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ABSTRACT. We prove an analogue of the Kotschick-Morgan Conjecture in the context of SO(3)
monopoles, obtaining a formula relating the Donaldson and Seiberg—Witten invariants of smooth
four-manifolds using the SO(3)-monopole cobordism. The main technical difficulty in the SO(3)-
monopole program relating the Seiberg—Witten and Donaldson invariants has been to compute
intersection pairings on links of strata of reducible SO(3) monopoles, namely the moduli spaces
of Seiberg-Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the
moduli space of SO(3) monopoles [27]. In this monograph, we prove — modulo a gluing theorem
which is an extension of our earlier work in [24] — that these intersection pairings can be expressed
in terms of topological data and Seiberg-Witten invariants of the four-manifold. Our proofs that
the SO(3)-monopole cobordism yields both the Superconformal Simple Type Conjecture of Moore,
Marifio, and Peradze [65],[64] and Witten’s Conjecture [103] in full generality for all closed, oriented,
smooth four-manifolds with by = 0 and odd b* > 3 appear in [25], [23].
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Preface

The SO(3)-monopole cobordism formula is an equality between the Donaldson invariant of a
closed, smooth four-manifold, X, and a universal expression involving the Seiberg—Witten invariants
of X, the intersection form of X, and other homotopy invariants of X. In this monograph, we prove
that this formula follows from certain properties of the gluing map constructed in [24].

Our proof that the SO(3)-monopole cobordism formula implies Witten’s Conjecture [103] re-
lating the Donaldson and Seiberg—Witten invariants for four-manifolds of simple type which satisfy
a ‘geography inequality’ or which are ‘abundant’ (as defined in [20]) appeared in [33]. Our proofs
that the SO(3)-monopole cobordism yields both the Superconformal Simple Type Conjecture of
Moore, Marino, and Peradze [65), [64] and Witten’s Conjecture [103] in full generality for all closed,
oriented, smooth four-manifolds with b;(X) = 0, odd b™(X) > 3, and Seiberg-Witten simple type
have appeared in [25] and [23], respectively.

The monopole cobordism formula has an important feature in common with that conjectured
by Kotschick and Morgan [52] concerning the wall-crossing property for Donaldson invariants: both
formulae give an equality relating the invariants that involves unknown coefficients depending only
on the homotopy type of the manifold. Gottsche [41] and Gottsche and Zagier [45] assumed the
validity of the Kotschick-Morgan Conjecture to derive a wall-crossing formula, with all coefficients
explicitly determined, and the resulting structure of Donaldson invariants for four-manifolds with
bT = 1. We applied a broadly similar strategy in our articles |25, [23], but refer interested readers
to those articles for further details.

The main technical difficulty arising in the SO(3)-monopole program to prove Witten’s Conjec-
ture has been to compute intersection pairings on the links of strata of reducible SO(3) monopoles,
namely the moduli spaces of Seiberg—Witten monopoles lying in lower-level strata of the Uhlenbeck
compactification of the moduli space of SO(3) monopoles [27]. Our local gluing map [24] param-
eterizes a neighborhood of one of these strata. In this monograph, we solve the ‘overlap problem’
described in [32] and show how these local gluing maps fit together to describe a neighborhood
of the union of these strata. This description allows us to prove that the desired intersection
numbers can be expressed as a universal expression in the relevant Seiberg—Witten invariant, the
intersection form of the manifold, and other homotopy invariants of the manifold appearing in the
SO(3)-monopole cobordism formula.

Because the SO(3)-monopole cobordism formula has certain key features in common with that
conjectured by Kotschick and Morgan [52], not only in the form of the result but also in the nature
of the intersection pairings to be computed, we can use the techniques developed herein to prove
that the Kotschick—-Morgan Conjecture also follows by similar arguments and the form of our gluing
theorem for anti-self-dual connections [21].

Since the first version of this monograph was circulated, applications of our results have ap-
peared in the proof of Property P for knots by Kronheimer and Mrowka [54] and work of Sivek

ix
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on Donaldson invariants for symplectic four-manifolds [91]. An alternative approach to Witten’s
Conjecture, inspired by results in physics, has been pursued by Gottsche, Nakajima, and Yoshioka
[43], [42], [44], based in part on work of Mochizuki [69].
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CHAPTER 1
Introduction

1.1. Summary of main results

In [103], Witten defined the Seiberg—Witten invariants of smooth four-manifolds with b;(X) =0
and odd b*(X) > 0 (based in part on earlier joint work with Seiberg [89]) and stated a conjecture,
based on arguments from quantum field theory, relating the Seiberg—Witten and Donaldson invari-
ants. Moore and Witten extended this conjecture to a formula for four-manifolds with b1(X) > 0
and bT(X) = 0 in [70]. All computed examples of Donaldson and Seiberg-Witten invariants
satisfy these conjectures. However, these conjectures were based on mathematically non-rigorous
arguments from quantum field theory and so the need for a mathematical explanation remained.

In [83], Pidstrigach and Tyurin outlined an SO(3)-monopole program with the goal of giving a
mathematically rigorous proof of Witten’s Conjecture by using a moduli space of SO(3) monopoles.
After the foundations of the SO(3)-monopole program were developed in [27, 28| [29] 18] [99],
it soon became evident that the SO(3)-monopole program exhibited a fundamental difficulty —
that of computing intersection numbers for links of certain singularities in the lower strata of the
Uhlenbeck compactification of the moduli space of SO(3) monopoles. This difficulty echoes that
arising in attempts [21), [41] to prove the conjecture of Kotschick and Morgan [52] concerning wall-
crossing formulas for Donaldson invariants on four-manifolds with b*(X) = 1, although there are
many additional challenges in the case of the SO(3)-monopole program.

In this monograph, we complete the topological computation of these intersection numbers in
the sense that we reduce the computation to a local gluing theorem which extends that of [24],
stated here as Hypothesis [.8.1]

THEOREM 1 (SO(3)-monopole cobordism formula). Assume Hypothesis [7.8.1] holds. Let X
be a closed, connected, oriented smooth four-manifold with b1(X) = 0, odd b*(X) > 1, Euler
characteristic x, and signature o. Let A,w € H?(X;7Z) obey w — A = wo(X) (mod 2). Let 6,m
be non-negative integers for which m < [6/2], where [-] denotes the greatest integer function, and
§ = —w? — 2(x + o) (mod 4), with A and § obeying § < i(A), where i(A) = A% — 1(3x + 70).
Then, for any h € Ho(X;R) and generator x € Ho(X;7Z), one has the following expression for the
Donaldson invariant,

D%(h5_2m$m) _ Z (_1)i(w—A+c1(5))2 SWy (5)
s5€Spin®(X)
(1.1.1) min(£,[5/2]—m)
X Z (ps,em,i(c1(s), A)Q%) (h),
=0
1



2 1. INTRODUCTION

where Qx s the intersection form on Hy(X;R), and { = 1(6 + (c1(s) — A)*> + 3(x + o)), and
Ps.0.m,i(+, ) 15 a homogeneous polynomial of degree 6 — 2m — 2i with coefficients which are universal
functions of x, o, c1(s)%, A%, c1(s) - A, 6, m, and /.

Many significant results in low-dimensional topology can be proved using Theorem [Iland related
results in this monograph. Foremost among these are our proof in [23] of the Superconformal Simple
Type Conjecture of Moore, Marino, and Peradze [65, 164], our proof of Witten’s Conjecture [103] for
a large class of four-manifolds in [54, Corollary 7] and [33] and, finally, our proof in [25] of Witten’s
Conjecture in full generality for all closed, oriented, smooth four-manifolds with b1(X) = 0, odd
bT(X) > 1, and Seiberg-Witten simple type.

In addition, Kronheimer and Mrowka apply our Theorem [ to give a proof of Property P for
knots in [54]. Recall that Property P is the statement that +1 surgery on a non-trivial knot
K in S? yields a manifold which is not a homotopy sphere. In [54, Theorem 6], Kronheimer
and Mrowka employ Theorem [ to prove that Witten’s Conjecture holds for a large family of
manifoldd]. They then argue that a counterexample to Property P would allow them to construct a
four-manifold with non-trivial Seiberg—Witten invariants but trivial Donaldson invariants. As such
a four-manifold would contradict Theorem [I there can be no counterexample to Property P.

Another result following from the methods in this monograph is the ‘Multiplicity Conjecture’,
[20, Conjecture 3.1], stated here as Theorem Recall from [20] that a four-manifold is
‘abundant’ if the orthogonal complement of the Seiberg—Witten basic classes, with respect to the
intersection form, contains a hyperbolic summand. In collaboration with Kronheimer and Mrowka,
we showed in [20] that, for abundant four-manifolds, this conjecture verified the ideas of Marino,
Moore, and Peradze from [64, [65] in which they proposed a lower bound on the multiplicity of
the vanishing of the Seiberg-Witten series at zero in terms of ¢(X) = —2(7x + 110) and from this
bound derived a lower bound on the number of basic classes of a four-manifold also in terms of
c(X).

Sivek has applied Theorem [lto show that symplectic four-manifolds with b; = 0 and odd b™ > 1
have non-vanishing Donaldson invariants, and that the canonical class is always a Kronheimer—
Mrowka basic class [91].

Finally, the Kotschick-Morgan Conjecture [52] for the wall-crossing formulas for Donaldson
invariants of manifolds with b™ = 1 also follows from the results in this monograph as described in
Section [L.3]

Witten’s Conjecture for the relation between the Donaldson and Seiberg—Witten invariants is
stated below. The definitions of all terms in its statement appear in Sections and

CONJECTURE 2 (Witten’s Conjecture). [103] Let X be a closed, connected, oriented, smooth
four-manifold with b1 (X) = 0 and odd b+ (X) > 1. Assume that X has Seiberg-Witten simple type.
Then X has Kronheimer—Mrowka simple type, the Kronheimer—Mrowka basic classes coincide with
the Seiberg—Witten basic classes, and the Donaldson series of X is given by

(1.1.2) D% (h) = 92—¢(X) Qx(h)/2 Z(—1)%(w2+w'cl(5))SWX(5)e<01(5)’h>,
5

IThere is a slight difference between Theorem [I] as presented here and the version used in [54]. Specifically, the
bound on the degree of the Donaldson invariant used in [54, Theorem 6] uses i(A) = —(x + ) instead of the correct
value of i(A) = —2(3x + 7c). We believe that this difference is due to a typographical error in an earlier draft of this
monograph. The version given here is correct, but the error in no way effects any of the results in [54].



1.1. SUMMARY OF MAIN RESULTS 3
where ¢(X) = —1(7x + 110).

Detailed introductions of the SO(3)-monopole program have appeared in [26, 31, 32]. We now
give a brief summary of these ideas here. Recall that a spin® structure on X is determined by a
complex rank-four vector bundle, W — X and a Clifford multiplication map, p : T*X — Hom(W).
A spin® structure t on X, as defined in [28] or Section 2.I.1] here, is given by (py,V), where
V=W®®E, and py = p®idg, and (p, W) is a spin® structure, and £ — X is a complex rank-two
vector bundle,

An SO(3) monopole for a spin® structure, t = (py, W®FE), is a pair, (4, ®), where A is a unitary
connection on E and ® is a section of V1 := W ® E, satisfying equations which can be thought of
as a higher-rank version of the Seiberg—Witten equations, and W = W& W ~ is the usual splitting
of W into the complex rank-two vector bundles of positive and negative spinors. The moduli space,
My, is the space of SO(3) monopoles modulo gauge equivalence. For generic perturbations, .
is a smooth manifold away from two types of singular subspaces which are also identified as fixed
points of an S' action on .#. The first type of singular subspace is identified with the moduli
space of anti-self-dual connections [28], Equation (3.5)]. The second type of singular subspace, that
of reducible SO(3) monopoles, is identified in [28, Lemma 3.13] with the Seiberg-Witten moduli
space, M;, where the spin" structure t admits a splitting t = s ® s ® L. The SO(3)-monopole
program aims to use .#; as a cobordism between the links of these singularities. Because .# is not
compact in general, this cobordism does not provide any useful homological information.

The moduli space, .#, admits an Uhlenbeck compactification, .#, which is contained in the
space of ideal monopoles,

N
U A x Sym*(X),
=0

where .y is a moduli space of SO(3) monopoles for a ‘lower charge’ spin” structure, t(£), and

Sym* (X) is the £-th symmetric product of X. The space, .#;/S", provides a compact and oriented
cobordism between a link of the moduli space of anti-self-dual connections and links, I_Jt,s, of sub-
spaces of reducible SO(3) monopoles. However, additional reducible SO(3) monopoles, in the form
of subspaces of ideal Seiberg—Witten monopoles,

(1.1.3) My x Sym“(X) C My x Sym*(X),

appear in the lower levels of the Uhlenbeck compactification. The intersection number of certain
geometric representatives of cohomology classes with the link of the anti-self-dual connections yields
a multiple of the Donaldson invariant. The main technical result of this monograph, Theorem T0.1.T]
is a formula for the intersection number of these geometric representatives with the link, I_Jt,s, of the
subspace (LL3) of .#;/S'. This formula expresses the intersection number in terms of universal
functions which, while not explicit, do not depend on the manifold, X. The cobordism provided
by .#;/S' then yields the equality (LTI between the aforementioned multiple of the Donaldson
invariant and the sum, over spin® structures s, of these intersection numbers.

We note that a generalization of Theorem [I0.I.1] can also be proved by the methods of this
monograph, where the assumptions that b;(X) = 0 or z = h9~2™2™ are relaxed, but the resulting
expression becomes considerably more complicated.
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1.2. Outline of the argument

As described above, the problem we address in this monograph is the computation of the
intersection numbers,

(1.2.1) # (Y ()N #"N L) ,

where 7 (z) and # are the geometric representatives mentioned above and L is the link in
M) S* of the Seiberg-Witten singularities, M, x Sym*(X), appearing in (LT3). A summary of our
approach to this computation has appeared in [32]. We give a short sketch of our method here.

For the simplest case, when M, C .#;, computations of the intersection number (L.2.1]) appeared
in [29] (where ¢ = 0) while computations of (I.2.1]) for singularities of the form M, x X appeared in
[30] (where ¢ = 1). While it should be possible to adapt the techniques of [59] to directly compute
(L2T) for singularities of the form M, x Sym?(X), the difficulty increases rapidly as ¢ becomes
larger and direct calculations appear intractable when ¢ > 3.

Our gluing result [24] Theorem 1.1] can be used to define local gluing maps which parameterize
neighborhoods of the strata,

(My x )1y © (M, x Sym(X)) .44,

in ., where ¥ is a stratum of the symmetric product, SymZ(X ). A local gluing map is then a
composition of a local splicing map and a certain perturbation of the image of the splicing map,
called the solution map. The local splicing map is defined, roughly, by patching together solutions
of the SO(3)-monopole equations over X and over the four-sphere, S* with its standard round
metric of radius one using cut-off functions. Let [Ag, 9] € M, be a gauge-equivalence class of
SO(3) monopoles over X and let x € ¥ € Sym‘(X) be represented by a set of distinct points with
multiplicity, {z1,...,z,}, for 1 <r <. We refer to (Ag, @) as the background pair and z; as the
splicing points. Let (A;,0) fori = 1,...,r be SO(3) monopoles over S*; such solutions are given by
an anti-self-dual connection, A;, on an SU(2)-bundle over S*, with second Chern (or ‘instanton’)
number equal to the multiplicity of z;, and the zero section. Then, using local trivializations of the
bundle supporting the pair (Ag, Pg) near the points z; and cut-off functions, one can patch together
the SO(3)-monopoles, (Ag, ®g) and (A;,0), to form a pair, (A’, ®’), which is equal to (Ag, Pg) away
from the points x; and equal to (A;,0) near x;. We denote this pair schematically by

(1'2'2) (A/’ (I)/) = (A07 q>0)#$1 (Alv 0)#$2 (A27 0)# o Fa, (AT’ 0)'

This construction of the pair (A, ®') is used to define the splicing map. Roughly speaking, the
domain of this splicing map is then given by a fiber bundle,

(1.2.3) CU(Z) = Fr(D) Xy M(Z) = M, x 3,

with a well-understood principal bundle, Fr(X), and structure group, G(X). The fiber, M (%), is a
product of moduli spaces of anti-self-dual connections over S4. In the preceding description of the
spliced pair, (A", ®'), the points [Ag, Pg| and x lie in the base of the bundle (LZ3]) and the points
[A;,0] lie in the fiber, M (X). The bundle Fr(X) arises from the trivializations of the bundles used
in the construction of (A4’, ®').

The pair (A’, ®’) is only approximately a solution to the SO(3)-monopole equations. There is
a section, xs, of an obstruction pseudo—bundlcﬂ Ty, — GI(X), whose fibers are finite-dimensional

2See Definition [I1] for an explanation of the term ‘pseudo-bundle’.
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vector spaces, such that the solution map defined by
(A, 2) = (A, @) + (a,9),
where (a, @) := p(A’, @) is the solution to a system of partial differential equations given by
S((A", @) + p(A, @) € T|(ar ),

where (A,®) — G&(A,®) is the map defined by the expression on the left-hand side of SO(3)-
monopole equations (2Z.I1.I0). The local obstruction section is defined by

XE(A/’ (I)/) = 6((A/7 q>/) + p(A/, (I)/))v

and hence the solution map identifies the zero locus of the obstruction section, xgl(O), with a
subset of ;.

There are two main sources of difficulty in using the parametrization of a neighborhood of
M, x ¥ provided by the gluing map in computing the intersection pairings (IL2.I]) of singularities of
the form (LI.3]) when ¢ > 1. The first difficulty is the presence of ‘higher-charge’ moduli spaces of
anti-self-dual connections on S* in the fiber M (X). It would be an interesting question to see if the
work of [76], [77, [61] could be adapted to give the necessary information for the G(X)-equivariant
cohomology ring of M (X)), but one which is beyond the scope of this monograph. Such computations
are carried out for the case £ = 2 in [59]. We do not address that problem in this monograph.
Instead, we use a pushforward-pullback argument (see Section [I0.5]) to isolate the topology of these
fibers as universal polynomials of the type appearing in (I.I.I]). The second difficulty, which we
do address in this monograph, is the ‘overlap problem’ arising from the presence of more than one
stratum X C Symg(X ) and the resulting need for more than one gluing map to parameterize a
neighborhood of M, x Sym‘(X).

1.2.1. Problem of overlaps. When ¢ > 2, the singularity, M, x Sym‘(X), has more than one
stratum. Hence, to compute the intersection pairing (L2.1]) when ¢ > 2, we must understand the
overlap of the images of the gluing maps with domains given by the fiber bundles G1(X) and G1(X')
of (L23) for different strata ¥ and ¥’ of Sym®(X). Merely adding up the intersection numbers in
the open sets parameterized by each gluing map could yield the wrong answer because these open
sets overlap and we might be counting each intersection point more than once. Examples of this
type of problem have appeared in [79} (58| (59, 102].

Our approach is to describe the overlaps of the images of the gluing maps (compositions of
splicing and solution maps) by defining so-called crude splicing maps. Because we can write the
splicing map explicitly while the solution map is defined by the Implicit Function Theorem, it is
easier to compare two splicing maps than to compare two gluing maps. Because the SO(3)-monopole
gluing maps defined in [24] only identify the zero locus of the obstruction section in Gl(3) with an
open subspace of ., the intersection of the images of G1(X) and G1(X’) under the gluing map could
be quite complicated and need not be given by an open subspace of GI(X) or GI(X’) and need not
share any of the fiber bundle properties which we wish to use in our computation. Instead, using a
deformation of the splicing map and of the fiber of the bundle GI(X) to construct the crude splicing
map, we are able to ensure that the overlap of the images of two splicing maps is a subbundle of
each image.
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Given two strata ¥ and X’ of Sym‘(X), with ¥ C clX’ (where clX denotes the closure in
Sym*(X) of a stratum ¥ C Sym‘(X)), and crude splicing maps

vt GIY) = %, % : GI(E) = 4,
we control the overlap of their images by defining a space of overlap data, G1(3,Y’), and maps
Pt 1 GL(E, ) = GI(Y), pfy : G, Y) = GI(D),
such that the diagram

U
pZ,Z’

GI(Z, %) GI(2)
(124) p%,E’J/ ,Y/Z/:,l

commutes and such that

Im(y%) N Tm(v8) = Im(vsy 0 ¥ ) = Im(V4; 0 p% 50).
Moreover, the upwards and downwards overlap maps, p3., 5, and p‘zl sy, are both fiber bundle maps.
The diagram ([2.4)) is then used to define the space of global splicing data as a pushout of the
spaces of local splicing data, G1(X). Once this is accomplished, the rest of the computation of the

intersection number ([L2.]) is largely a formal accounting of choices of cohomology classes with
compact support and a use of the familiar pullback-pushforward technique.

1.2.2. Overlap space and overlap maps. We now sketch the construction of the overlap
space, G1(X,Y’), and overlap maps, PS5 and p‘éz,. First, we note that the overlap of the images
will be empty unless ¥ C cl ¥’ or ¥ C cl X. We will assume that the first case holds, thus ¥ C clY/,
and will refer to X as the lower stratum.

There is an open neighborhood, v(X,%') C ¥/, of ¥ which can be thought of as a tubular
neighborhood of ¥ in ¥'. We then define the space of overlap data, GI(X,Y’), to be the restriction
of the bundle GI(¥') in (L23) to

M, x v(2,¥) C Mg x X

The map p%, 5 is the inclusion of the bundles. The definition of pczl sy will require a redefinition of
the fibers M (X).
The overlap map, pdz sv» will map the fiber of the composition,

(1.2.5) GI(E, %) = M, x v(8,5) = M, x 3,

to the fiber of the projection GI(X) — M, x X from (L23). The fiber of the map v (3, %) — X
is, up to a local trivialization, a collection of points in R*. As an example, the fiber of the normal
bundle of the diagonal A C X? is, after specifying a trivialization of the tangent bundle of X at
the point given by the point in A, a pair of points in R* with a mass-centering condition. The
fiber of the composition (L2.5)) is then given by M (¥') and a collection of points in R*. Hence, the
map dez/ must take the points in R* and the connections in M (¥) and map them to elements of
M(Y).

The strata of SymZ(X ) are in bijective correspondence with partitions of ¢. A stratum 3 is
lower than a stratum Y’ if and only if the partition determining ¥’ is a refinement of the partition
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determining .. By refinement, we mean that if 3 is given by a partition £ = k1 + -+ - + K, then
Y is given by a partition Z” Kij, where k; = ) ;i If ¥ and ¥/ are given by the partitions
above, then a point in the fiber of v(3,X’) — X over x € ¥ consists of clusters of points y; ; € X
near each point x; € X defining x. The points y; ; correspond to the weights x; ; making up the
partition j iy of k. With a trivialization of the tangent bundle at each z;, the points y; ; can
be considered as points in R*. Consequently, the data in the fiber of (L235)), points in R*, and
connections in M (X'), comprise the domain of a gluing map parameterizing a neighborhood (in the
Uhlenbeck compactification of a moduli space of framed, mass-centered, anti-self-dual connections
on S*) of the points,

(1.2.6) [@] X E(/{@j),
where O is the product connection and
Y (ki ;) C Sym™ (R*) — {c}, where c=0,...,0],
is the stratum given by the partition x; = 3 ; ;. We refer to the strata (LZG) as product
connection strata. Hence, it would seem natural to choose ,oczl sy to be the gluing map and identify

the data in the fiber of (LZ35]) with an element of M (X). However, the above definition will not
make the diagram ([L2.4]) commute.

1.2.3. Associativity of splicing maps. The commutativity of the diagram (LZ4]) can be
understood as an associativity property of the splicing construction as follows. Analogous properties
of gluing maps for gradient flow trajectories are discussed in [9, Theorem 2.1], [85], and [101].

Let ¥ and X' be two strata of Sym”(R*). Strata of such a symmetric product are specified by
partitions of x. If ¥ is the lower stratum, that is, ¥ C clY/, then the partition defining Y’ is a
refinement of the partition K = K1 + --- + Kk, defining 3 in the sense that x; = k;1 + -+ + Ky,
where Y is given by the partition x = Z” K j-

Let (Ap, ®o) be the background pair and A; ; be the connections over S* given by the point
in the fiber M(X'). Let x € ¥ be given by the set of points {z1,...,2,}. Let z € v(X,¥') C ¥/
lying over x be given by points z; ; € X corresponding to points y; ; € R*. Let © be the product
connection on S* and identify the points ¥;,; with points in S4 by stereographic projection. We
define connections with charge x; on S* by applying the splicing construction of (L2.2)) just to the
connection,

(1'2'7) A; = @#yi,lAi,l#yi,zAi,2# T #yi,ri Aim"

If we consider the splicing construction as defining a binary operation and the pair (©,0) as a unit
for this binary operation, then the following can be seen as an associativity equality.

(A(]v q>0)#901( /17 0)#902( /27 0)# T #mr (A/rv 0)
= (A07 q)O)#ZLl (Al,la 0)# e #ZL” (Al,Tl ; 0)# e #zs,lAs,l# U #Zs,rs (AS,TS70)'

We wish to define the map P%,z in the diagram (I.Z4]) by the construction of the connections A.
We can see as follows that the diagram (L.2.4]) will commute if the equality (L.2:8]) holds. The
composition ¥, o P55 corresponds to the right-hand-side of the equality ([.2.8]) and is equal to
the map obtained by splicing the pairs at the points in X defined by an element of v(X,Y’). The
composition ¥4 o pdz sy corresponds to the left-hand-side of the equality (I.2.8]) and is equal to the
composition of two éplicing maps.

(1.2.8)
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There are two problems with the preceding strategy. First, the connections A/ are not anti-
self-dual and thus do not define an element of M (X). Second, the equality (L.2.8) does not hold in
general. In the sequel, we describe how we correct these problems.

1.2.4. Instanton moduli space with spliced ends. To overcome the first difficulty men-
tioned above, we shall change the fiber M (X) as follows. Recall that M?(S*) denotes the moduli
space of charge-x, mass-centered, anti-self-dual, framed SU(2)-connections over S* and that M2 (S%)
denotes its Uhlenbeck compactification. We shall redefine the fiber,

M%) = li[M:i(S‘*),
i=1

by replacing M,ﬁi(S‘l) in the preceding product with an instanton moduli space with spliced ends,
MSSPLM, whose construction we now indicate.
Recall that for each stratum, X(k; ;) C Sym™ (R?) — {c}, there is a gluing map,

(1.2.9) T 075 (8" x Sk ,) = M, (SY),
J
parameterizing a neighborhood of the stratum (L2.86]) in M, ,ﬁi(S‘l). We define the instanton moduli
space with spliced ends, MSSPLM, using induction on k; by replacing the image of the above gluing
map by the image of the corresponding splicing map with domain,
MSSPL,HZ‘J' X E(KZJ)

We now describe how the images of these splicing maps fit together with each other and with
the rest of M,‘zi(SA‘) to form a smoothly stratified space. By smoothly stratified space, we mean a
stratified space in the sense of [98] Definition 3.4] where each stratum is a smooth manifold. Such
a space is called a Whitney pre-stratified space satisfying the condition of the frontier in [66] p.
480.

For these splicing maps, the background connection is the product connection, ©, and the
metric is flat. Under these conditions, the analogue of the associative equality (L28]) for splicing
connections holds and the analogue of the diagram (L.2.4]) commutes. This implies that the union,
over strata in Sym”i (R*) —{c}, of the images of these splicing maps forms a smoothly stratified space
W (k;) whose image, W’(k;), under the gluing deformation is a neighborhood of {©} x Sym" (R*) —
{c} in Mg (S*). The gluing deformation defines a smoothly stratified isotopy Ry, 0 <t <1, in the
sense of [66), p. 482], between W (k;) and W' (k;). For neighborhoodd] Wi(ki) C Walki) C W (ki)
of the product connection strata (LZ.6) and f : W(k;) — [0,1] satisfying Wiy(k;) € f~1(0) and
W (ki) \ Wa(ki) C f71(1), let W”(k;) be the image of W(k;) under the map Ry((-). Defining
MspL,ni by -

(M2, (5 \ W/ (1)) U " (1),
then yields the desired smoothly stratified space with an Uhlenbeck neighborhood of the product
connection strata given by the image of a splicing map. By redefining M (X) with the aid of the
above construction of the instanton moduli space with spliced ends, we can define pdE sy using a
splicing map.

31 U,U’ are subsets of a topological space, S, we write U’ U if there is a continuous function f : S — [0, 1]
such that f(U’) =1 and f(S\U) =0.
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1.2.5. Space of global splicing data. With the redefinition of M (X) described in Section
[[L24] the only remaining problem in making the diagram (L.Z4]) commute is the possible failure
of the equality (I.2.8]) when the Riemannian metric on X and the background connection, Ay, are
not flat.

These problems can be overcome by performing the splicing operation with respect to pertur-
bations of the metric and background connection which are flat near the splicing points. Because
the metric and connection Ay need not be globally flat, this deformation will vary with the splicing
point. This process defines the crude splicing maps, ~%,, appearing in (L24).

The space of global splicing data, _Jsir, is the pushout of the spaces GI(X) by the diagram
(L24]). That is, //Z(V;r is the union of the spaces G1(X) subject to the relation that for A € GI(X2, %),

we have pf o (A) = p¥ 5. (A).

1.2.6. Definition of link of a subspace of a moduli space of ideal Seiberg—Witten
monopoles. The commutativity of the diagram (L24]) allows us to define a smoothly stratified
space, l‘gr, as the union of the images of the crude splicing maps discussed above. This space
is then the union of the cone bundle neighborhoods defined by the domains (23] of the crude
splicing maps. These local cone bundle structures allow us to define a subspace, L;’,isr C //Z(V;r /St
as the union of smoothly stratified, codimension-one subspaces, L(X) C GI(X)/S!, each of which

is a subbundle of the restriction of G1(X)/S* to a compact subspace, Ky, € ¥, namely
(1210) L(Z) = FI‘(E)‘MSXKE XG(Z)Xsl 8M(2),

where M (X) C M(X) is a smoothly stratified, codimension-one subspace. The link, L, will be
defined, roughly, as the intersection of L}’f; with the zero-locus of a section of a vector bundle,

referred to as the obstruction bundle, over .4;'¥. The intersection, L(X)NL(X'), will be a smoothly
stratified, codimension-one subspace of L}’,isr and can be described as

L(2) NL(X) = Fr(X) M xos Ky Xae)xsr OM(X)
= (3)|ky Xamyxst Oz OM(Y),

where OxKy» C Ky is a codimension-one boundary admitting a fibration, Oy Ky» — Kx, and
OsyOM(X) C OM(X) is a smoothly stratified, codimension-one subspace.

(1.2.11)

1.2.7. Computation of intersection numbers with the link of the moduli space of
ideal Seiberg—Witten monopoles. Duality arguments allow us to convert the intersection num-
ber (LZ1)) into a pairing of cohomology classes, which we write schematically as

<ﬂ ~ 6 [Lzlsr]%

where 1 is a cohomology class to which the intersection of the geometric representatives are dual
and e denotes the Euler class of the obstruction bundle. We observe that the cohomology classes f
and e are generated by cohomology classes pulled back from M; x Ky and by the first Chern class
of the S' action. We wish to write this pairing as a sum,

S — e, L)),

i
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over the subspaces L(3;) C L;’,isr and apply a pushforward-pullback argument to the diagram,
L(Z) = Fr(T) Xg(gyxst OM (D) —— EG(D) Xgx)xs1 IM(T)

(1.2.12) l l

]\45 X KZ — BG(E)

To do so, we must select a representative of the cohomology class i — e with compact support
away from the boundaries of L(X) that are given by L(X) N L(X’). We specify such a choice in
a manner similar to that introduced in [79]. We define quotients g5 : L(X) — L(X) with the
following properties:

(1) The map gs; : L(X) — L(X) is injective on the interior of L(X).

(2) The restrictions of ¢y, and gsv to the intersection L(X) N L(Y') are equal.

(3) There is a cohomology class 11 — € on I:(Z) such that the restriction of i — e to L(X)

equals ¢35, (1t — €).
(4) Each quotient admits an (orbifold) fiber bundle structure,

L(Z) = M; x cl(X),
with the same structure group G(X).

We construct the quotient E(E) by replacing the restricted bundle Fr(X) |, x k5, with the extension
of that bundle over M, x cl(X). The equality (LZIT]) allows us to do this and satisfy the second
requirement above simultaneously by replacing the fibers M (X) with a quotient of this fiber.
Then, we can write
(B— e, [LE]) =Y (12 [[LE)

and apply the pushforward-pullback argument to the diagram analogous to (L2I2) for f;(E)
Because the topology of the fiber bundle Fr(3) depends only on quantities described following
(LII), such a pushforward-pullback argument will yield the desired result.

1.3. Kotschick—Morgan Conjecture

We now describe how the Kotschick—Morgan Conjecture [41], [52] also follows from the methods
in this monograph.

If b (X) = 1, the Donaldson invariant depends on the metric. If w'(g) indicates the unique
(once an orientation for H1(X) is specified) unit-length, self-dual, harmonic two-form, the Don-
aldson invariant will change when this harmonic form ‘crosses a wall’ for reasons we now describe.

For manifolds with b*(X) > 1, one proves that the Donaldson invariant is independent of the
metric (see [15, Theorem 9.2.12]) by considering the cobordism defined by

M;U(gf) = {[A,X, t] : [A’X] € M;U(gt) and ¢ € [_17 1]}7

where MY (g;) is the Uhlenbeck compactification of the moduli space of connections which are anti-
self-dual with respect to the Riemannian metric g; and g; is a smooth path of Riemannian metrics
on X connecting two different Riemannian metrics, g_1 and g;. A Donaldson invariant defined by
the metric g; is given by a pairing

(1, [ME (g0)])-
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The cohomology classes, namely the ji-classes [15], 53], used in defining the Donaldson invariants
extend over the cobordism M”(gr). Because the boundaries of this cobordism are M (g+1), we
can write

(1.3.1) (B, [M (91)]) — (B, [M (9-1)]) = (6", [M (91)]) = 0,
proving that the Donaldson invariant for the metric g; is equal to that for the metric g_1.

If b (X) = 1, the above argument fails because the p-classes do not extend over the cobordism.
The cobordism may contain singularities of the form

(1.3.2) {[AL]} x Sym"(X) € M (g0),

where Ay is a connection which is reducible with respect to a reduction of an SO(3)-bundle,
g=R® L, and L is a complex line bundle with ¢;(L) — w'(g;) = 0. For each of these families
of reducible singularities appearing in the cobordism, the change in the Donaldson invariant, as
expressed by the left-hand-side of (L3.]), will be given by

(1.3.3) (1, [OUZ (L)]),
where QUY (L) is the link of the set of singularities (IL3.2]) in the cobordism MY (g;).

In [52 Conjectures 6.2.1 and 6.2.2], Kotschick and Morgan proposed that the pairing ([L3.3])
was given by a polynomial in ¢;(L) and the intersection form @ x and that the coefficients of this
polynomial depended only on the homotopy type of X. Assuming this conjecture, Gottsche was
able to compute an explicit formula for the pairing (L33)) in [41].

This conjecture follows almost immediately from the methods of this monograph and an ana-
logue of Hypothesis [[.81] for the anti-self-dual equations. Our gluing theorem for anti-self-dual
connections [21] (based in turn on [15, 12} [72] 94, 95, 96, [97]), parameterize neighborhoods
of the strata [Ar] x X, by bundles that are almost identical to the bundles, G1(X2), described in
(C23). The argument described in the preceding sections, where we employ the overlap spaces and
instanton moduli space with spliced ends to create a space of global splicing data, can be adapted
— essentially without change — to define a link, QU (L), to which we can apply the quotient
arguments in Section [[.2.7] thus proving the Kotschick—Morgan Conjecture.

1.4. Outline of the monograph

We give a brief outline of our monograph. A review of notation and definitions from our previous
articles in this sequence appears in Chapter Bl Chapter [B] contains a description of a stratification
of Sym’(X), and definitions of normal bundles of the strata of Sym‘(X). In Chapter @, we show
that the projection maps of the normal bundles introduced in Chapter [ satisfy Thom-Mather
type equalities on the overlap of their images. In Chapter Bl we define the spliced-ends moduli
space of anti-self-dual connections over S% and this is used in Chapter [6 to define the space of
global splicing data. An analogous construction of an obstruction bundle over the space of global
splicing data is carried out in Chapter [l In Chapter [}, we define the link of a Seiberg—Witten
moduli space contained in a lower level of the Uhlenbeck compactification of the moduli space of
SO(3) monopoles and describe the fiber bundle structure of the subspaces of the link described in
(CZT10). We use cohomological computations in Chapter [@to compute the pullbacks of the relevant
cohomology classes to the space of global splicing data. In Chapter [0, we perform the remaining
computations required to prove the main results of the monograph. Finally, in Chapter [I1l we
show how the arguments of this monograph yield a proof of the Kotschick—-Morgan Conjecture.






CHAPTER 2
Preliminaries

In this chapter, we introduce the notation and review the definitions from our preceding work
on SO(3) monopoles, specifically |28, 29]. We begin in Section 2.I] by recalling the definition of the
moduli space of SO(3) monopoles and its basic properties |27, [18]. In Section 2.2] we describe the
stratum of zero-section monopoles, that is, anti-self-dual connections. In Section 2.3] we discuss
the strata of reducible, or Seiberg—Witten monopoles, together with their ‘virtual’ neighborhoods
and normal bundles. In Section 2.4 we define the cohomology classes which will be paired with
the links of the anti-self-dual and Seiberg-—Witten moduli spaces. In Section 2.5 we review the
definition of the Donaldson series. Lastly, in Section [2.6], we describe the basic relation between
the pairings with links of the anti-self-dual and Seiberg—Witten moduli spaces provided by the
SO(3)-monopole cobordism.

2.1. The moduli space of SO(3) monopoles

Throughout this monograph, (X,g) will denote a closed, connected, oriented, smooth, Rie-
mannian four-manifold.

2.1.1. Clifford modules. Let V be a Hermitian vector bundle over (X, g) and let p : T*X —
Endc(V) be a real-linear map satisfying

(2.1.1) pl@)? = —gla,a)idy  and p(a)! = —p(a), o€ C®(T*X).

The map p uniquely extends to a linear isomorphism, p : A*(T*X) ®g C — End¢(V), and gives V'
the structure of a Hermitian Clifford module for the complex Clifford algebra C¢(T*X). There is
a splitting V = V1 @ V~, where VT are the +1 eigenspaces of p(vol). A unitary connection A on
V is spin if

(2.1.2) [Va,pla)] =p(Va) on C(V),

for any a € C*°(T*X), where V is the Levi-Civita connection.
A Hermitian Clifford module s = (p, W) is a spin® structure when W has complex rank four; it
defines a class

(2.1.3) ci(s) = i (W),

which is an integral lift of the second Stiefel-Whitney class. If L — X is a complex line bundle, we
write s ® L for the spin® structure (p ® idy, W ® L).

We call a Hermitian Clifford module t = (p, V) a spin* structure when V has complex rank
eight. Recall that g¢ C su(V') is the SO(3) subbundle given by the span of the sections of the bundle
su(V') which commute with the action of C/(T*X) on V. We obtain a splitting,

(2.1.4) su(VH) 2 p(AT) @ ip(AT) @r g¢ © g,
13
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and similarly for su(V~). The fibers V," define complex lines whose tensor-product square is
det(V;") and thus a complex line bundle over X,

(2.1.5) detz (V).
A spin" structure t thus defines characteristic classes,

(2.1.6) a)=3a(VT), pi() =pi(g), and wy(t) = wa(gy).

Given a spin® bundle W, one has an isomorphism V =2 W ®¢ E of Hermitian Clifford modules,
where E is a complex rank-two Hermitian vector bundle |28, Lemma 2.3|; then

(2.1.7) gi=su(E) and detz(V') =det(W") ®c det(E).

If for t = (p,V), there is a spin® structure s = (pw, W) and the bundle V' admits a splitting
V=WaeWa®L and p=pw @ pw ®idr, then we write t =5 D s ® L.

2.1.2. SO(3) monopoles. We fix a smooth unitary connection A, on the line bundle detz (V1),
let k > 2 be an integer, and let <% be the affine space of L% spin connectiond] on V which induce the
connection 24, on det(V™'). If A is a spin connection on V, then it defines an SO(3) connection,
A, on the subbundle g; C su(V) [28, Lemma 2.5]; conversely, every SO(3) connection on gy lifts to
a unique spin connection on V inducing the connection 24, on det(V ") [28 Lemma 2.11].

Let %, denote the group of L% 41 unitary automorphisms of V' which commute with C/(T*X)
and which have Clifford-determinant one (see [28], Definition 2.6]). Define

(2.1.8) G = x L(X, V") and € =6/%.

The action of % on V induces an adjoint action on Endc(V), acting as the identity on p(Ag) C
Endc(V) and inducing an adjoint action on g¢ C Endc(V) (see [28, Lemma 2.7]). The space %;
carries a circle action induced by scalar multiplication on V:

(2.1.9) StxV =V, (9 0)— e,

Because this action commutes with that of 4, the action ([2.1.9]) also defines an action on %;. Note
that —1 € S! acts trivially on ;. Let €0 C %; be the subspace represented by pairs whose spinor
components are not identically zero, let 6" C ¢; be the subspace represented by pairs where the
induced SO(3) connections on g¢ are irreducible, and let ‘5:’0 =¢rNeEL.
We call a pair (A, ®) in %; an SO(3) monopole if

ad ' (FF) —7p (@ ® ‘I)*)00> _o

D4® + p(9) '
Here, Dy = po V4 : C®(X,VT) — C*(X,V7™) is the Dirac operator; the isomorphism ad :
gt — s0(g¢) identifies the self-dual component of the curvature FX, a section of AT ® so(gy), with
ad_l(Fj{), a section of AT ® g¢; the section 7 of GL(A™) is a perturbation close to the identity; the

perturbation 9 is a complex one-form close to zero; ®* € Hom(V ', C) is the pointwise Hermitian
dual (-, ®) of ®; and (PR ®*)( is the component of the section ® @ ®* of (V1) lying in p(AT) ® gy
with respect to the splitting u(V ") = iR & su(V*1) and decomposition (2.4 of su(V ).

(2.1.10) G(A, ®) = (

lwe adopt the notation of Freed and Uhlenbeck [34] for Sobolev spaces.
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Equation (ZI10) is invariant under the action of %. We let .#; C %; be the subspace repre-
sented by pairs satisfying equation (2.I.10) and write

(2.1.11) M= MNCE, M= MNE, and M= #NEP.
Since equation (2.I.10]) is invariant under the circle action induced by scalar multiplication on V,

the subspaces (2.1.11]) of é; are also invariant under this action.

THEOREM 2.1.1. (See Fechan [18, Theorem 1.1] and Teleman [99].) Let X be a closed, oriented,
smooth four-manifold and let V' be a complex rank-eight, Hermitian vector bundle over X. Then
for parameters (p, g, 7,7), which are generic in the sense of [18], and t = (p, V'), the space .///t*’o 18
a smooth manifold of the expected dimension,

dim 2" = d(€) = () + 2na(t),  where da(t) = —2p1(8) — ;(X(X) o (X)),

na(t) = 110 + (2 -~ o(X))

and x(X) is the Euler characteristic and o(X) is the signature of X.

(2.1.12)

For the remainder of the article, we assume that the perturbation parameters in (21.10Q) are
chosen as indicated in Theorem 2Tl For each non-negative integer ¢, let t(¢) = (p,V}) be the
spin® structure characterized by

(2.1.13) caa(Ve) =a(V), pi(gge) =pi(g) +44, and  wa(gys)) = wa2(ge)-
We let .#, denote the closure of . in the space of ideal SO(3) monopoles,

(2.1.14) Lty = | |(Ayq) x Sym® (X)),

£=0
with respect to an Uhlenbeck topology [27, Definition 4.19] defined by the following notion of
convergence.

DEFINITION 2.1.2. A sequence {[Aqy, Pu]lacny C % converges to an ideal pair [Ag, Pg,x] €
Cgt(g) X Symg(X) if

e There is a sequence of L?

k+1,loc
that the sequence of pairs u, (A, Po) converges as a — 0o to (Ag, Pp) in L%loc over X —x
and

e The sequence of measures, |F' A,

to the measure |F;|* dvol +8% "
r e X.

We refer to neighborhoods in the topology defined by Uhlenbeck convergence as Uhlenbeck neigh-

borhoods.

spin” bundle isomorphisms, u, : Vi|x-x — ‘/t(g)| X—_x, such

|2 dvol converges as a — oo in the weak-star topology

zex 0z, where 0, is the Dirac delta measure centered at

We call the intersection of .#; with M) X Sym‘(X) its ¢-th level. We define the space % to
be the set

o0

(2.1.15) %= | (% x Sym® (X)),
=0
with the topology given by Definition
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THEOREM 2.1.3. (See Feehan and Leness |27, Theorem 1.1].) Let X be a closed Riemannian
four-manifold with spin® structure t. Then there is a positive integer N, depending at most on the
scalar curvature of X, the curvature of the chosen unitary connection on det(V™), and p1(t), such
that the Uhlenbeck closure .4y of 4 in I_Jévzo(f//lt(g) x Sym‘(X)) is a second-countable, compact,
Hausdorff space. The space M carries a continuous circle action, which restricts to the circle
action defined on M, for each level.

2.2. Stratum of anti-self-dual or zero-section solutions

From equation (2.1.10), we see that the stratum of .#; represented by pairs with zero spinor is
identified with

(22.1) {A€dh: F = 0}/% = M"(X,g),

the moduli space of g-anti-self-dual connections on the SO(3) bundle, g, where £ = —Ipi(t) and
w = wa(t) (mod 2). For a generic Riemannian metric g, the space MY (X, g) is a smooth manifold
of the expected dimension, —2p;(t) — 3(x + o) = d,(t).

As explained in [28) Section 3.4.1], it is desirable to choose w (mod 2) so as to exclude points
in . with associated flat SO(3) connections, so we have a disjoint union,

(2.2.2) M= UMY A

where " C _//Z( is the subspace represented by triples whose associated SO(3) connections are
irreducible, ///to C #, is the subspace represented by triples whose spinors are not identically zero,

//Z(*’O = //Zt* N //Zto, while ///_tmd C M, is the subspace .#; — //Zt* represented by triples whose
associated SO(3) connections are reducible. We recall the

DEFINITION 2.2.1. (See Feehan and Leness [29, Definition 3.20].) A class v € H?(X;Z/2) is
good if no integral lift of v is torsion.

If w (mod 2) is good, then the union (2.2.2)) is disjoint, as desired. In practice, rather than
constraining w (mod 2) itself, we use the blow-up trick of [73], replacing X with the blow-up,

X #@2, and replacing w by w + PD[e] (where e € Ho(X;Z) is the exceptional class and PDle]
denotes its Poincaré dual), noting that w+PDl[e] (mod 2) is always good, and define gauge-theoretic

invariants of X in terms of moduli spaces on X #@2. When w (mod 2) is good, we define [28],
Definition 3.7] the link of MY in .#;/S* by

(22.3) Li. = {[A,®,x] € 4/S" : ||®]]2 = ¢},
where ¢ is a small positive constant; for generic €, the link, f;ﬁ’m is a smoothly-stratified, codimension-

one subspace of .#,/S*.

2.3. Strata of Seiberg—Witten or reducible solutions

We call a pair (4, ®) € %, reducible if the connection A on V respects a splitting,
(2.3.1) V=WoWeL=W(Ca®L),
for some spin® structure s = (p, W) and complex line bundle L, in which case ¢1(L) = ¢1(t) — c1(s).

A spin connection A on V is reducible with respect to the splitting (2.3.1) if and only if A is
reducible with respect to the splitting g¢ = R® L, [28] Lemma 2.9]. If A is reducible, we can write
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A=B®B® Ayp, where B is a spin connection on W and Ap is a unitary connection on L; then
A=dr @ Ap and Ap = Ay ® (BYY)*, where B is the connection on det(W ™) induced by B on
W and dg is the product connection on the line bundle R := X x R.

2.3.1. Seiberg—Witten monopoles. Given a spin® structure s = (p, W) on X, let <% de-
note the affine space of Lz spin connections on W. Let ¥, denote the group of Lz 41 unitary
automorphisms of W, commuting with C/(T*X), which we identify with L7 ,(X,S5'). We then
define

(2.3.2) Co = oy x LAWY and € = %,/%.,
where ¥, acts on %, by
(2.3.3) (s,(B,¥)) — s(B,¥) = (B — (s 'ds)idy, sV).

We call a pair (B,V) € %s a Seiberg—Witten monopole if
Te(FE) —mp NP @ U*)g — FF(Ap) =0,

DpV¥ + p(ﬁ)\I/ =0,
where Tr : u(W*) — iR is defined by the trace on 2 x 2 complex matrices, (¥ ® ¥U*)q is the
component of the section ¥ @ U* of ju(W™) contained in isu(W™), Dg : C®(W™T) — C®(W™)
is the Dirac operator, and A is a unitary connection on a line bundle with first Chern class
A € H?(X;Z). The perturbations are chosen so that solutions to equation ([2.3.4) are identified

with reducible solutions to ZII0) when ¢;(t) = A. Let M, C %, be the subspace cut out by
equation (2.3.4]) and denote the moduli space of Seiberg-Witten monopoles by My = M, /%;.

(2.3.4)

2.3.2. Seiberg—Witten invariants. We let 4 C %, be the open subspace represented by
pairs whose spinor components are not identically zero and define a complex line bundle over €2 x X
by

(2.3.5) Ls = %, x4, C,
where C = X x C and s € %, acts on (B, ¥) € %, and (,¢) € C by
(2.3.6) ((B,9), (z,€)) = (s(B, V), (z, s(2) ().
Define

(23.7) As(X) = Sym (Ho(X; R)) ® A*(Hy (X; R)

to be the graded algebra, with z = (182 --- B, having total degree deg(z) = 3 (2 — ip), when
Bp € H;,(X;R). Then the map,

(2.3.8) ps : Ho(X;R) = H**(65R), B e1(Ls)/B,

extends in the usual way to a homomorphism of graded real algebras,
ps : Aa(X) — H* (65 R).

If x € Hy(X;Z) denotes the positive generator, we set

(2.3.9) s = c1(Ls)/z € HX(€2; 7).

Equivalently, s is the first Chern class of the S! base-point fibration over 2. If b;(X) = 0, then
c1(Ls) = s x 1 by [28 Lemma 2.14].
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For b (X) > 0 and generic Riemannian metrics on X, the space M, contains zero-section pairs
if and only if ¢1(s) — A is a torsion class by [71l Proposition 6.3.1]. If M, contains no zero-section
pairs then, for generic perturbations, it is a compact, orientable, smooth manifold of dimension

(2.3.10) dy(s) = dim M, — i(c1 (5) — 2x — 30).

Let X = X #@2 denote the blow-up of X with exceptional class e € Hy(X;Z) and denote its
Poincaré dual by PD[e] € H2(X;Z). Let s* = (5, W) denote the spin® structure on X with ¢;(s*) =
c1(s) = PDJe] obtained by splicing the spin® structure s = (p, W) on X with the spin® structure
on TP’ with first Chern class +PDle]. (See [29] Section 4.5] for an explanation of the relation

between spin® structures on X and X.) Now
c1(s) £ PDJe] — A € H¥(X;7Z)

is not a torsion class and so — for b™ (X)) > 0, generic Riemannian metrics on X and related metrics
on the connected sum X — the moduli spaces M+ (X) contain no zero-section pairs. Thus, for

our choice of generic perturbations, the moduli spaces M,+(X) are compact, oriented, smooth
manifolds, both of dimension dim M;(X).
For b1(X) =0 and odd b (X) > 1, we define the Seiberg-Witten invariant by [29] Section 4.1]

(2.3.11) SWx(s) = (e, Mo (X)) = (-, (M, (X)),

where 2d = ds(s) = ds(sT). When b3 (X) = 1 the pairing on the right-hand side of definition
(Z311) depends on the chamber in the positive cone of H? (X' ;R) determined by the period point
of the Riemannian metric on X. The definition of the Seiberg-Witten invariant for this case is also
given in [29] Section 4.1]: we assume that the class wo(X) — A (mod 2) is good to avoid technical
difficulties involved in chamber specification. Since w = w2(X) — A (mod 2), this coincides with
the constraint we use to define the Donaldson invariants in Section when b7 (X) = 1. We refer
to [29, Lemma 4.1 and Remark 4.2] for a comparison of the chamber structures required for the
definition of Donaldson and Seiberg-Witten invariants when b (X) = 1.

We say that cq(s) is a Seiberg—Witten basic class if the map ps is non-trivial. The manifold X
is said to have Seiberg—Witten simple type if all basic classes satisfy ds(s) = 0.

2.3.3. Reducible SO(3) monopoles. If t = (p,V) and s = (p, W) with V =W e W ® L,
then there is a smooth embedding

(2.3.12) G — G, (B,9)— (B®B® Ay ® BYY ¥ a0),

which is gauge-equivariant with respect to the homomorphism

(2313) o0: G, — gt, s— idy ® <(S) 891> .
According to [28, Lemma 3.13], the map (Z3.12)) defines a topological embedding MY — .#,, where
M? = M;N %Y and an embedding of M; if wa(t) # 0 or by (X) = 0; its image in .#, is represented
by pairs which are reducible with respect to the splitting V=W @& W ® L. Henceforth, we shall
not distinguish between M, and its image in .#; under this embedding.

If gy = iR & L where ¢1(L) = c1(t) — ci(s), then pi(gye)) = (c1(t) — c1(s))?. Hence, for

(2.3.14) 0t,s) = = ((cr(t) — cr(s))® — p1(V))

=~ =
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the embedding (Z312) gives an inclusion of M, x Sym®(X) into I.#, where £ = £(t,s).

2.3.4. Circle actions. When V=W @ W ® L and t = (p, V), the space %, inherits a circle
action defined by
(2.3.15) StxV sV, (2 0a0)—0agfT,
where U € C°(W) and ¥ € C°(W @ L). With respect to the splitting V.= W & W @ L, the
actions (2.3.I5) and (2.1.9) are related by

. . —i6
N (RN E e A

and so, when we pass to the induced circle actions on the quotient % = 2 /%, the actions (2.3.15])
and (219) on % differ only in their multiplicity. Recall [28, Lemma 3.11] that the image in %; of
the map (Z3.12) contains all pairs which are fixed by the circle action (2:3.15)).

When V=W & W ® L, the bundle g; defined prior to (2Z.I.4]) admits a splitting

(2.3.17) g =iIROL,
where R = X x R. The action ([Z.3.15) induces an S* action on g given, for z € L and ¢ € iR, by
(2.3.18) (7. (¢.2)) = (G.e7272),

as described in [30, Equation 3.56].

2.3.5. The virtual normal bundle of the Seiberg—Witten moduli space. Suppose t =
(p, V) and s = (p, W), with V. = W @ W & L, so we have a topological embedding M, — .#;
we assume M, contains no zero-section monopoles. Recall from [28) Section 3.5] that there exist
finite-rank, complex vector bundles,

(2.3.19) =S — Ms and 7N : Nyg — M,
with E¢s = My x C™=, called the obstruction bundles and virtual normal bundles of My — .,

respectively. For a small enough positive radius e, there are a topological embedding [28, Theorem
3.21] of an open tubular neighborhood,

(2.3.20) Vs : Nis(e) = G,
and a smooth section x, of the pulled-back complex vector bundle,
(2.3.21) TNErs — Nis(e),

such that the restriction of ~, yields a homeomorphism
(2.3.22) Vs i X ' (0) N Nis(e) = oty Ny (Nis(€)),

restricting to a diffeomorphism on the complement of M; and identifying M, with its image in .,
under the embedding (2.3.12]). We often refer to the image ~,(Nis(€)) as a virtual moduli space.
Our terminology is loosely motivated by that of [46] and [86], where the goal (translated to
our setting) would be to construct a virtual fundamental class for ., given by the cap product of
the fundamental class of a virtual space containing .#; with the Euler class of a vector bundle over
this virtual space, where .#; is the zero locus of a (possibly non-transversally vanishing) section.
Here, ~,(N¢s(c)) plays the role of the virtual space and (the pullback of) =Z¢, the vector bundle
with zero section yielding (an open neighborhood in) .#;. Then, N¢, is the normal bundle of
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M, — ~v,(Nis(€)), while [Ngs] — [E¢s] would more properly be called the ‘virtual normal bundle’ of
M, — M, in the language of K-theory.

By [28] Equations (2.47) and (3.35)], the negative of the index of the SO(3)-monopole elliptic
deformation complex at a reducible solution can be written as

(2.3.23) dim .4, = 2n4(t,s) + ds(s),

where dg(s) is the expected dimension of the Seiberg—Witten moduli space M; (see equation
2310)), while ng(t,s) = ni(t,s) + n”(t,s) is minus the complex index of the normal deforma-
tion operator [28] Equations (3.71) and (3.72)]), with

H(t,9) = (@) — a(6) - 5(+o)

(2.3.24) 1

n(ts) = Slea(s) —2a1 (6)* — o).
If r= is the complex rank of Z¢, — M,, and ry(t,s) is the complex rank of N¢s — M,, then
(2.3.25) rn(ts) = ns(t,s) +r=,

as we can see from the dimension relation (23.23]) and the topological model (23.22]).

The map ([2.3.20) is S'-equivariant when S! acts trivially on M;, by scalar multiplication on
the fibers of Nis(¢), and by the action (2Z3.I5]) on %;. The bundle (23.2I)) and section x, are
Sl-equivariant if S acts on Nis and the fibers of v;E ¢ by scalar multiplication.

Let Nhs — M, be the pullback of Nis; by the projection M, = M, = ME/%, SO Nhs is a
@, -equivariant bundle, where %, acts on the base M, by the usual gauge group action 233) and
the induced action on the total space,

(2.3.26) Nis C My x L2(A'@r L) @ L* (W ® L) € M, x Li(A' @r g) @ LA(VT),

via the embedding (2313]) of ¥, into % and the splittings g¢ = R @ L [28 Lemma 3.10] and
V=W @W ® L. Thus, s € %, acts by scalar multiplication by s~2 on sections of A' ®g L and by
57! on sections of W+ @ L [28], Section 3.5.4].

For a small enough~ positive ¢, there is a smooth embedding [28, Section 3.5.4] of the open
tubular neighborhood N 4(¢),

(2.3.27) Yot Nis(e) = G,
which is gauge-equivariant with respect to the preceding action of %, and covers the topological
embedding [2.3.20). The map Z3.27)) is S'-equivariant, where S* acts trivially on Ms, by scalar

multiplication on the fibers of Nt,g(s), and by the action (Z3.I5) on %;. We note that the map
([23:27) is also S'-equivariant with respect to the action (ZIJ) on %, if S acts on Ny, by

(2.3.28) (e, (B, U, 8,)) = 0(e") (B, V,e* B, %) = (B, 0, 8,ey),
where (B, V) € M, and (8,¢) € L2(A'@r L) ® L> (Wt ®1L), so (B, ¥, 3,¢) € Nis, and 0: % — %

is the homomorphism (Z3I3]). This equivariance follows from the relation (Z3.I6]) between the

actions (2315 and (Z.1.9]).
We note that the Chern character of the bundle Ny, is computed in |28 Theorem 3.29] while
the Segre classes of this bundle are computed, under some additional assumptions, in [29, Lemma

4.11].
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2.4. Cohomology classes on the moduli space of SO(3) monopoles

The identity (II.I]) arises as an equality between pairings of suitable cohomology classes with
a link in ///_,(*’0 /S of the anti-self-dual moduli subspace and with the links of the Seiberg-Witten
moduli subspaces in .#/S'. We now review the definitions of these cohomology classes and their
dual geometric representatives given in [29] Section 3.

The first kind of cohomology class is defined on .#;*/S*, via the associated SO(3) bundle,

(2.4.1) Fe =47 /S x4, gt = € /S x X.

The group % acts diagonally in (2.4.1]), with % acting on the left on g¢. We define [29], Section 3.1]

(2.4.2) ppt Hu(XiR) = B (67 [SR), B> —ipa(F)/6.

On restriction to MY — .#, the cohomology classes f1,,(/3) coincide with those used in the definition
of Donaldson invariants [29, Lemma 3.1]. Define

(2.4.3) AX) = Sym (Hoven (X R)) ® A*(Hoqa (X3 R))

to be the graded algebra, with z = (102 --- (8, having total degree deg(z) = Zp(él — ip), when
By € H;,(X;R). Then p, extends in the usual way to a homomorphism of graded real algebras,

(2.4.4) iy ACX) > H* (67 /SYR),

which preserves degrees. Next, we define a complex line bundle over (5{*’0 /St
(2.4.5) L= 6" x (51,9 C,

where the S! action is given, for [A4, ®] € ‘Kt*’o and ¢ € C, by

(2.4.6) ([4,®],¢) — ([A, ], e%0¢).

Then we define the second kind of cohomology class on ///t*’o /St by

(2.4.7) pe = e1(Ly) € HX(6°/SYR).

For monomials z € A(X), we constructed [29, Section 3.2] geometric representatives #'(z) dual
to pup(z) (following the discussion in [53]) and #  dual to j., defined on .#;"/S' and MCSE,
respectively; their closures in .#;/S' are denoted by #(z) and # [29] Definition 3.14]. When

(2.4.8) deg(z) + 21 = dim(.#,"°/S") — 1,
and deg(z) > dim MY it follows from [29] Section 3.3] that the intersection
(2.4.9) V() NH" M) S

is an oriented one-manifold (not necessarily connected) whose closure in M,/ S* can only intersect
(M—M,) /S at points in A7 =2 U(M;xSym*(X)), where the union is over £ > 0 and s € Spin®(X)
[29] Corollary 3.18].
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2.5. Donaldson invariants

We first recall the definition [53], Section 2] of the Donaldson series when b;(X) = 0 and
bT(X) > 1 is odd, so that, in this case, x(X) + o(X) = 0 (mod 4). See also Section 3.4.2 in
[29], especially for a definition of the Donaldson invariants when b"(X) = 1. For any choice of
w € H?(X;7Z), the Donaldson invariant is a linear function,

DY : A(X) = R.

Let X = X #@2 lge the blow-up of X and let e € HQ(X ; Z) be the exceptional class, with Poincaré
dual PD[e] € H(X;Z). If z € A(X) is a monomial, we define D%(2) = 0 unless

(2.5.1) deg(z) = —2u? — g(x +0) (mod 8).
If deg(z) obeys equation (ZE.1I), we let x € 1Z be defined by
3
deg(z) = 8k — 5 (x+o0).

There exists an SO(3) bundle over X with first Pontrjagin number —4x — 1 and second Stiefel-
Whitney class w + PD[e] (mod 2). One then defines the Donaldson invariant on monomials by

(2.5.2) D¥(2) = # (77(,26) n LR (X)) :

and extends DY to a real linear function on A(X). Note that w + PDle] (mod 2) is good in the
sense of Definition 2221l If v’ = w (mod 2), then [14]

(2.5.3) DY = (—1)iw'~w)’pw.
The Donaldson series is a formal power series,
(2.5.4) DY (h) = DY ((1+ 32)e), h € Ha(X;R).

By equation ([2.5.1), the series DY is even if
3
—w? — Z(X +0)=0 (mod 2),
and odd otherwise. A four-manifold has Kronheimer—-Mrowka simple type if for some w and all
z € A(X),
DY (2%2) = 4D%(2).
According to [53], Theorem 1.7], when X has Kronheimer-Mrowka simple type the series D% (h) is
an analytic function of i and there are finitely many characteristic cohomology classes, K1, ..., K,
in H?(X;Z) (the Kronheimer-Mrowka basic classes), and non-zero rational numbers, ay, ..., an
(independent of w), so that

D% (h) = e%h-h Z(—l)%(w2+Ki'w)a,'e<Ki’h>,
i=1

Witten’s Conjecture [L03] then relates the Donaldson and Seiberg—Witten series for four-manifolds
of simple type.
When b (X) = 1, the pairing on the right-hand side of definition ([2:5.2)) depends on the chamber

in the positive cone of H?(X;R) determined by the period point of the Riemannian metric on X,
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just as in the case of Seiberg—Witten invariants described in Section 2.3.21 We refer to Section 3.4.2
in [29] for a detailed discussion of this case and, as in [29], we assume that the class w (mod 2) is
good in order to avoid technical difficulties involved in chamber specification.

2.6. Links and the cobordism

Since the ends of the components of the one-manifold (ZZ9) either lie near MY or M, x
Sym‘(X), for some s and £(t,s) > 0 for which t(¢) = s ® s ® L, we have when wy(t) is good in the
sense of Definition 2.2.1] that (see Theorem [B.1.9])

(2.6.1) # (T # 0L )=~ > #(F()n# ™ NLy),
$€Spin®(X)

where Ly, is the link of MY in .#,/S" (see [28] Definition 3.7]) and where Ly, is empty if £(t,5) < 0
and is the boundary of an open neighborhood of the Seiberg-Witten stratum M, x Sym*(X) in
M) ST if £ = £(t,5) > 0. By construction, the intersection of L¢, with the top stratum of .#;/S? is
a smoothly-stratified space and the intersection of I_Jt,s with the geometric representatives is in the
top stratum of I:t,s. The precise definition of I:;ts is given in [28] Definition 3.22] for £ = 0 and in
Definition BI.3l for ¢ > 1.

When deg(z) = dim M}¥ and n,(t) > 0, the intersection of the one-manifold (2.4.9]) with the
link Ly, is given by [29} Lemma 3.30]

K

(2.6.2) 2l (V(z) W NLY) = # (V(2) N MY).

Applying this identity to the blow-up, X #@2, when n,(t) > 0, we recover the Donaldson invariant
D¥(z) on the right-hand side of (Z6.2) via definition (25.2).

REMARK 2.6.1. If in (Z6.2) we have deg(z) > dim M and we replace # "=~ with #" where
n satisfies (2.4.8]), then the intersection number vanishes. If n,(t) < 0 and deg(z) still satisfies
[2:438]) with n = 0, then the intersection number in (2.6.2]) is a constant times the spin polynomial
invariant [84].






CHAPTER 3
Diagonals of symmetric products of manifolds

To describe the link of the family of singularities, M; x Sym*(X), in .#, we will need to describe
the strata of the symmetric product SymZ(X ), the normal bundles of the strata, and their incidence
relations.

3.1. Definitions

In this section, we introduce some vocabulary for describing the action of the symmetric group
on X the fixed point sets of this action, and the resulting strata of the symmetric product
Sym‘(X). For basic definitions of the vocabulary of group actions, we refer to [100, pp. 2-8§].

3.1.1. Subgroups of the symmetric group. For any set P, let &p be the group of bi-
jections, 0 : P — P. For P = Ny, = {1,...,¢}, we will write &, for the symmetric group on ¢
elements. We will write partitions of Ny as & = {P1,..., P2} where P; C N;. We refer to
the number of sets in & as the length of &?. Each such partition of N, gives a partition of /:
(= |Pi|+ -+ [Py 2)|. The symmetric group &, acts on the set of partitions of N, by

(3.1.1) (0,2) = o(P) :={o(P1),...,0(Pys))}-

The orbits of this action are distinguished by the partitions of ¢. Let I'(#?) < &, be the stabilizer
of a partition 2, considered as an ordered set, with respect to the action (B.1.1I).

LEMMA 3.1.1. Let & be a partition of Ny. Then the subgroup T'(2?) of &y is given by the image
of the inclusion,

(3.1.2) I sr— .
pPew

PRrROOF. Let IV(Z?) be the image of the homomorphism ([BI.2). There is then an inclu-
sion I"(#) — I'(#). This map is surjective because any o € &, which preserves the subsets
Py, ..., P () is a permutation of each of these subsets and thus in (). O

LEMMA 3.1.2. Let §(Z) < &; be the normalizer of T'(Z?). Then for all 0 € &(Z) and all
P e 2, one has that o(P) € Z.

PROOF. Assume that there are 0 € (&) and P € & with o(P) ¢ &. If |P| = 1, then there
is a P’ € & with o(P) & P'. The strictness of the preceding inclusion implies that |P’| > 1. Thus,
there are a,b € P/ with a € o(P) and b ¢ o(P). By Lemma[3.I.1] the transposition (a b) is in ['(2?)
and by the definition of &(£?) as the normalizer of I'(#), we have o0~ !(a b)o = (c d) € I'(2).
However, ¢ = 0~ (a) € P while d = 07 1(b) ¢ P, so (c d) ¢ T'(%). This contradiction proves the
lemma if |P| = 1.

25
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If |P| > 1, then there are a,b € o(P) with a # b and P’ € e@w1tha€P’andb¢P’ By
Lemma BI1] the transp051t10n (a b) is not in I'(4?). However, because o~ '(a),oc~1(b) € P, the
transposition 0~ (a b)o = (671 (a) o71(b)) is in I'(Z?), contradicting the definition of &(Z?) as the

normalizer of I'(2?). O
Lemma shows that &(2) acts via (3.11]) as a permutation of &. If we define
(3.1.3) W(2) .= 6(2)/T(2),

then W (22) will act freely on 2.

3.1.2. Definition of the diagonals. We define the strata of Sym‘(X) by the quotients of
diagonals in X* by the permutation action of &, on X*. For a partition &2 of N, define

A°(XY, P) = {(x1,...,20) € X" 2; = x; if and only if IP € & with i,j € P },

(3.1.4) . .
AXS 2) ={(x1,...,00) € X 1z =2;if 3P € & withi,j € P }.

The preceding subspaces are related by
(3.1.5) e A°(XE 2) = AXE, ).

The big (respectively, small) diagonal in X* comprises the set of points (x1,...,mq) € Xt with
x; = x; for at least one (respectively, all) pair 7, j. We can identify A°(X ¢, 2) with the complement
of the big diagonal in X" (where r is the length of &) as follows. Write &2 as an ordered collection
Py, ..., P.(2). Then define an embedding,

(3.1.6) v s XM\ | i = 5} » A°(X, 2) € XF,
i<j
by «(z1,...,2) = (Y1,-..,Ye), where yx, = x; for k € P;. The map ¢t is a diffeomorphism.
LEMMA 3.1.3. Let & be a partition of Ny. Let &; act on X* by the permutation action,

(317) (O’, (xla"'vxn)) = (‘TU(l)?”’?xO'(n))’

Then the following hold:
(1) The diagonal A(X*, 2) is the fized-point set of the group T'(2);
(2) For x € X*, one has x € A°(X*, 2) if and only if Staby = I'(2);
(3) If 0 € & then o(A°(X*, 2)) C A°(XY, 2) if and only if o € &(2).

ProOOF. That A(X*, £) is contained in the fixed-point set of I'(?) follows immediately from
the definitions. The fixed-point set of &; acting on X* is the small diagonal. Thus, by the charac-
terization of I'(#?) in Lemma B} if x € X* has the property that o(x) = x for all 0 € I'(£?),
then ; = z; for all 4,j € P for every P € &7. Hence, the fixed-point set of I'(?) is contained in
A(X*, &), proving Ttem ().

Item () implies that I'(2?) C Staby for x € A°(X*, ). If o € Stabx and o ¢ T'(£?), then
there are P € & and i € P such that o(i) ¢ P. But o(x) = x then implies that x,(;) = x;, which
contradicts the fact that x € A°(X*, ). Therefore, x € A°(X*, &) implies that Stab, = I'(22).
If Stab, = I'(#), then Item (I} implies that x € A(X*, ). If x ¢ A°(X?, &) then there are
i€ P,and j € Py, P, # P, € &, with x; = ;. Consequently, for o = (i j) € &, one has o(x) = x
but o ¢ T'(Z?), a contradiction, and this proves Item (2)).
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Item (B]) follows immediately from the definition of &(2?) as the normalizer of I'(Z?), Item (2),
and the relation Stab, ) = o Stabx o1 (see [100] p. 3]). O

3.1.3. Strata of the symmetric product. Let 7, : X! — Sym‘(X) = X¢/&, be the pro-

jection. Define the stratum of the symmetric product SymZ(X ) corresponding to a partition &
by

(3.1.8) DX, 2) = 7 (MK, 2))

Lemma [3.1.3] implies that

(3.1.9) S(XE 2) = A°(XE P2)/6(P) = A°(XE, 2) /W (2P).
The result below follows immediately from the definitions.

LEMMA 3.1.4. Let & be a partition of Ny and let [ZP] denote the orbit of &7 under Sy. Then,

L (z:(x{@)): U 2ax,2).
P'e| D)

3.2. Incidence relations among diagonals and strata

We now describe incidence relations among the diagonals of X¢ and the resulting relations
among the strata ¥ of Sym*(X).

DEFINITION 3.2.1. Let & and &' be partitions of N,. We say &’ is a refinement of &2, or
P < P if for every P/ € &' thereis a P € & with P’ C P.

LEMMA 3.2.2. If & and &' are partitions of Ny then A°(X*, 2) C A(X, ') if and only if
P <P

ProOF. If 2’ is a refinement of &2 and x € A°(X*, 2), then for every P’ € &' and i,j € P/,
there is a P € & with i,j € P’ C P. Since i,j € P € &, we have z; = z; so x € A(X, ),
proving one implication.

Conversely, if A°(X?, 2) C A(X,Z') and P’ € 2’ then, because every x = (21,...,7¢) €
A°(X* 2) is also in A(X,2'), we see that for every i,j € P', we have z; = x;. This implies
(by the only if in the definition of A°(X*, £)) that there must be a P € & with i,j € P. Thus,
P'cPand & < 2. O

Now, we compare the incidence relations with the strata of SymZ(X ). Recall that for a partition
P of Ny, we use [#] to denote the orbit of & under the action [B.I.1]) of &; on the set of partitions
of Ny. For partitions &2 and &’ of Ny, define

(3.2.1) (P < PN ={P"ec|P]: P2 <P}
We now give an example to show that while &(2?) acts on [ < &'] by the action (BT, this

action need not be transitive.

ExAMPLE 3.2.3. Consider the partitions & = {P;, P»}, where P, = {1,2} and P, = {3,4,5},
and #' = {Q1,Q2,Q3,Q4}, where Q1 = {1}, Q2 = {2}, Q3 = {3}, and Q4 = {4,5}. Observe
that & < &’ because Q1,Q2 C P; and Q3,Q4 C P,. Define o := (1 4)(2 5) € &5. Then
o(P") = P ={R1, Rs, R3, Ry}, where R; = {1,2}, Ry = {3}, R3 = {4} and Ry = {5}. Because
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Ry = P, and Ry, R3, Ry C Py, we have & < &, Thus, &' ,0(P') € [ < P’ but 0 ¢ &(P)
because o does not satisfy the conclusion of Lemma

The next lemma follows from the definition of X(X*, 22) (see (BLJ)) as well as Lemma
and the third assertion of Lemma B.1.4]

LEMMA 3.2.4. If & and &' are partitions of Ny, then
S(XY, P) C gy ) (X P)
if and only if there is a P" € [P'| with &2 < P".

3.3. Normal bundles of diagonals and strata

We now introduce the normal bundles of the diagonals A°(X*, &) of X*.

LEMMA 3.3.1. Let & be any partition of Ny. The tangent bundle of the submanifold A°(X*, 2)
s given by

(3.3.1) TA (X!, P) = {(Ul,...,w) eTX':v;=v; <= IP € P withi,j € P}.

If g is any metric on X, then the orthogonal complement of TA°(X*, 2) with respect to the metric
on X* given by the {-fold product of g is the following normal bundle of A°(X*, 2),

(3.3.2) (Xt D) = {(vl, .., 0p) € TXZIAo(XeMm) : Zvi =0 for all P € @} .
iEP
ProOF. Differentiate any path in A°(X¢ 2) to see the form of TA°(X? &) appearing in
equation (B3.1). For ¥ = (v1,...,v) € TA°(X?, &), define vp = v; for any i with i € P. If
7= (v1,...,v) € TA°(X*, P) and & = (wy,...,wp) € 7(X, P), then the equality,

27-1522112-'10@-: Z vp - <Zw2) =0,
i pPe? icP
which holds for any product metric on X, implies that the bundle in equation (3.3.2) is contained
in the orthogonal complement of TA°(X*, &2). Since the above inclusion must hold for any value
of vp, we see that any element of the orthogonal complement of TA°(X*? &) must satisfy the
equations defining the bundle in (3:32)). O

Lemma [3:31] leads to the following description of a neighborhood of A°(X*, 22).

LEMMA 3.3.2. There is an open neighborhood,~5’(X€, P) C (Xt D), of the zero-section and an
&(P)-equivariant exponential map identifying O (X, ) with an open neighborhood, % (X*, 2),
of A°(X*, ) in X*.

REMARK 3.3.3. If & is the partition of Ny given by £ =1+ 1+ --- + 1, so A°(X*, 2) is the
complement of the big diagonal in X, then the normal bundle ([8:3:2)) is trivial in the sense that

it is equal to A°(X?, @).~The diagonal A°(X* ) is an open, dense subspace of X* and equal to
the open neighborhood % (X*, #) of Lemma
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There is an obvious &(£) action on the normal bundle #(X*¢, 22). We will write v(X*, 2) for
the quotient #(X*, 2)/&(Z). Because the exponential map is &(Z)-equivariant, equation (3.1.9)
yields

LEMMA 3.3.4. Continue the notation of Lemma[Z32. If O(X!, ) = O(X', 2)/S(P), then
a neighborhood,

%X 2) = U(X, 2)[S(P),
of ©(X!, 2) in Sym*(X) is homeomorphic to 0(X', 2).
We now identify the intersection of A°(X, 2') with % (X*, 2).

LEMMA 3.3.5. If 22 < &' are partitions of Ny and
(3.3.3) p(X P2 - P
- {(vl,...,vg) (X!, P) vy =v; «= IP' € P withi,je P’},
then the intersection of A°(Xt, ') with % (X*t, P) is homeomorphic to
OX" P - P ,g9)=0X", 2 - P)VNOX", g).
Proor. This follows immediately from the equivariance of the exponential map. O

Thus, a neighborhood of the lower diagonal, A°(X*, &), in A°(X*¢, 2') can be described by
the bundle #(X*, 2 — 2'). However, the end of the stratum (X, &') near the lower stratum,
Y(X*, 2), can be more complicated than a quotient of 7(X¢, &2 — &) by a subgroup of &(£2).
Indeed, 7(X*, 2 — 2') need not be an invariant subspace of 7(X*, ) under the action of &(22).
Recall from Lemma B.I4 that 7, (S(X¥, 2')) comprises not just A°(X?, 2’) but rather all the
diagonals given by a partition in [9?'], the orbit of &' under the action (B.1.I]). Therefore, while we
can cover %(X¢ 2) by A°(X!, ), to account for all the ends of A°(X*, 2') which get mapped by
7y to a neighborhood of the lower stratum, Y (X*, £2), we must consider all diagonals A°(X*, 2")
where 2" € [2'] and & < &”. That is, we must consider all partitions 2" € [# < Z'], where
(7 < P'] is defined in (3.2.0]). The next lemma follows from Lemmas and

LEMMA 3.3.6. Let & < ' be partitions of Ny. Let [P < P'] be the set of partitions defined
in ZI). Then a neighborhood of £(X*¢, ) in ©(X*, &) is homeomorphic to a neighborhood of
the zero-section in

(3.3.4) V(X P = [ P]) =X P = [P]))S(P)
where
XL 2 2)= || wxhe-
Pe|P<P]

REMARK 3.3.7. As noted in Example B.23] &(Z) need not act transitively on [&2 < Z7|.
The orbits of &(2) in [# < '] will enumerate the components of the end of (X ') in a
neighborhood of X(X?, 2).
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3.4. Enumeration of the strata

We will often need to give arguments by induction on strata of Symg(X ). To that end, we
now give a method of enumerating these strata. Choose a representative, &, from each orbit of
partitions, [Z?], under the action (BII). We refer to the partition &y = {N,} as the crudest
partition. Enumerate the remaining representatives in such a way that

E(Xf,%)cd@(xf,gzj)) only if i< j.

Write these partitions as &y, Ps, ..., P, so that (X, Py) is the lowest stratum and X(X*, 2,)
is the highest.



CHAPTER 4
A partial Thom—Mather structure on symmetric products

In this chapter, we define neighborhoods of the strata of Sym‘(X) defined in Section B.1.2,
projections of these neighborhoods onto the strata, and vector-valued tubular distance functions
on these neighborhoods.

4.1. Introduction

A topological space Z is smoothly stratified if it admits a decomposition into a locally finite
collection of locally closed subspaces, Z = U;;, each of which is a smooth manifold and which
satisfy the condition of the frontier: ¥Ncl(X;) # @ if and only if ¥ C cl(3;). Such spaces are called
Whitney pre-stratified in [66, p. 480] (see also, [39 p. 36]). A Thom-Mather stratification on
a smoothly-stratified space Z with strata X; consists of tubular neighborhood structures, by which
we mean neighborhoods, U; of ¥;, with tubular neighborhood projections, m; : U; — X;, and tubular
distance functions, t; : U; — [0,1), satisfying the following properties:

(1) For all i, t;1(0) = %;.
2) For ¥; C clz(X;) the compatibility conditions
( J Yy
T3 © ﬂ'j = T4,
(4.1.1) p—
wherever these compositions are defined.
3) The map m; x t; : U; = ¥; x [0,1) is a submersion.
(

These conditions are called the control conditions of a Thom-Mather stratification (see [39] p.
42]). Because Sym*(X) is the quotient of the smooth manifold X* by the action of a finite group, it
admits the structure of a Whitney stratification (for example, see [82], Theorem 4.3.7]) and hence
a Thom—Mather stratification (see [39] p. 42]).

In this chapter, we give an explicit construction of a partial tubular neighborhood structure on
the stratification of Symé(X ) defined in Section[3.1.2] By partial tubular neighborhood structure on
a smoothly-stratified space, Z, with strata, ¥;, we mean neighborhoods, U; of ¥;, with projection
maps, m; : Uy — %;, and vector-valued tubular distance functions, t; : U; — [0,1)™, with X; =
t:1(0). We show these maps satisfy the first compatibility condition in (ZII)) and how to control
the failure of the second compatibility condition.

We shall need the explicit construction of these projection and distance functions to compare
them with the functions of a partial tubular neighborhood structure on neighborhoods of M; x
Sym* (X). In addition, this presentation serves as an introduction to a technique for constructing
partial tubular neighborhood structures which we shall employ again in later chapters in less familiar
settings.

31



32 4. A PARTIAL THOM-MATHER STRUCTURE ON SYMMETRIC PRODUCTS

To construct the partial tubular neighborhood structure on Sym®(X), we begin by constructing
one on X' for the stratification given by the diagonals of X*. In Section we define subspaces
of (R*)* which will appear as the fibers of the normal bundles defined in Section B3l We also
define stratifications of these subspaces of (R*)¢ and tubular neighborhoods of these stratifications.
To use the normal bundles of Section B.3] to construct partial tubular neighborhood structures
on Sym‘(X), we define an exponential map with a varying metric in Section @3l We describe
the overlap of the exponential maps from these normal bundles in Section [£.4l In Section we
construct families of metrics so that the projection maps defined by the associated exponential
maps satisfy the first equation in ([AI.I]). Then, we show how this partial tubular neighborhood
structure on X descends to one on Sym‘(X) in Section In Section 4.7, we define the vector-
valued tubular distance functions and describe their failure to satisfy the second equation in (A.1.T]).
This description and the analogous description for the vector-valued tubular distance functions for
M, x Sym‘(X) will allow us to define the link of M, x Sym‘(X) in (8IL3) as a union of fiber
bundles as described in Proposition B2.T] which will enable the pushforward-pullback arguments
of Sections [10.4] and Finally, in Section 48] we use the partial tubular neighborhood
structure to produce a partition of Symg (X) into compact subsets of these tubular neighborhoods.
These compact subsets will be used in our construction of the link of M, x Sym*(X) and to give a
criterion for patching together maps to Sym‘(X) which are homotopic but not equal.

4.2. Diagonals in products of R*

The fiber of the normal bundle of the diagonal A°(X*, £) is given by the product, over P € 2,
of the subspace of mass-centered points in @;cpR?* (see [3.3.2)). Hence, for any subset P of Ny,
define

(4.2.1) Zp . @R4 = (Ui)iep — Zvi € R* and Zp:= Z;l(O) C @R4.
iEP 7 iEP

We will write z, for zx,. We define the cone point,

(4.2.2) cp € Zp,

to be the zero vector in @;cp R*. Note that if |[P| = 1, then Zp = {cp}. The fiber of #(X*, 2) is
then given by (compare ([3.3.2]))

(4.2.3) z(2)= 1] 2»r.
Pe

For partitions &2 < &' of Ny, define a partition of each P € & by
(4.2.4) Pp:={P e :P C P}
If Pe N, then ), = {P}. We define
(4.2.5) A°(Zp, Pp) = {(vi)iep € Zp : v; = v; if and only if 3P’ € P} with i,j € P'},
and observe that the fiber of the bundle #(X*, 2 — 2') in (8.3.3) is given by
(4.2.6) z(2, 2" = [] A°(Zp, Zp).

Pe

Note that if &} is given by one set, P, as is the case when P € & N &, then A°(Zp, P}p) is a
single point, given by |P| copies of the zero vector in R*.
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We define a cone parameter function on Zp by the map

(4.2.7) tp7() 1 Zp > (Uz')ieP — Z ’1)2"2 S [0,00)
ieP

Then t]_glo(O) = cp and there is a deformation retraction of Zp to cp given by
(4.2.8) rp:Zp X [0, 1] = ((Uz')iePas) — (S’Uz')iep € Zp.
Observe that rp(-,1) is the identity map, while rp(-,0) = cp. Moreover,
(4.2.9) tpoorp(s) = s%tpo().

Hence, there is a homeomorphism between Zp and the cone on t]_g}o(l).
The following lemma describes the normal bundle of A°(Zp, 27},) C 2131(0).

LEMMA 4.2.1. Let &) be a partition of P. Then the restriction of the map

(4.2.10) G(ZP, @jo) : AO(ZP, e@jo) X H ZP/ — Zp
Pe,
defined by
(4.2.11) <(Ui)iePa (%) jep, ) = (Vi + 2i)iep
Pezy,

to a sufficiently small neighborhood O(Zp, }) of the subspace
AO Zp, L@p H {Cp/
Pey,
is a homeomorphism onto its image, % (Zp, Pp).

PROOF. We observe that the map (ZZZTIT]) can be inverted by the center of mass map,

(wi)iep — ((Ui)ieP7 (2i) jep, > :

Pe

4.2.12
( ) vi:‘ /‘Zw], for i € P,

JEP'
Zj = wj — U].
(Note that the above map is an inverse because > jepr % = 0 by the definition of Z pr.) However,
the map (£2.12]) only takes values in

AN°(Zp, Zp) x [ 2
Plezy
if we restrict to a sufficiently small neighborhood €(Zp, ). d

REMARK 4.2.2. As in Remark B:3.3] if &}, is the finest partition of P, made of subsets all of
size one, then for all P/ € &, the point Zp: is the cone point and e(Zp, &) is the identity map.
In this case, A°(Zp, Pp) = O(Zp, P}) is an open and dense subset of Zp.
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REMARK 4.2.3. Observe that the map e(Zp, #}) is equivariant with respect to the R™ actions
given by scalar multiplication on all factors in the domain,

<(Uz')z'ePa(Zj) JEP, ) = ((sz’)ieP7(32j) JEP, ) )

P'ez), PeZp,
and the map rp(-,s) on Zp.

Because Zp is a completely normal topological space (see [75, Section 32, Example 4]), we
can find open neighborhoods U(Zp, ) of A°(Zp, P}) for every partition &, of P such that
U(Zp, ZPp) NU(Zp, PY%) is empty unless &p < P4 or P} < Pp. By Remark B23] we can
assume that the neighborhoods U(Zp, &) are closed under the maps rp(-,s) for s € [0,1]. The
normal bundle structure given by the map (£2.1I1]) then defines a tubular neighborhood projection,
(4.2.13) F(Zp,,@};) : U(Zp,,@};) — AO(ZP7e@/P)7
given by the v; component of the map (£.2.12):

(4.2.14) (wi)iep — (vi)iep, where v; := > wjforie P e Pp.

jeP’

In the case of the top stratum described in Remark 4.2.2] the map 7(Zp, &}) is just the identity
map. By construction, the maps 7n(Zp, %)) commute with the map rp of (£2.8)) in the sense that
(4'2'15) rp(m(Zp, ‘@%)()7 s) =n(Zp, '@%)(TP(W S))?

for all s € [0, 1].
The following lemma shows that the maps 7(Zp, &}) satisfy the first equality in (ZI.I]).

1
|P']

LEMMA 4.2.4. If 7}, < P are partitions of P, then on the intersection U(Zp, Zp)NU(Zp, P}),
the following equality holds:

(4.2.16) W(Zp,e@jo)oﬂ'(Zp,e@%) :F(Zp,,@};).
PROOF. The lemma follows immediately from the definition (£2.T14]). O

We use the above set of tubular neighborhoods to define a deformation of the scale function,
tpo, which is constant on the fibers of the maps n(Zp, #}).
LEMMA 4.2.5. There are
(1) A smooth function, t(Zp) : t;’lo([O, 1)) € Zp — [0,00),
(2) Open neighborhoods, U'(Zp, #p) T U(Zp, @}D)ﬂt]_g}o([o, 1), of the diagonals, A°(Zp, Zp)N
tpo([0: 1)),
such that the following hold:
(1) If cp € Zp is the cone point in [EZ2), then t(Zp)~1(0) = cp.
(2) Ifrp is the map in (L28) then, for all s € [0,1],
(4.2.17) t(Zp)(rp(-,s)) = s*t(Zp)(-).
(3) For every partition & of P of length greater than one,
(4.2.18) t(Zp)onw(Zp, Pp) =t(Zp) on U (Zp, P}).
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(4) The function, t(Zp), is invariant with respect to the permutation action of &p and the
diagonal rotation action of SO(4) on Zp.

PROOF. Enumerate the conjugacy classes of partitions of P, [Z],...,[#,] in the manner
described in Section B4l That is, for & € [#;] and &’ € [Z;], we have A(Zp, P) C 1 A(Zp, P')
only if i < j. We will construct a sequence of functions, to,...,t,, such that ¢; satisfies (£2I8])
with respect to 7(Zp, &) for any partition & € [Z;] with j <.

Begin with ty = tpo. This function is invariant with respect to the actions of SO(4) and &p
and satisfies (L.2.17)).

Assume we have defined functions, t; : Zp — [0, 00), satisfying Items (Il), ([2]), and (@) of the
lemma and satisfying ([2ZI8]) for all partitions & € [#;] with j < .

There are neighborhoods

U T U T %(Zp, @Z)

of A°(Zp, Pp) which are closed under the SO(4) action and under the action of R* given by
rp(-,s). Let ¥ be the orbit of %; under the action of &Gp. By shrinking %; if necessary, we can
assume that either %; = o(%;) or %;No (%) = @ for all 0 € Sp. Let §; : Zp — [0,1] be a function,
invariant under the actions of SO(4), Gp, and R, supported on %, and satisfying #; C S~1(1).
Denote
m= [ =(Zp,2):%— || A°(Zp,2).
e[ Pe[P]
Observe that the map, m;, is equivariant with respect to the actions of SO(4), Sp, and R*. On %5,
we define
tiv1(-) = Bi()(t omi) () + (1 = Bi()ta ()
Extend t;11 to Zp by setting t;11 :=t; on Zp — ¥5.

By the invariance of ; and t; with respect to the actions of SO(4) and &p, and the equivariance
of m; with respect to these actions, the function ¢;,; is invariant with respect to these actions. The
same argument shows that ¢;,1 satisfies (LZIT)), that is, t;411(rp (-, 5)) = s%tir1(-).

For j <iand & € [#;], the function ¢; is constant on the fibers of 7(Zp, &) by our induction
hypothesis. The relation (L2.I6]) implies that on ¥o N %' (Xp, &), the fibers of 7; are contained in
those of m(Zp, &) and thus t;om; equals t; on ¥oN%'(Xp, 2?). This implies that on ¥oN%'(Xp, P)
any convex linear combination of ¢; om; and t; equals ¢;. Hence for any j < i and any & € [2;], the
restriction of t;11 to % (Xp, Z?) equals the restriction of ¢;. By definition, this equality also holds
on the complement of #5. Thus, t;41 satisfies (L2I8) for any & € [Z;] and j < i. We further
observe that on 71 C 3; 1(1), we have t;11 = t; o m; while the equality 7; o m; = 7; implies that

(tix1om)(-) = (Biom)()(tiomi)(-) + (1 — (Bi o mi) (1)) (ti 0 mi) () = (i 0 m)().

Hence, if we define %'(Zp, ) = V1 N U (Zp, P) for P € (], then ([@2.1I8) holds, completing
the induction. O

4.3. Families of metrics

A Riemannian metric, g, on X determines a product Riemannian metric on X’ and thus
exponential maps of the normal bundles of the diagonal. We will use a non-standard diffeomorphism
of a neighborhood of the zero section in the normal bundle 7(X* &) with a neighborhood of
A°(X*% ) in X*. This diffeomorphism will be defined by varying the Riemannian metric on X
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and hence the resulting product metric on X*. We begin by noting that it is possible to define such
an exponential map with a varying metric.

LEMMA 4.3.1. If g is a smooth family of metrics on X parameterized by x € A° (Xt ), then
there is an open neighborhood O(X*, g») C 0(X¢, P) of the zero section and a smooth embedding,

(4.3.1) e(X!,92): O(X', g99) C0(X', 2) — X",

parameterizing an open neighborhood, @Z(Xé,gg)), of A°(X*t, ) in X' such that the restriction
of the map e(X*%, g») to a fiber O(X, g»)|x is given by the exponential map defined by the (-fold
product of the metric g x.

PrROOF. We claim that the derivative of the map e(X ¢ g#) at a point p on the zero-section
of (X", &) is the identity. We identify this zero section with A°(X*, &) throughout this discus-
sion. Over a point p in this zero section, the tangent bundle of (X ¢ &) admits a decomposi-
tion into the direct sum of 7(X*, 2)|, and T,A°(X* Z). By definition of the exponential map,
De(X*, g»)p(v) = v for any v € #(X!, P)|,. To evaluate De(X*, g»),(w) for w € T,A°(X¢, 2),
let v : [0,1] — A°(X*% £) be a smooth path with 7/(0) = w. Then for all ¢ € [0,1], we have
e(X% g2)(v(t)) = ~(t). Differentiating the preceding equality yields De(X*, g»),(w) = w, so
De(X*, g2 )p is the identity. Hence, e(X ¢, g») defines an embedding of a neighborhood of the zero
section. O

We can assume that the neighborhood % (X*, g») is small enough to have the following property.

LEMMA 4.3.2. Continue the hypotheses of Lemma [{.3.1 The open neighborhood é’(Xg,ggz)
can be chosen so that the images of m; o e(X%, g») and mj 0 e(X’, g») are disjoint for i # j, where
7+ Xt — X is projection onto the i-th factor.

PROOF. For (zp)pesy € A°(X, ), the points zp are distinct. Hence, we can chose balls
around the origin in 7T}, X whose image under the exponential map are disjoint, thus satisfying the
conclusion of the lemma. O

The image of the exponential map in (£.3.I)) is a tubular neighborhood of A®(X ¢, ). Such a
tubular neighborhood, % (X*, g») C X*, defines a projection,

(4.3.2) n(X' 92): U (X', 92) = A (X", ),
by the composition of e(X?, g»)~! and the projection #(X?¢, ) — A°(X, 2).

REMARK 4.3.3. If &2 is the finest partition as described in Remark B.3.3], then the exponential
map e(XZ,gg) and the projection map W(Xz,gg) both equal the identity map.

For any smooth manifold, M, of dimension n, let Frgr,(7"M) denote the GL(n)-bundle of frames
of tangent vectors. Define

FraL(TXY 2) = {(F,.... Fy) € Fr(TX )| po(xe ) 1 Fy = Fj for all i, j € P € P}
If g» is a family of metrics parameterized by A°(X*, &), then we define Fr(TX*, 2, g5) to be
the subbundle of Frgp,(TX¢, 2) of frames such that if (Fy,..., F)) € Fr(TX¢ 2, 95)|x, then Fj is
orthonormal with respect to g x. The structure group of Fr(7'X L P, gp) is

(4.3.3) G(T, 2) :=80(4)"") = [] S0(4), where 2 ={Pi,..., Py}
Pey
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Recalling the definition of Z (&) from (4.2.3]), we have the identity,
(4.3.4) H(X D) =F(TX" 2, 92) X &2 Z(P).
Lemma implies the following.

LEMMA 4.3.4. Let & < ' be partitions of Ny. Let 7(X*, P — &) be the bundle defined in
B33). Then the restriction of the exponential map e(X*, g») to

(4.3.5) O(X% 92) (X P — P
takes values in A(X, 2').
We have the following relation between the bundles Fr(TX*, 2, g4) for different partitions, 2.

LEMMA 4.3.5. Let 2 < P’ be partitions of Ny. Let % (X, P — P, g5) C A°(X, P') be the
image of the restriction of the exponential map e(X*, g») to the domain in [@3.5). Let g» and g
be smooth families of metrics parameterized by A°(X¢, 2) and A°(X, P") respectively. Assume
that 9o x = g x if T(X*, 92)(x') = x. Then,

(4.3.6) Fr(TXZ,@,7993’)’?2(X,@—>9”’,g32)

= Fe(TX", 2,92) %) 1] (8°(Zp, Pp) < GT, 1)) .
Pec

PRrOOF. By Lemma 3.4 a neighborhood of A°(X*, &) in A°(X?, &) is diffeomorphic to a
neighborhood of the zero section in

(4.3.7) DX, P — D)2 WX P,92) Xawo || A°Zp, Pp) Cv(X, 2, 9)
pPez

by the exponential map e(X ¢ g#). The isomorphism ([Z3.0)) is then defined by the obvious parallel
translation of the frames in Fr(T X%, 2, g5) to the point in % (X%, &2 — ') given by the data in

@3.7). m

4.4. Overlap maps

Let & < &’ be partitions of Ny. To define tubular neighborhoods and projection maps which
satisfy the conditions (4.1.1]), we define a space to control the overlap of the tubular neighborhoods,
U(X,P,9p) and % (X, P, g), as follows. We begin by defining an overlap fiber bundle,

(4.4.1) VX2, P) = B(TX P, 99) %amo [ |22 20)x ] 2
pPey P'eZy,

The cone points, cpr € Zpr, define a subspace of #(X*, 22, 2') which is identified with #(X*, 22 —
') by [@37). Neighborhoods in A°(Zp, P}p) of the cone points cp € A(Zp, Pp) define ‘neigh-
borhoods of the zero section’ in 7(X*, 22, 2.
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We will define an open neighborhood, &(X*%, 2, %', g»), of the zero section in »(X*¢, 22, 2')
Xu X.,d .
and maps, pi; 5 and pg, 4, so that the diagram,

X,u
~ 14 / ~
ﬁ(X€7 yv ‘@,799) ﬂ) ﬁ(Xévg@’)
(4.4.2) p};d/"l E(Xevggzﬂ)l
~ e L
O(x'gp) 22 Xt

commutes and controls the overlaps of the images of the exponential maps, e(X tg ) and e(X tg ).
4.4.1. The downwards overlap map. The downwards overlap map,
X,d = =
(4.4.3) Py OXE 2,7 99) = O0(X*, g)
is given by the fiberwise inclusions defined by the map in equation (210,

e(Zp, Pp) : A°(Zp, Pp) x || Zp — Zp.
P'e,

Note that if P € &N 2, then A°(Zp, P}p) is a point and e(Zp, P}p) is the identity map on Zp.
Because e(Zp, ) is SO(4)-equivariant, the product,

H G(Zp,e@%)Z H A Zp,,@P H Zp/ — H Zp

pPew pPew Pez), pPew

is G(T, Z)-equivariant and thus extends to the domain and range given in (4£4.3]). The open
subspace, O(X*, 2, P', g»), must satisfy

(4.4.4) O(X, 2.9 ,95) C (54" (0(X",9))
for the composition in the diagram (£Z.2]) to be defined.

4.4.2. The upwards overlap map. We define the upwards overlap map,

(4.4.5) P (X P, P 6(XE go),
as follows. Let
(4.4.6) (X5 P2, P = (X P — P

be the projection which is obvious from the definitions (£3.7) and (£4I]) (delete the factors of
Zpr). We assume that the open set 0(X*, 2, P’ g5) satisfies

(4.4.7) O(X', 2,7 ,95) S n (6(X",95))

Then the composition e(X*, g )or is defined on ﬁ(XZ, P, P g») and takes values in A°(X ¢, 2').

We now define the map pé,’j},,. We make the assumption on the families of metrics g4 and
g appearing in Lemma B35l Given a point in #(X*, 2, 2') lying over y = (yp) € A°(X?, 2),
define a point y' = (yp/)preg € A°(X¢, ') by the composition,

e(X% gp)om : 0(X" P, P') = A° (X', 2.
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Then, for P’ € &, (where P € &), define Fp/ to be the parallel translation of the frame Fp €
Fr(TX)|y, from yp to y} using the Levi-Civita connection defined by the metric gz . Leave the
data in Zps alone. The result is an element of

Fr(TX 2 99)ly XG0 H Zpr = (X5, Py,
Ple!
thus defining the map p;{z’zy. Observe that if P € &2 N &', the parallel translation for the P-th
component will be trivial because A°(Zp, &7}, is | P|-copies of the zero vector.

4.4.3. Commuting overlap maps. We now define conditions on the metrics g and gg
which ensure that the diagram (£Z42]) commutes. The diagram will commute if we chose the
families of metrics g and gg in such a way as to eliminate holonomy. To do this, we introduce
the notion of a locally flattened metric.

DEFINITION 4.4.1. If A ¢ X*, then the support of A in X is the union of the images of A
under the projection maps, X ¢ 5 X. Let g» be a smooth family of metrics on X parameterized
by A°(X¢, 2). Let %' € % (X’ g») be a neighborhood of A°(X* ). The family of metrics
g s locally flat with respect to U' at x € A°(X*t ) if the metric g2 x is flat on the support of
W' Nw(Xt g2)" (x) in X. The family of metrics is locally flat with respect to %' if this holds for
all x € A°(X!, 2).

The following lemma shows that the diagram (£.4.2]) commutes when the metrics are locally
flat in the sense of Definition [£.4.1]

LEMMA 4.4.2. Let & < ' be partitions of Ny. Assume that the smooth families of metrics
g and gg satisfy
(1) The metrics g are flat with respect to a neighborhood w'C ?Z(Xg,ggz),
(2) Fory' € % (X! g») N A°(XE, 2') with m(X%, g»)(y') =y, the metrics satisfy 97y =
9y
Then there is a neighborhood 0'(X, P, P, q») of the zero section in the bundle (X!, 2, P")
defined in @A) such that the diagram EALZ) commutes when restricted to 0'(X, P, P, g»).

PROOF. We observe that for the compositions
¢ X,d ¢ X,
e(X!.g) 0 p5%s and e(X'.g) 0 5,

to be defined, the neighborhood &” (X, 2, P, gp) must satisfy the inclusion relations (£4.4]) and
(#4T). However, we replace the condition (£4.4]) with the stronger requirement that

- Xod o
(448) ﬁ/(Xa ‘@7 '@/799) g (€(X£7ggz) o p@:@’) 1(%/)'
On any open subset satisfying the above condition, the composition
X,d
e(Xga go)o P o

is defined by the exponential map for the metric g» of the vectors obtained by appropriately
adding vectors in the fiber of #(X* 22, %' gz). The composition,

Y X,u
G(X 79@’) © 1032732’7
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is defined by first parallel translating the vectors defined by the elements of Zp/ from y to the
nearby points in the support of y’, and then exponentiating. By (£4.8)) and the first assumption
on the metrics g» and g, the metric g» , is flat where this parallel translation takes place and
hence the two compositions are equal. O

4.4.4. The projection maps. We now show that the commutativity of the diagram (4.4.2])
will imply that the first Thom—Mather property holds.

LEMMA 4.4.3. Continue the hypotheses and notation of Lemma[{.4.3. Then, upon restriction
to %' Nw(Xt go )t (AO(XZ, 2")), the following equality holds:

(4.4.9) (X’ g92) om(X!, go) = (X', g).

PROOF. The subspace %' N (Xt g )t (A"(XZ,L@’)) is in the image of the composition
e(Xl gp) o0 p;{,;flg,,. The equality follows from the observation that the pullback of 7(X*, gs) by
p‘;{flg,, is given by the projection 71 of (A.4.0). 0

4.5. Construction of the families of locally flattened metrics

We now construct the families of metrics satisfying the conditions of Lemma [4.4.2] and thus
yielding projection maps m(X?, g») which satisfy [@Z9). The first step is to construct a locally
flat family of metrics.

LEMMA 4.5.1. If g is a family of metrics smoothly parameterized by A°(X¢, ), then there is
a family of smooth metrics G smoothly parameterized by A°(X*, P) such that the following hold:
(1) g is locally flat with respect to a tubular neighborhood w'C ?Z(Xg,ggz).
(2) For every x € A°(X!, P), the metric g x is equal to g» x on the complement of the
support of % (X", 92) N7(X’, 95) 7" (%) 3
(3) The families g» and g are C' close within the support of %'.
(4) The exponential maps e(X’, g») andNG(Xe,g_]y) are equal.
(5) If g is already flat with respect to % (X%, g») at x € A°(X¢, P), then o x = 9o x-
PROOF. Let % (X!, g») be the tubular neighborhood of A°(X*, ) defined by the family of
metrics, go, SO ~ ~
e(Xémg@) : ﬁ(Xémg@) C D(Xév ‘@) = %(Xémgc@)
For P € 2, let sp : A°(X!, &) — [0,00) be a smooth function such that
(4.5.1) {(v1,...,v0) € WX, P)|x : |vi] <4sp(x) forallie Pand P e P} C O(P).

For x € A°(#) and (Fp)pew € Fr(TX% 2, 95)|x, the frame Fp and the exponential map of
the metric g» x identify B(0,4sp(x)) C R* with By, (xp,4sp(x)) C X. Let 8, denote the flat
metric on By,  (zp,4sp(x)) given by the pushforward of the Euclidean metric on B(0,4sp(x)) by
the exponential map. For A\ € (0,1], let x) : R — R be a smooth function such that x,(¢) = 0 for
t < %)\ and x(t) = 1 for ¢ > X\. We define gz x by

92 x on X\ Uingz,yx(a;p,élsP(x)),
(4'5'2) 97 x = X45p(x)(|x|)99”,x +(1- X48P(X)(|x|))5m13‘ on ng,x($P’ 2sp(x),4sp(x))),
Ozp on By,  (zp,2s5p(x)),
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where z(-) denotes the local coordinate chart defined by the exponential map for gz .

_ The resulting family of metrics, g, is locally flat with respect to the tubular neighborhood
' defined by replacing 4sp(x) with 2sp(x) in EEI). Item (@) follows immediately from the
construction ([52) while Item (@B]) follows from the expression for a metric in geodesic normal
coordinates [5], Definition 1.24, Proposition 1.25, and Corollary 1.32].

For z in the support of x, the radial geodesics from x are the same for g» x and for g x. These
radial geodesics from z define the exponential maps e(X tg ) and e(X t g ) and hence these maps
are equal.

Because the metric g» x has not been changed at zp, the frame bundles do not change. If the
metric gz « is flat on B(xp,4sp(x)), then it is given by the Euclidean metric in geodesic normal
coordinates by [93] Theorem 7.11]. Thus, 0, = g x and the interpolation in (£5.2]) does not
change the metric. O

We now construct the desired families of metrics.

LEMMA 4.5.2. For each partition & of Ny, there is a smooth family of metrics g» on X defining
tubular neighborhoods % (X%, g») by their exponential maps, such that the following hold:

(1) The family gz is locally flat with respect to a tubular neighborhood %’(XZ, gz) C %N(XZ, 9gz).

(2) If 2 < &', then for all X' € A°(X*, P\NU'(X*, g»), we have go x = g x, where
x = 7(X’, g5)(x).

(3) For o € &y, we have g x = Jo(2),0(x)-

ProOOF. The proof is by induction on the partitions, &2. We will construct the family of metrics,
g, for one partition in the orbit, [Z?], and then use Item (B]) in the lemma to define g4 for all
other &' € [Z].

Choose a Riemannian metric, g, on X. To every partition &2 of Ny, define an initial family of
metrics g by setting go x = g.

Let &y be the crudest partition. Redefine g4, by applying the flattening procedure of Lemma
451l The redefined family of metrics g, is locally flat with respect to the tubular neighborhood
U'(X, Py, gp,) given in Lemma E5.11

Assume that families of metrics, g», and tubular neighborhoods, U’ (X, g»), satisfying the
conclusions of the lemma have been defined for all & < &', There are two families of metrics on
X parameterized by the intersection,

(4.5.3) A(XE 2 NU(XE g2),
namely, the initial family, g, and the family, 7(X*, g»)* g2, which is defined by
m(X% 92) 9px = gox, where (X’ gr)(x)=x.

For 21 < &' and &5 < &' and by shrinking the tubular neighborhoods when necessary, observe
that if the intersection,

(4.5.4) A(XEPNNU (X 90,) VU (X" 92,),
is non-empty, then there is a relation 9, < Py < P’'. Consequently, the relations,

W(szgcajﬁ) © w(nggyz) = 7T(X£7991)7
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(which follow by induction and Lemma [£.4.3]) and the identity,

9y = W(XZ7 9o )*99]’17

imply that the families of metrics,
(4.5.5) (X% 92,) 92, and 7w(X% 92,) 92,
are equal on (L5.4]). Thus we can form a new family of metrics by interpolating between g4 on

AO(Xﬂ@/)\ U %,(Xéng%
PP

and the pullback metrics ({.5.5). By further shrinking the tubular neighborhoods, U'(Xt, gp), for
P < P and taking a sufficiently SmaHNneighborhood, U'(X*, g), we can assume this interpolated
family is locally flat with respect to %'(X*, go) on

(4.5.6) A (x* ( U #zx ,gy>

PP

Now apply the flattening procedure of Lemma [£.5.T] to this interpolated family. Because this family
is already flat with respect to %'(X?, g ) for x in the open space ([E5.0), the flattening procedure
does not change the interpolated family there. Hence, the new flattened family satisfies Items ()
and (2), completing the induction. O

4.6. Normal bundles of strata of Sym‘(X)

We now use the Gy-equivariance of the construction of the previous section to define normal
bundles of the strata (X, &) in Sym‘(X). Recall from Lemma that to describe the end
of (X%, 2') near L(X* &), we have to consider the ends of the diagonals A°(X?, 22") near
A°(XY, D) for all 2" € [P < P'].

The analogue of the bundle (£.4.1]) appropriate for this discussion is

ﬂ(Xzy gzv [‘@/]799)

(4.6.1) )
= FI‘(TXZ, yvgz@) XG(T”@) |_| H A (va ‘@35) X H ZQ )
PNe|P<P| PeP Qe

where we use L to denote disjoint union. The symmetric group &(4?) acts on the spaces,
Fr(TXZ, P.g»), U H A°(Zp, 2)), and U H H ZQ,
PNe|P<P'| PeP PNe| PP PEP Qe Py

by permuting the factors. The diagonal action of &(Z?) on the preceding three spaces defines an
action on (X%, 2, [2'],g»). We define

V(X£7 2, ['@/]799)
(4.6.2)

=Fr(TX", 2,92) xaro) || II [2a°@ze, 28) < [] 2
PNe|P<P PeEP QeZY
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where, if G(T, 2) as defined as in ([E3.3),
G(T,2) = G(T, P) x &(P),
where x denotes the semi-direct product, [56l p. 59] (compare the structure group appearing on
[35 p. 252]). Thus,
V(X5 2, (P, 92) = V(X" 2,19].92)/S(P).
We define
OX,2,(9',99) S V(X' 2,[2'],92),

g
(4.6.3) ¢ ¢ / ¢ /
ﬁ(XW@a[’@]?g@) ﬁ(X7’-@7[’@]79@)/62V(X7@7[@]799)

by analogy with &(X*, 2, ', g») in [&4d).
We define a downwards overlap map,

(4.6.4) Pl o V(XL 2, [P, 99) = O(X' 92) = 0(X',95)/6(2),
by extending the map of fibers given by
I etz 2
P P< P! PEP

over the domain. We have used the convention that if f, : X, — Y, is a family of continuous
maps, then [[, fo : UaXa — UaYs is the map defined on the disjoint unions by this family. Note
that the quotient in (4.6.4]) could be taken to be by W (Z?) instead of G(Z?), as I'(Z?) acts trivially.
This phenomenon will occur frequently, but as it will not affect the discussion we will not mention
it again.

To define an upwards overlap map, we define

(4.6.5) OX' [P <P go):= || OX,2", 990)/6(2).
PNe|P <P
The upwards transition map is then given by
(466) p?L@J'@/] : ﬁ(Xga t@y [‘@/]79'@) — ﬁ(X£7 [‘@ < ‘@/7992”)7 10227[9]1’} = H F’ZX[@’}

PNe| PP

The equivariance of the exponential map e(X?, g») with respect to the symmetric group action
implies that e(X?, g») defines an embedding,

(4.6.7) e(Xz,ggz) : ﬁ(XZ,gy) — Syme(X).

This equivariance and Item (@) of Lemma A5.2] then imply that the exponential maps, e(X*, g ),
define an embedding,

eX e = ] (X' g9): OX [P < P gpm) = Sym'(X).
Pre| <P

We then have the
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PROPOSITION 4.6.1. For each partition & of Ny, let g be the family of metrics constructed in
Lemma [{.5.2. Then the image of the map (L6.7) defines a homeomorphism onto a neighborhood
U (Xt g») of B(XE, P). For partitions P < P' of Ny, there is a commutative diagram,

pX,u ’
OX\, 2,(P),99) —Lh O0(XUL[P < P),gom)
(4.6.8) pg’j@’]l e(Xe’9[9<9’J)l
YA E(Xe7g9/) Y4
0(X" g») — Sym®(X)

such that any point in % (X%, g») N U (X, go) is in the image of the compositions e(X*, gz) o
pdy,[gm] and E(Xéag[ﬂ<9’]) ° P?&J@/]-

PRrROOF. The proposition follows immediately from the & -equivariance of the constructions of
Sections [4L.4] and O

We note that the projection maps, m(X*, g») : %N(XZ, g») — A°(X?, 2), are &(P)-equivariant
and thus define projection maps,

(X% 92): % (X', 92) = 2(X", 2),
on the quotient. These maps on the quotient still satisfy (ZZ49]).

4.7. The tubular distance function

Rather than a single tubular distance function, t4 : % (X%, g») — [0,00), we find it convenient
to define several functions, one for each P € &, whose common zero locus is ¥(X*, ). The
functions, t(Zp), defined in Lemma 2.5 are SO(4)-equivariant and thus define functions,

t(Zp) : Fe(TX, 2,92) Xgrm || %P — [0,00).
pPez

For I? =[] pe.»[0,1], we define
(4.7.1) HX,g0) = (H(Zp) 0 e(X",9) ")

If & is the finest partition described in Remark B:3.3, then the function, £(X*, g»), is the zero
map.
To define hypersurfaces and disk bundles in % (X?, g»), we will use the following ‘square’ sets,

D(P,e) ={(tp)pcwr : 0 <tp < e forall P € £},
(4.7.2) D(P,e) = {(tp)per : 0 < tp < e for all P € &},
OD(2,¢) = {(tp)per € D(P,¢) : tp = ¢ for some P € P},

Yy (X" 7.
e (X%, 92) =

to define tubular neighborhoods of the diagonals. The symmetric group, &(Z), acts on I and
thus on the sets ({7.2)) by permuting the factors. Observe that £(X?, g») is equivariant with respect
to the action of &(Z) and thus defines a map,
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For s € [0,1], we will write st(X’, g») for the function (stp)pes and t7(X¥, g») for the P-th
component of (X, g»). The identification of % (X, g») with an open subspace of the bundle
v(X*, 2) then gives the following result.

LEMMA 4.7.1. For every partition & of Ny, there is a smooth map,
T(Xe,gy) : %N(Xé,ggz) X [07 1] — %/,(Xe7g<@)v
such that (X%, g2)(-, s) is a homeomorphism for all s € (0,1] and r(X*, g») satisfies the following
properties:

(1) (Xg,gy)( , 1) is the zdentzty map.
(2) (X, 99)(: 8) (X’ 92)(:)-

(3) For all s € ]0,1],
(4.7.3) HX" 92) o r(X’,92)(5) = S*HX", 92) ().
If P < P, then on %" (X', g2) N U" (X", g2) we have
(4.7.4) (X% gp) or(X5, g (-, 8) = 1(X g2) (),
for all s € [0,1].

PROOF. If & is the finest partition, as described in Remark[3:3.3}, set 7(X?, g»)(-, ) equal to the
identity map for all s. Otherwise, we define the map r(X*, g») by pushing forward a deformation
retraction, r,(X*, 2), on v(X¢, ) to % (X*, P) by the exponential map, e(X¢, g»). Let rp :

Zp x [0,1] = Zp be the deformation retraction defined in @Z8). If Ay : [0,1] = [[pc»[0,1] is
the diagonal inclusion and idz p : Zp — Zp is the identity map, then the composition

(Ipewr 2P) x 0,1]

HPE-@idZvPXA-@l

[Iper(Zp x[0,1])
[lpco Tpl

[lper Zp
defines a G(T', &)-equivariant deformation retraction and hence a deformation retraction,

(X 2) v(XE P2) x [0,1] = v(XE, 2).

If (X% g») is defined by pushing r,(X*, &) forward by e(X*, g»), then r(X?, g») immediately
satisfies Ttems () and (2) of the lemma. The property (L7.3) follows from the definitions of
(X', g») and (X!, g») and E2IT). Finally, @74 follows immediately from the definition of
r(X* g») as a map of fibers of v(X?, 2). O

The following result describes the failure of the second Thom—Mather conditions in (ZIT]) for
these maps.

LEMMA 4.7.2. Let & < ' be partitions of Ny and let r(X*, go) be the map defined in Lemma
G714 Ifx € % (X' g9) N% (X' g) and s € [0,1], then the following hold:
(1) IfP ¢ ZnN '@/7 then fP(Xgag@)(X) = {P(Xz7ge@)(r(Xgagz@’)(Xa S))
(2) IfP €eZnN y/) then S2FP(X£799)(X) = FP(X€79¢@)(T(X£799’)(X7 S))
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3) fPe 2N, thent” (X!, g»)(x) =17 (X", g)(x).

ProOOF. We prove Item (Il by showing that if P ¢ 22 N %', then the functions t(Zp) are
constant on the fibers of 7(X¥, gg) which contain the paths s — (X% g4 )(-,s). The definition
of the upwards overlap map p%, (2] implies that pulling the map (X, g4) back by P (] gives
the projection map,

Ll Il 2°@e.20)x I 20— || ] 2°Ze. 28)

Pe|P<P') PeP QeY PNe|P< P PeES

From the definition of the downwards overlap map, p% AT in (£6.4]), we see that the image of the
restriction of p% D] to the above fiber is given by

| ] [T m(e(zp, 25)) = | | I #zp.2%) c I] 2».

P P< P PED P e|P< P! PEP Pe»

where the set % (Zp, 2}) is defined prior to [EZI3). We focus on the restriction of m(X*, gs) o
p%,, (] to one of the components in the domain above and see that the result holds for each such
restriction. Pushing this restriction of m(X*, ggz,)opzz’[@,} forward by p‘é%[gz,] to[Ipesr % (Zp, 7))
gives the map,
I ~2p, 25): ] % (Zp, 2p) — ] Zp.
Pew Pew» Pew»
where 7(Zp, #p) is defined in ([£214). The property (£2.18]) then implies that t(Zp) is constant
on the fibers of 7(Zp, #p) for all P ¢ N 7.
If Pe 2N, the equality @L2IT), namely, t(Zp)(rp(-,s)) = s?t(Zp)(+), then yields Ttem
@.
Item (3] follows by observing that if P € & N &', then both p¥, (] and pfiy (] A€ defined
by the identity map on Zp and the P-th components of f(XZ, gp)o pféz (] and f(XZ, gz)op, (1]
are both defined by t(Zp) and hence are equal. O

Although the preceding lemma showed that the second Thom—Mather identity in (4I1.1]) does
not hold, the following lemma shows that for &2 < 2’ the restriction of the projection 7(X?, g)
to a sufficiently small tubular neighborhood of A°(X*, 22') preserves the tubular neighborhood
defined by t{(X’, g»).

LEMMA 4.7.3. Let 2 < &' be partitions of Ny. Let D(2,€) denote either D(2,¢) or D(2,¢).
Ifx € % (X' gp)NU (X, go), then the following hold:
(1) If (X’ g2)(x) € D(2P,¢), then (X', g») o m(X’, g))(x) € D(Z,¢).
(2) Ife' < e, and {( X", g )(x) € D(P',€"), and ({(X!, g») om(X’, g))(x) € D(P,€), then
HX! 92)(x) € D(Z,¢).

ProOF. Item (I)) follows immediately from Items (1) and (2) of Lemma To prove Item
@), we note that if ({{(X%, g») o m(X¥, g ))(x) € D(2,¢) and {(X, g»)(x) ¢ D(2,¢), then Item
(@) of Lemma implies that there must be a P € & N &’ such that the P-th component of
t(X?, g»)(x) is greater than or equal to . However, Item (B) of Lemma and the assumption
_;Xf,ggw)( ) € D(Z',¢') imply that the P-th component of #{(X*, g»)(x) is less than or equal to

¢’, which is strictly less than e. This contradiction proves Item (). O
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4.8. Decomposition of the strata

We now construct decompositions of Sym‘(X) and X(X*, 22) to be used in the construction of
the link of M, x Sym*(X) appearing in equation (Z6.1)).

LEMMA 4.8.1. Enumerate the strata of Sym‘(X) as described in Section using partitions

20, ..., Py. To each partition P;, there is a small, positive parameter e; satisfying €; > €; for
1 < j such that if we define
Ty =% (X", 2;) NHX" 92,)  (D(Zse) \ | HX" 92,)  (D(P),¢))),  fori#n,
1<t
T, =% Xﬁ \ U 7993 (D(‘@jvej))y
j<n

then for i # n, we have T; € % (X%, 9,), and Sym‘(X) = U;T;, and this union is disjoint.
PRrROOF. The lemma follows immediately from the definitions. O

The decomposition of SymZ(X ) in the previous lemma leads to decompositions of the strata

S(XE, P).

LEMMA 4.8.2. Continue the hypotheses of Lemmal[4.8.1] and let €; be the parameter constructed
in Lemma[{.8.1 For one of the partitions, Py, in the given enumeration, define

Ty, = cl <2(Xf, %)) NT;, and Ki:=cl <2(Xf, %)) U Th
i<k
Then the following hold.
(1) There is an equality,

ol (2(){5, %)) =Ku | T |
i<k
where the union on the right-hand side is disjoint.
(2) K is compact.
(3) The restriction of 7(X*, ;) to Ty ; takes values in K;.

ProOOF. The first assertion follows immediately from Lemma[.8 1l We note that K}, is compact
by observing that it is a closed subset of the compact set cl £(X*, 2).

We now prove Item (@B). If x € T} ;, then Item (1) in Lemma 7.3 implies that x' =
(XY 2 (x) € HXE, 2;)" (D(Py,e5)). If n(X!, Py)(x) ¢ K, then there is an index i < j
such that ¢(X*, 2,)(x') € D(ZP;,¢;). However, x € T}, ; implies that (X, 2,)(x') ¢ D(P;,¢;)
contradicting Item (2]) in Lemma [4.7.3] O

The spaces T; C Sym‘(X) admit deformation retractions to K; C %(X’, 2;) as described in
the following lemma.

LEMMA 4.8.3. Continue the hypotheses and notation of Lemmal[].8-1] If the parameters ey, . .., ep
defining T; in Lemma [[.871], are sufficiently small then, for each partition P; # 2y, there is a
map,

7 : Sym(X) — Sym‘(X),
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satisfying the following properties, for m; = (X, 92;):
(1) r; is homotopic to the identity.
(2) The restriction of r; to T; is equal to 7(X*, g,).
(3) For each partition 2;, we have r;(S(X*, 2;)) C I X(X*, 2)).
(4) For j <i, we have 7(X*, g»,) oy = (X", g,). )
5) For j < i, the restriction of r; to the complement of t(X¢, g2 )" (D(ZP,¢;)) is equal to
; J
the identity map. -
(6) For j < i and Aj equal to t(Xg,gg)j)_l(D(e@j,ej)) or t(Xg,gyj)_l(D(e@j,ej)), we have
ri(x) € Aj if and only if x € A;.
(7) For j < i, we have r;(T}) C Tj.
(8) ri(Kp U u;ﬂ Teg) = Ke WUy T )
(9) The restriction of r; to the complement of Uj<it(X*, g»,) " (D(2P;,€5)) is injective.

PRrROOF. If the parameters ¢; are sufficiently small, then we can find neighborhoods,
01(X', g2,) E O2(X' g9,) C O(X',g2,),
of X(X*, &;) such that

T = e(XZ7gc@i)(ﬁl(szgyi)) - U F(nggyj)_lD(‘@jﬁgj))
J<i
and for all j < 4,

(4.8.1) e(X%, 92,)(02(X", 92,)) C HX", 92,) ' D(Ps.¢;).
There is a continuous function, p : (X’ gu,) — [0,1], with p~1(0) = ﬁl(XZ,g%) and p~1(1) =
O(X",9,) — O2(X",g,). Setting pe := po e(X", g,)~L, define r; on % (X, g.»,) by

ri(-) = (X5 92,) (- pe (),

and extend it as the identity map on Sym‘(X) — % (X*, g»,). Ttems (I)) and () follow immediately
from the definition. Item (3] follows from noting that the maps rp and thus r(X¥, g») preserve
the diagonals. Item () follows from (£7.4]). Item (&) follows from the construction of r; and the
inclusion (4.8.1).

We now prove Item (@). If x € Aj, then Items (1) and () of Lemma imply that
(X% g9,)(x,5) € A; for all s € [0,1] and thus r;(x) € A;. If ri(x) € A; and x ¢ A, then
XY g2,)(x) # UX", 92,)(ri(x)). Item (@) of Lemma implies that

fP(Xéagﬂj)(x) = t_)P(Xéng@j)(ri(x)) < &5,
for all P € 22;N Z;. Thus x ¢ A; implies that there is a P € &2; N & with FP(Xf,ggzj)(x) > €.
Item (@) in Lemma E72) then implies that 7 (X’ g».)(x) > ¢, so x & H{ X%, 92,) " (D(Z;,¢)))
and thus, by Item (B), r;(x) = x, a contradiction.

Item (7)) follows from the definition of 7; and Item (6l). Item (&) follows from the definition of
T}, and Item (). Item (@) follows from the definition of r; and Item (G). O

In the following lemma, we show how to use the maps r; to construct a global map to Sym® (X)
from a collection of maps to Sym?® (X)) which are approximately equal.
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LEMMA 4.8.4. Continue the hypotheses of Lemma [{.8.3. Let {U;}I", be an open cover of a
topological space Y with U; NU; = @ unless © < j. Fori=0,...,n, let f; : Uy — Symé(X) be a
continuous map satisfying the following properties:

(1) Ifj < k, then fk(Uk M Uj) C Uingiy
(2) Ifi < j, then ;o filu.nu, = filuinu,-
Then there is a map F : Y — Sym*(X) such that F|y, is homotopic to f;.

PROOF. Define m; := rgoryo---or; and let m_q be the identity map. Each map m; is
homotopic to the identity by Item (Il) in Lemma A83l If g; = m;_1 o fi, so go = fo, then g; is
homotopic to f;. We claim that the maps g; and g; are equal on U; N U; and thus define the global
map F.

Arguing by upwards induction, assume that gi\UmUj = gj\UmUj for all 4,7 < k. We now prove
that if j < k, then gx|v,~v, = 9jlu;nu,- If © € UjN Uy, then by property (Il) there is an index i < j
such that fi(z) € T;.

Item (7)) in Lemma [£.83] and the fact that fi(z) € T; imply that
(4.8.2) (rig1o---org_10 fx)(z) € T;.

Hence,

ge(z) = (mj—10miomrip1 0+ org_10 fi)(x))
= (mj_1omorip1o---org_q10 fr)(x) (by Item () in Lemma 83 and ([£I.2))
= (mi—1 om0 fr)(z) (by Item () in Lemma [£.8.3))
— (mi_yo fi)(z) (by property @)
= gi(z).
By induction, we have g;(x) = g;(«) which, together with the previous equality gi(x) = g;(x), gives
the equality gj(x) = gi(x) required to complete the proof. O






CHAPTER 5

The instanton moduli space with spliced ends

The gluing maps defined in [24] provide a tubular neighborhood structure for each stratum
M, x % of M x Sym‘(X) just as the exponential map e(X*, g») did for the stratum %(X?, 2). In
this analogy, M,‘z’u(S‘l, 0) plays the same role as the space Zp, making up the fiber of the tubular
neighborhood. Here, M,ﬁ’u(54,5) denotes the Uhlenbeck compactification of the moduli space of
framed anti-self-dual connections on S* which are mass-centered and have scale less than &, where
the mass and scale are defined in (5.2.2]) and (5.2.3]) respectively. However, it will require much
more work to establish the commutativity of the diagram analogous to ({L4.2]) for the tubular
neighborhood structure of M, x Sym*(X). As we described in our Introduction, we will work with
splicing maps instead of gluing maps to establish such an equality because the explicit definition
of the splicing map allows us to verify equalities analogous to (£4.2). In order to use splicing
maps instead of gluing maps, we must introduce a deformation of ME’“(S‘l, 9), which we call the
instanton moduli space with spliced ends. The new space can still be used to define the domain
of the gluing map of Hypothesis [(.8.1] because the connections in this new space satisfy the same
crucial estimates (for example, Item (@) in Theorem [B.LI) as the connections in M2(S4,6).

We will be working with topological spaces which are smoothly stratified as in the definition
given in Section E.Il A continuous map between such spaces is smoothly stratified if it maps each
smooth stratum into a smooth stratum and if the restriction of the map to each smooth stratum
of the domain is a smooth map.

5.1. Introduction

The instanton moduli space with spliced ends will be identical to MS’h(S‘l,é) except on an
Uhlenbeck neighborhood of the punctured, centered symmetric product,

(5.1.1) 0] x (Symp*(R")\ e) .

where © is the product connection on S* x SU(2), and Symg’u(R‘l) is the subspace of mass-centered
points in the x-th symmetric product of R* with a scale constraint (see (5.3.1))), and ¢, = [0,...,0] €
Sym”(R*) is given by & copies of the origin.

A neighborhood of the strata (5.1.1]) in M,‘z’u(S‘l, 0) is parameterized by the union of the images
of the gluing maps vg 5, as X varies over the strata in (B.LI). As described in Section B3, the
space Symg’u(R‘l) is the quotient of a subspace Z,(5) C (R*)" by the symmetric group action. If ¥
is a stratum of Symg’u(R‘l) and & is a partition of N, corresponding to X, so ¥ = A°((R*)*, )N
Z:(0)/6(2) as in (5.3.2)), then the gluing map is a smoothly stratified embedding [22],

(5.1.2) Yo,z (A°(RY, 2) N Z:(9)) xe() [ Mipi(S*6p) = MA(S*,5).
Pe
51
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The instanton moduli space with spliced ends, M;l;uL,H(S‘l, 0), will be defined by replacing the image
of v, with the image of the splicing map 'y’@’ 2 on the interior of this tubular neighborhood. The
connections defining this deformation of the instanton moduli space will be almost anti-self-dual as
measured by the norm |[| - || 1z2(xy, which on a four-manifold X was defined in [96] Equation (6.1a)]
and [19, Equation (4.3)] by

(5.1.3) lallzezc) = lallz2co + sup dist™ (@, )lalll 1 x)-

We construct M§§E7H(S4, ) and summarize its properties in the following

THEOREM 5.1.1. Let %5(S%,0) be the Uhlenbeck extension of the framed quotient space defined
in (0.24). There exists a smoothly-stratified subspace, M§§i7ﬁ(54, §) C %5(5%,26), closed under the
SO(3) x SO(4) action defined in (B.2.3) and (B26), satisfying the following properties:

(1) There is a smoothly-stratified, SO(3) x SO(4)-equivariant homeomorphism,
(5.1.4) M (S, 6) = M2H(S4,6),
which is the identity on the levels,
(] x Symi (R,

where Sym'g’u(R‘l) C Sym”(R*) is defined in (5.3.1)).
(2) There is an Uhlenbeck neighborhood in the sense of Definition [2.1.2, namely W, in
B2 (S*,20) of the punctured, centered symmetric product (5.111) such that
Mt (S%,8) \ Wi = MZH(S*,6) \ Wi,
(3) For each stratum [O]x Y in (5.L1)), there is an Uhlenbeck neighborhood, W (X) C %2(S4,6),
of the stratum
(5.1.5) O] x &

and an open neighborhood, O°(©,2,0) C v(©,2,9), of the stratum (.61 in the
domain of the splicing map g 4 defined in (B.42), such that

(5'1'6) Mssﬁi,ﬁ(54a 6) n W(E) = 7/6,@ (ﬁfSD(@7 2, 6)) :
(4) For each integer k > 0, there is a constant, C = C(k), such that for all [A,x] €
M§§575(54,5), one has
IE4 | a2 (s < C6,
where the norm || - ||zs.2 s defined in (BI13).

We construct MSSI;E,R(SLL, 0) by induction on k € N. We first construct what we call the ‘spliced
end’ of Mssl;hL,,i(S 4.5). The spliced end will be an Uhlenbeck neighborhood of the punctured, centered
symmetric product (5.I.1]) in M§§E7H(S4, ). We shall define the spliced end of Mssg,iﬁ(S‘l, J) to be
the union of the images of splicing maps (5.4.2]), 7’67 2, Where & is a partition of N, corresponding
to a stratum X in Symg’u(R‘l) — {cx} and where the domain of the splicing map is not defined by
the moduli spaces, M,ﬁ;u(S‘l, 0;), with smaller instanton number but rather by the instanton moduli

spaces with spliced ends, Mssl;hL’,{i (S4,6;), with smaller instanton number. A technical result on
the equality of two compositions of splicing maps, Proposition [5.5.3] shows that the images of the
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different splicing maps intersect in open sets, proving that the union of these images, W, is a
smoothly stratified space.

After reviewing the properties of connections on S* in Section [5.2, we adapt the notation of
Chapter B to describe the product-connection strata, (5.1.1]), in Section B3l In Section (.4 we
define the relevant splicing maps. In Section 5.5, we prove the crucial technical result, Proposition
(53] that provides control over the overlap of two splicing maps. In Section [5.6] we finish the first
stage of the proof of Theorem [B.1.1] by constructing W, in Proposition [(.6.11

The second stage of the proof of Theorem [5.1.1] appears in Section B.8], where we construct an
isotopy of the complement of a neighborhood of the punctured, centered symmetric product in Wy
to the actual moduli space, ME’“(S‘l, 0). This isotopy is defined by the composition of the isotopy
defined by the gluing map and the isotopy defined by the centering map. That such an isotopy
exists follows immediately from the estimates on ||F} || r#2(s4) for a connection, A, in the spliced
end; most of the work in Section [£.§] lies in constructing the parameter on the spliced end for the
isotopy. Finally, in Section we construct a cone parameter on the instanton moduli space with
spliced end and prove that this space has the structure of a Whitney stratified space in the sense
of [39] Section 1.2].

5.2. Connections over the four-dimensional sphere

We begin by reviewing some standard definitions concerning connections over S%; similar defi-
nitions appear in [21], [24].

For an integer x > 1, let ,,(S*) denote the quotient, .7, /%, of the affine space, <7, of L3 SU(2)
connections on a Hermitian smooth vector bundle E,, — S* with c3(E,) = &, modulo the action of
the group, %, = Aut(E,), of L3 SU(2) gauge transformations of E,. Let %3(S%) — %,(S*) be the
principal SO(3)-bundle defined by

B (SY) i= (A (SY) X Pyls) /Y,

where P, = Fr(E,), the principal SU(2)-bundle of SU(2) frames for E, and s € S* is the South
Pole, identified with the point at infinity in S* = R* U {oo}. Let

(5:2.1) B8 = || (uca(5h x Syl (R)
=0

denote the space of ideal connections on E,; given the topology induced by Uhlenbeck convergence
as defined in Definition We use Sym‘(R%) in (5.2.I) rather than Sym‘(S?) to simplify the
definitions (5.2.2) and (5.2.3) below. We will be working with ideal connections with finite scale so
using Sym*(R*) does not omit relevant ideal connections. We write elements of %, (S*) as [A, x],
where [A] € B,._4(S*) and x € Sym*(R*).

If n € S* denotes the North Pole, identified with the origin in S* = R* U {0}, let y(-) = ¢, ! :
S4\ {s} — R* be the coordinate chart given by a stereographic projection from the South Pole
with ¢, (0) = n € S* For a point [A4,x] € %B,.(S*) with x = [z1,...,2], we define its center of
mass by

—1 l
(5.2.2) A[A,x] = (/ ycp;;FA\?&y) / Yl FalPdty + 3z € R,
R4 R4

i=1
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and the scale by

—1 4
(5:23)  AlA,x? = ( /. reo:;FAP&y) [ o= ARl FaPaty + Yol € 0.50)

i=1
For a constant € > 0, we define
F(S4,€) = AL([0, ).

We continue to denote by z[-] and A[-] the pull-back of those functions from 2, (S%) to %5(S4). If
[A,x] € B,.(5* ¢) and € < 1, then the support of x is disjoint from the south pole. Hence, the
quotient space, %2 (), is continuously embedded in the quotient space of pairs of ideal connections
and frames,

B5(8%,e) == A710,¢] N (lil ( s (81 x Symé(R‘l))) ,
/=0
BEH(SY e) = 271 0) N BE(S1,¢),

(5.2.4)

and %i’h(S‘l,a) is continuously embedded in the quotient space of pairs of ideal mass-centered
connections and frames. If © is the product connection, we call [0, F*,c,] € %5(S*) x Sym”™(R?)
the cone point of @2’“(54,5).

The group SU(2) acts on Z5%(S%, ) by the action of SU(2) on the frame in Fr(E,)|s. (Because
connections that are mass-centered at the North Pole and have uniformly positive scale cannot
bubble over the South Pole — see [17] for an explanation based on the Chebychev Inequality —
the bundle fibers E,_, for 0 < ¢ < k can all be identified with E,|s.) The stabilizer of any point in

@2’“(54, ¢) contains {#id} C SU(2), so this action of SU(2) on @2’“(54, ¢) descends to an action of
SO(3) = SU(2)/{%id} on B (S4,¢),
(5.2.5) SO(3) x B34(S*,e) — BH(S,¢)

which we refer to as the action on the frame.
The group SO(4) acts on S* by pull-back of its action on R* via stereographic projection,

S4\ {5} — R*. The action of SO(4) on S* induces an action on ?Z’i’h(S‘l, £),
(5.2.6) SO(4) x BH(S4 &) — B354 e),

by pull-back of the connection and frame for Ej|s and the rotation action on the points in Sym” (R*)
(see [96] Section 4, p. 343] or [17, Section 3.2]).

5.3. Strata containing the product connection

We now adapt the framework of Chapter [3]to describe the product-connection strata in (B.1.1]).
Define Sym™#(R?) to be the quotient of the zero locus,
ZH = Z;1(0)7
of the center-of-mass map, 2, : ®ien,. R* — R* (defined following (ZZ1))), by the symmetric group,
Sk,
Sym“’u(R4) = Z,./6,. = 2.5(0)/6,.
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We define a scale for elements of Sym”(R*) by

(5.3.1) Ao, vel? =) il
i=1

and set
Z(8) = 2,1 (0) N AH([0,6)),
SymPA(RY) := Z,(6)/6,.

We will define strata of Symg’u(R‘l) to be quotients of the intersections of the diagonals in (R*)"
with Z,.(9). For any partition &2 of N, we define

A°(Z,.(0), P) == A°(Zs, ) N Z,(0),

S(Z:(0), P) = A°(Z,:(5), 2)/6(P) C Symy*(RY),
where A°(Z,, ) is defined in (L23]). Let X(Z.(6), &) be the image of A°(Z,(5), P) under the
projection Z,. () — Symg’u(R4). We then have the

(5.3.2)

LEMMA 5.3.1. If k > 1 is an integer and &2 and &' are partitions of N, and 7 : Z,., C
Bien. R — Sym™4(RY) is the projection, then the following hold:
(1) ?(125(5)7 P) = A°(2:(0), 27)/6(2) = A°(Z:(0), ) /W (2).
(2) 7 (B(Zk(6), 2)) = Upre| ) A°(Z:(0), ).
(3) X(Z,:(8), D) C cl(X(Zx(0), P")) if and only if there is 2" € [P] such that 2" < P.

If (v1,...,0:) € A°(Zs, ) and P € &, then v; = v; for i,j € P. Thus, we will write
vp = v; for any ¢ € P. With this notation, we will write (y1,...,yx) = (yp)pec2 for an element of
A°(Zy, P).

5.3.1. Tubular neighborhoods. Because Z,(¢) is an open subspace of Z,, the tubular neigh-
borhood of the diagonals in (5:3:2]) can be described by the restriction of the tubular neighborhoods
described in Lemma [£.2.1] as we formally state in the following lemma.

LEMMA 5.3.2. Let & be a partition of N... For P C N,, let Zp C ®;cpR?* be the subspace of
mass-centered sets of points defined in (A21)). The normal bundle of the diagonal A°(Z. (), P)
m 4, 1S
(5.3.3) 7(Z(0), P) = A°(Z,(5), 2) x ] Zp.

Pez
There is an open neighborhood, O(Z.(5), ), of the zero section in U(Z,(0), ) such that the
restriction of the exponential map e(Zy, &) defined in ([EZI0) to O(Z.(5), P) is injective and
S(Z)-equivariant.

Let % (Z,.(8), 2) be the image of 6(Z,.(5), ) under the exponential map [EZI0). By the
S(Z)-equivariance of the exponential map e(Z, (), &), there is a homeomorphism,

(5.3.4) 0(Z:(6), 7) = U (Z:(0), Z),

where 0(Z,(8), ) = 0(Z,.(8), 2)/S(P) and U (Z,:(8), ) = U (Z,.(8), P)|S(2P).
To describe the pre-image of A°(Z,(6), Z’') under e(Z,, &), where & < &', we introduce the
following notation.
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LEMMA 5.3.3. Let & < &' be partitions of N,. For P € 2, let &} be the partition of P
defined in (A24). Then there is an inclusion,

(5.3.5) 7(Z(0), P — P') = N°(Z,(5), 2) x [[ A°(Zp, Zp) = 0(Z:(6), 2),
Pew»
with the following significance. If we define
(5.3.6) O(Z(0), P — P := 0(Z.(0), ) Ni(Z:(8), P — P),
then
0(Zs(8), P = P') = e(Zs, )" (A°(Z:(6), ).
PRrROOF. We observe that
A°(Zp, Pp) = {(vi)icp € Zp 1 v; =v; <= IP' € Pp withi,j € P'}.
Because & is a partition of N,, there is an isomorphism,
D Pr=@r
PP icP i€N
which induces an inclusion,
(5.3.7) I1 2°(Ze, 25) 3 (vi)iep.pe) 7 (vi)ien, € Zs.
Pe»

By the &(£)-equivariance of the exponential map, e(Z,, Z?), an element of the pre-image of
A°(Z,.(8), 2") under e(Z,, &) can be written as

((‘Tla o 7‘Tfi)7 (Ula cee 7?)&)) S AO(Zlia ‘@) X @iENmR4

where (v1,...,vx) € @ien, R satisfies

(1) Y icpvi=0foral Pec 2.
(2) For all 7,7, we have v; = v; if and only if there exists P’ € &' with i,j € P'.

Then one observes that the set of elements (v, ...,vx) € @icn,R* satisfying these two conditions
is precisely the image of the inclusion (5.3.7]). d

By Items (2) and ([3) in Lemma 53] to describe the end of X(Z,(d), &') near 3X(Z,(d), Z),
we must describe not only the end of A°(Z;(d), &?') near A°(Z,.(5), &), as is done in Lemma[5.3.3]
but also the ends of A°(Z,(0), 2") near A°(Z,.(9), P) for all P € [P'] with & < P".

Thus, define

(5.3.8) 7(Z(0),[2 < P') = N°(Z:(6), #) x| | ( IT 2°(Ze, gz;;)) .

Pre|P<P' \PeZ

There is an action of &(&) on v(Z, [P < ']) defined by the standard action on A°(Z,, &) and
the action of §(Z) on [ < Z']. Although A°(Z,(d), Z?) is not a subset of U(Z,(9), (2 < £']),
we use the phrase a neighborhood of A°(Z,.(8), P) in v(Z.(9),[P < Z’]) to refer to the obvious
parallel with subspaces of v(Z,(0), 2).
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LEMMA 5.3.4. Let & and &' be partitions of N, with @ < Z?'. Then a neighborhood of
¥(Zx(8), P) in X(Zx(0), P") is homeomorphic to a neighborhood, O(Z.(8),[P < Z']), of the zero
section in

v(Z:0), 2 < 7'))/6(2).

PROOF. The bundle 7(Z,,(d),[Z < £']) is the union of the bundles 7(Z;(d), & — ") defined
in (530) as &” varies in [ < Z'] along the subspace A°(Z;(d), P) of each of these bundles.
Therefore, a neighborhood of A°(Z,(6), Z) in

(5.3.9) U A°(2(6), 2"
Pre|lP<P]

is homeomorphic to a neighborhood of the zero-section in v(Z,(d),[Z < £']). By the character-

ization of the pre-image of X(Z,(d), 2) under the projection Z.(§) — Symj"(R*) in Item (2) of
Lemma [5.37] a neighborhood of 3(Z,(0), 22) in X(Z,(d), &') is homeomorphic to the quotient of
(539) by 6(2), thus proving the lemma. O

5.4. The splicing map with the product connection over R*

In this section, we define the basic operation of splicing onto the product connection as used in
[24]. Our main result here is in Lemma [5.5.2] where we show that the composition of two splicing
maps is equal to a single splicing map on suitably small open sets.

Let & be a partition of N,. We define the splicing map on an open subspace of

A(Z4(0), 2) () |1 Z7(S%0p),
Pe»
where the constants dp are invariant under the action of &(2?) and where G(4?) acts on the

generalized connections by permuting them, sending an element of ,%’flf|(54 dp) to an element of

%‘U( )|(S d)o(p)|)- Note that elements of A°(Z,(8), &) can be written as (yp) pe 2, where yp € R?,
while elements of []pc 5 <%’|P‘(S4,5p) can be written as ([Ap, F5,xp])pes, where [Ap, F5,xp] €

B S%,8p). The open subspace on which the splicing map will be defined is
1P|

(5.4.1) 0(©,2,6) = {(yp, [Ap, Fp,xp)) pey € A°(Z:(8), 2) x [[ Bip (5" 0p) :
Pew»

8\/MNAp, xp] + 8/ A[Apr, xpr] < dist(yp, ypr), ¥ P # P’} .

We define the splicing map,
(5.4.2) Yo.p 1 O(0,2,8) = 0(0,2,0)/6(P) — #5(5*,20),

as follows. For P € &, let Ep — S* be the Hermitian vector bundle supporting the connection Ap
and let Fr(Ep) be the bundle of unitary frames of Ep. The framed connection [Ap, F}5| defines a
section ¢(Ap, F'p) of Fr(Ep) over the complement of the North Pole by parallel translation of F}j
with respect to the connection Ap, along great circles from the South Pole. Let ©(Ap, F}) be the
product connection defined by this section. Note that if Ap is flat on the domain of ¢(Ap, F}5),
then @(Ap, F]Sg) = Ap.
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If © denotes the product connection on S* x C?, then the product connection ©(Ap, F P) is
identified with the restriction of © to the domain of ¢(Ap, F) as follows. The section ¢p(Ap, F}5)
gives a trivialization of the bundle E and thus identifies it with the restriction of the product bundle
5S4 x C? to the domain of the section. Under this identification the connection © is identified with
O(Ap, Fp).

We also note that given any two connections, A1 and As, a convex linear combination of them,
tA; + (1 — t)Asg, also defines a connection. For example, if A; is a connection which equals the
product connection in a particular trivialization and Ay = A; + ag, we would write the connection
one form for tA; + (1 — ¢)As in this trivialization as (1 — t)as.

Given (y,\) € R* x (0,00), let ¢, » : R* = R? be defined by

cya(2) = (2 = y)/A,

and so ¢, maps the ball B(y, \) onto B(0,1).

Let 5 : R — [0, 1] be a smooth function satisfying 5(z) = 0 for x < 1/2 and f(z) = 1 for > 1.
Define x : R* — [0, 1] by x(z) = S(|z|) and xyx : R = [0,1] by xya(2) = (¢ \x)(2) = B(lz—yl/N).
The function 1 — x, » is thus supported on the ball B(y, \) and equal to one on the ball B(y, %)\)

For y = (yp)per € A°(Z,(9), Z), we define the splicing map (5.4.2]) by setting

(5.4.3) Yo,2 (¥, ([Ap, Fp,xp])pe») = [A', F*,X]],
where, for \p = A\([Ap, F,xp]), we define the framed connection [A’, F*] by
© on R*\ Upe »B(yp, 4V/Ap),
(5.44) A'= ¢ (1= Xyp avnp) 1 AP + Xy aynpCp a1 ©(Ar, Fp) - on Qypi 2V/Ap, 4V/Ap),
o1 Ap on B(yp,2v/Ap),

with the frame F* in [A’, F'*] being given by the canonical frame for the trivialization associated
with the product connection, ©. If the points xp in (5.43]) are given by points zp; € R* with
multiplicities kp;, then the point x’ in the expression (0.4.3]) is defined by the points 0;13171(:17p,2-)
with multiplicities Kp;.

Note that we have not computed the behavior of the function A o ’y’& o precisely, so we cannot
assert that the image of '7297  1s contained in %;(26). However, that containment will follow from
the continuity of A and of 'y’@’ o with respect to Uhlenbeck limits if we shrink the domain (0, &, 6)
by requiring the scales Ap to be sufficiently small.

~ We have the following result regarding the behavior of this splicing map at the cone point of

%fm(&p).

LEMMA 5.4.1. For any partition & of N, the map 7’@”@ is smoothly stratified. If cp| €
Symgp"h(R‘l) denotes the cone point, then for any 'y € A°(Z.(9), P),
(5.4.5) Yo,z (v: ([0, F*,cjp|)per)) = [©,F",y].

PROOF. The fact that the map 'y’@’ 18 smooth when restricted to the subspaces defined by

the strata of 2%

| P‘(5 p) is clear from the definition. If a sequence

{[Apas Fiar xpal}oly C 27 (6p)
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converges in the Uhlenbeck topology to [Apg, F 1§,0=XP70] € e@fﬁh‘(ép), then by the definition of
Uhlenbeck convergence,

lim )\[AROC,FIS%Q,XP,Q] = )\[AP70,F;70,XP70] = )\p70.
a—00

By (5.23]), none of the points in xp can lie outside of the ball B(0,Apo) C B(0,2,/App) and
so the sequence of connections {Ap,} cannot “bubble” outside of the ball B(0,2,/Apo). These
observations and the construction of vg 4 in (5.4.4) imply that vg 4 is continuous with respect
to these Uhlenbeck limits.

The equality (5.4.5]) follows immediately from the construction (5.4.4]). O

It is important that our constructions in Section [5.6] be equivariant with respect to the SO(3) x
SO(4) actions on the space of connections defined in (5.2.5]) and (5.2.6)), so that the instanton moduli
space with spliced ends can be used in the space of gluing data. The action of SO(3) x SO(4) on
the domain (5.4.1)) is defined as follows. For R € SO(4), let Rp be any automorphism of Fr(Ep)
covering R : S* — 8. For A € SO(3) and R € SO(4), define

(5.4.6) (((yp)pew,[Ap, Fp,xplpew), A R) — <(RyP)Pe% [(REI)*AP,RPFISDA_l,RXP]Pegz) :
We have the following lemma.

LEMMA 5.4.2. Let & be a partition of Ny. The splicing map Yg 5 defined in (B.43) is equi-
variant with respect to the SO(3) x SO(4) actions defined in (5.4.6]) on its domain and in (525
and (BZ0) on its image.

ProOOF. The equivariance of ’y’®’ o With respect to the SO(3) actions follows immediately from
the construction (5.4.4)).

The construction of the splicing map in (5.4.4]) defines, for each point
A = ((yp)pez. [Ap, Fp,xplpe») € 0(0, 2,6),
an embedding of principal bundles,
LA U Fr(Ep)|go.avap) = Fr(Ey),
pPez

covering the embedding B(0,4y/Ap) — S* given by zp + yp + 2p on the P-th component. If
R, : Fr(E.) — Fr(E,) is a bundle map covering R : S* — S, then R o1 equals, up to a gauge
transformation, the embedding tga, where

RA = <(RyP)Pe% [(RpY)*Ap, RpF}, RXP]Pe,@) -

The desired equivariance, (R;!)*v5 »(A) = ¥4 »(RA), then follows by considering the images of
the horizontal distributions defining the connections under these embeddings. O

We will also require the following observation about centering maps.

LEMMA 5.4.3. Let ¢\ : RY — R* be defined by cy\(z) = (z — y)/A. For any A\, A2 > 0 and
x1, 29 € R, we have:

Cxa, A2 © Czy A1 = Coi4+diz2,M1 025

>k J—
Cro o Xz1,A1 = Xaz+dewr A e
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If one splices a mass-centered connection, of charge x and scale A at a point y € R*, with the
product connection it is not immediately clear what the scale of the resulting connection will be.
However, the limit of the scale of the spliced connection (as A tends to zero) will be \/k|y|2. The
following exploitation of this fact will be used in Lemma to prove that when composing two
splicing maps— for a suitable open set of splicing data — the annulus on which the second splicing
map interpolates between connections (see the second line of (5.44])) does not intersect the annuli
of the first splicing map.

LEMMA 5.4.4. Let © be the product connection and c|p| € Symgp"h(R‘l) the cone point. If

(5.4.7) (0, 2,5) == {(yp, [0, F,¢ip()) pey € OO, @,5)} :

then, for ¥(Z.(6), &) as defined in (5.3.2)), we have

(5.48) Ao, o (T(O, 2,6)) = [0]] x S(Z(5), 2),

and there is an open neighborhood, D(©, Z,0), of T(©,2,0) in O(©,P,0), such that for every
A = (yp,[Ap, Fp,Xp]) peyr € D(O,Z,0)

and for every P € &, we have

(5.4.9) B (yp,4 )\p) € B(0,2v/X),
and
(5.4.10) B <yp, %A}f’) € B(0, 10173,

where Ap = M([Ap, Fp,xp]) and A = A(vg, »(A)).
PROOF. The equality (5.4.8]) follows immediately from Lemma [(5.4.1]

The functions Ap vanish on T(0, Z,6) while by Lemma [5.4.], the composition \ o 7’@7 18

equal to the square root of Y p. 5 |P||zp|? and thus is non-zero on T(0, #,§). The continuity of
the functions involved then yields the existence of the desired open subspace. O

5.5. Composition of splicing maps

To construct the instanton moduli space with spliced ends, we need to show that the union of
the images of the splicing maps ’y’®’ o form a smoothly-stratified space. Let &2, 2’ be partitions
of N, with & < &'. For each P € Z, let &}, be the partition of P defined in (£2.4]). We will
need to understand the overlaps of the images of the maps v 4 and vg 4. To that end, we define
a space 0(0, 2, ', §) with maps to 0(0, 2,6) and (0, P',6) so that the following diagram

commutes:
o.,d

60,2, 7.5 227 g0, 2,5
(5.5.1) pgfy,l *'y’(_)“@l

60,76 27 Fs(s4 26)

The superscripts d and u appearing in the maps pggd@ and p%d@, suggest “down” and “up”,
respectively, as &2 and &’ correspond to the lower and upper strata.
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5.5.1. Definition of the overlap data. We now define the objects appearing in the diagram
(E5T). The open set 0(0, 2, ' §) will be defined to be a subspace of

(5.5.2) ﬁ(@,e@,,@/,é) AO , X H ( Z|p‘ 5]3) e@p H e%“g/ S 6Pl))7

pPez Pe7y

where the constants dp and dps will not need to be defined explicitly. The open set % (0,2,9'0)

will be defined by the conditions (5.5.6]), (5.5.7), (5.5.9), and (G.5.10).
An element 0 € &(Z) with o(2?') = 2" defines a bijection,

(5.5.3) o:0(0,2,9 68 —v(0,2, 2",
by the diagonal action on each of the factors. That is, o defines bijections,
A®(Zx(6), Z) = A°(2:(0), 2),
A°(Zip|(0p): Pp) = A°(Zio(p)|Os(p)s Pap))s
Bipi| (5%, 8p1) = By oy (S 60(p1));
which define the desired bijection (5.5.3)).
The following maps are given by the obvious projections onto the factors of (0, 2, &' §):
Topx: (0,2, P, 6) = A°(Z:(6),2),
Tl x v(Oe,2, 7 6) — A°(Zyp(dp), 2%),
T 9(0, 2,7 ,8) = A°(Z:(6), Z) x [ A°(Zip((0p), Pp),
(5.5.4) Pe
wp 0,2, 7,6) = A(Zp|(0p), Pp) x| Biens
Pezy
np (0,2, P §) — @fp,‘(ép).
We use the inclusion given in (5.3.5]),
W(Z2:(0), P = P') = A°(Z(6), 2) x [[ A°(Zp(6p), Pp) = 1(Z4(6), ),
Pe»

to view (Z,(8), # — ') as a subspace of 7(Z,,(d), #). By Lemma [5.3.3] the image of the re-
striction of the exponential map e(Zy, &) in (4.2.10) to elements of 7(Z,(0), & — &') is contained

in A°(Z,,(8), 2"). We would like to define the map p] - appearing in the diagram (5.5.1) by
(5.5.5) P53 = (e(Ze, P) o) x [] mpr-
Py

That is, the map p%ug,, leaves the connection data in v(©, 22, %’ §) unchanged and maps the
points in 7(Z,(0), Z — Z') to the diagonal A°(Z,(d), 2').

For the composition e(Z,, #)omy in (B.5.5]) to be defined, we must restrict the domain of p%’"ﬂ,
to an open subspace &(©, 2, 2',8) of H(©, P, P, ) satistying

(5.5.6) 6(0,2,2'5) C g (é(zﬁ(a), P 92')) ,
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where 0(Z,(8), # — P') is defined in (5.3.6)).
To define the composition g 4 © pg]’u@, appearing in the diagram (G.5.1), the open subspace
00,2, 6) must also satisfy

(5.5.7) 6(0,2,2'.6) c (05")7 (6(6,2,9)).

where €(0, 2',6), defined in (5.4.)), is the domain of Yoo
Before we proceed to define p%d@,, we note that if P € & N 2, then the partition &7} is just

the set P and A°(Z|p|, #}) is a single point (the zero vector). In this case, we define the splicing
map,

Vo, A(Zyp((8), Pp) x Bipy (5" 6p) = Bip (5", 20).

to be the projection onto ,%_’fp|(54,5p) C ,%_’fp|(54,25). The map p%dg), of (5.5.0) will then be
defined by

(5.5.8) pg,jf@, =Ty x X ( H 7297@},3 o 7Tp> .
Pe»
That is, the map p%d@, leaves the point in A°(Z,, Z?) unchanged and for each P € & applies the
splicing map ’7’6 4 to the space
7 p
AO(Z“D‘((SP), @}3) X H e@fpl|(54,(5p/).
Pe7)

For the map p%’d@, to be defined on & (0,2, 2" §), we need the image of wp to be contained in the
domain, 0(©, #},,dp), of the splicing map 7297 - However, we will make a stronger requirement
(to be used in Lemma [5.5.2]),

(5.5.9) 0(0,2,72'5) crpt (DO, Pp,6p)) forall Pe 2\ 7,
where D(©, &},,0p) is the open subspace of 0o, P}, 0p) defined in Lemma [5.4.41 Since
D(©, Zp,dp) C 0(©, Pp,dp),

the condition (.5.9]) implies that pg]’f@, is defined on € (0,22, 2'0).

Finally, for the composition 7’67 2 © p?,jfigz, to be well-defined, & (0,2, 2" 6§) must satisfy
(5.5.10) 610, 2, 7.5) (p(;;f‘g,,)_l (60.2.9).
In the proof of Lemma [5.5.1] below, we will show that the image of the restriction of 7’67 g © p(;;f‘g,,
to 0(0, 2, ' §) contains
(5.5.11) {[©,%] : x € e(Z, P)(O(Z,:(5), P, P'))}.

Hence, the image of v 4 © p?]’“@, will contain the intersection of the stratum [0] x X(Z, (), 2?')
with the image of vg 4.
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LEMMA 5.5.1. Let P2, be partitions of N, satisfying P < . Define a subspace of
(0,2, 2 0) by

(5.5.12) (0, 2,7 .8) = ngt (ﬁ(zﬁ(a), P @')) N ( N w;}([@,qp,])> .
P!

Then the following hold:
(1) (Yo, 0 0515) (T(0, 2, 2',6)) = {[0,%] : x € e(Z, 2) (6(2(0), 7 — 7)) |,
(2) Yoz © 050 (T(0,2,7',5)) = (18] x e(Ze, 2)(6(2:(0), 2 — 7).

Moreover, there is an open neighborhood, 0(©,2,2'6), of T(0,2,P'68) in (O, P, P )
satisfying the conditions (55.0), (.5.7), (559), and GEI0).

PrOOF. Item (Il) follows from the definitions of the spaces and maps and the value of the
splicing map given in (5.Z.0). Equation (5.40]) implies that

0,d

P = Tx|1(0,2,9 5)-

T(0,2,7' 5)

The preceding identity and the equality,
(5.5.13) 1 (T(0, 2, P 8)) = O(Z:(6), ? — P'),

which follows immediately from the definition of T'(©, &2, 2’ §), yields Item (2)).
Equation (5.5.13]) implies that there is an open neighborhood of T'(©, 22, ', §) in the space
(0,2, P 0) satistying (B.5.6). For every P’ € &' we have

WP/(T(@, L@, e@,,é)) == [(—)76‘]3"]7

so mp(T(©,2,2',6)) C T(©,P),6p) C D(O,2,6) for all P € & and there is an open neigh-
borhood of T(©, 2, 2',6) in v(0, P, ', §) satistying (5.5.9).

Item () implies that p%’“y, (T(©,2,2'68)) C 0(0,F6), so there is an open neighborhood
of T(©,2,7'0) in v(0, 2, P, J) satisfying (L.5.71).

Item (2) implies that p%’dy, (T(©,2,2'§)) is contained in the domain of 7’@7 1, namely,
0(0, 2,6), so there is an open neighborhood of T'(©, &2, &', §) in v(©, &, &', §) satistying (B.5.10).

The intersection of these open neighborhoods of T(©, %2, %' 6) in v(0, 2, X' §), yields the
desired open neighborhood é’(@, P, P0). O

5.5.2. Equality of splicing maps. We now prove that the diagram (5.5.1]) commutes. The
key point in this proof is the restriction (5.5.9) on the domain &(©, 2,2’ §) which, as shown
in Lemma [5.4.4] ensures that the connections given by p%’dﬂ, are already equal to the product
connection on the annuli on which the splicing map 7297  interpolates between them and the product
connection. Hence, in the iterated splicing construction defining the composition ’y’@’ P © p%’dﬂ,,
the interpolation in the definition of 7297 » does not change the connection. This iterated splicing

procedure is thus equivalent to a single splicing, that given by the composition 7’@’ g © p%’“@,.
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LEMMA 5.5.2. Let 2 and &' be partitions of N, with P < P'. If 0(©, P, P',§) is the open
subset defined in Lemma [5.5.1) of the space 0(©, P, P 0) defined in (55.2), then the following

diagram commutes:

- A
oo,z 2.5 22 60,7 0)
(5.5.14) ,ij};fg,l vgﬂ,,l
’Véa,gﬂ

0(0,2,5) B3(S4,20)

PROOF. To clarify the notation, we write @ for an element of the partition £?’. Denote
A= ((ZJP)PGQZ, ((‘/EQ)QEW}’D’ [AQv Fé]QGﬂ%)Peﬂ) € ﬁ(@, ‘@’ ‘92/’5)’

where (yp)pey € A°(Z,, Z?) and, by (5.5.9), (($Q)Q_e@}’[AQ7F5]Qe§”§3) € D(©,Zp,0p). (For
simplicity of exposition, we assume that [Ag, Fé] € %fQ|(S4, dg) has no ideal points; the proof is
no more difficult without that assumption, but the notation becomes more opaque.)

By G.5.5),
PG (A) = 5% ((wp)res, ((wQ)qes: [Aq, Filaesy ) )
= <(x,Q)Q€ﬂ’a <[AQ7F5]Qey;D)) ,
where
(5.5.15) o =yp+zq if Qe Pp.

(Note that zj, = yp if Q € # NP as xq is then the zero vector.) If we denote \q := A([Aq)]),
then

(55.16) Yo, 0 05 5(A)

© on R*\ Upe » ge sy, B(2, 44/AQ);
(1- Xal, 4 ,\Q)Cfc’Q,lAQ

Xar 4, /ig 1 O(A@: F)  on Ua:2(/20,4v/AQ),

C;’Q,IAQ on B(x’Q,Z\/E).

We now compare ([.5.I6) with vg 4 o p%d@,(A).
For P € &\ &', we denote

[Ap, Fp] := Yo o, (TP(A)) = Vg 4, ((xQ)Qe@;, [AQ,Fé]Qe@;D) ,

and [Ap, Fp] = [Ag, F)] for P =Q € N Z'. Then by (B53),

P%?@f(A) = ((yp)pez, ([Ap, F'p])per) € O(0, 2,6).
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If we denote Np := A([Ap]), then

(C] on R4\Up693(yp,4\/)\lp),

o or (a) = | 1 N

: P, Xy )\ZPCZPJ@(AP,FJSD)) on Qyp : 24/ Np, 4/ Np),

Cyp1Ap on B(yp,4y/Np).

Over the balls B(zp,4./Np), for P € 2N 2, and over R* \ Upe»B(zp,4,/Np), the connections

(6516 and (G.5.17) are identical. We thus focus our attention on the balls B(xp,44/\}p) for

Pe 2\ 2. Forsuch a P, denoting \g := A([Ag]) as done prior to (5.5.10]), we have

(5518)  Ap =7 (mp(A))

© on R*\ Ugezr, B(9,4y/Aq);

(1= Xgp4/39) 00 140

+XmQ74\/EC;Q,1®(AQ7 FCSQ) on Q(va 2 \ A 74\/ )‘Q)a

Cro14Q on B(zq,2/Aq).

Because the points (2q)ges, € A°(Zp(d), #p) and the connections [Ag, Fj] € @fQ|(S4) form a

point in D(©, #p,dp) by the condition (.5.9) in the construction of 5(@, P, P0), Lemmal5.44
and equation (5.4.9) imply that for all Q € &) we have

B (2q,4y/Aq) C B <o,2 XP> :

where A is defined prior to (L.5.I7)). Therefore (5.5.18]) implies that Ap is already equal to the
product connection © over

(5.5.17)

R4\B<0,2 XP>,

so ¢, 1Ap is equal to © over

R\ B <yp, 24 /XP> .
Hence, the convex combination in the second line of (5.5.17)) is equal to ©. Denoting x’Q =yp+xQ

as in (0.5.15) and A\g := A([Ag]) as before (5.5.18)), we examine the final line of (5.5.17)) by applying
Lemma [5.4.3] to rewrite (B.5.18) as

© on R4\UQE@;§ :B(x’Q,él\/E),
(1- Xal, 4y /)\Q)c::’Q,lAQ
+wa’4\/EC;/Q71@(AQ’F5) on Q(:E/Q;ZMA ,4«/)\@),

C;’Q,IAQ on B(7g,2y/Aq)-

(5.5.19) o1 Ap =
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Consequently, we see that v} , 0 p5° (A) is given b
q Ys Yo,2° Py, o g Yy

© on R*\ Upe » ge 2y, B(z, 4/ 2q),

(1- Xal, 4 ,\Q)Cfc’Q 1AQ

5.5.20
(5.5.20) FXap 4 /i1 @40 FY)  on Qag:2y/Ag.4/30),
C;’Q,IAQ on B(xg,21/Aq)-
The conclusion of Lemma now follows by comparing (5.5:20) with (5.5.16]). O

5.5.3. Symmetric group actions and quotients. We now make some observations on the
action of the symmetric group necessary to define a quotient of the diagram (5.5.1]) by the symmetric
group. For & < &' we recall from Lemma [5.34] that to describe a neighborhood of ¥(Z,(6), &)
in X(Z, Z), we must describe all the diagonals A°(Z(0), ?”) where 22" € [Z < P']. We define

7(0,2,2060):= || w62 2",
(5.5.21) Pre|P<P)
v(©,2,[2',8) :=1v(0,2,[F'],0)/6(2),
where the group &(22) acts on (0, 2, [Z'],§) by the action defined in (5.53]). If the open sub-

spaces (0, 2, Z',§) defined in Lemmal5.5. I are sufficiently small, then their union (0, 2, [2'],6) C
(0, 2,(2',5) will be closed under the action of () and we define

(5.5.22) 00,2,[2',8) = 0(0,2,]2',0)/6(2).
By analogy with the definition of 7'(0, 22, 2, ¢) in (5.5.12)), we define

T(©,2, = {((yr)pex. (zQ)qes, ([0, ciql)qer) € 1(O,2,[7'],0) :
(5.5.23) ((vp)pewr, (2Q)ges) € O(Z:(9). 12 < Z))}

T(©,2,(2',8) :=T(0,2,[7,8)/6(2).

where 0(Z,;(0),[Z < 2')) is defined in Lemma [5.3.4
Recall that we denote the disjoint union or coproduct of sets A, by L, A, and for maps f, :
Ay — By, the coproduct map [[ fo @ UaAa — LB, is defined by f, on the subset A, C U,A,.

The coproduct of the maps p%u@n,

I S : | ée2260- || w62
Pre|P< P Pre|P< P Pre|P< P

is equivariant with respect to the &(4?) actions and thus defines a map on &(?) quotients,

P55 ) 000, 2.[7'].8) » v(0,|P < 7'].6)

v(O,[2 < 2'),6) = ( | | y(@,@",a))/s(gz).
]

Pre|lp<P

(5.5.24)



5.6. THE SPLICED END OF THE INSTANTON MODULI SPACE 67

Similarly, the coproduct of the maps p(;g,;dg,,, is equivariant with respect to the action of (&) and
thus defines a map of the &(Z?) quotients,

(5.5.25) P 00, 2,(2'],8) = 0(8,2,5).
The coproduct of the splicing maps ‘y’@’ s
I 6w || o®L2".6) — Bi(S* 20)
PNe| PP Pre|P<P

is invariant under the action of &(&?) and thus defines a map on the &(%?) quotient

(5.5.26) Vo (7] || om0 / &(P) — B(S4,26),
Pre[P<P)

which has the same image as vg 4. Lemma[B.5.2land the preceding discussion of symmetric group
actions then yields the

PROPOSITION 5.5.3. Let & and &' be partitions of N,, with & < P'. If 0(©, 2,[Z'],0) is
the open subspace defined in (5.5.22]), then one obtains the commutative diagram,

p(—),u/
0(6,2,12',5) 2% (Upigpar ORY, 2")) [6(2)
(5.5.27) pc;leyl]l Vé,zz‘,wl
06,2, 22 B3 (54,20

where p(;’d[@,} is defined in (5.5.25), vg 4 (o i B.5.26), and p(;,,’"[g,,] in (.5.24)).

5.6. The spliced end of the instanton moduli space

We now construct the deformation of an Uhlenbeck neighborhood of the strata (GI1]) in
MS’h(S‘l, d) by taking the union of the images of the splicing maps ~{, 4 restricted to appropriate
subspaces of (0, 2, 9). 7

This construction is inductive. We therefore assume that the instanton moduli space with

spliced ends, M;PHL | P‘(é), with the properties stated in Theorem [E.T.T] has already been constructed

for |P| < k. As described in Section [i.] the space Msﬁ;iﬁ(d) differs from N;*(8) only on Uhlenbeck

neighborhoods of the strata containing the product connection described in (BIT]). Such strata
are determined by partitions & = {Py,..., P} of N, with » > 1 so |P;| < k for all i. Hence,
the Uhlenbeck neighborhoods of these strata are parameterized by the gluing maps (51.2)) whose

domain includes moduli spaces Mﬁ’j‘ (0) where |P| < k. The inductive hypothesis will thus allow
us to replace these moduli spaces with MSSPHL | P|(5). There are no partitions of k = 1 with length
greater than one, so defining M;;hm((S) = M; ’u(é) will complete the initial step of the induction.
Therefore, the inductive hypothesis suffices to complete this construction.
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The splicing maps will be restricted to the following spaces (where the precise choice of the
constants dp > 0 will not be relevant to the rest of the discussion),

O (0, 2,0) = é’(@,@,é)m(AO( < [ M, spm )

(5.6.1) P

0*° (0, 2,6) == 0*°(0, 2,8)/6(2).

Observe that T(0, 2,6) C 0*"(0,2,6), where T(0, 2,6) is defined in (5.47) and that the
dimension of G*5°(0, 2, 6) is equal to that of MS(54,6).
The spliced end of the instanton moduli space is constructed in the following proposition.

PROPOSITION 5.6.1. Assume that the instanton moduli space with spliced ends, Msspi o (0), with

the properties enumerated in Theorem [511] has already been constructed for all k' < k. Then for
every partition & of N, with length greater than one, there is an SO(3) x SO(4)-invariant open
neighborhood, 0°°(0, 2,0), of T(©, 2,0) in O*(©, P,0) such that

(5.6.2) W, =] 76,2 (01°°(8, 2,0))
P

is a smoothly-stratified subspace of %2(S%,0), with every point [A, F*,x] € W, satisfying the esti-
mate ||FX||L;¢,2(S4) <, where ||-||zs.2 is the norm defined in (B.13]) and ¢ is the constant appearing
in [21], Proposition 7.6].

We will prove Proposition [5.6.1] by using Proposition 5.5.3] to describe the intersections of the
images of the splicing maps. The transition maps p%"[l@,] and p%cf 7] will be restricted to the
following subspace of (0, Z,[#'],0),

(5.6.32) O*°(0, 2,[P'),8) == 00, 2,[P'],8) N (A°(Z(5), P)

X |_| H AO(ZP(éP H SPL |Q| )

PNe|P<P'| PeEP QeZY

(5.6.3b) O0*(0, 2,(2',0) := 0*°(0, P,[P'],6)/6(2P).

(Compare the definition (5.5.21)).) Observe that T(0, 2, [32],5) C 0"°(0,2,(7],6), where
T(0,2,[%'],H) is well-defined in (5.5.23]) because [@ co|l € SPL |Q|(5Q) for all |Q| < k.

We must first verify that the transition maps pg, () and pg, (o) MAp 0P (0, 2,[9',90) to
0" (0, ' ,0) and 0*P(0, 2, §) respectively.

LEMMA 5.6.2. Assume that Msspi ,(5) has been constructed so that it satisfies the properties

enumerated in Theorem [ 11l for all K < k. Let T(0,2,[Z'],§) C 0*°(0©,2,[F'],0) be as
defined in (5.5.23]). Then there is an open nezghborhood O3P(0, 2, (2'],6) of T(©, 2,[F],0) in

0P (0, P, [P'),0) such that the restriction ofpg,, TOR OS°(0, 2,(2',6) is an open embedding
of OS°(©, P, [P'],0) into O*P(©, P,9).
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PRrROOF. Induction and the property (5.1.6) in Theorem [5.I.1 imply that for each P € &2\ &',
there is an open neighborhood 01" (©, #5,0p) of T(O, Zp,d) in O*°(0, P}, 0) such that

Yo, (O1°(0, Pp,0p)) C M3 1 (3p).
Therefore, in the definition (B.6.3)of & ASD(@ P, [2'],0), if we replace the factor

A*(Zp(dp), H MsphL |Q|
QEQH

with the open subspace,

OY(0, Pp,6p) C A°(Zp(5p), Z5) x [ M,

il
Qegz//
then the resulting open subspace 075°(0, 2, ('], 6) of 0*%?(0©, 2, (2], ) will satisty
(5.6.4) P51 (O1(0, 2,(7),6)) C 0*°(0, 2,5).

(Note that we are not concerned with the subsets P € & N Z’' because p%d@, is the identity on
these factors and so they do not affect the inclusion (5.6.4)).)

The fact that the restriction of p%cf g tO 03P (0, 2,(2'],6) gives an open embedding into
0" (0, Z,0) follows from the assumption that 7’67 7, gives an open embedding of 07°(0©, ), dp)

into MgPL |P‘(5p). O

We now prove an analogue of Lemma [(5.6.2] for the map p?,ju[gz,}. First, we must define the

appropriate range of pg,;"[ oL to take into account the appearance of the conjugate partitions &?” €

[P < P']. Let

(5.6.5) O*°(0,[2 < 2),0) = || o*°e,2") /6(9«))
PNe[P<P]

V(0,7 < #',9),
where v(0,[Z < 2'],0) is defined in (0.5.24]). We then have the
LEMMA 5.6.3. Continue the assumptions and hypotheses of Lemmali.6.2. Then the restriction
of the map p(;,,’"[g,,} to 0P (0, P, [A'],0) is an open embedding into O*° (0, [P < F'],4).
PROOF. The restriction of the map pgz’jf@, defines a map

6(6,2,2',0)0 (Ilpes (8°(Zp0p). 2}) % Tges, M3 g0)) )

l

AO(ZP(5P)7 L@/) X HPG@ HQG@’ MspL |Q|(6Q)

By the definition of pg,j“gz, in (B.5.0]), this restriction is given by the product of the exponential

map e(Z,, &) with the projection maps m¢ onto M’ ! (0¢) defined in (5.5.4) and is thus an open

SPL,|Q|
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embedding. The conclusion of the lemma then follows immediately from the definition of p%"[ ]

in terms of the maps ,0(25“9,. O

The following lemma yields the existence of suitably small, SO(3) x SO(4)-invariant neighbor-
hoods of T(0, Z,6). For any subspace V of %2(S%), let cl(V) denote the closure of V in the
Uhlenbeck topology.

LEMMA 5.6.4. If V is any set in %5(S*) satisfying
(V) Yo, (T(0, 2.6)) = 2
then there are SO(3) x SO(4) x &(Z)-invariant neighborhoods,
0430, 2,0) C 045 (0,2,0)) C 047 (0, 2,9),
of T(©,2,0) in O*°(0, P,0) such that the intersection,
A(V) Ny, (O17(0, 2,5)) |
1s empty and there is an inclusion,
d(V)nel(ve 5 (0170, 2,0))) C (V)N (ve 5 (T(O, 2,9))) .
PrOOF. For A € 0*°(©, Z,6) given by A = ((zp)pew, ([Ap, Fp,yp])pcw), denote Ap(A) :=
MAp,yp). For x := (zp)pep € A°(Zy, P), define
Vix, #) = {0 ([Ap, Fi,ypl pess) € (70.2)" (@(V))}
and define Ay : A°(Z,, &) — (0,1] by

2 _ - : 2
Ay (x)? := min {AGI\}'I(IQQD) I;@)\p(A) ,1} .

By the hypothesis that cl(V) is disjoint from vg 4 (7(0, &, 6)) and the observation that 7'(0, 2, J)
is the zero locus of ) pc ., Ap(+), we see that Ay is always positive on A°(Z,(6), &). Let f :
A°(Z,:(0), ) — (0,¢) be a continuous function with

(5.6.6) f((zp)pewr) < %AV((xP)P€@)27

for all (zp)pesr € A°(Z;(0), #). Then for j = 1,2,3, we define the neighborhood 03°°(0, Z, )
by

ASD(® Z 5) {A = (Xv([Ava]gvyP])PEW) ﬁASD 0,2, 5 Z >‘P )/]}
Pe»

These sets have the desired invariance and their images do not intersect cl(V'). The existence of a
smoothly-stratified function g; supported in 03%(0, #,6) with g;(03°°,(©, #,6)) = 1 (needed

to prove 0751 1(0, 2,6) C 0;5°(0, £,0)) follows from the definition of these sets.

To prove the final inclusion, let {A(«a)}52, C & ;}731[)((9, Z,0) be a sequence with
(5.6.7) Olh_)n;o Yo.» (A(a)) € cl(V).

If
A(a) = [x(a), ([Ap(a), Fp(a),yp(a)]) pe],
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where x(a) € A°(Z,(9), Z), then (B.6.7) implies that

(5.6.8) lim Y Ap(A(a))® = lim Ay (x(a))®.
prPey

Because A(a) € 037(0, £, 6), we have

(5.6.9) > Ap(A@)® < ng(x(a))?
Pe
Combining (5.6.8]) and (5.6.9) yields
lim " A3(A(0) =0,

pPez
and so for all P € &,
lim [Ap(a),ng(a),yp(a)] = [GvFJSD(OO)?CP]?

a—r0oQ
and thus,
Jim g 5 (A(a)) = lim v 5 (x(a), ([0, Fp(20),cp) pen) € el (Yo, »(T(0, 2,0))) ,
as asserted. O

We now construct the subspaces 07°°(0, Z,) referred to in Proposition (.61 We will
construct these subspaces to be S,-invariant in the sense that if 2" € [Z], then the open
subspaces 0% (0, 2,5) and 07°°(©,2”,0) will be identified by the natural action of &, on
Uz,eg) (O, Z). Thus, defining 07°°(0, #”,4) for one &’ € [#'] suffices to define the space

(5.6.10) 000,22 < ') = || or°e,29) /6(@) c 0¥°(0,[2 < P',6),
PNeP<I

where 0% (0, (2 < £'],0) is defined in (5.6.5).

LEMMA 5.6.5. Assume that M;ﬁiﬁ'(é) has been constructed so that it satisfies the properties

enumerated in Theorem [5.1.1 for all k' < k. Then for every partition &2 of N, of length greater
than one, there are open neighborhoods
03%°(0,2,6) C 05°°(0,2,5) C 0,°°(0,2,0)
of T(©,Z,0) in O (0, P,5) such that the following hold for j =1,2,3.
(1) The neighborhoods O3°°(©, ,8) are closed under the SO(3) x SO(4) action given in
6.4.6).

(2) If the partitions &1 and P are conjugate under the action of &, then the neighbor-
hoods 03°°(©, %1,6) and 07°°(©, P3,0) are identified by the natural action of &, on

U@ie[ﬂl] V(@, '@z)
(3) If there are no partitions P € [P] and Py € [P'] with Py < Py or P < P, then

7,9,93(6?813(@’ gzv 5)) a 7,9,9’(ﬁfSD(@’ ‘92/7 5)) = .
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4) If
(O,

< P’ then there exists an open neighborhood O33°(©, P [P'],6) of the subspace
P[P, 06) of OP(©, 2, [P'],6) such that

’7/@,:@ (ﬁfSD(@7 '@7 6)) N 7/®,ﬂ’ (ﬁfSD((av ‘@,7 5))
(5.6.11) C Yo, (p%f‘[gzq (opP(0, 2,2, 5)))
= 7/979 <p?];,d[9”} (ﬁfSD((av @7 [‘@/]75))) .

PROOF. Enumerate the strata ¥(Z;(9), &) in the manner described in Section [B.4] with conju-
gacy classes [P], ..., [Py] so that

(5.6.12) Y(Z:(9), Z) C el (2(Z,(9), 2%;)) onlyif i<j.

Because the length of the partition & is one, we begin our induction with &?; and using induction
on k, construct neighborhoods 07°°(0, Z, ) satisfying items (I) and ([2). In addition, these
inductively constructed neighborhoods will, for all i < k, satisfy Items (@) and () with [#;] = [Z]
and [Z] = [2?']. We note that the symmetry between & and &’ in Items (B]) and (@) implies
that this will suffice to complete the induction and prove the lemma.

In each step of the induction, to ensure this construction satisfies Item (2I), it suffices to construct
04 (0, P, 6) for a single partition &' € [#] and for any other partition, " € [#], define
03°(0, 2",6) to be the image of 07°°(0, 2, 5) under the action of &.

For k = 1, take 07°°(0,27,0) = 0*"(©,%,5). The neighborhoods ﬁfSD(@, P1,9) for
j = 2,3 can be constructed by replacing the coefficient 8 in the definition (5.4.1]) with slightly
larger coefficients. Item (2)) holds from the definition of &*5?(0, £1,0) while Items (3)) and (@)
hold trivially.

By induction, assume that the open sets 07°(0, %;,0) satisfying Items (I)- (@) have been
defined for all ¢ < k; we will complete the induction by constructing 075 (©, &, ). Note that the
conclusion still holds if we shrink the sets 07°°(0, ;,0) to smaller neighborhoods of T'(©, Z;,9).
We now construct 07°(0, #y,J).

For each i < k, if there are no &’ € (] and & € [#;] with & < &', then by (£.48), (£.6.12),
and Lemma [3.2.4]

(5.6.13) cl (Yo,2, (T(©, #:,9))) NYe,2, (T(0, Z,0)) = 2,
(5.6.14) Yo.z, (T(0, 2:,0)) Ncl (vo m, (T(O, P4,0))) = 2.
Lemma [5.6.4 and (5.6.13) imply that there are SO(3) x SO(4)-invariant neighborhoods,
03°°(0, P, 0) C O5°° (0, P, 8) C 0P (0, Py, 0),
of T(©, Py, d) such that
cl (Yo, (T(O, 2,0))) N Vo 5, (O1°°(0, P, 0)) = @.
Lemma [5.6.4] also ensures that

cl (729,3?’1- (T(®7 ‘@iv 5))) Nel (7l®,ﬂk (ﬁ{\SD(@’ gzk’ 5)))
(5.6.15) Ccl (Vo (T(O,2,6)) Ncl(vo.m, (T(O, P%,9))) .
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Equations (5.6.15]) and (5.6.14]) yield
7,9,931- (T(Gv i, 6)) Nel (7l®,ﬂk (ﬁfSD(Gv Py, 5)))
C e, (T(©,2:,6)) Ncl ('yéﬂk (T(©, Z,0))) = @.
Thus, by Lemma[5.6.4 there are (smaller) SO(3) x SO(4)-invariant neighborhoods €73°(0, #;,6) C
ﬁ]‘-*SD(@, P;,0) of T(O, Z;,0) with j = 1,2, 3 satisfying
035 (0, 2:,0) C 0,5 (0, #;,0) C 015 (0, P4, 0)
and
Yo,z, (013 (0, 2;,8)) Ncl (Yo, 2, (01°°(8, P1.,9))) = 2,
as desired. Replace the open neighborhoods ;°(0, #;,0) with 073°(©, #%;,6). For all other
D" e [P], replace ﬁ]‘?SD(@, 2" ) with the image of ﬁj‘f;D(@, Z;,0) under the action of &,. Then
O3 (0, Py, 0) satisfies Items [3) and @) for &; with i < k and no &’ € [Z;] and £ € [Z;] with
P <.

If [2] < PP, by conjugating &; if necessary and using the invariance of the neighborhoods
ﬁ]‘?SD(@, Z;,0) under the action of G,;, we can assume that &; < &. By the equality (5.4.8]), the
closure of

[@] X (E(Zﬁ(6)7 ‘@k) \Im(e(Zﬁv ‘@l))) )
(where e(Z,,, ;) is the exponential map defined in equation (£2.I0])) does not intersect the image
7297 P, (T(©, Z;,6)). Therefore, by applying Lemma [5.6.4] and shrinking ﬁ]‘-*SD(@, P;,0), for j =
1,2,3, as above, we can assume that
cl (7297% (OO, 2,6)) N (6] x (2(Zs, ")\ Im(e(Zy, 2)))) = @
for all 2 € [#; < P] and hence

(5.6.16) Cl(vb,@(ﬁf”(@,%é)))ﬂ(( U vg,@u(T(eﬂ",a))) / 6(9»))

PN e[ Py < Py
C [6] x e(Z:(0), Z:) (0(Zx(6), [P < Z%]))

where 0(Z,(0),[Z < P]) is defined in Lemma [5.3.4]
Let the spaces T'(0, Z;, [P%],6) and 075°(©, P, [Pk],0) be as defined in (5.5.23)). The equality
and inclusion,

0] X e(Ze, ) (0(Z:(6), (75 < 24)))
~ Yo e (P50 (1O, 2, [24).0)))
Vo pm) (P51 (G1(0. 20,24, 0)))
together with (5.6.16)) then imply that
(5.6.17) o (Yo, (0°(8, 20, 0)) \ Vo 1< ) (P 19y (01(0, 24, [24],6)) )

is disjoint from vg 4n (T(0, 2”,6)) for all 2 € [#; < P;]. Lemma5.6.4 gives SO(3) x SO(4) x
S(Z)-invariant neighborhoods

05°(0,[2; < P, 0) C 05°°(0,[P; < P, 06) C 07°°(0,[2; < Py, 0),
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of

|| T©,2:5) /6(%) in || o .,2"9) /6(%)

PN e[ P < Py PN e| P <Py
whose image under v (2,< 2, 18 disjoint from the set (5:6.17). This disjointness yields the inclusion,
729,?]’1- (ﬁfSD((_')’ gziy 5)) N 729,?]’” (ﬁfSD((_')’ y”’ 5))
O, S
C Yo [ 2<n] <Pg«>iu,[g«>k} (07°°(0, 2, [«O]’k],5))> ;

for all 2" € [P < P], as required to show that Items (B) and (@) hold. This completes the
induction and hence the proof of the lemma. O

PrOOF OF PROPOSITION [5.6.1] For each partition & of N, with length greater than one, let
0P (0, Z,6) be the SO(3) x SO(4) invariant subspace of 0*%°(0©, Z,6) constructed in Lemma
For any two partitions & and &', the images vg 5, (07°°(0, 2,0)) and vg 4 (07°°(©, ', 4))
are either disjoint or are given by the open subspaces described in Item () in Lemma[5.6.5 Hence,
the overlaps are open subspaces and the union of the images, Wy, has the desired properties.

The arguments in [21, Proposition 5.10] imply that if A’ is defined by splicing connections Ap
with scales dp for P € & onto the product connection and if §p < §, then

1F  peagssy <0+ D IFL llpeassy.
Pe

The bound on || F} | r24(g1) for all A” € Wy, then follows by induction. O

5.7. Tubular neighborhoods of the instanton moduli space with spliced ends

We now introduce the partial tubular neighborhood structure of the spliced end W, defined in
(562). This structure will satisfy the first of the conditions in (AI1]). In the following lemma, we
introduce the projection map, analogous to the map 7; in (ZI1.1]).

LEMMA 5.7.1. For each partition & of Ny with | 2| > 1, let % (©, ) C W, be the image of the
open subspace O (0, P, 0) defined in Lemmal[5.6.0. Then there is an SO(3) x SO(4)-equivariant
map,

(5.7.1) (0, P) U (0,P) = 0] x X(Z(0), ),
such that the following hold.

(1) If P € 2], then% (©,2) =% (0,7, and ©(Z,(8), P) = X(Zx(6), P'), and (O, P) =
(0, 7).
(2) On the overlap % (©, Z)NU(©, "), we have

(5.7.2) (0, 2)on(0,2") ==7(0,2).
PROOF. The map 7(0, &) is defined to be the composition of the projection,
Tz O (0,2,0) = B(Z.(6), 2),

with the inverse of the splicing map, 7’97 - Item () follows from this definition.
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The equality (5.7.2]) follows from the assertion that the intersection of % (0, 2) N % (©, ')
with a fiber of 7(©, ') is contained in a fiber of 7(0, &). To prove this, first note that by (5.6.11]),

o,d O,u
(0, 2)0%(0,7) = (Yo, 0 %) =1 (Yo 005 )
Consider the following diagram,

O,u
= Po 2]

0©,2,7,0) o (0,7,0)

ﬂxl WZ,EZ”l

o o e(ZN(é)V@)
A°(Zx(0), Z) x [l pesr A°(Zp)(0p), Pp) ———— A(Zx(6), 2")

d
A°(Z4(6), 7)
where the map 7y is defined in (5.5.4)) and the map p is the obvious projection. Note that po myx =
T2 x, Where 7 y is defined in (5.5.4]). The diagram commutes by the definition of p(z,jqf g 0 (G.535).

By the commutativity of this diagram and the injectivity of e(Z,(9), &), for y € A(Z.(9), P’),
and x € A°(Z,(0), 2), and x € p~t(x) with e(Z, (), 2)(X) =,

(5.7.3) Im (p%?[g,,}) N7 (3) = P9 (11 (R)) € P (00 ) ().
Next, we observe that by the definition of p(;’fi[g,,] in (5.5.8)), for x € A°(Z,(9), Z),
(5.7.4) Im (pf;fi[ g,,}) N7 () = P50 (pom) ™ ().

Combining the inclusion (B.7.3]) with the equalities (5.7.4]) and (5.5.27) yields

u u

Yo, © P51 (Tx (X)) C Ve, 0 5 (D0 ™) 7' (X)) = Yo, © P50 (72,2) 7 (%)) 4
which gives the inclusion of fibers required to prove (5.7.2]). O
The obvious identification,
(5.7.5) {[O]} X Ze/61 = Z4/S,,

allows us to view the projection maps m(Z,, &) defined in Section as maps on the strata of Wy
containing the product connection. We identify the restriction of the projection 7(0, &) with such
a map in the following lemma.

LEMMA 5.7.2. Under the identification (B.70), the restriction of the projection map w(©, P)
in Lemma[5.71) to the intersection,

(O} x Ze/Sr) N U (O, ),
s equal to the map
(Zs P) : U(Zy P)[S(P) = A (Zie, ) = S(Z, P)[S(P)
defined in (£2.13]).
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PROOF. The conclusion follows by noting that the restriction of the splicing map 7’@7 2 to points
where the connections being spliced in are the product connection is exactly the map e(Z;, &) in

(EZI0). 0

5.8. Isotopy of the spliced end of the instanton moduli space

The final step in the proof of Theorem B.1.1]is to use the isotopy provided by the gluing and
centering maps to attach the spliced end, W, to the original moduli space MS’“(S‘*, J).
We first construct the isotopy of W, in %3(S4,0).

LEMMA 5.8.1. For § sufficiently small, there is a continuous, smoothly-stratified map,
(5.8.1) R:(—00,1] x W, — £5(S%,26),
such that the following hold.
(1) For allt € (—o00, 3] and [A, F*,x] € W,,, we have R(t,[A, F*,x]) = [A, F*,x].
(2) For allt € [2,1] and [A, F*,x] € Wy, we have R(t,[A, F* x]) € M:(6).
(3) If we define
LA, F*, Xl o2 g1y = [1FT(A)l| o251y
then for all t € (—oo, 1] and [A, F*,x]| € W,,
HR(tv [A7F87X])”Lﬁ’2(5'4) < H[A7F87X]”Lﬁ’2(5'4)’
(4) For all [A, F*,x] € Wy, we have R(1,[A, F*,x]) € MZ*(3).
(5) For allt € (—o0,1], the map R(t,-) : W,, — $5(5%,8) is SO(3) x SO(4)-equivariant.
PROOF. The bound on the L#2(S%)-norm of the F'{ for all [4,x] € W,; appearing in Proposition

E.6.1l and [21], Proposition 7.6] imply that for 6 small enough to satisfy |21l Proposition 7.6], there
is a continuous, smoothly-stratified, SO(3) x SO(4)-equivariant embedding,

(5.8.2) G :[0,1] x Wy 3 (t,[A, F*,x]) = [A + a;(A), F*,x] € B5%(S*,26),
where a;(A) = d v, (A) satisfies
(5.8.3) FHA+a(A4) =1 —-t)F).

Observe that ag(A) = 0 while A — A + a;(A) is the gluing map defined by [21] Proposition 7.6].
For ¢ € [5, 2], we define

(5.8.4) R(t,[A, F*,x]) := [A + ag—1/2)(A), F*,x].

This smoothly-stratified isotopy satisfied Items (1) and (2). Although R(3/4,[A, F**,x]) will be
anti-self-dual, it need not be mass-centered. Thus, define

w(A, F* x) = z[A+ a1 (A), F*,x].
Because, by [16], Lemma 4.4] and the definition (5.2.2]),
2[ey 1 A FP e 1 (x)] = 2[A, F¥ x] +y,
if we define
R(t,[A, F*,x]) = (€3 gy, re 01 F € ampwars x1 (X))
for t € [3/4,1], then R(3/4,[A, F*,x]) = [A, F*,x] and

z (R(1,[A, F?®,x])) = 0.
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Consequently, the isotopy R satisfies Item ().
Item (B]) follows for ¢ € [1/2,3/4] by observing that equation (5.83]) implies that

IRt [A, F* X)) o2 (sty = [T (A+ ar(A) | pszse) = 1 = O FT(A)|psz(sy,  for t € [1/2,3/4].
For t € [3/4,1], Ttem (B) follows by the invariance of the L#?(S%) norm under pullback by transla-
tions.

We now prove that Item (&) holds. The SO(3) equivariance of R is immediate. For S € SO(4),
the SO(4) equivariance of (5.8.3]) yields

FH(S*A+ S*ay(A)) = S*FT(A + ay(A))
= (1—t)S*F+(4A)
= (1 t)F(S*A)
= FH(S*A+ a,(S*A)).

The uniqueness of the solution a¢(A) to (B.83]) then implies that S*a;(A) = a.(S*A). This gives
the SO(4) equivariance of R for t € [1/2,3/4]. To prove the equivariance for ¢t € [3/4,1], we first
note that

2[S*A, STIFS, ST %] = ST12[A, F* %],
and so, by the SO(4) equivariance of A — a1(A),

(5.8.5) w(S*A, STIF®, S71x) = S7lw(A, F? x).
The equality S o cg-1,,; = cyp,1 05 implies that c¢§_,, 5% = S*c;, ;. Combining this with (5.8.5])
in the definition of R(t,-) for 3/4 <t < 1 completes the proof of the SO(4) equivariance of R and
hence the proof of Item (). O

PROOF OF THEOREM .11l Let

?/3 C ?/2 C WH

be the union, over partitions & of N, of length greater than one, of the neighborhoods,
(586) 7/9,9 (ﬁJASD(Qv ‘@7 5)) )

constructed in Lemma[5.6.5 where W, is defined in (5.6.2]). These sets are closed under the actions
of SO(3) and SO(4) and form a neighborhood of [©] x (Zp — {cp})/Sp in W,. Then, from the
proof of [82] Theorem 1.3.13], there is a smoothly-stratified map 3 : W, — [0,1] with 25 c 571(0)
and W, \ % C B~Y(1).

Define R(Wy) to be the image of W, under the map R(53(-),-):

R(W,) :={R(B([A, F*®,x]),[A, F*°,x]) : [A, F*,x] € W,}.

Define the instanton moduli space with spliced ends by
(5.8.7) MG (81, 0) = (M(SY,0) \ R(1, W) U R(W,).

The SO(3) x SO(4) equivariance of R, provided by Item (B]), implies that the space (5.8.7) is
closed under the SO(3) x SO(4) action. The isotopy R defines the SO(3) x SO(4)-equivariant
homeomorphism in Item (Il) of the theorem. The neighborhood W, appearing in Item (2] is given
by R(W,). The Uhlenbeck neighborhoods W (X) appearing in Item (3)) are given by the sets (5.8.6])

Ip map that is continuous and whose restriction to each stratum is smooth.
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with j = 3. By the construction of the solution a;(A) in (B.83)), the || - [|12(g4)norm of the
curvature decreases along the isotopy R(t,-) as ¢ increases. The bounds appearing in (5.6.1]) on
this norm then imply that the space (5.87) satisfies Item (@). O

5.9. Properties of the instanton moduli space with spliced ends

We now prove two properties of the instanton moduli space with spliced ends, Mssl;uL,R(S‘l,&),
defined in (5.87) which will be used in the Definition L3l of the link L s of the lower-level reducible
SO(3) monopoles (L.I3]) and of a fundamental class for L¢ . To construct the link, we will require
the following perturbation of the scale function that is constant along the fibers of the projections
(0, P).

LEMMA 5.9.1. There are a continuous, SO(3) x SO(4) invariant map,

(5.9.1) Aot MEE (S%,6) — [0,26),
which is smooth on each stratum, and neighborhoods %'(©, ) C % (0, 2) of (0] x X(Z(d), P)
with the following properties.
(1) The function M\, is equal to the scale function X defined in (5.23) on the complement of
W
(2) Under the identification (5.7.0), the restriction of A, to the strata containing the product

connection in (5.5 is equal to the function t(Z,) defined in Lemma [{.2.5
(3) For all partitions & of Ny with | 2| > 1, we have A\, = \x o 7(0, P) on %' (0, P).

PROOF. The function ) is constructed in a manner identical to that of ¢(Zp) in Lemma
with the scale function A defined in (5.2.3)) playing the roles of ¢ py and the neighborhoods % (©, &)
and maps 7(0, &) playing the role of % (Zp, &) and n(Zp, P). O

We will use the following lemma when constructing a fundamental class for the link of the strata
([LI3) of gauge-equivalence classes of reducible ideal SO(3) monopoles.

LEMMA 5.9.2. The stratified-space M§§27H(S4, d) is a Whitney-stratified space in the sense of [39),
Section 1.2]. If ¥ C M;;”m(s‘l, d) is the complement of the top stratum, then there is a neighborhood
U of ¥ in MSSI;E,R(S‘*,(S) of which ¥ is a retraction.

PROOF. The smoothly-stratified homeomorphism (5.1.4]) between M;l;uL,H(S‘l, 0) and M,i’u(S‘l, J)
preserves strata. Hence, the lemma will follow by proving that the pair ( _,i’u(S‘l,&), ¥’ has the
required properties, where ¥’ is the complement of the top stratum of ME’“(S4,5). The space
M,ﬁ’h(S‘l, 9) is identified with a subspace of a completion of the ADHM data in [63] pp. 470-471]
or [15, Corollary 3.4.10]. In [60, Theorem 1.2], it is shown that this completion of the ADHM data
is a semi-algebraic space (that is, defined by a finite set of polynomial inequalities on a Euclidean
space) and hence Whitney-stratified (see [39, Section 1.2]). The same is true for the unframed
space, ]\_4,5(54,5). In [40, Proposition 5], Goresky proves that Whitney-stratified spaces can be
given the structure of a simplicial complex in such a way that the complement of the top stratum
is a subcomplex. The existence of the neighborhood U then follows from [92] Corollary 3.3.11]. O



CHAPTER 6

The space of global splicing data

6.1. Introduction

Let t be a spin“ structure and s a spin® structure such that the intersection
(6.1.1) <M5 X Symf(X)) NS,

is non-empty, where M; is the subspace of reducible SO(3) monopoles appearing in (ILIL3]). In this
chapter we construct the space of global splicing data discussed in Section and which will be
used to construct the link of the subspace (6.1.1]). This space will be the union of spaces of splicing
data, % (t,s, &), associated with diagonals X(X?, 2) defined in BL8) of Sym’(X) as & varies
over partitions of N, = {1,...,¢}. (Of course, we will do this equivariantly with respect to the
symmetric group.) To each partition &2, we will define a crude splicing map which will be identical
to the splicing map defined in [24], Equation (3.27)] except in the following respects:

(1) The connections over S* being spliced are elements of the instanton moduli space with
spliced ends defined in Theorem [B.1.1] rather than the moduli space of anti-self-dual con-
nections on S*; and

(2) Each background pair, (Ag, ®g), is ‘flattened’ in the sense that the connection Ay is re-
placed with one which is flat while the section ®q is multiplied by a cut-off function that
is zero on balls of fixed radius around the splicing point rather than on balls whose radius
tends to zero as the connection on S% becomes more concentrated.

The space of global splicing data is the union, over partitions of Ny, of the images of the crude
splicing maps. To ensure that this union is a smoothly-stratified space, we require the images of
the crude splicing maps for different partitions to overlap in open subsets, as in the construction of
the spliced end of the instanton moduli space, Wy, in Section In Proposition [6.5.3] we prove
an analogue of Proposition [5.5.3] the result describing the overlaps of images of different splicing
maps when splicing connections on S* with the product connection on S*. However, the proof
of Proposition [5.5.3] relied on the flatness of the Riemannian metric on the manifold and of the
product connection. We will use the method from Section .5 to produce the needed flatness of the
metric on manifold. The condition (2 above on the crude splicing map gives us the flatness of the
connection needed to prove Proposition

After defining the domain of the splicing map in Section [6.2] we show how to flatten pairs
as described above in Section [6.3] and thus define the crude splicing maps in Section Given
the analysis of the overlaps of the images of the crude splicing maps developed in Section [6.5] we
construct the space of global splicing data in Section In Section [6.7] we construct the partial
Thom-Mather structure (as described in Section [£.1]) which will be used in the construction of the
link I_;t,g of the subspace (6.I.1]). In Section [6.8] we describe a global splicing map whose image will

79
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contain the subspace (6.1.1]). Finally, in Section [6.9] we construct a map from the space of global
splicing data to Sym‘(X).

6.2. Splicing data

We begin by recalling the domains of the splicing maps from [24]. Assume that M, x Sym*(X)
appears in the /-th level of the space of ideal SO(3) monopoles on t, namely [.#;. Let t(¢) be
the spin" structure defined prior to equation (2.1.14]). By generalizing the splicing map defined in
(543), we will obtain a splicing map that will attach connections on S* to the ‘background pair’
(Ag, ) € (51(5) to create a pair (A, P) € %

6.2.1. Background pairs. Let M, C ‘51(() denote the image of the embedding (2:3.12)) of the
space of solutions to the perturbed Seiberg—Witten equations from [28] Lemma 3.12]. The quotient,
My = ME/%, of M, by the group ¥, of gauge transformations embeds in Cye)- Let Nypy s — Ms
be the virtual normal bundle discussed in Section with an embedding of a §-disk subbundle
Nyw),s(0) C Nywys — Gy, as defined in (23.20). Let ]\th(g),s — M, be the pullback of Ny@y,s by
the projection M; — M,. As in [23.27)), there is an embedding ]\7{(@)75((5) — %Nt(g) covering the
embedding Ny)s(5) — €y

6.2.2. Riemannian metrics. Recall that in Lemma [£.5.2], we constructed for each partition
2 of Ny a smooth family of metrics g» on X, parameterized by A°(X*, #) ¢ X* and a tubular
neighborhood % (X%, g5») € X! of A°(X?, 2). The map n(X’, 2) : % (X!, 9») = A°(X!, P)
denotes the projection map of this tubular neighborhood. We list here the relevant properties of
this family of metrics:

(1) For each y € A°(X*, &), the metric g,y is flat on the support of
U(X',gz) (X5, 2)7 ),

where support is defined in Definition [£.4.11

(2) For each pair of partitions 2 < 2’ of Ny and point y’ € % (X*,g») N A°(X!, 2') with
(Xt 2)(y') =y, the equality 92,y = gy holds.

(3) The metrics are G-invariant in the sense that gz y = gy(2)0(y) for all o € &,.

6.2.3. Frame bundles. For a partition & of Ny, let
Fr(TX% 2,95) — A°(X¢, 2),
be the fiber bundle defined just before ([A3.4]). Similarly, we define

l
(6.2.1) Fr(gt(g), L@) = (Flg, L. ,Fég) € (H Fl“(gt(g))>
=1

A°(XE,P)

FP=F! ape@withi,jep}.
We define the gluing data bundle by
(6.2.2) Fr(t,s,2) =W (TX, Z,9%) X Ao (XE, ) Fr(gyr), &)-

Recall that we denote elements of A°(X*, #) by (yp)pew, where yp € X. Similarly, we de-
note elements of the total space of the bundle Fr(t,s, 2) lying over (yp)pew by (FE,Fp)pew,
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where F} € Fr(TX)l|,, and Fp € Fr(gye))lyp. We also write (Fg’g)pegz for such an element of
Fl"(f,ﬁ, L@,ggz).

The structure groups of the bundle Fr(X, 2) over A°(X*, 2) and over £(X!, 2) are G(2)
and G(2)/T'(Z), respectively, where

(6.2.30) G(2):={((R1,My),...,(Re, My)) € (SO(4) x SO(3))* :
R;, = Rj and M; = Mj, Vi,j€e P e c@}’

(6.2.3b) G(P) = G(P) x &(P),

where x denotes the semi-direct product [56, p. 59] (compare the structure group appearing on
[35] p. 252]). Observe that for & < &', there is an inclusion,

(6.2.4) G(P) = G(2),

given by the inclusion of the diagonals. We can write elements of G(2?) as (Rp, Mp)pes. With
this notation, the action of G(<?) on

(6.2.5) M(2) = 1] M3k p(0)
Pez
is given by the factor (Rp, Mp) acting by the standard SO(3) x SO(4) action on M;PuL ‘P|(5) and

by the natural permutation action of &(27).

6.2.4. Group actions on the frame bundles. In addition to the action of the structure
groups G(Z?) and G(Z) on the frame bundle Fr(t, s, &), there are also actions of the gauge group
¢, and of S' on Fr(t,s, ). Both of these actions are diagonal actions defined on the factors of
Fr(gye)) in Fr(t,s, &) by the S1 action on gy(¢) defined by the reduction of gy to an S! bundle as

in (2.3.17).
6.2.5. Space of splicing data. The splicing map will be defined on a subspace
Ny 5(6) xg, O(t,5,2) C Nyp o(8) xg, Gl(t, 5, 2),

where

(6.2.6) Gl(t,s, 2) == Fr(t,5, ) X2 M(2).

The subspace O(t,5, 2) of Gl(t,s, &) is an open neighborhood of

(6.2.7) (s, 2) i= { (FF9)pewr, (10, Fp.cip)pes) < Gllts, 2)}

where © is the product connection over S* and ¢|p| is the cone point of Sym!”#(R%). The notation
in (6.2.7) is motivated by the observation that because SO(3) x SO(4) acts trivially on [©, F, ¢|p|],
there is an identification,

(6.2.8) Y(t, s, P) = N(XE, 2),
where ¥(X¢, 2) C Sym‘(X) is defined in BIJ). We define a subspace of Gl(t,s, ) containing
S(t s, 2) by

(6.2.9) T(t,5,2) = { ((FE)per, (0, Fp, vr)per) € Gllts, 2)}
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One requirement in the definition of &'(t,s, 2?) will be that for any point,
((FIT;7 FJQD)PEQZ7 ([AP7 Flia VP])PG:@) € ﬁ(t757 '@)7
where FL and F} lie over yp € X with P’ # P, we have

S : /
(6.2.10) 8\ ([Ap, Fp,vp]) < Pleg}}}}rgl/#]gd(yp,yp),

where X is the scale parameter (5.2.3). Finally, we define

(6.2.11) st Ny s(6) xg, Gl(t,5, ) — £(X*, 2)
to be the obvious projection. The S' action on Nt(g)ﬁ defined in ([Z3.28) defines an S* action,
(6.2.12) Sl X ]\7{(5)’5((5) X, Gl(f,ﬁ, e@) — Ni(é),s(é) X, Gl(’t,ﬁ, r@),

and we will see that all the constructions of this chapter are equivariant with respect to this S!
action. The following analogue of [30, Lemma 3.6] gives two descriptions of the action (6.2.12]).

LEMMA 6.2.1. The following two circle actions on ]\7{(@),5((5) xg, Gl(t,5, ) are equivalent:
(1) The action 2328) on Nt(g)75(5) and the trivial action on Gl(t,5, ).
(2) The diagonal action with weight two on the fibers of N{(Z),s(é) — M, and with the action
on Gl(t,s, 2) described in Section [6.2.4] with weight two.

PROOF. The proof of this lemma is identical to that of [30, Lemma 3.6] using the equality in

(Z328) of S* actions. O
We will need to refer to the S' action,

(6.2.13) S' % Nyp).s(6) xg, Gl(t,5, 2) = Ny 4(6) xg, Gl(t, 5, 2),

given by the diagonal action with weight one on the fibers of Nt(g)’g(é) — M, and with the action
on Gl(t,s, #) defined by the S' action described in Section with weight one. The action
described in Lemma is the action (6.2.13]) with weight two.

Each 0 € &, defines a smoothly-stratified diffeomorphism o : Gl(t,s, 2) — Gl(t,5,0(2)),
where o () is the partition defined in (3.1.1]) by the following relabelling map,

(6.2.14) A= ((Fp, F}),[Ap, Fp,vp]) pe

— T s
= J(A) = ((Fg(png(P))’ [AJ(P)’FJ(P)’VJ(P)])PGW .

Because the stabilizer §(2?) of & under the action (B.I1T]) is in the structure group G(Z) in
(6.2.3D)), if 0 € G(Z?), then the map defined by o by (6.ZI4]) is trivial.

6.3. The flattening map on pairs

The commutativity of the diagram (5.5.27]) for the instanton moduli space with spliced ends
depended on the flatness of the metric on R* and on the flatness of the product connection © around
the splicing points. The locally flat metrics g described in Section [6.2.2/have this property. We now
introduce a method for achieving the same kind of local flatness for the background connection Ayg.
This method also yields a way of cutting off the background section consistently from one stratum
of the subspace ([G.I.I)) to another.
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DEFINITION 6.3.1. A collection of smooth functions sp : A°(X*, %) — (0,1), indexed by
P e 2, is a separating family if the following hold:

(1) The functions are &(&)-invariant in the sense that sp = s,(p) and sp = sp o g, for all
o€ S(2).

(2) For all y = (yp)pewr € A°(X¢, P) and for all P # P’ € 2, the balls B(yp,4sp(y)"/?)
and B(yp, 4sp/(y)'/?) are disjoint.

DEFINITION 6.3.2. Let {sp} be a separating family of smooth functions on A°(X¢ 22). A
connection A on a vector bundle g — X is flat with respect to {sp} at y = (yp)pesr € A°(X!, P)
if the connection A is flat on

(6.3.1) U B(yp.2sp(y)'?).

Pe»
A pair (A, ®) € ‘51(5) is flat with respect to {sp} if A is flat with respect to {sp} and ® vanishes on
(6.3.2) U Blyr.4sp(y)'/?).

Pe»

Lemma [6.3.3] below provides the analogue of the flattening construction for metrics given in
Lemma 4511 Recall from Section 2.1.2] that for a spin* structure t and spin“ connection A on the
spin® bundle V; — X then A denotes the unique connection induced by A on the s0(3) bundle g

appearing in (Z.1.4).

LEMMA 6.3.3. Let & be a partition of Ny. Let {sp} be a separating family of smooth functions
on A°(X!, P). Then there is an S'-equivariant map,

(6.3.3) @' : Nyps(0) x A°(X", 2) = Gy,
which is 9,-equivariant and descends to an S'-equivariant map,
Ny +(8) x A°(XE, 2) = Cyo).
In addition, for ally = (yp)per € A°(X*, D), if (A, @) = O, ((Ao, ®o),y), then
(1) The connection A’ is flat on
U Byr.2sp(y)"?)
Pew»
and equal to Ay on the complement of
(6.3.4) U Byp.4sp(y)'/?).
Pe
(2) The section ® is identically zero on
U Bypr.4sp(y)'/?)
pPez
and is equal to ® on the complement of

(6.3.5) U Byp.8sp(y)'/?).
Pe



84 6. THE SPACE OF GLOBAL SPLICING DATA

If the connection Ag is already flat on the space [©34), then A’ = Ag. If the section ® is already
identically zero on the space ([G.3.3), then ' = ®.

PROOF. The map © 4 is initially defined as a map,
Oy : Ny s(0) x Fr(t,5, 2) — Cy),

as described in [24] Section 3.2]. Specifically, the frames and radial parallel translation define a
product connection on the space (6.3.4)). If Ay is flat on the space ([6.3.4)), this product connection
is equal to Agy. We now use a cut-off function to interpolate between the product connection and
A on the annuli around the points yp, defining a new connection A’ which is flat on the inner balls
and equal to Ay outside the space (6:34]). Observe that the resulting connection A’ is independent
of the choice of the frames used as it is equal to the connection obtained by splicing in the product
connection on the space ([6.3.4]) which has stabilizer SO(3) and is invariant under the rotation action
on the tangent frame (see [15], Proposition 7.2.9]). Hence, the map ©’,, descends to the domain
stated in the lemma.

The section ®’ is defined by multiplying ®y by a cut-off function equal to one on the space
(6.3.5) and vanishing on the balls of radius 4sp(y)'/3. O

To define the crude splicing maps in such a way that an analogue of Proposition [5.5.3] describes
the overlaps of their images, we must redefine the flattening maps in such a way that for y’' €
A°(X!, P near y € A°(X*, 2), the following equality holds:

O 4/ (Ao, Do, y') = @5 (Ao, Do, y)-
(Compare the preceding equality with the second property of the metrics g appearing in Section
6.221) To this end, we introduce a refinement of the flattening map constructed in Lemma [6.3.3]

LEMMA 6.3.4. Continue the assumptions of Lemmal[6.3.3. Then, for every partition & of Ny
there are separating functions {Sp} and an S L_equivariant map,
(6.3.6) O : Ny s(0) x A°(X", 2) = Gy,
which is &(P)-invariant, Ys-equivariant, descends to the quotient,
Nyp)s(0) x A°(X*, 2) = Gy,
and has the properties that if (A", ®') = @ »(Ag, ®o,y), where y = (yp)pewr € A°(X¢, P), then
the following hold:
(1) If the symmetric group &, acts on the partitions of Ny by the action B.11) and on X* by
the obvious permutation action, then for o € Gy,
60(:@) (A(]v Py, J(Y)) = ®(A07 Do, Y)
and the separating functions {3,(p)}o(P)ea(2) associated to o(P) satisfy 5,(p) = 3poo.
(2) The connection A’ is flat on
U B(yr.28p(y)"?).
pPez
(3) The section ®' vanishes on

U B(yp,43p(y)'/?).
Pe
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Furthermore, if 2 < D' and the tubular neighborhood % (X*t,g») of A°(Xt, P) is suitably small,
Y € U(X' 92)NAN(XE D), and (X', g2)(y') =y € A°(X", P), then
(6.3.7) O 5 (Ao, Po,y) = Oz (Ap, o, y').

REMARK 6.3.5. The separating functions {5p} appearing in the statement of Lemma[6.3.4] differ

from those appearing in Lemma [6.3.3] in that the functions {5p} satisfy the additional condition
(639) relating the separating functions of one partition to another and which is used to derive

©.3.7).

PROOF. The proof is similar to the construction of the consistent flat families of metrics in
Lemma One constructs ® 4 by induction on &. As described in Section [3.4] the induction
uses one partition from each orbit of the action of &, on the set of partitions of Ny, and extends the
results to all partitions in the orbit so that Item (IJ) holds. Thus, Item (1) follows trivially from
the method of induction.

For the crudest partition, &y := {N,}, of Ny, define © 5, := @f% (as constructed in Lemma

6.3.3).
Assume that © 4 satisfying the conclusions of the lemma has been constructed for all & < &',
To construct © 5, we first define

O Nypys(8) x (%(X',92) N (X", 7)) = G,

by

Oy »(Ao, o, y') = O (Ao, P, 1(X*, 92)(Y'))-
Observe that if ) < & and Py < & and % (X', 9»,) N % (X%, g»,) is non-empty, then we can
assume & < Py < &. The Thom-Mather condition (EZJ) on the projections 7(X*, g»),

(X, g,) om(XE, gm,) = (X’ g,),
and the inductive assumption imply that for y’ € % (X, g»,) N % (X%, g2,) N A°(X*, 2') we have
O® 1 2,(Ao, ®o,y')
= 0, (A0, Do, T(X*, 92,) ("))
= @, (Ao, Po, 7(X%, 92,) o m(X*, 92,)(y")) (by inductive hypothesis and (6.3.7))
= O, (Ag, o, 7(X%, 92,)(y")) (by Thom-Mather property (ZZ9))
= Oy »,(Ap, Po,y’) (by the definition of © g 5, ).
Thus, if we define the ends of the diagonal A°(X*, 2') by
(6.3.8) ()= |J %X g2) NN (X, D),
PP
then the map
Oy : Ny s(8) X U (P') = Gy,
Oy (Ao, 0o, y') == O »(Ag, D0, y'), fory € (X', g2),
is defined consistently for y’ € % (X%, go,) N % (X*, g»,) N A°(X*, 2"). We next define
O 11 Nypy(6) x A°(XE, P') = %y
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by

©51(Ao, o, y") := (1 — x(¥")(Ao, Po) + x(¥')© 5 (Ao, 0, ¥'),
where x : A°(X¢ 2) — [0,1] is an &(Z)-invariant function supported in (6.3.8) and equal to
one on a neighborhood % of the end of A°(X*, #) (hence % is a proper subspace of % (Z')).
By shrinking the tubular neighborhoods % (X*, g»), we can find a family of separating functions
{3p}pregr, such that for y' = (yp)pregr € % (X', g») N A(XE, P') with n(X, g92)(y') =y =
(yp) pew, we have
B(yp:,85p:(y)'/?) € Blyp,43p(y)'/*),
B(yp:,43p:(y")"/?) € Blyp,23p(y)'/?), VP € Zp.
From the inclusions (6.3.9), the inductive hypothesis, and the final statement of Lemma [6.3.3] we
have the equality,

(6.3.9)

@f@/ (99,1(A07q)07y,)7y/) - 6@,1(*‘407@07}’,)7 Vy/ S %2-

Thus, for y’ € %, the pair © » 1 (Ao, Po,y’) is already flat on the relevant balls and so the flattening
construction of Lemma [6.3.3] does not change ® » 1(Ag, ®o,y’). Therefore, if we define

@@/(AO, q)()? y/) = 9{@’(6@,1(*‘407 @07 y/)7 y/)7
this flattening map will satisfy the condition (6.3.7]), completing the construction of the map © g
and hence completing the induction. O

6.4. The crude splicing map

The crude splicing map,
(6.4.1) ‘)/1/757@ : Nt(g);,((s) Xg, O(t,s, ) C Nt(g);,((s) X, Gl(t,s, P) — (gt,

where %; is defined in (ZLI5) and Gl(t,s, 2) is defined in (6.2.6]), has a domain defined by a
separation condition,

Ot,s, )
= {(FF, [Ap, Fp,vp))pes € Gl(t,5,2) : 8A([Ap, Fp,vp)Y? < sp(Fp9)},

where {sp} is the pullback of the family of separating functions {5p} constructed in Lemma
by the projection map, Gl(t,s, 2) — %(X*, ). We will denote elements of the domain of the
crude splicing map by [(Ag, Po), A] and use the following notation.

NOTATION 6.4.1. A point [(Ag, Pp), A] in the domain of the map ([6.4.2) is given by
) A pair (Ao, @) € Nyy)5(9),

(1

(2) A point (yp)pew € AO(ng 2),
(3) Frames F}, € Fr(gys))lyp-
(4)
(5)

(6.4.2)

4) Frames FL € Fr(TX)|yp,

5) Gauge-equivalence classes of framed, mass-centered connections, [Ap, F}| € M

SPL,|P|’ over

S,
The crude splicing map will be S'-equivariant with respect to the S' action on the domain

given in Lemma 6.2.1] and the S! action on the range given by the action (ZLJ)). Before defining
the crude splicing map, we review the definition of the splicing map defined in [24] Section 3.2].
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6.4.1. The standard splicing map. For clarity, we shall refer to the splicing map defined
in [24] Section 3.2] as the standard splicing map. The crude splicing map will be similar to the
standard splicing map, with some differences described below. We now sketch the construction
in [24] Section 3.2] of a pair (A', ®') = v, »([(Ao, Po), A]), where [(Ag, Po), A] is a point in the
domain of the crude splicing map, ([6.4.2]), given by the data in Notation

Recall from Section that for a spin® connection A on a spin* bundle V;, we write A for
the connection induced by A on the s0(3) bundle g¢ appearing in (2.I.4]). If we restrict to the
spin" connections inducing a fixed connection on det(V;), then the map A +— Ais a bijection.

For [Ap,F}] € ]\4SPL | 38 in Item () of Notation [6.4.1] the connection Ap will be an orthogonal

connection on the real rank-three, Riemannian vector bundle, gp — S*. Similarly, for (Ag, ®g) €
Ni(p),s(9) as in Item () of Notation [6.4.1, Ao will be a connection on gy, — X. Define

(6.4.3) Ap = A([Ap, Fp])

to be the scale of the connection Ap as defined in (5.2.3]). For each P € &, let 7(Ap, F}5) be the
trivialization of gp over S*\ {n} (where n is the North Pole) defined by parallel translation of
the frame F}, along great circles. This trivialization defines a product (and hence flat) connection,
O(Ap, F3). Recall from Section (.2 that the map ¢, : R™ — S\ {s} was defined by stereographic
projection. Let B(r) C R* be the open ball of radius r centered at the origin and let Q(ry,73) :=
B(r2) \ B(ry). More generally, for € X, let Q(z,71,72) := B(x,79) \ B(z,71), where B(x,r) C X
denotes the open ball with center z and radius r defined by the Riemannian metric, g. For a
smooth function 5 : R — [0,1] obeying 5(t) =1 for ¢ < 1 and S(t) = 0 for ¢ > 2, constant £ > 0,
and point z € R, define y, . : R — [0,1] by Xz := B(] - —z|/e) and define x, : S* — [0,1]
bY Xne = Xoe © ¢, . Thus, Xn,121/2 is a smooth cut-off function on S* that is equal to one on

@n(B(1AY2)) and is supported in ¢, (B(3A1/2)).
Define a connection on gp — S* by

O(Ap, F3) on §*\ o, (BAAL?)).
(6.4.4) Al = (1= X,,1,12))0(Ap, FP) + X,, 1 1/2Ap on ¢, (22 A}ﬂ,;w?))
Ap on @n(B(AAL?)).

For x € X, define ¢ : X — [0,1] by Xz, := B(disty(+,z)/¢). Thus, 1 —x, 9y1/2 is a smooth cut-off
function on X that is equal to one on X \ B(x,4A/?) and is equal to zero on B(z,2)'/?). Parallel
translation with respect to the connection Ay of the frame F % (from Item (B) of Notation [6.4.1])
along radial geodesics from the point yp defines a trivialization 7(A4g, Fp) of the bundle gy(¢) Over

a ball in X centered at the point yp. Let ©(Ag, Fp) be the product connection defined by this
trivialization. We then define an orthogonal connection on gy, by

1210 on X\UPB(:EP,4)\1/2)
(6.4.5) Aé] = (1 — Xyp,2>\}3/2)A0 + XyP72)\1/2@(AP,FIg;) on Q(yp, 2)\1/2 4)\1/2)
(Ao, F9) on B(yp, 22 %),

The frame F}; from Item (4]) of Notation [6.4.1] the exponential map around zp, and stereographic
projection identify the annuli Q(xp, %)\}3/2, 2)\1/2) C X with the annuli ¢, (Q(3 )\}3/2, 2)\1/2)) c sS4
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Identifying the trivializations 7(Ag, Fp) and 7(Ap,F}) over these annuli allows us to glue the
bundle gy, and bundles gp (for P € &) to create a bundle isomorphic to gy,

(6.46) 8= 940\ e ) Y LEJ OPle. maaif®)y

Pe»

Identifying these trivializations gives an identification of the product connections O(Ay, F' ,%) and

O(Ap,Fp). Let ©(Ag, F3, FL, Ap, F3) be the product connection over Q(zp, %)\}3/2,2)\}3/2) cX
given by this identification. We define an orthogonal connection on g; by

Ay on X \ UpB(zp,4A[?),
(6.4.7) A= (Ao, FS, FE, Ap, F3) on Qyp, 312 2012),
AL, on B(yp, 2)\}3/2).

If z € X, then x, 15 : X — [0,1] is a smooth cut-off function such that 1 — Xz,4a1/3 18 equal to
one on X \ B(x,8\'/3) and is equal to zero on B(z,4X'/?). We define a section of V; by

o on X \ UpB(yp, 8A1/%),
(648) CI)/ = (1 - XyP,4>\}3/3)CI) on Q(yP7 4)\}3/37 8)‘11D/3)7
0 on Up B(yp,4)\})/3).

The standard splicing map has the same domain and range as the crude splicing map in (6.4.1]).
For the data A given in Notation [6.4.1] the standard splicing map is defined by

7175,9([(*’407 (I)O)v A]) = [A/7 (I)/]a
where A’ is the spin® connection with A’ defined by ([4.7) and @' is defined by (G.4.3).

6.4.2. Construction of the crude splicing map. The definition of the crude splicing map,
’yf 5.9 will differ from the preceding description of the standard splicing map, 71757 > in the following
ways:

(1) The metric on X used to identify geodesic balls in X with balls centered at the North Pole
of §4 is fixed for the standard splicing map. The metric on X so used in the definition
of the crude splicing map varies in the smooth family of metrics g» parameterized by the
splicing point y € A°(X*, &) constructed in Lemma Note that for y = (yp), the
balls of radius r centered at yp defined by the Riemannian metrics g and g, are equal
by Item () of Lemma 511

(2) For the definition of the crude splicing map, the trivializations of the background bundle,

gy(¢), are defined by parallel translation with respect to the flattened connection, flg where
(Af, ") = ©»(Ap, Py, x), instead of with respect to Ap.

(3) In the definition of the standard splicing map in |24, §3.2], the background connection Ay
is flattened over the balls

B(yP7 2)‘}3/2)’

while the background section is multiplied by a cut-off function that is identically zero on

B(yP7 4)‘}3/3)7



6.4. THE CRUDE SPLICING MAP 89

where \p is the scale of the connection on S* being spliced in at zp € X. The crude splicing
map is defined instead by replacing the background pair (Ag, @) with the background pair
® »(Ap, Py,y) constructed in Lemma Hence, the background pair is flattened over
balls whose radius does not depend on the scale of the connections over S*.
Let [(Ag, o), A] be a point in the domain of v{, 5 in (6.4I). We will continue to use the
notation from Notation [6.4.T] for the data given by A. For the flattening map © » in (6.3.6]), let

(649) ( 6/7 q>//) = 69("407 (1)07 (yP)PEW)v

where (Ao, @) and (yp)pe are as in Items [I) and (@) of Notation B.41] respectively. Let Ap
and Ap be as defined in ([6.4.4) and (6.4.3]). Using the same notation as in (6.4.7), we define

) Al on X \ UpB(xp,4)\1/2)
(6.4.10) A" = S O(AY, F8, FE, Ap, F) on Qyp, 3%, 2017,
Al on B(yp, 2)\1/2)

Note, however, that the identification of Q(yp, 2)\}3/2,2)\1/2) and ¢, (Q(5 )\1/2 2)\1/2)) is obtained
using ¢, and the exponential map around yp given by the tangent frame FP and the flattened
metric gz, constructed in Lemma 4521 We then define the crude splicing map by

(6.4.11) Vis,2([(Ao, @o), A]) := [A”, 2],
where A” is the spin” connection inducing the connection A” appearing in (6.4.10).

6.4.3. Properties of the crude splicing map. The following equivariance of the crude
splicing maps with respect to the symmetric group map (6.2.14]) holds because the point [A”, ®”]
in (6.4.17) is independent of the labelling of the elements of the subsets P C N, making up the
partition &2.

LEMMA 6.4.2. If o € &; and A € O(t,s, ), then
71:5“@ ([(A07 (1)0)7 A]) = 71:5,0(9’) ([(A07 (I)O)v U(A])) )
where o(A) is the image of A under the map (6.2.14]).

The following lemma gives a more explicit description of the crude splicing map when restricted
to a subspace of its domain.

LEMMA 6.4.3. Let T(t,s,2) C Gl(t,s, 2) be the subspace defined in ([6.29). Then there is a
smoothly-stratified diffeomorphism
ko :T(ts,2) = (X", 2)/6(2),

where (X*¢, P) is the normal bundle defined in [@&3.4). The restriction of the crude splicing map
7;/,5,9’ to

Ni(r) () xg, T'(t,5, 2)

s given by

Vs ([(A0, @0), A]) = (O (A0, @), (yp)per) , e(X", ) (k»(A))
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where (Ao, ®g) € ]\7{(@),5(5), and A € T(t,5, P) lies over (yp)pesr € A°(X¢, 2), and © 5 is the flat-
tening map ([6.3.8), and e(X*, g») is the exponential map defined in (E3T), and e(X¢, g») (ko (A))
represents an element of Symé(X).
PRrROOF. By the definition (6.2.9]), points in T'(t,s, &) can be written as
A= ((FF,F))per, ([0, Fp,vp))pes),

where FL and F ) are the frames appearing in Notation [6.4.1] and © is the product connection on
51 x s0(3) with [0, F5,vp] € MsspuL ‘P|(5). The mass-centering condition on [©, F5, vp| implies that
vp € Zp(0), where Zp(0) is defined following (5.3.I]). Because the SO(3) action on the frame is

. . v S7u
trivial on such elements of MSPL" P|

ko ((Fg7F}%)P€@7([@7FI§7VP])P€@) = ((ngvp)PE?/j) >

and comparing the definition of 7(X*, ) in [@3.4). The assertion regarding the crude splicing
map follows immediately from its definition in (6.4.11]), (6.4.9) and (6.4.10]). O

(0), we obtain a smoothly-stratified diffeomorphism by setting

REMARK 6.4.4. In contrast to the conclusion of Lemma [6.4.3], the standard splicing map would
satisfy, for A € 3(t,s, ), the subspace defined in (6.2.7),

Vi ([(Ao, @), A]) = ([Ao, @0, (X, 9.0) (ki (A)))

that is, the background pair would not be flattened.

6.5. Overlap spaces and maps

As described in Section [L21] we describe the intersection of the images of the crude splicing
maps 71{57 » and ’yf{’ sz for partitions & < 2" of Ny, by introducing spaces of overlap data,
Gl(t,s, 2,[Z']), and defining maps from the space of overlap data to the domains of these crude
splicing maps in such a way that the intersection of the images of v{, 5 and v{, 4/ is described by
a diagram similar to (.2.4]). The construction is analogous to that of the spliced end W, defined
in (£.6.2), specifically the proof of the commutativity of the diagram (5.5.27]).

6.5.1. The overlap space. Recall from (6.2.2]) and (6.2.6) that the space of gluing data is a
fiber bundle Gl(t,s, 2') — X(X*, 2'). For partitions & < P’ of Ny, one can think of the space
of overlap data associated to these partitions as the restriction of the fiber bundle Gl(t,s, ') —
Y(X*, P') to the intersection of the tubular neighborhood % (X*, 2) of £(X*, &) with the stratum
Y(X*, '), This construction will be similar to that of the space 0*5°(©, 2, [2'],§) defined in
(5.6.3D). Because our constructions must respect the action of the symmetric group, the space of
overlap data must describe the intersection of the image of v{, 5 With v{, . for all 2" € [Z <
P', where [Z < '] is defined in (B.2.0) to be the partitions conjugate under the symmetric
group to &2’ that are refinements of #2. (See the discussion prior to Lemma for more on this
requirement.) Then, we define the space of overlap data by

Gl(t,s, 2,[2'])

(6.5.1) = Fr(t,s, ) Xg) |_| H (A°(Zp|(6p), Zp) x M(Pp))
P P< P PED
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where Fr(t,s, 2 is the gluing-data bundle defined in (6.2.2]), and M (7} is the product of instanton
moduli spaces with spliced ends defined in (6.2.5), and &) is the partition of P given by the
subsets of P in &”, and the diagonal A°(Zp|(dp), P%) is defined in (5:3.2). Recall that we denote
elements of A°(Z)p|(dp), Zp) by (vQ)qe sy, Where vg € R?* (as described after Lemma [5.3.1]). We
then denote elements of Gl(t,s, 2, [Z?']) by

(652) A/ = <(Fga Fg)P€@7 (('UQ)Qeng ([AQa F57VQ])Q€=@;§>P€¢@> € Gl(t757 '@7 [’@/])7

where (F5,T})pew € Fr(t,s, 2), and (v@)qezy € A°(Zp|, ), and [Aq, F§, vql € MSSP’,hL"Q‘(d).
The projection Fr(t,s, 2) — L(X*, &) induces a projection,

(6.5.3) 7y : Gl(t, s, 2,[2']) = (X", 2).

Suppose O is the product connection on S* x s0(3) and ¢|q| is the cone point defined following

(ELT). Because [0, F§,cq|] € M;PHL Q| s a fixed point of the action of SO(3) x SO(4) on M;PHL ol

the subspace
T(t,s, 2,[2)

= {((FE, F))res, ((wQ)aery: (0. FS ciqlaeny) ) € Cllts, 2,[2))},
is identified with the subspace v(X¢, 2 — [2']) of the normal bundle v(X*, &) of A°(X*, 2),
(6.5.5) ks o0 T(ts, 2,(2)) 2v(X', 2 — [2]) cv(X', ),
where v(X¢, 2 — [2']) was defined in (33.4]) and which by (E3.7) can be presented as

656) v(XLP2 o [P)2RTX, P g9) xeme || T] A°(Zp6p). 25).
PNe|P<P PeP

(6.5.4)

Comparing the preceding presentation with (6.5.1]), we see that there is a projection,
(6.5.7) Ty, 0 Glt,s, 2,[2']) = T(t,s, 2,[2)),
given by (using the same notation as in (6.5.4)))

TS, 2| 2] <(F1;F7 F})pew, ((UQ)Qe@g, ([Aq, Féij])Qe@g)Png
T s
= ((FF. Fp)pesr. ((vQ)qesp. (0. Forcalaeny) ) -
The composition of the projection ([6.5.7) and the identification (6.5.5]) defines a map,
(6.5.8) T = ks,o 97 © T 2 91 : Gl(ts, 2, [P]) = v(X, 2 — (7)),

which we call the projection onto the normal bundle.

The S* action on Gl(t,5, #) discussed in Section [6.2.4]is defined by the S action on Fr(t,s, &)
given in Section This circle action then gives an action of S' on Gl(t, s, 2, [2']) through its
action on the factor Fr(t,s, &) in the definition (65.1) of Gl(t,s, 2, [2']). Hence, there is an S*

action,
(6.5.9) S' % Ny s(6) xg, Gl(t,5, 2,[2']) = Nyp)s(0) x4, Gl(t, 5, 2,[2')),
defined in the same manner as the circle action (6.2.13)).
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6.5.2. The upwards overlap map. We now construct the upwards overlap map described
in the diagram ([.2.4]). This construction will be analogous to that of the map p(;f“f ] defined in

(B524). As mentioned in the beginning of the previous section, the image of this map will be
contained in the union of the gluing data bundles corresponding to all partitions &” € |2 < &],

(6.5.10) Glit.s,[Z7 < 2):= || Glts, 2")/6(2),
Pre|P<P]

where Gl(t, s, 2") is defined in (Z6) (compare the space ([@6.5) used to define the upwards
transition map for the subspaces of Sym!(X)) and &(#) acts by permuting elements of [Z2 < Z'].
For the space of overlap data Gl(t,s, Z,[Z’]) defined in (6.5.1)), set

(6.5.11) O(ts, 2,(P) =k, (ﬁ(Xf, 97) (X, P = [@/])) c Gl(t,s, 2,[2']).
We will define a subspace,
N(6) xg, O(t,5,2,]2']) C N(0) xg, Gl(t,5, 2,[2')),
and an upwards overlap map,
(6.5.12) Pl Ny s(0) X, O(t:5, 2, [P']) = Nyp) 5(8) x4, Gl(t,5,[2 < ),

will be defined, using the notation for points in the domain from ([6.5.2]), to act as the identity on the
background pair (Ag, ®g) € Nt(g)75 (9), the identity on the S* connections, and parallel translation
of the frames (FE, Fp) from yp € X to each zg € X for Q € &}, where (vq)gesr € A°(X*, 2")
is the image of A’ under the composition e(X* g») o Ty(x)- This parallel translation is done
with respect to the locally flattened metric and background connection Aj. If P € &2 N %', then
because A°(Zp(9), P}) is given by | P|-copies of the zero vector (see the sentence following ([2.0)),
we would have zg = yp and the parallel translation for this case would be given by the identity
map.

We now give a formal definition of the upwards overlap map. Assume that x is a point in a
geodesic ball centered at y € X. Then for any connection A on a bundle over X and frame F' of
this bundle lying over y, let T;}y(F) denote parallel translation, respect to the connection A, of the
frame F from y to = along the radial geodesic. We let T, denote parallel translation with respect

to the Levi-Civita connection of a metric g on X.
Using the notation (65.2) for A’ € O(t,s, Z,[Z']), write

(6.5.13) ms(A") =y = (yp)pc»r and e(XZ,gy) 0 Ty (x) (A) =y = (zQ)ges-

For (Ag, ®o) € Nt(g)75(5), let ©® »(Ag, @o,y) = (Af), ;) be as appearing in (6.3.6]). Then,

P ([(Ao, ®0), A'])
=051 ([0 900, (FF. ) e (a)ery: (40 Forxallacsy) . )
(6.5.14) 2o \[\F0 R0 P Bp)Pess \WTQ)Qezp W@ FQ RQVQEZE | b )

P A s
- [(Ao, Do), ((Tﬁg,ap(m?),ng,yp<F1%>>Qegz~, ([AQ,FQ,XQDQ%)} ,
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where the indices P and @) appearing in the parallel translations 7 fgj 7 and Tf&yp satisfy @ € P.

The metric g» , defining the parallel translation T: 53? e 1s the locally flattened metric on X defined
in Lemma [4.5.2] The proof of the following lemma is then straightforward.

LEMMA 6.5.1. Let & < 2’ be partitions of Ny. Then the map pt; ["], defined above is an open
embedding which is equivariant with respect to the S* actions defined by (6.2.13) and (6.5.9).

6.5.3. Downwards overlap map. The downwards overlap map is an S'-equivariant map,
Py Ciww : Nyo).s(0) xg, Oa(t,s, 2,[2"]) = Nyps(0) xg, Gl(t,s, 2),
defined similarly to the map p?,jfi[ g defined in (55.20) and where the domain,
Oyt s, P, [2')) C O(t, s, 2,|2']) C Gl(t,s, 2, [2')),

will be defined in (B5I8). We wish to define, for A’ € Gl(t, s, 2,[#']), using the notation of
(m)v and (AO’(I)O) € Nt(f),5(5)7

Pt (Ao, ©0). AY)

(6.5.15) =51 ([ (40, @0), (FE, F)pesr, ((vQ) ey, ([Aq: B, XQDQG%)PMD
= [(40.20). (FF. F)per. (Yo, (0D ey (10 F XDy )]

where 'y’& 7 is the splicing map defined in (5.4.3]) and we use the convention that ’y’& o is the
identity map when P € 2N 2", To motivate the definition of the domain Oy(t,s, &,[Z']) and to
show that pts’[ 7] is a bundle map, we give the following description. If we define a map p}sc’;,f’[ Py
on a subspace of the fiber of the map 7y, defined in (6.5.3]) by

t,5,d
(6516) pfs] (9] = U H ’7@ 9//,
P e[P< D) PED

(the f subscript standing for ‘fiber’) with domain and range,

oc | [1 (AO(ZP@P)’@};)X Il MSLQ(5Q)>

P PP PEP Qe
(6.5.17) ot l
P22
H SPL |P\( )
then by the SO(3) x SO(4) equivariance of 7’6 ],, given by Lemma [5.4.2] and the &(2?) equivariance

of the construction, we see that the map p' ;. ] 2] is G(Z)-equivariant. The map ptj’[ ] from

(6515) is then defined by the property that its restriction to the fiber of mx equals p ;. ] (1"
s,d
The precedlng description of p" ﬂ’[ o) 38 the extension from theﬁ fiber of p4 2.9 implies that
the domain of ,ogz [gz} must be contained in the set of points A’ € Gl(t,s, 2,[Z']) which lie in the
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subset ¢ appearing in ([6.5.17) of the fiber of the map 7y, defined in ([6.5.3]). More precisely, we

must assume that domain of pt’s’d

7] satisfies

(6.5.18) Oy(t,s, P, [P'))
S {((FE.FRIres, ((vQ)aesy: (A0 Fs xal)gesy ) ,_ ) € Cllts, 2,[27)

((UQ)QGWZ.? ([AQa Fg)ny])Qeﬂg) € ﬁfSD((aa ‘@$75P) for all P € '@} ;
where O7°P(0, 5, 6p) is the domain of i P defined in Lemma [5.6.5]

LEMMA 6.5.2. If Oy4(t,s5, 2, [2']) C Gl(t,5, Z,[2']) is any open neighborhood of the subspace
T(t,s, 2,[P']) satisfying [6.518), then the restriction of pt’g,s’fg,,] to Nyp)s(0) Xg, Ou(t,s, Z,[P'])
is an S'-equivariant open embedding, whose image is an open neighborhood of Nyp),s(6) x X(t, 5, P)
in Ny +(8) xg, Gl(t, 5, ) and where the S* actions are given by B2ZI3) and ([65.9),

PROOF. The conclusion follows immediately from Item (3)) in Theorem [E.1.1] that the splicing

maps 7297 P define open embeddings onto neighborhoods of the strata (L5 in M;FQHL" P|(5 p). O

6.5.4. Equality of splicing maps. We now show how the constructions of the overlap maps,
([E512) and (6.5.15), and crude splicing maps (6.4.11) lead to a commutative diagram similar to
the diagram (5.5.27)) used to construct the spliced end W, defined in (5.6.2)).

For 2" € (2 < 2], let O(t,5,2") C Gl(t, 5, 2") be the open subspace defined in (6.2.2])
by the separation condition. Because this separation condition is invariant under the action of
&(Z) by Item (0) in Lemma [6.3.4] the collection of open subsets {O(t,5, 2")}prcpc )} is
S(Z)-invariant. Define

(6.5.19) Ot,s5,[2 < P) = |_| Ot s, 2" /6(@) C Gl(t,5,[2 < 2)).
PNe|P<P
The &(Z)-invariance of the map,
|| Aew || Nuwsld) xg, 65, 2") = €,
PNe[P<P PNe[P<P
given by Lemma then implies that it defines a map on the &(Z?)-quotient,
(6.5.20) Viojpeom : N s(60) xg, O(4,5,[2 < P')) — G

Given open subspaces, O(t,5, %) C Gl(t,s, #) as in (6.4.2)), and an &(2)-invariant collection of
subspaces, O'(t,5, 2") for P € [P < P'] as above, we define an open subspace,

(6.5.21) O1(t,5,2,[2')) C Gl(t,s, 2,[2']),
to be the subset of points satisfying the conditions (€.5.11]), (€.5.18]), and,
—1 -1
(s 217D € (051) (012 <2D)0 (05)  (O(ts, ).
We then have the
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PROPOSITION 6.5.3. Let &2 < P’ be partitions of Ny. Assume that the families of metrics
gon on X satisfy the conditions in Section [6.2.3. Let O(t,5, %) C Gl(t,5, P) and O(t,5, 2") C
Gl(t,s, 2") for 2" € [P < P'] be the open subspaces defined in 6A2). Let O(t,5,[2 < 2))
and O1(t,5, P, [P']) be the spaces defined in (6.5.19) and [6.5.21)), respectively. Then the following

diagram commutes,

~ pt,s,u , B
Nip)s(0) xg, O1(t5, 2,12')) —Z5h Ny o(0) xg, O(t,5,[2 < 2'))
(6.5.22) p‘g’jify,]l ’71/,5,[gz<92ﬂ]l
7?,5,3”

Nt(@),s(é) X, ﬁ(t,ﬁ, ‘@) ﬁ

and the maps are S'-equivariant with respect to the action (6.5.9) with weight two on the domain

of the overlap maps, the action (6213) with weight two on the domains of the crude splicing maps,
and the action 21.9) on €.

PROOF. The conditions in the definition of the subspace @ (t,s, 2,[2?']) imply that the com-
positions in the diagram ([6.5.22]),

t,5, t,5,d
(6523) ‘)’1:57[9<@/} o ,0;71[;};/} and 71{5,@ © (1057[@/})7

are defined on Nt(g)’g(é) Xg, O1(t,5, P,[P')).

The S'-equivariance of the overlap maps appears in Lemmas and The action ([2.1.9])
is just scalar multiplication on the section. Hence, the crude splicing maps will be equivariant if
S1 acts on their domains by scalar multiplication on the section of V" (where t(¢) = (p, ViF)). By
Lemma [B.2.T} the action in (62ZI3) with weight two is scalar multiplication on the section of V',
giving the desired equivariance.

To see that the diagram (6.5.22]) commutes, begin by restricting the compositions in (6.5.23]) to

%(A(MCDO) A ﬁl(t757 gzv [‘@/]) - Nt(f),s(é) YA ﬁ(t757 ‘@7 [‘@/])7

s (v)

for (Ag, @) € Nt(g)ﬁ(é) and y € A°(X*¢, &). For A’ € 0,(t,s, 2P, [@'])|W51(

(AZ7 cp/u/) = (71{5,[ﬂ<¢@’} o pt;ﬁ@/]) ([(Aoa @0)7A_/]) )

5.d
( g? q):i/) = (71:5,@ 0 ptgi[gw}) ([(A()? q)o)a A,]) °
Thus, if [A],, @] = [A]}, ®7], then the diagram (65.22]) commutes. The definitions of the overlap
maps in ([6.5.14) and (6.5.15) and of the crude splicing maps in (6.4.10) and (6.4.11]) imply that
All and A, are defined respectively by splicing in connections on 5% at the points in X given by
(yp)per =y € (X, &) and at the points in X given by (zq)ger =y’ € X(X, ') as defined in

G513). Because (X%, g»)(y') = y by 6513), Item (@) in Lemma F4.2 and the consistency of
the families of metrics g» and g4 imply that g» , = g /. Similarly, the consistency condition

637) for the flattening maps constructed in Lemma [6.3.4] implies that
( 67 (1)6) = ®@(A07 Py, y) = 69’("407 Do, y/)

The definition in (6.4.11]) and (6.4.9)) of the section given by the crude splicing maps then imply
that " = & = .

vy e write

(6.5.24)
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Property (6.5.11) of O(t,s,22,[2”']) implies that y’ lies in the suitably small tubular neighbor-
hood % (X*,g») defined in Lemma .34l Thus, from (6.3.9) the inclusions

B(zq,45p(y')/?) € B(yp,25p(y)/?), for Q C P,

hold for the balls where the splicing takes place. The definition of the crude splicing map in
(6-410) implies that A, and A/ both equal A, and thus each other, on the complement of the

balls B(yp,235p(y)'/?). Item (@) of Lemma implies that the connection A} is flat on each
ball B(yp,25p(y)'/?) while Lemma E5.2] implies that the metric gy is flat on this set. Because
the metric and the connection A} are flat on the union of the balls B(yp,25p(y)"/?), the equality

between the restrictions of A], and A’ to these balls follows from Lemma [5.5.2 O
6.6. Construction of the space of global splicing data

The construction of the space of global splicing data follows from Proposition [6.5.3] and the
arguments on shrinking the neighborhoods 0'(t,s, &) given in the construction of the spliced end
W, in Section

THEOREM 6.6.1. Let t be a spin® structure on X and s a spin® structure with M X Symé(X) C
I#;. For a partition & of Ny, let X(t,5, ) be the subspace defined in (©27) of the gluing data
space Gl(t, 8, P) defined in [6.2.8). For every partition & of Ny, there is a neighborhood O (t,s, P)
of B(t, 5, 2) in Gl(t, s, P) such that the intersection of the images of the crude splicing maps ’71/,5,93

defined in (6.4.11)),

(6'6'1) 71/,5“0]’ (Nt(f),s(é) A ﬁ(f,ﬁ, gz)) m‘)’{%” (Nt(ﬁ),s(é) X, ﬁ(t757 ‘@/)) >

is empty if the sets [P < P'] and [P < P] defined in B2I)) are empty while if [P < P'] is
non-empty, then the intersection is contained in

Voo (P51 (Ni0,s0) x4, O1(65,2,(21)) )

= Yoy (P51 (M s(0) x4, O1(4,5,2.(2))).

where O (t,s, P, [P']) is the subspace appearing in Proposition and defined in (6521)). If
0 €& and P = o(P) as defined by BLI)), then images of V(s 5 and v{; 5 are equal.

PROOF. The proof follows the same argument as that of Items (@) and () in Lemma (.65 for
the construction of W,. The final sentence follows from Lemma [6.4.2] O

We will require the following special case of Theorem [6.6.11

LEMMA 6.6.2. Continue the notation of Theorem[G.G.1. Let &7 < &' be partitions of Ny and let
T(t,s5,2,[2']) C Gl(t,s5, 2,[Z']) be as defined in 654). There is a subspace T (t,5, 2,[2']) C
T(t,s,2,[P']) defined by the property

Nt(@),s(é) X, Tﬁ(taﬁa '@7 [‘@/])
= (Mo s(0) %o (6,5, 2,12)) 0 (05 1) ™ (N5 (0) x4, O(t,5,2))
where O(t,5, ) is as defined in Theorem [6.6.1. Then
(71/,579’ o p,;;:([iyl]) <Nt(f),5(5) X Tﬁ(f,5a ‘@’ [‘@/])) - 71/,579/7” (Nt(é),s(é) X E(tv5v ‘@/)) :

(6.6.2)
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PROOF. To see that the property (6.6.2) defines a subspace of T'(t,s, &, [Z']), we show that
for (Ao, ®o) € Nyp)5(6) and A’ € T(t,5, 2, [Z']), the validity of the inclusion

P50 (1(Ao, ®0), A']) € Ny o0) xa, 08,5, 2)
does not depend on (A4y, ®g) € ]\7{(@),5. Observe that the map p;’;:ﬁ@,} is defined in (65.15]) by the
identity on NK@);}((S) and by the map p;;’s;’[ 1 (defined in (G5I7])) on the fibers of 7s. Because
p;’iﬁv[@,} does not depend on (A, ®g) € Nt(g)75(5), the validity of the above inclusion does not
depend on (Ag, ®g) € Ny +(9), as required.
The definition of T'(t,s, 2, [#']) and pt;:[“g,,] in (6.5.14) imply that
P51 (N (6) X T7 (6,5, 2,[2']) ) € (N o(0) % S(t,5, 7).

The lemma then follows from the commutativity result in Proposition O

We now define the space of global splicing data to be
(6.6.3) e = L (N o(0) x4, 0(t,5,2)) | ~,

P
where O(t,s, 2) is the space appearing in Theorem [6.6.1] and points in
Ny s(6) g, O(t,5,2) and  Nyp o(0) x4, O(t,5, ')
are identified by the relation ~ if their images under the crude splicing maps v{, 5 and v{, 4

defined in (G.4.11]) are equal. Therefore the space lvblr is, up to the action of &, on partitions, the
homotopy pushout of the diagram (6.5.22]) in the sense of the following lemma.

LEMMA 6.6.3. If & < 2’ are partitions of Ny and
[Ao, P, A»] € Ny o(0) X, O(t,5,2)  and  [Afl, ®p, A] € Ny (0) X, O(t,5, "),
then
(6.6.4) [Ao, o, Ap] ~ [Af, P, A o]
if and only if [Ag, ®o] = [A}, ®)] and there is a point [Ag, g, A'] € N x4, Oy (t,5, P,[P']) satisfying

(6 6 5) [A07 q)()’AcO/j] = ptojit[iyq([AO) (I)O7A/])7
[ E)) E)vA@’] :PZE:F@/}([AO,(I)O,A/])

Ifo € & and &' = o(P) as defined by (BII), then (6.6.4) holds if and only if [(Af, ), Agr] =
[(Ag, ®o),0(A »)], where o(A ») is defined by (6.2.14).

Recall from [67, p. 43] that a pair of topological spaces (X, A) is a neighborhood deformation
retract (NDR) pair if there are continuous maps u : X — [0,1] and h : X x [0,1] — X with
A = u1(0), h(z,0) = x for all z € X, h(a,t) = a for all (a,t) € A x [0,1], and h(z,1) € A if
u(z) < 1.

LEMMA 6.6.4. The space lvblr defined by ([6.6.3)) is a smoothly-stratified space with the property
that if ¥ C .//Zt";r is the complement of the top stratum, then (A, ¥) is an NDR pair.

ts
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ProOF. By Theorem and Lemma [6.6.3] //Z(V;r is the union of open sets
(666) ]\7{(5)’5((5) X, ﬁ(’t,ﬁ, r@),

as & varies over partitions, attached to each other by the smoothly-stratified maps,
Y 7d \7
P;,[y/] (Nt(f),s(a) X, O\(t,s, 2, [‘@/]))
(6.6.7) P05 ) |
pt;ﬁ@/] (Nt(f),s(a) Xg, Oy (t,s, 72, ['@/]))

or, in the case when &' = o(Z?), by the smoothly-stratified diffeomorphism (6.2.14]). Thus, QVS“
is a smoothly-stratified space.

Lemma implies that for = ]\7{(5),5(5) Xg, O(t,5, ), the pair (%, N%) is an NDR
pair. A pair (U,X) is an NDR pair if and only if the inclusion i : ¥ — U is a cofibration by [67, p.
43] or [90, Theorem 7.1.10]. Thus, (.Z¥, ) is a local cofibration in the sense that . admits a
cover by open sets % with the property that the inclusion ¥ "% — % is a cofibration. Because a
local cofibration is a global one by [10} Satz 2], the inclusion ¥ — .//Zt";r is a cofibration and hence

an NDR pair. O

Because the transition maps (6.6.7) are S'-equivariant by Lemmas 6.5.1] and 65.2] the S*
actions defined in (G.2Z.I3)) on the open sets (6.6.6) determine an S* action,

(6.6.8) Stx M — MY
The description of the open cover in the preceding lemma then yields

COROLLARY 6.6.5. The space " admits an S'-equivariant fibration,

t,s
(6.6.9) TN A — Ny o(6),
and an S'-equivariant embedding,
(6.6.10) Vi M — G

such that the restriction of v", to ]\7{(5),5((5) Xg, O(t,5, ) is equal to V{ 5.

PROOF. Each of the open sets (6.6.6]) of .#i" admits an S'-equivariant fibration,

ts
N2 Ny s(0) Xg, O(t,5, 2) = Nt({),5(5).

Because the transition maps (6.6.7]) are equal to the identity on Nt(g)ﬁ (6) by the definitions (6.5.14])
and (6.5.15)), these local fibrations define the global fibration (6.6.9)).

Similarly, the embeddings ’yf e defined on the open sets (6.6.6]) are equal on the intersections
of these open sets by the commutativity of the diagram (6.5.22)). Hence, the maps ’y;’ iy define
the global map (6.6.10). The global map 4", is an embedding by the definition of the equivalence
relation following (6.6.3]).

Finally, we see that the maps 7y and +”, are Sl-equivariant by observing that their local
definitions are S'-equivariant and that the S' action (6.6.8)) is defined by the S' actions on the

open sets (6.6.0]). O
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6.7. Thom—Mather structures on the space of global splicing data

On each open subspace,
(6.7.1) 022({,5, L@) = Nt(g)’g(é) X, ﬁ(f,ﬁ, 92) C Mt‘gr,

there is a projection map,

(6.7.2) (4,5, P) : U (5, P) = Ny o(8) x (.5, P),

defined by idy x 7y, where 7y, is the restriction of the projection defined in (6:2.11]) to O(t,s, &)
and idy is the identity on Nt(g)75(5).

To prove that the compatibility conditions (4I1.1]) hold for the projection maps 7(t,s, &), we
make the following observations on the overlap maps. For &2 < &’ define

(6.7.3) U2, [2)) == Tm(p}s) ) C M(2),

t,5,d . . oy t,5,d
where the map on fibers p 5 () 18 defined in (6.5.10). By the definition of p Fip v We have

vz lnes || I #e.25)/8(2),
Pre[P< P PEP

where % (©, 2}) is the neighborhood of {[0]} x X(Zp(dp), 7)) defined in LemmalG. 7 Iland &(27)
acts by permuting the components of Uy (<, [£”']) in the disjoint union given by #” € [ < &'].

We use the convention that if P € 2N 2", then % (0, 7}) = M;PHL p(0P)-
The projection maps,

m(0, Pp) : % (0, Pp) C My p(3p) = {[O]} x T(Zp(3p), Zp)
~ A°(Zp(dp), Pp)/S(Pp),

defined in (5.7.1]) are SO(3) x SO(4)-equivariant. We use the convention that if P € &2 N %’ then
(0, #p) is projection to the cone point, 7(0, Z,)([A, F*,x]|) = [©, F*®, cp]. Together with the
identity maps on Ny 4(6) and on Fr(t,s, Z?), the maps (0, 2}%) (for 2" € [# < P']) define a
map,

Ni)s(6) X551 Fr(t, 5, 2) xg(z) 11 U %(e,2%)
PeZ 2"e|P< P
Pﬂ[@’}l

Ni)s(0) Xgyxs1 Fr(t,s, Z) Xy 11 L {[B]} x X(Zp(9p), Zp)
PeP? 2" e|P< P

Observe that in the definition of the preceding map, the subgroup &6(%p) < 6(Z) < G(Z) is
contained in the stabilizer I'(&) of the partition &2 defined following (B.11]) and thus acts trivially
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on Fr(t,s, &), giving the isomorphisms,

Ny s(8) xgxs1 Fr(ts, 2) xqo [[ || {01} x A°(Zp(dp), Pp)
PeP ple|P<P']

Nyw)s(8) xg,x51 Fr(t,5, 2) xq) [ || {[6} x A°(Zp(6p), 1) /S(Pp)
Pe 2"e|P<P]

Ny)s(8) Xg,xs1 Fr(t,5, 2) x| || {l6]} x =(Zp(sp), 7p).
Pe? ple|P<P'

1%

1

Thus we can rewrite the range of the map ps 4 to give

Nt(f),s(é) X, xSt Fr(t757 gZ) XG(2) H |_| %(67 yg)
PeP P"e|P<P]

(6.7.4) Pﬁz’,[ﬁz"ll

Ni(r),s(0) X, x50 Fr(t, 8, ) X2y 11 U {[O]} x A°(Zp(dp), Zp)
Pe P"e|P< P
The inclusions,

|| #(©,25)C SPL‘P|(5P) and
PNe[P<P

L] {061} x 2(Zp(6p), 25) € MR 1y (3p),
Pe|P<P]

imply that the map pg 5 in (6.7.4) is defined on a subspace of Nt(g)ﬁ(é) Xg, O(t,5,2). Observe

that the relation,

(675) (ldN X 7'('2) Op@7[@/} = ldN X Ty,

holds where 7, is the projection given in (6.2.11]) because p |4/ respects the fibers of Gl(t,s, 2).
For & < 32’ the following lemma describes the projection map 7 (t,s, &’) on the image of the

overlap map p ﬂ [ Pk

LEMMA 6.7.1. Let & < &' be partitions of Ny. For the projection 7y, 5 151 defined in (6.5.7)
and resulting map,

ldN X s, 2,[2] * Nt(g)75(5) X, Gl(t,ﬁ, r@ [ ]) — Nt(f ((5) X T(t,ﬁ, c@, [c@/])’
the following relations hold on Nt(g)ﬁ(&) Xg, O1(t,5, P, [P']):

(6.7.6) m(t,5, 2) 0 p5 o = P © (idN X 5,5 15),
’ ’ K 7d Y 7d

P71 © P;,[m = /’;,[9] (idy X 75,2,(91)-

PROOF. The conclusion follows from the definition of the projection maps in (6.7.2)), (6.7.4]),

and (6.5.7)) and the construction of pt;”ﬁ@,] in (E5.15) and of pt;;’f[‘y,] in (6.5.14). O

We now prove that the projection maps m(t,s, &) satisfy the first compatibility condition in

ELID.
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LEMMA 6.7.2. If 22 < &' are partitions of Ny, then the following equality holds:
(6.7.7) n(t,s, P)on(t,s, P') =n(t,5,P) on U (t,5,P2)NU(t,5, 2.

PROOF. By Theorem [6.6.1] the intersection % (t,s, 2) N % (t,5, P') is contained in the image
of the overlap maps in the diagram (6.5.22]). Therefore, using the notation of Lemma [6.6.3] every
point [Ag, ®g, A »] = [Ag, Po, A 5] in the intersection is given by

[AO’(I)O’AW] = pt;fly’}([AO’q)O’A/]) = p;:?@/}([Ao,q)o,A/]) = [ 67 ¢67A9’]

for some [Ag, Do, A'] € Nt(g)75(5) Xg, O1(t,5, P,[Z']). Therefore,
w5, 2) ([ A, B, A w))
= (4,5, 2) 0 510 (A0, B0, AT)
= Pto’jfyq o (idy x 75, »,19)([Ao, Po, A'])  (by (6.7.86))
= p’;;:‘[iy,} o (idy x Fz’y’[@/})([Ao, ®,A’]) (by the definition of ~ following (6.6.3]))
= D[] © Pté;:ﬁgzq([z‘lo, Do, A'])  (by (BLE)).
The preceding equality implies that
m(t,s, P) om(t,s, ') ([Ap, Bo, Arr])
= 7(t,8,2) 0 Doy 1) © P o ([Ao, @0, AT])
= (idy X 7s) 0 pgp |51 © pt’g,s’fg,,]([Ao, ®y, A’]) (by the definition of 7 (t,s, &) following (6.7.2]))
= (idy x 75) 0 p35 (A0, @0, A))  (by (GLT))
=m(t,s, &) o pijzfy,]([Ao, ®g,A’]) (by the definition of 7(t,s, &) following (6.7.2)))
= 7(t,5, 2)([Ao, ©o, An]),
and which, together with the equality [Ag, Po, A »] = [Af, B, A o], proves (6.7.1). O

We now construct a tubular distance function on % (t,5,2) in a manner similar to the definition
of 1{X’, g») in @ETI). Because the functions \p defined in Lemma [F.9.1] are SO(4) x SO(3)-

invariant, the map

II 2p: M(2) = (0,117 = ] [0,1],

pPe» pPe»
where M () is the fiber defined in (G235 of Gl(t,5, %), extends from the fiber and defines a
smoothly-stratified map
(6.7.8) tlt,s, 2) U (t,5, P) — 0,117 |&(2).

That is, £(t,s, &) is the unique map whose restriction to each fiber M(Z2) is given by [] P Ap.
For P € 2, we let t7(t,5, 2) denote the P-th component of the map (G.Z8]). We now describe
the map £(t,s, 2') on the intersection % (t,s, ) N % (4,5, #') where & < Z'.
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LEMMA 6.7.3. Let 2 < &' be partitions of Ny. Let O be the domain of the map pfgz (2]

defined on the fibers of Gl(t,s, 2,[2']) in 6517). Then, for the structure group, G(Z?), of the
bundle Fr(t,s, 2) defined in (6.2.3D), there is a smoothly-stratified, G()-invariant map,

(212 o (0) € T M2 (6 Ll 0 / &(2).
]

prPey ]”6[9’<9’
whose extension to U (t,5, P) N U (t,5, P') equals t(t,s, 7).

PRrROOF. We begin by defining a map,

tu: Ny s(0) xgoxs1 Gl(ts, 2, [2)) —» | | [0, / S(2),
PNe[P<P]
as follows. For (AO, D) € Nt( 0),5(6), and (F' T’g)pe} € Fr(t,s, #), and vp € A°(Zp|(0p), Pp), and

[Aq, F,x0] € M2

SPL |Q|(5Q) where () € ﬁzp, we can write

(Ao, @), A') = | (Ao, @), (FE% v, ([Aq: Fpxal)ger, ), | € Nio(0) g, 51 Gt 5, 2,[2).

Define

e

—,

The definitions of t(t, s

tu([(4o, o), A')) = (Ao([Aq, Fp, xq]))ge 7.
2') and p; ng (see (6.C8]) and (6.5.14))) imply that

—

(6.7.9) t(t,5, 2') 0 50 = tu

t,5,u

Hence, the composition £(t,s, ') o P 18 defined by a G(&)-invariant map on the fibers
of Gl(t,s, Z,[2']). The downwards transition map defined in (6.5.15) is given by the G(Z?)-
equivariant map p;;i;’[g,,] on the fibers of Gl(t,5, Z,[2]) defined in ([6.517). While the map
pzfgc,f (] in (651I7) is not an embedding because of symmetric group actions, the map (G.7.9]) is

invariant under these symmetric group actions and thus defines a G(4?)-invariant map,

o (2120 o m(@ —~ || 17 / &(2),
PNe| PP

where & is the domain of p}se’@ (2] appearing in the definition (6.5.17). From the definition of

O1(t,5, 2,[27']) in ([6.5.2])), in particular the condition (6.5.18]), the domain of pt;;’fy,] is contained
in the union over the fibers of the map 7y, defined in (6.5.3)). Hence the extension of the map
to ;(2,[2"]) from the fibers of 7y, defines a map on the domain of p'; > [ - Lemma [6.6.3] implies
that % (t,5, 2) N U (t,5, ') equals the image of p@’[y,} and so this extension of tg (2, [2']) is
the required map. O

—,

The following lemma identifies the restriction of £(t,s, %) to a subspace of % (t,s, &) with
F(Xév g@)
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LEMMA 6.7.4. Let T'(t,s, 2,[Z']) be the subspace defined in ([6.5.4]) and define
Or(t,s, 2, | D)) = O1(t,5, 2, [P') N T(t,5, 2, [7]).
If ks, [ is the smoothly-stratified diffeomorphism (65.3) and idy denotes the identity map on
Ny(e),s(6), then there is a smoothly-stratified embedding,

idy x (e(X%, g) 0 ks 2 151) : Niy.s(0) X, x51 O1(t,5, P, [P']) = Ny +(6)/S" x B(XE, 2').
Let w3 : Ny ( )/St x B(XE, P = B(XE, D) be the projection. Then the restriction of the map
t(t,s, P) o pg, (o 1O

Ny),s(0) Xg, 51 Or(t,5, 2,[P']),
s equal to the composition,

HXE, D) om0 <idN x (X!, gp) 0 kz,@,[@,]) .

PrROOF. The lemma follows immediately from the definition of p,;;:‘[i@,} in terms of 7/6, 7 in
([©515), the image of 7’675,,;5 on the domain Or(t,s, 2,[2']), the definitions of (t,s, &) and

H{X*, 2) in terms of \p and t(Zp), in (6.7.8) and [T respectively, and the equality in Item (2]
of Lemma [5.9.7] between Ap and t(Zp). O

The following lemma shows that the Thom-Mather relation #(t,s, 2) o n(t,s, 2') = t(t, 5, P)
does not hold for the same reasons as the analogous relation described in the proof of Lemma [4.7.31

LEMMA 6.7.5. Let & < ' be partitions of Ny. For each A € % (t,5,2) N % (t,5, "), the
following identities hold:

(1) If P ¢ PN, then Fp(t,ﬁ, P)(A) = Fp(t,ﬁ, P)or(ts, Z)(A).
(2) IfPe 2N, then t¥(t,5,P) on(t,5, 2')(A) = 0.
(3) If Pe NS, then Fp(t,ﬁ, P)(A) = Fp(t,ﬁ, 2 (A).
ProoOF. By (6.7.6]), we have the equality
Fp(tvﬁv ‘@) CPxp 2] © pt;:?y/] = fp(t757 ‘@) © 7T(t,5, 7' ) © Iotj Q[L]/}

on % (t,5,2) N %(t,5,2'). Thus, computing t¥(t,5, P) o P, Will determine tP(t,5,2) o
7(t, 5, 2"). Ttem [3) of Lemma [5.9.1} the definition of (t, s, %) in terms of Ap in (6.7.8), and the
definition of p 5 in (6.74) in terms of the projection maps 7(6, 2) imply that tP(t,s,2) 0
P, and tP(t,5,2) will be equal for P ¢ 2N P’ while t(t,s, P) ° p ) Will be zero for
P e 2N 2. This yields Ttems () and (IZI)

Item (|3]) follows by observing that p ] [ ] and p ] [ ) ATe both given by the identity map on the

factor M ‘P|(5) of the fibers (62.30) of O(t,s, &), and O(t,s, 2,[Z']), and O(t,5,[F < £']). O

We obtain a weaker version of the second Thom-Mather relation from (£I.T]) in the following
lemma and this will be sufficient to construct the link of M, x Sym‘(X) in Section [’11

LEMMA 6.7.6. Let & < 2’ be partitions of Ny and lete > ' > 0. Assume that A € % (t,5, 2)N
U (t,5,2"). If D(P,¢) denotes either of the spaces D(ZP,€) or D(P,¢) defined in [@T2), then
the following hold:
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(1) Ifilt,s, 2)(A) € D(2P,¢), then t{t,s, ) ow(t,s, P')(A) € D(P,¢).
(2) Iftlt,s, 2')(A) € D(2',€') and T, 5, 2)om(t, s, gz')(A)ef)(gz e), then i(t, s, Z)(A) €
D(Z,¢)

PRrOOF. The conclusion follows from Lemmal6.7.6] by the same arguments used to prove Lemma
73 from Lemma ET.2 O

In our construction of the link of M, x Sym*(X) in e///_t‘;“ /St the subspace
(6.7.10) it,s, 2)"! (D(@,s)) CUt,s, P)

will play the role of a disk-bundle neighborhood of Ny 4(6)/S* x S(X*, 2) in % (t,5, 2). Sim-
ilarly, for partitions &2 < 2’ of N, and the tubular distance function, t{(X*, g») : % (X*, ) C
Sym‘(X) — [0,1]7, defined in @), the subspace

(6.7.11) S(X¢, 2') N <f(Xé,gy)_1 (ﬁ(@,@)) c2(X4 P nw (X, P)

can be thought of as a disk-bundle neighborhood of £(X*, 2) in X(X*, 2'). The following corollary,
to be used in Proposition B2.1] to establish the fiber-bundle structure of a subspace of the link,
describes the intersection of two subspaces of the form (67.10) in terms of the subspace (6711
and the projection map 7(t,s, 2') : % (t,5, 7') — Nt(g),s/Sl x L(Xt, 2.

COROLLARY 6.7.7. Let & < ' be partitions of Ny. If

-

DX, 2,[2'),€) == Nyays(0)/S* x (S(X!, 2) 1 (f(X",9.) 7 (D(2,9))) ).

then for any €' € (0,¢), we have

);
t(t,s, 2")7 (D(&' )) i(ts,2)7 (D(2,2))

—,

fit,s, 2)"1 (D(2',€)) N x(t s, ) (D(Xf,@, [@’],s)).

Proor. If
T(X!, 2,12'],2) i= (N s0)/8" x S(X', 2)) nilts, 2)7 (D(2,¢))
then Lemma implies that
(i(t,s, 2 (D( e >)> (f(t,s, )" (D(2.2)))
= (ilts,2)7 (D(#',)) Nrlts, 2)7 (T(XE, 2,[9,9))
The relation between t(t,s, ) and #(X*, &) in Lemma [6.7.4] then implies that
T(X*, 2,[P'),e) = D(X*, 2,[2),¢),

completing the proof of the corollary. O
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6.8. Global splicing map

The global crude splicing map 4", in ([6.6.10]) is unsatisfactory because its image does not
include M, x Sym®(X) — see Lemma and Remark[6.4.4] To remedy this, we define an isotopy
of the embedding 4", to an embedding 4/, with the desired image. The analytical underpinnings
required to replace Hypothesis [[.8.1] by a theorem that yields its assertions will be provided in the
forthcoming [22].

For each partition &2 of Ny, the splicing map defined in Section [6.4.1] and the crude splicing
map defined in Section give smoothly-stratified embeddings,

Yiez U5, P) = C and v, 5 U (4,5, P) = C,
respectively, where % is defined in (Z.I.T5). By its definition in (6.6.10]), the restriction of the global
crude splicing map to % (t,s, &) equals 'yi’ s, From the list of differences between the two splicing
maps in the beginning of Section [6.4.2] one can see that the map ’yf(’ .. equals the map defined by
Vs, using a locally flattened Riemannian metric g x (Where x € X(X ¢, 2)) and by replacing the

pair (Ag, ®g) € ‘51(@) with the locally flattened pair ®(Ag, Pg,x). Thus, one can define an isotopy
of smoothly-stratified embeddings between 7 ; 5 and v{, 4 by applying the construction of v{,

with a convex linear combination of the Riemannian metrics g and g x and of the pairs (Ag, ®o)
and O(Ag, Do, x).
We write this isotopy as
_ _ " ifs=0
Pfus,@ : %(t757 '@) X [07 1] — %7 with PLE,@('?‘S) = 7?5“@ : _ ’
Vis.z if s =1.

We now construct the function giving the parameter to give the isotopy. Let fz : A°(X¢, 2) —
(0,1] be a smooth, &(Z)-invariant function with the property that the rescaled map

75_;‘({757 ‘@)() = 7?({757 ‘@)()(f@ Oﬂ'(f,ﬁ, ‘@))()7

(where the preceding multiplication means to multiply each factor of f(t,s, &) by the scalar f o
7(t,5, &) takes values in the subspace D(Z2,1) C [0,1]” defined in ([@72). Now, observe that if

B:[0,17 = [0,1],
is a smooth, &(Z)-invariant function, supported in D(Z,1) with 3(D(£,1)) = 1, then 8o

t(t,5, P) is identically equal to one on W (t,5,2) and is identically equal to zero on % (t,5, 2) \
U (t, 5, P), where the spaces % (t,s, Z), for i = 1,2, satisfy

Ny s(0)/S" x B(XY, 2) C % (4,5, P) C U(t,s, P) C U (t,5,P).

Hence, the function,

(6.8.1) Bo = Bot(ts,P),
defines a global function on //Zt"slr satisfying
(6.8.2) M\ Us(t,5,P) C B, (0) and (s, P) C B, (1)

We now describe how to patch the isotopies F;ﬁ’ » together to define a global isotopy of smoothly-
stratified embeddings. Choose one representative & in each conjugacy class [#?] and enumerate
these representatives in the manner described in Section B4l Assume &2y = {N,} is the crudest
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partition and &2, is the most refined partition. We define a finite sequence of smoothly-stratified
embeddings, o B
Vit Ms — G,

as follows. We begin with
(6.8.3) ¥ 40([(Ao, o), A])

Fig P ([(A07 (1)0)7 A]7 5@0([(A07 @0)7 A])) if [(A07 (I)O)v A] € %(t757 c@0)7

— 5,20 _
¥y ([(Ao, @o), Al) if [(Ao, o), A] ¢ % (t.5, P0).

Observe that the restriction of 7’//170 to % (t,8, Pp) is isotopic to 7{757 2, We proceed by upwards
induction on the enumerated partitions. Assume inductively that the restriction of 7////,2'—1 to

U (t,5, P;) is isotopic to v{; »,. Then, the construction of the isotopy I'{ ; 5 above can be modified
to give an isotopy of smoothly-stratified embeddings of % (t,s, %;),
. _ _ . ' if s=0,
Do % (s, P) x [0,1] = G, with T, . (s) =4 At 17~
Visw s=1

We then continue the induction by defining

(6.8.4) v .:([(Ao, @), Al)

- f‘i;’“@i([(/lo, ¢0)’A]759’¢([(‘40’¢0)7A])) if [(AO’(I)O)’A] € 022({757 ‘@1)7
Y wr.i-1([(Ao, ©0), A]) if [(Ao, ®o), A] ¢ % (t,5, 7).

If &2, is, as defined above, the most refined partition, we define the global splicing map by
(6.8.5) Yo =t m
The proof of the following proposition is then technical but straightforward.

PROPOSITION 6.8.1. There is a smoothly-stratified, S'-equivariant embedding,

vir

7f/// : '/Zt,s - (g_i’

such that the restriction of v, to Nyy)(0) X Sym‘(X) is equal to the product of the embedding
Ni),s(0) = Cy) with the identity on Sym‘(X).
6.9. Projections onto symmetric products

We now define a projection map,
(6.9.1) TX : ///_J;r — Sym*(X),
which will be used in describing cohomology classes on //Z(V;r

We will denote the projection 7y in (G.2.11]) by

st s, P) U (s, P) = (X, 2),

to avoid confusion between the projection maps of the different strata. These local projections
maps do not agree on the intersections % (t,s, ) N % (t,5, Z'), but they can be related with the
aid of the following lemma.
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LEMMA 6.9.1. If 22 < 2’ are partitions of Ny, then

(6.9.2) T(X% gp)oms(t,s, P') =nx(t,s, D) on U(t,s,P)NU(t,s, 2.
PRrOOF. The conclusion follows immediately from Lemma and the definitions of the pro-
jection maps. ([l

We can now define the desired global projection to Sym® (X).

LEMMA 6.9.2. There is an open neighborhood 21 C ///_tvs“ of Ny(g),s(d) x Sym‘(X) and a projec-
tion map,
Tx : % — Sym‘(X),
such that the restriction of mx to % NU (t,5, P) is homotopic to mx(t, s, P).

PrROOF. Enumerate the strata of Sym‘(X) as described in Section B.4lusing partitions Zy, ..., Zp.
For 0 < i < n, choose open neighborhoods % (t,s, %;) C % (t,5, ;) of X(t, 5, P;) such that, for
J <k,
n(t.s, Z) (2% (4 s, 25) N2 (Ls, 7)) S | T,
1<J
where T} is constructed in Lemma [£.8.11 The conclusion then follows from Lemma [£.8.4 and the

equality (6.9.2]). O






CHAPTER 7

Obstruction bundle

7.1. Introduction

The gluing map described in Hypothesis [[.8.1] does not map all points in ///_tvs“ to the moduli
7 Vir

space .#;. Instead, the intersection of .#; with the image of the top stratum of A" is diffeomorphic
to the zero-locus of a section of a vector bundle over the top stratum of .. To describe the

intersection of the image of //Zt"slr under the gluing map with .#, we require the following notion

of a pseudo-bundle.

DEFINITION 7.1.1. (See Schwartz [88].) Let Y be a stratified space. Assume that to every
stratum X of Y, there is an open neighborhood, Us, of ¥ in Y and a strict deformation retraction,
ry : Ug — 2. A pseudo-bundle over Y is a space T with a surjective, continuous map 7y : T — Y
satisfying the following conditions:

(1) For every stratum X of Y, the subspace s = 73" (2) is a vector bundle with projection
map given by the restriction of 7.
(2) For every stratum X of Y, there is an injective bundle map,
lys: TETZ — T’UE,
that is linear on each fiber and is the identity when restricted to Ty and which admits a
left inverse,
HTZ : T|U2 — T’%Tg,
that is a surjective vector bundle map.
A section of a pseudo-bundle 7y : T — Y is a continuous map s : Y — Y satisfying 7y o s = idy.

In this chapter, we construct a pseudo-bundle (the obstruction pseudo-bundle) over //Ztvslr and
then in Hypothesis[[.8 Il state the properties of a gluing map (to be proved in the forthcoming [22])
required to give a smoothly-stratified diffeomorphism between the zero-locus of a section of this
obstruction pseudo-bundle (the obstruction section) and an open neighborhood of M, x Sym* (X)
in .

For a point [A’, ®'] in the image of the splicing map, let D&| 4/ ) denote the linearization of
the SO(3)-monopole equations at (A, ®’) with image in
(7.1.1) Li (A @g) @ Li_ (V7).

The fiber of the obstruction pseudo-bundle over [A’, ®'] will be defined by assigning, %-equivariantly,
to each pair (A”,®") in the %-orbit a finite-rank subspace Y(4» ¢y of the Hilbert space (ZI.T))
which is close to the cokernel of DG]( A,y in the sense that the restriction of the L?-orthogonal

projection onto Coker(DS&| 47 o)) to Tian g is L?-close to the identity (see [24], Proposition
8.19]).

109
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Let [A’, '] be a point in the image of the splicing map, given by splicing SO(3) connections Ap
over 5%, for P € 2, onto a background pair (Ao, @) € Ny 5(6). In [24] Section 8], we constructed
an embedding of vector spaces,

¢z : Coker(DS&|(4,,a,)) ® <P§@ Coker(D6|AP70))> — LI (AMreg)eLi_(V7),

by multiplying elements of the domain by cut-off functions. We then showed that Im(¢ ) had the
desired properties mentioned above and hence will define the fiber of the obstruction pseudo-bundle
over [A’, ®’]. In this section, we show how to fit these fibers together as the point [A’, ®'] and the
partition & vary to form a pseudo-bundle.

We refer to the component of Im(pz) given by ¢z (Coker(D&|(4y.a,))) as the background
component. If M, has positive dimension, then the possibility of spectral flow and the varying
dimension of the cokernel of DS&|(4, 4,) prevent us from using this cokernel to form a vector bundle.
Instead, we use the obstruction bundle Zyy) s — M; described in Section This obstruction
bundle is a stabilization of the cokernel of D& in the sense that it is a trivial bundle which surjects
onto Coker(D&|(4, .0,)) at each point [Ag, ®o] € M. For [A',®'] € % (t,5, ) N U (t,5, '), the
restrictions of the maps ¢ » and pg to Zyy , differ in the choice of cut-off functions just as the
standard splicing maps 7, 4 differed (see (6.4.8)). To fit these images together to form a global
bundle, we use the ﬂattefl{ng map for pairs, defined in Section [63] relying on the consistency
property (6.3.7)). The details of this construction appear in Section [7.3

We refer to the component of Im(¢ %) given by w5 (S pep Coker(DS|(4,.0))) as the instanton
component. The cokernel of D@]( Ap,0) is isomorphic to the cokernel of the twisted Dirac operator

Dy, QO(VﬁS‘) — QO(V“;‘), where V|p| is the spin“ structure on S* defined by the standard

spin structure and the rank-two complex bundle E|p| — S4. An argument using the Bochner—
Weitzenbock formula for the Dirac operator and the fact that the standard round metric on S* has
positive scalar curvature (see [27, Section 4.1]) ensures that spectral flow does not arise for this
component of the obstruction and that the cokernel of the twisted Dirac operator forms a vector
bundle (the index bundle) over M“};h'(ép), as described in Section [[4l However, the index of the
twisted Dirac operator drops on the lower-charge moduli spaces appearing in the lower strata of
the Uhlenbeck compactification of the moduli space of anti-self-dual connections over S*. Note
that this is a change in the index and not just a spectral flow problem which could be dealt with
by the stabilization procedure used for the background obstruction. Hence the image space for
the obstruction map will only be a pseudo-bundle in the sense of Definition [Z.I.Il This change

of index reflects the failure of .#; to intersect the lower strata of //Z(V;r in subspaces of the same
codimension. One can express this failure in the language of intersection homology [37, 138} [6] by
saying that the cycle .#; has non-trivial perversity. However, in Section [0.5.4] we shall see that for
computations in rational cohomology, the Euler class of the obstruction pseudo-bundle behaves in a
manner similar to that of an actual vector bundle and there is no need to appeal to the framework
of intersection-homology-valued characteristic classes.

The obstruction to forming a global obstruction pseudo-bundle from the images of @4, re-
stricted to the instanton component comes from comparing the images of v » and @4 for different
partitions. We overcome this problem by adapting the method used in Chapters [l and [l to compare

the images of the crude splicing maps ’y;’ s, In Section [7.6] we define the spliced-ends obstruction

P
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pseudo-bundle,
(7.1.2) Thpr e — M3 (0),

inductively by assuming that the bundle (7.I.2)) exists for £’ < k and by replacing the index bundle
of the twisted Dirac operator over the subspace % (0, &},) of the spliced end of M;l;i,n(d) with the
image, under a splicing map similar to ¢ P, of a direct sum of bundles,

Yot}
D Towip -

pPey

Because this construction is equivariant with respect to group actions discussed in Section [7.5]
the spliced-ends obstruction pseudo-bundle extends to a pseudo-bundle over % (t,s, &) with an
embedding ¢y s » replacing ¢ 5. In Section [[ 7] we give a proof, similar to that in Section [6.5] that
the intersections of the images of splicing maps ¢4 » and ¢y o can be described by a push-out
diagram, thus defining the instanton obstruction as a global pseudo-bundle. Finally, in Section [7.8]
we state the properties of the local gluing map and obstruction section required to prove the main
results of this monograph.

7.2. Infinite-rank obstruction pseudo-bundle

The monopole equations (ZI.I0) define a section, &, of the infinite-rank obstruction pseudo-
bundle,

(7.2.1) V=G xq Li_ (AT @g) @ LI (V) = G

The S! action on % lifts to an S! action on the space (Z.ZI) given by the diagonal action of the
St action on %; defined in (Z:3.I5]) and scalar multiplication on the element of L2 (V7).
We extend the map (ZZ.1)) to a map from a union of spaces to ¢; by setting

N N
(7.2.2) ‘i]{ = |_| (%t(g) X SymZ(X)) — Cgt = U (%(5) X SymZ(X)> s
£=0 £=0

where N is the integer appearing in Theorem 2.1.3] and the space %; is defined in @2.I.I5). The
space ([.2.2]) is endowed with a topology given by the following notion of convergence.

DEFINITION 7.2.1. A sequence {[Aq, ®a,Xa, Va]}22, C By, where {[Aq, Po,Xa]}32; C 6 and
{U,}22, is a subset of the fiber of (T.2.1]), converges to [Aso, Poo, Xoos Vo] as a — oo if

1) {[Aq, Py, Xa]}2, converges to [Ass, Poo, Xoo] in the Uhlenbeck topology on %;.
a=1
(2) If ua : Vilx\x = Vie)lx\x are the spin* bundle isomorphisms appearing in Definition 2.1.21
such that {us(Aa, Pa)}oe, converges to (Ao, Po) in L%loc over X \ x as o — 00, then
{ua(Pq)}o2, converges to ¥y, in the Li_moc topology on X \ X as a — oo.

The SO(3)-monopole equations then extend to give a continuous section, & : ¢ — .
We define an S'-invariant inner product on the fibers of Uy by

(723) <[A, <I>, X, \I’l], [A, (I), X, \IJQD = (\Ifl, \IJQ)Lz(X),
where [A, ®,x] € % and [A, ®,x, ;] € V.
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7.3. Background obstruction bundle
Recall from [24] or [30, Section 3.6.1] that the background component of the obstruction is

constructed by splicing in sections of the obstruction bundle,

TNEqe),s — Nie),s(6),
where 7y : Nyg) (0 ) — M is the projection and Eqe),s = Ms x C'= is a product bundle. The
embedding Ny)s(6) — @) is covered by an embedding of vector bundles,

TN e),s — Ty

l |

Nyp),s(6) —— Gy

The preceding vector-bundle map is S'-equivariant with respect to the actions described in [30]
Section 3.6.1] on the domain and the action on Uy described following (Z.2.1). If ﬂjvét( 05 —
Ny(g),5(6) is the pullback of 73 Eyy) s by the projection Ny () — Nt 5(0)/% = Ny s(9) (see
[Z326)), so Zyy) /% = Eyr)s then the preceding vector-bundle map is defined by a % to %
equivariant map

ThEiys = Gy % Li_1 (AT ® gy ® Vo)
with respect to the homomorphism g : 4; — % defined in (2.3.13)). Define
(7.3.1) Es(t, ) = TNEir)s X9 O(t,5, P) C TNEir)s Xg, Gl(t,5, P).

Because the S! action on w}‘vét(@,s described above commutes with the % action, this S action
defines an S! action on Z4(t, &) and covers the S! action described in Lemma To embed
Zs(t, 2) in By, we now apply the crude splicing construction from Section We define the convex
complement of a function 8 to be 1 — 5. By multiplying the obstruction sections by the convex
complements of the cut-off functions used to define the flattened section @’ in the definition of the
flattening map © 5, we define an S'-equivariant vector-bundle embedding,

(7.3.2) SUP)  Eult, P) > B,
covering the crude splicing map,

}k\/é t(0),s XY, ﬁ(t757 '@) SDIS,(Q@)} ;‘ijf

(7.3.3) | |

1

~ Y 5, P —

Ny s(8) xg, O(t,5,2) —=5 G
The crude obstruction splicing maps 7/ (') are invariant under the action of the symmetric group
and thus, for 2 < ', define a crude obstruction splicing map,

P[P < D)) : TyEs xg, O(4,5,[P < P')) = B,
covering the crude splicing map ~{ (P< ] defined in (6.5.20]).
We can describe the overlaps of the images of the embeddings ¢! (@) exactly as was done in the

construction of the space of global splicing data. The overlap maps, p ] [ 7] and p;’?y,], appearing
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in the diagram (6.5.22]) are equal to the identity on the factor ]\7{(@),5((5) in their domain. Hence,
these overlap maps are covered by S'-equivariant bundle maps,

(7 3 4) p‘;t’[y} : WjVét(f),s X, ﬁ(th’ 2, [yl]) - WjVét(f),s A ﬁ(t757 [‘@ < ‘@/])7
o pg,;f@;l,} : W}kvés Xq, O(t,5, 2, [2']) = W}kvés Xg, O(t,5,P),

equal to the identity on W}kvét(g)75. Exactly as in the proof of Proposition [6.5.3] (specifically, the
equality of the sections @), and ®/ appearing in ([6.5.24)), we see that the diagram

=,t,5,u

~ P ’ ~
B0 X9 065, P, [P]) =% mi By xa, O(t5, [P < P))
(7:3.5) S | A< |
. = e (7) =
TNEs Xg, O(t,5, ) RAR N DA

commutes and covers the diagram (6.5.22)).
Because the maps p= %% and p=t5d
PS P [91] P |2

the bundles and cover open embeddings, we can define a vector bundle

in the diagram (7.3.5]) are isomorphisms on the fibers of

(7.3.6) Y, — MY

as the union of the bundles Z;(t, &) as & varies over the partitions & of Ny, patched together on
the overlaps by the diagram (7.3.5]). The embeddings ¢ () fit together to define an S'-equivariant
embedding of vector bundles,

(7.3.7) M _fﬁ — By,

covering the embedding given by the crude splicing maps, as shown in (7.3.3]).

Like the crude splicing map, the embedding ¢” in (Z3.7) is not equal to the identity over
M, x Sym’(X). We therefore define a new embedding of vector bundles in a manner similar to that
used in defining the isotopies of Section That is, let ¢%(Z?) be the standard slicing map,

O(P)  E(t, 5, P) — Ty,

defined by using the cut-off functions vanishing on balls B(xp, 4)\}3/3). There is an isotopy through
vector-bundle embeddings between ¢, () and ¢ given by taking convex linear combinations of
the two sections parameterized by ‘time’. One then follows the inductive argument, using these
isotopies through vector-bundle embeddings, defined like the isotopies in ([6.8.3]) and (6.84]), to
define a sequence of embeddings of vector bundles, cpf;j : _fﬁ — ;. In a manner similar to the

definition of the global splicing map in (6.8.35]), define
(7.3.8) ol Tis — By

to be the last embedding of vector bundles in the sequence gp’s’,j of embeddings of vector bundles.
The embedding of vector bundles ¢, then covers the global splicing map v/, in (€.8.3]).
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7.4. Equivariant Dirac index bundle

To define the instanton component of the obstruction pseudo-bundle (7.I.2]), we begin by defin-
ing the bundle Index(D?). Let sg4 = (p, ST, 57) be the standard spin structure on S* with respect
to the round metric. Let E,, — S* be a complex Hermitian rank-two vector bundle with co(E,) = &
and let V¥ = ST ® E, be the resulting spin® structure on S*.

For [4] € MS’h(S‘l, 9), we define the Dirac operator
(7.4.1) Dy Ly(Vih) = Ly (V,))

to be the Dirac operator defined by tensor product of the spin connection induced by the Levi-Civita
connection on sg1 and of an SU(2) connection A on E,. Let

Index(D?) — M>%(S%,6)
be the vector bundle defined by the cokernels of the Dirac operators (using Coker Dy = Ker DY),
(7.4.2)  Index(D}) := {(A, F*,¥) € M>%(S*) x Fr(E,)|s x L} _,(S~ ® E,) : D% = 0}/%..
Because of the positive scalar curvature of the standard round metric on S*, the estimates in [27,

Section 4.1] using a Bochner—Weitzenbock formula for the Dirac operator imply that Ker Dy = 0

for all [A, F*¥] € M,‘z’u(S‘l, 0). The fact that the index of the Dirac operator is constant with respect
to [A, F*] then ensures that Index(D}) defines a vector bundle. The Chern class of this bundle is
discussed in [3, 4]. A computation using the Atiyah—-Singer Index Theorem shows that Index(D})
is a complex, rank-x vector subbundle of the restriction of the Hilbert bundle,

(7.4.3) U, = 7(20) x Fr(E,)|s xo, L?_(V7) — B5(S*,26),
to MsslsuLﬁ(é). Using the same topology as that described for the infinite-dimensional obstruction

bundle 2 in Definition [7.2.1] we define an extension of the Hilbert bundle (T.4.3)) over the space
(B:24) of ideal framed connections by

(7.4.4) Dy = | | Bue x Sym"(X).
£=0
If we define a subbundle of the restriction of U, to ME’“(S‘l, J) by
(7.4.5) Index(D?) := {[A, F*,x, V] € D, : [A, F*,x] € M**(S*,8) and D4 ¥ = 0},

then the restriction of Index(D}) to M,‘z’u(S‘l, J) is exactly Index(D}). Because the index of the
Dirac operator depends on &, the rank of the fiber of the projection map Index(D}) — ME’“(S‘*, J)

decreases on the lower strata of MS’“(S‘*, ) and Index(D}) is only a pseudo-bundle. The inclusion
maps ¢y, for this bundle, as required by Definition [[.I.1] are defined in [15] Proposition 7.1.32].

7.5. The action of Spin“(4)

To splice elements of the instanton obstruction pseudo-bundle over S* onto X, we must use
local trivializations of the spin” bundles given by frames. Changing these frames is equivalent to
changing the element of the obstruction pseudo-bundle being spliced in by an action which we now
describe.
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As in [30] Section 3.2], we denote
Spin“(4) := (U(2) x Spin‘(4)) /S*.
The standard homomorphisms, Ady : U(2) — SO(3) and Adg : Spin“(4) — SO(4) (see [57,
Equation (D.2)]), define a homomorphism,
(7.5.1) Ad" : Spin“(4) 5 [M, S] — (Ady(M),Adg(S)) € SO(3) x SO(4),
where M € U(2), S € Spin“(4), and [M, S] € Spin*(4). The composition of Ad" with projection
onto the factors SO(3) and SO(4) define a pair of surjective homomorphisms (see [30, Equation

(3.13)]),
Adgos) 1 Spin“(4) = SO(3), and  Adggyy) : Spin“(4) — SO(4).

The action of SO(4) x SO(3) on %5(S*) is defined in [30] Section 3.3], with SO(3) acting on the frame
and SO(4) acting by pulling the rotation action on R* back to S* by stereographic projection. The
SO(4) action on S* induces an action on connections on bundles over S* by pullback. The action of
Spin“(4) on B, is defined in [30], Section 3.6.2] (see also [17, Section 3.2]). The map U,, — %3 (S4)
is equivariant with respect to the action of Spin“(4) on U, and the action of Spin“(4) on %%(S%)
defined by Ad“ and the action of SO(4) x SO(3) on %3(S%). The bundle Index(D?) is invariant
under this action and thus is also a Spin“(4)-equivariant bundle.

7.6. Pseudo-bundle over the instanton moduli space with spliced ends

The obstruction pseudo-bundle over the instanton moduli space with spliced ends [C12) will be
defined to be identical to the index pseudo-bundle Index(D?) defined in (T.45]) on the complement

of the spliced ends of J\Z[;;“L,K(é). On the spliced end, Wy, the obstruction pseudo-bundle will be
constructed as the image of a splicing map which we now introduce.

Recall from (5.I.6) in Theorem [E.I.1] that the spliced end of M§§i7ﬁ(6) near the stratum con-
taining the product connection,

(6] x X(Z(8), 2),
where & is a partition of N, with |£?| > 1, is given by the image of a splicing map,
7@ P ﬁA%D(@ L@) C AO( ( , X@(] H SPL ‘P| 5p —> Mspiﬁ/(é)
pPew

We will define the obstruction pseudo-bundle over the instanton moduli space with spliced ends
inductively, just as we defined the instanton moduli space with spliced ends.

~ An element of the space U, in (T44) can be written as [A, F* x, V] where [A, F* x| €
%5(5%,26), and x € Sym‘(R?*), and ¥ € L2 (S~ ® E.—y). For each partition & of N, we
define an embedding, covering the splicing map 767 2> by

Vo5 1 A°(Z2:(8), Z) xg() | [ Dip| = D

Pe»
(7.6.1)

[zp, [Ap, Fp,vp, Vp]lPeyr — <76,@([$P, [Ap, Fp,vplpes), Y Xxp,ékgacip,ﬂPP) :
P

If zp € R%, then Xyp 131/3 R* — [0,1] is a smooth cut-off function that is equal to one on
8NP

B(zp, 8)\1/ ) and is supported in B(zp, TA/ 13 ) (see Section [6.4.1]), where Ap = A([Ap, Fp,xp]).
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The map ¢, 1 is defined in Lemma [5.4.3]l The definition (7.6.1]) follows that in [24] Section 8.2
and Equation (8.32)].

Observe that the map (.6.1]) is equivariant with respect to the Spin*(4) action if Spin*(4) acts
diagonally on the domain, by the projection Adgg 4 to SO(4) on the factor A°(Z(0), &). The
properties of the obstruction pseudo-bundle over the instanton moduli space with spliced ends are
given by the

THEOREM 7.6.1. There exists a pseudo-bundle,
(7.6.2) Tow = M n(6),
which is a Spin“(4)-invariant subbundle of the space T, — @i’h(54,25) and has the following
properties:

(1) The restriction of TéPL,n to the top stratum, Mssﬁiﬁ(é), s a complex rank-x vector bundle.

(2) For any partition & of k with | 2| > 1, the restriction of Ty . to the open neighborhood

of O] x X(Z,.(6), Z) given in (LIAQ) is equal to the image of
(7.6.3) A°(Z:(0), 2) xs() [ Tionypp
Pew

under the splicing map 90,@,9-

(3) If W, C M;;“Lﬁ(é) is as defined in (5.6.2)), then the restriction of TéPL’H to M;;i’,i(é) \ Wy
is given by the restriction of the pseudo-bundle Index(D%) in (T43) to M;;i’,{(é) \ W

(4) The restriction of TéPL’R to the levels

M3 (8) 1 (M3

SPL,k—/

(6) x Sym(RY)) ,
of J\Z[;;“L,K(é) s isomorphic to the pullback of TéPL’H_Z under the projection

M2 (8) x Sym!(RY) — M;;“m_g(é).

SPL,k—/
(5) For any [A', F* x| € Mssl;uL,R@), L?-orthogonal projection defines an isomorphism,
TéPLJ{“A/,FS,X} = Coker Dy,,
for allt € [0,1], where Ay = A" + a4(A”) and A= A" + a1(A") is the point in the image of
the gluing map appearing in (5.82) at A'.
REMARK 7.6.2. Observe that the rank of the fibers of TéPLﬁ — Msy’,iﬁ(&) varies with the
stratum of MSﬁi,R(d) by Item (). For this reason, TéPL,H is a pseudo-bundle.

The proof of Theorem [7.6.1] occupies the rest of this section and is similar to the construction
of the instanton moduli space with spliced ends in the proof of Theorem [E.1.11

7.6.1. Pseudo-bundles and overlap data. If the restriction of the obstruction pseudo-
bundle over the instanton moduli space with spliced ends to the image of the splicing map ’767 P
is to be given by the image of the splicing map <,0’@7 o restricted to the subspace (7.6.3]) as asserted
in Item (2)) of Theorem [T.6.1] then we need to describe the overlaps of the images of the splicing
maps ¢ 4 and pg 4 where &2 < ', This is undertaken by constructing a space of overlap data
analogoué to that a7ppearing in Proposition (.5.3]
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We begin by initially considering the pseudo-bundle, T(@, P, P"), defined by restricting the
pseudo-bundle,

A°(Z(6), ) x [ per (AO(Z|P\(5P), Pp) x HQGW;D TépL7|Q|>
(7.6.4) l
A(Z4(8), 2) % Tlpess (A°(Zip1(07), ) x Tgeny, M35 /(50) )

to the intersection of its base with the space 00,2, 6) defined in Lemma 5511 By induction
on k, the pseudo-bundle T;PL" 0l is defined for all @) in a partition & of N, of length greater than
one. For all P € &, the splicing maps pg, 7, define maps,

vo,z, : A°(Zp(6p), Zp) X [] Thonjo) = Tiewipp
Qe
covering the splicing map, 7’6 R Hence, there is a map,
U.d v v o i
P o T(Gv 2, '@/) - T(Gv '@) =A (ZH(5)7 ’@) X H TSPL,|P\’
Pew»
defined by

W.d .
(7.6.5) P =idax [ ¢l .
Pe»
where ida is the identity map on A°(Z.(d), #?). By the definition of the overlap map pg]’f@, in
(58], the map p%}f@, fits into the following commutative diagram of maps of pseudo-bundles,

w,d

Yo,2,2) 22, t@,2)

(7.6.6) l l

o.,d

o800, 2, 7',5) “22 g0 (0, )

The map pqg,j,;dg,, is not injective because of the action of the symmetric group, but this will not
affect our construction.
We also define a map,

(7.6.7) Py 1 X(0,2,2') = T(0,2),
which fits into the following commutative diagram of maps of pseudo-bundles,

W,y
Yo,2,9) ‘22, Y@ 9

(7.6.8) J l

O,u

0N (0, 2, P',6) 22y oo (@, )

The following lemma, analogous to Lemma[5.5.2] is the key to the construction of the bundle TéPL’ -
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LEMMA 7.6.3. Let 22 < &' be partitions of Ny with |2?| > 1. Then the following diagram of
pseudo-bundles,

w.d
Yo, 2,7 222 10, »)
(7.6.9) o | Yo, |

/

~ Pa ’
T©,2) =22, 9,
covers the diagram (5.5.14), is Spin“(4)-equivariant, and commutes.

PROOF. The assertion that the diagram (7.6.9) covers the diagram (G.5.14]) follows from the
definition of the maps p\;’dﬂ, and p;’f@, (see the diagrams (7.6.6]) and (7.6.8])) and the fact that
the splicing maps ¢f, 4 cover the splicing maps vg 4.

The Spin*(4) equivariance of the diagram (7.6.9)) follows from that of the SpliCiHNg maps ¢g -

We now prove the commutativity of the diagram (7.6.9). Assume that a point in T(0, &, &) is
given by data consisting of points (zp) pey € A°(Zx(0), ), points (yg)qe s, € A°(Zp|(0p), Zp),
and [Ag, I, v, Vgl € TSPL7‘Q‘. We write

v,
[A/u/v q>/u/7xu7\1’u] = ((10/9,9’ Op@?yl) <<($P)7 ((yQ)v [AQaFévaa \PQ])QEQED)PG,@> 5

v.d s
[AG @3 %a, V] = (¢, © Py o) <<<xP)7 ((wa), [AQ’FQ’VQ’\PQ])Qeﬂ%)Peﬁ) ’

Because the diagram (7.6.9]) covers the commuting diagram (5.5.14]), to show that (7.6.9]) commutes,
we only need to prove that ¥, = U,.
From the definition of pqg,l,;f‘g,, in (Z.6.7) and the definition of p(;g,;f‘g,, in (5.5.5]), we have,

p;?@/ <<(3§‘P), ((yQ)7 [AQ7 F57VQ7 \PQ])QEW}) > = (xP(Q) + YQ, [AQ7F57VQ7 qIQ])QEQI )

where, for Q € 2’ we write P(Q) € & for the unique subset of Ny with @ C P. If A\p =
AM[Ap, Fp,x%p]), the definition of ¢g 4 then implies that

pPey

. *
(7610) v, = Z@ X$P(Q)+yQ7%)\éz/gcwp(Q)J’_yQ’l\PQ‘
Qe

From the definition of p;jdgz, in (Z.6.0), if we write

P;’figw <<(33P), (W) [Aq. F§: vq, \PQ)QG%D)PEJJ”)
= ((@p): [Ap, Fp X, ¥r) peyy

then, for )\Q = )\([AQ,FCS?,VQ]),

_ k
Vp = Z XyQ,%)\gscyQ,l‘I’Q-
Qe
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If Ap = A([Ap, Fp,x}p]), then the definition of ¢ 4 implies that

_ * _ * *
Vg = Z me%)\;“cxp,lqu = Z Z Xgp INY3Cp,1 (XyQ%AgSCyQJ\I’Q)-
Pew Pez Qe

Applying Lemma [5.4.3] to the preceding equalities gives

.6. U, = * Uo.
(7.6.11) =2 Xapq) i X Yor@tue try* Fatue 1 7@
Qe
By the constraint (5.5.9]), the points xp and yg in the definition of the subspace 00,2,
satisfy (see condition (5.4.10)),

1/3 1/3
Blap@) +9a:10g") € Bler@): $ i)

Because X, 1,1/3 is supported on B(z, %)\1/3) and equal to one on B(z, %)\1/3), the preceding in-
'8

173, so ([.6.11]) and
Q

clusion implies that is equal to one on the su ort of

U, = Z et Uy =0
d me@>+y@,§x2{3 zQtyqQ,1~ @ ws
Qe

as required to prove that the diagram (7.6.9]) commutes. O

ProOF OF THEOREM [Z.6.1l. The proof of this theorem is largely identical to the proof of The-
orem [5.T.T] so we omit many of the details. We construct T¢;, , using induction on .

The induction begins with setting the restriction of Y%, ; to the top stratum of Mssl;uL’l(é) equal

to the bundle Index(D7). Because there is, up to dilation and the SO(3) action on the frame, only

one gauge-equivalence class in M., S8 (6), the bundle,

SPL,1
Index(D7) — MZ! 1(8) = (0,8) x SO(3),

is given by

(0,6) x SU(2) x41 C — (0,d) x SO(3).

This bundle extends as a pseudo-bundle over the Uhlenbeck compactification, ¢(SO(3)), of M;;uhl(é)
as

¢(SU(2) x41 C) — ¢(SO(3)),

which satisfies the requirements of Theorem [7.6.1] for the case k = 1.

Assuming that Téph .- has been constructed for all k" < , we define a pseudo-bundle TH(W,) —
W, over the spliced end by the image of the splicing maps <p’@7 » on the domains in (Z.6.3]). This
space is a pseudo-bundle because the overlap of the images of the maps ¢f, 4 is parameterized by
Lemma [7.6.3] 7

The final property in Theorem [7.6.1] regarding the surjectivity of L2-orthogonal projection
follows from the results of [24] Section 8] (see also [15l Proposition 7.1.32]). We can then define
an isotopy Rp of T{(W,) by, for t € [1/2,3/4],

Rp (t,[A, F*,x,V]) := (R(t,[A, F*,x]), (1 — 4(t = 1/2))¥ + 4(t — 1/2)IL a4 q(a(t—1/2),4) ¥)
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where R is the isotopy defined in (5.8.4]) and for a(t, A) = a;(A) defined by the gluing map appearing

m m?

G(t,[A, F* x]) = [A+a(t, A), F*,x],
and where 1144 4) denotes L?-orthogonal onto Coker D pyqt,4)- For t € (—oo, 1/2], the isotopy
Rp(t,-) is equal to the identity and for ¢ € [3/4, 1], the isotopy Rp(-,t) is defined by pulling back
the section ¥ by the centering map.

The pseudo-bundle TéPLﬁ is then defined by the union of the images T¢(W,) under the map
Rp(5(+,)-), where j3 is the function defined in the proof of Theorem .11l with Index(D?) restricted
to the complement

MH(S*,8) \ R(1, W),

as in the definition of M§§i7ﬁ(5) in the proof of Theorem B.1.11 O

7.7. Instanton obstruction pseudo-bundle

We now construct the instanton component of the obstruction pseudo-bundle and its embedding
into the infinite-rank obstruction pseudo-bundle 2.

7.7.1. The frame bundles. For a spin® structure t = (p,V) over X, we defined a frame
bundle in [30l Section 3.2] by

Fr(CZ(T*X)(V) — FI'(TX) — X,

which is a U(2) bundle over Fr(T'X) and a Spin*(4) bundle over X. The fiber over F' € Fr(T X)|, is
given by the Clifford module isomorphisms from the Clifford module A ® C2 to V|, with respect to
the isomorphism R* 2 T* X |, defined by F, for each x € X. The homomorphism Ad“ : Spin“(4) —
SO(3) x SO(4) in (Z51) defines a bundle map,

Fregrx) (V) — Fr(gy) xx Fr(TX).
By analogy with the definition of the gluing-data bundle Fr(t,s, &) in (6.2.2)), we define
(7.7.1) Fr(V,2,99) — Fr(t,s, ),
by

l
Fr(V, 2,92) =S (F,....F}) € [ Freor (Viw))
i=1 A°(Xt,2)

FY =F/ < 3Pe P withi,j € P}.
The structure group of the bundle Fr(V, 2, g5) — A°(X!, 2) is

l
(7.7.2) GV (2) = {(Gl, ..,Gy) e [[Spin"(4) : Gi=G; = IP e P withi,j € P} .
=1

The structure group of the bundle Fr(V, 2, g5) — S(X!, 2) is

(7.7.3) GV(2) =GV (P) x &(P)/T ().

We then define the instanton obstruction pseudo-bundle for the partition &2 by
(7.7.4) Nt(g)75(5) Xg, X Ob(t, 5, P) — Nt(g)’g(é) Xg, XO(t,5,P),
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where

(7.7.5) Ob(t,s, 2) := Fr(V, 2,92) xcv(z) || Toipp

Pec?
We define an S action on the bundle (Z.7.4)) covering the S! action on its base defined in Lemma
[6.2T1by the diagonal action on the factors Nt(&5 (0) and T:fL p in (CZA), where St acts on ]\7{(5),5((5)

by the action (Z3:28) and on T3

SPL,| P|

by scalar multiplication on the fibers of 5% — M7

SPL,| P| SPL,|P|"

7.7.2. Splicing map. For each partition & of N;, we define an S'-equivariant splicing map
for the instanton obstruction,

(7.7.6) Pts, 2 - Nt(f),s(é) xg, Ob(t, s, ) — pify

which will cover the crude splicing map ¢, 5. A choice of frames (' Y pew € Fr(V, P)|y, where
y = (yp)pew, a spin” connection Ag on V), an SO(3) connection Ap on gp, and a frame Fp €
Fr(gp)|s determine embeddings,

(7.7.7) $(Ao, FE, Ap, Fp) : Vip|lon ey = Vil bryp s/

as described in [30] Section 3.4.3]. If x is a cut-off function supported on o, (B(8AY/3)) and ¥ is a
section of V|p|, then we write gb(AO,FI‘D/,Ap, F3)(x¥) for the section of Vt|B(yp,8>\1/3) given by the

isomorphism (T.7.7).

To ensure that the images of the different splicing maps fit together to form a vector pseudo-
bundle, we introduce a flattening map on spin* connections just as we did for Riemannian metrics
on X and connections on gy in Section That is, given a spin” connection Ag on Vi) we
apply the construction of Lemma and for each y € %(X*, &), we define a locally flattened
spin® connection ®@"(A,y) on Vi satisfying the following properties:

(1) For y = (yp) pew, the connection ®%(Ay,y) is flat on

U By 45p()'7),
prPey

where 5p is the separating function defined in Lemma
(2) f Z < P andy € (X! P) and y’ € %(X!, 2)n% (XE, P) satisfy n(X¢, 2)(y') =y,
then
G)u(A07Y) = @U(A07 y/)
For FV = (F¥)pew € Fr(V, 2)|y, define
¢/(A07 F]‘3/7 AP7 F]SD) = ¢(®U(A07 y)7 F]‘3/7 AP7 F]S3)7

using the isomorphism (Z7.7) defined by the locally flattened connection @*(Ay, y) on Vi instead
of the connection Aj.
For [Ag, ®o] € Ny s(6) C %y and a point in Ob(t,s, P) given by the data (F¥)pey €

Fr(V,2,9%), and [Ap,F},vp] € M5 (5p), and [Ap, F§,vp, V] € Tgpy |p|, and

SPL,|P|

Yis.((A0, o), F}  [Ap, Fp,vp]) per = (A", 9", x),
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the instanton obstruction splicing map is then defined by

Pt,s,2 ([(A07 @0)7 (F]‘J/u [AP7F;7VP7 \PP])PGW])

7.7.8
(7.78) = A", "%, > ¢/(Ao, FY, Ap, F)(x, 1,15¥p)| ,
18P

pPey

where X 1,15 S% — [0,1] is a smooth cut-off function that is equal to one on gpn(B(%)\}D/g)) and
8P

is supported in (pn(B(%)\}J/g)) (see Section [B.41]). This map is S'-equivariant with respect to the

81 action on its domain described following (Z.Z.5) and the S! action on the image %; defined

following ((T.2.2]).

7.7.3. Overlap space and overlap maps. Following the method of previous sections, to
parameterize the overlap of the images of the splicing maps ¢ys 2 and s »/, we introduce a
space of overlap data and overlap maps. By analogy with the definition of the overlap space

Gl(t,s, 2,[2']) in ([6.5.0]), we define
Ob(t,s, 2,[Z']) — Gl(t,s, 2,[2'])
by
Ob(t,s, 2,[2'))

(779) o Y
=WV, 2,92) xavioy || II [ 2°Zp6p), 28) x T] Tsenia

PNe|P<P| PP Qe

Define an S' action on Ob(t,s, 2, [2?']) through the diagonal S' action on the factors of TSPL7|Q|
appearing in (7.7.9]).

We define overlap maps,

p‘g/;i@/ : N{(Z),s(é) A Ob(taﬁa '@7 [‘@,]) — Nt(f),s(é) X, Ob(t757 '@)7

covering the overlap maps pt;j"[i@,] defined in ([6.5.15) by

Vd .. .
(7.7.10) Py, =g, (5 X dmy) X L I1 ve.7.
PNe| PP PES

where idgy(y) is the identity map on Fr(V, &, g»). Observe that p‘;‘i@, is S'-equivariant if S' acts
on the domain by the diagonal action on ]\7{(@)75(5) and Ob(t,s, 2,[2']), where S' acts on ]\7{(@)75(5)
by the action (Z:3.28) and on Ob(t,s, 2,[Z?']) by the action defined following (Z.7.9) and S* acts
on the image by the action defined following (T.7.5]).

For

Nt(Z),s(é) X, Ob(t757 [‘@ < ‘@/])

(7.7.11) :: Nt(z),s(‘s) xg, |_| Ob(t,s, 2") /6(32),

PNe|P<P
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we define an upwards overlap map,
Ny(p)5(6) xg, Ob(t,s, 2,[7'])
(7.7.12) p‘gf[@’]l
Nuoys(0) x4, (e Ob(ts, 2)) [ &(2)

exactly as was done in (6.5.14]). Recall that the map ptg’;’ﬁ@,} was defined by a parallel translation
of the frames in the domain O(t,s, 2, [%'],g») and leaving the points in N{(Z),s(é) and the S4
connections unchanged. Note that this parallel translation is carried out with respect to the locally
flattened connection ®“(Ap,y). We define the map p‘;;,u[ ] in the same way, using the flattened
spin” connection Ag to parallel translate the frames of Frey - x)(Vi(r)) and leaving the elements of

u .

Nt(g)75 (0) and of TSPL7|Q| unchanged. The map p‘;g (] 18 Sl-equivariant when the S' actions on the

range and domain are as described in the analogous assertion for pggd[ 7"
By the invariance of the obstruction splicing maps under the action of the symmetric group,
the splicing maps ¢ g for Z” € [ < Z'] define a splicing map,

(7.7.13) Pus2<  Ni)s(6) X, Ob(t,5, [P < Z']) = D,

which covers the crude splicing map ’yf{’ o[P<or) D (6520). We then have the following relation
between the splicing maps ¢¢s » and ¢y s (7<)

LEMMA 7.7.1. Let & < 2’ be partitions of Ny. Then the diagram

_ o
Ni0),s(8) xg, Ob(t,5, 2, [P']) =2 Ny 4(8) xg, Ob(t,5,[2 < 2'])
(7714) ’D‘L;’(f[f}”]l %0@5,[32’<gﬂ’]l

P,s,2
—_—

Ny(t)5(6) x4, Ob(t,s, 2) U

commutes, covers the diagram (6.5.22)), and all the maps in the diagram are S*-equivariant.

PrOOF. That the diagram (.7.14]) covers the diagram ([6.5.22]) follows immediately from the
definitions of the overlap (see (.7.10)) and the paragraph following (7.7.12])) and obstruction splicing
maps (see (Z.Z8)). As in the proof of Proposition[6.5.3], we assume that the splicing maps ¢ 5 » and
¢1s,9 are defined at points y € B(X*, 2) andy’ € (X", ), respectively, where m(X*, 2)(y') =
y. Thus, for P' € 2" and P’ € P € £, the inclusion

B(yp,83(y")'/?) € B(yp,43(y)"?)

holds by (6.3.9). Because the Riemannian metric and spin“ connection used in the splicing argu-
ment are flat on the preceding balls, the conclusion of the lemma then follows from the argument
establishing Lemma [7.6.3] O

The commutativity of the diagram (Z714)) and the definition of the space . as the union
of the spaces

Ny s(0) xg, O(t,5,2)
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implies that we can define a pseudo-bundle,

(7.7.15) Yi, — A,
as the union of the pseudo-bundles
Ni)s(6) xg, Ob(t,5, 2) = Ny s(0) x4, O(t,5, ),
with the overlaps identified by the diagram (7.7.14]). Because the maps in (T.7.14)) are S l:equivariant

and the S' actions in that diagram cover the S actions on ., the S' actions on Ny () x4,
Ob(t, s, #) define a global S! action on T,is.
The splicing maps ¢ 4 define a vector-bundle embedding of Tf,s into U, which covers the

embedding of _t";r into €; given by the crude splicing maps. Finally, we define an embedding,

(7.7.16) @k Tfﬁ — Uy,

covering the global splicing map v, in ([6.8.3]) by replacing the triple [A”, ®” x] in the definition
(CZ8) with the triple [A’, ®',x] given by the global splicing map v/, of (6.8.3]).

7.8. Local gluing hypothesis for SO(3) monopoles
We can now state the relevant gluing hypothesis.

HyPoTHESIS 7.8.1 (Local gluing hypothesis). There is a continuous, S'-equivariant embedding,
(7.8.1) Y M — G,

which is homotopic through S'-equivariant, continuous embeddings to the global splicing map Yy
smooth on each stratum of ///_Jsir, and equal to the identity on Ny 4(d) x Sym®(X). In addition,
there are Sl-equivariant sections x, and x; of the pseudo-bundles Tfﬁ and Tis with the following
properties:

(1) The restriction of the section x = x, @ x; of Tis @ Tis to each stratum is smooth.

(2) The restriction of the section x to each stratum of QVS“ vanishes transversely.

(3) If we pull back the fiber metric (ZZ3) to T{, & Ti, by the splicing embeddings ¢/, & ]
defined in (73.8) and (Z7.16), then the L? norm of ¥ is lower semi-continuous.
(4) The restriction of v , to the zero-locus x~1(0) is a homeomorphism between x~'(0) and

an open neighborhood of M, x Sym®(X) in ..

REMARK 7.8.2. Recall from [62, p. 12] that a function f is lower semi-continuous if f~!((a, o))
is open for all real a. A lower semi-continuous function f(x) satisfies lim,_,, f(x) > f(xo) and we
will use this property in Lemma [09.5.13] to obtain lower bounds on the fiber norm of the obstruction

section on a relatively closed subspace of the top stratum of ///Q’ér

Although there are some important differences (which we explain further in Section [7.9]), the
gluing map and obstruction section in Hypothesis [[.8.1] are similar to those constructed in [24], as
we now explain.

The gluing map in [24] Section 9] is the composition of the standard splicing map (defined in
[24, Section 3.2] and here in Section 6.4.1)) with domain given by the space % (t,s, &) defined in
Section [6.7.1] and a solution map. Recall that the solution map,

(7.8.2) (A, @) = (A + a(A, ), ® + ¢p(A', D)),
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is defined on the image of the splicing map and has the property that & (A’ 4+ a(A’, @), ® + ¢(A’, D'))
lies in a finite-dimensional obstruction space over (A, ®’), and thus is a solution to the extended
SO(3)-monopole equations, while (A, ®) is an SO(3) monopole if and only &(A,P) = 0, where
S is as in (ZI10). In [24] Section 8], this obstruction space over (A’,®’) is the span of the
small-eigenvalue eigenvectors of the L? self-adjoint elliptic operator (D& (41,0 ) (DS ar,91)", where
DG4 ¢ is the linearization of the map & at (A’, ®'). The map

(A, 0") 1 ((A',9),8 (A" +a(A, ), 0+ ¢(A, D))

then defines a section of a finite-rank vector bundle over the image of the slicing map whose zero
locus is mapped to .#; by the solution map.

To show that a solution map in the sense of (.8.2]) exists, we first prove in [24], Proposition
5.5] that for each pair (A’, ®') in the image of the splicing map, the error term S(A’, ®’) is suitably
small in the sense of norms defined in [19] [96]. Using techniques generalizing those introduced
by Taubes in [94], 95], [96] and Donaldson and Kronheimer in [I5] Section 7.2] (see also [72} [74]),
we showed that for each point (A’, ®’) in the image of the splicing map, there is a solution to the
system of partial differential equations defining the solution map (see [24] Section 9.1]).

Our proof of existence of the solution map in [24] should extend to yield the desired gluing map,
~. 4, in Hypothesis [.81] and identify the zero locus of the obstruction section, X, with an open
neighborhood in .#;. The smoothness of v, and the obstruction section x asserted in Property ()
in Hypothesis [[.8 1] follow by the construction of the gluing map. Property (2]), that the obstruction
section vanishes transversely, follows from a formal argument and the result in [18] that the SO(3)-
monopole map, &, vanishes transversely for appropriate choices of generic perturbations of the
SO(3)-monopole equations.

We give proofs of the properties of the gluing map v , and obstruction section x asserted by
Hypothesis[7.8Tlin [22]. We expect that the continuity of the gluing map with respect to Uhlenbeck
limits will follow along lines similar to the proof of the same property for the gluing map for anti-
self-dual SO(3) connections given in [21]. This Uhlenbeck continuity will yield the Property () of
the gluing map in Hypothesis [[.81] One must also show the map is injective and surjective where
by the latter we mean Property () given in Hypothesis [[.8.1l In special cases, proofs of continuity
with respect to Uhlenbeck limits, injectivity, and surjectivity for gluing maps for anti-self-dual
SO(3) connections have been given in [15] Sections 7.2.5 and 7.2.6] and [94, 95, [96].

7.9. Notes on the justification of the local gluing hypothesis

The purpose of this section is to summarize the justification of Hypothesis [[.8.1] as a theo-
rem, whose proof is provided by the authors in [22]. In our article [24], we discussed analytical
issues specific to the problem of gluing SO(3) monopoles that are not present when gluing anti-
self-dual SO(3) connections and we refer the reader to that discussion. Rather, our goal in this
section is to describe modifications to our approach in [24] to gluing SO(3) monopoles. In [24],
we had restricted our attention to the case of gluing anti-self-dual connections over S* and SO(3)
monopoles over X that varied in an open neighborhood with the property that spectral flow for
the Laplace operator, dil,@dx@ is small. This assumption is valid, for example, when consider-
ing small open neighborhoods of a zero-dimensional moduli space of Seiberg—Witten monopoles
(equivalently, strata of reducible SO(3) monopoles), since those moduli spaces comprise finite sets
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of isolated points (because those moduli spaces can be assumed to be compact and smooth). How-
ever, in this monograph and our previous articles such as [28] (where no bubbling is allowed) or [30]
(where one bubble allowed), we must allow for moduli spaces of Seiberg—Witten moduli spaces that
are positive-dimensional. In those cases, we cannot assume that spectral flow for djl&q)di’*@ is small
and thus our method of gluing [24] does not apply without significant modification. Iﬁdeed, the
rank of the obstruction vector bundle constructed in [24], by an analogue of the small-eigenvalue
decomposition that Taubes developed in [95], necessarily jumps as eigenvalues of djléx@dllﬁ{:; cross the

small-eigenvalue cut-off parameter p € (0, 1] used to define the L?-orthogonal projections required
to split the SO(3)-monopole equations, following the Kuranishi method [55].

In Section [7.9.1] we recall the main ideas from [28] Section 3] (see also Section in this
monograph) involved in our construction of a virtual neighborhood for the moduli space of SO(3)
monopoles near a possibly singulalﬂ stratum of SO(3) monopoleﬂ in the top level. This construction
relies on a splitting of the SO(3)-monopole equations defined by a choice of abstract stabilizing
bundle, =, over an open neighborhood, %, in the configuration space of pairs. When the stratum
is in the top level, there is no bubbling and thus no need to glue in anti-self-dual connections over
copies of S*. In Section [7.9.2], we describe two methods of constructing a virtual neighborhood
for the moduli space of anti-self-dual connections near a possibly singular stratum of anti-self-
dual connectionﬁ in the top lower-level; we restrict our attention to the case of anti-self-dual
connections so that we may focus on the essential ideas in a familiar and relatively simple case
and relate our constructions to those of Donaldson and Kronheimer [15], an accessible reference.
When the stratum is in a lower level, one has bubbling and thus one must glue in anti-self-dual
connections over copies of S* in order to construct a virtual neighborhood; therefore in Section
[7.9:3], we outline how to extend the construction of Section to the case of gluing two families
of anti-self-dual connections over a pair of four-manifolds, X; and X5, to produce new anti-self-
dual connections over a connected sum, X = X;#X5. Finally, in Section [[.9.4] we very briefly
outline the changes needed to extend our discussion of gluing anti-self-dual SO(3) connections to
gluing SO(3) monopoles and thus construct a virtual neighborhood for the moduli space of SO(3)
monopoles near a possibly singular stratum of SO(3) monopoles in a lower-level and complete the
proof of Hypothesis [.8.1] as a theorem.

7.9.1. Construction of a virtual neighborhood for the moduli space of SO(3) monopoles
near a top-level singular stratum of SO(3) monopoles. We begin by recalling the basic out-
line, in the absence of bubbling, from our article [28| Section 3] for how to construct a virtual
neighborhood for the moduli space of SO(3) monopoles near a top-level singular stratum of SO(3)
monopoles. The ‘gluing map’ and ‘obstruction section’ are defined in terms of a Kuranishi model
that describes how the Seiberg—Witten moduli space, Ms, is contained in the top level, .#;, of the
Uhlenbeck compactification, .#, of the moduli space of SO(3) monopoles.

We can assume that M, contains no zero-section pairs by [28] Corollary 3.3]. The Banach Lie
group, %, acts freely on the open subspace, %N{O - %N{, of non-zero-section pairs and the quotient,
€0 = €)%, is a smooth Banach manifold by [27, Proposition 2.8]. We have a smooth Hilbert

1 the sense of Kodaira—Spencer deformation theory, rather than in the sense of bubbling or elliptic regularity
theory.

2Reducible SO(3) monopoles or Seiberg—Witten monopoles in our application.

3Reducible anti-self-dual connections in the context of the proof of the Kotschick-Morgan conjecture [21], (52]
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vector bundle, ¥ = €0 x¢, L*(X;AT @ g¢® W~ ® E) over €2, as in [28], Equation (3.39)], where
t = (p,W ® E). We obtain a smooth splitting of Hilbert vector bundles, U | +(¢Y) = T! ¢ Y"
for 1(%,) C %, following [28, Equation (3.40)], where s = (p,W). We let  C % denote an
open subset that contains a compact subset of +(%). By [28, Theorem 3.19], there is a finite-rank,
smooth, product vector subbundle, = C U, over % with the following properties:

e = is S! equivariant with respect to the circle action specified in [28] Equation (3.2)]
(implied by a splitting E=C® Land W® E=W & W ® L, with C* acting trivially on
C = X x C and by scalar multiplication on L) and given in this monograph by (2.3.15));

o = [ 1(%Y) is a smooth complex vector bundle;

e The SO(3)-monopole equations (2.1.10]) (compare |28, Equation (2.32)]) define a smooth
section, &, of U — €;

o If IIz : ¥ — = is the smooth map of vector bundles defined by L?-orthogonal projection
and U | % = Z® =" and sy := idy — IIz, then

IIz: : Ran(D&) g0 — Ej@
is a surjective map of fibers, for each [A, ®| € %, where
By C LAY @ g W™ ®E).
The SO(3)-monopole section, &, of U — 6 induces smooth sections,
II=0& of Z—%,
Mzt 06 of Et %,
with IIz1 o & defining the virtual moduli space (denoted by .#(Z,s) in |28 Equation (3.41)]),
M = (= 08)7(0) L.

Furthermore, our |28, Theorem 3.21] provides that:

e The Seiberg-Witten moduli space, Mj, is an S'-invariant, smooth submanifold of ///gsir
via the smooth embedding ¢ : €2 — €;

e The restriction of & to ///t";r takes values in E and vanishes transversely on ///t";r —(Ms);

e The smooth vector bundle, Ny, — M, given by [28] Equation (3.42)] (where it is denoted
by N(E,s)) and in (2319) in this monograph, and constructed from the deformation
complex for & is the normal bundle for the submanifold, ¢ : M, — e///t"EH, the tubular map
is equivariant with respect to the circle action on N4 given by the trivial action on the

base M and complex multiplication on the fibers, and the circle action on ///t";r induced
from the S* action in [28, Equation (3.2)].

In the next subsection, we shall further explore certain aspects of the construction of virtual neigh-
borhoods in the simpler setting of the moduli space of anti-self-dual connections.

7.9.2. Virtual neighborhoods for the moduli space of anti-self-dual connections.
There are essentially two ways of splitting the non-linear anti-self-dual or Yang—Mills equations in
the presence of cokernel obstructions in their linearizations:

(1) Taubes’ intrinsic splitting for the Yang-Mills equations [96, Equation (8.4)] (compare [95],
Equations (2.7) and (2.8)] for the anti-self-dual equation), and
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(2) Donaldson-Kronheimer’s extrinsic splitting for the anti-self-dual equation [15, Equations
(7.26) or (7.27)].

These two approaches are inspired by the method employed by Kuranishi [55] in the deformation
of complex structures and adapted by Atiyah, Hitchin, and Singer [2] to the anti-self-dual equation,
but the technical differences between them are significant. In this subsection, we describe these
methods in their original context for the anti-self-dual equation but they formally extend, with
minor changes, to other non-linear equations arising in gauge theory, such as the Yang—Mills, SO(3)-
monopole, and pseudo-holomorphic curve equations. Indeed, in Section [7.9.4] we outline such an
extension for the SO(3)-monopole equations, as required by our application in this monograph.

An earlier variant of Method () was used by Taubes in [95] for his construction of solutions to
the anti-self-dual equation and generalizations of his idea are described, for example, by the authors
in [21), 24]. Method (), proposed by Taubes [96] in the context of the Yang—Mills equations, was
adapted to the anti-self-dual equation by Friedman and Morgan in [35] Section 3.4.6]. Method
() is more abstract and, unlike Method (), does not rely on an eigenvalue splitting for a Laplace
operator depending on a connection, A, and thus is more suitable when spectral flow occurs as the
connection A varies in a large neighborhood. In this subsection, we shall review these methods in
their original setting of the anti-self-dual equation.

7.9.2.1. Taubes’ intrinsic splitting. Let G be a compact Lie group and P be a smooth principal
G-bundle over a closed, oriented, smooth Riemannian four-manifold (X, g) and % C </ (P) be an
open neighborhood in the pre-configuration space of all WP connectiond] 4 on P (with p € (2, 00)).
For Method (), given a constant u € (0, 1], one aims to solve the following pair of equations,

(7.9.1a) Hf;(A)F*'(A) =0 (for Ain %),
(7.9.1b) I, (A)F*t(A) =0 (for Ain % and solving (T.9.1a)),

where I, (A) € L (W?P(X; AT®adP)) is the finite-rank L?-orthogonal projection from W2P(X; AT®
adP) onto the subspace spanned by the eigenvectors of the unbounded operator,
didy" LX(X; AT @ adP) — L*(X;AT @ adP),

with eigenvalues less then u/2, while Ht(A) :=1—1I,(A); we choose p so that no eigenvalue of
did}" lies in /2, u]. In applications of Method () and its variant in [95], such as in Feehan and
Leness [21], the point [A] varies in an open neighborhood % = %/ Aut(P) in the configuration
space, B(P) := o (P)/ Aut(P), of all WP connections modulo the action of the group of W?2P
gauge transformations, Aut(P). We assume that each [A] € % obeys FT(A) < ¢, for a small
e € (0,1]. We also assume that % is small enough that the eigenvalues of difdif’* do not cross
— in other words, small enough that there is no spectral flow as [A] varies in %/. The infinite-
dimensional equation (7.9.1a)) is often called the extended anti-self-dual equation and the finite-
dimensional equation (7.9.1D)) is often called the balancing equation.

7.9.2.2. Donaldson—Kronheimer’s extrinsic splitting. This method can be viewed as a more
flexible version of Method () and is especially appropriate when the open Aut(P)-invariant neigh-

borhood, % C %(P), cannot be assumed to be small and one must contend with spectral flow.
If = denotes both a finite-rank, product vector bundle over % and (slightly abusing notation) its

4By analogy with the notation of Adams and Fournier [1], we define the WP Sobolev norm of a € C™ (X; A®
adP) by requiring that VA¢/a € L”(X;Al ® adP) for j = 0,1,...,k, given a smooth reference connection on P,
integers k, ! > 0, and constant p € [1, 0o].
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pullback to % (by the quotient map, 7 : .« (P) — B(P)), we let II=(A) : L2(X; AT ®adP) — Z(A)
and I (A) := 1 —TIz(A) =z (A4) : L2(X; AT ®adP) — Z1(A) denote the L2-orthogonal projec-
tion operators for A € %, where L*(X; At @ adP) = Z(A) ®Z+(A). As we discuss in the following
paragraph, one can construct the bundle = so that the operators,

(7.9.2) Iz (A) : Rand} — E+(A),

are surjective for all [A] € % .

For a small enough neighborhood %, spectral flow is limited and the bundle = can be con-
structed by decomposing the spectrum of d;d;’* into a set of small non-negative eigenvalues
bounded above by p/2 and a set of eigenvalues bounded below by a uniform positive constant
p, just as in Method (). One then defines Z(A) := E,(A) C L*(X;AT ® adP), the subspace
spanned by the eigenvectors of djgdj’* with eigenvalues less than u/2. For a large open neigh-
borhood, %, one can instead employ the method described by the authors in [28] Section 3] to
construct = in the context of the SO(3)-monopole equations (Z.I1.10]).

Regardless of how the bundle = is constructed, the smooth map,

U>A—TEFT(A) :=E(A)FT(A) € IZ(A)L*(X; AT @ adP),
defines a smooth section of the smooth vector bundle, 2+ — % . Moreover, if F¥(A) = 0, then
DMEFY)(A)a =TZ(A)da, VaecWH(X;A' @ adP),

is the derivative of the smooth map, HéF T, at A in the direction a, noting that dj{a is the derivative
of the smooth map, A — F*(A), at any connection A in the direction a. In particular, the operators

D(IIEFH)(A) € .& (W1’2(X; Al @ adP), Hé(A))

are surjectivd] for any [A] € % with FT(A) = 0. Hence, provided % N (FT)~1(0) # @, we
can arrange that the operators D(IIZ F*)(A) are surjective for any [A] € %, by shrinking % if
necessary, and the set of solutions A to the extended anti-self-dual equation,

(7.9.3) I (A)FH(A) =0 (for Ae %),
is a smooth submanifold of % by the Implicit Function Theorem. The quotient,
M(P,g;E) := (IgF*)~1(0)/ Aut(P),

is a finite-dimensional smooth submanifold of % away from points [A] where the stabilizer of A in
Aut(P) is larger than the center of G.
When we solve the balancing equation,

(7.9.4) M=(A)Ft(A) =0 (for A€ % solving (T93)),
to produce
% N M(P,g) = M(P,g;E) N (I=F*)~1(0),
we recover an open neighborhood in the moduli space M(P, g) of anti-self-dual connections on P.
5And thus admit right inverses, a construction favored by Donaldson and Kronheimer in [I5] Section 7.2.2] as a

way to convert the first-order anti-self-dual partial differential equation into a zeroth-order nonlinear integral equation
that may be solved using the Quantitative Inverse Function Theorem.
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Given an anti-self-dual ‘basepoint’ connection, A’ on P with F*(A?) = 0, and constant & €
(0,1], we define an open ball,

By (e) = {a € I/V;}XLJD(X;‘/\1 ® adP) : HaHW;,bp(X) < E} .

The Implicit Function Theorem yields a Stab(Ab)—equivariant embedding,
(7.9.5) v 1 By () N Ker (d’;‘b + Hé(A")dJAfb> 5 a y(a) = A+ a+ p(a) € #(P),
where p(a) is defined by solving (7.9.3)), that is,
12 (A’ + a + p(a)) FT (A + a + p(a)) = 0.
Here, v is the analogue of a gluing map in [35], [95] and

(7.9.6) X = =F* : By (2) N Ker (djlb + Hé(Ab)d;b) - I (A" LA(X; AT @ ad P)

is the analogue of an Stab(A”)-equivariant obstruction map in [35} [95]. For small enough ¢ € (0, 1],
one may replace H%(Ab)di;b by d;b in the definitions of v in (Z.9.5]) and x in (Z.9.6) and recover
the standard Kuranishi model [15], Proposition 4.2.23] for an open neighborhood in M (P, g) of a
single point [A?]. However, the advantage of the model (Z9.5), (Z.9.6) is that it also adapts to the
case where [A°] varies in a smooth stratum .7 of M(P,g) and where there would be spectral flow
for the Laplace operator, dj;bd;;*, so the bundle Ran H“(Ab) would not have constant rank along
& for any choice of p € (0, 1], whereas — as we explain in [28] Section 3] — we may choose = so
that it has constant rank along . and (7.9.2]) holds. The ball B, (¢) would then be replaced by a

relatively open tubular neighborhood, N (¢), of a closed smooth manifold, .7.

7.9.3. Extrinsic virtual neighborhoods for the moduli space of anti-self-dual con-
nections and gluing. We shall omit discussions of the more technical analytic aspects of gluing
anti-self-dual connections or SO(3) monopoles described in [21}, 24], complex structures, C* or S*
or other group actions, or group equivariances, noting that our gluing constructions are natural
and that all group actions and equivariances extend from the setting of [28] (no bubbling) to those
considered here in the presence of bubbling.

We continue the notation and setup of Section and first consider the problem of splicing
a pair of families of connections, A; € %;, on smooth principal G-bundles P; over closed, oriented,
smooth Riemannian four-manifolds, (X;,g;) for i = 1,2, that are connected by a small cylinder
(or neck or tube) diffeomorphic to S% x (—1,1) and whose neck size is defined by a small neck
parameter, A € (0,1]. Our development is inspired by that of Donaldson and Kronheimer [15],
Section 7.2].

The open Aut(P)-invariant neighborhoods, %; C <7 (P;), project under the action of Aut(P;)
onto open neighborhoods %; in the configuration spaces #(P;) := </ (P;)/ Aut(P;). We assume that
each [A;] € %; obeys ||[F*(A;)||2(x,) < &, for suitably small ¢; € (0,1]. We let Z; denote finite-rank,
product vector bundles over %; and their pullbacks to %; and let Mz, (A;) : L*( X AT ® adPy) —
Zi(4;) and Héi (A;) :=1-1Ig,(4;) = 1 (A;) denote L2-orthogonal projections for i = 1,2, where
L*(X;; AT ® adP) = Z;(A;) ® 2 (A;). As we explained in Section [[9.Z2] one can construct the
Z; so that the operators,

(7.9.7) Iz, (A;) : Rand} — Z;-(A4;),
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are surjective for all [A;] € %; and ¢ = 1,2. The smooth maps,
Ui > A= TIE (A)FT(A;) € TIE (A) L (X AT @ adP),
define smooth sections of the smooth vector bundles, EZL — ;. We can arrange that the operators
D(Héi FT1)(A;) are surjective for any [A;] € %;, by shrinking %; if necessary, and the zero locus,
(14, F)71(0) = {4 € % : 14 FH(4y) = 0},

is a finite-dimensional, smooth submanifold of %;.

If X := X7#X, denotes the connected sum of X; and Xy along a small cylinder, then we
may use splicing to construct approximate solutions, A’ := A;# As, of the extended anti-self-dual
equation (7.9.3]) on the smooth principal G-bundle P = P;#P, over the closed, oriented, smooth
Riemannian four-manifold (X, g), where g coincides with the g; outside the neck region, = := Z1 B =,
is the induced finite-rank product vector bundle over X, the operators

IIZ(A) : Rand} — E+(A)

are surjective (by construction) for all [A] € %, where L?(X;AT ® adP) = Z(A) ® =4 (A) and
M (A) :=1—TIz(A) = Ilz1(A), and Z C PB(P) is an open neighborhood containing 24 # %,
the set of all gauge-equivalence classes of the spliced connections, A;#As, and U C o (P) is
its Aut(P)-invariant pullback. We now apply the (Quantitative) Implicit Function Theorem to
construct solutions a := p(A’) € ij’,p (X;A' ® adP) (for small enough parameters 1,2, \) to the
extended anti-self-dual equation (.9.3]), namely

IEFH (A +a)=0 (for A € %).
Just as in the case of the component sections, HéiF T, the zero locus,
M(P,g:E) = {[4] € % : L F*(4) = 0},
is a finite-dimensional, smooth submanifold of %. By solving the balancing equation (7.9.4]), namely
M=F*(A) =0 (for A€ % solving (79.3)),

to produce
% N M(P,g) = M(P,g;Z) N (=F*)~1(0),

we recover an open neighborhood in the moduli space M (P, g) of anti-self-dual connections on P.

Suppose now that we are given a pair of anti-self-dual basepoint connections, AE on P; with
F+(AE) = 0, and constants ¢; € (0,1] for ¢ = 1,2. For small enough £;,e2, A\, the Quantitative
Implicit Function Theorem yields a Stab(A?) x Stab(A3)-equivariant embedding,
(79.8) 7 By (e1) NKer (dzg + 1L, (4})d}, ) x B, (£2) N Ker (d;; + 114, (43)d, )

x Isomg(Py,, Pr,) 3 (a1, a2, h) — A+ a + p(a) € o (P),
where p(A’) is defined by solving (7.9.3)), that is,
Mz FH(A + p(4") =0,
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and the approximately anti-self-dual connection, A" on P, is defined by splicing AZ +a; fori=1,2.
Here, 7y is the gluing map and

(7.9.9) x: By (e1) NKer (d*A? + 1L, (A?)dz?) x B 4, (€2) N Ker (d;g + 1L, (A%)dXQ
X ISOIng(Pml s Pm) > (al, ay, h)
= Iz FT (A + p(A") € TIZ (A + p(A')L*(X; AT @ adP)

is the Stab(A}) x Stab(Aj)-equivariant obstruction map. The existence and properties of v in
[CO8) and x in (C99]) are established by Donaldson and Kronheimer in [15, Theorems 7.2.62
and 7.2.63]. The gluing map ~ in (Z9.8) descends to the quotient by Stab(A}) x Stab(A%) to give
a continuous embedding onto a relatively open subset of Z(P) (respectively, smooth embedding
away from singularities) and restricts to a continuous embedding from x~!(0) onto an open subset
of M (P, g) (respectively, smooth embedding away from singularities).

In the case where [A?] varies in smooth strata .#; of M (P;, g) and where there would be spectral
flow for the Laplace operators, d}_d}*, so the bundles RanII,,, (AE) would not have constant rank
along .#; for any choice of u; € (b, 1]2, we may choose = = =1 @ =9 so that it has constant rank
along .1 x % and ([.9.2]) holds. The balls B 2 (¢) would then be replaced by a relatively open

tubular neighborhoods, N (), of a closed smooth manifolds .7;.

In applications to the proof of the Kotschick—Morgan Conjecture in this monograph, the above-
mentioned strata, .¥ or .¥7,.%%, in this context comprise isolated points corresponding to reducible
anti-self-dual connections. However, in our application of these ideas to the proof of the Witten
Conjecture, we must allow for positive-dimensional strata of reducible SO(3) monopoles, that is,
positive-dimensional moduli spaces of Seiberg—Witten monopoles.

When the neck parameter, A, tends to zero, the pair (v, x) converges continuously to (v X
Y2, X1 X X2)- In typical applications (for example, see Donaldson and Kronheimer [15] Theorem
8.2.3 and Proposition 8.2.4] or our application to the proof of the Kotschick-Morgan Conjecture), we
choose (X2, g2) to be (S, ground), the four-sphere equipped with its standard round metric, g,ound,
of radius one. The gluing theory summarized in this subsection yields an open neighborhood of a
boundary point ([A1,q1], [A2, ¢2]) in the bubble-tree compactification of M (P, g1), where 1 € P4,
and go € P3|s and the point 1 € X is identified with the south pole s € S*. By ‘forgetting’ the
additional data on S* (aside from cy(P;) when G = SU(2), which defines the multiplicity of the
point x1) and the frame ¢; € P;|,, when the neck parameter A\ becomes zero, the gluing theory
yields an open neighborhood of a boundary point ([A1],z1) in the Uhlenbeck compactification of
M(P,g).

Lastly, the gluing theory for solutions to the anti-self-dual equation on the principal G-bundle
P = Py#P, over the connected sum X = X # X5 summarized in this subsection extends to the case
of multiple connected sums (see Donaldson and Kronheimer [15, Chapter 8] and Feehan and Leness
[24]) and tree connected sums (see Feehan [17], Peng [80) [81], and Taubes [96]) required when
building parameterizations for open neighborhoods of points in the boundary of the bubble-tree
(and hence Uhlenbeck) compactification of M (P, ¢1).

7.9.4. Construction of a virtual neighborhood for the moduli space of SO(3) monopoles
near a lower-level singular stratum of SO(3) monopoles. The gluing theory described in
Section [(.9.3] for solutions to the anti-self-dual equation generalizes formally to the case of the
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SO(3)-monopole equations (2.I.10). However, the analysis required to prove that the gluing map
~ » and obstruction map x have all the properties asserted by Hypothesis [[.81] is considerable
and the details of that analysis do not extend in a straightforward manner from those previously
encountered in the case of the anti-self-dual equation (for example, Donaldson and Kronheimer
[15], Feehan [17], Fechan and Leness [21], Morgan and Mrowka [72], Mrowka [74], and Taubes
[94, 95|, 96]). We summarized the principal new analytical difficulties in our article [24] and
address them fully in [22].

In this subsection, we outline a method for extending the construction of the stabilizing bundle
= for Rand] to give a stabilzing bundle = for Ran d}47¢ and hence define a splitting of the SO(3)-
monopole equations (ZLI0). If (X,g) = (S% ground) and P is a principal SU(2)-bundle over S*
and (p, W) is the standard spin® structure over S, we recall from [27, Remark 4.6] that if (A4, ®)
is an SO(3) monopole on (P,W™), then ® =0 and F{ = 0. The linearization, d11470 = (DG)(A,0),
of the SO(3)-monopole equations, &(A, ®) = 0, in LI0) at an SO(3) monopole (A,0) over S* is
given by [28, Equation (2.49)], namely,

(D&)(4,0) = (d, Da),

where Dy : C®(S*, W+ ® E) — C®(S*, W~ ® E) is the coupled Dirac operator (with L?-adjoint
DY : C®(SYL,W-®E) — C®(SY, WT®E)) and, as usual, d} : C*°(SY; A'®@adP) — C®(SH AT ®
adP) is the linearization of the anti-self-dual equation, FX = 0, at an anti-self-dual connection,
A, and E = P x4q C%. According to [24, Lemma 8.12], when FX = 0, the kernel of D% D4 (and
thus Dy) is zero, the real dimension of the kernel of D4D% (and thus DY) is equal to twice the
complex index of D%, namely Indexc D% = dimc Ker D% — dimc Ker Dy = c2(E) by [27, Proof of
Proposition 2.28], and the least positive eigenvalue of the Dirac Laplacian, D4 D%, is equal to 3.
Hence, as A varies over M (P, ground ), the kernels, Ker D% (equivalently, the cokernels, Coker D 4),
define a complex vector bundle, Ker D* = Coker D, of complex rank co(E) over M (P, ground)- As
usual, Coker dj = {0} when A is an anti-self-dual connection over S* by [2] Proof of Theorem 6.1]
and thus Coker d11470 = Coker D 4.

We may extend the basic setting of Section [[.9.3] to the case of SO(3) monopoles and consider
splicing a family of SO(3) monopoles, (A1, ®1), on (P, W;") over (X1,01) = (X,g), and a family
of zero-section SO(3) monopoles, (A2, 0), on (P, W5") over (X2, g2) = (5%, ground) to form a family
of approximate SO(3) monopoles, (A’, ®') = (A1# A, ®1#0), on (P,WT) = (Pi#Py, W #Wh)
over the Riemannian connected sum, (X#5%, g#grouna). We may choose the stabilizing bundle =
for Ran d}417¢1 described in Section [7.9.1] and choose =5 = Coker D to form a stabilizing bundle,
= =21 =y, for Ran d}4,7q>, over the connected sum, X#S5%.

As in Section [7.9.3] the preceding construction extends to the case of multiple connected and
tree connected sums. One difference in the case that all summands in a tree except (X1, 1) = (X, 9)
comprise copies of (54, Jround) 1s that we may use the Taubes small-eigenvalue decomposition to
construct obstruction bundles corresponding to connected sums of copies of (54, grouna) since there
is no spectral flow for the Dirac Laplacians, D4 D%, over (S*, ground)-






CHAPTER 8
Link of an ideal Seiberg—Witten moduli space

We now use the Thom-Mather structure defined in Section [6.7] to construct a virtual link, I_JtVisr,

given by the boundary of a neighborhood of M, x Sym‘(X) in ///t r/S1. The link, Ly, appearing
in Z6.00), of My x Sym‘(X) in .#/S" is then the intersection of the virtual link Ly with the zero
locus of the obstruction section ¥ appearing in Hypothesis [.8.1]

We construct the link in Section B using the tubular distance functions #(t,s, 2;) defined in
(67.8]). We use our understanding of the overlap maps to show that the virtual link I:,Zisr can be

decomposed into closed subspaces, enumerated by the strata of SymZ(X ). Each of these closed
subspaces is a smoothly-stratified space. From this definition and a discussion of the orientation of
the link, we prove Theorem and thus the cobordism sum (2.6.1)).

Our understanding of the overlaps of the spaces % (t,s, 2) allows us to prove in Section
that each of the aforementioned closed subspaces of the virtual link admits a fiber bundle structure.
In Section R3], we describe the intersections of these subspaces of the link and the interaction of
the intersections with the fiber bundle structures.

8.1. Definition of the link of an ideal Seiberg—Witten moduli space

We define the link L of an ideal Seiberg-Witten moduli space by first constructing a virtual
link in Section R.I.Il This virtual link is the union of closed subspaces, as described in (8.I1.2]),
®I4), and (BI5). We discuss the orientations of the link in Section R.I.4] as needed to deﬁne
the intersection numbers appearing in the terms of the cobordism sum in (2.6.1]) in Theorem [
Then in Section [B2] we give a more detailed description of the closed subspaces of the link deﬁned
in (815, showing how they admit a fiber bundle structure which will be used in the pushforward-
pullback computations of Chapter [I0l

8.1.1. The virtual link of an ideal Seiberg—Witten moduli space. The virtual link is
defined as the boundary of a neighborhood of M, x Sym‘(X) in AMFE)SY. The subspace M x

Sym*(X) of /// Vir /St is the intersection of the zero-locus of the function defined by a norm on the
fibers of the vector bundle Ny (6) — M,

(8.1.1) tn A /ST—[0,4],

with the union of the zero-loci of the tubular distance function £(t,s, 2;) defined on % (t,s, 2;) in
(68)). We will define the virtual link as the union of two subspaces,

(8.1.2) Ly = I‘Jzisr,s U I_,f;”

VlI‘ S

The first subspace, Ly, s+ 1s defined to be the codimension-one subspace,

(8.1.3) L =ty (6) c AT /SY,

135
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in the sense that the intersection of LVlr’s with each smooth stratum of ///t“r /St is a codimension-

one submanifold. To define the instanton component of the link, Lff 2, first enumerate the strata

of Sym®(X) with partitions Z, ..., %, of N; as done in §3.4. Then, define

(814) VlI‘Z — U Lvlrz

with each subspace Ef;rz(@]) given as the pre-image of a codimension-one submanifold with corners

(in the sense of [49]) in [0, 1]/ under (t, s, 2;). We now define the subspaces, LVlr Z(@j), of the
instanton link.

Assign a small, generic constant €; to each such partition &2; with €; > ¢, for j < k in a manner
to be specified in Lemma Then define a subspace of the instanton component of the link by

(8.15)  LIM(2)) =% (5, 2,)/S" N5, 2,) " (0D(2. )\ | flts, 24) 7 (D(2, 21)).
k)
Recall from (G.7.8) that the map £(t,s, &;) is defined by the functions Ap on the connections over

S* making up the fiber of Gl(t,s, 2) — X(X*, &). Because of the separating condition (G.2.10)
on the scales of these connections over S* in the definition of % (t, s, Z;), the inclusion

m(t,s, 2;) 7 (x) Nt s, 2;) 1 (D(P,¢;)) C mlt,s, P5) Hx) N % (4,5, P))

need not hold as x € X(X¢, Z;) approaches lower strata in Sym‘(X) and hence the subspace
t(t,s, 2;,)"H(D(P,¢;)) of % (t,5, P;) need not define a fiber bundle. The following lemma ad-
dresses this issue.

LEMMA 8.1.1. Let & be one of the partitions of Ny chosen before (814). For any compact
subset K € L(XY, P;), there is a positive constant €; such that for all positive € < €;, the set

tt,s, 2;,)"{(D(P;,e) N7(t,s, P;)~ (N{(g S(0)/St x K)
s a proper subspace of
U5, 2;)/S" Nw(ts, 2;) 7" (Nyps(6)/S' x K) .
PRrROOF. The lemma follows immediately from the compactness of K. O

We now describe how to chose the decreasing sequence of constants appearing in (8I1.5). We
say that a codimension-one submanifold N of a manifold M is smoothly collared if there is a smooth
embedding, N x (—¢,e) — M, whose restriction to N x {0} is the inclusion N — M.

LEMMA 8.1.2. There is a decreasing sequence of positive constants €9 > €1 > -+ > &, such
that the virtual link Ly defined in BL2), ®L3), and @LI) by these constants has the following
properties:

1 fJVir is the boundary of a neighborhood of My x Sym®(X) in .4 /S*.
t,5
2 The intersection o LVlr with each stratum & of MF/S* is a Whitney-stratified space
t,5
whose top stratum is a codz’mensz’on one, collared submanifold of ..
e intersection o wi e top stratum o is a topological manifo
3) The intersecti LYY with the top strat AMYE) ST topological ld.
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Proor. We work by induction on the partitions &?; of N, used to enumerate the strata of
Sym*(X) before (8LH). The lowest stratum, X(X¢, ), of Sym*(X) is necessarily compact and
so there is a small positive constant ¢ such that Lemma BI.T] applies with K = X(X ¢ ).

Assume that we have defined e, . .., e—1 such that for 0 < j < k—1, ¢; is a constant sufficiently
small that Lemma BT applies to K; € X(X*, &;) where K; is constructed as in Lemmas E3.1]
and using the constants ¢; with i < j. If we define K C (X%, #;) as in Lemmas A£8.1] and
applied to the constants ¢g,...,ex_1, then Lemma implies that K} is compact. We now
select €, < e—1 so Lemma [B.I.1] applies to K.

We note that for any € > 0, the set £(t, s, 2) "1 (D(2,¢)) is a closed neighborhood of Ni),(8)/S" %

Y(X* P) in % (t,5, ). Hence,

(8.1.6) |J tlt,s,2) " 1(D(2),¢)))

J

= [ fts,2) (D25, \J Tlt.5,2:) 7 (D(2,20)
J i#]
defines a closed neighborhood of Ny 4(6)/S* x Sym‘(X) in U;% (t,5, 22;)/S*. The link 8L2) is
the boundary of the preceding nelghborhood proving Item ({I).
We prove that the intersection of the space (8LG) with each stratum of ///t Ir/St is a smooth
manifold with corners using the following criterion. If Y is a smooth manifold and fi:Y =Risa
smooth function for 1 < j < p, then the subspace,

Z={yeY: fjly)<egforj=1,...,p},
for given constants e1,...,e, will be a manifold with corners if for every collection of indices
1 <ji1,...,Ja < pandevery y € Y satisfying fj, (y) = ¢j,, the derivatives (dfj, )y, ..., (dfj,)y are
linearly independent.

The level sets playing the role of f j_l(ej) for the space (8.1.6)) are the subspaces of % (t,s, #)/S"
defined by

(8.1.7) Hp(2,e) = ilt,5, 2)~} ({(AQ)QM Ap=c}C RW\) :

From the definition (6.7.8) of #(t,s, &) in terms of the functions Ap, the intersection of Hp(Z, )
with open sets of % (t,s, %) of the form

(8.1.8) N xopx [ M3k ),
pPez
where N C Ny 4(6) and 05 C A°(X*, ) are open subsets, is given by the pre-image of 5\;1(5) C
s)b
M, SPL,| P|
with each stratum of //[t r/S! will be a smooth, collared, codimension-one submanifold of that
stratum. For any collection Pp,..., P, € &, at any point in the intersection of

(8.1.9) le(@,E)ﬂ”'ﬂHps(r@,E)

with an open set of the form (8L8]), the pullbacks of the derivatives dAp,,...,dAp, will be linearly
independent at points in (8.1.9) by the product structure of (8I1.8]).

(0) under the obvious projection. Hence, for generic values of ¢, the intersection of Hp (2, ¢)
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To prove that the above criterion applies to more general intersections of the form
(8.1.10) HPkl(’@kuEM)m"'mHPka('@kavgka)v

we argue by induction on a. For a = 1, the result follows by the argument above given for
intersections of the form (8I.9). Now assume a > 1. After re-ordering the indices, we can assume
that P, < Py, < -+ < P,. The case where Py, = Py, = --- = P, has been done in
(BI19). Then assume that &, =--- = Py, < Py, . . By Theorem [6.6.1] points in % (t,5, Z,) N
U (t,5, Py, ) have neighborhoods which are smoothly-stratified diffeomorphic to an open subspace

of (see (G.5.1)

(8.1.11) Nxox I | 2%Zp6e), (P, ey < T1 M3 006 |
PePy, P'e(Pry 1 )P

where N C Ny 5(6) and 05 C A°(XE, P,) are open subsets. The space ([BIII]) is smoothly-
stratified diffeomorphic to a product, %s x %, where

Us, .= N x O x H AO(Z\P|(5P)7(‘@’%+1)P)’
PeZy,

%= ] 11 MSEuL,\Pf\(fS)'

Pe%y, P’e(ﬁzkbﬂ)p

We write py; and pys for the projections maps from the space (BIII) to % and %, respectively.
From Lemma B.73, for u > b the restriction of #(t,s, %;,) to an open subspace of the form
(BIII) equals the pullback by pas of a map on %);. By induction, the derivatives of the components

-,

of t(t, s, P, ) defining Hp, (P}, ,¢r,) are linearly independent at points in the intersection
(8.1.12) HPka (‘@kb+17€kb+1) n---N HPka (Phas€ka)-

If Pp, ¢ Py,,, forall 1 < v < b, then from Item (B) of Lemma B9.T] and the second equality
of ([6.4]), the maps f(t,s, Py, ) are equal to the pullbacks of functions on %5 by py. Again by
induction, the derivatives of the components of F(t,ﬁ, Py,) defining Hp, (Py,,ex,) are linearly
independent at points in the intersection

(8.1.13) HPkl(‘@lﬂ?Ekl)m”'mHPkb(‘@ktﬂgkb)'

Consequently, the derivatives of the functions defining the codimension-one submanifolds in (8 1.10])
are linearly independent at points in the intersection (8.I.I0) by the product structure %s x %
of (BI1II).

If P, € P, and Py, = Py, for 1 <v <b < u then, because ¢r, # ¢, , the intersection (8I.10)
is empty.

If P,, € &, and Py, # Py, for 1 < v < b < u then, on the open set (8III), the Py -th
components of £(t,s, %, ) and t(t,s, P, ) are equal. Thus, we can replace H Py, (P, Ek,) With
Hp, (Pk,:¢ck,)- Continue doing these replacements until the intersection is reduced to the previous
case considered. This completes the induction and shows that the intersections (81.10) satisfy our
criterion, proving that each stratum of the space (8.1.0]) is a smooth manifold with corners.
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The virtual link Iif’isr is the boundary of the space (81.6]). Hence, the intersection of Ef’ij with the
top stratum of //Zy;f /S is the boundary of a smooth manifold with corners and hence a topological

manifold, proving Item (3)).

From the preceding argument, we see that for generic, decreasing values of ¢1,...,&,, the
intersection of
(8114) %_(t757 ‘@J)/sl N F(t757 ‘@j)_l(D(‘@7 gj)) \ U {(tv57 ‘@k)_l(D(yy gk))
k#j

with each stratum of //Z(V;r /S is a smooth manifold with corners. Then, considering OD(@j, £5)
as a Whitney-stratified subspace of Rl with the lower strata being given by the intersections
NeHp,(2;,¢5), the function (t,s, 2;) is transverse to dD(%;,¢;) in the sense of [39 Definition
1.3.1] and so £(t, 5, 22;) "1 (0D(2;,¢;)) is a Whitney-stratified subspace of the space (8I1.14)), whose
top stratum has a smooth collaring by [39] Section 1.5], proving Item (2I). O

8.1.2. The link of an ideal Seiberg—Witten moduli space. We can now give the

_ DeFINITION 8.1.3. The link of an ideal Seiberg—Witten moduli space, Lis, of My x Sym‘(X) in
M) St s
Lis = x '(0) N LYY,
where X is the obstruction section in Hypothesis [[.81and Ly is the virtual link defined in (8.1.2).

t,s

From Item (2) of Hypothesis 78] the intersection of x*(0) with each stratum of ./ /S
is a smooth submanifold of that stratum. For generic values of ¢, the subspaces Hp(Z,¢) from

(BIT) defining the virtual link I_Jtvfsr will intersect x ~!(0) transversally. Hence, Lemma B.1.2 yields:

LEMMA 8.1.4. For generic values of the constants 6, e; used to define the virtual link in Lemma
812, the following hold:
(1) Lyg is the boundary of a closed neighborhood of My x Sym*(X) in .#4/S.
(2) The intersection of Ly s with each stratum . of M) S" is a Whitney-stratified space whose
top stratum is a codimension-one, collared submanifold of ..
(3) The intersection of I:,Zisr with the top stratum of .#;/S* is a topological manifold.

The proof of the following lemma then translates immediately from that of [30, Lemma 3.9].

LEMMA 8.1.5. Assume w € H*(X;Z) is such that w (mod 2) is good in the sense of Definition
221 Given a spin structure t on X and a spin® structure s on X satisfying ((t,s) > 0 and
wa(t) = w (mod 2), there are positive constants £y and 0y such that the following hold for all
generic choices of positive constants e; < €y and § < &g defining I_J;”i;:

(1) Lys is disjoint from MY and A in the stratification ZZ2) of #:/S".
(2) For all z € A(X) and positive integers n satisfying (8L20), and for the geometric repre-
sentatives ¥ (z) and W discussed in Section [2.4), the intersection,

(8.1.15) YV (2) NH" N Ly,

is a finite collection of points contained in the top stratum Ls of ]TJLE C M)S'.
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8.1.3. A subspace of the virtual link of an ideal Seiberg—Witten moduli space. The
deformation retraction Ny () — M, defines a deformation retraction of Ltwsr " to the subspace,

(8.1.16) BL;, = U BL{. (%)), where BL{,(2)):=t3}(0) L (),

where the function ¢y is defined in (8I1]). Essentially, ]S;insr(,@i) is defined by replacing ]\7{(@)75((5)
with M; in the definition (8IH). In Section @7, we will show that the intersections with L, in

vir

(26.1) can be replaced by intersections with BLy,.

8.1.4. Orientations of the link of an ideal Seiberg—Witten moduli space. To define
an intersection number using the intersection (8.I.15]), it is necessary to discuss orientations of
the link. An orientation for .#; determines one for L, through the convention introduced in [29),

Equations (2.16), (2.16) and (2.25)] by considering Lys as a boundary of (. \ v, (A4:))/S".
Specifically, at a point [A, ®] € Ly, if
ereT ///{* is an outward-pointing radial vector with respect to the open neighborhood
M N 7(/// V‘r) and spans a subspace complementary to the tangent space of Lyg,
® vgl € T///t is tangent to the orbit of [A, ®] under the (free) circle action (where S' C C
has its usual orientation), and
o Ay € det(T.#,") is an orientation for T.#, at [A, ®],
then we define an orientation Az, for the tangent space T4 ¢Lt,s when [A, @] is a point in the top
stratum of .#; by

(8.1.17) Aa = —vs1 AT AL,
where the lift \; € Amax _Q(T///t*’o) at the point [A, D] € ///t*’o of

AL € det(TLye) C A™™ =T °/SY)),
obeys AL = A, where 7 : 4 — #,/S' denotes the quotient map.

DEFINITION 8.1.6. If O is an orientation for .#, we call the orientation for L, related to O
by equation (BIIT) the boundary orientation defined by O.

Given a homology orientation 2, that is, an orientation for H(X;R) @ H'(X;R) as defined
prior to [53] Definition 2.1] and an integral lift w € H?(X;Z) of wy(t), an orientation O*5"(Q, w)
for . is defined in [29] Definition 2.3].

The standard orientation for Ly is defined in [30, Definition 3.12]. The standard orienta-
tion arises from orientations of spaces used in the definition of I:,Zisr and thus is more natural for
computations on this space. The standard and boundary orientations are related in the following

LEMMA 8.1.7. (See Feehan and Leness [30, Lemmas 3.13 and 3.14].) Let t and t(¢) be spin® structures
on X satisfying
p1(t) =p1(t(0)) — 4L, 1 () =c1(t(f)), and wa(t) = wa(t()).

Let Q be a homology orientation and let w € H*(X;Z) be an integral lift of wo(t) € H?(X;7./27).
If t(£) admits a splitting t({) = s & s ® L, then the standard orientation for Lis and the boundary
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orientation for Ly s defined through the orientation O (Q,w) for #, differ by a factor of

(8.1.18) (=1)2@9) - where  of(w,s) == i(w — (L)%

We note some alternative expressions for the change of orientation formula in (8I.18]), in
particular one which matches that appearing in Conjecture 2 Recall from [36, Definition 1.2.8(c)]
that w € H?(X;Z) is characteristic if w-a = o? (mod 2) for all a € H?(X;7Z).

LEMMA 8.1.8. Continue the assumptions and notation of Lemma[8.1.7. Then,
o(w,s) = % (w? +ci(s) - (w—cr(t)) + % (¢ —w?) (mod 2).
If w is characteristic and c1(t) - ¢1(s) = 0, then
of(w,s) = % (w2 +c1(s) - w))  (mod 2).

PROOF. The first equality is given by [29, Equation 4.62]. The second equality follows imme-
diately from the first and the additional assumptions. O

8.1.5. An equality of intersection numbers provided by the SO(3)-monopole cobor-
dism. For all z € A(X) and positive integers 7 satisfying (8I1.20), and for the geometric rep-
resentatives ¥ (z) and # discussed in Section 24, Lemma implies that we can define the
intersection number,

(8.1.19) #(7(2) NN L)

to be the oriented count of points in the intersection (8II5]), using the standard orientation of
I_;t,g. This yields the following equality of intersection numbers provided by the SO(3)-monopole
cobordism between links of the moduli space of anti-self-dual connections and links of the ideal
moduli spaces of Seiberg—Witten moduli spaces.

THEOREM 8.1.9. Let t be a spin® structure on a closed, oriented, smooth four-manifold X. Let
z € A(X) and n be a non-negative integer satisfying

(8.1.20) deg(z) + 2 = dim .#,"° — 2.

Assume that there is a class w € H*(X;Z) satisfying wo(t) = w (mod 2) and which is good in the

sense of Definition[2Z.271l. Then the intersection numbers (8I1I9) obey

(8.1.21) # (TN LE) == Y (=)D # (T ()N ML),
s5€Spin®(X)

where Eﬁ’,{ is the link of the moduli space of anti-self-dual connections in .#/S" specified in |28,
Definition 3.7].

8.2. Fiber bundle structure of the instanton component of the link of an ideal
Seiberg—Witten moduli space

We now describe the fiber bundle structure of the subspaces EZ;”(@]) ( defined in (8I15) of
the link of an ideal Seiberg—Witten moduli space.
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Recall from Lemma [6.7.3] that for non-negative integers j < k < r, the restriction of t(t,s, P)
to % (t,s, ;) N U (t,5, P) is given by the extension from the fibers of % (t,5, %2;) — Ny () X
Y(X¥, &) of the function
(25, 7)) - M(2) - || 17
P[P <Py
(For j = k, recall that [22; < &) = {Z?;}.) We note that the subset

|| D@ e)c ]

PP <Py PNE|P i< Py]
is closed under the action of (). For the constants € = (g, ...,&,) used in the definition of the

link in Lemma R.1.4] define
M(2j,€) = M(2)) N t7(25,[25]) " (0D(2. ¢5))
(8.2.1)

NURZEZNENN || D@".e)

k>j Pe|Pi<Py)
We then have the following fiber bundle structure on the subspace Lf;rz(@]) of the link.

PROPOSITION 8.2.1. Let € = (gq,...,&,) be the generic constants defining the link in Lemma
817 Let K; € %(X* ;) be the compact subset defined by those constants as in Lemma [.8.2.

For 0 < j < r, the subspace L;”s”(e@j) of U (t,5,2;)/S" defined in BILE) admits a fiber bundle
structure,

M(Zj,€) —— Nyu)s(0) Xg,x51 Fr(t.5, Z)) |k, X () M(Pj, €)
(8.2.2) we2) |
Ny 5(8)/S" x K;
where M(Z;,€) is defined in (821]).
PRrOOF. The proposition follows from our previously established results on the intersection,
(t{t.5, 2%) 7 (D(Pr.20))) 0 (Et 5, 25) 7 (0D(2,€5))

as we now describe. For j < k, Lemma B.7.3] equates (t,5, &) and the extension of (2}, [Z%])
and thus shows that the preceding intersection is given by the definition in (821). For k£ < j,
Corollary [6.7.7 and the construction of K; in Lemma [£.8.2] shows that removing the subset

U t(t,s, %) "L (D( Py, 1))

i<k
from £(t,s, 22;) "1 (0D (2}, ¢;)) is equivalent to restricting the fiber bundle 82Z2) to K. O
The following lemma will be used to define quotients of the link LVlr in Chapter [I0l

LEMMA 8.2.2. The restriction of the SO(3) action on M(Z?) defined by the diagonal action on
the frames,

(8.2.3) (([Ap, Fp,xpl)Pesr, M) = (([Ap, Fp M, Xp]) Pe ),
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v Y y S Y Svu
to M(Z,¢e) (defined in (821))) is free, where M € SO(3) and [Ap, F,xp] € MSPL"P|(5).

PRrROOF. The SO(3) action on M, 58 (6) given by the action on the frame is free at all points

SPL,| P|

except for points of the form [0, F'*, vp]|, where © is the product connection. Thus a fixed point
of the action (82Z3) will be of the form, Ay = (([©, Fp,xp|)pcr). If Ap € M(Z,¢€), then the
requirement that (2, [2])(A») € OD(Z,¢) in (B2.1) implies that not all the points xp can
be cone points, cp. Hence, for such a point Ap € M(Z,¢e) and for any Fyu € Fr(t,s, &), the
point [F», Az] will lie in the subspace T'(t,5, Z,[Z']) defined in ([65.4) for some partition 92’
with & < 2'. By a suitable choice of Fi» (that is, one which lies over a point x € %(X*, 2)
sufficiently far from the lower strata in Sym‘(X)), we can ensure that [F», Ap] € T (4,5, 2, [Z]),
where T (t,5, 2,(2']) is defined in Lemma By Lemma [6.6.2, Theorem [6.6.1, and the
definition of the equivalence relation ~ in (6.6.3)), there is a point [Fig, Agr]| € B(t,5, F'), where
Y(t,s, 2') C Gl(t,s, P') is defined in ([6.27), with

(Ao, @o), For, Agor] ~ [(Ao, o), Fz, Azl
for any [Ag, @o] € Ny()s(0). Because [Fpr, Agr] € X(t,5, F'), we have

7?({757 ‘@,)([(AO’ P9), Fp, Az]) = 67

where 0 is the vector with all coordinates equal to zero. However, Lemma [6.7.3] then implies that
tH(2,[2'))(A») = 0, contradicting the assumption that Ay € M(2,¢). O

As we describe in the following lemma, the subspaces ELX;r(@j) admit a fiber bundle structure
similar to that provided by Proposition 8.2.1]

LEMMA 8.2.3. Continue the hypotheses of Proposition [8.2.1. Then the space
(8.2.4) BL{(2;) = t3}(0) NI (2;)
is the restriction of the fiber bundle (8.2.2) to the subspace
M x Kj C Ny (6)/5" x K
of the base and is thus given by
M(Pj,e) —— M Xg, w51 Fr(t.5, 25, 99,) X2, M(P,€)

(825) W(tvsvyj)l
MS x K j
PROOF. The conclusion of the lemma follows immediately from Proposition B.2.11 O

8.3. Boundaries of components of links of ideal Seiberg—Witten moduli spaces

In Chapter [@ we will show that the intersection number ([8I.I9]) can be written as a cohomo-
logical pairing and in Lemma we will show that this pairing can be written as a pairing with
a fundamental class defined by the subspace P;Lzlsr. To apply the technique for computing such
pairings described in Section [L.2.7] we will define quotients of the intersections of the subspaces
B'_Lf;r(e@j) in Chapter [0l To ensure these quotients satisfy the conditions described in Section
[L.2.7 we now prove that these intersections are subbundles of the fiber bundles (82.1)).
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Define
— - — p —
(8.3.1) Ok, -+ O, BL{s (2;) := BL{s (2 ﬂ (t,5, 2,,) " (OD(Py, e1,))-

From the definitions (824]) and (815, we have the equality,
(8.3.2) OBL{: (#;) = BL{: (2;) N BL{s (2},) = 0;BL{x (P},).
More generally,
ﬂ BL{(2;,) = 0;, -+~ 8, BL{s (D).
If
d <E(Xf, @j)) NS(X,P) =0 and (X', 2,)Nd <E(Xf, %)) =2,

then the boundaries in (83.2)) are empty.
To describe the intersection (8.3.]), we introduce the following notation. For j < i1 < iy <
-+ < 1y, define

(8.3.3) 03, 0;, -+ 03, M (Pj,€) = M(Pj,€) N

(23

—

125,27 0D(Z4,.€1,)).-

DX

Il
—_

U

For non-negative integers k1 < ko < --- <k, < j <r, we define
P
(8.3.4) Oy - O, K = K; N ﬂ £ 92, ) HOD(Py, 1)) C B(XE, 2)),

where the function #(X?, g, ) is defined in (.TI).

PROPOSITION 8.3.1. For non-negative integers k1 < kg < --- <k, <jandj<ig <izg<---<
iy < 1, the intersection,

gy -+ O, Oy -+ 8Z-U]§insr(<@j),

defined in [B3J) admits a description as a fiber bundle,
0irOry -+ 03, M(Pj,€) —— g, Oy, 0, - 03, BL{L (2))
(835) W(tﬁv‘@j)l
M5 X 8k1 cee 8kaj
arising from the equality,
O -+ 0,01y -+~ 01, BL(S (2))
= M5 Xz % 81 Fl“(f,ﬁ, gzj)bkl...akp[{j X(;(yj) 82'161'2 ce 82-71]\74((@% E).

PROOF. For non-negative integers j < i, < r, Lemma [6.7.3] implies that the intersection of
BL{, (2;) with t(t,s, 2;,,)"1(0D(Z;,,€:,)) is given by the intersection of the fiber M (%, €) with

t1(25,12:,)) " (0D(P,  e4,)).-
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For non-negative integers k < j < r, we claim that the intersection of ELZLr(@j) with
t(t, s, 21,)"H(OD( Py, 1))
is given by the inverse image, under the projection 7(t,s, 22;), of the intersection of M; x K; with
M, x H{X", gz,) " (OD (P, e1,)).
To prove this claim, we will show that for A € BL;”;(@ ) and A’ :=7(t,s, Z;)(A) we have
(8.3.6) t(t,5, P)(A) € OD(Py,ei) if and only if t(t, s, 2)(A’) € ID(Py, e).

The latter condition is true if and only if A’ € My x 0xK; by Lemma [6.7.4] and the definition of
O K. Thus it suffices to prove (83.0) in order to complete the proof of Proposition B3l To this

end, we first collect the following observations.
Items () and (2] of Lemma imply that for all ) € &7 we have

(8.3.7) 2t 5, P, )(A)) <19(t,5, ) (A)
and
(8.3.8) 9,5, Z1)(A) # 19(t,5, P,)(A') if and only if Q € 2; N P,

and in this case (Q € &; N Z), we see that t¥(t,5, P;,)(A’) = 0. We further note that because
A e BLZE(W ), we have

(8.3.9) t(t,s, 2;)(A) € D(P;,e;) and thus 9(t,5, 2;)(A) <¢;, forall Q€ P,
Item (B) in Lemma 675 and (839]) imply that
(8.3.10) 2t 5, Z,)(A) = 19 (L5, P;)(A) < ¢; < e for Q € P;N .

If t(t,5, 21,)(A) € OD(Py, er), then t2(t,5, P;)(A) < g for all Q € P, and there is at least one
Qo € Py, with t90(t,5, Z;)(A) = ;. By B3I0), we have Qo ¢ P, N P, so (B3.F) implies that
t0(t,5, 2,)(A’) = ¢} This equality and (83.7) then imply that £(t,s, P )(A’) € OD(Py, c).

If #{t,5, Z1)(A') € OD(Py, ep), then t9(t,5, 2;,)(A’) < ¢, for all Q € P, and there is at least
one Qp € P, with t90(t, 5, 7,)(A’) = e, Because g, # 0, then (83.9) implies that Qp ¢ &, N P;
and #90(t,5, 2 )(A) = g. For all other Q € Zy, if Q ¢ P, N P;, then (83.8) implies that

Rt 5, Z,)(A) = t%(t, 5, 21)(A)) < e,

while for Q € Z, N Z;, we see that (8.3.10) implies t2(t, 5, P¢)(A) < . Hence, t(t,s5, Z;)(A) €
0D (P, k), completing the proof of (83.0). This completes the proof of Proposition 8311 O

Because Uy (%, [@J]) is defined in (6.7.3]) as the image of the injective (up to symmetric group

action) splicing map p fs] (1]’ there is a homeomorphism between Uf(%;,[2%;]) and an open sub-

space of
|_| H AO(Zp(ép H SPL |Q| /6(@1)
Pe ,7 <,7 } PEQ QE]”
Composing this homeomorphism with the obvious projection map defines a surjective map,
(8.3.11) U2 [23) = || ] A°Ze(6r), 25)/6(2).

P e[ Pi< D) PED;
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In addition, because

|_| H H SPL \Q\ /6(‘@2) = |_| H M;pi \Q\ /6(322)

Pl e[ Pi<P;| PEP; Qe P, PE(Pi< P;) QEP

- | M@ / &(7,),

PNe| P < Pj]

where M (") is defined in (6.2.5)), there is a G(;)-equivariant map,

(8.3.12) ¢ji Up(24,[25]) — U M(2") /6(%),

P e|Pi< Py
which will be used in Chapter 0l In that chapter, we will also require the characterization of a
group action on the image of ¢;; as described in the following two lemmas.

LEMMA 8.3.2. Let S' act on a topological space X . Assume that there is a non-zero N € N
such that the order of every isotropy group of this action divides N. If there is an action of a finite
group G on X which commutes with the action of S, then the S' action on 2 descends to an S*
action on X /G such that if \[x] = [x] for A € St, 2 € 27, and [z] € 2 /G, then X\ is a |G|N-th
root of unity.

PROOF. Denote the S action on 27/G by (), [x]) — [Az]. Because the S* and G actions on 2~
commute, this action is well-defined. If A[z] = [z], then there is a group element, g € G, such that
Az = gz. Then MClz = ¢lGlz = ex = 2 so M€l is in the isotropy group of z. By the assumption on
the order of the isotropy groups, MGV = ¢, as asserted. O

We say that an action of a group H on a topological space 2 has finite isotropy if there is a
finite subgroup K < H such that for all x € 2", we have H, < K, where H, C H denotes the
isotropy subgroup of x € Z".

LEMMA 8.3.3. The restriction of the diagonal SO(3) action on the frames in (82.3) to

¢ji (Up( 23, [25) N M(Zy,¢)) C NS /6(922')
]

PNe[Pi<P;
has finite isotropy.
PROOF. For the product connection, ©, on S* x s0(3), we define
T(2) :={(([Ap, F§,xp))pewr) € M(P) : Ap = O for all P € Z}.

We first claim that the image of the restriction of ¢;; to Up(2;, [2;]) N M (2, ¢€) is disjoint from
T(2") for all 2" € [Z; < Z}]. The proof of Lemma implies that M (Z,e) NT(Z%) is
empty. If A(Z;) € Up(2,[25]) N M(L@Z,E) and ¢;;(A(Z%)) € T(Z"), then the definition of ¢;;
in (8312)) and the definition of the map p d |2, I (65.16]) would imply that A(Z%) € T(Z%), a

contradiction.
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The proof of Lemma B.2.2] implies that the action (823) is free on M (") \ T(2"). The
action on the &(%;) quotient then has finite isotropy by Lemma 8321 This completes the proof

of Lemma [8.3.3] O






CHAPTER 9

Cohomology and duality

In this chapter, we will prove that the intersection number,
# (Y (2) N W N L),

appearing in (2.6.]), can be expressed as the pairing of a cohomology class with a homology class.
Our aim in doing this is to rewrite the above intersection number in a form to which we can apply
the pushforward-pullback argument described in Section [.2.71

9.1. Introduction

Explicitly, in this chapter we will prove the following analogue of [30, Proposition 5.2].

PROPOSITION 9.1.1. For B € Ho(X;R), let fip(B), fic € H'(//Ztgr’*/Sl;R) be the cohomology
classes in Definition[9.4.8 Let es = e(Tis/Sl) be the Euler class of the background obstruction bun-
dle in ([36]) and let €1 be the extension of the Euler class of the instanton obstruction bundle in Def-
inition[9.7.8. If d(t) = dim ///;10 and deg(z)+2n = d(t) — 2, then let [L{Y] € Hd(t)_2(e//zt;ir’*/51; R)
be the homology class defined in (9.3.3]). Then

(9.1.1) # (Y () V" N Lis) = (fip(2) — il — e — &, [L{3]).

Let L be any codimension-zero, compact submanifold of the top stratum of Ltvfsr with the
property that its boundary lies in a neighborhood U of the lower strata, where U retracts to the
lower strata. The existence of such a neighborhood, U, follows immediately from Lemmal6.6.4l The
fundamental class of L is a relative class and we can define the fundamental class of Ltvfsr through
the exact sequence of the pair (L,Zisr, L,Zisr NnU).

A geometric representative ¥ on a stratified space .#, as described in Definition [0.4.1] naturally
defines a relative cohomology class in H*(#,.# \ V;R). If ¥ were a smooth submanifold of a
manifold .#, then the relative cohomology class would be given by the Thom class of the normal
bundle of #. The geometric representatives #(z) and # define such cohomology classes. In
addition, the restriction of the zero locus of the obstruction section to the top stratum also defines
such a relative cohomology class, namely the relative Euler class. We note that these classes are,
initially, defined only on the top stratum of ///_tvslr* /S'. The intersection number in (@.I.1]) equals
the pairing of the product of these relative cohomology classes with the relative fundamental class
of the manifold with boundary L.

To rewrite this pairing of relative classes in a form to which we can apply the pushforward-
pullback argument described in Section [[2.7], we relate the relative cohomology classes mentioned

above with absolute cohomology classes defined on //Ztvslr* /S and compute these cohomology classes

in terms of cohomology classes on M x Sym‘(X) and the Chern class defined by the S' action.

149
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The relative cohomology classes defined by #(z), #, and the obstruction section extend to
relative cohomology classes on the complement of a small subspace of .7, VH */SY. If an embedded
surface ¥ C X satisfies ¢[X] = h € Ho(X;R) for ¢ € R, then the relative cohomology class for the
geometric representative 7 (h) defines such a relative cohomology class in

H.< Vlr*/sl\j( ( )) v1r*/51\( ( (E))Uﬂi(h));R>v

where .7 (v(X)) is the subspace of points [A, ®,x] where the support of x intersects v(X), a tubular
neighborhood of ¥. The relative cohomology class for # extends to a relative cohomology class
on the complement of .#(v(x)). The relative Euler class of the obstruction section extends to the
complement of the intersection of the zero locus of the obstruction section with the lower strata. We
then compute that the image of these extended relative cohomology classes, in the exact sequence of
the relevant pair, equals the restriction of the cohomology classes of the desired form from .#, VH */St
to the subspaces described above. With these equalities established, the proof of Proposmon
is then largely a formal manipulation.

After defining subspaces of and cohomology classes on Vlr* /St in Section 0.2 we define
the relevant fundamental class in Section In Section [9.4] We define the relative cohomology
classes corresponding to the geometric representatives 7 (z) and %, define their extensions, and
compute the corresponding absolute cohomology classes in terms of the cohomology classes defined
in Section We discuss relative Euler classes and carry out a similar program for a geometric
dual of x~1(0) in Section The proof of Proposition appears in Section Finally, in
Section [0.7] we show how to replace the pairing in (O.1.1]) with a pairing with the fundamental class

of BLZE, the space defined in (8I1.10]).
9.2. Definitions
9.2.1. Subspaces and maps. We begin by defining subspaces of //lt ' First, let

(9.2.1) LT — M

be the inclusion of the top stratum, which is mapped to 6 by the splicing and gluing maps v/,
and v ,, and let

(9.2.2) AL (Ms X Symé(X)) .
The S* action ([BB.8) is free on the subspace .#,"*. The map
TN : //Zt,s — Ny s(9)
was defined in (6.6.9) and we define
(9.2.3) o o MY — M
as the composition of my with the projection Ny (6) — M. Recall that the projection
///Vlr — Sym‘(X)
was defined in ([6.9.1]). We will also write
(9.2.4) Ts X ° //Zt‘;r — M, x Sym‘(X),
(9.2.5) TN, X %‘;r — Nyp)s(9) x Symg(X),
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for the projection maps. We use the same notation to denote the projections from //Z(V;r/ St (al-

though we note that wn maps this quotient to Nt(g),g(é)/Sl).
For any subspace Y C X, define

(9.2.6) IY) C M7/S
to be the subset of triples [A, ®, x] where the support of x contains a point of Y.

9.2.2. The incidence locus. We now define subspaces of Sym*(X) x X and their Poincaré
duals to be used in computing expressions for cohomology classes dual to the geometric represen-

tatives 7 (z) appearing in (I.1.1)).
The incidence locus,

(9.2.7) ¥)(A) C Sym‘(X) x X,

is defined to be the set of points (x,y) € Sym®(X)x X such that y is in the support of x. Alternately,
one can describe #;(A) by first defining

(9.2.8) Y (A) = (U(m X idX)‘l(A2)> C Xt x X,

i
where 7; : X* — X is projection onto the i-th factor and Ay C X x X is the diagonal and observing
that 7p(A) = Y(A)/S,. We will write

V(D) = (A°(X", 2) x X) N Y (D),
Yp(A) = (B(XF, 2) x X)N¥(A).

Observe that ¥»(A) = ¥4(A) if the partitions & and &’ are in the same orbit of the &, action
on partitions of INVy.
For any smooth submanifold Y € X, we define analogous subspaces of Sym*(X) x Y,

(9.2.9)

(9.2.10)

We have the following description of the preceding subspaces.

LEMMA 9.2.1. Let Y € X be an oriented, smooth submanifold with an oriented normal bundle
and let P be a partition of Ny. The subspace Vip(A,Y) defined in (LZI0) is then the disjoint
union of components,

VoA Y)= | | 7»(A,Y, P),
pPez
where

(9.2.11) V(A Y,P) = {(xp)per,y) € Vor(AY) 1 xp =y}
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Each component (Q.211) is a codimension-four, oriented, smooth submanifold of A°(X¢, 2) x Y
with an oriented normal bundle. Under the action of &(Z) on A°(Xt, P) x T, the components
V»(A)Y,P) and ¥V (A,Y, P') are identified if |P| = |P’|.

PROOF. The fact that ¥»(A,Y) is given by the union in the statement of the lemma is clear.
The fact that the given union is disjoint follows by observing that for any x = (zp)pcsr €
A°(X*t, 2), the points zp and xp are always unequal for P # P', so for (x,y) € V»(A,Y),
the equality xp = y = xps is impossible.

To see that each component ([Q.2.17]) is a codimension-four, oriented, smooth submanifold we
observe that Aq(Y) := {(y,y) € X x Y :y € Y} is a smooth submanifold of X x Y, diffeomorphic
to Y, with orientable normal bundle given by the direct sum of orientable bundles,

{(wy,0) € T(X X Y)|apv) : wy € v(Y)} & {(wy, —wy)|ayv) : wy € TY},
where v(Y') is the normal bundle of Y in X. Because the restriction of the projection maps
m, i X8 — X to A°(XY, 2) are equal for any i,j € P, the component (IZIT)) is the pre-image
of Ay(Y') under the map
m xidy : A°(XE P)xY - X xY

for any ¢ € P. Because the map m; X idy is a submersion, this pre-image is then also a codimension-
four, smooth submanifold with normal bundle given by pullback of the normal bundle of Ay(Y").
Because the normal bundle of Aq(Y') is orientable, its pullback by m; x idy is also orientable, as

required.
Lastly, the proof of the observation on the action of &(2?) is straightforward. O

We will use the following computation of the cohomology of the complement of ¥4 (A,Y).

LEMMA 9.2.2. Let & be a partition of Ny, let Y C X be a smooth submanifold, and let
Vp(AY) C B(XE P) XY be the subspace defined in (.2.10). Then,

0 if k <4,

(9.212)  Hi (S(X, 2) x Y, (S(X", 2) x Y) \ Vi (A, Y )i R ) = {(@PGWR)/g(L@) ifk=4.

The group Hy(X(X4 2) x Y, (2(X4, P) x Y)\ 72(A,Y);R) is generated by ¢ p = (7, x idy) o
¢ p, where

(9.2.13) dzp: D' A°(XE, P)xY

is any map intersecting “/Z@(A,Y, P) transversely at the origin and 7, : X' — Sym®(X) is the
projection.

PROOF. The conclusion follows immediately from the Thom isomorphism, [92], Theorem 5.7.10],
[68, Theorem 10.4], or [11], Equation VIII.11.3], and the assertion in Lemma that 72 (A,Y)
is a disjoint union of smooth, codimension-four submanifolds with oriented normal bundles, enu-
merated by 2/&(2), of B(X¢, 2) x Y. O

9.2.3. Cohomology classes. We now define some cohomology classes on ?;r* /S! to express

our computations of the duals of the geometric representatives of ¥ (z) and # .
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DEFINITION 9.2.3. Let v € H2(.4"* /S, Z) be the first Chern class of the S bundle,

ts

(9.2.14) M = MG S

where the S! action is defined in (6.6.8). If

(9.2.15) L, = A" x5 C,

is the complex line bundle associated to this S! action, then c1(L,) = v.

DEFINITION 9.2.4. For 8 € Ho(X;R), let ps(3) € H*~*(Ms; Z) be the p-class defined in (2.3.8).
We will use the same notation for the pullback by the projection 7, of these classes to //lfér /St
We will also use the notation

Ly = M, xg, (X xC) = My x X
for the restriction of the bundle defined in ([2.3.35]).
By [7, Theorem I1.19.2], there is an isomorphism,
(9.2.16) H*(Sym‘(X);R) = H*(X*R)®.
We can thus make the following definition.

DEFINITION 9.2.5. If B € Ho(X;R) and 7; : X* — X is projection onto the i-th factor, define

S(8) = 3_mi PD[F] € H'*(X"sR)

and let SY(B3) € H**(Sym‘(X);R) be the cohomology class satisfying 7;S‘(8) = S*(3), where
w : X* - Sym®(X) is the projection, as specified by Equation (LZI0), and PD denotes the

Poincaré duality isomorphism.
For o € H*(X;R), define

Sta) = Zﬂfoz € H*(X%R)

and let S%(a) € H*(Sym’(X);R) be the cohomology class satisfying w*S*(a) = S*(a).

Although the incidence locus #;(A) defined in ([@.2.7) is not a submanifold of Sym*(X) x X, we
can define a cohomology class which will serve the same role as a Poincaré dual for the purposes
of counting intersections as follows. Recall that if Y is a smooth, closed oriented m-dimensional
submanifold of an oriented, closed n-dimensional manifold Z then by [11], Proposition VIII.11.18],
the Poincaré dual of the fundamental class of Y, namely [Y] € H,,(Z;Z), and the Thom class of
the normal bundle of Y, namely Th(Y) € H" " (Z,Z \ Y;Z), are related by

(9.2.17) PDy([Y]) = 5* Th(Y),

where y: (Z,9) — (Z,Z \'Y) is the inclusion map.
Because the diagonal Ay C X x X is a smooth submanifold, it has a Thom class and a Poincaré
dual,

Th(Ag) € HY(X x X, X x X\ Ag;Z) and PD[Ay] € HY(X x X;7),
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satisfying (Q.2.17). The relation (0.2.8)) between the incidence locus #;(A) and Ag implies that it
makes sense to define

(9.2.18a) Ty = (m xidx)"Th(Ay) € HH(X' x X, X' x X \ 7(A);R),
(9.2.18b) PD[#] := Y (m x idx)* PD[Ay] € HY (X x X;R),
where m; : X¢ — X is projection onto the i-th factor and we take images of integer cohomology
classes in real cohomology. .
The isomorphism ([Q.2ZT6]) and the &, symmetry of T'; and PD[#] allow us to define

(9.2.19a) PD[7] € H*(Sym‘(X) x X;R),
(9.2.19b) Ty € H*(Sym*(X) x X,Sym*(X) x X \ %(A);R)
to be the unique cohomology classes satisfying
(9.2.20) (w¢ x idx)*PD[¥] =PD[¥] and (w x idx)*Ty =Ty,
where @y : X! — Sym?’ (X)) denotes the projection map. There is a commutative diagram
(Xx X,0) —1o (X’f $ X, X! x X\ %(A))
et | et |

(Sym’(X) x X,2) —1— (Sym’(X) x X, Sym*(X) x X \ %(A))

where the horizontal maps are inclusions. By the commutativity of this diagram, the definitions
(@219)), and the relation between the Thom class and Poincaré dual (O.2.17) satisfied by PD[A3]
and Th(As), we have

(9.2.21) 7Ty =PD[#] and j*Ty =PD[¥].

For a closed, oriented, smooth submanifold, Y € X, let 15 : %(X¢, 2) — Sym*(X) and 1y : Y — X
denote the inclusion maps. There is an inclusion map of pairs,

(E(Xév ‘@) XY, E(XZ7 gZ) XY \ %E(‘@7Y))
Lop bel
(Sym(X) x X, Sym(X) x X \ %(A))
The following computation, together with Lemma [0.2.2] will be useful in characterizing PD[¥].

LEMMA 9.2.6. Let Y € X be a closed, oriented, smooth submanifold, Ty be the cohomology
class defined in (9.2.19D)), and (¢ p| be as defined prior to equation (L2.I3)). Then,

(Lo x 1) Ty, [p2 p]) = |P|,

where Ly and vy are the inclusion maps defined above.

PRrROOF. By construction, the map ¢4 p is covered by the map &y’p : DY = A°(XE P2) x Y
defined in (@.2Z13)) in the sense that (¢ X idy) 0 ¢» p = ¢ p. This gives the equality

(7 x idy)«[dm,p| = [d2,p).
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The inclusion ¢t X vy is thus covered by an inclusion map
iz X1y A°(XL 2)xY = Xt x X,

in the sense that (7y X idx) o (I X ty) =t X ty. We can therefore compute that

{(top X 1y)* Ty, |02 p]) = <(A@ x 1y ) Ty, (g X idY)*[fggﬂ,PD

(e X idy)* (e X 1y ) Ty, [QEW,PD

(T x vy)* (T x idx)* Ty, [&@,P]>

iz % 1y) Ty, [, P]> (by @.2.20))

Il
/\/\/\/\

> (mi x idx)* Th(Ay), (i x LY)*[‘ZNS?}’,P]> (by ([@.218a)

i

= Z <Th(A2), (7Ti ¢} L@) X LY)*[QBW,P]> .

By the argument in Lemma [@.2.1] the image of A°(X?, 22) x Y under the map 7; x vy intersects
the diagonal A, transversely. Hence, the image of the map

(miotp) X ty)odpp: D' = X x X

intersects the diagonal transversely at one point if i € P and is disjoint from the diagonal if i ¢ P.
This yields the equality

~ ifieP
(Th(Ag), (15 0 L) X ty)[d2.pP]) = {(1) ;Z Z P7

and this in turn gives the equality in the statement of the lemma. O

The equality on Poincare duality given in [47, Theorem 30.6], the definition of PD[¥] follow-
ing (219a)), the definition of S(B) in Definition @25, and the isomorphism (@.2.16)), yield the
following

LEMMA 9.2.7. For any 8 € He(X;R),
D[¥]/8 = 5°(B),
where S*(B) is defined in Definition [J.2.3 and PD[¥] in (TZI9al).
9.3. Fundamental class of the virtual link of the ideal moduli space of
Seiberg—Witten monopoles

We now define the fundamental class of the virtual link appearing in (Q.1.1]),
(L] € Haz (407" /SHR)

where d(t) is the dimension of .Z Vlr*. The union of the lower strata in Ly¥ will be denoted
leng C LVlr
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LEMMA 9.3.1. Let ¥ (z) and # be the geometric representatives appearing in (.1.1]) and let x
be the obstruction section appearing in Hypothesis [7.8.1 For any neighborhood V of Lf;ng in the
lower strata of ///_t‘;r’*/Sl such that cl(V) N ¥ (z) N #"0x1(0) is empty, there is a neighborhood
U of the singular strata in %Y;r’*/Sl such that the following hold:

(1) There is a deformation retraction r of U onto V which respects the level sets of the function
ty given in (8I1I]).

(2) There is a compact topological manifold with boundary, fJ; given as the boundary of a
smooth manifold with corners with L;’f; \UcLc I_J;’,i;.

(3) The intersection ¥ (2) N #"Nx~L0) N U is empty.

PROOF. Let 43" /S' C " /S* be the union of the singular strata. The local Whitney
stratified structure of the spliced-ends moduli space, specifically the property described in Lemma
(.9.2] implies that the union of the lower strata is locally a neighborhood deformation retraction and
thus a neighborhood deformation retraction (NDR) (combine the results [40, Proposition 5] and
[92] Corollary 3.3.11]). The fact that this deformation retraction respects the level sets of ¢ follows
by observing that the deformation retractions defined in Lemma are invariant with respect
to the frame action. The NDR structure gives a cofinal sequence of neighborhoods of ///ts;ng’* /St
which deformation retract onto . ,"*"/S 1. Because cl(V) N #(z) N #" N x~1(0) is empty and

A5 /ST is normal, we can find a neighborhood deformation retraction, r : N — .#"®" /S* onto

%f;ng’* /S, such that U = r~(V) satisfies the conclusions (I) and (3) of the lemma. Define L
to be the complement in L}’f; of tubular neighborhoods (in the Thom—Mather sense) of the local

strata of ///f,;ng’* /S!. By choosing these tubular neighborhoods to be contained in NN, the resulting
topological manifold with boundary will satisfy the conclusion (2). ([l

For the subspaces U and V appearing in Lemma 0.3 the manifold with boundary L defined
in Lemma, has a fundamental class,

(9.3.1) [L,0L] € Hyqy_o(Lis UU°, U Z),
where U° :=U \ ///ting’* /S1. Note that there is an excision isomorphism,
Lot H(LuU°,U%Z) = Hy(L{F U, U; Z).

Because V' is contained in the codimension-four subspace ///f;lg’* /S!, the set V has dimension

three less than L}:isr. Because U deformation retracts onto V', we have Hy(U;Z) = Hy(V;Z) = 0
for k > dimL — 3. Hence, the inclusion map of pairs,

(9.3.2) 7 (LFruv,e) = (LruuU),
induces an isomorphism,

Jv : Hyy—2(L{s WU Z) = Hyy—o (LS VU, U; 7).
We now define
(9.3.3) [LY5] = g7 e[, OL] € Hygy o (L VU Z)

to be the fundamental class of the virtual link.
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9.4. Computation of the p-classes

The geometric representatives ¥ (z) and # are dual to the cohomology classes j1,(z) and j. de-
fined in Section 2.4l We now compute the pullbacks v*, u,(2) and v*, 1. in terms of the cohomology
classes defined in Section [0.2.3]

9.4.1. Geometric representatives and cocycles. We first recall the

DEFINITION 9.4.1. (See Kronheimer and Mrowka [53] p. 588].) Let Z be a smooth manifold. A
geometric representative for € H(Z;R) is a closed, smoothly stratified subspace ¥ of Z together
with a real coefficient, ¢, the multiplicity, with the following properties:

(1) The top stratum ¥ of ¥ is a codimension-d, smooth submanifold of Z with an oriented
normal bundle.

(2) All other strata of ¥ have codimension d + 2 or greater in Z.

(3) The pairing of p with a homology class h of dimension d is obtained by choosing a smooth
singular cycle o representing h, transverse to all strata of ¥/, then taking ¢ times the count
(with signs) of the intersection points between the cycle and the top stratum of ¥,

<:u7h> ZQ'#(%OO_)'

A choice of a geometric representative ¥ for a cohomology class p specifies a singular cocycle
¢ representing u, supported on ¥, as described in the following lemma.

LEMMA 9.4.2. Let Z be a smooth manifold and let (¥, q) be a geometric representative for a
real cohomology class pu of dimension d on Z. Then there is a class ¢ € HY(Z,Z \ ¥;R) such that
Jyc =, where

gy (Z,20) = (Z,Z\V)
is the inclusion map of pairs.

PRrROOF. Let AS°(Z) denote the chain complex of smooth singular chains [8, p. 291] with
ZP(Z) € AP(Z) and BP(Z) C AF(Z) denoting the submodules of cycles and boundaries re-
spectively. As we are considering real cohomology, we shall view AJ°(Z) as a real vector space
rather than as a Z-module. Property (3]) in Definition implies that a geometric representative
(7,q) for p € HYZ;R) defines an element of Hom(Z3°(Z); R) which is a representative of the
cohomology class p. However, the intersection number #(%) N o) in Property (3]) is well-defined if
o is a smooth, singular chain whose boundary lies in Z \ ¥, that is, o € 971 (AP ,(Z \ ¥)). The
intersection number # (7, N o) vanishes if ¢ is a boundary or an element of AS°(Z \ 7). Hence, a
geometric representative (¥, q) of u € H%(Z;R) defines an element of

(9.4.1) Hom (071 (AP ((Z\ 7))/ (BF(Z) + AF(Z\ V));R).
We now argue that (.4.1)) is isomorphic to H4(Z,Z \ #;R). By the de Rham Theorem (see the
discussion in [8], p. 291]), there is a functorial isomorphism between H®(Z;R) and the homology

of the complex Hom (A (Z);R). The Universal Coefficient Theorem then identifies Hq(Z;R) with
the homology of the complex AJ°(Z). Thus, we have isomorphisms,

(9.4.2) Ho(Z;R) = Ho (AL (Z);R), Ho(Z\V;R) = He(AZF(Z\ V);R).
The Five Lemma then identifies Ho(Z, Z \ ¥';R) with the homology of the complex
AF(Z)[AE(Z\TY),
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and thus,

Hq(Z,Z\ V3R) = 0" AF((Z\ V)] (BF(Z) + AT(Z\ V).
The Universal Coefficient Theorem then yields the required isomorphism between (@.4.1]) and
HYZ,Z\ V;R). O

9.4.2. Cocycles as pullbacks. For z = ;- 5, € A(X), where 8; € Hgimp,(X;R), we now
review the definition of the cocycles defined by #/(5;) and # .

Let T'C X be a smooth submanifold with ¢[T] = g for ¢ € R and let v(8) C X be a tubular
neighborhood of T'. Let %*(v(3)) be the space of irreducible connections on the bundle g, (g (see
[53] Section 2 (ii)] or [29] Section 3.2.2]) and (abusing notation slightly) let

rg MG St 3 [A @] = [Alp)] € B (v(B)),
be the composition of the gluing map -« , and the restriction map. For .#(v(8)) as defined in
@.2.0), let
(9.4.3) P A ST T (0(8) 5 [A,8,%] o [Al)] € #* (v(8)

be the extension of r5. We will denote the image of rg by .3 and the image of 7 by ..
Let Y7 C #*(v(B)) be the geometric representative for the cohomology class p,(/5) defined in
[53] Section 2 (ii)]. From the definition in [29] Section 3.2.3], it follows that

TN (A7 1S\ W) =75 (F1):

Note that in [29, Section 3.2.3], a tubular neighborhood of the union of 7" and certain loops (a
“suitable” neighborhood in the sense of [53]) were used instead of the tubular neighborhood v(f)
in defining #(38). However, by [30, Lemma 5.5] the geometric representative 7 (3) can be replaced
with geometric representatives pulled back from tubular rather than suitable neighborhoods of T',
when computing the intersection numbers in (O.I.1]). Let

(9.4.4) [CTﬂ] S H4_dimﬁ (%ﬁ, %ﬁ \ Y R)

be the cohomology class defined by the geometric representative #7 as described in Lemma [09.4.2]
and define

(945)  leg] == hlen) € H™* (A5 /ST 7 (v(8)), A2 /S\ ((0(8) U T (8)) 5R)
A similar construction defines a cocycle representing # of the cohomology class .. For the

configuration space ‘ft*’o(l/(x)) of pairs on the restriction of the spin® structure t to v(x) (see [29]
Section 3.2.2]), we define

(9.4.6) Fo M ST I (@) = 60 (v()) /St

to be the composition of the gluing map v _, with the restriction map. In [29] Equation (3.14)],
the geometric representative # is defined by

W (TSN I (@) =7 (),
where #7 is the zero-locus of a section of an appropriate line bundle. Define

(9-4.7) lerw] € H* (6" (v())/S", 6" (v(x))/S" \ #7; R)
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to be the cocycle obtained from the geometric representative #7 by Lemma and define
(9.4.8) lew] = Tilerw] € HA(M" /ST I (v(@)), A5 [S'\ W5 R)
to be its pullback.

9.4.3. Computations of cocycles. In Section [0.6.1] we will write the intersection number
appearing in (@.1.1)) in terms of a cup product of [cy| and [cg,]. We will then compute this product
in terms of the cohomology classes defined in Section For this purpose, we will need to relate
the relative cohomology classes [cy| and [cg,] to absolute cohomology classes. Specifically, we will
need to compute the cohomology class J5Th [crg] in terms of the cohomology classes defined in

Section [0.2.3] where
(949) 73 (RSN IW(B)),2) > (ML [S\ I WD), A2/ (FW(B) U T5))
is the inclusion of pairs. To that end, we consider the bundle

If ///_5 is as defined in the paragraph following (0.4.3)), then the construction of the geometric
representative ¥ implies that

Jrlersl = p1(Fr)/[T],
where
gr i (M x T, @) = (Mp x T, Mp x T\ V7)

is the inclusion of pairs. To compute FE Jrler gl, we shall compare the Pontrjagin classes of the
bundles

(9.4.11) (Fg x idp)*Fp and (i 4 x u7)*FyY,

where

id 7 % up s AT )S X T = M )S X X
is the inclusion map and IE‘{Vlsr N //Ztv;r* /S % X is the bundle defined by restricting
(9.4.12) Fi = (Nie)o(0) x Gl(t5, 2) x50 810
z
to //Zt‘;ir’*/sl x X. We begin with the computation of py (Frlsr)

LEMMA 9.4.3. Assume the spin" structure t(€) admits a splitting t({) = s ® s ® L as described
in Section (211, where L — X is a complex line bundle. Let FYY — ,""/S" x X be the bundle

defined in (R4I2) and L the line bundle given in Definition[9.2.7 Let wx .o : ///t‘;r’*/Sl xX =X
be the projection onto the second factor. Then

(9.4.13) prEY) = (2(ms x idx ) e1 (L) — v + g1 (L))
ProOF. Equation (@.4.13]) follows from [30, Lemma 4.7]. O
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To compare the Pontrjagin classes in (0.4.11]), we first describe a subspace on which the bundles
are isomorphic. Let ¥»(A,T) C Z(X?, 2) x T be the incidence locus defined in (@.2.10) (with
Y =T). Let

(9.4.14) (T, P) : U (t,5,2) S Nyp)(6) Xg,x51 Gllt, 5, 2) = S(X', 2)

be the composition of the projection 7(t,s, %) defined in (6.7.2]) and the projection
Nyp)s(6) X 24,5, 2,95) = Ny s(0) x S(X', 2) = £(X", 2),

where the identification X(t,5, 2, g5) = X(X*, 2) is given in (6.2F). Define

(9.4.15) O(T, P) = (n(T, 2) x idy)~" (z(Xff, PYx T\ “//g»(A,T)) .

We now have the following

LEMMA 9.4.4. The restrictions of the bundles (fg % idp)*Fr and (id.z x vp)*FY¥ to
o(T) = JoT, 2)

P
are isomorphic.

PROOF. The construction of the bundle g¢ by splicing together the background bundle gy, and

the bundles gp — S* in (6.4.6]) and the definition of O(t,s, 2?) in (.4.I5]) as the complement of the
points where any of the splicing points lie on T give an isomorphism of the restriction of the bundles
to each subspace O(t,s, &). These isomorphisms agree on the overlaps O'(t,s, Z)NO(t,s5, P') and
hence define the desired global isomorphism. O

Lemma implies that the difference,
(9.4.16) (7g x idr)*p1(Fr) — (id.z % vr)FyL,
lies in the image of the map (Tk@ 4 where 74 g is the inclusion map of pairs,
(&5 /s\7(8)) x T,2)
jﬁ,,@l
(25 7 (8)) x T, 0(T))
We can thus calculate generators of the image of j*@ 5 in the next lemma.

LEMMA 9.4.5. Let T be a closed, connected, oriented, smooth submanifold of X with [T] = €
Ho(X;R) and let O(T) be as defined in Lemma [9.4.4. Then the relative homology,

Hy (457 18"\ #(8)) x T, 0(T);Z),
1s trivial for k < 4, while for k = 4 it is generated by the images of disks,
bop: DY = (U (45, )\ I(B)) x T C M2 )S* x T,
for a partition &2 of Ny and P € &, satisfying
(1) The image of 1 p is in the top stratum of //Zt;ir’*/Sl x T,
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(2) For the map ¢ p defined in Lemma 922 and the map n(T, ) defined in (L414),
(9.4.17) (m(T, Z) xidr) obp p = b2 p-

PROOF. By the Whitney stratification of % (t,s, ) x T, we can require any relative homology
class to be represented by a chain which intersects (w(T, 2) x idr)) 1 (¥ (A, T)) transversely
(compare the proof of [35, Lemma 6.2]) and thus has the same image in the relative homology
group as ¥ p. The conclusion follows by observing that the codimension of the intersection of
(n(T, ) x idr) 1 ¥»(A,T) with all lower strata is greater than four. O

We then compute.

LEMMA 9.4.6. Continue the notation of Lemmas[9.4.5 and[9.1.4] For any partition &2 of Ny,
the following equality holds:

(9.4.18) ((Fg x idp)*p1(Fr) — (id.s X t7)*p1(FYY), (Jo.5) [ 2,p]) = —4|P|.

Proor. We begin by giving an explicit construction of a map ¥ % p : DY = U (t,5,2) x T
generating the relative homology as in Lemma[@.Z5l Let f : D* — X be a smooth embedding with
f(0) =27 € T. For Q € & with Q # P, fix points yg € X with yg ¢ f(D*). Define the map
Yo p, forve D*, by

(9.4.19) vor0) 1= ( | (Ao 20), [(F ) FE ). Mo T3] | o).

where points in % (t,s, &) are described in Notation [6.4.1] and

(1) (Ao, ®o) € ]\7{([)(6), and [Aq, Ig)] € Msspi g and 7 € T do not depend on v,
(2) For Q # P, then [{)(v) € Fr(gye))ly, and Fg(v) € Fr(T'X)ly, are fixed frames, indepen-
dent of v € D4,
(3) The map D* — Fr(gyy)) Xx Fr(TX) defined by v — (Fp(v), Ff(v)) is a smooth lift of
f:D*— X.
Then the map ¢» p = (7(T, P) x idr) 0 Y» p as in ([@.41I7) is transverse to the incidence locus
Vp(A,T) defined in (@:2.I0) and thus is one of the generators of homology appearing in Lemma
Hence, 15 p satisfies the conditions of Lemma
Let gy : U (t,5,P) x T — U (4,8, ) and 7p : % (4,8, P) x T — T be the projection maps.
Define

Frzr) = Frlg: . xfor)

Fr,lsr($T) = U <Nt(f),5(5) X Gl(th’ gZ) X, x 31 gt(Z)|xT) .

&
Because 7 0 ¢ p = x from ([@.4.19)), then the definitions (.4.10) and ([@Q4.12]) yield
(9.4.20&) FT(D4) = w*ﬂ,P(fﬁ X idT)*FT = (71'% o wﬂ,P)*fEFT(xT)y
(9.4.20b) F"(DY) = 9% p(id.g % v7) FYE = (7q 0 b p) Fix (z7).

Parallel translation with respect to the connection Ay of the frame F}(v) appearing in (0.4.19)
from f(v) to xp then defines a trivialization of F¥*(D*). If O(T,2?) is as defined in ([@.415),
then ¢ p(D*\ {0}) C O(T, 2) and so the isomorphism of Lemma gives an isomorphism



162 9. COHOMOLOGY AND DUALITY

Fr(D*)|gps = FVI'(D*)|ypa. Therefore, to compute the difference (.4.18]), we only need to compute
the Pontrjagin class of Fp(D*) relative to the trivialization over dD* given by the trivialization of
F¥*(D*) and the isomorphism between the two bundles over dD*.

Let g¢(v) — X be the SO(3) bundle constructed in (6.4.6) using the data (74 o p)(v). The
definition (0.4.19]) implies that g¢(v) is constructed by attaching bundles gg — S? to gy(¢) at points
ypr for Q = P' # P and at f(v) for Q = P.

As in Section B.4T] let ¢, (B(A\)) € S*\ {s} be the image of a ball of radius A centered at the
origin under the conformal diffeomorphism ¢, : R* — S%\ {s} defined by inverse stereographic
projection. Consider the map F' : D* x B(\) — X defined by the property that F(v,-) : B(\) = X
is the smooth embedding defined by the gluing data 74 o ¥ % p(v), identifying the ball B(X\)
with a ball around f(v) using the exponential map around f(v) used in the construction of the
crude splicing map in Section (given by the flattened metric and tangent frames specified by
Y2 p(v)) and ¢, '. Hence, if n € S* denotes the North Pole, then F(v,n) = f(v) for all v € D*.
By the Implicit Function Theorem, there is a smooth map h : D* — B()) with the property that
F(v,h(v)) = xr. The equality F'(v,n) = f(v) implies that dFg,)(év,0) = dfo(dv). The definition
of F(0,) : B(A\) — X as the embedding given by composing ¢; ! with the exponential map
specified above implies that dFg ) 0,-) : T,S8* = T, zpX 1S an orientation-preserving isomorphism.
The definition F(v, h(v)) = xr implies that

0 = dF(g,n)(6v, dho(6v)) = dfo(v) + dF{g ) (0, dho(0v)),

and thus, because Ty D? is even-dimensional, dhg is an orientation-preserving isomorphism. Hence,
h: (D* D*\ {0}) — (B(\), B(A) \ {n}) is a degree-one map.

By the construction of g¢(v) and the isomorphism (Q.4.20al), the fiber g¢(v)|;, is identified with
9p|n(), giving
(9.4.21) Fr(D*) = h*gp.

Recall that we trivialized FV*(D*) by parallel translating Fp(v) from f(v) to z7. In the construction
of g¢(v), this parallel translation of Fp(v) is identified with the parallel translation of the frame
F* € Fr(gp)|s, where s € S* is the South Pole, from s to h(v). Therefore, the trivialization of
F7(D*)|sps given by the trivialization of F¥¥(D?) and the isomorphism Fr(D*)|yps = FV¥(D4)|5pa
equals the pullback by h of the trivialization of gp given by parallel translations of the frame F*°.
Consequently, the relative Pontrjagin class of h*gp equals the pullback by h of the Pontrjagin class
of gp relative to the trivialization given by parallel translations of the frame F® and this in turn
equals the absolute Pontrjagin class of gp. Because h is a degree-one map, the relative Pontrjagin
class of the bundle ([9.4.:20al) equals pi(gp) = —4|P|, as required. O

COROLLARY 9.4.7. For any submanifold T of X, the equality,
(9.4.22) (fﬁ X idT)*pl(FT) — (ld/// X LT)*pl(insr) = —4(7TX X idT)* PD[V],

holds in real cohomology.

Proor. By Lemmas [0.4.6] and [0.2.6] the cohomology classes appearing on the two sides of
equation (@0.4.22]) agree on the generators of the relative homology described in Lemma [0.4.75]
Hence, by the Universal Coefficient Theorem the equality holds in real cohomology. O

Let v1,...,% € H1(X;Z) be a basis for H(X;Z)/ Tor with dual basis v},...,v; € H'(X;R)
satisfying (v;,v;) = 8% (the Kronecker delta). Let 7‘1]’*, . ,'yb‘]’* € H'(M;;R) be the related basis
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as defined in [28, Definition 2.21 and Corollary 2.22] (denoted there by r*’y;] ™). We now define
expressions in the cohomology classes from Section [0.2.3] which will be related to the cocycles
previously defined.

DEFINITION 9.4.8. For z € Ho(X;R), define fi,(z) € HH//Z,JE’*/S%R) by

(9.4.23) fipl) ==~ (2ps — ) + 5'(a),

where v is as in Definition @23l For v € H;(X;R) written as v = ), ¢;vi, where ¢; € R and
vi € H1(X;Z) are the generators above, define

1 * Vir, %
(9.4.24) Ap(7) = —5 D 4i(2us — )y} + 5°(7) € HY (A /ST R).

For 8 € Ho(X;R), define fi,(B) € H2(///_t‘7’sir’*/Sl;R) by

(0425)  p(B) i= —2 e — ){er() — e1(),8) — 2 ol vi — i B) + SU(B),

2 —
1<]

where S() is as in Definition .
For Y € H3(X;R), define i,(Y) € H' (.4;""/S*; R) by

(9.4.26) fip(Y) == — Z ((er(t) = ea(s) — 5, [V]) pa(7i) + SE(YD).
Define
(9.4.27) fic = —v € H(M'* S5 R).

We define

La M )SY = TS\ I (v(B)),
va2 s My TSN\ I (W(B) = MG S

to be the inclusion maps. Standard computations (compare [30, Lemma 4.10] and [29] Corollary
4.7]), Lemma [0.4.3] Corollary @.477 Lemma 027 and the equality,

(9.4.28)

b1
c1(Ls) = ps x 1 —1—2’)/;]’* X 7,
i=1

from [28], Lemma 2.24], where L, is as in Definition @.24] then yield the

COROLLARY 9.4.9. Assume that the spin" structure t(¢) admits a splitting t({) = s s Q L,
so c1(L) = c1(t) — c1(s). For w equal to v € Hy(X;R), v € Hi(X;R), B € Ho(X;R), or [Y] €
H3(X;R), let [c,] be the relative cohomology class defined in (Q45) and v, 2 the inclusion defined

in (Q428). Then
(9.4.29) Jalea] = tz2lp(2),  Tley] = 4 000(7),
Tlesl = thoiin(B),  Jvley] = i3 alip(Y),

where Jg, 78, Jv;, and Jy are the inclusion maps of pairs defined in equation (9.4.9).
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_ The analogue below of Corollary for [cy] follows immediately from the observation that
W is the zero locus of the complex line bundle L, defined in (0.2.I5]) and the computation in [30],
Lemma 4.2].

COROLLARY 9.4.10. If
Bt (SN I (@), @) = (A SN I (@), My ISNT)
1s the inclusion map of the pair, then
(9.4.30) Tolew] = =iz 00,
where [cy] is defined in (LA8) and 1y is defined in (TA2F).

9.5. Relative Euler class of the obstruction pseudo-bundle

We now use the framework of relative Euler classes to construct a cocycle to represent the
geometric representative defined by the zero locus of the obstruction section, x~1(0) C Vlr */St,
appearing in Hypothesis[[.8.1l The restriction of the obstruction pseudo-bundle to the top stratum
of ///_tvs“ /S is a bundle which we will refer to as the obstruction bundle. We begin by showing that
the Euler class of this obstruction bundle is the restriction to the top stratum of Vlr */St of a
cohomology class

(9.5.1) er — e(T5,/8Y) € H* (M /S5 R),

given by an expression in the cohomology classes appearing in Section [0.2.3 We use the relative
Euler class of the obstruction bundle to construct a cocycle corresponding to the geometric repre-
sentative x 1 (0) in the sense of Lemma[@.4.21and prove that that cocycle extends over the subspace

of M, Akl /S given by the complement of a neighborhood of the intersection of x~1(0) with the

lower Strata of A, Akl /S, Finally, we prove that this extension of the cocycle given by the relative
Euler class is mapped to the cohomology class (0.5.1]) in the exact sequence of the pair.

9.5.1. Euler class of the Seiberg—Witten component of the obstruction pseudo-
bundle. The computation of the Euler class of the Seiberg—Witten, or background, component of
the obstruction is identical to that given in [30l Lemma 4.11].

LEMMA 9.5.1. Let r= be the complex rank of the background obstruction bundle, Tis — ///Vlr *.
Then

(9.5.2) e(T5,/S") = ' (~v)'=.

Because the background obstruction bundle is defined over all of Al

, there is no need to
define an extension of e(T{,/S").

9.5.2. Local Euler class of the instanton component of the obstruction bundle. We
now give a description of the Euler class of the bundle defined by the restriction of the instanton
component of the obstruction pseudo-bundle, Yi,/S' — .#¥ /S, to the top stratum, % (t,s, 2),
of % (t,5, P).

This description requires the introduction of an additional cohomology class. Let ms; : My X
Xt — M, x X be defined by the identity map on M, and projection map from X! onto the i-th
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factor of X. Let Ls; — M, x X be the line bundle in Definition The Chern classes of the
bundle

¢

P riLs — M, x X°

i=1
are invariant under the obvious action of the symmetric group &, and thus define cohomology
classes,
(9.5.3) csr; € HY (M, x Sym‘(X); R).
In addition, we let

Ly B(XE P) - Sym*(X) and ip:A°(XY 2) - X*

denote the inclusion maps. Finally, we let
(9.5.4) c(t) € H*(X;R)

denote any real characteristic class of the bundle Freyr«x)(V) — X; those characteristic classes
include ¢ (%), p1(t), p1(X), and e(X).

If we H*(;Z), we refer to the image of w in H*(-;R) under the functor H*(-;Z) — H*(-;R)
defined by the homomorphism Z — R as the image of w in real cohomology.

PROPOSITION 9.5.2. Let % (t,5,2) C % (t,5, P) be the top stratum. The image in real coho-
mology of the Euler class of the restriction of the obstruction bundle Tis/Sl to U (t,s, P) is given
by a polynomial in the cohomology classes

(9.5.5) v, W}L’;}SZ(C(’()), and  Tx ¢LipCs 0 j,
with coefficients depending only on the partition { = |P| + --- + |P,|, where & = {Py,...,P.}.

To prove Proposition [0.5.2] we first show that the restriction of the instanton obstruction bundle
to % (t,s, %) admits a direct sum decomposition in Lemma and then in Lemmas and
prove that the components of this direct sum satisfy the conclusions of Proposition

Let Gl(t,5, 2) C Gl(t,s, Z) denote the top stratum,

Gl(t,s, ) = Fr(t,;5, 2) xaz) || M3 p(0p).
pPez

Because ]\7{(@)75((5) retracts ¥,-equivariantly onto M, the space % (t,5, &) retracts onto the inter-
section of % (t,5, %) with the subspace

(9.5.6) M, x4, g1 Gl(t,5, 2).

We compute the pullback of the restriction of the Euler class of the instanton obstruction to the
subspace (@.5.6]) by the map,

(9.5.7) M, X, 51 Gl(t, 8, P) = My xg, w51 Gl(t, 5, P),
defined by the projection

Gl(t,5, 2) == Fr(t,5,2) g || M p(0p) = Glt 5, 2),
pPew
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where the group G(2) < G(2) is defined in ([6.2.3) by omitting the symmetric group factor in
G(Z2). Observe that the preceding map appears in the diagram,

M, X, w51 Gl(t, 5, P) —— M, xg, 51 Gl(t,5, P)

7~l'X,sl WX,SJ/

M, x A°(XY, @) —— M, x S(XL, D)
For each P € &, we define
(9.5.8) Gl(t,5, P) = Fr(gyp) xx Fr(TX) xso(3)xso) Mo, p(6P),

and observe that the projection évl(t,ﬁ, P) — A°(X*, ) fits into a diagram

TGP

MS X, xS1 é\i(tvﬁv ‘@) MS X, xS1 Gl(t,ﬁ,P)

(9.5.9) J J

M, x A°(XL, gy T M, x X
We then have the following

LEMMA 9.5.3. Let t(¢) = (p,Vi) be the spin" structure defined in RII3). We abbreviate
8¢ = Gy and Vy = Viyy. The pullback of the restriction of T,is/S1 to % (t,5, ) by the covering
map (Q5T) splits into a direct sum,

@WGIP Ls(P)/S%,

pPez
where for Gl(t,s, P) defined in (9.5.8), the bundle
(9.5.10) ts(P)/St = M, xg, .51 Gl(t,5, P)

is defined by

My Xg, 51 Fregrs x) (Vo) Xspint(4) Yoo p

l

M, x4, 1 Gl(t,s, P)
is defined in the diagram (0.5.9).

and the map TGP

The S! action in (@.5.10) on the space
(9.5.11) M, xg, Fregrx)(Ve) Xspint(4) Thor, p)

is defined by the action of S* on the infinite-dimensional obstruction space described following
(C2T)). That is, for (Ao, ®o) € Ms, and Fy, € Freyr«x)(Ve)|e, and [A, Fy, V] € ! the action

SPL,|P|’
is given by

(9.5.12) <ei9, [(AO, ), <Fu, A, F,, \If])]) - [(Ao,q)oew), (Fu, [A,Fs,xpei"])] .
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Recall that o4(e'?) is defined in (2.3.16]). Because the action of scalar multiplication on V; differs
from the action of g4(e’”) by an element of the stabilizer of (Ag, ®g) € M;, the action ([@5.12) is
the same as the action

(9.5.13) (¢, [0, @0), (Fu 14, 0] ]) = [0, @0), (eale™) B[4, F, we]) |

Lemma [0.5.3] implies that to compute the restriction of the instanton obstruction bundle to the
subspace ([0.5.6), it suffices to characterize the Euler class of the bundle ([.5.10). The base of the
bundle T{ (P)/S 1 admits a product decomposition,

M, x4, 51 Gl(t, 5, P) = M; x S™\ Gl(t, s, P).
Define
(9.5.14) Sp/Sti= Mg x ST\ (FT(CZ(T*X)(VZ) X Spint(4) Tém,ﬂ?\) — M, x S\ Gl(t, s, P).

As in the discussion of the S! action on ([@.5.11]), the S! action in (@.5.14)) is given by the diagonal

action of g5(e~*) on Freyr+x)(Ve) and scalar multiplication on the fibers of TQPL Pl

LEMMA 9.5.4. Let Ly — My x X be the restriction of the universal Seiberg—Witten line bundle
defined in (Z3.5) and wxs: Ms x S'\ Gl(t,5, P) — M x X be the projection map. Then

(9.5.15) Ti,(P)/S" =% Li @ Y p/S".

ProOF. By [28 Lemma 3.27], the tensor product in (@.5.15]) can be described by the fibered
product,

<(]\Zf5 Xg, X X Sl) X Mo x X T§<7P/Sl> /St
= (<M5 Xg, X X Sl) X Myx X (Ms X Sl\Fru(T*X)(Vg) X Spin®(4) TgPL’m)) /St

where the final S! acts diagonally on the factor of S* in M, xg, X x S and on the fiber of TfX7 p/S 1
The fibered product ([@.5.16]) admits a simplification as

(<M5 A X X Sl> X Mex X (Ms X Sl\Fr(cg(T*X)(‘/g) XSpin“(4) TéPL,\P|>) /Sl
=~ M, xg, S*\ (FI"(CZ(T*X)(VZ) X Spin® (4) TépLJP‘) ;

given by the map (using the same notation as in (0.5.13))),

(((Ao,q)o),x,ew> , [[Ao,cpo], [Fu, A, F\I/]”) — ((Ao,cpo), [gs(e_w)ﬁ'u, A, F\IJ]]) .

This map is S'-equivariant with respect to the S' action on the domain given by the diagonal
action on the factor S and scalar multiplication on the fibers of Y* if S' acts on the image by
&1, P This is the same S*

action as that appearing in (@5.I3]). The conclusion of the lemma then follows by observing that
the presentation for the S* group action in (@5.13) identifies the bundle on the right-hand-side of

@5.17) with Y{ (P)/S! as required. O

(9.5.16)

(9.5.17)

SPL,| P|’

0s(e7) on Fregr+x)(Vg) and by scalar multiplication on the fibers of T
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Next, we characterize the (rational) Euler class of Tf& p/St. To this end, we define the coho-
mology class,

(9.5.18) va € H*(M, x S\ Gl(t,s, P); R),

(denoted by v in [30] Definition 5.22]) to be the first Chern class of the S' bundle,
M, x Gl(t,s, P) — M, x S'\ Gl(t, s, P).

The equality,

(9.5.19) v =val + 27 s¢1(Ls),

follows from [30, Lemma 5.23]. The advantage of the bundle (1.5.I8) over the S* bundle defining
v in (@2I5) is that the former pulls back by the projection M, x S\ Gl(t,s, P) — S*\ Gl(t,s, P).

LEMMA 9.5.5. The images of the Chern classes of ngp/Sl in real cohomology are given by
polynomials in w5 c(t) and vg with coefficients depending only on |P|.
PROOF. Observe that the bundle fo, p/S 1 is the pullback by the projection
M, x ST\ Gl(t,s, P) — S\ Gl(t,s, P)
of the bundle
(9.5.20) S Fregrex)(Ve) Xspinu(a) Yopr, p| = '\ Gl(t, 5, 2).

Thus, it suffices to prove that the Chern class of the bundle (O.5.20]) satisfies the conclusion of the
lemma.
The kernel of the projection

(9.5.21) (Adgo (s, Adgo(s)) : Spin“(4) — SO(3) x SO(4)
is the central St in Spin“(4). By the identity (see [30, Equation (3.14)])
Fregrex) (Vo) /8" = Fr(ge) xx Fr(TX),
(where the S! is the kernel of the homomorphism ([@.5.21])), we can rewrite the space Gl(t,s, P) as
Gl(t,s, P) = Freer-x)(Ve) Xspint(4) Mssl;i,\p|(5p),

where Spin“(4) acts on SSPuL ‘P|(5p) via the projection ([@.5.21)) and the action of SO(3) x SO(4) on
M

oL |P‘((5p). Let 7y : Fregere x)(Ve) — ESpin“(4) be the classifying map appearing in the diagram,

Froorex) (Vi) —2— ESpin®(4)

| |

X — 5 BSpin“(4)
Recall from [3], Section 4], that the map [A] — [Da], where D4 is the Dirac operator defined by
the connection A, defines a continuous map,

fr B — Fu,

where %, is the space of Fredholm operators of index x. The space %, is homotopic to BU, the
classifying space for the stable unitary group U := lim,,_,~ U(n) (see [3, Equation (4.7]). Although
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there is no index bundle defined for the Dirac operators parameterized by %3, because %, is not
compact, the restrictions of the pullback of the universal Chern classes in BU by f, to the subspace
K2 C A, where the kernel of the Dirac operator vanishes, are equal to the Chern class of the
vector bundle defined by Index(D?) in (7.4.2]) on this subspace. By Property (B]) in the conclusion
of Theorem [7.6.1] the Chern classes of the bundle,

)
TSPL,|P\ - M

SPL,|P|’

are given by the pullbacks of the universal Chern classes in H*(BU) by the map f|p|. By the
Spin"“(4)-equivariance of the Dirac operator, the map f, extends to a map

F : ESpin“(4) X Spin*(4) %Z - ym
such that the restriction of F. to
ESleu(4) X Spin®(4) ‘){’/Iis

is the composition of a classifying map for the index bundle with the inclusion BU(k) — BU. We
conclude that the classifying map for the bundle

T p = Fregrx) (Vi) Xspint () TépL,\m — Fregrx)(Ve) Xspint(a) MSPL ‘p|(6P)
factors through the composition

(9:5:22)  Freypx)(Ve) Xspinu(ay M3: |p‘(5p) DX, BSpin®(4) Xgpine @) Bip| il Z1p|s
where 1y : M SpL| P|((5p) — ’@\SPI is the inclusion map. The bundle map 7, X tjs is S'-equivariant
and thus descends to the S! quotients,

fw X tag St \(FT(CZ(T*X)(VZ) X Spin® (4) Mssl;i7‘p|(5P)> — St \(Espin"(4) X Spin® (4) @fm) :

Because the rational cohomology of Z/’, is trivial (see [15] Lemma 5.1.14]), the rational cohomology
of the space

St \(ESpinu(4) X Spint(4) %fpo

is generated by the first Chern class of the S action and cohomology classes pulled back by the
projection

st \(ESpin“(4) X Spint (4 @fp‘) — BSpin®(4).

Under the map i, x ¢, the first Chern class of the S' action pulls back to v, while the cohomology
classes pulled back from BSpin“(4) pull back to characteristic classes of Freyr- x)(V2), which we are
denoting by ¢(t). The conclusion of the lemma then follows from the factorization of the classifying

map for the bundle (@.5.20) given in (©.5.22). O

REMARK 9.5.6. Unlike the case £ = 1, the action of ¢4, on S'\ Gl(t,s, &) is not trivial because
there can be more than one frame in the definition of Gl(t,s, &?). That is, if F; and F; are frames
over separate points 1 and 2 in X, the action of S' identifies (F}, Fp) with (e’ Fy, e F,). But
there are gauge transformations, u € ¥, with u(x1) # u(z2) and for such u € %, the pair (uFy, uF3)
would not be identified with (Fy, ) by the S* action.
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PROOF OF PROPOSITION [0.5.2] By the Splitting Principle, we can assume that there are line
bundles Np; such that TfXJD/Sl = ®iepNp;. By Lemmas [0.5.3] 0.5.4] and 0.5.5] we see that the

pullback by the map ([@.5.7) of the restriction of T{,/S* to the space [1.5.6) is given by

1 * 1
EBFGIP P)/S" = EBFGIP mxals © T p/S")
pPe»p pPe»
= @ Dy (oL @ ).
PeP icP
The Euler class of the bundle
1
EB 7TGlP p)/s
Pew

on the left-hand side of the preceding sequence of equalities is thus

IT II 75, (riscr(le) + ex(Npa)).

Pe?icP
Observe that mx s o Tap = Ts,iTx,s (Where 7, is defined prior to (@Q53])). Hence, the preced-
ing cohomology class can be expressed in terms of symmetric polynomials in 7?}757@"2-01 (Ls) and
Fi(k;vl,Pcl (Np;). Symmetric polynomials in ﬁ}ﬁﬂ;icl (Ls) are given by the Chern classes ¢, ; de-
fined in (9.5.3), while symmetric polynomials in 7% _¢;(Np;) are given by the Chern classes of the

GLP
bundle

* ) 1
D & p Txr/S"
pPez
By Lemma [9.5.5] the Chern classes of the preceding bundle are given by polynomials in v and
mxc(t), with coefficients depending only on the partition £ = [Py + --- + | Py|. O

9.5.3. Global Euler class of the instanton component of the obstruction bundle. We
now piece together the local computations of Proposition [1.5.2] to give a global characterization of
the instanton obstruction bundle, T{,/S* — .2 /S".

PROPOSITION 9.5.7. The Euler class of the instanton obstruction bundle, T} ,/S* — .4 /S*,
is given by an element in H%(///tV“/Sl R) that is a polynomial in *v, and *7%S%(c(t)), and
L* 7TX75657g,Z, with coefficients which are independent of X.

PrOOF. The construction of the bundle TéPLﬁ — MgPL x(0) and the Spin“(4) equivariance of
the diagram (.6.9]) imply that the particular classifying maps of the local instanton obstruction
bundles which admit the factorization (0.5.22)) can be chosen to be equal on the overlap given in
Lemma [Z.711 Hence, the local equality of the cohomology classes given in Proposition [0.5.2] is an
equality of cocycles and thus an equality of global cohomology classes. O

DEFINITION 9.5.8. Let
(9.5.23) ér € H* (.Y /S5 R)

be the extension of e(T{,/S') € H* (///tvf* /S':R) obtained by omitting the pullback +* from the
expression in Proposition [0.5.7]
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REMARK 9.5.9. Note that the vector bundle Y}, /S* does not extend from ///t‘;ir’*/Sl to //Zt‘;r’*/Sl.
Indeed, the cohomology class u; from [I5] Definition 8.3.16] can be seen as an obstruction to such
an extension.

The following lemma describing the extension é; will be used in Section [0.0] to relate intersection
numbers with a pairing of cohomology and homology classes.

LEMMA 9.5.10. Let iy, : X C //Zthir’*/Sl be the inclusion map of any smooth stratum. Let er(X)

be the Fuler class of the vector bundle defined by the restriction of the pseudo-vector bundle Tis to
Y. For e as defined in (9.5.23)), then

e — e(Tie/Sh) = er(D)r — wi(X) — i5(e(T7,/5Y),

where er(X)r is the image of the integral cohomology class er(X) in real cohomology and w;(X) is
a real cohomology class.

PROOF. If N is a sufficiently small neighborhood of ¥ with a deformation retraction 7 : N — X,
then the description of Y{, in Theorem [Z.6.1] and [15, Proposition 7.2.32] imply that there is an
inclusion of vector bundles,

™ (Tis |E)|Nm<///t";“*/sl C Ti,ﬁ |Nm//4vf’*/sl )

vir, *

Therefore, the restriction of ey to NN.Z, " /S ! admits the factorization asserted in the lemma. [

9.5.4. Relative Euler classes. An extensive discussion of relative characteristic classes ap-
pears in [50] but we shall only use a small and self-contained portion of that theory here. For any
oriented vector bundle, V' — Y, and section, s : Y — V, a relative Euler class can be defined as
follows. The section s defines a map of pairs,

s: (Y, Y\ s H0) = (V,V\Y).

If Th(V) € H"(V,V \Y) is the Thom class of V', where r = rankgr (1), then the relative Euler class
of the section s : Y — V is defined to be

(9.5.24) e(V,s) := s* Th(V) € H"(Y,Y \ 571 (0); R).
We note the following properties of the relative Euler class.

LEMMA 9.5.11. Let V — Y be an oriented, real vector bundle of rank r and s : Y — V be a
section. Then the following hold.
(1) If 35 : (Y, @) — (Y, Y \ s71(0)) is the inclusion map, then
(9.5.25) gee(Vys) = e(V),
where e(V)) € H"(Y;Z) is the Euler class of V.

(2) If s = s1 @ sy with respect to a decomposition V.= W1 & Wy as a direct sum of oriented
real vector bundles, then

e(V,s) = e(Wy,s1) — e(Wa, s2).

ProoF. Item () follows from [50, Equation (11.2)] or [68, p. 98]. Item (2]) follows from the
product formula for Thom classes (see [11, Proposition VIII.11.26]). O
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REMARK 9.5.12. If s : Y — V is the zero section, then Item (1) of Lemma [0.5.11] reduces to
the well-known result that s* Th(V') € H"(Y, @;Z) is the absolute Euler class. If one of the sections
s; in Item (2]) of Lemma is the zero section, then the resulting product formula decomposes
e(V, s) as a cup product of a relative and an absolute class.

Recalling that .#" vir - /// VI is the top stratum, we denote
Tio/S'i=Ti,/8T ©T5/S" and Yis/S' = Tio/S yoir -

For any € > 0, let D, := D.(Ys/S') C T¢s/S' be the open e-disk subbundle defined by the
L?-norm on the fibers of Tts/Sl. Let 7 be the real rank of Tts/Sl. For the Eilenberg-MacLane
space K(Q,r), let V(Q,r) be a contractible neighborhood of a basepoint x € K(Q,r). Let the
cocycle

(9.5.26) UQ,r) € Z"(K(Q,r),V(Q,r); Q)
represent the universal class. There is a map of triples
(9527) k& : (Tt,5/517Tto75/Slqu,5/Sl \Da) — (K(Q7T)7V(@7T)7*)7

where T¢,/S" is the complement of the zero-section, such that [k?.(Q,r)] is the Thom class of
Tis/St

The following lemma constructs an extension of the relative Euler class e(Y¢/S*, x) to a larger
subspace of ., Vlr */St.

LEMMA 9.5.13. Let X be the obstruction section of Yis/S' appearing in Hypothesz’s [7.8.1] For
any open neighborhood % of x~*(0) in //lt Ir /Gl there is a constant ¢ > 0 such that X' = cx obeys
the following:

(1) X/ (5" S\ %) C Yio/S™\ D-. |

(2) For the map ke defined in @E2T), ke o X' (M 5/ S\ U ) = *.

(3) The composition k. o X' extends as a map of pairs,
)

(9.5.28 b (MRS ISNAEOU MG SN (K@), %)

which is constant on a neighborhood of ///f;ng JSY\ % .

PrROOF. By Hypothesis [[.81, we have M; x Sym‘(X) c x~'(0). Hence, ///Vlr/Sl \% =
//Ztvslr* /SY\ % and we can assume that //Ztvslr* /SY\ % is compact. By the lower semi-continuity
of the L? norm of X given by (Z.2.3) on the fibers of T(,/S! (see Hypothesis [[.81]), there is a
minimum value, ¢q, of the L? norm of x on ///_t";ir’*/Sl \ % . Therefore, if X' = (¢/e0)X, then

X' (A, Vlr*/Sl \ %) C Ys/S'\ D., proving Property (). Properties ) and (@) follow from
Property (@) and the definition ([@.5.27) of k.. O

Lemma [0.5.13] gives an extension of the relative Euler class e(T¢5/S*, x) to ., Vlr */SU\ asmen
% . We now compare this extension with the extension of the Euler class deﬁned in @523).

LEMMA 9.5.14. Continue the notation of Lemmal[95.13. Define
(9.5.29) e(Tis/SHX') = [Ku(Q, )],
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where the map .lzrx is defined in (0.5.28)) and the cocycle 1(Q, 1) is defined in (O.5.28)). If we abbreviate
MU) = My | SN\ (AN U ) then

e(Tes/S'X') € H' (M (U), (%) \ X" (0);R).
As an element of real cohomology, e(Tis/S',X') satisfies
(9.5.30) L;,lé(ﬁrt,s/sljfcl) =e(Tis/S', %) and J;,25(Tt,s/sla>2/)) = 13 2(€1 — &),
where ty1, Ly,2, and Jy 2 are the inclusion maps,

IS ) B 7

and - B B

e (AU, D) = (MU, A (%) \ x(0)),
and &g is the extension of the real Euler class of Tys/S" from (@523 and &, := e(T{,/S").

PROOF. The defining property of k. in (@.5.27), namely, [kXc(Q,7)] = Th(Ys/S'), the defi-
nition of the relative Euler class in (@.5.24)), and the homotopy between x and X’ give the first
equality in (9.5.30]).

By [92, Theorem 8.1.15], the cohomology classes j}zé(Tt,s/Sl,)_(’) and 1} o(€7 — &) are
determined by pointed homotopy classes [ky] and [k2], respectively, in [.Z(%),K(Q,r)]. Let
AM(U) C M (%) be the complement of the top stratum and let NS C .# (%) be a neighbor-
hood of .Z5"%(% ). Because the inclusion .#"8(% ) C .# (%) is a cofibration, we can assume that
Nsing deformation retracts onto .#518(%/).

If N®8 is sufficiently small, the construction of ky in Lemma[@.5.13]implies that k, (N®"8) = x,
where x is the basepoint in K(Q,r). The description of the restriction of €; to a lower stratum
Y C (%) in Lemma [0.5.10]

érls = er(X)g — wi(X),
and the argument of Lemma imply that the homotopy class [ko] also admits a represen-
tative ko satisfying ko(.#Z5"8(U)) = *. Because N*" retracts to .#*"&(U), we can assume that
ko(N®18) = x. Thus,

(9.5.31) € — € € Im (HT(//Z(%),NSing;Q) — H" (M (% );Q)) .
By the first equality in ([@.5.30) and the relation between relative and absolute Euler classes in

’ Y 1 /
L;,l (];,2E(Tt,s/5 X)) — L;,Z(él ~ és)) =0.
Thus,
(9.5.32) gy 08(Tes/S' X') = ty0(Er — &) € Im (H (M (%), 4 )S";Q) — H' (A (%);Q)) -
By excision, - . . _ .
HT‘(%(%)’ %t\;r/sl; Q) g HT(NSlng’ NSlng _ %smg(%); Q)’
and by the construction of ky and by ([@.5.31)), both &(T¢s/S',x’) and é; — & vanish on cycles
in N*"8, Hence, the difference (@0.5.32) vanishes, completing the proof of the second equality in

(@.5.30). 0
9.6. Duality and the link of an ideal Seiberg—Witten moduli space
We now perform the computation proving the equality (9.1.1]).
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9.6.1. The initial duality. We begin by showing how the intersection number in ([@.I.]) can
be written as a pairing of relative cohomology classes with the fundamental class [L, 9L].

The relative cohomology classes describing the geometric representatives are given by the co-
cycles defined in Section [042l For z = 1 --- s € A(X) and f; € He(X;R), denote

(9.6.1) Ji/(z,n) =Y (2)N#" and K (z,n) =V (2) N W
The inclusion map tg; defined in ([@.4.28)) also defines an inclusion of pairs,

(s /8" A5 ST\ 7 (5)

o
(5 151\ 7 ((8)), A 1S 7 (0(8)\ T(5))

A similar inclusion of pairs also holds for # in place of #'(3). We then define

(9.6.2) [e(z:m)] = g alep ] = - — i, ales] — Galen]”,

where [cg,] is as defined in (@.4.5]) and [cy/] is as defined in (9.4.8]).
With these relative cohomology classes defined, we observe that dimension-counting arguments
yield

(9.6.3) H (z,0) VX HO0) NP St = o
Hence, for a sufficiently small neighborhood U of .#, Smg /S* as constructed in Lemma[@.3.1] we have
(9.6.4) H(z,m) N 5(1(0) nNU = @.

For B € Ho(X;R), let v(B) be the tubular neighborhood described in Section [0.4.2] and let ¢5; and
13,2 be the inclusion maps defined in ([Q.4.28]). For the complement U° C U of the lower strata in
U, as defined following ([9.3.1]), the cup product

(9.6.5) e(z,m)] — e(Tie/S", x) € HYLT VU, LYF UU° \ A (2,n) N x ' (0);R)

can be paired with the homology class [L, dL] from (@3.1). By the definition of the cocycles [cs]
and [cy] as dual to the geometric representatives 7 (3) and #/, the definition of e(T¢s/S*,x) in
terms of a Thom class, and because x vanishes transversely (see Hypothesis [[.81]), we can write
the intersection number as

# (7 (2) N #" N L)

= (alen] = - i alen] = dalen] = e(Toe/S', %), [E,0L])
The first equality in Equation (@.5.30) allows us to rewrite Equation (9.6.6]) as
# (7 (2) N #" N Lys)

= <L%1,1[051] — =g ales ] = g alen]? — 5 ae(Tes/ST X)), [13,@13]>.

To replace the pairing of the relative classes in ([@E0) by pairings of absolute classes with the

fundamental class of Lflsr, we need to write the cohomology class [c(z,n)] — e(T¢s, x) as

[e(z,m)] — e(Tes, x) = ez, n)] — e(Tes, x),

(9.6.6)

(9.6.7)
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where
.7*[5(73777)] ~ E(Tf,an) = /];D(Z) ~ ﬂz — €] — €.
We will show how to accomplish this in the following sections.

9.6.2. Extension of the cocycles. The relative cohomology classes,
[c] € H* (A S\ I (w(8)), A" S\ (A (v(8)) U T (8)) 5 R),
[en] € H* (A" /SM\ I (v(@), A" ST (S (v(2)) U T (B)) 5R),
e(Tio/S'X) € HY (/SN (™50 V') A5 [SMN (A5 00 UxT(0)) 5 R)

defined in ([©.4.3]), ([@.4.8), and Lemma [0.5.14] respectively, are extensions only over subspaces of

///tvslr* /S'. We now discuss how these cohomology classes can be extended to relative cohomology

classes on ./, " /S'.

For any pair of spaces (4, B), let SP(A, B;R) = Hom(S,(A)/Sp(B);R) denote the complex of
real-valued relative simplicial cochains and let ZP(A, B;R) be the cycles of this complex. We can
consider SP(A, B;R) to be the set of real-valued cochains on A which vanish when restricted to B.
If 81 is an open cover of A, then a chain is small of order i (see [47, Remark 15.8]) if it is a sum
of simplices each of which has image contained in some element of {l. By [47, Theorem 15.9], any
element of Hy,(A, B;R) can be represented by a cycle which is small of order . By the Universal
Coefficient Theorem, to define an element of HP(A, B;R) it then suffices to define it on cycles which
are small of order . .

Lemma Q6T below shows that we can change the cocycle ¢g to one that extends over .4, " /S

by adding an exact cocycle supported near .# (v(f)). In the proof of Proposition @11}, we will show
that such a change does not change the pairing (0.6.7]).

LEMMA 9.6.1. For 8 € He(X;R), let % () C //Zgér’*/Sl be any open neighborhood of 7 (v(f))
satisfying I (v(B)) € % (B). Let cg be the relative cocycle defined in (B4AL). Then there are a
cochain,

0 € S©EOL (LT /SN I (W(B)), My S\ U (B)R)
and a cocycle
e € 250 (M )SY AT /ST (B)\ U (B R)
satisfying
T plesl = ip(B) and 15,68 = cs+ 6703,
where the map 139 is defined in (B.4.28) and
Juie) : (a7 8,2) = (LS AT SN\ T(B)\ % (B))
1s the inclusion map.

PROOF. The conclusion of the lemma follows from an argument similar to the proof of [30]
Lemma 5.14]. If

(9.6:8) a2 (A2 /SN I W(B)).2) = (AL ST\ I W(B), AL S\ I w(B)\ TV (8))



176 9. COHOMOLOGY AND DUALITY

is the inclusion map, then the equality,
ﬁﬁgﬂp(ﬁ) = ]2,2[05]7
provided by Corollary [@.4.9] implies that there are a cocycle E/B e zdes®) <//Ztvf* /S 1;]R) and a

cochain

b0 € SO (LTSN S (W(B))R)
satisfying

fip(B) = (5] and  tf o€, = jhocs + 6 6o.

Because .Z (v(B)) € % (53), there is a closed neighborhood, Z'(3), of .Z (v()) satisfying .# (v(B)) €
w'(B) C % (B). Then

u= {7\ w'B), % (3}

is an open cover of ///_tvslr* /St and using the argument of the proof of the Excision Lemma (see [48],
Proposition 2.21]), we can assume that all cochains in this discussion are defined only on chains
which are small with respect to this open cover.

Because the pairs appearing in the diagram are excisive couples (see [92], Theorem 4.6.3] and
[92] p. 218]), the map

SP (T ST\ I (W(B)), A5 ST\ U (B)R) @ 57 (M5 [SU\ S (W(B)), %' (B):R)
|
S? (A5 IS I W(B), (xS \ % (B)) N U (B R)
is surjective. In addition, because the intersection
(AL /s \w(8) nw'(8)
is empty, the map is actually a map to the space of absolute cochains,
SP( M ]S I (v(8)), 2; R).
Thus we can write 6y = 03 + 0,,, where
05 €550 (LA IS\ I (W(B)). A [\ U (B)R)
0, €551 (LT /S I ((B)), %’(6>;R) .

By definition, 6, vanishes on all simplices in %’(3). Because we have assumed that we only
need to define cochains on chains which are small with respect to the open cover il and because
F(v(B)) € %'(B), then 6, defines a cochain,

Gy € S*EO (LA 1SN 2 (B)R)
with %729}) = 0,. Define ¢z := E/B — 5*§p and observe that

UpaC = Uj ol — L o0 0 = 15 5T — 070, = 7 905 + 670,
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as required. The preceding equation implies that the cocycle ¢z vanishes when restricted to

MEEFSUN (F(B)U %) and thus defines the relative cohomology class asserted by the lemma.
Flnally, we compute that

T ()\C6) = (€5 — 070p) = 5] = Fin(B),
completing the proof of Lemma [9.6.]] O

The argument of Lemma [0.6.1] gives corresponding extension results for [cy| and e(T, x). The
extension result for [cy/] is given by

LEMMA 9.6.2. Let ¢y be the cochain defined in (9.4.8]). For any neighborhood % (x) C %Y;r’*/Sl
of I (v(x)) satisfying I (v(x)) € % (x), there are a cochain,

Oy € S' (LIS I (@), A5 S\ U (@)R)
and a cocycle,
ey € ZXMy"|SY ML ST\ W\ U (2); R),
satisfying
Ty lew]=He and 128y =cy + 00y,
where . .
¢ (MG B) = (ML ST SNA N\ U ()
is the inclusion map and vy is defined in (2.4.28).

Finally, we record the extension result for &(T¢s/St, x/).

LEMMA 9.6.3. Continue the notation of Lemma([9.5.14 For any neighborhood Uy, C /th;r’*/sl
of AN Y with #AeNYU € Uy there are a cochain,

0, € 57 (/Z(oz/) S\ U )

and a cocycle,
ox € 27 (M3 /S AT S\ XTH0) \ Ui R)
satisfying B
];[EX] =€ — & and L;(,2EX = é(Tt,ﬁ/Slv X/) + 6*9)(7
where

i (818 2) = (LIS A S\ XTH0)\ Uy )

1s the inclusion map.
We can now give the

PrOOF OF PROPOSITION [0.T.Tl The proof is analogous to that of [30, Proposition 5.2], us-
ing relative Euler classes of the obstruction sections and representatives of the cohomology with
compact support along the geometric representatives.

Let % be the neighborhood of ¥ ~1(0) appearing in Lemma [0.5.13} Because the intersection,

(9.6.9) FW(B) N NI (W(Be) NI () N0 I (v(ay) N U O A,
is empty, we can find open neighborhoods U(;) of .#(v(f;)), and Uy ; of #(v(x;)), and Uy of %,
and U of .8 such that the intersection obtained by replacing any of .#(v(5;)) with U(3;), or
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S (v(z;)) with Uy j, or % with Uy, or .#°"8 with U in (0.6.9) is still empty. For pairs of spaces
and subspaces, (Y, A) and (Y, B), cup product defines a map of relative cohomology,
HP(Y, A:R) © HY(Y, B;R) — HPT(Y, AU B:R).

Therefore, if we let 63, 6,, and 6, be the cochains defined in Lemmas 0.6.1, 0.6.2] and
respectively, for the neighborhoods U(f;), Uy j and Uy, and we replace one or more of [cg,] with
§*0s,, or [cy] with §*0,, or &(Yis/St, X') with §*6,, in

LEI,I[CBI] o LETJ[CBT] ~ Lz,l[CW]n ~ L*X,lé(Tt,s/Slafc,)a
then the resulting cup product will vanish. Hence, we obtain the following equality for the pairing
@.6.7),

(thales] = -+ = 5 ale] — halen]” — 5ae(Tee/S", X)), [L, OL])
(9.6.10) = (il 58] — - — e, + 5705

— Galew + 80,1 — 131 (e(Teo/S',X) + 80, [L,OL])
Recall that for j = 1,2, the inclusion maps ¢ ; and ¢y ; are defined in (24.28) and Lemma 0.5.14]
respectively. Applying the equalities
L=18201lp1 = lx,209lx1

and Lemmas[@.6.11 0.6.2] and[@.6.3]to equations (@.6.7)) and (2.6.10)) then implies that for the cocycle
¢g, defined in Lemma [0.6.1], the cocycle ¢y defined in Lemma [0.6.2] and the cocycle €, defined in
Lemma [0.6.3], we obtain the equalities,

(7P AL) = (0 (@] — (6] — )7 — (o) £ 05
= ([es,) — - [ea,] — [en]" — [ex], RILED)
where the map 7 is defined in ([@32) and we have used the definition of the homology class [Ly¥]

given in (@33). If 99 (s,), Jo (2), and Jx are the inclusion maps defined in Lemmas @61, [1.6.2] and
[0.6.3] then

(9.6.11)

# (V)N N Lts)
= (7 ([Eg,) — - — [5.) — [en]" — &), [LE])
= (Jynlen] = = Tulea] = dilen]" = silexl, [L32])
(by [92, Theorem 5.6.8])
= <ﬂp(ﬁl) T ﬂp(ﬁS) — A — €1 — &, [Etv,lsr]> )
where the final equality follows from Lemmas [0.6.1] 0.6.2] and This completes the proof of
Proposition O

9.7. Reduction to the subspace P;insr

We now show how to rewrite pairings with the homology class [Eflsr] defined in ([@.3.3) as
pairings with the homology class of a subspace and thus eliminate the topology of the normal
bundle Ny ;(6) — M.
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We first give a global description of the relation between the space ]3'7LZ715r defined in (8116

and the space Ezisr’i C L{¥ defined in (812), BL), and 8LE). Let 7, and ¢, be the maps in the
classifying diagram for the cohomology class v of Definition 0.2.3]

M s ES
(9.7.1) J J
M) — BS!
The proof of the following lemma is identical to that of [30, Lemma 5.19].

LEMMA 9.7.1. Let S act on the fibers of Ny),s(6) = Ms by scalar multiplication. Then the
deformation retraction, I_Jf’isr’i — B_Lf;r, is the pullback of the disk bundle,

Nio)s(6) x51 ES" — M x BS',

by the map .
T X Ly - //ng’*/Sl — Nt(é),s(é) X g1 ESI,

where //Ztvf* is defined in (B.2.2), the map wy is defined in (6.6.9), and the map i, in (QZ.T).
Let rn denote the complex rank of Ny, — M, and define
(9.7.2) Thity) € B2 (R[S, A5 ST\ 131 (0):R)
to be the pullback of the Thom class of the bundle
Ny)s(0) xs1 ES' — M, x BS!
by the map 7y X 7, appearing in Lemma A fundamental class,

(9.7.3) [BL{,] € Hyy-ary—2 (L5 N3 (0);R),
is defined exactly as in (@.3.3]). Namely, let
(9.7.4) [BL, 0BL]

be the homology class defined by the fundamental class of the manifold AWit}} corners given by the
intersection of ¢5'(0) with the manifold defining the homology class [L,dL] from (@.3.0). Now

define [P;insr] to be the homology class satisfying
(9.7.5) ..[BL,9BL] = 7.[BL{%],

where ¢ and 7 are the maps defined in Equations (O.2.1]) and (@.32]), respectively. Note that the
restriction of 7 to t]_Vl(O) also defines an isomorphism on homology of the appropriate dimension
because the deformation retraction r in Lemma preserves the level sets of ty.

Let U be the neighborhood of .;*/S" used in (@3.0)) to define the homology class [L,OL).
Because we can choose the boundaries of the space U to be generic, we can assume that ¢y vanishes
transversely on these boundaries. Hence, we have the equality,

(9.7.6) [BL,0BL] = .* Th(tx) N [L, OL].
We then have
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LEMMA 9.7.2. Ifb:= dimBL,Zisr, then for any w € H®(.A, Vlr*/Sl) we have
(thw, BLY) = (w0 — g Thtn), [LEL]),
where Th(ty) is defined in (O.7.2) and
B (LTSN ) 5 (TS A S\ 1 0)
and
uB ' (0) = A/ S
are the inclusion maps.

PRrOOF. The proof is similar to that of [30, Equation (5.59)].
Let U be the neighborhood of ./ "/S! as described prior to the statement of the lemma.

Abbreviate LY UU by L(U) and write t5(0) = B. Then for d(t) = dim AMEE and d(t)—2 = b+2ry,
where 7y is the complex rank of the vector bundle Ny, — M, we have

w — Th(ty) € H**¥~(L(U),L(U) \ B;R).
Consider the following commutative diagram of inclusions:
(LU),2) —2=  (L(U),LU)\B)
(9.7.7) jl JB,Ul
LU),U) 2 (LU),U U (L{U)\B))

Define US™8 := U N .#"¢ /5. Because U retracts onto US"¢ and dim US"8 < d(t) — 1 — 4, the
inclusion map jB, deﬁnes an isomorphism,

By HPPPY (L(U),U U (L(U) \ B);R) = H**2'¥ (L(U), L(U) \ B;R).
Consequently, there is a unique class Q € H*+?"~ (L(U),U U (L(U) \ B);R) such that
(9.7.8) JB,u? =w — Th(ty).

We now calculate that
(i — Thity)), [B32]) = (i UQ L)) (by @7))
= (7B tV‘sr ) (by commutativity of (@.7.7))
=i ,BQ 7L
= (0B (L 3L]> (by @.3.3)),
that is,
(9.7.9) (@ — Thit), [BE]) = (i 5 a[L, OL])
To get a better description of €2, we now reduce the preceding pairing to one on the subspace,

L'(U) :=L(U) \ int(L{"),
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where I:Zi;’s is defined in (8IL3). Observe that the top stratum, L‘(U) N Lf,isr, is an oriented
topological manifold with boundary by the argument giving Item (B]) of Lemma [81.2] and thus has
a relative fundamental class (see, for example, [48], p. 253]) which we denote by

[L,0L"] € Hyyy—o(L'(U),U U (L*\ B);R).

Because I_Jf’isr’s C L(U) \ B, the inclusion of pairs,

w, + (L'(V),UU(L'\B)) = (L(U),U U (L(U)\B)),
is an excision map and thus induces an isomorphism on cohomology. Consequently,
(9.7.10) (tr.4)«[L7, L] = (yuB)wt«|L, OL],
because both [L¢, JL¢] and [L, L] are fundamental classes. We compute that the right-hand side
of Equation (9.7.9)) is given by

(7B, 1L, OL]) = (2, (Ju,B)«t+ L, IL])

= (9, (w)+[L', 0L7)  (by @LI0))

(177, [L*,0L'7),

that is,
(9.7.11) (9178 e [L, OL]) = (17,9, [L, OL"]) .
We now compute ¢f; €2 in terms of similar restrictions of w and Th(ty). The (% x S D)-equivariant

deformation retraction, ]\7{(@)75 — M, defines a deformation retraction
rp: L(U) — B.
Observe that rp is a homotopy equivalence and also defines a homotopy equivalence of pairs,
rg : (LY(U),U) — (B,BNU).

Because the retraction of U in Lemma [9.3.1] onto the lower strata respects the level sets of ¢, the
subspace B N U retracts onto the lower strata of B which have codimension greater than or equal
to four in B. Therefore, the map

7 H*B,BNU;R) — H°(B;R)
is an isomorphism. Because the map rg induces isomorphisms rg : H ®(B,BNU;R) — H(LY(U),U;R)
and 75 : H°(B;R) — H(L{(U);R), there is a commutative diagram,

H'B,BNU;R) L HYB;R)

r*Bl T’El
HYLi(U), Li(U) N UsR) —2— HY(LI(U);R)
Hence, there is a unique yg € H*(B,U N B;R) such that
(9.7.12) w=7rgys and (pw=7yB,
where ¢; : LY(U) — L(U) is the inclusion map. We now claim that
(9.7.13) 172 = (rpys) — ¢; Th(ty).
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To see this, we consider the following commutative diagram:

HY(LA(U),UsR) @ H> (L1, L\ B;R) 2% HY(LY(U);R) @ H~ (Li(U), L'\ B;R)

| | |

HY~(Li(U),U UL\ B;R) % HY*?"~ (Li(U), L'\ B;R)

HY2N (L(U), U U (L(U) \ B);R) IB.U HY" 2~ (L(U),L(U) \ B;R)

The class rg(yB) ® ¢; Th(ty) is in the upper-left entry of the preceding diagram, while § is in
the lower-left entry of the preceding diagram. To prove that ([@.7.13]) holds, we must show that
these two classes have the same image in the center-left entry. By (@.78]), the class ¢;2 is mapped
to tfw ~— ¢ Th(ty) in the center-right entry. By (@7I2), the class r§(ys) — ¢; Th(ty) is also
mapped to ¢fw — ¢7 Th(ty) in the center-right entry, so

st = u(re(yB) — i Th(ty)).

Because U retracts onto a set of codimension greater than or equal to two and b+ 2ry = d(t) — 2
equals the dimension of the top stratum of L(U), we observe that both arrows labeled ]*B7U in the
preceding diagram are isomorphisms. Hence, the preceding equality yields Equation (O.7.13)), as
claimed.

By applying Equation ([@.7.13]) to the right-hand side of Equation (9.7.11]), we obtain

(1, [L',0L]) = (ri(ys) — ¢ Th(tn), [L*,0L])
= (rgys, ¢ (Th(ty)) N [L, OL7)
that is,
(9.7.14) (139, LY, 0L]) = (rys, ¢ (Th(tn)) N [LY, 0L .
From [8, p. 371, Equation (1)], we have the equality
(9.7.15) 1 Th(tn) N [LY 0L = (1B,i)+t+[B, 0B],

where 15, : (B,BNU) — (LY(U),L%\ B) is the inclusion map. The right-hand side of Equation
(@14) is then equal to
(rgys, ¢ (Th(ty)) N[L,OL']) =

—~

T*ByBy (LB,Z')*L* [B7 6B]>
(tB.i)"rBYB, 1+[B, OB])
yB, t«[B,0B])  (because rp is a retraction, so rg o tg; = id)

yp,0-[BLYY])  (by (@73)
7B, [ELtV,i;]>
i, [BLE])  (by @Z12)).

This completes the proof of Lemma [0.7.2] d

—~

—~

I
P e
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Lemma [0.7.2] can be used to reduce the pairing in ([@.1.1]) to one with [BIZ};] when we have an
expression for division by the Thom class Th(ty). The following proposition gives that result.

ProOPOSITION 9.7.3. Continue to denote dy = dimM,. For 0 < j < [dg/2], let sj(N) €
H?(Mg;R) be the Segre classes of the complex-rank-ry vector bundle Nywys = Ms. Let k and m
be non-negative integers satisfying k + 2m = dim insr. For any o € H*(M, x SymZ(X); R) and the
Chern class v € H*(L{¥;R) defined in Definition[J2.3, we have the equality

<Vm ~ 7T;(,5Q7 [f‘r,lsrb

(9.7.16) K \ vir
= () (VN s (V) — o [BLY])
j=0

PROOF. See [30, Section 5.2]. O

REMARK 9.7.4. The Segre classes s;(N) have been computed under some assumptions on
H'(X;R) in [28, Lemma 4.11]. From [28, Theorem 3.29], one can see that in general, these
Segre classes will be given by a universal polynomial in ug(z) and us(y;) with coefficients depend-
ing only on the indices n), and n appearing in (2:3.24]) and which in turn only depend on p (t(¢))
and c1(t(¢)).






CHAPTER 10

Computation of the intersection numbers

10.1. Introduction

In this chapter, we perform the computation leading to a proof of the following theorems which
form the technical heart of this monograph.

THEOREM 10.1.1. Let X be a closed, connected, oriented, smooth, Riemannian four-manifold
with b1(X) = 0 and t be a spin" structure on X. Suppose that ¢ > 0 is an integer and s is a
spin® structure on X such that Mg X SymZ(X) 1 a subset of the space of gauge-equivalence classes
of ideal monopoles I.#; defined in (ZII4). Let Lis be the link of the stratum of gauge-equivalence
classes of reducible SO(3) monopoles determined by s € Spin(X) as in Definition [81.3 For
non-negative integers m,d,m satisfying

0 —2m + 2n = dim ., — 2,

a class h € Hy(X;R), and a generator x € Ho(X;7Z), let z = h®~2mx™ € A(X) and ¥ (2) and #"
be the geometric representatives defined in Section[2.4 Then
# (7 (2) N W N Lys)

(10.1.1) min(6,[2=3])

= SWx(s) (a5,6,m,i(c1(s) — c1(t),c1(1)Q%) (h),
i=0

where qs5¢m,i are degree § —2m — 2i homogeneous polynomials which are universal functions of the
constants given in Theorem [1.

We note that a similar result can also be achieved by the methods of this monograph without
the assumptions that b;(X) = 0 and z = R®~2™2™, but the resulting expression (I0.1.1]) becomes
considerably more complicated. While an explicit formula for the intersection number in (I0.1.1])
is still unknown in general, many special cases have been computed in [29] 30} 33}, 25] 23] under
additional hypotheses. However, the following important result, referred to as the Multiplicity
Congecture in [29, (20}, [30], holds without any additional hypotheses. When b (X) > 0, we write

SWX,E(W) = <:u5(w)7 [M5]>7
for all w € Ag(X).

THEOREM 10.1.2. Assume the hypotheses of Theorem[I0. 1.1, but allow by (X) > 0. If SWx 4(w)
vanishes for all w € Ao(X), then

# (7 (z)N#"NLs) = 0.

185
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To prove Theorems [10.1.1] and [10.1.2] we begin by observing that Proposition [9.1.1] gives the
equality,

(10.1.2) # (V@O0 L) = (fip(2) — il — e = &, [LE3])

t,s

The expression for the p-classes in Corollary [0.4.9] the expression for é; in Lemma [@.5.1] the

expression for é; in Proposition [0.5.7, and the equality between the homology classes [7{“;] and

[B_in;] in Proposition [0.7.3] implies that the intersection number in (I0.I2]) can be reduced to a
linear combination of pairings of the form

(10.1.3) (V" — 75 SU(B) — i ps(22), [BL{Y])

where 8 € Hq(X;R) and 2z € Ay(X).

We wish to compute the pairings (I0.1.3]) by writing them as sums over pairings with the
subspaces ]S;Lzlsr(,@i) defined in (8I.I6) and then applying a pushforward-pullback argument to
the fiber-bundle structure in Lemma [B.2.3] of each of these subspaces. To do this, we replace
the cohomology classes in (I0.I3]) by cohomology classes with compact support away from the

boundaries ajB’inj(%) defined in (831]). Such a replacement requires a choice of cocycle in the
cohomology class and this choice must be done consistently on each subspace. We encode these

vir

choices in the following geometric data. We will define a quotient, QL{, of B_Lf,iﬁr by replacing the

boundaries 0; ELX?(Q%) with spaces of codimension greater than or equal to two. The cohomology
classes in (I0.1.3]) pull back from cohomology classes on this quotient. Thus, we may chose cocycles
representing the cohomology classes in ([0.1.3]) which pull back from the quotient. Because the
image of the boundaries in the quotient has codimension greater than or equal to two, the cocycles
pulled back from the quotient will have compact support away from the boundaries. Using these
cocycles is equivalent to computing (I0.1.3]) using the fundamental class of Q 2”; which, because
the image of the boundaries has codimension two, can be written as a sum of fundamental classes
of subspaces.

One can compare this method of computation to the method of “adding caps” employed by
Ozsvath in [79] as follows. In the case where there are only two subspaces, if one adds the cap to
each subspace defined by the mapping cone of the restriction of the quotient map to the boundary
of that subspace, the resulting compactification of each subspace ]S;Lzlsr(e@i) would be homotopic
to the image of B_ng(,@i) in the quotient. Thus our method differs from that of Ozsvath in that
there are more than two open subspaces in this computation and in that there are no correction
terms arising from using different compactifications of the subspaces. Ozsvéth has informed us that
he has an extension of his method to the case of arbitrarily many open sets, so our method offers
no advantage in that regard. Correction terms arise in [79] because the natural compactifications
to each subspace define different quotients of the common boundary. No correction terms appear in
this computation because on each boundary, @B’L{f(%), the natural quotient for the top stratum
(defined by extending the fiber bundle from ¥; to cl(X;)) respects the fiber-bundle structure of the
lower stratum. Hence, the absence of correction terms in this computation is not an indication of
a better method but merely an exploitation of a simpler situation.

vir

In Section [0.2L we construct the quotient space QL{y. This construction shows that the
image of each subspace P:Lg(@ﬁ in the quotient has a fiber-bundle structure identical to that of
B_LXE(QZ-) but with a compact fiber and base. In Section [0.3] we show how to use the quotient
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to obtain homology classes with the desired properties. In Section [[0.4] we describe the fiber-
bundle properties of the images of the subspaces in the quotient. In Section [I0.5] we perform
the computation giving the needed characterization of the intersection pairing (I0.1.3]). Finally in
Section [I0.6] we give the proofs of Theorems [I0.1.1] and

10.2. Quotient space of BL”

t,s

We wish to use the fiber bundle structure,
(10.2.1) BL{. (2)) = M, x K; C M, x (X%, 2,),

given in Lemma [8.2.3] to compute cohomological pairings with P;insr. To do this, we must write the
pairing in (I0.13)) with the homology class [B_Lf;r] as a sum over pairings with homology classes
representing the subspaces BTLXIJ(L@j) defined in (8I.16]). However, the subspaces B'Ig(ﬁ%) have
boundaries as described in Section B.3] and so would only define relative homology classes. To
overcome this difficulty, we construct a quotient of B_Ltv;r obtained by leaving the interiors of the

subspaces ELXLr(@j) unchanged and replacing the boundaries 8kBLXLr(@j) with quotients obtained
by deleting part of the gluing data as described in the following

ProrosiITION 10.2.1. There is a surjective, continuous map,
ST Vir i
Q:BL;; — QL;’;r

vir

onto a smoothly-stratified space QL{s with the following properties:

(1) The map Q 1is injective on the complement of Uj¢i8j]§Ler(9i).

(2) The image of each intersection, Q(ajB’LZ‘;(%)), has codimension greater than two in
Q zfir

S " _

(3) For the space M(P;,e;) defined in 82I)), there is a continuous, surjective, G(Z;)-
equivariant map, q; : M (P, ;) — M (P, €;), onto the smoothly-stratified space M (Z;,€;)
given in Definition [10.2.9 such that

Q(BLYY () = My xq, 51 Fr(t.5, 2) Xy M(P;,€1),

where Fr(t, s, 2;) is defined in (I0.22) and the restriction of the map Q to B_in;(L@i) is
given, for (Ag,®g) € M, and F € Fr(t,s, %), and A€ M(Z;,€;) by

—.

Q ([ (40, ®0). £, 14]] ) := | (40, @0), Ro(F), as([A))]

where R; is the map defined in Lemma[10.2.]].
(4) There is a positive integer b such that the restriction of the bundle LE°, where L, was

. V )

defined in (Q.2.15), to ELZIJ is pulled back from an S bundle over QLY.

(5) There is a map, TQ x : QL;’}; — Sym‘(X), satisfying 7x = 7Q,x © Q, where wx is the
map defined in Lemma [6.9.2.

(6) There is a map,
s : QL{s — M,
such that 7ts 0 Q = s, where w5 is the map defined in (9.2.3)).
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Because the images of the boundaries, Q(@BIZE(Q%)), have codimension greater than two,
the fundamental class of QL}’}; can be written as a sum of the fundamental classes of the images
of the subspaces. This allows us to apply a pushforward-pullback argument to the pairings of the
cohomology classes with these subspaces.

vir

We will construct the quotient QL{;
(10.2.2) Fr(t,s, 2;) — A(XY, 2))

be the extension of the fiber bundle Fr(t,s, 22;) — A°(X*, 2;) defined in (622 from the open
diagonal A°(X*, 2;) to its closure, A(X*, 2;). In Lemma [[0.24] we define a surjective, G(Z;)-
equivariant map,

as follows. Let

Rj : FI‘(’L,E, ’@j)‘Kj — Fr(t,s, e@j),
which is injective over the complement of the boundaries U;;0; K; defined in (8.3.4]). We will define
R; as a composition of maps R;;, defined in Lemma [10.2.2]

Each of the maps R;; defines a quotient );; of the boundary 8Z-P>_LX1;(L@]-). In Lemma[I0.2.7] we
show that for j < k the quotient Q) ; is defined by a quotient of the fiber of B_Ltv;r(e@j) — M x K.
For j < k < r, the fibers of the quotient @, ; contain those of Q) ; in the corner arakBngr(@j) and
hence one can ‘compose’ these quotients. The result of applying the quotients Q;11,;,Qj1+2,j,- .. @n,j
successively to ELXLr(@j) will be to replace the fiber M(%;,€) with the quotient M (%;,€;)
appearing in Proposition [[0.2.1l For ¢ < j, the quotient map @;; respects the fibers of the bundle
BfLXlsr(e@j) — M; x K; and thus can be applied to the quotient obtained by replacing the fiber
M (2;,e) with the quotient M (2, ;). In Lemma [I0.2.6] we show that one can take the quotients
Qjj-1,Qjj—2,--.,Q; 0 successively and obtain the quotient of ELX;r(@j) described in Proposition

Finally, we show that the quotient maps Q;; on 8¢8j]§LtVf;(e@;§) only identify points already
identified by quotient maps Q  or @, with r =4 or r = j. Thus, applying all the quotient maps
Q;,i to the space B_Lf:sr defines the quotient space QLXLr described in the proposition.

10.2.1. Quotient maps. We construct the quotient maps @);; by defining a quotient of the
frame bundle Fr(t,s, )|k, in (622). As described in the Introduction to Section M0.2] this
quotient will be given by the extension (I0.2.2) of the fiber bundle Fr(t,s, &) — A°(X! 2) to
the closed diagonal, A(X*, 22). Note that the structure group G(Z)/T'(Z) does not act freely
on the extension Fr(t,s, &) due to the presence of diagonals corresponding to cruder partitions in
A(X*%, 2). For this reason, we will discuss G(%)-equivariant maps rather than bundle maps.

For partitions &; < 2, of Ny, let v(X% 2, — [Z]) be the normal bundle of ¥(X*, ;)
in (X, 2;) defined in B34). Let 0(X' 2 — [P),92,) C v(X) P — [Z]) be the
neighborhood of %(X*, 2;) on which the exponential map e(X*, g»,) of (@3.0) is defined. Let
U (XY P — [P, 92,) C (XY, Py) be the image of O(X¢, P — [Py], g9»,) under (X", g,).
For each (Ag, ®g) € ]\7{(3),5(5), there is a G(Z)-equivariant homeomorphism,

Fr(taﬁa ‘@k) XE(XZ,Wi) ﬁ(Xza '@2 — [r@k]vgﬁzl)
(10.2.3) T(Wi,yk)(Ao)l

Fr(t, 8, 2| (xt.2 5194 9.,
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defined by parallel translation of frames with respect to the locally flattened connection Af, where
(Af, @() = O©.2,(Ag, D), and the locally flattened metric g, x, where the frames in Fr(t,s, &%) lie
over x € %(X*% 22,). This is the same parallel translation used in the definition of the upwards

transition map in (6.5.12)).

LEMMA 10.2.2. Let P; < Py, be partitions of Ny. Let F(Xe,g%) be the tubular distance function
defined in (A1) and let D(P;, ;) be the cube defined in (ET12). Then there is a G(Py)-equivariant
map, Ry ;: Fr(t,s, ) — Fr(t,s, Z), with the following properties:

(1) Ry is injective on the restriction of Fr(t,s, ) to the complement of the neighborhood
Rnggﬂi)_l(D(‘@ivgi))' B . B

(2) For j <i, Ry; maps the restriction of Fr(t,s, &%) to t(XZ,gyj)_l(D(@j,sj)) to itself.

(3) If Ki; = Kj U (U}:k_lTk,j), where Ty, ; is defined in Lemma [{.8.2, then Ry; maps
Fr(t, s, sz)h(m.ﬂ onto Fr(t, s, D) K-

(4) If F1, F5 € Fr(t,s, Zy), then Ry i(F1) = Ry (F2) if and only if there are pairs (F3,v,), for
a = 1,2, in the domain of the map T(P;, P) defined in (I023) with v, € O1(X*, P; —
[e@k]) and T(,@i, e@k)(Fg,Ua) = Fa.

(5) Ry covers the restriction of the map r; defined in Lemma [[.8.3 to (X, 2y).

PRrROOF. For a partition &; of N; with &; < P, Item (@) of Lemma [.83] implies that the
map 7; : Sym’(X) — Sym‘(X) pulls back, by e(X*, g,), to a bundle map,

it O(X5, P = [P, 99,) — OX', P — [ Pr), 92,)-

The map 7y; and the G(Z)-equivariant homeomorphism ([[0.2.3]) define a G(Z)-equivariant
map of Fr(t, s, Zk)|y (xt, 2, 2,],9.) t0 itself. Because ; is the identity on the complement of the

subspace % (X ¢ g,), we can extend this map as the identity on the complement of the restriction
Fr(t, s, Z%)| (xt,g, ) Let Ri; be this extension. Item (5) follows immediately from this definition.

Item () follows from this definition of Ry, ; and Item (@) of Lemma 83| Item (2]) follows from
Item (6) of Lemma L83 Item (3] follows from Item (8)) of Lemma 83l

The G(Z)-equivariance of Ry, implies that Ry ,;(Fi) = Ry ;(F) only if Fy and F; lie over
distinct points identified by 7y ;. Item (@) then follows from the construction of Ry ;. O

The following lemma will be used to compare the fibers of the quotient maps @y ;.

LEMMA 10.2.3. Let & < &P; < &P, be partitions of Ny. Let 0;0;K}, be the corner of Kj,
defined in (834)). Let Ry; and Ry ; be the G(Py)-equivariant maps defined in Lemma [10.2.2. If
Fi, 5 e Fr(t,s, e@k)’aiaj](k and Rk,j(Fl) = RkJ(FQ), then Rk,i(Fl) = Rkﬂ'(Fg).

PROOF. By Item () of Lemma [10.2.2, and the assumption that Ry ;j(F}) = Ry ;(F»), there are
pairs (F3,v,), for a = 1,2, in the domain of T'(2;, Z)(Ao) with T'(Z;, Zi)(Ao)(F3,vq) = F,. The
frame F3 is itself a parallel translation of a frame Fy € Fr(t,s, Pk)|s(xt, 2, Because the parallel
translations defining these maps are performed with respect to a locally flattened connection and
metric which have no holonomy along these paths, there are points w, € (X% 2 — [P])
with T'(Z;, Py)(Ao)(Fy,w,) = F,. Hence, Item (3) of Lemma implies that Ry ;(F1) =
Rii(F). 0
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LEMMA 10.2.4. Let &, be a partition of Ny and let K} be the interior of Kj,.. Then there is a
surjective, G(Z?)-equivariant map,

Ry : Fr(t,s, Z%) |k, — Fl“(f,ﬁ, ),

which is injective on Fr(t, s, ‘@k”K;f For Fy, Fy € Fr(t, s, P)|o; K, U, 0,k,, we have Ry(F1) =
Ry (F») if and only if there are pairs (F3,v,), for a = 1,2, in the domain of the map T(Z;, P)
defined in (I023) satisfying T(Pj, Pi)(F3,vq) = Fu. In addition, Ry, covers the map my_; defined
in the proof of Lemma [{.84)

ProoF. For the map Ry ; defined in Lemma [[0.2.2] define Ry to be the identity map and for
k> 0, set

(10.2.4) Ry = RrooRg10- -0 Ry 1.

Because Ry, ; covers r; by Item (H) of Lemma [[0.2.2] the definition (I0:24)) implies that Ry, covers
mg_1 =1rgor;o---org_q as required. Because it is the composition of G(Z)-equivariant maps,
Ry, is G(P))-equivariant. Let T} ; be as defined in Lemma .82 Item (@) from Lemma [0.2.2] and
the equality,

al (E(XZ, %)) = KU The
i<k
from Item (I) of Lemma imply that Ry maps Fr(t,s, )|k, onto Fr(t,s, P). It remains
only to check the injectivity properties.

Let F1, Fy € Fr(t,s, 2|k, satisfy Ry(Fi) = Ry(Fy). There is an index u such that if £, :=
(Rius1 00 Rpp_1)(Fy) for a = 1,2, then Fy # Fy while Ry, ,(Fy) = Rpo(F2). By Item () of
Lemma [0.Z2] Fy and F lie over £{(X*, g»,) " (D(Py,€4)). By Item @) of Lemma [0.Z2} F; and
F, also lie over {(X?, g, ) Y (D(Py,eu)). Thus, Fy and F, lie over KpNH( XY, g»,) " (D(Py,e4)) =
0y K} and the restriction of Ry to Fr(t,s, L@k)]KZ is injective.

If Fy and Fy lie over 0K}, — U;j<;0;K), and u and F, are as in the preceding paragraph,
then because the frames F, lie over 9,K}, we must have v > j. By Lemma [I0.2.3] the equality
Riw(F1) = Ry (F2) would imply that Ry j(Fy) = Ry ;(Fh). By Item (@) of Lemma M0.22) there
are pairs (F3,v,) in the domain of T(%;, ) with T(P;, P;)(Fs,v.) = F, for a = 1,2. By
construction of the maps Ry ;, the frames F|, are parallel translations along piecewise continuous
paths of the frames F,. Because the maps T(P;, &) are defined by parallel translation with
respect to a locally-flattened connection and metric which have no holonomy along these paths,
we therefore obtain pairs (I3, wg) in the domain of T'(#;, Zy) with T(2;, P)(Fs,v,) = Fy for
a = 1,2, completing the proof of the lemma. O

DEFINITION 10.2.5. For &; < &), and the subspace &-BIZE(@Q defined in (8I.16]), define a
quotient map Q. ; on ELX;r(@k) by identifying points,

(A, @), Fu, [A,]] € BL{ (2,) fora = 1,2,

where (Aq, ®,) € Ms, and F, € Fr(t,s, %), and [A,] € M (P, €) (the fiber of LY () defined in
®21), if Ry i(F1) = Ry i(F), where Ry, ; is the map defined in Lemma
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Therefore, by Item (II) of Lemma [[0.2.2] the quotient map Q) ; is injective on the complement
of the boundary &-B_Lf;r(@k) and on that boundary is defined by the projection map,

Fr(t,s, '@k)’aiKk — P_‘r(t,s, e@k)’[{z,
defined by the parallel translation map in (I0.2.3]) and the projection map,
Fr(t,s, Zk) Xsxe.m) O(XE, P = [Ph], 92,) = Fr(t.s, Pi)lnxe,2,)-
We note the following relation between quotient maps Q. ; and Qy ;.
LEMMA 10.2.6. Let &7 < P < P}, be partitions of Ne. If A, Ay € aiajEin;(%), the
subspace defined in [8II8), and Qi ;(A1) = Qk,j(A2) then Qri(A1) = Qrj(Ai).

Proor. This follows immediately from the corresponding properties of Rj,; and Ry, ; described

in Lemma [10.2.3] [

Lemma [10.2.6] implies that for each k, one can apply the quotient maps @ ; in order of de-
scending i as was done for the maps Rj; in Equation (I0.2.4). The resulting quotient map is
Qk-

10.2.2. Construction of the local quotient. We now construct a quotient of the subspace
ELXE(WZ-) using the maps Q;,;. We have described the quotient map @Q;; on aiELK;r(gzj) when
P; < P;. By B32), we have 0,BLy, (2%) = 0BL{; (2;) so Qj; also defines a quotient of
the boundary @B‘LK{.{(%). We begin by showing that for &7; < &7;, the quotient map Q;; on
ajB’LZ‘;(%) is defined by a quotient of the fiber of ELZE(Q%) — M x K;.

LEMMA 10.2.7. If &; < &; are partitions of Ny and O;M (P, ;) is the boundary defined in
[B33), then the restriction of the map Q;; to O;BL{y () is given by the map,

M, X, x 51 FI‘(’L,S, @Z) X () 8]']\_4(,@@', Ei)
M %, 51 Fr(t,5, i) Xc(2,) Upre|p,< ;) M(P")/S(P)
determined by the map c;j; in (83I2) on the fibers.

PROOF. The upwards overlap map,

My xg, Fr(t,5, i) X() Uiz, 0, Llpe s, (A°(Zp (0p), Z5) x M(2]))
pté;;qj[gz‘i]l
(u@//e[gi<@j} (Ms X, FI‘(t,Ei, 32”) XG(@”) M(L@”)))/G(yl)
ME X, Fl"(t,ﬁ, L@J) X(;(yj) M(L@J)

is defined in (6.5.13]) by the exponential map and parallel translation with respect to the same

connections used to define R;;. Hence, pullback of the quotient @;; by the map pt;;?u[ 2] is defined
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by the map on the fibers of the domain of ptf?uo , given by the projection,
2, Zi)
Ugrerz,<o) pes, (A°(Z1p|(0p), 25) x M(2}))

|

Usrero< o, lpes, M(Z)
Ugrez,< o, M(P")
t,5,d

The overlap map pj’ 124 is defined by the G(Z;)-equivariant map p 20 12] of fibers from (6.5.10)

and thus pushes the preceding projection forward to the projection descrlbed in the statement of
the lemma. 0

To compare the quotient maps @Q; , and Q; , for k < i < j, Lemma[[0.2.7 shows that it suffices
to compare the maps ¢; ;, and c¢;; and which we now do.

LEMMA 10.2.8. Let @, < P; < P; be partitions of Ny. If [A4], [ 1] € 8;0;M(Py,€), the
intersection defined in (83.3)), satisfy czk([jl]) = czk([jg]) then c;, k([A1]) = ik /T 2])-

PROOF. The assumption that [ o] € 0;0; M(@k, ) for a = 1,2 implies that [A,] lies in the
images of the maps of the fibers p" ; % (2] and p / @k ()] defined in (65.I7). Thus, by the definition

of the maps Pf] (o) and ngi’;,fk’[%], if we write [A,] = ([Apa])pes,, where [Ap,] € MgPL ‘P|((5p),
then

/ /
[Apa] € Im(Yg g ) NIm(vg ) for all P € P,

for some &' € [P, < P| and P € [P}, < P, where vy o, 18 the splicing map defined in

(5-43). Because the preceding intersection is non-empty, we have &, < &' < . Lemma [(5.6.5]
and the commutativity of the diagram (5.5.27]) imply that

Apa <7® Zp Ope/”’ gL ]> (Bp) = (’7/6,@;; of’%ﬁ,[@g]) (Bp),

for some Bp in the following overlap space defined in (0.6.3]) (omitting the symmetric group as it
is not relevant to this discussion),

G°(0, P, [7}),6)

C A(Zp(p), Zp) x [[ |A°(Zo o), 286) x T M on(Ger)
Qe QUEPY,
The map,

Gk © H Yo, P OP%,L@ BE
Pe2,



10.2. QUOTIENT SPACE OF B‘LZf; 193

is given by the projection,

HPE@IQ <AO(ZP(5P), e@lp) X HQ’E:@;; <AO(ZQ/(5Q/), e@é/) X HQ”E@N Mspi ‘Q”l(éQ”)))

HPE:@k HQIG:@;) HQ”E:@” MSPL ‘Q”|(5Q//)

Moreover, the map,

/ O,d
Cik © H Yo7, ° P, 121 |
Pe2,
is given by the projection,

Mres, (8°Z06r), 7p) % Toes, (8°(Za (6o ) % Tgres, M3 qn(6e))

HPE?]’k I_IQ/E,@;3 <AO(ZQ/(5Q/)7 c@é/) X HQ"E@” MSPL ‘Q"‘(éQ”))

The desired equality, ¢; (A1) = ¢;jx(Az2), follows by comparing the preceding projections and using
the commutativity of the diagram (5.5.27)). O

Lemma [I0.2.8] allows us to make the following

DEFINITION 10.2.9. Define M (%, €) to be the quotient of the fiber M(Z, ) of LYY ()

defined in (82Z1)) by applying the quotient maps cx41 k, Ck+2,k, - - - » Cn.k» defined in (8312, succes-
sively. Let g : M(Py,e) = M (P, €) denote the resulting quotient map.

LEMMA 10.2.10. Let gy M(Py,e) — M(Py,€) be the quotient map in Definition [I0.2.9.
Then M(Py,€) is a smoothly-stratified space, with a smoothly-stratified G(Z)) action satisfying
the following properties:

(1) For alli >k, the image q(0; M (P}, €)) has codimension greater than or equal to two in
M(L@k, E).
(2) The action of S* < SO(3) o
5,0
‘@k’ H MSPL \P|
PG]k
given by ®Z3) pulls back from an action of SO(3) on M(Py,€) with finite isotropy as

defined prior to Lemma[8.3.3.
(3) The map qi is G(Py)-equivariant.

PROOF. Recall from (82.) that M (2, €) is the subspace of M () where the maps ¢ (P, [Z;])
with & < j take values in smoothly-stratified subspaces of [0, 1]'9 il. Hence, the smooth strata of
M (P}, €) are given by taking the intersection of smooth strata of M(Z?;) with the pre-image
under ff(e@k, [Z;]) of these smooth strata of [0, 1]/?il. The quotients given by the maps cj i are
defined by replacing the union of strata 0;M (%%, €) with the smoothly-stratified space given by
the image of c;j. Hence, M(Z,¢) is a smoothly-stratified space. The maps t;(%,[?}]) are
invariant under the smooth, stratum-preserving G(Z;) action on M (%), so the G(Z) action
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also preserves the pre-images of the strata of [0,1]l”%! under the map ¢;(Z,[2?;]). The quotient
maps ¢;; are G(Z)-equivariant and so the action of G(;) on M (%, e) descends to define an
action on M (P, €). The equivariance of g in Ttem (3] follows immediately from this construction.

The assertion regarding the codimensions of the images of the boundaries follows immediately
from the construction. The assertion regarding the SO(3) action follows from the equivariance of
each map ¢; ,, with respect to this action and from the fact that SO(3) acts with finite isotropy on

the image of each map ¢; by Lemma B33l That is, if ¢ € ST < SO(3) and [[A]] € M (P, €) is
the image of [A] € M(Py, e) with e[[A]] = [¢"[A]] = [[A]], then there is a smallest integer j such
that c; (e’ [A]) = c]k([/_f]) Lemma implies that e is therefore a root of unity, of order o;
determined by j. Hence, if [A] € M(Z,€) and ¢ € S < SO(3) satisty e?[[A]] = [[A]], then e
must be a root of unity whose order divides the product ogy10k42 ... 0, of those orders. O

By Lemma [[0.2.7] the result of applying the quotient maps
Q1,5 Qht2,ks - -+ s @k
to B_in;(Wk) is the same as that of applying the quotient maps
Chk+1,k> Ck+2,ks -+ -5 Cnyk

to the fiber M (%, €). From Lemma[I0.2.10, we see that the quotient of BIZ};(@;Q by the quotient
maps Qk+1,k, Qk+2,ks - -+, @nk is equal to

——vir

(10.2.5) BLt75 (e@k) = Ms X x 81 Fr(t,s, ‘@k)’Kk Xg(p]yk) M(e@k,é')

For integers j < k, the quotient maps @ ; preserve the fibers of ELZLr(@k) — M, x K}, and

hence define quotients of ﬁ::(e@k) We characterize the result of taking these further quotients
as follows.

LEMMA 10.2.11. Let & be a partition of Ny. Then after applying the quotient maps
Qr+1,ks Qret 2, - - s Qnky @k k=1, Q=25 - - -, @k 1
successively, we obtain the quotient map,
M, Xy, 51 Fr(t,5, 2|k, X () M(Pr,€)

o

M; Xg, 51 Fr(t, 5, Pp) Xg(,) M(Pp,€)

k)
defined for (Ag,®o) € My, and F € Fr(t,5, P)|k,, and [A] € M(Py,€) by

Qk ([(AO,‘I’O),R [z‘ﬂ]> = [(A07®0)7RR(F)7Qk([g]) ;
where Ry, is defined in Lemma and qy, is defined in Lemma [10.2.10.

ProOF. By applying the quotient maps Qp+1.%; Qk+2,k, - - - » @n i, We obtain the space ﬁ:;r(@k)
as described above in (I0.2.5]). From the definition of the quotient maps @y, ; in Definition I0.2.5]

the result of applying the quotient maps Qr x—1, Qk k-2, ---,Qk 1 to ﬁzj(@k) is the same as that
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of applying the quotient maps Ry, —1, Rk k—2, - - ., Ri.1 to Fr(t, s, #;)|k,. By Lemma [[0.2.4] apply-
ing the quotient maps Ry k-1, Rk k-2, - - -, RBi,1 to Fr(t, s, P )|k, gives the quotient of Fr(t, s, 2 )|k,
defined by the surjective map, Ry : Fr(t,s, )|k, — Fr(t,s, Z%). O

We note the following

LEMMA 10.2.12. Continue the notation of LemmalI0.2.11. The pullback by Q. of the projection,
(10.2.6) Xk MS X x 51 Fr(t,s, e@k) XG(Py) M(@k,s), — Z(Xé, @k)
is equal to the restriction of the map mx to ELXLr(@k).

PROOF. The conclusion follows immediately from the assertion that R covers the map my_1
in Lemma [I0.2.4] and the construction of the map 7x in Lemmas £.8.4] and [6.9.2] O

10.2.3. Global quotient of B_in;. Lemma [T0.2.TT] describes a quotient of each subspace
ELX?(WJ) of BIX?. We have used Lemma [10.2.7] to ensure that we are applying the same quotient
to both boundaries in the equality (8.3.2]),

0iBL{, (%)) = 0;BLy; (7).

We will define the global quotient appearing in the statement of Proposition [0.2.1] by applying
all the quotient maps ;; in an appropriate order. To ensure that the resulting global quotient

satisfies Proposition [0.2.1] we need the following lemma to show that no identifications, other than
those already in the statement of Lemma [[0.2.T1] appear in the global quotient.

LEMMA 10.2.13. For i < j, if A1,Aq € OZOJELK;r(@r) satisfy Qj,i(Al) = QL@'(AQ), then the
following hold:
(1) Ifi<j<r, then Qri(A1) = Qri(Ag).
(2) Ifr <i <y, then Qj,(A1) = Qj,(A2). _
(3) If i <r < j, then there is an element A’ € aiajBLf;f(%) such that Qri(A1) = Qri(A'),
and Qj,r(Al) = Qj,r(A,)'

PrOOF. Items (dl) and (2) follow immediately from Lemmas [0.2.8] and [[0.2.6] respectively.
We now prove Item (3)). Because 81-8]-B_LXS(QT) = 8i8TELKLr(@j) by ([B3.2), we can consider the
points A; and As to be elements of ELKLr(@j). By Definition [0.2.5] points Ay, Ay € &-BIK?(@Q
are identified by @);; if they can be expressed as

A, = [(Ag, ®0), T(Zi, 25)(Ao)(F3,va), ([AQDge ;] , a=1,2,

where (Ag, ®9) € My, and (F3,v,) is in the domain of T(%;, ;) given in (I0.2.3)), and ([Ag])gez; €
M(2;,¢e). Note that the frames T'(22;, 2;)(Ao)(F3,v,) lie over points in 9;0, K. Since

(10.2.7) Fr(t,s, 2))|sxt,2,) = Fr(t,5, Pi) X g0, G(P5),

we can assume that F3 € Fr(t,s, ;). Because the parallel translations used to define the maps
T(Z;, Z;)(Ao) are performed with the locally flattened connection, Af, we can write the parallel
translation of F3 given by T(%%, 22;)(Ao)(F3,vq) as a composition of parallel translations, first
the parallel translation T'(Z%;, 22, )(Ao) (-, ug) to a point in 0;K,, and then the parallel translation
T(Py, Z5)(Ao)(-, wq) from that point to the point in 0;0, K;:

(1028) T(yl, gzj)(Ao)(Fgg,Ua) = T(@j, L@r)(Ao) (T(@Z, L@r)(A()) (F3,U;) ,wa) .
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By the identification in (6.5.06]), we can write the elements (F3,v/,) of the domain of T'(%;, 2,)(Ao)
as (I, (Vp,)pesr), where 2" € [P, < &j] and vp,, € A°(Zp|(dp), Z%). Then the definition of

t,5,u

the upwards transition map in (6.5.14) implies that A, = p 12 ](AZ), where

Al = |:(A07(I>0)7T(f-@ia Pr)(Ao)(F3,wa), (Vpg, (AQ)QGW”)PG%] ’

and T(Z;, 2 )(Ao)(F3,w,) € Fr(t, s, #;), and 2" € [P, < Zj], v, and Aq are as above.
If we define

A= 50 ([(A0, @0). T(25, 2,)(A0) (B, w2). (v 1. (AQ)ge sy pes, | ) -

then Q;,(A2) = Q;-(A’). The latter equality holds because if we write F; = T'(%;, Z,)(Ao)(F3, wa),
then by (I0-Z8]) we can express As and A’ as

Ay = [(Ag, @0), T(P}, 2,)(A0)(F3,vp2), (AQ)qe,] »
A" = [(Ao, @0), (2}, Z:)(Ao)(F3, vpy), (AQ)Qeﬂ] :

To see that Q,;(A1) = Q,;(A’), we apply the downwards overlap map p" 5,, [ . defined in (6.5.15),
so that

A1 =050, ([ (A0, ®0), (25, 2,)(A0) (B, 0n), (U1, (AQ) ey per, | )
= [(A(]vq)O)’T(‘@i"@ )(AO)(F37w1)
A =pt, ([(AO,%),T(% 2)(A
= [(Ao, @0), T(Zi, Pr)(Ao)(F3,w2), (Ap)pe, | »
where, for P € &, and &" € [, < &;], we denote

PE]’!"] )

(F3,w2), (vp1, (AQ)Qe@g)Pe%])

)

0)
(AP
0)
(

P =Yo7 <(U93,17 (AQ)QGW;;)> :

Because the preceding expressions for A; and A’ differ only in the “w,” coordinates, the desired

equality Q, (A1) = Q,i(A’) follows. O
We can now give the

ProoF OF PrROPOSITION 02Tl Let £, ..., Y, be the partitions of N, chosen, as in §3.4],
to enumerate the strata of Sym‘(X). We perform the quotients Qj, in the following order:

Qn,n—l:
Qn— 1,n—2, Qn,n—27

Qj+17j7 Qj+2,j7 oo 7Qn,j7

Q107 QZOv"'?QnO-

Lemma [T0.2.13] implies that the application of these quotients to the subspace BLV“(L@T,) yields
the same quotient as that defined by Lemma [[0.2.T1] This establishes Items (d)—(3).
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The restriction of the bundle L, to the subspace ELZLr(e@T) is the complex line bundle associated
to the S' bundle,

Mﬁ X, Fr(tvﬁv ‘@T‘)|K7‘ XG(2r) M(gzﬂs)

(10.2.9) l
ME X, x 51 Fr(tvﬁv ‘@7‘)|K7‘ XG(P2,)x S M(gzﬂs)

where the S' action is defined in (6.2.I3). This S' action is trivial on M; and acts diagonally on
the frames in Fr(t,s, &) as described in Section Because of the action of G(Z7,) on the base
of (I029), this S! action equals the diagonal action of S* on the frames in M (Z,,¢€) as described
in (82.3). By Item (@) of Lemma [0.2.10, this action on M (£, ) pulls back from an action with

finite isotropy group, Iy, on M(Z,,¢e). By Lemma [§3.2} the orders of the isotropy groups of the
S1 action on

(10.2.10) M; x Fr(t,5, ;) Xg(z,) M(P;,¢),

given by this S! action on M (Z,,€) will divide b, := |T'.||&(2,)|. If we define b :=bg - -~ by, then
there is a complex line bundle over QLtVf;, with restriction to Q(B_LKE(QT)) given by

Ms X Fr(t,s, '@r) XG(:@T) M(e@r,E) X(Sl,xb) (C,

whose pullback to ELXS is L&, By (S', xb) in the preceding expression, we mean that S' acts

with multiplicity b on C to ensure that the stabilizers act trivially on C. This completes the proof
of Item ().

Define the map 7x g by the projection (I0.2.6]) on Q(BVLXS(C@]-)). Then Item (&) follows from
Lemma [0.2121 On each subspace Q(BLy, (#;)), the projection map

7?57]' : MS X x 81 P_‘r(t,s, @]) X(;(yi) M(@j,e) — ]\J5

satisfies 5 = 75 j 0 Q. By the definition of the quotient map @ and by the proof of Corollary [6.6.5]
we see that 75 ; = 75 ; on the appropriate intersection of images of the subspaces Q(BLy, (%)) in

vir

the quotient QL;’};. Hence, the maps 7 ; fit together to define a global map s on QL{} satisfying
Item (). O

10.3. Homology and cohomology classes of the quotient

vir

To use the quotient space QL{y in Proposition [0.2.TIto compute the pairing (I0.1.3), we must
verify that cohomology classes appearing in (I0.I3]) pull back from the quotient.

LEMMA 10.3.1. Continue the notation of Proposition [I0.2.1. Then there are a positive integer
n and a class,

(10.3.1) 7 € H*(QL{Y; R),
such that Q*v = nv, where v is the cohomology class appearing in (I0I13]).

Proor. Choose 7 to be the first Chern class of the line bundle over QL}’;r defined in Item (@)
of Proposition [0.2.1] O
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LEMMA 10.3.2. Continue the notation of Proposition [I0.2.1l. Define
QL{L () = Q(BL, (7).

Then there are homology classes,

(10.3.2) QLYY (2)] € Ho(QLYY (2); Z),
satisfying
(10.3.3) Q.BLYY] =Y (). QLT ()],

7

where I; : QL;’};(L@Z-) — QL;’}; is the inclusion map.

PROOF. From the definition of B_insr(,@i) in (RI1.16]) and (B.I15) and the definition of ajB‘inj(%)

n ([R31]), we see that the boundary of B'_ng(e@i) is given by

OBL{(#;) =] 9;BL{,(Z

J#i

We then define

bQLYS (7) = Q(OBL{, ().
Then there is an equality of cycles,
(10.3.4) [BL{;] =) (1)+[BL{; (2%),0BL{; (%,)],
where ¢; : ELZLr(@i) — BIK? is the inclusion map and

[BL{, (2),0BL{, ()] € Ho(BL{, (%), 0BL{, (Z;);R)

is a relative fundamental class. Item (2) of Proposition [0.2.1] implies that the map in the exact
sequence of the pair (QLXH( ), bQLV“ (2 ))

(jz)* : max(QLVlr( ) R) - HmaX(QLVH( ) bQLVIr( ) R),
is an isomorphism. Hence, there is a homology class,
[QL{S (#)] € Ho(QL{S (Z:);R),
as in (I0.3:2]) which maps to Q*([ELKLr(@i), 8B_LXLr(@i)]) under (J;)*. Applying Q. to the equality
(I0:3:4) yields the conclusion. O

10.4. Fiber bundles and pushforwards

We now show how to use the fiber bundle structure of Qinsr(e@i) in cohomological pairings.
The subspaces of the quotient QLV“( ;) are not fiber bundles over M, x cl(£(X*, £;)) but do pull
back to a fiber bundle over A(X?, ;) as we record in the following lemma.
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LEMMA 10.4.1. For the subgroup G(2;) of the structure group G(2%;) defined in (6.2.33), define

——~—Vir

(QL{75 (922) = M5 ngxsl F‘I‘(t,ﬁ, gzl) Xé(@z) M(L@Z E).

Then there are a branched covering, ¢; : QNLtV;r(e@Z) — QL}’};(L@Z-), and a homology class,

——~—Vir ——~—vir

[QLt,s (‘@Z)] € HO(QLt,s (‘@i);R)a

satisfying (c,)*[af:;r(@,)] =e; [QL?;(@Z)] for some e; € Z and a commutative diagram,

——~—vir ¢

M(L@Z E) E— QLt75 (L@Z) —_— QLX?(:@Z)
WQ”L.J/ ﬁ'zl
My x A(XE, 2) —— M, x l(2(X5, 2))
where the map 61::1:((@,) — M, x A(XY, 2) is a fiber bundle with structure group 9, x G(%;).
We record the behavior of the cohomology class 7 under the branched cover c;.

LEMMA 10.4.2. Continue the notation of Lemma[I0.4.1 Let v be the cohomology class defined
in (I030). Then cfuiv = U;, where ¥; is the first Chern class of the St-bundle given by

(10.4.1) M, xg, Fr(t,s, 2;) X&) M(2;,€) — Mg g, 51 Fr(t,5, 2;) X&) M(Z;, ).

PRrOOF. The conclusion follows immediately from the definitions 7 and of the map c;. O
We write
(10.4.2) Fxi: QL (2) = AXL, 2) and 7o, QL (%) — M,

for the composition of 7q ; with the obvious projection maps.
We now analyze the structure group of the bundle defined in Lemma I0.41l The equality
A(X*, P) =[]peyp X, implies that we can write the bundle Fr(t,s, 22) — A(X*, 2) as

Fr(t,s, 2) = [[ Fr(gye) xx Fr(TX).
pPew

The preceding identity and the diagonal inclusion map, M; — [lper M, define an inclusion of S*
bundles,

M, %o, Fr(t,s, 2) X&) M(ZP;,€)
(10.4.3) |

res (Vs <, Frgyn) xx Fr(TX)) X500, M(Z5,€)

covering the inclusion of base spaces,

M, xg, s Fr(t,s, 2) X&) M(Z;,€)

l

HPGW (Ms X4, Fr(Gt(Z)) XX Fr(TX)) /Sl X&) M(c@z €)
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We now show how to reduce the structure group of the preceding bundle. The SO(3) bundle,
Fr(gys)) — X, admits a reduction to an S ! bundle,

(10.4.4) Fr(gy)) = Qs x 51 SO(3),

where ¢;(Q¢s) = c1(t) — ci(s), as described in the beginning of Section 23 (see also [28], Lemma
2.9)).

LEMMA 10.4.3. Define an S'-bundle P by
Pg = My xg, Qus — My x X,
where 9 acts on Qs by (q,u) = qu(pg(q))?, for q € Qs and u € 4. Then
M, Xg, Qus — Mg x X

is a principal S*-bundle with first Chern class equal to 2c1(Ls) +75c1(Qys), where my : Mgx X — X
1s the projection.

PRrROOF. The conclusion is given by [28] Equation (3.68)]. O

We define
H(2) =[] S* xS0
pPew
We can thus rewrite the bundle

I1 (Ms <, Fr(gye) X x Fr(TX)) X & M(Zi¢)
PecZ;
= ] (0 xq, Que xx Fr(TX)) X, M(Zie)
Pe;

=~ ] (Pis xx Fr(TX)) X i1y M(Pi€).
PcZ;

If we denote Fry(2%) = [[pcsp Pis Xx Fr(TX), then composing the preceding reduction of the
structure group with the inclusion (IT4.3)) yields an inclusion of S bundles,

- _ . Al
M; xq, Fr(t,5, ) X5y M(Z;,€) —, Fr 5 (24) X 0y M(Pis )

(10.4.5) l l

M, et Br(4,5, P) Xy M(Pise) — Frpp( ) X g ) M(Z,)/S"
where the S' action on M(Z;, €) is given by the diagonal S' action on frames defined in ([8.2.3)).
Let fis: My x X — BS! x BSO(4) be the classifying map for the bundle
Fio = Pus xx Fr(TX) = M, x X.
By the identities,

EH(2;) = [] ES'xESO(4) and BH(#;)= [] BS'xBSO(),
Pe2; Pe;
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if we define fis(2?) := [[pecs fis and ftg(e@) to be the bundle maps in the diagram,

Mpes o 227 Eii(2)
(10.4.6) l l
[lpey Ms x X —— fol? BH(2)

and if we write idys and idy; g1 for the identify maps on M(Z;,€) and M(P;,€)/S" respectively,

then we have a commutative diagram of S! bundles and H (£2;) bundles:
. fus(2;)xid ~
Mpew, Fis X o) M(Pie)  —==——5  EH(Z) x4,

! |

. f{’s(@i)xid 1 ~ -
(10.4.7) e, Fs X in M(21,€)/5" S YW BH(D) % 50 M(P;,€)/S)
l pzi

M(@i,e)

H(Z;)

f,5 v@i o3
[per, (Ms x X) L2, BH(2)
We then have the following lemma.
LEMMA 10.4.4. Define
vir; € H(EH(2)) X Gy M(Zi,€) /S5 R)
to be the first Chern class of the bundle
EH(2;) X i M(Pise) = EH(2;) x fizy M(Zi,€)/5".
If 7; is the cohomology class defined in (I0AT), A{, the map defined in (I0AE), and we define
(10.4.8) Gi = (fes(P3) x idprs1) 0 Al g,

then g;kI/Hﬂ' = Di.

ProoF. The lemma follows immediately from the definitions of vg; and 7; and the commuta-
tivity of the diagrams (I0.4.5]) and (I0.4.7). O

We will require the following computations of pushforwards.

LEMMA 10.4.5. Continue the notation of Lemma[107.7) For & ={P,...,P,}, define k() =
S (8P| —4) — 2. Let p; : EH(%) X (2 M(P;,€)/S' — BH(Z;) be the projection map
appearing in the diagram ([0.47). Then there is a class,

miz,s € H*HP)(BH(2,); R),
such that
(Pi)« (Vi) = My, 6.

PROOF. The conclusion follows by observing that k() is the dimension of the fiber M (2;,€)/S".
O
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10.5. Computations of intersection numbers on Et,g

We can now begin to compute the pairings appearing in (I0.1.3]). First, we show how to reduce
such pairings to pairings with the subspaces of the quotient space.

LEMMA 10.5.1. For any ps(2z2) € H*(Ms;R), and S(B) € H*(Sym‘(X);R), and 2o € Ay(X),
the equality,

(V" mipa(z2) — w5 S(9), [BLY] )

(10.5.1) _ Zn < (,/ — i g (22) — FXZSZ(,B)) ,[QL&r(e@i)D,

holds, where we defined n and v in Lemma I0.31, and 7x; in (I0280), and 75 in Item (@) of
Proposition [10.2.1.

ProoF. From Items (@), (Bl), and (6) of Proposition [[0.2.1] and from Lemma [[0.3.1] we have

(V' = mipe(22) — 75 S(8), [BLZ] )
=0 {(Q7) — Q"Fis — Q7 x5 (8),BLY])
=@ (7 — #ine — 75 x5(8)) . [BLY])
=00 (5 — s — 75 xS'(8), QuIBLY))

=m0 (P s — 75 S8), () [QLE ()] )
where the final equality follows from Lemma and the definition of 7g x in terms of 7x ;. [

The description of the fiber-bundle structures in the preceding section leads to the following
expression for the pairing on the right-hand side of equation (I0.5.]).

LEMMA 10.5.2. Continue the notation of Lemma [[0.51l For &; = {Py,..., P}, let k()
be the constant defined in Lemma [I0.1.5. Write ps(z2) and SY(B) for ps(z2) x 1 and 1 x S*(3)
respectively. Then there are universal polynomials,

myz, 5(t,5) € HP M) (M, x AXY, 2);R),

in the cohomology classes ¢1(Ls) and S*(a), where a may denote c1(t) — c1(s), e(X), or p1(X),
with coefficients depending only on & and the partition £ = |Py| + --- + |P|, such that

(i (7 — Fomel20) — 75,:8°(8)) . [QLIE(22)] )
= (my2.5(6:9) — slz2) — S(B), [My x A(XY, 2)])
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Proor. Lemmas [10.4.1] and [10.4.2] allow us to write

(i (77 = Fie(z2) — #5,5(8)) . QLI (2,)])
= (1 (7 — Fnelz2) = 7i8°(9)) (e QLY (20)])
= et (e (7 — Rinelz2) - 73:5°8)) QL (2)])
— (7 — 7 (me() — $'(9)) . [QLL (22)]).

where in the final step we have adopted the convention of writing us(2z2) for us(z2) x 1 and St (8)
for 1 x S*(B) mentioned in the statement of the lemma; we record the conclusion as

(10.52) (i (77— Finel(2) — 75,:5(9))  [QLEE(2.)])
= (7 — 7 (ms(2) — 5(9))  [QLL (#2)] ).

We then use a pushforward-pullback argument to compute the pairing in the right-hand side of

(I052). Define

Ay My % H X = H M, x A(X*, 2),
prPey prPey

by the diagonal inclusion, M — [[pc4 Ms, and the identification AXE 2) = 1] pep X (where
A(X!, 2) ¢ X! is defined in ([B.1.4)). Composing the diagrams (I0.Z5) and (I0.47) gives the

diagram,

QL (#) Y BH(P) g, M(Pi€) /S
M, x A(Xt, 2) —2 BH(2;)

where g; is defined in (I0A8) and g; := ([[pep fis) © An (and fis is defined prior to (I0.4.6]).
Lemma [[0.4.4] then implies that we can rewrite the right-hand side of (I0.5.2) as

q%ﬁvﬁJM@v#w)hdﬂ>D

——vir
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We then apply a pushforward-pullback argument to the diagram (I0.5.3]) to rewrite the right-hand
side of (I0.5.4)) as:

e (v — i () — 9, [QLL (2] )

(o (5vin — 7 (1e(22) = 558)) ) [Ms x AKXE, 2,)])
= &' ((FQu) (51vh;) — molz2) — $1(8), (M x ACX!, 2)])

= e (3 0i)vin) — pe(z2) — 5°(B), [Me x AKX, 2)])

= &' (G — ho(22) = S'(B). [Me x ACX!, 2)])

where the final equality follows from Lemma By the definition of g; in terms of the maps
fi,s and by the definition of the maps f s as classifying maps for the bundles P; s (defined in Lemma
M0.43) and Fr(TX), the pullback gim|, ; is given by a universal polynomial in the characteristic
classes of P, and Fr(7'X). By Lemma [[0.4.3] these characteristic classes are 2¢; (Lg) 4 c1(t) —c1(s),
and e(X), and p;(X). This completes the proof of Lemma O

=€

10.6. Proofs of the main theorems

We now prove Theorems [[0.1.1] and [10.1.2] and Theorem [Il

Proor oF THEOREM [I0.TTl Recall Equation (I0.12):
(10.6.1) 4 (%(hé—%xm) N#"N Lt,5> - <gp(h5—2mg;m) & — &, []Vf;]> .

For convenience, we abbreviate Ly, := —3(c1(t) — c1(s), h) and a := 2u, — v. By Definition [.2.8] we
can then rewrite (I0.6.1)) as

# ( 7(hO=2me™)y N A/ N Em)

6—2m 1 m .
— (aLh + @sf(h)) - <—Za2 + s%)) — v — ()= — ey, [LX?]>

(10.6.2) # (”f(hé_zmxm) Ve ]:t,s)

= (=1)"=Csm(i, )L}, <o/“ < SY(R)FIm—i _ Gh(zym—i oyt gy, [insrw ’

Comli, ) = <5 _i2m> <Zl> (~1y27.

where
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The expression for é; in Proposition [0.5.7] implies that we can write the terms in the right-hand

side of (10.6.2]) as
L (o — ST Sty - e g (L)
(10.6.3) LA ' ‘ ' .
= S (o S ) o g B
=0
where ny ; € H*~% (M, x Sym‘(X);R) is a polynomial in yis(-) and S%(c(t)) with real coefficients

depending only on ¢ and j. Proposition [0.7.3] and the expression for the Segre classes s;(/N) in [29],
Lemma 4.11] imply that the terms in the sum on the left-hand side of (I0L6.3)) can be rewritten as

Llh <04T — Sé(h)6—2m—i — Sé(x)m—j — Vn+r5+j — g [Ezlsr]>
(1064) i £71\6—2m—i L/ \m—j I P
= Lh <S (h) — S (ZE) T — St,s,r(Va Nsath)’ [BLt,5]> )

where ¢, (V, 115, t, X) is a polynomial in v, 7} us(-), and 7% S*(a) where « is ¢1(t), c1(s), e(X), or
p1(X) and the coefficients of s¢q (v, ps, t, X) depend only on the homotopy type of t, s, and X.
Applying Lemmas [0.5.1] and I0.5.2] to (I0.6.4]) yields the equality,

(84 (0)2mt 84wy sa (v, 1s, t, X), [BLYY] )
(10.6.5) ro | |
S <q(%) — SR S ()T (M x A(XY, %]> :
k=

0
where ¢(2,) € H*(M, x A(X?, 2;,) is a polynomial in ys(-) and S¢(a), and where a can equal
c1(8), e1(s), (c1(t) — c1(s)?, e(X), or pi(X). Because by (X) = 0, the equality

[M, x A(X*, 2,)] = [M;] x [A(XE, 2)]

implies that the expressions in (I0.6.5]) will vanish unless they contain a factor ps(z)%(®)/2. Hence,
the terms in the sum on the right-hand side of (I0.6.5]) can be rewritten as

L (a(2) — S' (R — Sh (@) (M x ACXE, 24])
(10.6.6) ' ' ,
= SWx ()X, (' (n)72"=1 — S (@)™ — e, (6,m.j k), AKX, 24])

where s (0,m, j, k) € H*(A(X?, &) is a polynomial in S*(a) for a equal to ¢1(t), c1(s), (c1(t) —
c1(s)?, p1(X), or e(X). Because A(X*, ) is a product of || copies of the four-dimensional
space X and because S*(h) is a two-dimensional cohomology class, terms in (I0L6.6]) will vanish
unless each factor of S*(h) is paired either with another factor of S*(h) or a factor S*(as), where
ag = c1(t) or ¢1(t) — c1(s). Pairing S*(h) with itself will give powers of Qx (h), pairing S*(h) with
S () will give powers of (c1(t),h) or (c1(t) — c1(s), h). Thus, recalling the definition of L, from
before (I0.6.2]), we see that the expression on the right-hand side of (I0.6.6]) must be a sum over
terms of the form

(e1(t) = er(s), B)' (ea(8), 1) Qx (h)*,
where i + j + 2a = § — 2m. We note that the power a appearing in @ x(h)* must be less than or
equal to the length of the partition &, so a < £. This completes the proof of Theorem 0. 1.1l [
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We record a particular case of Theorem [[0.1.1]in a form which is used in the proof of Witten’s
Conjecture [25), 23].

ProPOSITION 10.6.1. Continue the notation and hypotheses of Theorem [I0.1.7. In addition,
assume that dim M; = 0 and
2(5 + 77) = dlm%t — 2.
Writing sy, := (c1(s), h) and A\, :== (c1(t), h), then

<V5+n—2m—i — TSR — iy (2)™ — e — e, [E§2r1>

(10.6.7) min(6i/2]) |
= SWx(s) Z fs.6.mm,ij(Sn, An)Q@x (R),
j=0
where

i—2j

i—2j—k\ k

Fotmmig (8 An) = > semmigksh A,
k=0

and the coefficients as g mn.ijk depend on é, £, m, n, i, j, k, x, 0, c1(V)?, e1(s) - c1(t), and c1(s)?.

PrOOF. Under the assumption dim M, = 0, the left-hand side of (I0.6.3]) reduces to the ex-
pression on the left-hand side of (10.6.7]). Hence, the conclusion of Proposition [[0.6.1] follows from
the proof of Theorem [I0.1.1] from (10.6.3)) to the end. O

We now give the

Proor oF THEOREM [I0.1.2] The proof of Theorem [I0.I.Ilshows that the intersection number
in the statement of the theorem equals a sum of expressions of the form on the left-hand-side of
(I0:6.6). Without the assumption that by (X) = 0, the left-hand side of (I0.6.6]) equals a sum over
terms that each contain a factor of the form (us(w), [M;]), for some w € Ag(X). These vanish by
hypothesis and hence the intersection number vanishes. O

The definition of the Donaldson invariant for X in (Z5.2]) is given in terms of the blow-up,
X=X #(C_IP’2, of X. Hence, before commencing the proof of Theorem [Il we will need to restate
Theorem [0l in a form useful for computations on X.

Let e € Ho(X;7Z) be the fundamental class of the exceptional curve and define e* := PDle]. We
will identify elements of the homology and cohomology of X with elements of the homology and
cohomology of X by means of the obvious inclusions.

By the discussions in [87] Section 12.4] or [78l, Section 4.6], given s € Spin®(X), there is a unique
spin® structure 5, € Spin®(X) such that ¢;(5;) = ci(s) + (2k — 1)e* and all such spin® structures
on X are so obtained. The dimensions of the corresponding Seiberg-Witten moduli space satisfy

ds(5g) = ds(s) — k(k —1).
We then have the

LEMMA 10.6.2. Continue the notation and hypotheses of Theorem [I011. Let X = X#@P’2 be
the blow-up of X and let e € Hy(X;Z) be the homology class of the exceptional curve. Let t be a
spin® structure over X satisfying

pi(t) =p1(t) =1, c1(t) =c1(t), and wo(t) = ws(t) + PDle] (mod 2).
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Then
# (”17(26) nN#"N I_‘i,ﬁk>
(10.6.8) min(¢,[*=3"])
= SWx(s) (@5,0,m,,6(c1(5) — e1 (1), e1() Q) (h),
=0

where @somik are degree 6 — 2m — 2i homogeneous polynomials whose coefficients are universal
functions of the constants given in Theorem [1l.

PRrROOF. The proof follows that of Theorem[10.1.Tlonce one has made the following observations.
By (2.3.14), the levels of s and §; are related by

40(%,5) = (1) — a1 (D) = p ()

= (a(s) = 1) = 2k = 1)* = py () + 1
= 46(t,5) — 4k(k — 1).

Hence, £(t,5;) < £(t,5). Next, by [78, Theorem 4.6.8],

- +=SW. if d(s) > k(k -1
SWX(ﬁk) _ X(E) 1 (5) = ( )7
0 if d(s) < k(k—1).
The conclusion of the lemma now follows from the proof of Theorem [I0.T.11 O

PrROOF OF THEOREM [Il To compute the Donaldson polynomial appearing on the left-hand
side of (LII]), we select a spin* structure t over X with A = ¢1(t) and p;(t) determined by

54+ 1= i) — T (((X) +0(X),

where ¢ is the constant appearing in (LLI]). To apply ([2.6.2]), we need to verify that nq(t) > 0.
From the definition of n4(t) in ZII2) and for i(A) = A% — 1(3x + 7o) as in the statement of
Theorem [II, we have

4nq(t) = pi(f) + A% —i(X)

:—5—1—Z(X(X)+0(X))+A2—z‘()§')+l

1
=—0+A%— 1 (Bx(X) + 70(X))
=i(A) — 0.
Hence, the hypothesis of the theorem that § < i(A) implies that n,(t) > 0. Equation (2.6.2)) and the

definition of the Donaldson invariant in (Z5.2)) then imply that for z = RO=2m ™ and n, = ng(b),
and W = w + e*, and & = —(1/4)p1(t) we have

D% (z) = # (¥ (ze) N M;f’)

10.6.9 _ _ _
( ) =l nay <7/(ze) n#"1n L%”R) :
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The cobordism formula (8I.21]) implies that
(10.6.10)  # ("17(26) nFmetn E%DE) —— Y (cpr@ay (“/7(26) n#me1n I];,g) .
5€Spin(X)
For any four-manifold Y with b1(Y") = 0, let B(Y") denote the set of Seiberg-Witten basic classes,
B(Y) :={ci(s) : s € Spin“(Y") and SWy (s) # 0}.
By [78], Theorem 4.6.8], the Seiberg—Witten basic classes of X and X are related by
B(X) = {c1(8k) : c1(s) € B(X) and dy(s) — k(k — 1) > 0}.
Theorem then implies that the right-hand side of (I0.6.10]) equals
- Y (@I <”17(ze) Al Ei,g)

5eB(X)

== Y Y g (P 0Ly
s€B(X) k2—k<ds(s),
k>0

The definition of o;(w, §;) in (8II8]) implies that

(10.6.11)

. 1 *
o(W, 5) = 1 (w4 e — A+ ci(s) + (2k — 1)e")? = of(w, ) — k.
Thus, we can rewrite the sum on the right-hand side of (I0.6.11]) as

(10.6.12) D IR I SN G VL CACO N Al P
s€B(X) k2 —k<ds(s),
k>0

Theorem [I] then follows from Equations (I0.6.9)—(I0.6.12)) and Lemma O



CHAPTER 11

Kotschick—Morgan Conjecture

We now show how the proof of the Kotschick-Morgan Conjecture, stated here as Conjecture
IT.2.1] and described in Section [[.3] can be reduced to the proof of a gluing theorem analogous
to Hypothesis [[.8Tl The methods for this reduction are exactly those that lead to the proof of
Theorem [[0.T.T1 Hence, there will be little new work in this section; instead, we will reference the
analogous discussion from earlier sections. Throughout this chapter, we will assume that X is a
smooth, closed, and oriented four-manifold with b*(X) =1 and b;(X) = 0.

11.1. Cobordisms and reducible connections

As described in Section [[L3], the Donaldson invariant of a manifold with b© = 1 depends on
the Riemannian metric. The Kotschick—-Morgan Conjecture [T.2.1], describes how the Donaldson
invariant changes with the Riemannian metric. These changes are given by intersection numbers
on the link of gauge-equivalence classes of reducible connections in the cobordism (IT.IT). We
therefore now review how such gauge-equivalence classes appear in the cobordism.

For a complex, rank-two Hermitian vector bundle E — X with ¢;(E) = w, denote g¥ :=
su(E), where —4x = p1(g}Y). Let gr denote a smooth path of Riemannian metrics on X given by
I =[-1,1] 5t + ¢g. Let M?”(g:) be the moduli space of SO(3) connections on g¥ which are
anti-self-dual with respect to the metric g;, as defined in (22.1), and let M*(g;) be its Uhlenbeck
compactification. The smooth path of Riemannian metrics, gy, on X defines a cobordism of moduli
spaces,

(11.1.1) MY (gr) = {[A,x,t] : [A,x] € M*(g;) and t € [-1,1]}.

To simplify the discussion, we shall assume that w is good in the sense of Definition 2221l By the
Morgan—Mrowka blow-up trick [73], this assumption can always be satisfied and so there is no loss
of generality.

A reducible connection A on gF — X can be written as A = Or @ Ay, with respect to a splitting
gy = iR @ L, where Op is the product connection on the product bundle R = X x R and Ay, is a
unitary connection on a complex line bundle L with ¢;(L) = w (mod 2), and ¢;(L)? = pi(g¥) =
—4k (see [15l Proposition 4.2.15]). The connection ©Or @ Az, will be anti-self-dual if and only if
Ap is anti-self-dual. Let w'(g) denote the unique (once an orientation for HT(X) is specified)
unit-length self-dual harmonic two-form for the metric g. Then, by [15] p. 147], the connection Ay,
will be anti-self-dual if and only if

(11.1.2) wt(g) — Fa, =0.

Hence, MY (g) will contain a gauge-equivalence class of a reducible connection of the form Or ® Af,
if and only if w(g) lies on the codimension-one ‘wall’ in the positive cone,

Qx = {8 € H*(X;R): % > 0}/RT,

209
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of H?(X;R)/R* defined by the zero-locus of the map Q > [h] — h — c;(L). If (ILL2) holds and
b'(X) = 0, then by [I5, Proposition 2.2.6] there is a unique gauge-equivalence class in M*(g) of a
connection giving the splitting g = iR @ L. We summarize the above discussion in the following

LEMMA 11.1.1. The compactification M (go) contains a gauge-equivalence class of an ideal
reducible connection A in the sense that
[A] x Sym“(X) < M, (go),
for A = Or @ Ay, with respect to a reduction g;_, =R ® L for a complex line bundle L with ¢ > 0
if and only if
(11.1.3) ci(L)? =4k —£) >0 and ¢ (L)=w (mod 2),
and (III2) holds with g = go.

The wall defined by o € H?(X;Z) is a (w, x)-wall if there is a complex line bundle L — X
satisfying (ILT3) with o = ¢1(L).

11.2. Cohomology classes on the cobordism

Let % be the space of L7 (k > 2) SO(3) connections on g¥ and for a rank-two, complex
Hermitian bundle £ — X with su(FE) & g¥, let 95 be the Hilbert Lie group of L? 41, determinant-
one, unitary gauge transformations of E. The group ¢ acts through the adjoint representation on
su(F) = g¥. Let BY = /9 denote the quotient space of connections and define

[x]
B = |_| B, x Sym*(X),
=0

with topology defined by Uhlenbeck convergence as in Definition 2Z.1.21 Then there is an embedding,
Ly, defined by the composition,
LMo M:}(g]) — @;ﬂ X [—1, 1] — ,@g,
of the inclusion with the projection. The set of gauge-equivalence classes of reducible connections
in #Y are given by B -
Ry = {[A,x] € £, : A is reducible},
and we define
BY* = BY\RY, B0t i=BY\RY, and MY (gr) == MY (gr) \ i3t (RY).

For z € A(X), let u(z) € HI8) (5, R) be the cohomology class described in [15, Definition
5.1.12] or [53] Section 2.2]. We note that the cohomology class p,(z) defined in (244) is the
pullback of j(z) by the projection map 6 — %" In [52, Lemma 4.1.2], Kotschick and Morgan
define a cohomology class,

ii(z) € H®E(BR),
whose restriction to %" equals pu(z). For Riemannian metrics g with M¥(g) N RY empty, the
Donaldson invariant for g is given by

D% (9)(2) = (a(2), M (9)])-
From [52, Theorem 3.0.1], this invariant only depends on the ‘chamber’ in which the self-dual
harmonic two-form w™(g) appearing in (ILT.2]) lies. By chamber, we mean a connected component
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of the complement in the positive cone Q2 x of all the walls of type (w, k). As described in Section [[.3]
if g7 is a smooth path of Riemannian metrics, the failure of the cobordism given by M¥(gs) to give
the equality D% (g-1)(2) = D% (91)(2) as in (L3J]) arises from the presence of gauge-equivalence
classes of ideal reducible connections, [A,x] € 1y (MY (g1))-

For each complex line bundle L — X with ¢; (L) defining a wall of type (w, k), we will construct
in Section T34 (see (IT3.7))) a closed neighborhood UY (L) of [A] x Sym®(X) in ¢p (MY (gr)). The
difference term corresponding to this gauge-equivalence class of a reducible connection is

(11.2.1) 5% o(2) 1= (Gh1i(2), [0 (L)])

Computations of the difference term for ¢ = 0 appeared in [13}, [51], for £ = 1 in [104} 59], and
for ¢ = 2 in [59], where £ is the level of the reducible connection as it appears in Lemma IT.T.1]
Details of the construction of U¥ (L) appearing in the following sections show that the boundary
of this neighborhood admits a fundamental class. The difference between the Donaldson invariants
for the Riemannian metrics g; and g_; is given by

D{(91)(2) = D¥(9-1)(2) = Y 6% u(2),
L

where the sum is over all complex line bundles L for which ¢;(L) defines a wall of type (w, k) which
wt(g;) crosses as t moves from —1 to 1. We can now state the Kotschick—Morgan Conjecture.

CONJECTURE 11.2.1. (See Kotschick and Morgan [52] Conjectures 6.2.1 and 6.2.2].) Let X be
a smooth, connected, oriented four-manifold with b+ (z) = 1 and by(X) = 0. Let k € 2Z with k < 0
and let w € H%(X;Z) satisfy w? = —4x (mod 4). Let § and m be non-negative integers satisfying
20 = 8k—(3/2)(x(X)+0(X)) and 2m < §. For a complex line bundle L — X with ¢; (L) defining a
wall of type (w, k), let £ = (c1(L)?+4x)/4. Then, for h € Hy(X;R) and a generator x € Hy(X;Z),
min(¢,[(6—2m)/2])
(52”7H(h5_2m$m) — Z ai<cl (L), h>5_2m_2iQx(h)i,

i=0
where the coefficients a; depend only on e(X), o(X), m, ¢, and /.

11.3. Neighborhoods of gauge-equivalence classes of ideal reducible connections

To compute the difference term (I1.2.1]), we show how to define and parameterize the neighbor-
hood U¥ (L) of {[A]} x Sym*(X) in M¥(gs), where [A] is the gauge-equivalence class of a reducible
anti-self-dual connection.

11.3.1. Kuranishi model for a neighborhood of a reducible connection. We first
record a description of a neighborhood of a gauge-equivalence class of a reducible connection in the
parameterized moduli space M ,(gr).

LEMMA 11.3.1. Let [A] € MY ,(g9) be a gauge-equivalence class of a reducible connection, A =
Or @ Ap, with respect to a splitting g*_, = R @® L. Then for generic smooth paths of metrics gr
with g = go and for integers n,r € Z satisfying 2n = dim MY ,+ 1 and n+r > 0, there are

(1) An open ball, B(6) C C™*", with center at the origin and radius 9§,
(2) A smooth, S*-equivariant map x : B(6) — C" (where S* acts by scalar multiplication on
the domain and range), and
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(3) An S'-equivariant embedding ¢ : B(8) — * , (where S acts on &/, as the stabilizer
of A),

such that g4 covers a smoothly-stratified embedding,
@A : B(6)/St — B

K—0>
with the property that ¢ 4(0) = [A] and @4(x 4 (0)/S) is a neighborhood of [A] in M¥ ,(g1).

PROOF. The conclusion (compare [I5, Proposition 4.2.23]) follows from a standard argument
using the Kuranishi Lemma [15, Proposition 4.2.19] and the transversality of the period map
g +— wt(g) from [15] Proposition 4.3.14]. An extended discussion of this model appears in [21],
Section 2.6]. O

REMARK 11.3.2. If the index n in Lemma [IT.31] is strictly positive, then by adapting [34],
Theorem 4.19] to the case b™ (X ) = 1, one can assume that for a generic path of metrics, there is no
obstruction in the Kuranishi model, that is, » = 0. The index n will be negative when ¢;(L)? = —1
and as this case can be handled by the techniques developed in this monograph, we include it for
completeness.

11.3.2. Crude splicing maps. We now combine the description of a neighborhood of a gauge-
equivalence class of a reducible connection, [A] in ¢p(M ,(gr)), from Lemma T3] with the
construction of the space of global splicing data from Chapter [0l to parameterize the neighborhood
U (gr) appearing in (IL2.) of the level [A] x Sym*(X) in tpr(M¥(gr)).

Let 2 be a partition of N, with ¥ = X(X*, 22). Although spin® structures play no direct role
in this construction, we introduce them here to allow us to use the results from earlier parts of
this monograph. Let t = (p, V) be a spin* structure on X with g¢ = g/ and let s = (ps, W) be a
spin® structure on X so that the spin® structure t(¢) = (py, Vy()) admits a splitting Vi,) = WeW®L
as in Section 3.3 and gyy) = iR © L as in ([2.3.17). We note the equality,

c1(L) = c1(t) — ci(s),
and define
Fr(L, 2) :=Fr(t,s,2), GI(L,2):=CGlts 2), O(L,P):=0s P),

where the frame bundle Fr(t,s, &) is defined in (6.2.2), the bundle of gluing data Gl(t,s, &) is
defined in (6.2.6]), and the subspace O(t,s, &) C Gl(t,s, #) is defined in (6.4.2]). The reduction

~Y

g¥ , 2 R® L and the S! action on L defined by scalar multiplication define an S action on
Fr(g® ,). This S! action in turn defines an S' action on Gl(t,s, 2),

(11.3.1) St x GI(L, ) — GI(L, ),

given by the diagonal S! action on the factors of Fr(g¥_,) making up Gl(t,s, &). We will define
the maps parameterizing a neighborhood of [A] x ¥(X*, #) in M¥(g;) on a subspace of
B(d) xg1 GI(L, 2),
where B(0) is as defined in Lemma [T1.3.1] and where S 1 acts diagonally by the action in Lemma
II.3Ton B(6) and by the action (IL3.1) on GI(L, £).
For ¢ € B(9), let g(¢) be the Riemannian metric with respect to which @ 4({) is anti-self-dual,

where @4 is the map given in Lemma IT.3.1l By applying the flattening construction of Lemma
[45.2to the metrics g(¢) with ¢ € B(d), we obtain a family of locally-flattened metrics parameterized
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by B(6)/S! x X. Define O(L, &) := O(t,5, #) as in ([6.42). The crude splicing map from (6.4.11)),
applied with this family of locally-flattened Riemannian metrics and with the background section
®( set equal to zero, defines a smoothly-stratified embedding,

(11.3.2) Y. B(6) xg1 O(L, ) — By

We will construct the space UY(L) as the union, over partitions & of Ny, of the images of the zero
locus of an obstruction section under these maps.

11.3.3. Overlap spaces and maps. The next step in constructing the link QU¥ (L) is to
define a space of overlap data and upwards and downwards transition maps as in Section Let
P < P be partitions of Ny. Following (6.5.1), we define

GUL, 2,|2')) = (L, 2) xq»y || [] (&°(2p(0p), %) x M(2)) .
PNe|P<PPeP

To define the upwards overlap map, we follow ([6.5.10) and introduce the space

Pre[P<P) Qe

If we define an open subspace 0(L, Z,[#']) C GI(L, Z,[Z']) by condition (6.5.11]), then we can
define an S'-equivariant upwards transition map,

P B(O) x O(L, 2,12']) = B(6) x GI(L,[2 < 7)),

exactly as was done for the upwards transition map pt’g,s’["g,,] in (6.5.14). By S'-equivariant above,

we mean equivariant with respect to the S' action on the domain given by the diagonal action on
B(6) and on Fr(L, Z) and the same action on the image.

If we further assume that the open subspace O(L, Z,[Z']) satisfies the condition in (6.5.18]),
we can define an S'-equivariant downward transition map,

P B(O) x O(L, 2,12')) = B(5) x GI(L, 2),

by the construction in (6.5.15]) and (G.5.10]).
As described in the proof of Proposition [6.5.3] if the neighborhoods ¢'(L, #2) and O(L, &") are

sufficiently small, then we can find an open set (L, &,[2?']) such that the overlap of the images
of the crude splicing maps is “controlled” by the overlap space in the sense that

Y15 (B(6) xg1 O(L, 2)) N[ 5 (B(6) xg1 O(L, 2"))
= (Vi 00510 (BEO) %51 O(L, 2,127

More precisely, we have the following

(11.3.3)

PROPOSITION 11.3.3. Let & < &' be partitions of Ny. Assume that the families of metrics
gon and g used to define the crude splicing maps ’y’];@ and 7’]{7@,, satisfy the conditions in
Section[6.22. Then there are open neighborhoods O(L, 2) of ©(X*, 2) in GI(L, 2) and an &(P)-
invariant family of neighborhoods O(L, 2" in GI(L,2") of B(X¢, P") such that if the open
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set O(L, P,[|P"]) satisfies the analogues of the conditions ([6.5.11)), (6.5.18]), and those following
65.21)), then the following diagram commutes and (I13.3]) holds:

L u
B(6) xg1 O(L, Z,[Z']) 4> B(6) xg1 O(L,[2 < 2'])
(11.3.4) p;;l[y,,]l vl,qul
B(O) x¢ O(L,2) =7, B
PROOF. The proof is identical to that of Proposition d

11.3.4. Definition of the neighborhood of a gauge-equivalence class of an ideal re-
ducible connection. We define the space of global splicing data by

(11.3.5) <UB x O(L, @))/ :

where the relation ~ is defined as follows. If 7 < P are partitions of Ny, B(J) C C" is the
ball appearing in Lemma [[T.31], 0(L, &%) is the space of gluing data defined prior to (I1.3.2]), and
(zi,A;) € B(6) x O(L, %) for i = 1,2, then (z1,A1) ~ (22,A2) if 21 = 29 and there is a point
. d .
Ay € ﬁ(L, ,@i, [,@]]) with p;ﬁ[z@ﬂ(zjg,Alg) = (ZQ,AQ) and plgjéh[gzﬂ(zlaAm) = (Zl,Al). While
Proposition [1.3.3] implies that this relation satisfies the transitivity property up to S' quotients,
the proof without the S' quotient requires the following.
LEMMA 11.3.4. The relation ~ defined above is transitive.

PROOF. Assume that (z1,A1) ~ (22,A2) and (29,A2) ~ (z3,A3). Thus, 23 = 20 = z3.
By Proposition IL33l 77 5, ([21,A1]) = V] 5,([22, A2]) and v} 5, ([22, As]) = 7] »,([23, As)]),
80 V7 5, ([21, A1]) = 7] »,([23, As]), where [z, A;] € B(d) xg1 O(L,?;) denotes the image of
(2, A;) € B(0)xO(L, ;) in the S quotient. Assume that 2| < Py < 5 (the proofs for the other
cases are identical). Proposition [I.3.3} the equality v} 4 ([21,A1]) = V] 4,([23,As]), and the

equalities z; = z9 = 23 imply that there is a point A3 € O(L, #1,[P5]) with [péj? (4] (21,A13)] =
[21, As] = [23,A3] and [pg‘j [@2](21,A13)] = [21,A1]. Consequently, there is a A € S! such that
(21,A1) ~ A(z1,A3). Hence, 21 = Az and so if z; # 0, then A =1 and (21, A1) ~ (21, A3).

If zz = 0, then we still have A3 € O(L, 1,[Zs]) with [péjlu [@3}(0,A13)] = [0,As] and
['Oﬂl []2}(0 Ai3)] = [0,A1]. Because p;i[@ﬂ and p;i[@ﬂ are open embeddings, we can find
a sequence {wq} C B(0) \ {0} converging to 0 and a sequence {Ai3(a)} C O(L, P1,[P3]) with

u d .

['0;1,[@3} (wa, A13(@))] = [wa, As] and ['0;1,[@2} (wa, A13())] = [wq, A1]. Since w, # 0, the preced-
ing argument implies that p;i[@d (W, A13(@)) = (wa, Asz) and pg,’,i[yg](wa,Alg(a)) = (Wa, A1).
Because p;i[ 7] and p;i[ ] 1€ Open embeddings, Ai3(«) converges to Ajs and so the continu-
. . . L L,d

ity of these maps implies that pﬁzl,[ﬂs](o’Al?’) = (0,A3) and ,03317[333}(0,1\13) = (0,A1). Hence
(0,Aq) ~ (0,A3) as required. O

For partitions &1 < %5 of Ny, the overlap maps pi@? (7] and p;il [7,) A€ S1 equivariant, so
the S* actions on B(8) x O(L, %) and B(0) x O(L, %3) respect the equivalence relation ~. Hence,
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these S! actions define an S' action on 07/,2” (L). By Proposition [T.3.3] we then obtain
Vi U (L)]S' — B,
a global crude splicing map.
11.3.5. Thom—Mather structures on 0223”([,)/51. We consider % (L, &) = B(§)x O (L, P)
as a subspace of %,"(L) and define maps
w(L,P): U (L, ?) — B(0) x (X", 2), #L,2):%(L,P)— 0,17,

as was done in (6.7.2) and (G.7.8]).
The proof of Lemma [6.7.2] then implies that for 22 < 2" on % (L, Z)N% (L, P'), we have the

equality
(L, P?)on(L, ') =n(L, P).
The analogues of Lemmas and hold for (L, 2).

11.3.6. Global projection map for % (L)/S'. By the arguments of Lemma 9.2, we can
define a map,

mLx s U0 (L)/S' — Sym(X),
whose restriction to % (L, ) is homotopic to w(L, ).

11.3.7. Global splicing map on @;w(L) /St. The construction of the global splicing map
v, of ([6.8.3)) translates to give a global splicing map,

Ny UE(L) /St — B,

whose restriction to % (L, &) is homotopic to the crude splicing map ’yg’ P

11.3.8. Obstruction bundle on @;W(L)/Sl. Let n and r be the non-negative integers ap-
pearing in Lemma [[T.3.1] Define a complex-rank-r vector bundle, Z¥ (L) — %" (L), by

V(L) = <|_|(B(5) x C" x O(L, @)))/NE

P
where the equivalence relation ~gz is defined, for (z;,(;, A;) € B(§) x C" x O(L, %), i = 1,2, by
(217 Cla Al) ~= (227 C27 A-Z)
if (1 = (2 and (21,A1) ~ (22,Az2), where ~ is the equivalence relation used in the definition of

2" (L) in (IL3.3). The diagonal action of S' on B(8) x C" x O(L, &) given by S* acting on B(9)
and C" by scalar multiplication and on (L, Z?) as in (I1.3.1]) is compatible with the relation ~z

and so Z¥(L) is an S’-equivariant bundle over ¥ (L). If we define
(L) = 22 (0)\ (1] x Sym (X)) |
then the S* action on 02};” (L) is free on @};w’*(L) and the S'-quotients define a vector bundle,

(11.3.6) =v(L)/S" — 2% (L)/S".
This is the desired obstruction bundle.
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11.3.9. Gluing hypothesis. We can now state the analogue for parameterized anti-self-dual
connections of the gluing hypothesis for SO(3) monopoles.

HypPOTHESIS 11.3.5. There is a smoothly-stratified, continuous embedding,
Yo U (L))ST — B,

and a smoothly-stratified section x; of the vector bundle Z¥(L)/S! — @;“’(L) /S defined in
(II36) with the following properties:

(1) The restriction of v, to [A] x Sym*(X) is the identity map.

(2) There is a homotopy, through smoothly-stratified embeddings, between_ ~% and vp.

(3) The image v (x;*(0)) is an open neighborhood of [A] x Sym‘(X) in MY (gr).

(4) The restriction of the section X, to each stratum of %,;"*(L)/S* vanishes transversely.

We then set
(11.3.7) (L) =, (X2 (0 N Z1(1)/5").

to define the neighborhood U¥ (L) appearing in (IT.2Z1)).

11.4. Cohomology classes on the space of global splicing data
Define
ve H % *(L)/S"Z)

to be the first Chern class of the S* bundle %" (L) — %*(L)/S". From [52, Lemma 4.7.4], we
have the following computation of the pullback of the u-classes by the gluing map.

LEMMA 11.4.1. For h € Hy(X;R) and a generator v € Hy(X;Z), then the following hold:
(1) 7*Lﬂ(h) = %<CI(L)7h>V + 71-Z,X‘Se(h);
(2) via(z) = — 30 +7f xS (),
where the cohomology classes S*(h) and S*(z) are defined in Definition [I.23.
LEMMA 11.4.2. The Euler class of the obstruction bundle (IL3.6]) is given by

e (Egj(L) /51) = (—v)'.

PRrROOF. The result follows immediately from [28, Lemma 3.27] and the observation that the

St action on E}j (L) is diagonal, so the obstruction bundle is the direct sum of r copies of the line
bundle given by the negative of the S' action defining the cohomology class v. g

11.5. Definition of the link of a gauge-equivalence class of an ideal reducible
connection

We define a virtual link 8@;“’@) /S* following the construction of Section B.I.Il The standard
norm on C" defines an S'-invariant norm on B(4) and thus a map,

tg %M (L)/S" = [0,9].
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Enumerate the strata of Sym®(X) by partitions .. ..,Z?, in the manner described in Section [3.21
Choose a small, generic constant €; for each stratum as was done in Section BTl (with &; > ¢; for
i < 7). Following (815, define

0% (L, ) = (L, 25 (0D(75e)\ | JHL, 25) " (D(2y,6,)).
JF
Then, following (81.2), (8L3), and (8I4), we define the virtual link of [Az] x Sym®(X) by

%" (L) = t5'(6) U (U o (L, 9@)) .

The link of [A] x Sym‘(X) is then defined by
U (L) =y, (X' (0) N 9% (1)/5").

The existence of a fundamental class for the virtual link 8@;”@) follows from the discussion in
Section Up to a sign depending on the orientation discussed in [52], p. 450-451],

6—2m
B (B2 = < (3er(@) w7 x50
(11.5.1)

1 * " =w oW
- <—Zy2 +7TL’XSZ(.%')> ,e <:H (L)/Sl) ~ {8%}{ (L)/Sl}>
is the difference term.

11.6. Computations of the difference term
We can now prove
THEOREM 11.6.1. Conjecture [I1.21 is true.

PROOF. Using the argument in Lemma [0.7.2] and Proposition [0.7.3] the pairing in (IL5.1)) can
be reduced to a pairing with ¢5'(0) N 0%, (L). Observe that

t5 (0)No% (L, 2) c SN\O(L, #;),
that is, t5'(0) is given by {0} € B(5). Following Proposition [0.2I}, we construct a quotient map
Q : 15(0) %! (L)/S" ~ QY(L)
satisfying the following properties:
(1) There is a map 7y : Q¥ (L) — Sym*(X) satisfying 7x 0 Q = 7p, x.

(2) There is a class 7 € H?>(Q¥(L)) and a non-zero integer r with Q* = ruv.
(3) T QR(L, 2:) = Q(t5'(0) N 0% (L, #)), then

Qe (L, 2:) = SN\Fr(L, 2:) X2,y M(Pi, i)
We can write the pairing (IT1.5.1)) in terms of a sum over pairings of the form

(11.6.1) (7' — 75 (S (0 — S (@), [QE (L, 2)]).
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The conclusion now follows by an argument analogous to that of the proofs of Lemma [10.5.2] and
Theorem [I0.1.11 O

REMARK 11.6.2. I_f b'(X) > 0, then the gauge-equivalence classes of reducible, anti-self-dual,
ideal connections in MY(gr) would no longer appear in families of the form [A] x Sym‘(X) but
rather in families of the form

(HY(X;iR)/H' (X;2iZ)) x Sym‘(X).

The techniques of this chapter extend to construct a link U (L) of such families but one must
replace the spaces B(0) x g1 O(L,Z?) appearing in (I1.3.2]) with spaces of the form

B(6) x H'(X;iR) X g1y 1 (x.2i7) O(L, 2),

where S x H!(X;2iZ) acts on GI(L, 2) through the inclusion h, : S x H(X;iZ) — Map(X, S!)
given by the harmonic gauge transformations described in |28, Section 2.4.1]. The construction
of the space %, (L) for manifolds with b' = 0 works when b' > 0 as does the construction of the
quotient space Q¥ (L) given in Section However, the expression for the difference term d7,

will be more complicated when b'(X) > 0 because of the presence of the Chern class of the line
bundle,
(11.6.2) H'(X;iR) x X X xz) C = (H'(X3iR)/H (X3iZ)) x X,
computed in |28, Lemma 2.23] among the characteristic classes appearing in the analogue of Lemma
[10.5.2] for pairings of the form (II.6.1]). In addition, the Chern class of the line bundle (IT.6.2]) will
appear in the computations of the p-classes in Lemma [I1.4.1] and change those expressions to a
form similar to that of the cohomology classes appearing in Definition [9.4.8

For this reason, the difference term 5%7 ..» although still only depending on the homotopy type

of X, g, ¢, and L, will not be a polynomial only in ¢;(L) and @ x but will also contain terms given
by elements of H'(X;Z).
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