f).

Furthermore, impacts of the laser and electron beam pa-
rameters on the polarization are analyzed in Fig. 4. First, the
ellipticity ε is a very crucial parameter. If ε is too small, the
splitting angle θs ∼ p⊥/p‖ ∝ Ey/Ex is very small as well,
and the polarized electrons partially overlap near py = 0 (e.g.,
the ultimate case of the LP laser), which reduces the degree
of polarization. Oppositely, largely increasing ellipticity can
increase the splitting angle, but unfortunately also the SQA
rotation (cf., the ultimate case of the CP laser). As a result
the average polarization decreases, see Fig. 4(a). The optimal
ellipticity is of order of 10−2 to 10−1. The trade off exists also
for the laser intensity, pulse duration, and the electron energy.
From one side, the effect relies on the radiation reaction and
requires large χ ≈ 10−6ξγ & 1 and many photon emission.
From another side, the spin flips smear out the considered ef-
fect which imposes restriction on the photon emissions. For
this reason, with increasing ξ and the electron kinetic energy
ε0, the polarization is first enhanced due to the increase of χ,
and then saturates, see Fig 4(b), (d). The mentioned trade off

yields nonuniform dependence on the laser pulse duration. The
polarization is weak at too short or too long pulses, and the
optimum is τ = 5T0 for the given parameters, see Fig 4(c).

For a simple estimation of radiative polarization effects,
we also develop a semi-classical analytical method based on
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the modified Landau-Lifshitz equation [46, 70, 71] with a
radiation-reaction force accounting for quantum-recoil and spin
effects. This model further confirms above obtained results
qualitatively [62].

In conclusion, we have developed a Monte-Carlo method for
simulating radiative spin effects. We show that adding a proper
small ellipticity to the strong laser pulse allows to directly po-
larize and split a counterpropagating relativistic electron beam
into highly polarized parts with current achievable experimen-
tal techniques, which can be used in high-energy physics.
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Schüler, P. A. Souder, G. Baum, W. Raith, K. Kondo, D. H.
Coward, R. H. Miller, C. Y. Prescott, D. J. Sherden, and C. K.
Sinclair, Phys. Rev. Lett. 34, 1589 (1975).

[33] The Vulcan facility, http://www.clf.stfc.ac.uk/Pages/
The-Vulcan-10-Petawatt-Project.aspx.

[34] The Extreme Light Infrastructure (ELI), http://www.
eli-beams.eu/en/facility/lasers/.

[35] Exawatt Center for Extreme Light Studies (XCELS), http:
//www.xcels.iapras.ru/.

[36] V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Plan-
chon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux,
G. Mourou, and K. Krushelnick, Opt. Express 16, 2109 (2008).

[37] G. L. Kotkin, V. G. Serbo, and V. I. Telnov, Phys. Rev. ST Accel.
Beams 6, 011001 (2003).

[38] D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, Eur. Phys. J. C 36,
127 (2004).

[39] D. V. Karlovets, Phys. Rev. A 84, 062116 (2011).
[40] D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas,

Phys. Rev. A 98, 023417 (2018).
[41] Y. S. Derbenev, A. M. Kondratenko, and E. L. Saldin, Nucl.

Instrum. Methods 165, 15 (1979).
[42] D. Del Sorbo, D. Seipt, T. G. Blackburn, A. G. R. Thomas, C. D.

Murphy, J. G. Kirk, and C. P. Ridgers, Phys. Rev. A 96, 043407
(2017).

[43] D. Del Sorbo, D. Seipt, A. G. R. Thomas, and C. P. Ridgers,
Plasma Phys. Controlled Fusion 60, 064003 (2018).

[44] G. Lehmann and K. H. Spatschek, Phys. Rev. E 85, 056412
(2012).

[45] J. G. Kirk, Plasma Phys. Controlled Fusion 58, 085005 (2016).
[46] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel,

Rev. Mod. Phys. 84, 1177 (2012).
[47] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, Phys.

Rev. A 98, 012134 (2018).
[48] V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).
[49] M. K. Khokonov and I. Z. Bekulova, Tech. Phys. 55, 728 (2010).
[50] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromag-

netic Processes at High Energies in Oriented Single Crystals
(World Scientific, Singapore, 1994).

[51] V. N. Baier, V. M. Katkov, and V. S. Fadin, Radiation from
relativistic electrons (Atomizdat, Moscow, 1973).

[52] N. V. Elkina, A. M. Fedotov, I. Y. Kostyukov, M. V. Legkov,
N. B. Narozhny, E. N. Nerush, and H. Ruhl, Phys. Rev. ST
Accel. Beams 14, 054401 (2011).

[53] C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S.

Brady, K. Bennett, T. D. Arber, and A. R. Bell, J. Comput. Phys.
260, 273 (2014).

[54] D. Green and C. Harvey, Computer. Phys. Commun. 192, 313
(2015).

[55] I. V. Sokolov, J. A. Nees, V. P. Yanovsky, N. M. Naumova, and
G. A. Mourou, Phys. Rev. E 81, 036412 (2010).

[56] K. Mølmer and Y. Castin, Quantum Semiclass. Opt. 8, 49 (1996).
[57] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[58] L. H. Thomas, Nature (London) 117, 514 (1926).
[59] L. H. Thomas, Philos. Mag. 3, 1 (1927).
[60] V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2,

435 (1959).
[61] M. W. Walser, D. J. Urbach, K. Z. Hatsagortsyan, S. X. Hu, and

C. H. Keitel, Phys. Rev. A 65, 043410 (2002).
[62] See Supplemental Materials for details on the employed laser

fields, on the applied theoretical model, and on the simulation
results for other laser or electron parameters.

[63] Y. I. Salamin and C. H. Keitel, Phys. Rev. Lett. 88, 095005
(2002).

[64] Y. I. Salamin, G. R. Mocken, and C. H. Keitel, Phys. Rev. ST
Accel. Beams 5, 101301 (2002).

[65] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys.
81, 1229 (2009).

[66] W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura,
C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittel-
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