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Abstract

For every connected manifold with corners we use a homology theory called conormal homology,
defined in terms of faces and orientation of their conormal bundle, and whose cycles correspond
geometrically to corner’s cycles. Its Euler characteristic (over the rationals, dimension of the total
even space minus the dimension of the total odd space), χcn := χ0 −χ1, is given by the alternated
sum of the number of (open) faces of a given codimension.
The main result of the present paper is that for a compact connected manifold with corners X
given as a finite product of manifolds with corners of codimension less or equal to three we have
that
1) If X satisfies the Fredholm Perturbation property (every elliptic pseudodifferential b-operator
on X can be perturbed by a b-regularizing operator so it becomes Fredholm) then the even Euler
corner character of X vanishes, i.e. χ0(X) = 0.
2) If the even Periodic conormal homology group vanishes, i.e. Hpcn

0 (X) = 0, then X satisfies the
stably homotopic Fredholm Perturbation property (i.e. every elliptic pseudodifferential b-operator
on X satisfies the same named property up to stable homotopy among elliptic operators).
3) If Hpcn

0 (X) is torsion free and if the even Euler corner character of X vanishes, i.e. χ0(X) = 0
then X satisfies the stably homotopic Fredholm Perturbation property. For example for every finite
product of manifolds with corners of codimension at most two the conormal homology groups are
torsion free.
The main theorem behind the above result is the explicit computation in terms of conormal ho-
mology of the K−theory groups of the algebra Kb(X) of b-compact operators for X as above. Our
computation unifies the known cases of codimension zero (smooth manifolds) and of codimension
one (smooth manifolds with boundary).
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1 Introduction

In a smooth compact manifold the vanishing of the Fredholm (Analytic) index of an elliptic (=Fred-
holm in this case) pseudodifferential operator is equivalent to the invertibility, up to perturabtion
by a regularizing operator, of the operator. In the case of a smooth manifold with smooth bound-
ary, not every elliptic (b-operator) totally characteristic pseudodifferential operator is Fredholm
but it can be endowed with Fredholm boundary conditions, that is it can be perturbed with a
regularizing operator to become Fredholm. This non trivial fact, which goes back to Atiyah, Pa-
todi and Singer [2], can also be obtained from the vanishing of a boundary analytic index (see [21]
or below for more details). In fact, in this case the boundary analytic index takes values in the
K0-theory group of the algebra of regularizing operators and this K-theory group is easily seen
to vanish. Now, the case of manifolds with corners of codimension at least 2 (this includes for
instance many useful domains in Euclidean spaces) is not so well understood1. In this paper we
will show that the global topology/geometry of the corners and the way the corners form cycles
enter in a fundamental way in a primary obstruction to give Fredholm boundary conditions. As
we will see the answer passes by the computation of some K-theory groups. We explain now with
more details the problem and the content of this paper.

Using K-theoretical tools for solving index problems was the main asset in the series of papers
by Atiyah-Singer ([3, 4]) in which they introduce and prove several index formulas for smooth
compact manifolds. For the case of a manifold with boundary, Atiyah-Patodi-Singer used dif-
ferent tools in [2] to give a formula for the Fredholm index of a Dirac type operator with the
so called APS boundary condition. It is without mentioning the importance of these results in
modern mathematics. Still, besides several very interesting examples (mainly of codimension 2)
and higher/more general versions of the two cases above, not too much is known in general for
manifolds with corners or for other kind of manifolds with singularities. Putting an appropriate
K-theory setting has been part of the problem for several years.

In [17], Melrose2 constructs an algebra of pseudodifferential operators Ψ∗
b(X) associated to any

manifold with corners3 X . The elements in this algebra are called b−pseudodifferential operators4,
the subscript b identifies these operators as obtained by ”microlocalization” of the Lie algebra of
C∞ vector fields on X tangent to the boundary. This Lie algebra of vector fields can be explicitly
obtained as sections of the so called b-tangent bunlde bTX (compressed tangent bundle that we will
recall below). The b-pseudodifferential calculus developed by Melrose has the classic and expected
properties. In particular there is a principal symbol map

σb : Ψ
m
b (X) → S[m](bT ∗X).

Ellipticity has the usual meaning, namely invertibility of the principal symbol. Moreover (dis-
cussion below theorem 2.15 in [18]), an operator is elliptic if and only5 if it has a quasi-inverse
modulo Ψ−∞

b (X). Now, Ψ−∞
b (X) contains compact operators, but also noncompact ones (as soon

as ∂X 6= ∅), and compacity is there characterized by the vanishing of a suitable indicial map (p.8

1We will mention some previous works at the end of this introduction
2See Melrose and Piazza paper [18] for complete details in the case with corners
3In this paper we will always assume X to be connected
4To simplify we discuss only the case of scalar operators, the passage to operators acting on sections of vector

bundles is done in the classic way.
5Notice that this remark implies that to a b-pseudodifferential operator one can associate an ”index” in the

algebraic K-theory group K0(Ψ
−∞
b

(X)) (classic construction of quasi-inverses).
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ref.cit.). Elliptic b-pseudodifferential operators being invertible modulo compact operators -and
hence Fredholm6-, are usually said to be fully elliptic.

Now, by the property of the b-calculus, Ψ0
b(X) is included in the algebra of bounded operators

on L2(X), where the L2 structure is provided by some b-metric in the interior of X . We denote
by Kb(X) the norm completion of the subalgebra Ψ−∞

b (X). This C∗-algebra fits in a short exact
sequence of C∗-algebras of the form

0 // K(X)
i0 // Kb(X)

r // Kb(∂X) // 0 (1.1)

where K(X) is the algebra of compact operators in L2(X). In order to study Fredholm problems
and analytic index problems one has to understand the K-theory of the above short exact sequence.

To better explain how these K-theory groups enter into the study of Fredholm Perturbation
properties and in order to enounce our first main results we need to settle some definitions.

Analytic and Boundary analytic Index morphism: Given an elliptic b-pseudodifferential
D, the classic construction of parametrices adapts to give a K−theory valued index in K0(Kb(X))
that only depends on its principal symbol class σb(D) ∈ K0

top(
bT ∗X). In more precise terms, the

short exact sequence

0 // Kb(X) // Ψ0
b(X)

σb // C(bS∗X) // 0 (1.2)

gives rise to K−theory index morphism K1(C(bS∗X)) → K0(Kb(X)) that factors in a canonical
way by an index morphism

K0
top(

bT ∗X)
Inda

X // K0(Kb(X)) (1.3)

called the Analytic Index morphism of X . By composing the Analytic index with the morphism
induced by the restriction to the boundary we have a morphism

K0
top(

bT ∗X)
Ind∂

X // K0(Kb(∂X)) (1.4)

called the Boundary analytic index morphism of X . In fact r : K0(Kb(X)) → K0(Kb(∂X)) is an
isomorphism if ∂X 6= ∅, Proposition 5.6, and so the two indices above are essentially the same. In
other words we completely understand the six term short exact sequence in K-theory associated
to the sequence (1.1). Notice that in particular there is no contribution of the Fredholm index in
the K0-analytic index.

To state the next theorem we need to define the Fredholm Perturbation Property and its stably
homotopic version.

Definition 1.1 Let D ∈ Ψm
b (X) be elliptic. We say that D satisfies:

• the Fredholm Perturbation Property (FP) if there is R ∈ Ψ−∞
b (X) such that D + R is fully

elliptic.

• the stably homotopic Fredholm Perturbation Property (HFP) if there is a fully elliptic oper-
ator D′ with [σb(D

′)] = [σb(D)] ∈ K0(C
∗(bTX)).

We also say that X satisfies the (resp. stably homotopic) Fredholm Perturbation Property if any
elliptic b-operator on X satisfies the Fredholm property (FP) (resp. (HFP)).

Property (FP) is of course stronger than property (HFP). In [24], Nistor characterized (FP)
in terms of the vanishing of an index in some particular cases. In [23], Nazaikinskii, Savin and
Sternin characterized (HFP) for arbitrary manifolds with corners using an index map associated
with their dual manifold construction. We now rephrase the result of [23] and we give a new proof
in terms of deformation groupoids.

Theorem 1.2 Let D be an elliptic b-pseudodifferential operator on a compact manifold with cor-
ners X. Then D satisfies (HFP) if and only if Ind∂([σb(D)]) = 0.
In particular if D satisfies (FP) then its boundary analytic index vanishes.

6see p.8 in [18] for a characterization of Fredholm operators in terms of an indicial map or [15] thm 2.3 for the
proof of Fully ellipticity iff Fredholm
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The above results fit exactly with the K-theory vs Index theory Atiyah-Singer’s program and
in that sense it is not completely unexpected. Now, in order to give a full characterization of the
Fredholm perturbation property one is first led to compute or understand the K-theory groups for
the algebras (1.1) preferably in terms of the geometry/topology of the manifold with corners. As
it happens, the only previously known cases are:

• the K-theory of the compact operators K(X), giving K0(K(X)) = Z and K1(K(X)) = 0,
which is of course essential for classic index theory purposes;

• the K-theory of Kb(X) for a smooth manifold with boundary, giving K0(Kb(X)) = 0 and
K1(Kb(X)) = Z1−p with p the number of boundary components, which has the non trivial
consequence that any elliptic b-operator on a manifold with boundary can be endowed with
Fredholm boundary conditions.

Computation of the K-theory groups in terms of corner cycles. In this paper we
explicitly compute the above K-theory groups for any finite product of manifolds with corners of
codimension ≤ 3 in terms corner cycles (explanation below). Our computations and results are
based on a geometric interpretation of the algebras of b-pseudodifferential operators in terms of
Lie groupoids. We explain and recall the basic facts on groupoids and the b-pseudodifferential
calculus in the first two sections. Besides being extremely useful to compute K−theory groups,
the groupoid approach we propose reveals to be very powerful to compute index morphisms and
relate several indices. Indeed, the relation between the different indices for manifolds with corners
was only partially understood for some examples. Let us explain this in detail. Let X be a
manifold with corners. Let Fp = Fp(X) be the set of (without boundary, connected) faces of X
of codimension p. To compute K∗(Kb(X)), we use an increasing filtration of X given by the open
subspaces:

Xp =
⋃

k≤p ; f∈Fk

f. (1.5)

We have X0 =
◦

X and Xd = X . We extend if necessary the filtration over Z by setting Xk = ∅ if
k < 0 and Xk = X if k > d. The C∗-algebra of Kb(X) inherits (for entire details see section 5) an
increasing filtration by C∗-ideals:

K(L2(
◦

X)) = A0 ⊂ A1 ⊂ . . . Ad = A = Kb(X). (1.6)

The spectral sequence (E∗
∗,∗(Kb(X)), d∗∗,∗) associated with this filtration can be used, in principle,

to have a better understanding of these K-theory groups. This filtration was also considered by
Melrose and Nistor in [16] and their main theorem is the expression of the first differential (theorem
9 ref.cit.). In trying to figure out an expression for the differentials of this spectral sequence in all
degrees, we found a differential Z-module (C(X), δpcn) constructed in a very simple way out of the
set of open connected faces of the given manifold with (embedded) corners X . Roughly speaking,
the Z-module C(X) is generated by open connected faces provided with a co-orientation (that is,
an orientation of their conormal bundles in X), while the differential map δpcn associates to a given
co-oriented face of codimension p, the sum of co-oriented faces of codimension p− 2k − 1, k ≥ 0,
containing it in their closures. This gives a well defined differential module for two reasons. The
first one is that once a labelling of the boundary hyperfaces is chosen, the co-orientation of a given
face induces co-orientations of the faces containing it in their closures, proving that the module
map δpcn is well defined. The second one is that the jumps by 2k + 1, k ≥ 0, in the codimension
guarantee the relation δpcn ◦ δpcn = 0. We call periodic conormal homology and denote it by
Hpcn(X) the homology of (C(X), δpcn). Note that it is Z2-graded by sorting faces by even/odd
codimension.

Actually, it happens that the differential δpcn retracts onto the simpler differential map δ where
one stops at −1 in the codimension, that is, δ maps a given co-oriented face of codimension p
to the sum of co-oriented faces of codimension p − 1 containing it in their closures. We call
conormal homology and denote it by Hcn(X) the homology of (C(X), δ). Note that it is Z-graded
by sorting faces by codimension and that the resulting Z2-grading coincides with the periodic
conormal groups. For full details about these homological facts see Sections 4 and 7.

The conormal Z-graded complex (C∗(X), δ) first appears in the work of Bunke [5] where it is
used to compute obstructions for tamings of Dirac operators on manifolds with corners, and it also
implicitely appears in the work of Melrose and Nistor in [16], through the quasi-isomorphism that
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we prove here (Corollary 5.5). We can conclude this remark by recording that there is a natural
isomorphism

Hcn
p (X) ≃ E2

p,0(Kb(X)). (1.7)

Our main K-theory computation can now be stated (theorem 5.8):

Theorem 1.3 Let X = ΠiXi be a finite product of manifolds with corners of codimension less or
equal to three. There are natural isomorphisms

Hpcn
0 (X)⊗Z Q

φX

∼=
// K0(Kb(X)))⊗Z Q and Hpcn

1 (X)⊗Z Q
φX

∼=
// K1(Kb(X))⊗Z Q.

(1.8)
In the case X contains a factor of codimension at most two or X is of codimension three the result
holds even without tensoring by Q.

We insist on the fact that (periodic) conormal homology groups are easily computable, for the
underliyng chain complexes as well as the differentials maps are obtained from elementary and
explicit ingredients. To continue let us introduce the Corner characters.

Definition 1.4 (Corner characters) Let X be a manifold with corners. We define the even
conormal character of X as the finite sum

χ0(X) = dimQHpcn
0 (X)⊗Z Q. (1.9)

Similarly, we define the odd conormal character of X as the finite sum

χ1(X) = dimQHpcn
1 (X)⊗Z Q. (1.10)

We can consider as well
χ(X) = χ0(X)− χ1(X), (1.11)

then by definition
χ(X) = 1−#F1 +#F2 − · · ·+ (−1)d#Fd (1.12)

We refer to the integer χ(X) as the Euler corner character of X .
In particular one can rewrite the theorem above to have, for X as in the statement,

K0(Kb(X))⊗Z Q ∼= Qχ0(X)

K1(Kb(X))⊗Z Q ∼= Qχ1(X)

(1.13)

and, in terms of the corner character,

χ(X) = rank(K0(Kb(X))⊗Z Q)− rank(K1(Kb(X))⊗Z Q). (1.14)

Or in the case X is a finite product of manifolds with corners of codimension at most 2 we even
have

K0(Kb(X)) ≃ Zχ0(X) and K1(Kb(X)) ≃ Zχ1(X) (1.15)

and also χcn(X) = rank(K0(Kb(X)))− rank(K1(Kb(X))).

We can finally state the following primary obstruction Fredholm Perturbation theorem (theorem
6.2) in terms of corner’s characters and corner’s cycles.

Theorem 1.5 Let X be a compact manifold with corners of codimension greater or equal to one.
If X is a finite product of manifolds with corners of codimension less or equal to three we have that

1. If X satisfies the Fredholm Perturbation property then the even Euler corner character of X
vanishes, i.e. χ0(X) = 0.

2. If the even Periodic conormal homology group vanishes, i.e. Hpcn
0 (X) = 0 then X satisfies

the stably homotopic Fredholm Perturbation property.

3. If Hpcn
0 (X) is torsion free and if the even Euler corner character of X vanishes, i.e. χ0(X) =

0 then X satisfies the stably homotopic Fredholm Perturbation property.

5



We believe that the results above hold beyond the case of finite products of manifolds with
corners of codimension ≤ 3. On one side conormal homology can be defined and computed in
all generality and in all examples we have the isomorphisms above still hold. The problem in
general is to compute beyond the third differential of the naturally associated spectral sequence
for the K-theory groups for manifolds with corners of codimension greater or equal to four. This is
technically a very hard task and besides explicit interesting examples become rare (not products).
In fact, for any codimension, the correspondant spectral sequence in periodic conormal homology
collapses at the second page as shown in the appendix. We believe it does collapse as well for
K-theory because the results above. Another problem is related with the possible torsion of the
conormal homology groups, indeed we prove in theorem 4.6 that for a finite product of manifolds
with corners of codimension at most two these groups are torsion free and that the odd group for
a three codimensional manifold with corners is torsion free as well. We think that in general these
groups are torsion free but the combinatorics become very hard and one needs a good way to deal
with all these data. We will discuss all these topics elsewhere.

Partial results in the direction of this paper were enterprised by several authors, we have already
mentioned the seminal works of Melrose and Nistor in [16] and of Nazaikinskii, Savin and Sternin
in [22] and [23]. In particular Melrose and Nistor start the computation of the K−groups of the
algebra of zero order b-operators and some particular cases of Boundary analytic index morphisms
as defined here (together with some topological formulas for them). Also, Nistor solves in [24]
the Fredholm Perturbation problem for manifolds with corners of the form a canonical simplex
times a smooth manifold. Let us mention also the work of Monthubert and Nistor, [21], in which
they construct a classifying space associated to a manifold with corners whose K−theory can be
in principle used to compute the analytic index above. We were very much inspired by all these
works. In a slightly different framework, Bunke [5] studies the obstruction for the existence of
tamings of Dirac operators (that is, perturbations to invertible ones) on manifolds with corners
of arbitrary codimension, and also expresses these obstructions in terms of complexes associated
with the faces. He then studies local index theory and analytic obstruction theory for families.

The theorems above show the importance and interest of computing the Boundary Analytic
and the Fredholm indices associated to a manifold with corners and if possible in a unified and in a
topological/geometrical way. UsingK-theory as above, for the case of a smooth compact connected
manifold, the computation we are mentioning is nothing else that the Atiyah-Singer index theorem,
[3]. As we mentioned already, for manifolds with boundary, Atiyah-Patodi-Singer gave a formula
for the Fredholm index of a Dirac type operator. In fact, with the groupoid approach to index
theory, several authors have contributed to the now realizable idea that one can actually use these
tools to have a niceK−theoretical framework and to actually compute more general index theorems
as in the classic smooth case. For example, in our common work with Monthubert, [7], we give a
topological formula for the Fredholm Index morphism for manifolds with boundary that will allow
us in a sequel paper to compare with the APS formula and obtain geometric information on the
eta invariant. In the second paper of this series we will generalize our results of [7] for general
manifolds with corners by giving explicit topological index computations for the indices appearing
above.

2 Melrose b-calculus for manifolds with corners via groupoids

2.1 Preliminaries on groupoids, K-theory C∗-algebras and Pseudodiffer-

ential Calculus

All the material in this section is well known and by now classic for the people working in groupoid’s
C∗-algebras, K-theory and index theory. For more details and references the reader is sent to [8],
[25], [20], [14], [11], [27], [1].

Groupoids: Let us start with the definition.

Definition 2.1 A groupoid consists of the following data: two sets G and G (0), and maps

(1) s, r : G → G (0) called the source and range (or target) map respectively,

(2) m : G (2) → G called the product map (where G (2) = {(γ, η) ∈ G × G : s(γ) = r(η)}),

such that there exist two maps, u : G (0) → G (the unit map) and i : G → G (the inverse map),
which, if we denote m(γ, η) = γ · η, u(x) = x and i(γ) = γ−1, satisfy the following properties:

6



(i). r(γ · η) = r(γ) and s(γ · η) = s(η).

(ii). γ · (η · δ) = (γ · η) · δ, ∀γ, η, δ ∈ G when this is possible.

(iii). γ · x = γ and x · η = η, ∀γ, η ∈ G with s(γ) = x and r(η) = x.

(iv). γ · γ−1 = u(r(γ)) and γ−1 · γ = u(s(γ)), ∀γ ∈ G .

Generally, we denote a groupoid by G ⇒ G (0). A morphism f from a groupoid H ⇒ H (0) to a
groupoid G ⇒ G (0) is given by a map f from G to H which preserves the groupoid structure, i.e.
f commutes with the source, target, unit, inverse maps, and respects the groupoid product in the
sense that f(h1 · h2) = f(h1) · f(h2) for any (h1, h2) ∈ H (2).

For A,B subsets of G (0) we use the notation G B
A for the subset

{γ ∈ G : s(γ) ∈ A, r(γ) ∈ B}.

We will also need the following definition:

Definition 2.2 (Saturated subgroupoids) Let G ⇒ M be a groupoid.

1. A subset A ⊂ M of the units is said to be saturated by G (or only saturated if the context is
clear enough) if it is union of orbits of G .

2. A subgroupoid
G1

r

��
s

��

⊂ G

r

��
s

��
M1 ⊂ M

(2.1)

is a saturated subgroupoid if its set of units M1 ⊂ M is saturated by G .

A groupoid can be endowed with a structure of topological space, or manifold, for instance.
In the case when G and G (0) are smooth manifolds, and s, r,m, u are smooth maps (with s and r
submmersions), then G is called a Lie groupoid. In the case of manifolds with boundary, or with
corners, this notion can be generalized to that of continuous families groupoids (see [26]) or as Lie
groupoids if one considers the category of smooth manifolds with corners.

C∗-algebras: To any Lie groupoid G ⇒ G
(0) one has several C∗−algebra completions for the

*-convolution algebra C∞
c (G ). Since in this paper all the groupoids considered are amenable we

will be denoting by C∗(G ) the maximal and hence reduced C∗-algebra of G . From now on, all the
groupoids are then going to be assumed amenable.

In the sequel we will use the following two results which hold in the generality of locally compact
groupoids equipped with Haar systems.

1. Let G1 and G2 be two locally compact groupoids equipped with Haar systems. Then for
locally compact groupoid G1 × G2 we have

C∗(G1 × G2) ∼= C∗(G1)⊗ C∗(G2). (2.2)

2. Let G ⇒ G (0) a locally compact groupoid with Haar system µ. Let U ⊂ G (0) be a saturated
open subset, then F := G (0) \ U is a closed saturated subset. The Haar system µ can be
restricted to the restriction groupoids GU := G U

U ⇒ U and GF := G F
F ⇒ F , and we have the

following short exact sequence of C∗-algebras:

0 // C∗(GU )
i // C∗(G )

r // C∗(GF ) // 0 (2.3)

where i : Cc(GU ) → Cc(G ) is the extension of functions by zero and r : Cc(G ) → Cc(GF ) is
the restriction of functions.

K-theory: We will be considering the K-theory groups of the C∗-algebra of a groupoid, for
space purposes we will be denoting these groups by

K∗(G ) := K∗(C
∗(G )). (2.4)

7



We will use the classic properties of the K-theory functor, mainly its homotopy invariance
and the six term exact sequence associated to a short exact sequence. Whenever the groupoid in
question is a space (unit’s groupoid) X we will use the notation

K∗
top(X) := K∗(C0(X)). (2.5)

to remark that in this case this group is indeed isomorphic to the topological K−theory group.
ΨDO Calculus for groupoids. A pseudodifferential operator on a Lie groupoid (or more

generally a continuous family groupoid) G is a family of peudodifferential operators on the fibers of
G (which are smooth manifolds without boundary), the family being equivariant under the natural
action of G .

Compactly supported pseudodifferential operators form an algebra, denoted by Ψ∞(G ). The
algebra of order 0 pseudodifferential operators can be completed into a C∗-algebra, Ψ0(G ). There
exists a symbol map, σ, whose kernel is C∗(G ). This gives rise to the following exact sequence:

0 → C∗(G ) → Ψ0(G ) → C0(S
∗(G )) → 0

where S∗(G ) is the cosphere bundle of the Lie algebroid of G .
In the general context of index theory on groupoids, there is an analytic index which can be

defined in two ways. The first way, classical, is to consider the boundary map of the 6-terms exact
sequence in K-theory induced by the short exact sequence above:

inda : K1(C0(S
∗(G ))) → K0(C

∗(G )).

Actually, an alternative is to define it through the tangent groupoid of Connes, which was
originally defined for the groupoid of a smooth manifold and later extended to the case of continuous
family groupoids ([20, 13]). The tangent groupoid of a Lie groupoid G ⇒ G (0) is a Lie groupoid

G
tan = A(G )

⊔
G × (0, 1] ⇒ G

(0) × [0, 1],

with smooth structure given by the deformation to the normal cone construction, see for example
[6] for a survey of this construction related with the tangent groupoid construction.

Using the evaluation maps, one has two K-theory morphisms, e0 : K0(C
∗(G tan)) → K0

top(AG )
which is an isomorphism (since K∗(C

∗(G × (0, 1])) = 0), and e1 : K∗(C
0(G tan)) → K0(C

∗(G )).
The analytic index can be defined as

inda = e1 ◦ e
−1
0 : K0

top(A
∗
G ) → K0(C

∗(G )).

modulo the surjection K1(C0(S
∗(G )) → K0(A∗G ).

See [20, 25, 19, 13, 30] for a detailed presentation of pseudodifferential calculus on groupoids.

2.2 Melrose b-calculus for manifolds with corners via the b-groupoid

We start by defining the manifolds with corners we will be using in the entire paper.
A manifold with corners is a Hausdorff space covered by compatible coordinate charts with

coordinate functions modeled in the spaces

Rn
k := [0,+∞)k ×Rn−k

for fixed n and possibly variable k.

Definition 2.3 A manifold with embedded corners X is a Hausdorff topological space endowed
with a subalgebra C∞(X) ∈ C0(X) satisfying the following conditions:

1. there is a smooth manifold X̃ and a map ι : X → X̃ such that

ι∗(C∞(X̃)) = C∞(X),

2. there is a finite family of functions ρi ∈ C∞(X̃), called the defining functions of the hyper-
faces, such that

ι(X) =
⋂

i∈I

{ρi ≥ 0}.
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3. for any J ⊂ I,

dxρi(x) are linearly independent in T ∗
x X̃ for all x ∈ FJ :=

⋂
i∈J{ρi = 0}.

Terminology: In this paper we will only be considering manifolds with embedded corners.
We will refer to them simply as manifolds with corners. We will also assume our manifolds to
be connected. More general manifold with corners deserve attention but as we will see in further
papers it will be more simple to consider them as stratified pseudomanifolds and desingularize
them as manifolds with embedded corners with an iterated fibration structure.

Given a compact manifold corners X , Melrose7 constructed in [17] the algebra Ψ∗
b(X) of b-

pseudodifferential operators. The elements in this algebra are called b−pseudodifferential opera-
tors, the subscript b identifies these operators as obtained by ”microlocalization” of the Lie algebra
of C∞ vector fields on X tangent to the boundary. This Lie algebra of vector fields can be explic-
itly obtained as sections of the so called b-tangent bunlde bTX (compressed tangent bundle that
we will appear below as the Lie algebroid of an explicit Lie groupoid). The b-pseudodifferential
calculus developed by Melrose has the classic and expected properties. In particular there is a
principal symbol map

σb : Ψ
m
b (X) → S[m](bT ∗X).

Ellipticity has the usual meaning, namely invertibility of the principal symbol. Moreover (dis-
cussion below theorem 2.15 in [18]), an operator is elliptic if and only8 if it has an quasi-inverse
modulo Ψ−∞

b (X). Now, the operators in Ψ−∞
b (X) are not all compact (unless the topological

boundary ∂X = ∅) but they contain a subalgebra consisting of compact operators (those for which
certain indicial map is zero, p.8 ref.cit.). Hence, among elliptic b-pseudodifferential operators one
has those for which the quasi-inverse is actually modulo compact operators and hence Fredholm
(again, see p.8 ref.cit. for a characterization of Fredholm operators in terms of an indicial map),
these b-elliptic operators are called fully elliptic operators.

Now, as every 0-order b-pseudodifferential operator (ref.cit. (2.16)), the operators in Ψ−∞
b (X)

extend to bounded operators on L2(X) and hence if we consider its completion as bounded oper-
ators one obtains an algebra denoted in this paper by Kb(X) that fits in a short exact sequence of
C∗−algebras of the form

0 // K(X)
i0 // Kb(X)

r // Kb(∂X) // 0 (2.6)

where K(X) is the algebra of compact operators in L2(X).
Let X be a compact manifold with embedded corners, so by definition we are assuming there

is a smooth compact manifold (of the same dimension) X̃ with X ⊂ X̃ and ρ1, ..., ρn defining
functions of the faces. In [19], Monthubert constructed a Lie groupoid (called Puff groupoid)
associated to any decoupage (X̃, (ρi)), it has the following expression

G(X̃, (ρi)) = {(x, y, λ1, ..., λn) ∈ X̃ × X̃ × Rn : ρi(x) = eλiρi(y)}. (2.7)

as a Lie subgroupoid of X̃ × X̃ ×Rk. The Puff groupoid is not s-connected, denote by Gc(X̃, (ρi))
its s-connected component.

Definition 2.4 (The b-groupoid) The b−groupoid Γb(X) of X is by definition the restriction
to X of the s-connected Puff groupoid (2.7) considered above, that is

Γb(X) := Gc(X̃, (ρi))|X ⇒ X (2.8)

The b−groupoid was introduced by B. Monthubert in order to give a groupoid description for
the Melrose’s algebra of b-pseudodifferential operators. We summarize below the main properties
we will be using about this groupoid:

Theorem 2.5 (Monthubert [19]) Let X be a manifold with corners as above, we have that

1. Γb(X) is a C0,∞-amenable groupoid.

7for entire details in the case with corners see the paper of Melrose and Piazza [18]
8Notice that this remark implies that to a b-pseudodifferential operator one can associate an ”index” in the

algebraic K-theory group K0(Ψ
−∞
b

(X)) (classic construction of quasi-inverses).
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2. It has Lie algebroid A(Γb(X)) =b TX, the b-tangent bundle of Melrose.

3. Its C∗−algebra (reduced or maximal is the same since amenability) coincides with the algebra
of b-compact operators. The canonical isomorphism

C∗(Γb(X)) ∼= Kb(X) (2.9)

is given as usual by the Schwartz Kernel theorem.

4. The pseudodifferential calculus of Γb(X) coincides with compactly supported b-calculus of
Melrose.

Remark 2.6 To simplify, in the present paper, we only discuss the case of scalar operators. The
case of operators acting on sections of vector bundles is treated as classically by considering bundles
of homomorphisms.

3 Boundary analytic and Fredholm Indices for manifolds

with corners: relations and Fredholm Perturbation char-

acterization

We will now introduce the several index morphisms we will be using, mainly the Analytic and the
Fredholm index. In all this section, X denotes a compact and connected manifold with embedded
corners.

3.1 Analytic and Boundary analytic Index morphisms

Any elliptic b-pseudodifferential D has an analytical index Indan(D) given by

Indan(D) = I([σb(D)]1) ∈ K0(Kb(X))

where I is the connecting homomorphism in K-theory of exact sequence

0 // Kb(X) // Ψ0
b(X)

σb // C(bS∗X) // 0. (3.1)

and [σb(D)]1 is the class in K1(C(bS∗X) of the principal symbol σb(D) of D.
Alternatively, we can express Ind(D) using adiabatic deformation groupoid of Γb(X) and the

class in K0 of the same symbol, namely:

[σb(D)] = δ([σb(D)]1) ∈ K0(C0(
bT ∗X)) (3.2)

where δ is the connecting homomorphism of the exact sequence relating the vector and sphere
bundles:

0 // C0(
bT ∗X) // C0(

bB∗X) // C(bS∗X) // 0. (3.3)

Indeed, consider the exact sequence

0 // C∗(Γb(X)× (0, 1]) // C∗(Γtan
b (X))

r0 // C∗(bTX) ∼= C0(
bT ∗X) // 0, (3.4)

in which the ideal is K-contractible and set

IndaX = r1 ◦ r
−1
0 : K0

top(
bT ∗X) −→ K0(Kb(X)) (3.5)

where r1 : K0(C
∗(Γtan

b (X))) → K0(C
∗(Γb(X))) is induced by the restriction morphism to t = 1.

Applying a mapping cone argument to the exact sequence (3.1) gives a commutative diagram

K1(C(bS∗X))

δ ''PP
PP

PP
PP

PP
PP

I // K0(Kb(X))

K0
top(

bT ∗X)

Inda
X

77♦♦♦♦♦♦♦♦♦♦♦

(3.6)
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Therefore we get, as announced:

Indan(D) = IndaX([σb(D)]) (3.7)

The map IndaX will be called the Analytic Index morphism of X . A closely related homomorphism
is the Boundary analytic Index morphism, in which the restriction to X × {1} is replaced by the
one to ∂X × {1}, that is, we set:

Ind∂X = r∂ ◦ r−1
0 : K0(C0(

bT ∗X) −→ K0(C
∗(Γb(X)|∂X)), (3.8)

where r∂ is induced by the homomorphism C∗(Γtan
b (X)) −→ C∗(Γb(X))|∂X . We have of course

Ind∂X = r1,∂ ◦ IndaX (3.9)

if r1,∂ denotes the map induced by the homomorphism C∗(Γb(X)) −→ C∗(Γb(X)|∂X).

3.2 Fredholm Index morphism

In general, elliptic b-operators on X are not Fredholm. Indeed, to construct an inverse of a b-
operator modulo compact terms, we have to invert not only the principal symbol but also all the
family of boundary symbols. One way to summarize this situation is to introduce the algebra of
full, or joint, symbols. Let H be the set of closed boundary hyperfaces of X , and set

AF =

{(
a, (qH)H∈H

)
∈ C∞(bS∗X)×

∏

H∈H

Ψ0(Γb(X)|H ; ∀H ∈ H, a|H = σb(qH)

}
. (3.10)

The full symbol map:

σF : Ψ0(Γb(X) ∋ P 7−→
(
σb(P ), (P |H)H∈H

)
∈ AF (3.11)

extends to the C∗-closures of the algebras and the assertion about the invertibility modulo compact
operators amounts to the exactness of the sequence [13]:

0 // K(X) // Ψ0(Γb(X))
σF // AF

// 0 (3.12)

Then one set:

Definition 3.1 (Full Ellipticity) An operator D ∈ Ψ0(Γb(X)) is said to be fully elliptic if σF (D)
is invertible.

We then recall the following result of Loya [15] (the statement also appears in [18]). Remember
that b-Sobolev spacesHs

b (X) are defined using b-metrics and b-operators map continuouslyHm
b (X)

to Hs−m
b (X) for every s.

Theorem 3.2 ([15], Theorem 2.3) An operator D ∈ Ψ0
b(X) is fully elliptic if and only if it is

Fredholm on Hs
b (X) for some s (and then for any s, with Fredholm index independent of s).

For a given fully elliptic operator D, we denote by IndFred(D) its Fredholm index. We are going to
express this number in terms of K-theory and clarify the relationship between the analytical index
and full ellipticity on X using deformation groupoids. Let us star with the tangent groupoid

Γb(X)tan := (Gc(X̃, (ρi))
tan)|X×[0,1] = TbX

⊔
Γb(X)× (0, 1] ⇒ X × [0, 1]. (3.13)

Now we introduce the two following saturated subspaces of X × [0, 1]:

XF := X × [0, 1] \ ∂X × {1} and X∂ := XF \
◦

X × (0, 1] = X ∪ ∂X × [0, 1). (3.14)

The Fredholm b-groupoid and the noncommutative tangent space of X are defined by

Γb(X)Fred := Γb(X)tan|XF and TncX := Γb(X)Fred|X∂
(3.15)

respectively. They are obviously KK-equivalent as one sees using the exact sequence:

0 // C∗(
◦

X ×
◦

X × (0, 1]) // C∗(Γb(X)F)
rF // C∗(TncX) // 0 (3.16)
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whose ideal is K-contractible. We then define the Fredholm index morphism by:

IndXF = (r1)∗ ◦ (rF )
−1
∗ : K0(TncX) −→ K0(

◦

X ×
◦

X) ≃ Z, (3.17)

Following [9, Definition 10.4], we denote by FE(X) the group of order 0 fully elliptic operators
modulo stable homotopy. Then the vocabulary above is justified by:

Proposition 3.3 There exists a group isomorphism

σnc : FE(X) −→ K0(C
∗(TncX)) (3.18)

such that

r0([σnc(D)]) = [σb(D)] ∈ K0(C0(
bT ∗X)) and IndXF ([σnc(D)]) = IndFred(D), (3.19)

where r0 comes from the natural restriction map C∗(TncX) → C0(
bT ∗X).

This is proved by the method leading to [28, Theorem 4] and [9, Theorem 10.6] exactly in the same
way. Also, this homotopy classification appears in [23], in which the K-homology of a suitable
dual manifold is used instead of the K-theory of the noncommutative tangent space. Previous
related results appeared in [13] for differential operators and using different algebras to classify
their symbols.
The construction of the various index maps above is summarized into the commutative diagram:

K0(ΓF
b )

iF //

e1
ss
ss

yysss
s

K0(Γtan
b )

r∂ //

e1
✉✉
✉✉

zz✉✉✉
✉

K0(Γb|∂ )

Id
ss
ss
s

yysss
ss

��

K0(
◦
X ×

◦
X)

i0 //
K0(Γb)

rb //
K0(Γb|∂ )

��

K1(Γb |∂ )

OO

K1(Γtan
b )

e1

zz

r∂

oo
K1(ΓF

b )
oo

e1
ss
ss

yysss
s

K1(Γb |∂ )

∂1

OO

yy
Id

K1(Γb)rb

oo
K1(

◦
X ×

◦
X)

i0

oo

(3.20)

3.3 Fredholm perturbation property

We are ready to define the Fredholm Perturbation Property [24] and its stably homotopic version.

Definition 3.4 Let D ∈ Ψm
b (X) be elliptic. We say that D satisfies:

• the Fredholm Perturbation Property (FP) if there is R ∈ Ψ−∞
b (X) such that D + R is fully

elliptic.

• the stably homotopic Fredholm Perturbation Property (HFP) if there is a fully elliptic oper-
ator D′ with [σb(D

′)] = [σb(D)] ∈ K0(C
∗(bTX)).

We also say that X satisfies the (stably homotopic) Fredholm Perturbation Property if any elliptic
b-operator on X satisfies ((H)FP).

Property (FP) is of course stronger than property (HFP). In [24], Nistor characterized (FP)
in terms of the vanishing of an index in some particular cases. In [23], Nazaikinskii, Savin and
Sternin characterized (HFP) for arbitrary manifolds with corners using an index map associated
with their dual manifold construction. We now rephrase the result of [23] in terms of deformation
groupoids.

Theorem 3.5 Let D be an elliptic b-pseudodifferential operator on a compact manifold with cor-
ners X. Then D satisfies (HFP) if and only if Ind∂([σb(D)]) = 0.
In particular if D satisfies (FP) then its analytic indicial index vanishes.

Proof : Note that the Fredholm and the tangent groupoids are related by the exact sequence

0 // C∗(ΓFred
b (X))

iF // C∗(Γtan
b (X))

r∂ // C∗(Γb(X)∂X) // 0 (3.21)
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Then Proposition 3.3, together with this exact sequence and the commutative diagram:

K0(C
∗(ΓF

b ))

iF

��

≃

rF
// K0(C

∗(TncX))

r0

��
K0(C

∗(Γtan
b ))

≃

r0
// K0(C

∗(bTX))

(3.22)

yields the result. ✷

Loosely speaking, this theorem tells us that the K-theory of Γb(X)∂X , or equivalently the one of
Γb(X) as we shall see later, is the receptacle for the obstruction to Fredholmness of elliptic symbols
in the b-calculus. This is why we now focus on the understanding of these K-theory groups. If
the result is well kwown in codimension less or equal to 1, the general case is far from understood.
Meanwhile, we will also clarify the equivalent role played by Γb(X) and Γb(X)∂X .

4 The conormal homology of a manifold with corners

In all this section, X is a manifold with embedded corners of codimension d, whose connected
hyperfaces H1, . . . , . . .HN are provided with defining functions r1, . . . , rN .

4.1 Definition of the homology

The one form ej = drj trivialises the conormal bundle of Hj for any 1 ≤ j ≤ N . By convention,
p-uples of integers I = (i1, . . . , ip) ∈ Np are always labelled so that 1 ≤ i1 < . . . < ip ≤ N . Let I
be a p-uple, set

HI = r−1
I ({0}) = Hi1 ∩ . . . ∩Hip . (4.1)

and note c(I) the set of open connected faces of codimension p included in HI . Also, we denote
by eI the exterior product

eI = ei1 .ei2 . . . . .eip . (4.2)

Let f be a face of codimension p and I the p-uple such that f ∈ c(I). The conormal bundle N(f)
of f has a global basis given by the sections ej , j ∈ I, and its orientations are identified with ±eI .
For any integer 0 ≤ p ≤ d, we denote by Cp(X) the free Z-module generated by

{f ⊗ ε ; f ∈ Fp, ε is an orientation of N(f)}. (4.3)

Let f ∈ Fp, ǫf an orientation of N(f) and g ∈ Fp−1 such that f ⊂ g. The face f is characterized
in g by the vanishing of a defining function ri(g,f)

. Then the contraction ei(g,f)
yǫf is an orientation

of N(g). Recall that the contraction y is defined by

eiyeI =

{
0 if i 6∈ I

(−1)j−1eI\{i} if i is the jth coordinate of I.
(4.4)

We then define δp : Cp(X) → Cp−1(X) by

δp(f ⊗ εf ) =
∑

g∈Fp−1,
f⊂g

g ⊗ ei(g,f)
yεf . (4.5)

It is not hard to check directly that (C∗(X), δ∗) is a differential complex. Actually, δ∗ is the
component of degree −1 of another natural differential map δpcn =

∑
k≥0 δ

2k+1, which eventually
produces a quasi-isomorphic differential complex. Details are provided in Section 7.

We define the conormal homology of X as the homology of (C∗(X), δ∗), and we note

Hcn
p (X) := Hp(C∗(X), δ∗). (4.6)

This homology was first considered in [5], in a slightly different but equivalent way. Also, the
graduation of the conormal homology into even and odd degree, called here periodic conormal
homology, will be used and we note

Hpcn
0 (X) = ⊕p≥0H

cn
2p (X) and Hpcn

1 (X) = ⊕p≥0H
cn
2p+1(X). (4.7)
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4.2 Examples

The determination of the groups Hcn
∗ (X) is completely elementary in all concrete cases. In the

following examples, it is understood that faces f arise with the orientation given by eI if f ∈ c(I).

Example 4.1

• Assume that X has no boundary. Then Hpcn
0 (X) = Hcn

0 (X) ≃ Z, Hpcn
1 (X) = 0.

• Assume that X has a boundary with n connected components. Then Hpcn
0 (X) = 0 and

Hpcn
1 (X) = Hcn

1 (X) ≃ Zn−1. More precisely, if we set F1 = {f1, ..., fn} then {f1 − f2, f2 −
f3, ..., fn−1 − fn} provides a basis of ker δ1.

• Assume that X has codimension 2 and that ∂X is connected. Then Hpcn
0 (X) = Hcn

2 (X) =
ker δ2 ≃ Zk, where all nonnegative integers k can arise. For instance, consider the unit
closed ball B in R3, cut k + 1 small disjoint disks out of its boundary and glue two copies
of such spaces along the pairs of cut out disks. We get a space X satisfying the statement:
the boundaries s0, . . . , sk of the original disks provide a basis of F2 and the family s0 − sj,
1 ≤ j ≤ k a basis of ker δ2. Finally, ([0,+∞))2 provides an example with k = 0.

• Consider the cube X = [0, 1]3.

1. We have Hpcn
0 (X) = 0 and Hpcn

1 (X) = Hcn
3 (X) ≃ Z.

2. Remove a small open cube into the interior of X and call the new space Y . Then

Hpcn
0 (Y ) = 0 and Hpcn

1 (Y ) = Hcn
3 (Y )⊕Hcn

1 (Y ) ≃ Z2 ⊕ Z.

3. Remove a small open ball into the interior of X and call the new space Z. Then

Hpcn
0 (Z) = 0 and Hpcn

1 (Y ) = Hcn
3 (Y )⊕Hcn

1 (Y ) ≃ Z⊕ Z.

4.3 Long exact sequence in conormal homology

We define a filtration of X by open submanifolds with corners by setting:

Xm =
⋃

f∈Fk, k≤m

f, 0 ≤ m ≤ d. (4.8)

This leads to differential complexes (C∗(Xm), δ) for 0 ≤ m ≤ d. We can also filtrate the differential
complex (C∗(X), δ) by the codimension of faces:

Fm(C∗(X)) =
m⊕

k=0

Ck(X). (4.9)

There is an obvious identification C∗(Xm) ≃ Fm(C∗(X)) and we thus consider (C∗(Xm), δ) as a
subcomplex of (C∗(X), δ), with quotient complex denoted by (C∗(X,Xm), δ). The quotient module
is also naturally embedded in C∗(X):

C∗(X,Xm) = C∗(X)/C∗(Xm) ≃
d⊕

k=m+1

Ck(X) ⊂ C∗(X). (4.10)

The embedding, denoted by ρ, is a section of the quotient map. The short exact sequence:

0 // C∗(Xm) // C∗(X) // C∗(X,Xm) // 0 (4.11)

induces a long exact sequence in conormal homology:

· · ·

∂p+1 // Hcn
p (Xm) // Hcn

p (X) // Hcn
p (X,Xm)

∂p // Hcn
p−1(Xm) //

· · · (4.12)

and we need to precise the connecting homomorphism.

Proposition 4.2 Let [c] ∈ Hcn
p (X,Xm). Then

∂p[c] = [δ(ρ(c))]. (4.13)
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Proof : Since c is by assumption a cycle in (C∗(X,Xm), δ), the chain ρ(c) has a boundary made
of faces contained in Xm. The result follows. ✷

Remarks 4.3
• We can replace X by Xl and quotient the exact sequence (4.11) by C∗(Xq) for any integers l,m, q
such that 0 ≤ q ≤ m ≤ l ≤ d. This leads to long exact sequences:

· · ·

∂ // Hcn
p (Xm, Xq) // Hcn

p (Xl, Xq) // Hpcn
p (Xl, Xm)

∂ // Hpcn

p−1(Xm, Xq) //
· · ·

(4.14)
whose connecting homomorphisms are again given by the formula of Proposition 4.2.
• If we split the conormal homology into even and odd periodic groups, then the long exact sequence
(4.12) becomes a six term exact sequence:

Hpcn
0 (Xm) // Hpcn

0 (X) // Hpcn
0 (X,Xm)

∂0

��
Hpcn

1 (X,Xm)

∂1

OO

Hpcn
1 (X)oo Hpcn

1 (Xm)oo

(4.15)

where ∂0, ∂1 are given by the direct sum in even/odd degrees of the maps ∂∗ of Proposition 4.2.
• We can replace Xm in the exact sequence (4.11) by an open saturated submanifold U ⊂ Xm, that
is, an open subset of X consisting of an union of faces. This gives in the same way a subcomplex
(C∗(U), δ) of (C∗(X), δ) and a section ρ : C∗(X,U) → C∗(X) allowing to state Proposition 4.2

verbatim. More generally, if U is any open submanifold of X and Ũ denotes the smallest open
saturated submanifold containing U , then any face f of U is contained in a unique face f̃ of X and
an oriention of N(f) determines an orientation of N(f̃). This gives rise to a quasi-isomorphism

C∗(U) → C∗(Ũ).

Finally, assume that d ≥ 1. Since X is connected, the map δ1 : C1(X) → C0(X) is surjective, which
implies by Proposition 4.2 the surjectivity of the connecting homomorphism ∂1 : Hpcn

1 (X,X0) →
Hpcn

0 (X0). This fact and Hpcn
1 (X0) = 0 gives, using (4.15), the useful corollary:

Corollary 4.4 For any connected manifold with corners X of codimension d ≥ 1 the canonical
morphism Hpcn

0 (X) → Hpcn
0 (X,X0) is an isomorphism.

4.4 Torsion free in low codimensions

Here we will show that up to codimension 2 the conormal homology groups (and later on the
K-theory groups) are free abelian groups.

Lemma 4.5 Let X be of arbitrary codimension and assume that ∂X has l connected components.
Then Hcn

1 (X) ≃ Zl−1.

Proof : For any face f , denote by cc(f) the connected component of ∂X containing f . It is
obvious that ker δ1 is generated by the differences f − g where f, g run through F1. Let f, g ∈ F1

such that cc(f) = cc(g). Then there exist f0, . . . , fl ∈ F1 such that f = f0, g = fl and fi∩fi+1 6= ∅
for any i. Therefore for any i, there exists fi,i+1 ∈ F2 such that δ2(fi,i+1) = fi − fi+1, hence
f − g = δ2(

∑
fi,i+1) is a boundary in conormal homology.

Now assume that cc(f) 6= cc(g). By the previous discussion, we also have [f − g] = [f ′ − g′] ∈
Hcn

1 (X) for any f ′, g′ ∈ F1 such that f ′ ⊂ cc(f) and g′ ⊂ cc(g). Therefore, pick up one hyperface
in each connected component of ∂X , call them f1, . . . , fl, and set αi = [f1 − fi] ∈ Hcn

1 (X) for
i ∈ {2, . . . , l}. It is obvious that (αi)2≤i≤l generates H

cn
1 (X). So, consider integers x2, . . . , xl such

that
l∑

i=2

xiαi = 0.

In other words, there exists x ∈ C2(X) such that

(

l∑

i=2

xi)f1 −
l∑

i=2

xifi = δ2(x). (4.16)
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For any p ≥ 1 and 2 ≤ j ≤ l denote by πj : Cp(X) → Cp(X) the map defined by πj(h) = h if
h ⊂ cc(fj) and πj(h) = 0 otherwise. All πis commute with δ∗, hence (4.16) gives

∀2 ≤ j ≤ l, xjfj = δ2(πj(x)).

Since δ1(fj) =
◦

X 6= 0, we conclude xj = 0 for all j. ✷

Theorem 4.6 Let assume that X is connected and has codimension d ≤ 2. Then Hpcn
∗ (X) is a

free abelian group.

Proof : This is essentially a compilation of previous examples and computations. The first two
cases in Example 4.2 give the result for d = 0 and d = 1. IfX is of codimension 2, then the third case
in Example 4.2 says that Hpcn

0 (X) is free. In codimension 2 again, we have Hpcn
1 (X) = Hcn

1 (X),
hence we are done by Lemma 4.5. ✷

Remark 4.7 If codim(X) = 3, then Hpcn
1 (X) = Hcn

1 (X) ⊕ Hcn
3 (X). Since Hcn

3 (X) = ker δ3,
Lemma 4.5 also gives that Hpcn

1 (X) is free. The combinatorics needed to prove that Hcn
2 (X) -

and therefore Hpcn
0 (X)- is free are much more involved. The torsion of conormal homology for

manifolds of arbitrary codimension will be studied somewhere else.

4.5 Künneth Formula for Conormal homology

Taking advantage of the previous paragraph, we consider a product X = X1×X2 of two manifolds
with corners, one of them being of codimension ≤ 2. It is understood that the defining functions
used for X are obtained by pulling back the ones used for X1 and X2. The tensor product (Ĉ∗, δ̂)
of the conormal complexes of X1 and X2 is given by

Ĉp =
⊕

s+t=p

Cs(X1)⊗ Ct(X2) and δ̂(x⊗ y) = δ(x)⊗ y + (−1)tx⊗ δ(y) (4.17)

where x ∈ Ct(X1) in the second formula. We have an isomorphism of differential complexes:

(Ĉ∗, δ̂) ≃ (C∗(X), δ). (4.18)

It is given by the map

Ψp : Ĉp =
⊕

s+t=p

Cs(X1)⊗ Ct(X2) −→ Cp(X) (4.19)

defined by:
(f ⊗ ǫf )⊗ (g ⊗ ǫg) 7−→ (f × g)⊗ ǫf · ǫg, (4.20)

where we did not distinguish differential forms on Xj and their pull-back to X via the canonical
projections and · denotes again the exterior product. Since Hcn

∗ (Xj) is torsion free for j = 1 or 2
by assumption, we get by Künneth Theorem:

Hp(Ĉ∗, δ̂) =
⊕

s+t=p

Hcn
s (X1)⊗Hcn

t (X2). (4.21)

Therefore:

Proposition 4.8 (Künneth Formula) Assume that X = X1 × X2 with one factor at least of
codimension ≤ 2. Then we have:

Hpcn
0 (X) ≃ Hpcn

0 (X1)⊗Hpcn
0 (X2)⊕Hpcn

1 (X1)⊗Hpcn
1 (X2), (4.22)

Hpcn
1 (X) ≃ Hpcn

0 (X1)⊗Hpcn
1 (X2)⊕Hpcn

1 (X1)⊗Hpcn
0 (X2) (4.23)

The following straightforward corollary will be useful later on:

Corollary 4.9 If X = ΠiXi is a finite product of manifold with corners Xi with codim(Xi) ≤ 2,
then the groups Hpcn

∗ (X) are torsion free.

The exact same arguments as above work to show that the Kunneth formula holds in full
generality for conormal homology with rational coefficients, i.e. for Hpcn

∗ (X)⊗Z Q. We state the
proposition as we will use it later:

Proposition 4.10 (Künneth Formula with rational coefficients) For X = X1×X2 we have:

Hpcn
0 (X)⊗ZQ ≃ (Hpcn

0 (X1)⊗ZQ)⊗(Hpcn
0 (X2)⊗ZQ)⊕(Hpcn

1 (X1)⊗ZQ)⊗(Hpcn
1 (X2)⊗ZQ), (4.24)

Hpcn
1 (X)⊗ZQ ≃ (Hpcn

0 (X1)⊗ZQ)⊗(Hpcn
1 (X2)⊗ZQ)⊕(Hpcn

1 (X1)⊗ZQ)⊗(Hpcn
0 (X2)⊗ZQ) (4.25)
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5 The computation of K∗(Kb(X))

We keep all the notations and conventions of Section 4. In particular, the defining functions induce
a trivialisation of the conormal bundle of any face f :

N(f) ≃ f × Ef , (5.1)

in which the p-dimensional real vector space Ef inherits a basis bf = (ei)i∈I , where I is character-
ized by f ∈ c(I). These data induce an isomorphism

Γb(X)|f ≃ C∗(C(f)× Ef ) (5.2)

where C(f) denotes the pair groupoid over f , as well as a linear isomorphism ϕf : Rp → Ef .
Also, the filtration (4.8) gives rise to the following filtration of the C∗-algebra Kb(X) =

C∗(Γb(X)) by ideals:

K(L2(
◦

X)) = A0 ⊂ A1 ⊂ . . . ⊂ Ad = A = Kb(X), (5.3)

with Am = C∗(Γ(X)|Xm) for any 0 ≤ m ≤ d. The isomorphisms (5.2) induce

Am/Am−1 ≃ C∗(Γ|Xm\Xm−1
) ≃

⊕

f∈Fm

C∗(C(f)× Ef ). (5.4)

5.1 The first differential of the spectral sequence for K∗(A)

The K-theory spectral sequence (Er
∗,∗, d

r
∗,∗)r≥1 associated with (5.3) [29, 12] converges to:

E∞
p,q = Kp+q(Ap)/Kp+q(Ap−1). (5.5)

Here we have set Kn(A) = K0(A⊗ C0(R
n)) for any C∗-algebra A. By construction, all the terms

Er
p,2q+1 vanish and by Bott periodicity, Er

p,2q ≃ Er
p,0. Also, all the differentials d2rp,q vanish. By

definition:
d1p,q : E1

p,q = Kp+q(Ap/Ap−1) −→ E1
p−1,q = Kp+q−1(Ap−1/Ap−2) (5.6)

is the connecting homomorphism of the short exact sequence:

0 −→ Ap−1/Ap−2 −→ Ap/Ap−2 −→ Ap/Ap−1 −→ 0. (5.7)

By (5.4), we get isomorphisms:

E1
p,q ≃

⊕

f∈Fp

Kp+q(C
∗(C(f)× Ef )). (5.8)

Since the real vector space Ef has dimension p, the groups E1
p,q vanish for odd q and for even q,

we have after applying Bott periodicity, E1
p,q ≃ Z#Fp .

Melrose and Nistor [16, Theorem 9] already achieved the computation of d1∗,∗. In order to relate
the terms E2

∗,∗ with the elementary defined conormal homology, we reproduce their computation
in a slightly different way. Our approach is based on the next two lemmas.

Lemma 5.1 Let R+ ⋊R be the groupoid of the action of R onto R+ given by

t.λ = teλ, t ∈ R+, λ ∈ R. (5.9)

The element α ∈ KK1(C
∗(R), C∗(R∗

+)) associated with the exact sequence

0 −→ C∗(C(R∗
+)) −→ C∗(R+ ⋊R) −→ C∗(R) −→ 0 (5.10)

is a KK-equivalence.

Proof : By the Thom-Connes isomorphism, the C∗-algebras C∗(R+ ⋊ R) and C∗(R+ × R) are
KK-equivalent. The latter being K-contractible, the result follows. ✷
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Lemma 5.2 Let R+ ⋊i R
p be the groupoid given by the action of the ith coordinate of Rp on R+

by (5.9). Let αi,p ∈ KK1(C
∗(Rp), C∗(Rp−1)) be the KK-element induced by the exact sequence

0 −→ C∗(C(R∗
+)× Rp−1) −→ C∗(R+ ⋊i R

p) −→ C∗(Rp) −→ 0. (5.11)

Then for all 1 ≤ i ≤ p we have

αi,p = (−1)i−1α1,p and α1,p = σC∗(Rp−1)(α), (5.12)

where σD : K∗(A,B) → K∗(A⊗D,B ⊗D) denotes the Kasparov suspension map.

Proof : Let τ be a permutation of {1, 2, . . . , p} and i ∈ {1, . . . , p}. We denote in the same way
the corresponding automorphisms of Rp and C∗(Rp). We have a groupoid isomorphism

τ̃ : R+ ⋊i R
p ≃
−→ R+ ⋊τ(i) R

p

and if we denote by τi the automorphism of Rp−1 obtained by removing the ith factor in the domain
of τ and the τ(i)

th
factor in the range of τ , we get a commutative diagram of exact sequences:

0 // C∗(C(R∗
+)× Rp−1))

τi

��

// C∗(R+ ⋊i R
p)

τ̃

��

// C∗(Rp) //

τ

��

0

0 // C∗(C(R∗
+)× Rp−1)) // C∗(R+ ⋊τ(i) R

p) // C∗(Rp) // 0

(5.13)

It follows that
ατ(i),p = [τ−1]⊗ αi,p ⊗ [τi] ∈ KK1(C

∗(Rp),K ⊗ C∗(Rp−1)). (5.14)

Taking τ = (1, i), we get τ = τ−1 and τi = id, so that αi,p = [τ ]⊗α1,p. Moreover, observe that for
any j,

[(j − 1, j)] = 1j−2 ⊗ [f ]⊗ 1p−j ∈ K(C∗(Rp), C∗(Rp)) (5.15)

where [f ] = −1 ∈ KK(C∗(R2), C∗(R2)) is the class of the flip automorphism and we have used
the identification

C∗(Rp) = C∗(Rj−2)⊗ C∗(R2)⊗ C∗(Rp−j).

Using
(1, i) = (1, 2).(2, 3) . . . (i − 1, i)

now gives [τ ] = (−1)i−1. Factorizing C∗(Rp−1) on the right in the sequence (5.11) for i = 1 gives
the assertion α1,p = σC∗(Rp−1)(α). ✷

Using the canonical isomorphism KK1(C
∗(R), C∗(R∗

+)) ≃ KK1(C0(R),C), we can define a
generator β of K1(C0(R)) by

β ⊗ α = +1. (5.16)

For any f ∈ Fp we then obtain a generator βf of Kp(C0(Ef )) by

βf = (ϕf )∗(β
p) ∈ Kp(C0(Ef )) (5.17)

where βp is the external product:

βp = β ⊗C · · · ⊗C β ∈ Kp(C0(R
p)). (5.18)

Picking up rank one projectors pf in C∗(C(f)), we get a basis of the free Z-module E1
p,0:

(pf ⊗ βf )f∈Fp . (5.19)

Bases of E1
p,q for all even q are deduced from the previous one by applying Bott periodicity.

Now consider faces f ∈ Fp and g ∈ Fp−1 such that f ⊂ ∂g. The p and p − 1 uples I, J such
that f ∈ c(I) and g ∈ c(J) differ by exactly one index, say the jth, and we define

σ(f, g) = (−1)j−1. (5.20)

Introduce the exact sequence

0 −→ C∗(C(f × R∗
+)× Eg) −→ C∗(C(f)× (R+ ⋊j Ef )) −→ C∗(C(f)× Ef ) −→ 0, (5.21)
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where R+ ⋊j Ef denotes the transformation groupoid where the jth coordinate (only) of Ef acts
on R+ by (5.9) again. We note

∂f,g : Kp(C
∗(C(f)× Ef )) −→ Kp−1(C

∗(C(g)× Eg))

the connecting homomorphism associated with (5.21), followed by the unique KK-equivalence

C∗(C(f × R∗
+)) −→ C∗(C(g)) (5.22)

provided by any tubular neighborhood of f into g.

Proposition 5.3 With the notation above, we get

∂f,g(pf ⊗ βf ) = σ(f, g).pg ⊗ βg. (5.23)

Proof : Identify Ef ≃ Rp and Eg ≃ Rp−1 using bf , bg and apply Lemmas 5.2 and 5.1. ✷

We can now achieve the determination of d1∗,∗.

Theorem 5.4 We have

∀f ∈ Fp, d1p,0(pf ⊗ βf ) =
∑

g∈Fp−1

f⊂∂g

σ(f, g)pg ⊗ βg. (5.24)

Proof : For p = 0, we have Fp−1 = ∅ and d1p,0 = 0, the result follows. For p ≥ 1, we recall that

d1p,0 : ⊕f∈FpKp(C
∗(C(f)× Ef )) −→ ⊕g∈Fp−1Kp−1(C

∗(C(g)× Eg)). (5.25)

is the connecting homomorphism in K-theory of the exact sequence (5.7). We obviously have

d1p,0(pf ⊗ βf ) =
∑

g∈Fp−1

∂g(pf ⊗ βf ) (5.26)

where ∂g is the connecting homomorphism in K-theory of the exact sequence

0 −→ C∗(Γ|g) −→ C∗(Γ|g∪f ) −→ C∗(Γ|f ) −→ 0. (5.27)

If f 6⊂ ∂g then the sequence splits and ∂g(pf ⊗ βf ) = 0. Let g ∈ Fp−1 be such that f ⊂ ∂g. Let U
be an open neighborhood of f in X such that there exists a diffeomorphism

Ug := U ∩ g −→ f × (0,+∞), x 7−→ (φ(x), rig (x)), (5.28)

where rig is the defining function of f in g. This yields a commutative diagram

0 // C∗(Γ|Ug )

→֒ι

��

// C∗(Γ|Ug∪f )

→֒

��

// C∗(Γ|f ) //

=

��

0

0 // C∗(Γ|g) // C∗(Γ|g∪f ) // C∗(Γ|f ) // 0

(5.29)

whose upper sequence coincides with (5.21) using (5.28). This implies

∂g = ∂f,g. (5.30)

The result follows by Proposition 5.3. ✷

The map d1p,q, q even, is deduced from d1p,0 by Bott periodicity. We are ready to relate the E2

terms with conormal homology.

Corollary 5.5 For every p ∈ {1, ..., d} there are isomorphisms

φi
p,1 : Hpcn

i (Xp, Xp−1) −→ Ki(Ap/Ap−1), {0, 1} ∋ i ≡ p mod 2, (5.31)

such that the following diagram commute

Hpcn
i (Xp, Xp−1)

φi
p,1 //

∂

��

Kp(Ap/Ap−1))

d1
p,0

��
Hpcn

1−i (Xp−1, Xp−2)
φ
1−i
p−1,1// Kp−1(Ap−1/Ap−2))

(5.32)

where ∂ stands for the connecting morphism in conormal homology.
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Proof : If i ≡ p mod 2 then Hpcn
i (Xp, Xp−1) = Cp(X) and ∂ = δp : Cp(X) −→ Cp−1(X).

We define (5.31) by φi
p,1(f ⊗ ǫf ) = pf ⊗ βf and Theorem 5.4 gives the commutativity of (5.32). ✷

In other words, the map f ⊗ ǫf 7→ pf ⊗ βf induces a isomorphism

Hcn
p (X) ≃ E2

p,0. (5.33)

It would be very interesting to compute the higher differentials d2r+1
p,0 .

5.2 The final computation for K∗(Kb(X)) in terms of conormal homology

Before getting to the explicit computations and to the analytic corollaries in term of these, let
us give a simple but interesting result. It is about the full understanding of the six term exact
sequence in K-theory of the fundamental sequence

0 // K(X)
i0 // Kb(X)

r // Kb(∂X) // 0. (5.34)

Proposition 5.6 For a connected manifold with corners X of codimension greater or equal to one
the induced morphism by r in K0, r : K0(Kb(X)) → K0(Kb(∂X)), is an isomorphism. Equivalently

1. The morphism iF : K0(K) ∼= Z → K0(Kb(X)) is the zero morphism.

2. The connecting morphism K1(Kb(∂X)) → K0(K) ∼= Z is surjective.

Proof : Let X be a connected manifold with corners of codimension d. With the notations
of the last section, the sequence 5.34 correspond to the canonical sequence

0 // A0
// Ad

// Ad/A0
// 0.

We will prove that the connecting morphism K1(Ad/A0) → K0(A0) ∼= Z is surjective. The proof
will proceed by induction, the case d = 1 immediately satisfies this property. So let us assume that
the connecting morphism K1(Ad−1/A0) → K0(A0) associated to the short exact sequence

0 // A0
// Ad−1

// Ad−1/A0
// 0.

is surjective. Consider now the following commutative diagram of short exact sequences

0 // 0 // Ad/Ad−1
// Ad/Ad−1

// 0

0 // A0

OO

// Ad

OO

// Ad/A0

OO

// 0

0 // A0

OO

// Ad−1

OO

// Ad−1/A0

OO

// 0.

(5.35)

By applying the six-term short eaxt sequence in K-theory to it we obtain that the following diagram,
where ∂d and ∂d−1 are the connecting morphisms associated to the middle and to the bottom rows
respectively,

K(Ad/A0)

∂d

&&◆◆
◆◆

◆◆
◆◆

◆◆

K1(Ad−1/A0)

OO

∂d−1

// K0(A0)

is commutative. Hence, by inductive hypothesis, we obtain that ∂d is surjective. ✷

Remark 5.7 Roughly speaking, the previous proposition tells us that the analytical index of a fully
elliptic element carries no information about its Fredholm index, this information being completely
contained in some element of K1(Kb(∂X)).

We have next our main K-theoretical computation:
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Theorem 5.8 Let X be a finite product of manifolds with corners of codimension less or equal to
three. There are natural isomorphisms

Hpcn
0 (X)⊗Z Q

φX

∼=
// K0(Kb(X)))⊗Z Q and Hpcn

1 (X)⊗Z Q
φX

∼=
// K1(Kb(X))⊗Z Q.

(5.36)
In the case X contains a factor of codimension at most two or X is of codimension three the result
holds even without tensoring by Q.

Proof :

1A. Codim(X) = 0: The only face of codimension 0 is
◦

X (we are always assuming X to be
connected). The isomorphism

Hcn
0 (X0)

φ0
−→ K0(A0)

is simply given by sending
◦

X to the rank one projector p ◦
X

chosen in section 5.1.

1B. Codim(X) = 1: Consider the canonical short exact sequence

0 // A0
// A1

// A1/A0
// 0

That gives, since d11,0 is surjective, the following exact sequence in K-theory

0 // K1(A1) // K1(A1/A0)
d1
1,0 // K0(A0) // 0

from which K1(A1) ∼= kerd11,0 and K0(A1) = 0 (since K0(A1/A0) = 0 by a direct computation
for K-theory or for conormal homology). By theorem 5.4, corollary 5.5, we have the following
commutative diagram

K1(A1/A0)
d1
1,0 // K0(A0)

Hpcn
1 (X1 \X0)

φ1,0 ∼=

OO

δ1

// Hpcn
0 (X0).

φ0
∼=

OO

Then there is a unique natural isomorphism

Hpcn
1 (X1)

φ1
−→ K1(A1),

fitting the following commutative diagram

0 // K1(A1) // K1(A1/A0)
d1
1,0 // K0(A0) // 0

0 // Hpcn
1 (X1)

φ1
∼=

OO

// Hpcn
1 (X1 \X0)

φ1,0 ∼=

OO

∂1,0 // Hpcn
0 (X0)

φ0
∼=

OO

// 0.

1C. Codim(X) = 2: We first proof that we have natural isomorphisms

Hcn
∗ (Xl, Xm)

φl,m

∼=
// K∗(Al/Am) (5.37)

for every 0 ≤ m ≤ l with l − m = 2 and for every manifold with corners (of any codimension).
Indeed, this case can be treated very similar to the above one. Suppose l is even, the odd case is
treated in the same way by exchanging K0 by K1 and H0 by H1. By comparing the long exact
sequences in conormal homology we have that there exist unique natural isomorphisms φ0

l,l−2 and

φ1
l,l−2 making the following diagram commutative

0 // K0(Al/Al−2) // K0(Al/Al−1)

d1l,0 // K1(Al−1/Al−2) // K1(Al/Al−2) // 0

0
//
H

pcn
0 (Xl \ Xl−2)

φ0
l,l−2

∼=

OO

//
H

pcn
0 (Xl \ Xl−1)

φl,l−1 ∼=

OO

∂l,0 //
H

pcn
1 (Xl−1 \ Xl−2)

φl−1,l−2 ∼=

OO

//
H

pcn
1 (Xl \ Xl−2)

φ1
l,l−2

∼=

OO

//
0.
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since the diagram in the middle is commutative again by corollary 5.5.
Let us now pass to the case when codim(X) = 2. Consider the short exact sequence:

0 // A0
// A2

// A2/A0
// 0. (5.38)

We compare its associated six term short exact sequence in K-theory with the one in conormal
homology to get

Z
// K0(A2) // K0(A2/A0)

��

H0(X0)
//

φ0

∼=

77♣♣♣♣♣♣♣♣♣♣♣♣♣♣
H

pcn
0 (X2)

//

?2

99

H
pcn
0 (X2, X0)

��

77♣♣♣♣♣♣♣♣♣♣♣

φ2,0

∼=

77

K1(A2/A0)

OO

K1(A2)
oo

0
oo

H
pcn
1

(X2, X0)

OO

φ2,0

∼=

77

H
pcn
1

(X2)

?1

99

oo 0

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦oo

(5.39)
where we need now to define isomorphisms ?1 and ?2. In fact if we can define morphims such that
the diagrams are commutative then by a simple Five lemma argument they would be isomorphisms.
The first thing to check is that

K1(A2/A0)
d2,0 // K0(A0) ∼= Z

Hpcn
1 (X2, X0)

φ2,0 ∼=

OO

∂2,0

// Hpcn
0 (X0)

φ0∼=

OO
(5.40)

is commutative. Indeed, this can be seen by considering the following commutative diagram of
short exact sequences

0 // 0 // A2/A1
// A2/A1

// 0

0 // A0

OO

// A2

OO

// A2/A0

OO

// 0

0 // A0

OO

// A1

OO

// A1/A0

OO

// 0,

(5.41)

applying the associated diagram between the short exact sequences that gives that the con-

necting morphism for the middle row, K1(A2/A0)
d2,0
−→ K0(A0), is given by a (any) splitting of

K1(A1/A0) → K1(A2/A0) (both modules are free Z-modules by theorem 4.6) followed by the
connecting morphism associated to the exact sequence on the bottom of the above diagram. By
definition of φ2,0 in (5.37) above and by corollary 5.5 we have that these two last morphisms are
compatible with the analogs in the respective conormal homologies, since the connecting morphism
∂2,0 in conormal homology is obtained in this way as well we conclude the commutativity of (5.40).
We are ready to define ?1 and ?2. For the first one, ?1, there is a unique isomorphism φ1

2 fitting
the following commutative diagram

0 // K1(A2) // K1(A2/A0)

0 // Hpcn
1 (X2)

φ1
2

∼=

OO

// Hpcn
1 (X2, X0)

φ1
2,0

∼=

OO

and given by restriction of φ1
2,0 to the image of Hpcn

1 (X2) → Hpcn
1 (X2, X0). Now, for defining ?2
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we have by theorem 5.6 an unique isomorphism φ0
2 fitting the following diagram

K0(A2)
∼= // K0(A2/A0)

Hpcn
0 (X2)

φ0
2

∼=

OO

∼=
// Hpcn

0 (X2, X0).

φ0
2,0

∼=

OO

1D. Codim(X) = 3: Consider the short exact sequence:

0 // A2
// A3

// A3/A2
// 0.

We compare its associated six term short exact sequence in K-theory with the one in conormal
homology to get

K0(A2)
//
K0(A3)

//
0

��

H
pcn
0

(X2) //

φ2

∼=

77♦♦♦♦♦♦♦♦♦♦♦
H

pcn
0

(X3) //

?2

99

0

��

99ssssssssssss

99

K1(A3/A2)

OO

K1(A3)
oo

K1(A2)
oo

H
pcn
1 (X3 , X2)

OO

φ3,2

∼=

77

H
pcn
1 (X3)

?1

99

oo
H

pcn
1 (X2)

φ2

∼=

99ssssssssss
oo

(5.42)

where we need now to define isomorphisms ?1 and ?2. Again, if we can define morphims such that
the diagrams are commutative then by a simple Five lemma argument they would be isomorphisms.
Let us first check that the diagram

K1(A3/A2)
∂ // K0(A2)

Hpcn
1 (X3, X2)

φ3,2 ∼=

OO

∂
// Hpcn

0 (X2)

φ2∼=

OO
(5.43)

is commutative. For this consider the following commutative diagram of short exact sequences

0 // A1
//

��

A1
//

��

0

��

// 0

0 // A2

��

// A3

��

// A3/A2

��

// 0

0 // A2/A1
// A3/A1

// A3/A2
// 0.

(5.44)

that implies that the connecting morphism K1(A3/A2)
∂
→ K0(A2) followed by the morphism

K0(A2) → K0(A2/A1) coincides with the connecting morphism K1(A3/A2)
∂
→ K0(A2/A1). Now,

the two latter morphisms are compatible with the analogs in conormal homology via the isomor-
phisms described above and the morphism K0(A2) → K0(A2/A1) is injective (since K0(A1) = 0),
hence the commutativity of diagram 5.43 above follows. From diagram (5.42), by passage to the
quotient, there is unique isomorphism φ0

3 (the one filling ?2 in the above diagram) such that

K0(A2) // K0(A3) // 0

Hpcn
0 (X2)

φ0
2

∼=

OO

// Hpcn
0 (X3)

φ0
3

∼=

OO

// 0

is commutative. Finally, for defining ?1, it is now enough to choose splittings for the map

0 → Hpcn
1 (X2) → Hpcn

1 (X3),
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which is possible since Hpcn
1 (X3) is free (see theorem 4.6 and the remark below it) and for the map

K1(A3) → im j → 0,

where j is the canonical morphism j : K1(A3) → K1(A3/A2) (remember all the groupsK∗(Ap/Ap−1)
are torsion free).

1E. If X = ΠiXi is a finite product with codim(Xi) ≤ 3 and with at least one factor
of codimension at most 2: In this case the result would follow, by all the points above, if
both, Periodic conormal homology and K-theory, satisfy the Künneth formula. Since the algebras
Kb(X) are nuclear because the groupoids Γb(X) are amenable we have the Künneth formula in
K-theory for these kind of algebras. Now, for conormal homology we verified the Künneth formula
in proposition 4.8.

1F. If X = ΠiXi is a finite product with codim(Xi) ≤ 3, ∀i: In this case the result holds
rationnaly by the same arguments as above by using propostion 4.10. ✷

6 Fredholm perturbation properties and Euler conormal char-

acters

The previous results yield a criterium for Property (HFP) in terms of the Euler characteristic
for conormal homology. To fit with the assumptions of Theorem 5.8, we consider a manifold with
corners X of codimension d, which is given by the cartesian product of manifolds with corners of
codimension at most 3.

Definition 6.1 (Corner characters) Let X be a manifold with corners. We define the even
conormal character of X as

χ0(X) = dimQHpcn
0 (X)⊗Z Q. (6.1)

Similarly, we define the odd conormal character of X as

χ1(X) = dimQHpcn
1 (X)⊗Z Q. (6.2)

We can consider as well
χ(X) = χ0(X)− χ1(X), (6.3)

then we have (by the rank nullity theorem)

χ(X) = 1−#F1 +#F2 − · · ·+ (−1)d#Fd. (6.4)

We refer to the integer χ(X) as the Euler corner character of X . These numbers are clearly
invariant under the natural notion of isomorphism of manifolds with corners. Their computation
is elementary in any concrete situation.

In particular one can rewrite the theorem above to have, for X as in the statement,

K0(Kb(X))⊗Z Q ∼= Qχ0(X)

K1(Kb(X))⊗Z Q ∼= Qχ1(X)

(6.5)

and, in terms of the corner character,

χ(X) = rank(K0(Kb(X))⊗Z Q)− rank(K1(Kb(X))⊗Z Q). (6.6)

In the case X is a finite product of manifolds with corners of codimension at most 2 we even
have

K0(Kb(X)) ≃ Zχ0(X) and K1(Kb(X)) ≃ Zχ1(X) (6.7)

and also χcn(X) = rk(K0(Kb(X)))− rk(K1(Kb(X))).

We end with the characterization of Property (HFP) in terms of conormal characteristics.

Theorem 6.2 Let X be a compact connected manifold with corners of codimension greater or
equal to one. If X is a finite product of manifolds with corners of codimension less or equal to
three we have that
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1. If X satisfies the Fredholm Perturbation property then the even Euler corner character of X
vanishes, i.e. χ0(X) = 0.

2. If the even Periodic conormal homology group vanishes, i.e. Hpcn
0 (X) = 0 then X satisfies

the stably homotopic Fredholm Perturbation property.

3. If Hpcn
0 (X) is torsion free and if the even Euler corner character of X vanishes, i.e. χ0(X) =

0 then X satisfies the stably homotopic Fredholm Perturbation property.

Proof :

1. Suppose χ0(X) 6= 0 then K0(Kb(X))⊗Z Q ∼= Qχ0(X) is not the zero group. By theorem 3.5
it is enough to prove that the rationalized analytic indicial index morphism

Inda : K0
top(

bT ∗X)⊗Z Q −→ K0(Kb(X))⊗Z Q

is not the zero morphism. In [21] (theorem 12, 13 and proposition 7 in ref.cit.), Monthubert
and Nistor construct a manifold with corners Y and a closed embedding of manifolds with

embedded corners X
i

−→ Y to obtain a commutative diagram

K0
top(

bT ∗X)⊗Z Q

i!

��

Inda // K0(Kb(X))⊗Z Q

∼= i∗

��
K0

top(
bT ∗Y )⊗Z Q

Inda

∼= // K0(Kb(Y ))⊗Z Q.

(6.8)

They call such a Y a classifying space of X . For our purposes it would be then enough to
show that the morphism

i! : K0
top(

bT ∗X)⊗Z Q −→ K0
top(

bT ∗Y )⊗Z Q

is not the zero morphism. But now we are at the topological K-theory level (with compact
supports) where classic topological arguments apply to get that the morphism above is not
the zero morphism. Indeed, for construct i! one uses a tubular neighborhood (which exist in
this setting, see for example Douady [10]), the first step is then a Thom isomorphism followed
by a morphism induced by a classic extension by zero. This is summarized in proposition 5
in [21]. The conclusion follows.

2. If Hpcn
0 (X) = 0 then Hpcn

0 (X)⊗Z Q = 0 and the result follows from theorems 5.8 and 3.5.

3. In this case K0(Kb(X)) ∼= Zχ0(X) by theorem 5.8 and the arguments applied in the last two
points identically apply to get the result (the results of Monthubert-Nistor cited above hold
over Z).

✷

7 Appendix: more on conormal homology

We reproduce the discussion leading to the definition of the conormal differential in a slightly more
general way. We keep the same notations. Let f ∈ Fp, ǫf an orientation of N(f) and g ∈ Fp−k

such that f ⊂ g. The face f is characterized in g by the vanishing of k defining functions and we
denote by (g, f) the corresponding k-uple of their indices. Then the contraction ǫg := e(g,f)yǫf is
an orientation of N(g). Recall that:

eJy· = ej1y(. . .y(ejky·) . . .). (7.1)

For any integers 0 ≤ k ≤ p, we define δkp : Cp(X) → Cp−k(X) by

δkp (f ⊗ εf ) =
∑

g∈Fp−k,
f⊂g

g ⊗ e(g,f)yεf . (7.2)
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We get a homomorphism δpcn : C(X) → C(X) of degree 1 with respect to the Z2-grading by setting:

δpcni =
∑

k≥0,
p≡imod 2

δ2k+1
p , i = 0, 1. (7.3)

Proposition 7.1 The map δpcn is a differential, that is δpcn ◦ δpcn = 0.

Proof : Let f ∈ Fp(X) and ǫ be an orientation of N(f). We have

δpcn(δpcn(f ⊗ ǫ)) =
∑

g,h s.t. h⊃g⊃f
(g,f),(h,g) are odd

(
h⊗ e(h,g)y(e(g,f)yε)

)
. (7.4)

Let g, h providing a term in the sum above and denote by I, J,K the uples labelling the defining
functions of f, g, h respectively. Then set

J ′ = I \ (h, g). (7.5)

By definition of manifolds with (embedded) corners, HJ′ is not empty and there exists a unique
face g′ ∈ c(J ′) with f ⊂ g′. This face g′ = ι(g, h, f) satisfies the following properties:

• f ⊂ g′ ⊂ h,

• (g′, f) = (h, g) and (h, g′) = (g, f) are odd,

• ι(g′, h, f) = g.

Finally, note that #(g, f) 6= #(h, g), otherwise we would have (h, f) = (h, g) + (g, f) even. This
implies in particular that g 6= g′. These observations allow to reorganize the sum (7.4) as follow:

δpcn(δpcn(f ⊗ ǫ)) =
∑

g,h s.t. h⊃g⊃f
#(g,f)<#(h,g) odd

(
h⊗ (e(h,g)y(e(g,f)yε+ e(h,g′)y(e(g′,f)yε))

)
.

Now

e(h,g)y(e(g,f)yε) + e(h,g′)y(e(g′,f)yε) = e(h,g)y(e(g,f)yε) + e(g,f)y(e(h,g)yε) = 0

since #(g, f) and #(h, g) are odd. ✷

Proposition 7.1 implies δ1p−1 ◦ δ
1
p = 0 for any p. Since δ1∗ = δ∗, this proves the claim of Paragraph

4.1. Moreover:

Proposition 7.2 The identity map (C∗(X), δ1) −→ (C∗(X), δ) induces an isomorphism between
the Z2-graded homology groups.

Lemma 7.3 The following equality hold for any k ≥ 0:

δ2k+1 = δ2k ◦ δ1 = δ1 ◦ δ2k (7.6)

Proof of the lemma : Let f be a codimension p face and ǫ an orientation of N(f). Let I be the
p-uple defining f . Then g is a face such that f ⊂ g if and only if g is a connected component of HJ

for some J ⊂ I. Since the definition of δ(f) only involves faces g with f ⊂ g, it is no restriction to
remove the connected component of HJ disjoint from f for any J ⊂ I, or equivalently to assume
that such HJ are connected. It follows that the faces appearing in the definition of δ(f) are in
one-to-one correspondence with the uples J ⊂ I so they can be indexed by them and eventually
omitted in the sum defining δ∗(f). It follows that, ǫI denoting an orientation of N(f),

δ2k ◦ δ1(ǫI) =
∑

|J|=2k

∑

1≤i≤N

eJyeiyǫI =
∑

|J|=2k+1

2k+1∑

l=1

ej1y · · · êjly · · ·yej2k+1
yejlyǫI

=
∑

|J|=2k+1

2k+1∑

l=1

(−1)l−1eJyǫI =
∑

|J|=2k+1

eJyǫI = δ2k+1(ǫI).
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The equality δ2k+1 = δ1 ◦ δ2k is obtained in the same way. ✷

Proof of Proposition 7.2 : Let us set N =
∑

k≥0 δ
2k and h = Id + N . Using the lemma,

we get:
δpcn = δ1 ◦ h = h ◦ δ1. (7.7)

Since N is nilpotent, the map h is invertible with inverse given by the finite sum

h−1 =
∑

j≥0

(−1)jN j.

This proves that δ1(x) = 0 if and only if δpcn(x) = 0 and that x = δ1(y) if and only if x = δpcn(y′)
for some y, y′ as well. The proposition follows. ✷

The differential δ1 is of course much simpler to handle than δpcn.
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