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GEOMETRY OF WORD EQUATIONS IN SIMPLE

ALGEBRAIC GROUPS OVER SPECIAL FIELDS

NIKOLAI GORDEEV, BORIS KUNYAVSKĬI, EUGENE PLOTKIN

Abstract. This paper contains a survey of recent developments
in investigation of word equations in simple matrix groups and
polynomial equations in simple (associative and Lie) matrix alge-
bras along with some new results on the image of word maps on
algebraic groups defined over special fields: complex, real, p-adic
(or close to such), or finite.

Two youngsters came to a sage with a
question: “One of us thinks that even you
feel bad, there is always light at the end of
the tunnel, and the other thinks that even
things go well, you will be overthrown to hell
at some point. Who is right?”
“Both and none”, answered the sage.
“Everything depends on the angle the tunnel
constructor has chosen.”

Ko Bo Zhen1

The probability of the event that a randomly
picked animal is a panda will be much higher
if the samples that one is allowed to test are
restrictively placed within Sichuan province.

B. Gorkin-Perelman2

1. Introduction

The goal of the present paper is two-fold. First, we give a brief
overview of recent developments in investigation of word equations in
simple matrix groups and polynomial equations in simple (associative

The research of the first author was financially supported by the Ministry of
Education and Science of the Russian Federation, project 1.661.2016/1.4. The
research of the second and third authors was supported by ISF grant 1623/16 and
the Emmy Noether Research Institute for Mathematics. The paper was written
when the second author visited the MPIM (Bonn). The authors thank all these
institutions.

1Philosophy for Beginners,“Iron Pagoda” Publishing House, Kaifeng, 1123.
2Zoology for Beginners, “Yellow River” Publishing House, Kaifeng, 1923.

1

http://arxiv.org/abs/1808.02303v1


2 GORDEEV, KUNYAVSKĬI, PLOTKIN

and Lie) matrix algebras. In this respect, it can be viewed as a follow-
up to [KBKP], where an attempt was made to pursue various parallels
between group-theoretic and algebra-theoretic set-ups.

The emphasis is put on the properties of the image of the word
map under consideration. Namely, ideally we want to prove that this
image is as large as possible, i.e., that the map is surjective or at
least dominant (in Zariski or “natural” topology). In the latter case,
whenever the surjectivity is unknown, we are interested in the “fine
structure” of the image.

Usually, in the most general set-up (arbitrary word maps on arbi-
trary groups) little can be said, so one restricts attention to some wide
classes of words and groups. In particular, we are interested in linear
algebraic groups where Borel’s dominance theorem [Bo1] is available
for connected semisimple groups. To go further, one can consider some
special classes of words and/or ground fields. The first approach may
lead to spectacular results, see, e.g., our recent paper [GKP3] for a
survey.

Here we focus on looking at some special ground fields, such as com-
plex, real, p-adic, finite, or close to such. (Some recent results valid
for arbitrary algebraically closed ground fields were also surveyed in
[GKP3].)

It is also worth noting that the case of finite ground fields, which nat-
urally includes equations in finite groups of Lie type, has been widely
discussed in the literature over the past few years (see, e.g., [Sh1]–[Sh3],
[Mall], [BGK]), mainly in virtue of spectacular success of algebraic-
geometric machinery and solution of a number of long-standing prob-
lems, such as Ore’s problem [LOST1]. Much less is known for matrix
equations over number fields and their rings of integers, as well as over
the fields of p-adic, real, and complex numbers (see, however, [Sh2]–
[Sh3], [AGKS], [Ku2]). Thus the present paper contains much more
questions than answers, which clearly indicates that the topic is still in
its infancy (if not embryonic) stage.

Our second goal consists in discussing some crucial results in more
detail, providing slightly modified proofs and, more important, giving
some generalizations. We pay special attention to the study of the fine
structure of the image, as mentioned above, with a goal to guarantee
that the image contains some “general” or “special” elements (regular
semisimple, unipotent, etc.). These parts of the paper can be omitted
by the reader interested only in general picture.

Our main message to the reader is encoded in two epigraphs. After
translation into mathematical language, the first says that when we are
looking at the image of a word map w : Gd → G and varying w and
G, this image can be made as large as possible (within the constraints
determined by the nature of the problem) when we fix w and enlarge G,
and, vice versa, it can be made as small as possible (also within certain
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constraints) when we fix G and enlarge w (in the body of the paper
we call such a situation “negative-positive”). The second epigraph can
be roughly interpreted as follows: when we carefully define the class
of groups G we consider, any random word w (if not all of them) has
a large image (where “random” and “large” are also to be carefully
defined).

Our notation is standard. We refer the reader to [Seg] for basic
notions related to word maps.

We start with several naive (well-known) examples which will hope-
fully give a flavour of problems under consideration. First, consider
extracting square roots in matrix groups.

Example 1.1. Is the equation x2 = g always solvable in G = SL(2,R)?
Of course, the answer is “no”. For example, the matrix

g =

(
−4 0
0 −1/4

)

has no square roots in G: by Jordan’s theorem, such a root would have
two complex eigenvalues one of which would be ±2i and the other±i/2,
which is impossible because they must be conjugate.

There are at least two natural ways out. First, one can try to extend
the ground field, going over to SL(2,C). Here one has another counter-
example: the matrix

g =

(
−1 1
0 −1

)

has no square roots in SL(2,C) because by the same Jordan theorem,
the eigenvalues of such a root would be either both equal to i or to
−i, thus giving the determinant −1 (and not 1, as required). This
can easily be repaired by factoring out the centre and considering the
adjoint group PSL(2,C): in this latter group one can extract roots of
any degree (and this can also be done in PSL(m,C) for any m ≥ 2).

Surprisingly, this way out is somewhat misleading: it does not work
for simple groups other than those of type An. Here is the correspond-
ing result:

Theorem 1.2. (Steinberg [St4], Chatterjee [Ch1]–[Ch2]) The map x 7→
xn is surjective on G(K) (K is an algebraically closed field of charac-
teristic exponent p, G is a connected semisimple algebraic K-group) if
and only if n is prime to prz, where z is the order of the centre of G
and r is the product of “bad” primes.

In particular, one can guarantee that n-th roots can be extracted in
an arbitrary connected semisimple group of adjoint type over C if and
only if n is prime to 30.
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Observation 1.3. Here is another way out of the situation of Example
1.1: replace SL(2,R) with its compact form SU(2). Then extracting
square roots is no longer a problem. More generally, one can use Lie
theory to extract roots of any degree in any connected compact real
Lie group G because for such a G the exponential map exp : g → G is
surjective (see, e.g., [Do, Corollary 2.1.2]): indeed, given g ∈ G, write
it as g = exp(a) and for any integer n ≥ 1 get exp(a/n)n = g.

This observation can be put in an even more general form: it turns
out that the surjectivity of the exponential map is equivalent to the
surjectivity of all power maps G → G, g 7→ gn, provided G is any
connected real [McC], [HL] or complex [Ch1, Section 6] linear algebraic
group; more details on the real case can be found in [DjTh], [Wu2],
[Ch4]; see [Ch3] for discussion of similar problems for p-adic groups.
The reader interested in the history of the surjectivity problem for the
exponential map, dating back to the 19th century (Engel and Study),
is referred to [Wu1]; see [DH] for a survey of modern work and [HR]
for generalizations to the case of Lie semigroups.

Going beyond these examples, one can discuss similar problems for
more general matrix equations. In this paper we restrict our attention
to word equations in a group G of the form

w(x1, . . . , xd) = g (1.1)

where w ∈ Fd is an element of the free d-generated group (a group
word in d letters), and to polynomial equations in an algebra A of the
form

P (X1, . . . , Xd) = a (1.2)

where P is an element of the free d-generated associative or Lie algebra
over a field k (an associative or Lie polynomial whose coefficients are
scalars from k). In both cases the right-hand side is fixed and solutions
are sought among d-tuples of elements of G (resp. A).

This means that if, say., A is a matrix algebra, we consider equations
XY − Y X = C but not BX − XB = C or AX2 + BX + C = 0.
The latter equations are far more difficult, and the interested reader is
referred, e.g., to [Ge], [Sl]. As to word equations with constants, see
[GKP1]–[GKP3], [KT] and the references therein (see, however, Section
7.6 below for a brief account).

To avoid any confusion, we want to emphasize that in our set-up,
solutions of (1.1) are sought in G, and not in an overgroup of G. The
latter option constitutes a fascinating area of research going back to
Bernhard Neumann [Ne]; see [KT, Introduction], the survey [Ro] and
the references therein for an overview.

2. Word equations in groups: surjectivity

Let w(x1, . . . , xd) be a group word in d letters which is not repre-
sentable as a proper power of some other word. For any group G,
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denote by the same letter the evaluation map

w̃ : Gd → G (2.1)

defined by substituting (g1, . . . , gd) instead of (x1, . . . , xd) and comput-
ing the value w(g1, . . . , gd). We call w̃ the word map induced by w.
Examples 1.1 give rise to the following natural questions.

Question 2.1. Let G = G(K) where G is a connected semisimple
algebraic K-group. Is w̃ surjective when

(i) K = C and G is of adjoint type;
(i′) K = R and G is a split K-group of adjoint type;
(ii) K = R and G is compact?

Surprisingly, Questions 2.1(i), (i′) are open, even in the simplest case
G = PSL(2,C), even for words in two letters. Naive attempts to use Lie
theory fail even in the cases where the exponential map is surjective.
Say, the map g× · · · × g → g induced by a Lie polynomial may not be
surjective whereas the “same” word (where each Lie bracket [Xi, Xj] is
replaced with the group commutator [xi, xj ] = xixjx

−1
i x−1

j ) may induce

a surjective map Gd → G. Here is a concrete example:

P = [[[X, Y ], X ], [[X, Y ], Y ]] : sl(2,C)× sl(2,C) → sl(2,C)

is not surjective [BGKP] whereas the corresponding map (x, y) 7→
[[[x, y], x], [[x, y], y]] is surjective on PSL(2,C) (MAGMA computations
in [BaZa, Section 9]).

There are positive results for some particular words. It is classically
known ([PW], [Ree]) that under the assumptions of Question 2.1(i),
the commutator map is surjective. In the same setting, the image of
any Engel word w = [[x, y], y, . . . , y] contains all semisimple and all
unipotent elements [Go5]. This implies that such words are surjective
on PSL(2,C) (there are different proofs of the latter fact, see [BGG],
[KKMP], [BaZa], [GKP3]). Some other classes of words in two variables
for which the word map is surjective on PSL(2,C) were discovered in
[BaZa], see also [GKP1]–[GKP3].

As to Question 2.1(ii), the situation is completely different.

2.1. Negative-positive results for compact real groups. Under
the assumptions of Question 2.1(ii), most of known results may be
called negative-positive where negative results are obtained by fixing
a group and changing words and positive results, respectively, are ob-
tained by fixing a word and enlarging groups (see the first epigraph to
the paper).

The main negative-positive result for anisotropic forms of simple
algebraic groups over the real field, that is, connected compact simple
Lie groups ([VO, Ch. 5.2]), is the following

Theorem 2.2.
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(i) Let G be an anisotropic form of a simple linear algebraic group
over the real field R, and let G = G(R). Then there exists a
non-trivial metric d(x, y) on G such that for any real ε > 0
there is a word w ∈ F2 such that

d(1, w̃(g1, g2)) < ε

for every (g1, g2) ∈ G2.
(ii) Let 1 6= w1(x1, . . . , xn) ∈ Fn, 1 6= w2(y1, . . . , ym) ∈ Fm, w =

w1w2. Then there exists c = c(w1, w2) such that for every simple
anisotropic linear algebraic group G of Lie rank > c and for
G = G(R) the word map w̃ : Gn+m → G is surjective.

Statement (i) is a theorem of A. Thom [Th]. Actually, Thom con-
sidered G = SUm(C), w ∈ F2 and d(x, y) = ‖x− y‖ where ‖ ‖ is the
operator norm on the unitary group. However, for any compact group
G = G(R) we may fix a faithful continuous representation ρ : G →
SUm(C) and consider the restriction of d(x, y) to ρ(G). Then we have
the corresponding result for ρ(G) ≈ G if we consider the restriction
of the map w̃ : SUm(C) × SUm(C) → SUn(C) to ρ(G) × ρ(G). Also,
instead of the operator norm, we can consider any unitarily invari-
ant norm, say, the Frobenius norm on the space of square matrices

Mm(C) ≥ SUm(C) ≥ G defined by ‖{xij}‖ =
√∑

ij |xij |2 (it is invari-

ant under left and right multiplication by matrices from SUm(C)).
Below we give a little bit different proof of (i), essentially based on

the ideas of [Th].

Proof of (i). Let ‖ ‖ denote a unitarily invariant norm on G, and let
d denote the induced metric. For every g ∈ G let l(g) := d(1, g). Then
l(g) ≤ c for every g ∈ G where c ∈ R is a constant (because G is a
compact group). Standard properties of metric imply that

l(hgh−1) = l(g) and l([g, h]) ≤ 2l(g)l(h)

for every g, h ∈ G (see [Th, Lemma 2.1] for details).
The crucial point of the proof in [Th] is the following observation.

For a group G of given Lie rank r and any ε ∈ R>0 one can find
q = q(r, ε) such that for every g ∈ G we have

l(gm) < ε (2.2)

for some 1 ≤ m = m(g) ≤ q.
Indeed, fix G and ε and assume to the contrary that for any positive

integer q we have l(gk) ≥ ε for some g ∈ G and for all k ≤ q. Let
e < f ≤ q. Since ‖gx‖ = ‖x‖ for every g ∈ G and x ∈ Mm(C) we get

d(ge, gf) =
∥∥ge − gf

∥∥ =
∥∥ge(1− gf−e)

∥∥ =
∥∥1− gf−e

∥∥ ≥ ε. (2.3)

Define

Vt,ε := {x ∈ G | d(x, gt) <
1

2
ε}. (2.4)
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It is a measurable set with respect to the Haar measure µ on G, and
for each t = 1, . . . , q we have µ(Vt,ε) = µ(V1,ε) > 0. By (2.4) and
(2.3), the sets µ(Vt,ε) are disjoint and therefore, for the disjoint union
Vq,ε = ∪tVt,ε ⊂ G we have

µ(Vq,ε) =

q∑

t=1

µ(Vt,ε) = qµ(V1,ε). (2.5)

The measure of the ball of radius 1
2
ε is strictly positive and depends on

ε. Thus, (2.5) implies that for a sufficiently large q the subset Vq,ε ⊂ G
will have the measure which is bigger than any given positive number.
This contradicts the compactness of G.

Define a sequence of words in F2 by setting

w0 = [x, y], w1 = [w0, x], w2 = [w1, yw1y
−1], . . . ,

w2i−1 = [w2i−2, x
i], w2i = [w2i−1, yw2i−1y

−1], . . .

It is easy to see that all words in this sequence are non-trivial.
Fix ε > 0. There exists a constant C > 1 such that l(g) ≤ C for

every g ∈ G (because G is compact). We may assume ε < 1
4C

. One can
find a positive integer q = q(r, ε

C
) with the following property: for every

g ∈ G there is a positive integer m = m(g) ≤ q such that l(gm) < ε
2C

(see (2.2)). Then for every h ∈ G we have

l(w2m−1(g, h)) = l([w2m−2(g, h), g
m]) ≤ 2 l(w2m−2(g, h))︸ ︷︷ ︸

≤C

l(gm)︸ ︷︷ ︸
<ε/2C

< ε,

l(w2m(g, h)) = l([w2m−1(g, h), hw2m−1(g, h)h
−1]) ≤

≤ 2l(w2m−1(g, h))
2 < 2ε2 < ε

2

4C
=

ε

2C
.

Suppose now that l(w2k(g, h)) <
ε
2C

for some k ≥ m. Then

l(w2(k+1)−1(g, h)) = l([w2k(g, h), g
k+1] ≤ 2 l(w2k(g, h))︸ ︷︷ ︸

<ε/2C

l(gk+1)︸ ︷︷ ︸
≤C

< ε,

l(w2(k+1)(g, h)) = l([w2(k+1)−1(g, h), hw2(k+1)−1(g, h)h
−1]) ≤

≤ 2l(w2(k+1)−1(g, h))
2 < 2ε2 <

ε

2C
.

Thus, by induction, we have l(w2k(g, h)) <
ε
2C

for every g, h ∈ G and
for every k ≥ q. This proves the statement. �

Statement (ii) is a theorem of Hui–Larsen–Shalev [HLS]. It can be
viewed as a step towards a conjecture of Larsen (attributed in [ST]
to his 2008 AMS talk) which asserts that any word map is surjective
on a connected compact simple real linear algebraic group G provided
its rank is sufficiently large. For certain words, a weaker form of this
conjecture was proved in [ET1] for unitary groups.

Let us give a sketch of proof of (ii) following [HLS].
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Proof of (ii). Every element of G is contained in T = T (R) where T
is a maximal torus of G (recall that G is anisotropic and thus G does
not contain unipotent elements). Let NG(T ) denote the normalizer of
T in G. We have NG(T )/T ≈ W where W is the Weyl group of G
(see [GoGr, 6.5.9]). Let ẇc ∈ NG(T ) denote a preimage of a Coxeter
element wc.

Recall that if R is an irreducible root system and Π = {α1, . . . , αn} ⊂
R is a fixed set of simple roots, a Coxeter element of W is any product
of reflections wc =

∏
i wαi

where each αi ∈ Π appears exactly once (it
is allowed to take reflections wαi

in such a product in any order); see
[Bou, V.6] for details.

We have ẇ−1
c = σẇcσ

−1t0 for some σ ∈ G and t0 ∈ T , and one
can show that every element t ∈ T can be written in the form t =
ẇc(sẇ

−1
c s−1) for some s ∈ T (see, e.g., [GKP3]). Hence every element

of T t−1
0 = T is contained in the square of the conjugacy class of ẇc.

Note that the image of a word map is invariant under conjugations.
Thus, to prove (ii), we have to show that ẇc ∈ Im w̃′ for every non-
trivial word w′ ∈ Fn and for the corresponding word map w̃′ : Gn → G
under the condition that the Lie rank of G is big enough when w′ is
fixed.

We may restrict our considerations to the case when G is of one of
the classical types Ar, Br, Cr, Dr. Since the root system Dr is a
subset of both Br and Cr, any group G = G(C) of type Br or Cr has
a subgroup G1 = G1(C) of type Dr. Moreover, a maximal compact Lie
subgroup K1 ≤ G1 is also a compact Lie subgroup of G and is therefore
contained in a maximal compact Lie subgroup K of G. Let T be a
maximal torus of K1. Note that T coincides with some maximal torus
of K because G and G1 are of the same Lie rank. Every element of K
is conjugate to an element of T which is also a maximal torus of K1.
Therefore, once we prove that w̃ : Kn+m

1 → K1 is surjective, this implies
that w̃ : Kn+m → K is also surjective. Hence we only have to consider
the cases Ar, Dr.

Let G be a simple, simply connected group of type Ar. Then G =
SUr+1(C). Consider the word map ω̃ : SU2(C)n → SU2(C) for any
non-trivial word ω ∈ Fn. The image of this map is a connected, com-
pact, non-trivial (being Zariski dense in SL2(C) by the Borel theorem,
see Theorem 3.2 below) subset of G containing the identity. The in-
tersection of a maximal torus T ′ of SU2(C) and ω̃(SU2(C)n) is also a
non-trivial compact subset of T ′ containing 1. Hence there is d such
that any t ∈ T ′ of order > d belongs to ω̃(SUn

2 ). Further, let r+1 > d,
and let ξ : SU2(C) → SUr+1(C) be an irreducible unitary represen-
tation of SU2(C). Note that this representation is the restriction to
compact subgroups of the representation of SL2(C) on binary forms of
degree r (see, e.g., [Hal, Prop. 4.11]). Denote by ǫm any primitive root
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of 1 of degree m. Let

t =

{
ǫr+1 if r + 1 is odd

ǫ2(r+1) if r + 1 is even
.

Then the set of eigenvalues of ξ(t) consists of all roots r+1
√
1 if r + 1 is

odd, and of all roots r+1
√
1 multiplied by a fixed root ǫr2(r+1) if r + 1 is

even. One can find a preimage ẇc ∈ SUr+1(C) of a Coxeter element wc

which has such a set of eigenvalues. (Note that a Coxeter element of
SUr+1(C) corresponds to a monomial matrix of cyclic permutations of
an orthogonal basis.) Then ξ(t) is conjugate to ẇc in SUr+1(C). Indeed,
both matrices are unitary and have the same set of eigenvalues.

Now consider non-trivial word maps

w̃ : SUr+1(C)
n → SUr+1(C), ω̃ : SU2(C)

n → SU2(C)

which correspond to the same word w. The diagram

SU2(C)
n ω̃→ SU2(C)

↓ ξn ↓ ξ

SUr+1(C)
n w̃→ SUr+1(C),

where ξn((g1, . . . , gn)) := (ξ(g1), . . . , ξ(gn), is commutative because both
ξ and ξn commute with word maps. Then, if we have ẇc in Im w̃ ◦ ξ,
we also have ẇc ∈ Im w̃. Thus we get our statement for the case Ar.
The case Dr is treated by similar arguments, see [HLS, Section 2] for
details. �

Remark 2.3. Let G be an arbitrary anisotropic simple group defined
over a non-archimedean local field k (which is necessarily of type An).
Recall that by the Bruhat–Tits–Rousseau theorem (see [Pr] for a short
proof), G is anisotropic if and only if G = G(k) is compact in the topol-
ogy induced by the valuation of k. We have G = SL(1, D), the group
of elements of reduced norm 1 of a division k-algebra D. Moreover,
there exists a series {Gi}∞i=0 of normal subgroups Gi ⊳G such that

G0 = G, [G0, G0] = G1, [G1, Gi] ≤ Gi+1, . . .

with
Gi ⊂ 1 +Pi

D, where Pi
D = {x ∈ D | vD(x) ≥ i}

(here vD(x) = 1
c
vp(NrdD/k(x)) is the non-archimedean discrete valu-

ation on D induced by the non-archimedean discrete valuation vp on
k, c is the index of D, NrdD/k is the reduced norm; see [Ri], [PR,

1.4]). Let now ‖x‖p := p−vD(x) be the corresponding norm on D. Since

NrdD/k : G → k∗ is a group homomorphism, the norm ‖ ‖p is invariant
with respect to left and right multiplication by elements of G. Further,
let Fn be the free group of the rank n, and let

F 0
n := F, F 1

n := [F 0
n , F

0
n ], . . . , F

i
n := [F 1

n , F
i−1
n ], . . .
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Then for every w ∈ F i
n and every (g1, . . . , gn) ∈ Gn we have

‖w̃(g1, . . . , gn)− 1‖p ≤ p−i.

Thus Thom’s phenomenon can also be observed for simple anisotropic
groups over non-archimedean local fields.

Remark 2.4. Thom’s phenomenon has been further investigated in
[ABRdS], [ET2] where it got a name of “almost law” in G.

In this setting, there are also some positive results for particular
words:

• any Engel word is surjective on any compact G = G(R) ([ET1]
for SU(n), [Go5] in general);

• if w ∈ F2 does not belong to the second derived subgroup F
(2)
2 ,

then for infinitely many n the induced word map is surjective
on SU(n) [ET1].

2.2. Non-compact real groups. Little is known here. The following
question seems the most challenging.

Question 2.5. Can one observe the phenomenon of “almost laws” in
a non-compact simple linear algebraic R-group G? Say, in a split R-
group? More precisely, let G = G(R)0/Z be the identity component
of the group of real points of G modulo centre. (G is simple, see, e.g.,
[PR, Section 3.2].)

Does there exist a non-power word w (w 6= vk, k > 1) inducing a
non-surjective map w̃ : G× · · · ×G → G?

Even the case G = SL2 is open. We can only prove the following
simple assertion, which is a generalization of a result from [HLS].

Proposition 2.6. Let G = PSL2(R), and let w ∈ Fd be any nontrivial
word. Then the image of the word map w̃ : Gd → G contains all split
semisimple elements. Moreover, if Im w contains an involution, then
Im w contains all semisimple elements of G.

Proof. Note that for d = 1 the statement obviously holds. Further,
we need the following fact, which generalizes an assertion from [HLS,
proof of Theorem 3.1].

Lemma 2.7. Let L be any infinite field (not necessarily of characteris-
tic zero), and let ω̃ : SL2(L)

n → SL2(L) be the word map corresponding
to a non-trivial word ω ∈ Fn. Then there exists a non-constant poly-
nomial Φ(x, y) ∈ L[x, y] such that Φ(0, 0) = 2 and

Φ(α, β) ∈ Im tr ◦ω̃ for every α, β ∈ L.

Proof. Let (g1, g2, . . . , gn) ∈ SL2(L)
n. We may assume ω(1, g2, . . . , gn) =

1 for every g2, . . . , gn (otherwise we may reduce our consideration to
the case of the word in n− 1 variables).
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Now, fix the elements g2, . . . , gn and take the element g1 of the form

g1 =

(
1 y
x 1 + xy

)
, x, y ∈ L. (2.6)

Then

g−1
1 =

(
1 + xy −y
−x 1

)
.

Hence tr ω̃(g1, g2, . . . , gn) = Φ(x, y) is a polynomial in two variables x, y
over a field L. Suppose that for every fixed g2, . . . , gn ∈ SL2(L) we have
Φ(x, y) ≡ c, a constant polynomial. Then c = 2 for every g1 because

Φ(0, 0) = tr(ω̃(1, g2, . . . , gn) = tr 1 = 2.

Since every non-central element of SL2(L) is conjugate to an element of
the form (2.6) (see [EG1]), the equality tr w̃(g1, g2, . . . , gn) = 2 for every
g1, g2, . . . , gn ∈ SL2(L), where g1 is an element of the form (2.6), implies
the equality tr w̃(g1, g2, . . . , gn) = 2 for every g1, g2, . . . , gn ∈ SL2(L).
Thus, the image of ω̃ : SL2(L)

n → SL2(L) consists of unipotent ele-
ments. Since SL2(L) is Zariski dense in SL2(L) (where L is the al-
gebraic closure of L) [Bo2, 18.3], the image of ω̃ : SL2(L)

n → SL2(L)
also consists of unipotents elements, which contradicts Borel’s dom-
inance theorem (see Theorem 3.2 below). Hence there are elements
g2, . . . , gn ∈ SL2(L) such that

Φ(x, y) = tr ω̃

((
1 y
x 1 + xy

)
, g2, . . . , gn

)

is a non-constant polynomial. �

We also use the following well-known lemma.

Lemma 2.8. Let g ∈ SL2(R) be a semisimple element, g 6= ±1. It is
split if and only if |tr g| > 2. It is of order 4 if and only if tr g = 0.

Proof. If g ∈ SL2(R), then either it belongs to a split torus and is then
conjugate to (

α 0
0 α−1

)
, α ∈ R∗,

or it belongs to an anisotropic torus and is then conjugate to
(

cosϕ sinϕ
− sinϕ cos ϕ

)
, ϕ ∈ R.

In the first case
|tr g| =

∣∣α + α−1
∣∣ ≥ 2.

In the second case
|tr g| = 2 |cos ϕ| ≤ 2.

Moreover,

|tr g| = 0 ⇔ cos ϕ = 0 ⇔ the order of g is equal to 4.

�
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Consider now the word map w̃ : SL2(R)d → SL2(R) corresponding
to the same word w (we also denote it by w̃). We may assume that
w(1, g2, . . . , gd) = 1.

Further, let Φ ∈ R[x, y] be a polynomial satisfying the condition
of Lemma 2.7 (here L = R). Note that the set of values of a non-
constant real polynomial consists either of all real numbers, or of all
real numbers ≥ r, or of all real numbers ≤ r for some r ∈ R. Since
2 = tr w̃(1, g2) = Φ(0, 0), either all elements g ∈ SL2(R) with tr g ≥ 2,
or all elements with tr g ≤ 2 belong to the image of w̃ : SL2(R)d →
SL2(R) (see Lemma 2.7). Since for every split semisimple element g
of SL2(R) we have tr g ≥ 2 or tr(−g) ≥ 2 (Lemma 2.8), every split
semisimple element of G = PSL2(R) belongs to the image of the map
Gd → G. Suppose now that there is an element of order 4 in the image
of w̃ : SL2(R)d → SL2(R) (obviously, this is equivalent to the existence
of an element of order 2 in the image of the word map w̃ : PSL2(R)d →
PSL2(R)). Then, according to Lemmas 2.7 and 2.8, either all elements
g ∈ SL2(R) with tr g ≥ 0 or all elements with tr g ≤ 0 belong to the
image of the map w̃ : SL2(R)2 → SL2(R) and therefore all semisimple
elements belong to the image of the map w̃ : PSL2(R)d → PSL2(R). �

Remark 2.9. The difference between the compact and noncompact
cases may turn out to be essential also at the level of eventually ap-
plicable techniques. For example, in the compact case one can try to
detect the non-surjectivity of the word map by homological methods.
Indeed, denote M = G(R) × · · · × G(R), N = G(R), m = dimR(N),
and assuming that N is compact, consider the induced map of ho-
mology groups w∗ : Hm(M) → Hm(N) (the coefficients may be arbi-
trary because M and N are orientable as any Lie group). If w∗ is a
nonzero map, then w̃ must be a surjective map: otherwise it could
be factored through N ′ = N \ {point}. This would lead to a con-
tradiction: Hm(N

′) = 0 because N ′ is not compact (see, e.g., [Hat,
Proposition 3.29]). Apparently, this approach may only work in the
compact case when Hm(N) 6= 0 (see, e.g., [Hat, Theorem 3.26]). (We
thank E. Shustin for this observation.)

See [KT] for alternative approaches of topological nature.

Further, assuming that Question 2.1 is answered in the negative, one
can ask whether there are obstructions to the surjectivity detectable at
the level of real points.

Question 2.10. Let G be a connected simple linear algebraic R-group
of adjoint type. Let G = G(R)0 be the identity component of the
group of real points. Does there exist a non-power word w (w 6= vk,
k > 1) such that the map G× · · · ×G → G is surjective but the map
G(C)× · · · × G(C) → G(C) is not?

Note that for power words the situation of this question can arise:
say, look at w = x2 and G a compact form of a simple group of type
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B, C or D. Then the squaring map is surjective on G (see Observation
1.3) but not on G(C) (see Theorem 1.2).

3. Word equations with general right-hand side

As Question 2.1(i) is still unanswered and Question 2.1(ii) is an-
swered in the negative, one has to decide how to modify the approach
to equation (1.1). In this connection, let us quote [Ku1, Principle 2.18]
(rechristening it and hoping that the reader will excuse self-citation):

Panda Principle. A reasonable property of a reasonable mathemat-
ical object lying inside a reasonable class of objects may not hold but
it will hold at least for an object in general position (if not always),
provided the class under consideration is enlarged or restricted, if nec-
essary, in an appropriate way.

In even more loose terms, this principle is formulated in the second
epigraph to the paper.

Remark 3.1. In the set-up under consideration, the spirit of this prin-
ciple consists in solving equation (1.1) for a “general” element g of the
group G, when G either runs through the same class of groups, namely,
the class of (rational points of) simple linear algebraic groups of adjoint
type (so we stay within Sichuan province), or through some larger class
(so we try to extend the areal).

Certainly, the problems become meaningful only after one makes the
term “general” (or similar often used euphemisms, such as “generic”,
“random”, “typical”, and the like) into some precisely defined notion.
Note that the answer to the relevant questions may heavily depend on
the choice of such a definition. There are lots of possibilities, and we
are not going to discuss them in this paper, referring the reader, say, to
the papers of M. Gromov [Gr1], [Gr2], A. Ol’shanskĭı [Ols], Y. Ollivier
[Oll], I. Kapovich and P. Schupp [KaSc1], [KaSc2], N. M. Dunfield
and W. P. Thurston [DuTh], M. Jarden and A. Lubotzky [JL], Y. Liu
and M. M. Wood [LW], etc., for comparing different approaches to
randomness in groups.

Anyhow, we cannot avoid mentioning the only general result of this
flavour, a theorem of A. Borel.

Theorem 3.2. [Bo1] If K is a field, G is a connected semisimple lin-
ear algebraic K-group, and w 6= 1, then the corresponding word map
w̃ : Gd → G is dominant.

Recall that this means that the image of the map contains a Zariski
dense open set (i.e., for a “typical” right-hand side equation (1.1) is
solvable).

This result has a nice consequence: if G and w are as in Borel’s
theorem and K is algebraically closed, the word width of G = G(K) is
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at most two, i.e., every g ∈ G can be represented as a product of at
most two w-values.

Remark 3.3. Bringing Borel’s theorem together with Thom’s exam-
ple, one immediately convinces oneself that the panda principle for-
mulated above is to be refined: the answer to the question whether
panda is a typical animal in Sichuan may depend on what is meant
by “typical”. Indeed, Thom’s example shows that for some word w
all pandas (=unitary matrices from the image of w) live within an ε-
neighbourhood of 1, so Thom would not call them typical. However,
Borel probably would: ε-neighbourhood is Zariski dense!

Remark 3.4. In the spirit of negative-positive results mentioned in
the previous section, one can hope that the image of any word map on
a compact group G is large provided the Lie rank of G is sufficiently
large. More concretely, we would like to mention the following den-
sity statement, which can be viewed as a metric analogue of Larsen’s
conjecture.

Given ε > 0, a subset Y of a metric space X is called ε-dense if the
distance from any point x ∈ X to Y is at most ε. Let G = SU(n),
and let drk(g, h) := (rk(g − h))/n denote the normalized rank metric.
J. Schneider and A. Thom [ST] proved that given ε > 0 and a non-
trivial word w ∈ Fd, there exists an integer N depending on ε and w
such that the image of the word map w̃ : SU(n)d → SU(n) is ε-dense
in normalized rank metric for all n ≥ N .

Let us now ask what happens outside Sichuan and try to extend
borders.

First note that over-optimistic attempts may fail, in the sense that
the image of a “typical” word map is “not so large”. To make this
vague statement a little more precise, it is convenient to make use of
the notion of width.

Definition 3.5. Let G be a group, and let w ∈ Fd be a word. For any
g ∈ G define its w-length ℓw(g) as the smallest k ∈ N ∪∞ such that g
can be represented as a product of k values of w̃ : Gd → G.

The w-width of G is defined by wdw(G) := supg∈G ℓw(g).

With this notion in mind, one can roughly estimate how large is
the image of a word map on a group G in the situation where the
surjectivity or dominance fail to hold (or are unknown to hold, or the
dominance makes no sense): informally, smaller is the w-width of G,
larger is the image of w̃ : Gd → G.

The first result to be mentioned here is a theorem of A. Myasnikov
and A. Nikolaev [MyNi]: for any w, any (non-elementary) hyperbolic
group has infinite w-width. According to A. Ol’shanskĭı [Ols], hyper-
bolic groups are “generic” within the class of all groups, so typically a
group will have infinite word width.
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Let us make a more modest attempt. Say, in Borel’s theorem let us
try to replace “algebraic group” with “Lie group”. Then the assertion
on word width mentioned above may break down. Indeed, let w = [x, y]
be the commutator. Then another theorem of A. Borel prevents from
far-reaching generalizations:

Theorem 3.6. [Bo3] Let G be a connected semisimple Lie group. Then
G has finite commutator width if and only if its centre is finite.

In particular, the universal cover ˜SL(2,R) of SL(2,R) has infinite
commutator width (this observation is attributed to J. Milnor, cited
from [Wo]).

Remark 3.7. Let us make another attempt, insisting on the simplicity
of G. There are simple groups G of infinite commutator width (J. Barge
and E. Ghys [BG] (infinitely generated), A. Muranov [Mu] (finitely
generated), P.-E. Caprace and K. Fujiwara [CF] (finitely presented),
E. Fink and A. Thom [FT] (with finite palyndromic width). There
are also examples of groups G for which wdw(G) ∈ N can be made
arbitrarily large by varying w (see [Mu] and Section 5 below). In the
latter case such examples can be obtained from Theorem 2.2(i). It
is interesting whether such an example exists among simple compact
algebraic groups over a non-archimedean local field. A general result
of A. Jaikin-Zapirain [JZ] indicates that in such groups the w-width is
finite for any non-trivial w but does not say whether it can be arbitrarily
large. In this connection, see Question 2.3.

Geometric ideas of [BG] were further developed to produce more ex-
amples of similar flavour, see, e.g., [GaGh]. However, there are also
several classes of simple groups naturally appearing in topological con-
text (see, e.g., [Ts2]) where every element is a commutator. It would
be interesting to pursue investigation of more general word maps on
such groups, especially in view of their relationship with deep geomet-
ric properties of groups under consideration. We refer the interested
reader to [BIP], [Ts1], [CZ], [LaTe] and the references therein.

Remark 3.8. A little more successful attempt concerns a generaliza-
tion of Borel’s dominance theorem from semisimple to perfect linear
algebraic groups [GKP3]. Recall that a group is said perfect if it coin-
cides with its commutator subgroup. Let K = C (or, more generally,
any algebraically closed field of characteristic zero). Let G be a perfect
K-group, and let G = G(K). We identify G with G. Denote by U the
unipotent radical of G, then G/U is a semisimple algebraic K-group
[Bo2, 11.21]. By Mostow’s Theorem [Mo] (see, e.g., [Ho, Th. VIII.4.3],
[Co, Prop. 5.4.1] for modern exposition), there exists a closed linear al-
gebraic subgroup H of G (called a Levi subgroup) isomorphic to G/U .
(Equivalently, G = HU is a semidirect product.) All Levi subgroups
are conjugate. We fix one of them and denote by H throughout below.
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Let

U1 = U, U2 = [U, U1], . . . , Ui = [U, Ui−1], . . . , Ur+1 = {1}
be the lower central series of U , and let Vi = Ui/Ui+1 denote its quo-
tients. Then we may view Vi as a K[H ]-module (indeed, the action
of H on Vi induced by conjugation of U by elements of G is K-linear
because char K = 0).

We say that a K[H ]-module M is augmentative if it has no K[H ]-
quotients M/M ′ on which H acts trivially. If G is a perfect group, V1

is an augmentative K[H ]-module [GoSa], [Go3].
We say that G is a firm perfect group if Vi is an augmentative K[H ]-

module for every i. (If the nilpotency class of U is equal to one, that
is, if U is an abelian group, then any perfect group G is firm.)

We say that G is a strictly firm perfect group if for every i the space
Vi has no nonzero T -invariant vectors (here T denotes a maximal torus
of G).

Then we have the following analogue of Borel’s theorem [GKP3]:

(i) If G is strictly firm, then for any non-trivial w ∈ Fd the map
w̃ : Gd → G is dominant.

(ii) If G is firm, then for any w = w1(x1, . . . , xn)w2(y1, . . . , yk) ∈
Fn+k, w1, w2 6= 1, the map w̃ : Gn+k → G is dominant.

It would be interesting to treat the case of perfect groups up to the
end.

Question 3.9. Do there exist a connected perfect K-group G and a
non-identity word w ∈ Fd such that the word map w : (G(K))d → G(K)
is not dominant?

Remark 3.10. In a similar spirit of extending borders, one can turn to
the Cremona group G0 = Cr(2, K) (the group of birational automor-
phisms of the projective plane P2

K), where K is an algebraically closed
field (say, K = C). In many respects, G0 is similar to simple linear
algebraic groups (cf. Serre [Ser1], [Ser2]). It is also a good candidate
for studying word maps for the following reason. Although it is not
simple as an abstract group ([CL] for K = C, [Lo] for an arbitrary
K), it is simple as a topological group with respect to several natural
topologies: Blanc [Bl] showed this for the Zariski-like topology intro-
duced by Serre [Ser2], and Blanc and Zimmermann [BlZi] treated the
case of a local field K and Euclidean topology (introduced in [BlFur]).
Since in the latter case G0 may not be even perfect (see [Zi] for the
case K = R), to be on the safer side, we put G := [G0, G0].

The following natural questions arise.

Question 3.11. Let w ∈ Fd be a non-identity word.

(i) Is the map w̃ : Gd → G dominant in the Zariski topology?
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(ii) Let K be a local field. Is the map w̃ : Gd → G dominant in the
Euclidean topology?

As to the surjectivity problem, one cannot be over-optimistic in view
of the case of power words. Say, if K is finite, the orders of elements of
G are bounded (see [Ser1] for details), and thus there are non-surjective
power maps. Moreover, this observation extends to the case where K
is algebraically closed: in this case G contains elements g that are not
infinitely divisible (such are all elements of infinite order not conjugate
to elements of GL(2, K)), and hence there are power maps whose image
does not contain g; see [MO1] for details (due to J. Blanc).

However, for non-power words the following question is meaningful.

Question 3.12. Let w ∈ Fd be a non-power word. Can the map
w̃ : Gd → G be non-surjective?

The authors would not be too much surprised if the spectacular
results cited above could help, on the one hand, in finding a non-trivial
word w inducing a non-surjective map, and, on the other hand, in
proving theorems of Borel flavour.

More generally, one can ask the following question.

Question 3.13. Do there exist a locally compact topological group G,
simple at least as a topological group, and a word w = w(x1, . . . , xd)
non-representable as a proper power of another word, such that the
corresponding word map w̃ : Gd → G is not surjective but the image of
w̃ is dense?

4. Fine structure of the image of a word map

In this section we consider the situation where the surjectivity of the
word map w̃ : Gd → G is not known, and we are looking for subtler
features of the image of w̃. In particular, we search for elements of
certain type: semisimple (desirable in abundance) or unipotent. These
cases are totally different and require different methods.

We start with the case of groups of Lie rank 1, which is in fact crucial
for what follows.

4.1. Search for semisimple elements in groups of Lie rank 1.

Let H = SL2(L) where L ⊂ K is an infinite subfield of an algebraically
closed field K. Since SL2 is a connected reductive group, H is dense in
G = SL2(K). Thus, w̃(Hd) is dense in w̃(Gd).

Then, according to [BaZa] (see also [GKP3]), the set w̃(Hd) con-
tains an infinite set of representatives of different semisimple conjugacy
classes of G. The latter fact has been proved (by a different method)
and used in [HLS]. Also in [HLS] it has been proved that the set w̃(Hd)
contains an infinite set of representatives of different split semisimple
conjugacy classes of G if R ⊂ L or Qp ⊂ L. Here we give a generaliza-
tion of this result.



18 GORDEEV, KUNYAVSKĬI, PLOTKIN

First of all let us define a class of fields we will consider.

Definition 4.1. A field is called quadratically meagre if it admits only
finitely many different quadratic extensions.

Note that both R and Qp are quadratically meagre fields. In the
case where the ground field is R, Proposition 2.6 guarantees that all
split semisimple elements of PSL2(R) belong to the image of every non-
trivial word map. It is natural to try to generalize this fact to other
ground fields.

Remark 4.2. Let F be a quadratically meagre field of characteristic
zero. Then there is a finite set of primes S ′

F = {p1, . . . , pr} such that if
p /∈ S ′

F , then
√
p ∈ F .

Let p∞ denote the archimedean place of Q, and define SF = S ′
F ∪

{p∞}.
Theorem 4.3. Let L be a field of characteristic zero which contains
a quadratically meagre subfield. Further, let G = SL2(L), and let
w̃ : Gd → G be the word map induced by a non-trivial word w ∈ Fd.
Then w̃(Gd) contains an infinite set of representatives of different split
semisimple conjugacy classes of G.

Remark 4.4. It is a well-known fact that the conjugacy class of a split
semisimple element is SL2(F ) is uniquely determined by the value of
the trace.

Proof. Partially we follow the ideas of the proof of Lemma 3.2(ii) of
[HLS].

By Lemma 2.7, we have a non-constant polynomial Φ(x, y) ∈ Q[x, y]
such that Φ(0, 0) = 2 and Φ(α, β) ∈ Im tr ◦w̃ for every α, β ∈ Q.
Then we can find a rational number β such that f(x) := Φ(x, β) is a
non-constant polynomial and f(α) ∈ Im tr ◦w̃ for every α ∈ Q.

Put
XL := {r = f(q) | q ∈ Q,

√
f(q)2 − 4 ∈ L}.

Lemma 4.5. Suppose that XL is an infinite set. Then the statement
of Theorem 4.3 holds.

Proof. Let q ∈ Q. Then f(q) = tr g for some element g ∈ Im w.
We may assume f(q) 6= ±2. Then g is a split semisimple element in

SL2(L) if and only if
√
tr(g)2 − 4 ∈ L. Moreover, if tr(g1) 6= tr(g2) for

g1, g2 ∈ SL2(L), then g1, g2 are in different conjugacy classes of SL2(L).
Thus, if the set XL is infinite, there are infinitely many elements of Im w
which are split semisimple elements belonging to different conjugacy
classes of SL2(L). �

Obviously, we may assume that L itself is a quadratically meagre
field. Let S be a finite set of primes containing p∞.
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Lemma 4.6. There exists an infinite set V ⊂ Q such that for every
p ∈ S and every q ∈ V we have

√
f(q)2 − 4 ∈ Qp.

Proof. Let Ψ(x, y, z) = cxr − cys + zϕ(y, z) ∈ Q[x, y, z] where c 6= 0.
For every prime p ∈ S the equation Ψ(x, y, z) = 0 defines a surface
XQp

in the affine space A3
Qp
. Since for a = (1, 1, 0) we have Ψ(a) = 0

and (∂Ψ
∂x
)a 6= 0, by the implicit function theorem there exist a neigh-

bourhood of a in A3
Qp

Up,a = Ux
p,1 × Uy

p,1 × Uz
p,0

where

Ux
p,1 = {α ∈ Qp | ‖α− 1‖p < ε},

Uy
p,1 = {β ∈ Qp | ‖β − 1‖p < ε},

Uz
p,0 = {γ ∈ Qp, | ‖γ‖p < ε},

ε ∈ R>0, and a smooth continuous function with respect to the topology
induced by the natural topology on Qp

θp : U
y
p,1 × Uz

p,0 → Ux
p,1

such that

(θp((β, γ)), β, γ) ∈ XQp
for every β ∈ Uy

p,1, γ ∈ Uz
p,0. (4.1)

Put

Uy
S,1 =

∏

p∈S

Uy
p,1, Uz

S,0 =
∏

p∈S

Uz
p,0.

The sets Uy
S,1, U

z
S,0 are neighbourhoods of 1 and 0 in

∏
p∈S Qp, respec-

tively. Since the subset Q ⊂
∏

p∈S Qp is dense in
∏

p∈S Qp by the

weak approximation theorem, the sets Q ∩ Uy
S,1,Q ∩ Uz

S,0 are infinite.
Moreover, the set

V := {q ∈ Q | q =
qy
qz
, qy ∈ Q ∩ Uy

S,1, 0 6= qz ∈ Q ∩ Uz
S,0}

is infinite (indeed, for every p ∈ S the value ‖qy‖p is bounded and the
value ‖qz‖p can be made smaller than any positive ε ∈ R).

Now let f(t) = c0t
d + c1t

d−1 + · · ·+ cd (here we change the variable
x to t). Put t = y/z. Then

c20x
2d

z2d
− (f(y/z)2 − 4) =

c20x
2d − c20y

2d + zϕ(y, z)

z2d

for some ϕ(y, z) ∈ Q[y, z]. Take Ψ(x, y, z) = c20x
2d − c20y

2d + zϕ(y, z).
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For every p ∈ S we obtain from (4.1) that for every qy ∈ Q ∩ Uy
S,1,

qz ∈ Q∗ ∩ Uz
S,0 we have

c20q
2d
y − qzϕ(qy, qz)

q2dz︸ ︷︷ ︸
f(qy/qz)2−4

=
c20θp(qy, qz)

2d

q2dz
∈ Q∗2

p . (4.2)

Thus from (4.2) and the definition of V we obtain the statement of
the lemma. �

Now we can prove Theorem 4.3. Put S := SL and

X ′
L = {r = f(q) | q ∈ V}.

Then X ′
L is an infinite set of positive rational numbers (by Lemma 4.6).

Lemma 4.7. X ′
L ⊂ XL.

Proof. Let r ∈ X ′
L, and let s := r2 − 4 = c/d with (c, d) = 1. Since

p∞ ∈ SL = S, we have
√
s ∈ Qp∞ = R, and therefore s > 0. Denote

s̄ := the squarefree part of the integer sd2 = cd.

Then Q(
√
s) = Q(

√
s̄) and Qp(

√
s) = Qp(

√
s̄) for every p ∈ S. Since

s is a square in Qp (Lemma 4.6), we have no p from S in the decom-
position s̄ = p1p2 · · · pr. Hence

√
s̄ ∈ L according to the definition of

S = SL. Thus we have the inclusion X ′
L ⊂ XL. �

Now the statement of the theorem follows from Lemmas 4.5, 4.6,
4.7. �

Remark 4.8. Probably, with appropriate changes Theorem 4.3 can be
extended to the case char L = p > 0.

4.2. Search for unipotent elements in groups of Lie rank 1. Sur-
prisingly enough, the situation here is much more complicated even in
the case G = SL2(C) (see Question 2.1(i)). In fact, since all unipotent
elements of G are conjugate, to guarantee that all unipotent elements
belong to the image of the word map w̃ : Gd → G, it is enough to prove

this for a single element u =

(
1 1
0 1

)
. However, as for now, this is

known only for certain families of word maps. The main approaches
used so far are based on

(i) the Magnus embedding (see [BaZa]);
(ii) the representation varieties of the one-relator groups F2/ 〈w〉

(see [GKP1]–[GKP2]).

We do not present any details here referring the reader to the papers
cited above and limiting ourselves to sketching the main ideas.

The first approach relies on the following (clever modification of the)
construction of Magnus (see [Mag] and [We]). First, to each generator
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xi of Fd one can associate an upper-triangular matrix with determinant
one (

ti si
0 t−1

i

)

over the ring Rd = Z[t1, t
−1
1 , . . . , td, t

−1
d , s1, . . . , sd]. In the papers cited

above it is shown that this correspondence extends to an embedding

Fd/F
(2)
d into the group B(Rd) of unimodular upper-triangular matri-

ces over Rd (here F
(2)
d denotes the second derived subgroup of Fd).

For a field K of transcendence degree at least 2d over Q this gives

an embedding of Fd/F
(2)
d into B(K), the group of unimodular upper-

triangular matrices over K. Let w ∈ F
(1)
d \ F (2)

d . Then the word map
w̃ : B(C)d → U(C) := [B(C), B(C)] is surjective. For every L ≤ C the
subgroup B(L) is dense in B(C). Hence there is a non-trivial element
in w̃(B(L)). Thus, we have a unipotent element in w̃(SL2(L)). The
existence of a unipotent element for words w ∈ Fd \F1 is obvious (it is
enough to restrict w̃ to U(L)). Hence we have the following theorem,
due to Bandman and Zarhin.

Theorem 4.9. [BaZa] Let L be a field of characteristic zero, and let
w ∈ Fn \ F 2

n . Further, let G = SL2(L), and let w̃ : Gn → G be the
corresponding word map. Then the set Im w̃ contains a non-trivial
unipotent element.

The second approach is based on the study of the structure of the
representation variety

R(Γw, SL2(C)) = {ρ : Γw → SL2(C)}.
Namely, it can be identified with

Ww = {(g1, . . . , gd) ∈ Gd | w̃(g1, . . . , gd) = 1}
(see [LM, page 4]) and thus embeds into

Tw = {(g1, . . . , gd) ∈ Gd | tr w̃(g1, . . . , gd) = 2}.
Thus, Tw is the variety of all elements γ in Gd such that w̃(γ) is a
unipotent element of G. Obviously, Ww ⊆ Tw. Then

Ww 6= Tw ⇒ all unipotent elements belong to Im w̃. (4.3)

Looking at the irreducible components of these varieties, one can notice
that all components of Tw are of dimension 3d−1. Hence, once Ww has
a component of smaller dimension, one can deduce that it is properly
included in a component of Tw, so that the image of w̃ contains all
unipotent elements of G.

This method requires heavy computations, so that longer is w, sooner
we arrive at the limit of computer resources, even if for detecting small-
dimensional components we replace Ww with the character variety
Ww // G.
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Remark 4.10. We do not know whether the implication converse to
(4.3):

all unipotent elements belong to Im w̃ ⇒ Ww 6= Tw

is true.

To get semisimple and unipotent elements in the image of a word
map on groups of higher Lie rank, one can use the following classical
construction.

4.3. Embedding of SL2(L) into simple groups. Let L be a field,
let G be a simple linear algebraic group defined and split over L, and let
G = G(L). The existence of appropriate homomorphisms ξ : SL2(L) →
G gives us a tool for investigating word maps, in particular, for reducing
some questions on word maps on G to the corresponding questions for
SL2(L).

I. The Morozov–Jacobson embedding. Let L be a field of character-
istic zero, and let u ∈ G = G(L) be a unipotent element. Then there

is a closed subgroup Γ̃ ≤ G such that the subgroup Γ := Γ̃(L) ≤ G
contains u and is isomorphic either to SL2(L) or to PSL2(L), see, e.g.,
[Hu, 7.4, 10.2]; it is not so easy to distinguish between the two groups
of rank 1 mentioned above, see the discussion in [MO3].

Further, let w̃ : Gd → G be a word map, and let ResΓ w̃ : Γd → Γ be
its restriction to Γ. Let ξ : SL2(L) → G be a homomorphism such that
Im ξ = Γ. Denote by w̃′ : SL2(L)

d → SL2(L) the word map induced
by the same word w ∈ Fd.

I.1. Suppose that there exists a non-trivial unipotent element u′ ∈
Im w̃′. Then

ξ(u′) ∈ Im (ResΓ w̃) ⊂ Im w̃.

In particular, one can get any unipotent element in Im w̃ (this was
noticed in [BaZa]).

I.2. Let U be a maximal unipotent subgroup of G normalized by
the group T = T (L) where T is a maximal split torus of G, let u ∈ U
be a regular unipotent element of G, and let Γ ≤ G, Γ ≈ SL2(L) or
PSL2(L), be a subgroup containing u. Let TΓ ≤ Γ be a maximal torus
of Γ. We may assume TΓ ≤ T .

The following fact is well known, however we give a proof being
unable to provide a reference.

Proposition 4.11. If the order of t ∈ TΓ is large enough, then ξ(t) is
a regular semisimple element of G.

Proof. LetR be the root system corresponding to G. Fix Π = {α1, . . . , αr},
a collection of roots corresponding to T , then the group U is generated
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by the root subgroups 〈xα(t) | t ∈ L, α ∈ R+〉 (see, e.g., Section 5 of
[St2]), and any regular unipotent u ∈ U is of the form

u = xα1
(a1)xα2

(a2) · · ·xαr
(ar)u

∗

where ai 6= 0, ai ∈ L for every i, u∗ ∈ [U, U ] (see [SS, 3.1.13], [St1,
Lemma 3.2c]). Then for every t ∈ TΓ we have

tut−1 = xα1
(χ1(t)s1)xα2

(χ2(t)s2) · · ·xαr
(χr(t)sr)u

∗∗

where si 6= 0 for every i, u∗∗ ∈ [U, U ], and χi : TΓ → L∗ is the character
of TΓ which corresponds to the root α. Let u′ be a unipotent element
of SL2(L) such that ξ(u′) = u, and let t′ ∈ SL2(L) be an element such

that ξ(t′) = t ∈ TΓ. We can also identify u′ with a matrix

(
1 a
0 1

)

for some a ∈ L∗ and t′ with a matrix of the form

(
s 0
0 s−1

)
. Since

charL = 0, we have an infinite set of powers u′n among elements of
the form t′u′t′−1 for some t′ ∈ SL2(L). Then the set {tut−1 | t ∈ TΓ}
contains infinitely many elements of the form um, m ∈ Z. This implies,
in its turn, that χ1(t) = χ2(t) = · · · = χr(t) for infinitely many elements
t ∈ TΓ. Further, all characters χi : TΓ → L∗ are obtained by restricting

characters of the torus T to the one-dimensional subtorus TΓ̃ := Γ̃∩ T
and then on its L-points TΓ = TΓ̃(L). Since the characters of any
torus are continuous with respect to Zariski topology, the coincidence of
characters of the one-dimensional torus TΓ̃ on an infinite set implies that
these are the same characters, and therefore all restrictions χi : TΓ → L∗

are equal to a character χ : TΓ → L∗. Since every positive root α is a
sum of the roots αi, the corresponding character χα : TΓ → L∗ defined
by the formula txα(s)t

−1 = xα(χα(t)s) is equal to χN for some N > 0.
Then, if t ∈ TΓ is an element of sufficiently large order, txα(s)t

−1 6=
xα(s) for every α ∈ R+, and therefore t is a regular element. �

The following fact, used in [HLS], is an immediate consequence of
Proposition 4.11.

Proposition 4.12. If t ∈ Im w′ is a split semisimple element of suf-
ficiently large order, then ξ(t) ∈ Im w̃ is a split regular semisimple
element of G.

II. The Testerman embedding. Let char L = p > 0. Then the previ-
ous constructions from the characteristic zero case have the following
constraint: one can put a unipotent element u ∈ G in the image of a
homomorphism ξ : SL2(L) → G only if the order of u is equal to p. It
turns out that this condition on the order of u is sufficient. The follow-
ing theorem was proved in [Te] for “good” primes (see also [McN] for
a streamlined proof). The case of “bad” primes was treated in [PST].

Theorem 4.13. Let G be a simple algebraic group over an algebraically
closed field of characteristic p > 0. Let u ∈ G be a unipotent element.
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Then u is contained in a closed connected subgroup Γ ≤ G of type A1,
except for the case p = 3, G = G2, u is an element of order 3 lying in

a certain conjugacy class (labelled A
(3)
1 ).

Here is an immediate consequence.

Corollary 4.14. Let p, G, Γ and u be as in Theorem 4.13. Let w ∈ Fd

be a non-trivial word, and let w̃′ : Γd → Γ be the corresponding word
map. Suppose that there exists a non-trivial unipotent element u′ ∈
Im w̃′. Then u belongs to the image of w̃ : Gd → G.

5. Problems of Waring type

If G is a semisimple algebraic group over an algebraically closed field
K, G = G(K) and w ∈ Fd is a non-trivial word, then, even if the
surjectivity of the word map w̃ : Gd → G is unknown (or is known to
fail), the Borel dominance theorem guarantees that every element g ∈
G can be represented as a product of at most two w-values: g = g1g2
with gi ∈ Im w̃. However, Thom’s phenomenon discussed in Section
2.1 shows that this is not necessarily the case when the base field is
not algebraically closed. Moreover, the proof of Thom’s theorem shows
that if w varies, the w-width of a compact real group G = G(R) can
be made as large as we wish.

Indeed, fix ε > 0. Let w be a Thom word, i.e., the image of w̃ is
contained in the ε-neighbourhood of the identity element of G. Then
given a positive integer k, one can easily prove (say, by induction on k)
that for any g1, . . . , gk ∈ Im w we have (with the notation of Theorem
2.2(i)) l(g1 · · · gk) = d(1, g1g2 · · · gk) < kε. Hence, taking smaller ε and
choosing an appropriate Thom’s word w, one can make the w-width of
G larger than any given positive integer.

However, for split groups the situation is not that hopeless, though
also here one can observe negative-positive results.

Let G be a split, simple, simply connected linear algebraic group
defined over a field K (not necessarily algebraically closed). Then the
group G = G(K) is a quasi-simple abstract group (that is, G = [G,G]
and G/Z(G) is simple), except for G = SL2(F2), SL2(F3), SU3(F4),
B2(2), G2(2).

There are two different cases to be considered separately: finite and
infinite ground fields.

5.1. Case of finite fields. In the case of a finite ground field K,
Borel’s dominance theorem is even less meaningful than in the case
where the ground field is real or p-adic. So one can consider the w-
width as a reasonable measure for the size of the image of the word map
w̃. The aim is to obtain results of the flavour of Theorem 2.2(ii), which
guarantee that every element of G can be represented as a product of
“small” number of w-values.
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Recall that if K = Fq, apart from the case where G is split giving
rise to the abstract simple groups G(q) (Chevalley groups), we have
several additional series. Namely, let G be a connected, simple, simply
connected linear algebraic K-group. Since K is finite, by a theorem
of Lang G is quasi-split (that is, has a K-defined Borel subgroup). If
G is not split, we have twisted forms of Chevalley groups (sometimes
called Steinberg groups) of types 2Ar (r > 1), 2Dr (r > 3), 3D4,

2E6,
whose groups of K-points G(K) are quasi-simple abstract groups. If we
add the abstract groups of types 2B2(2

2m+1), 2G2(3
2m+1), 2F4(2

2m+1)
(the Suzuki and Ree groups), each of which is obtained as the group
of fixed points of an appropriate automorphism of the corresponding
simple algebraic group, exclude 2B2(2) and

2G2(3) that are not quasi-
simple, and replace 2F4(2) with its derived subgroup (called the Tits
group), we obtain the main infinite family of finite non-abelian simple
groups called finite simple groups of Lie type. Together with the family
of alternating groups An and 26 sporadic groups, these are all finite
simple groups. Thus, any general result on word maps on finite simple
groups can also be viewed as a result on word maps on groups of points
of a simple split (or quasi-split) algebraic group over a finite field (up
to the centre).

Here we have the following negative-positive result:

Theorem 5.1.

(i) Let G be a finite non-abelian simple group, and let A be an
Aut(G)-invariant subset of G such that 1 ∈ A. Then there
exists a word w ∈ F2 such that Im w̃ = A.

(ii) Let 1 6= w1(x1, . . . , xn) ∈ Fn, 1 6= w2(y1, . . . , ym) ∈ Fm, w =
w1w2. Then there exists c = c(w1, w2) such that for every quasi-
simple group G of order greater than c the image of w̃ : Gn+m →
G contains G \ Z(G).

Statement (i) is a theorem of A. Lubotzky [Lu], showing that the
image of a word map can be made as small as possible, within the in-
evitable natural constraints (the image must contain 1 and be invariant
under any automorphism), if one fixes G and varies w. (Earlier results
of this flavour were obtained by M. Kassabov and N. Nikolov [KN],
and M. Levy [Levy1] for some families of finite simple groups.)

The proof of (i) is based on the “one-and-a-half” generation theorem
[GK], [Stein]: for every element a 6= 1 of a finite non-abelian simple
group G there exists b ∈ G such that 〈a, b〉 = G. The proof is tricky
enough and gives the following interesting result: if G is a finite non-
abelian simple group, then there is a word w ∈ F2 such that for every
(a, b) ∈ G×G we have

w(a, b) 6= 1 ⇔ 〈a, b〉 = G.
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Since we may view the word w ∈ F2 as an element in Fd, d > 2, we
may formulate the result also for words in Fd.

Remark 5.2. This negative result shows that in the positive result of
(ii) one cannot drop the assumption that the rank of G is large enough.
Indeed, in the situation of (i), one can choose A to be a single conjugacy
class so that for the pair (w,G) the w-width of G will be greater than
2.

Remark 5.3. Statement (i) was extended by M. Levy to quasi-simple
and almost simple finite groups [Levy2].

Statement (ii) (which should be compared with Theorem 2.2(ii)) is
a theorem of Guralnick and Tiep [GT], who made a final step along
the road paved in two earlier papers of Larsen–Shalev–Tiep [LST1],
[LST2]. The proof is difficult. The principal part, contained in [LST1],
is mainly based on the Deligne–Lusztig theory of characters combined
with some arithmetic-geometric properties of groups of Lie type. The
latter ones include a delicate theorem of Chebotarev flavour which
guarantees the existence of regular semisimple elements in the im-
age of w̃ lying in a split maximal torus of G and is proven with the
help of high-tech machinery (Lefschetz’ trace formula and estimates of
Lang–Weil type). Using these methods, the authors finally prove that
for a given pair of words w1, w2 and a big group G there are special
semisimple conjugacy classes C1, C2 such that C1C2 ⊇ G \ {1} and
C1 ⊂ Im w̃1, C2 ⊂ Im w̃2. Since 1 is contained in the image of every
word map, we have Im w̃1 Im w̃2 = G, and therefore the map w̃ is
surjective.

In [LST2], results and constructions from [LST1] are extended to
the case where G is quasi-simple, so that to get the word width at
most 3, with exhibiting central elements of word length 3 obstructing
to improve that to 2, but leaving open the question whether all non-
central elements are of length at most 2. This last step was done in
[GT], with significant effort, using subtle group-theoretic arguments
(such as looking for regular elements of special form) combined with
some facts from spinor theory.

Remark 5.4. We do not know if statement (ii) can be extended to
the cases where w is a product of two non-disjoint words w1w2. A
natural constraint here is that the word w must not be representable
as a proper power of another word: w 6= wk

1 for k > 1.

Remark 5.5. Theorem 5.1 concerns arbitrary words w. The behaviour
of particular word maps on finite simple groups has been a subject of
intense study over several decades. We only present here a brief account
of main achievements, often giving only final results and omitting the
preceding contributions.
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(i) Commutator w = [x, y] = xyx−1y−1. The map w̃ : G2 → G is
surjective on all finite simple groups G [LOST1]. If G is quasi-
simple, wdw(G) ≤ 2, the estimate is sharp, and all groups with
wdw(G) = 2 are listed [LOST2]. See [Mall] for a detailed survey
of this longstanding problem.

(ii) Words that are not surjective on infinitely many finite simple
groups. A family of words with this property was constructed
by Jambor, Liebeck and O’′Brien [JLO], the simplest of them
is w = x2[x−2, y−1]2, which is not surjective on PSL(2,Fp) for
infinitely many p.

(iii) Power words w = xn. For obvious reasons, here one cannot
expect any general surjectivity result because the image of w̃
collapses to 1 for all groups of order divisible by n. The main
problem consists in the computation of wdw(G). Almost all
results in this direction have been superseded by the paper of
Guralnick, Liebeck, O′Brien, Shalev, and Tiep [GLOST]. Let
us quote some of their fundamental results.
(1) Let N = paqb where p, q are prime numbers and a, b are

non-negative integers. Then the word map induced by
w(x, y) = xNyN is surjective on all finite non-abelian sim-
ple groups.

(2) Let N be an odd positive integer. Then the word map
induced by w(x, y, z) = xNyNzN is surjective on all finite
quasi-simple groups.

(3) Let N = pα1

1 · · · pαk

k (p1 < · · · < pk, αi > 0) be the
prime decomposition of N , let π(N) := k, and let Ω(N) :=∑k

i=1 αi. Suppose that N runs through a set S ⊂ N such
that either (a) Ω(N), or (b) π(N) is bounded by some con-
stant C. Then for every N ∈ S the word map induced by
w = xNyN is surjective on all sufficiently large finite simple
groups G. Here in case (a) this means that for a certain
function f the degree n (resp. the Lie rank) of G must
be greater than f(C) if G = An (resp. G is of Lie type),
whereas in case (b) also the size of Fq must be greater than
f(C) if G is of Lie type over Fq.

Some comments are in order. First, note that (1) and (2) can
be viewed as analogues of the Burnside and Feit–Thompson
theorems, respectively. Second, both (1) and (2) hold for all
finite simple groups G, similar to (i) and being in contrast with
Theorem 5.1(ii) and other earlier results of such flavour, valid
only for sufficiently large groups. Finally, the authors show that
all these results are sharp. First, note that one cannot extend
(i) to the case where N is a product of three prime powers: look
at N = 60 and G = A5. Further, (1) cannot be extended to all
quasi-simple groups G, even in the weak sense: it is not always
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true that every non-central element of G lies in the image of
xNyN . An explicit example is provided by looking at elements
of order 5 in SL2(5), none of which lies in the image of x20y20.

Furthermore, it is not true that for every odd integer N
the word map induced by w = xNyN is surjective on every
non-abelian simple group G (counter-examples appear among
SL2(q) and

2G2(q)).
Finally, they use the fact that there are infinitely many primes

p with Ω(p2 − 1) ≤ 21. Then for N := p(p2 − 1) one has
π(N) ≤ Ω(N) ≤ 22 but w = xNyN is an identity in PSL2(p).
Thus (3) does not hold for finite simple groups of Lie type and
bounded rank.

As to proofs, they are mostly of group-theoretic nature. Per-
haps the most difficult technical point consists in constructing
certain elements of 2-power order which are regular (or close to
such), in the spirit of similar considerations in [GT] for elements
of p-power order.

Remark 5.6. In [LaTi], Larsen and Tiep refined [LST1] by proving
that given any non-trivial words w1, w2, for all sufficiently large finite
nonabelian simple groups G one can find “thin” subsets Ci ⊆ Im w̃i

(i = 1, 2) so that C1C2 = G; explicitly, one can arrange the size of Ci

as O
(√

|G| log |G|
)
.

Remark 5.7. One has to mention another approach to measuring
the size of the image of a word map, going back to Larsen [La]. It
consists in obtaining lower estimates on the size of the image of the
form |Im w̃| > c |G|. See, e.g., [LS1], [NP], [GKSV] for variations on
this theme.

5.2. Split groups over infinite fields. The following result is ob-
tained in [HLS].

Theorem 5.8 ([HLS]). Let G be a simple, simply connected algebraic
group defined and split over an infinite field K, and let G = G(K).
Then

(i) for any four non-trivial words w1 ∈ Fk, w2 ∈ Fl, w3 ∈ Fm, w4 ∈
Fn and any infinite field K the map

w̃ : Gk+l+m+n → G \ Z(G),

where w = w1w2w3w4, is surjective;
(ii) if G = SLn, n > 2, then for any three non-trivial words w1 ∈

Fk, w2 ∈ Fl, w3 ∈ Fm and any infinite field K the map

w̃ : Gk+l+m → G \ Z(G),

where w = w1w2w3, is surjective;



GEOMETRY OF WORD EQUATIONS OVER SPECIAL FIELDS 29

(iii) if the field of real numbers R or the field of p-adic numbers Qp

is contained in K, then for any two non-trivial words w1 ∈
Fk, w2 ∈ Fl the map

w̃ : Gk+l → G \ Z(G),

where w = w1w2, is surjective.

Here we give a sketch of proof which is almost the same as in [HLS].
First of all, note that G(K) is dense in G [Bo2, 18.3]. Therefore Im wi

contains infinitely many regular semisimple conjugacy clases because
the set of all regular semisimple elements is an open subset in G (see
[SS]) and w̃i is a dominant map. If we can find split regular semisimple
elements s1 ∈ M1, s2 ∈ M2 for some sets M1,M2 ⊂ G invariant under
conjugation, then their conjugacy classes Ci in G are also contined in
Mi. Thus, M1M2 ⊃ G \ Z(G) because C1C2 ⊃ G \ Z(G) (see [EG1]).

Proof of (i). Let Γ =
∏

i Γi be a semisimple group where each simple
component Γi is of type Ari for some ri, and let ∆ be a maximal split
torus of Γ. Assume Γ is defined and split over K. Let ω̃ : Γd → Γ be
a non-trivial word map. Since this map is dominant by Borel’s theo-
rem [Bo1] and the set of regular semisimple elements is open in Γ [SS,
III.1.11], [St1, Cor. 5.4], we have an open subset of regular semisimple
elements in w̃(Γd). The set Γ(K) is dense in Γ [Bo2], therefore we have
a regular semisimple element s ∈ ω̃(Γ(K)d). Every regular semisim-
ple conjugacy class of Γ(K) intersects the sets Uẇc and ẇ−1

c U where
U = (Ru(B))(K) is the group of rational points of the unipotent radical
of a Borel subgroup corresponding to ∆ and wc =

∏
i wci is a product

of Coxeter elements of the components Γi (recall that ẇc is a preimage
of wc in the normalizer of the fixed maximal torus, see the proof of
Theorem 2.2(ii)). Actually, this follows from the existence of canoni-
cal rational form in the groups SLri+1(K); see also [St3, Section 3.8,
Theorem 4(b)] and [EG2]). Thus, if ω̃1, ω̃2 are word maps on Γdi , then
for every t ∈ ∆(K) the product Im ω̃1 Im ω̃2 contains an element of the
form

u1ẇc︸︷︷︸
∈Im w̃1

(tẇ−1
c u2t

−1)︸ ︷︷ ︸
∈Im w̃2

= u1 [ẇc, t]︸ ︷︷ ︸
:=t∗∈∆(K)

(tu2t
−1)︸ ︷︷ ︸

:=u′

2
∈U

= u1t
∗u′

2 = u1(t
∗ u′

2u1︸︷︷︸
:=u∈U

)u−1
1 .

Hence for every t ∈ ∆(K) the set Im ω̃1 Im ω̃2 contains an element of the
form t∗u where t∗ = [ẇc, t] and u ∈ U . Since the map [ẇc, x] : ∆ → ∆ is
surjective, the set [ẇc,∆(K)] is dense in ∆. Further, such a subgroup
Γ ≤ G exists for ∆ = T (see [Bo1]). Let ω̃1, ω̃2 be the restrictions
of w̃1, w̃2 to Γk,Γl, then Im ω̃1 Im ω̃2 contains elements of the form t∗u
where t∗ runs over a dense subset of T . In particular, we can find a
regular in G semisimple element t∗. Then t∗u is conjugate to t∗, and we
find an appropriate element in Im w̃1 Im w̃2. The same arguments give
us a split regular semisimple element in Im w̃3 Im w̃4. As mentioned
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above, the product of the conjugacy classes of these elements contains
all non-central elements of G, whence the result. �

Proof of (ii). By a result of A. Lev [Lev], the product C1C2C3 of
any three regular conjugacy classes in G = SLn(K), n ≥ 3, contains
G\Z(G). This implies (ii) because every image Im wi contains a regular
conjugacy class. �

Remark 5.9. The statement of (ii) can be strengthened by removing
the restrictive assumption n > 2. This can be achieved by replacing
Lev’s theorem with Lemma 6.1 of [VW], which guarantees that the
product S1S2S3 of any three regular similarity classes in G = SLn(K),
n ≥ 2, contains G \ Z(G). (By definition, two matrices from SLn(K)
are similar if they are conjugate in GLn(K). The image of a word
map is invariant under any automorphism, not only inner, whence the
statement.)

Remark 5.10. It would be interesting to extend Lev’s theorem to
products of similarity classes (as in the previous remark) in an arbitrary
Chevalley group. This would give us three word maps in (i) instead of
four.

We can slightly generalize statement (iii). Namely, we have
(iii′) Let K be a quadratically meagre field of characteristic zero.

Then for any two non-trivial words w1 ∈ Fk, w2 ∈ Fl the map

w̃ : Gk+l → G \ Z(G),

where w = w1w2, is surjective.

Proof of (iii′). We have to prove that both Im w1 and Im w2 contain
split regular semisimple elements of G. The corresponding SL2(K)-
embedding allows us to reduce the question to the following one: to
prove the existence of infinitely many split semisimple elements in each
of w̃1(SL2(K)) and w̃2(SL2(K)) (see the previous section). This is
exactly the statement of Theorem 4.3. �

6. Polynomial maps on matrix algebras

Looking at equations of form (1.2), one can pose questions similar
to those discussed above for equation (1.1).

First consider the case where solutions are sought in the matrix alge-
bra A = M(n, k). Most general results here were recently obtained by
A. Kanel-Belov, S. Malev, and L. Rowen [KBMR1]–[KBMR4], [Male]
(see also [Sp]). We are not going to give a detailed overview referring
the reader to the papers cited above and to a survey given in [KBKP].
Let us only note that to ask a sensible question, one has to assume that
the polynomial P is not identically zero on A and, moreover, that it is
not central (i.e., not all of its values are scalar matrices).
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Under this assumption, there are essentially two different situations:
either the image of P contains at least one matrix with nonzero trace,
or it consists of traceless matrices. The second case occurs, say, when
P is a Lie polynomial (where the Lie bracket is given by additive com-
mutator, [X, Y ] = XY −Y X), and all questions about the polynomial
map

P : M(n, k)d → M(n, k) (6.1)

can be modified to the Lie-algebraic setting. Namely, for such a P and
any Lie algebra g one can consider the induced map

P : gd → g. (6.2)

As in the preceding sections, it is reasonable to restrict our attention
to considering simple Lie algebras.

Here is a brief account of main results on the image of maps (6.1)
and (6.2). Throughout we assume that P is not central. In the Lie
algebra case, we assume that g is simple and finite-dimensional. The
ground field k is either R or C.

Remark 6.1.

(i) Regardless of the topology under consideration (Zariski, com-
plex, or real), there are polynomials P such that the image of
(6.1) is not dense [KBMR1], [Male].

(ii) There are Lie polynomials P such that map (6.2) is not surjec-
tive [BGKP].

(iii) For any Lie polynomial P which is not identically zero on sl(2, k)
and for any split g, map (6.2) is dominant in Zariski topology
(“weak infinitesimal Borel theorem”) [BGKP].

For multilinear (associative or Lie) polynomials, no examples such
as in Remark 6.1(i), (ii) are known. A more optimistic conjecture
attributed to Kaplansky and L’vov asserts that in this case the image
may be either sl(n, k) or M(n, k); see [KBMR1]–[KBMR4], [Male], [Sp],
[BW], [DK] for a number of results in this direction. An analogue of
the Kaplansky–L’vov conjecture can be formulated for other classical
Lie algebras, see [AEV] for some partial results. The case of multilinear
Jordan polynomials on Jordan algebras is discussed in [Grdn], [MaOl].

Eventual gaps between the behaviour of the maps under considera-
tion in real and complex case and with respect to different topologies
are still poorly understood. Here are several natural questions.

Question 6.2.

(i) Does there exist P such that map (6.1) is surjective for k = R
and is not surjective for k = C?

(ii) Does there exist P such that the image of P : M(n,C)d →
M(n,C) is Zariski dense but is not dense in Euclidean complex
topology?
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Note that if in (ii) one replaces “complex” with “real”, P (X) = X2

provides an example where the image is Zariski dense but is not dense
in Euclidean topology (see Example 1.1 and also [Male]).

In the Lie-algebraic case, one can ask about the existence of coun-
terparts to Thom’s phenomenon, at least in some weak sense:

Question 6.3. Do there exist a Lie polynomial P and a compact simple
real Lie algebra g such that the image of map (6.2) is not dense in
Euclidean topology?

Finally, in parallel to problems of Waring type for word maps on
groups, one can ask similar questions for polynomial maps on Lie alge-
bras. Even the simplest case of the commutator map is far from being
trivial.

For an element z of a Lie algebra L we call its bracket length the
minimal number ℓ such that z is representable in the form z = [x1, y1]+
· · ·+ [xℓ, yℓ] with xi, yi ∈ L. We call the bracket width of L the supre-
mum of bracket lengths of its elements.

Let L be a simple Lie algebra over a field k (or a ring R).

Question 6.4.

(i) Can the bracket width of L be infinite?
(ii) Can it be greater than one?

A negative answer to Question 6.4(i) is obtained by Bergman–Nahlus
[BN] for any finite-dimensional simple Lie algebra L over any infi-
nite field of characteristic different from 2 and 3: the bracket width
is bounded by 2 (the proof relies on recent two-generation theorems by
Bois [Boi]). (Over R, a simple proof can be found in [HM]; see [Go4]
for the case of arbitrary classical Lie algebras.)

Question 6.4(ii) is answered in the negative in each of the following
cases: (i) L is a finite-dimensional simple split Lie algebra over any
sufficiently large field (G. Brown [Br]; R. Hirschbühl [Hi] provided im-
proved estimates on the size of the ground field); (ii) L is a simple real
compact Lie algebra (here there are proofs by K.-H. Neeb [HM, Ap-
pendix 3], D. Ž. Doković, T.-Y. Tam [DjTa, Theorem 3.4], D. Akhiezer
[Akh], A. D’Andrea and A. Maffei [DAM], J. Malkoun and N. Nahlus
[MaNa]; in [Akh] some real non-compact algebras are also treated; see
also the discussion at math.stackexchange.com/questions/769881).

In view of these results, the following question looks natural.

Question 6.5. What is the bracket width of Lie algebras of Car-
tan type (finite-dimensional over fields of positive characteristic and
infinite-dimensional over fields of characteristic zero)?

Another rich source of simple infinite-dimensional Lie algebras (alge-
bras of vector fields on smooth affine varieties) was discussed in [BiFut].
It is a challenging question whether among these algebras one can find
those with bracket width greater than one.
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7. Miscellanea

To conclude, we present several remarks and questions related to the
topic of the present paper. In most cases they refer to situations which
are almost totally unexplored.

7.1. Word maps in Kac–Moody setting. In the case where a sim-
ple algebraic group G under consideration is defined over the field
K = C((t)) of formal Laurent series with complex coefficients, nat-
urally leads to affine Kac–Moody groups. Various ramifications of this
set-up, both for word maps on Kac–Moody groups and polynomial
maps on Kac–Moody algebras, are surveyed in [KKMP].

7.2. Systems of equations. It seems very problematic to go over
from maps (2.1), (6.1), (6.2) to more general ones Gd → Gk, Ad → Ak,
gd → gk (in other words, from equations to systems of equations). Some
particular cases were treated by N. Gordeev and U. Rehmann [GoRe],
and by E. Breuillard, B. Green, R. Guralnick and T. Tao [BGGT]. A
promising general approach was recently proposed by K. Bou-Rabee
and M. Larsen [BRL].

7.3. Equidistribution problems. One can ask how the set of solu-
tions of (1.1) or (1.2) depends on the right-hand side. In other words,
one can study the behaviour of the fibres of maps (2.1), (6.1), (6.2). The
authors are not aware of anything done in this direction, in contrast to
the case of finite groups where a number of equidistribution results are
available, see, e.g., [AV], [BK], [Bors], [GaSh], [KuSi], [LP], [LS2], [LS3],
[Na], [PS], [Pl]; in [LS4] Larsen and Shalev consider equidistribution
problems for profinite and residually finite groups. Here probabilistic
aspects of the theory naturally arise. We are not going to discuss this
rich topic. The interested reader can find a survey in [Sh3].

7.4. Functional-analytical analogues. In the border-extending spirit
of Remarks 3.7 and 3.10, one can try to investigate polynomial maps
on certain operator algebras, particularly on those for which additive
commutator is known to behave well (for example, inducing a surjective
map); see, e.g., [DS], [Ng], [KNZ], [KLT].

7.5. Word image and anti-automorphisms. We start with some
general (and almost obvious) remarks regarding Aut(Fd)- and Aut(G)-
invariance of the image of a word map w : Gd → G on an abstract
group G.

First, evidently Im w̃ is an Aut(G)-invariant subset of G.
Second, if w1, w2 ∈ Fd lie in the same Aut(Fd)-orbit, then the maps

w̃1, w̃2 : G
n → G have the same image.

Indeed, any group homomorphism ϕ : Fd → G is determined by
the d-tuple (g1 = ϕ(x1), . . . , gd = ϕ(xd)). Since for any w ∈ Fd
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we have ϕ(w) = w̃(g1, . . . , gd), the image of w̃ coincides with the set
{ϕ(w)}ϕ∈Hom(Fd,G), whence the claim.

The situation becomes much less obvious as soon as we consider
anti-automorphisms instead of automorphisms. There are several ways
to formalize eventual difference between the images of corresponding
word maps. Here are two possibilities.

Definition 7.1. Let γ be an anti-automorphism of Fd, and let w ∈ Fd.
Denote wγ = γ(w) and define, for every group G, w̃γ : Gd → G to be
the evaluation map, as above. We say that w is γ-chiral if there exists
G such that the images of w̃ and w̃γ are different.

Definition 7.2. Let G be a group, and let γ be an anti-automorphism
of G. Define, for every w ∈ Fd, w̃γ : G

d → G by w̃γ(g1, . . . , gd) =
γ(w(g1, . . . , gd)). We say that G is γ-chiral if there exists w such that
the images of w̃ and w̃γ are different.

In both cases, we say that the pair (w,G) is γ-chiral (otherwise, we
say that it is γ-achiral). We omit γ in prefixes and sub(super)-scripts
whenever the anti-automorphism is fixed and this does not lead to any
confusion.

Perhaps, the simplest non-trivial case where one can observe the
chirality phenomenon arises when γ acts on any group G (including
Fd) by inverting all its elements, γ(g) = g−1. In such a case, wγ = wγ

for any G and any w.

Proposition 7.3. [CH] If γ acts by inversion, there are γ-chiral pairs
(w,G).

Remark 7.4. The simplest way to prove the proposition, demon-
strated in [CH], is to combine a theorem of Lubotzky [Lu] (see Theorem
5.1(i)) with the fact that there are finite simple groups all of whose au-
tomorphisms are inner which contain an element g not conjugate to
its inverse. The resulting pair (w,G) is then a chiral pair because the
image of w̃ which coincides with the conjugacy class of such an element
g cannot contain g−1, which is in the image of w̃γ.

However, it is not easy to give an explicit example of a chiral pair:
say, for the Mathieu group G = M11 and g ∈ G an element of order 11,
one can expect w of length about 1.7 · 10244552995, see [MO2].

Here is another way to formalize asymmetry phenomena of this
flavour, which is inspired by the mathoverflow discussion cited above.
For any word map w̃ : Gd → G and any a ∈ G we denote by w̃a =
{(g1, . . . , gn) | w(g1, . . . , gd) = a} the fibre of w̃ at a. We restrict our
attention to considering anti-automorphisms of finite groups.

Definition 7.5. LetG be a finite group equipped with an anti-automor-
phism γ. We say that G is weakly γ-chiral if there exist g ∈ G and
w ∈ Fd such that the fibres w̃g and (w̃γ)g are of distinct cardinalities.
In such a case, we say that (w,G) is a weakly γ-chiral pair.
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Clearly, every γ-chiral finite group is weakly γ-chiral. It turns out
that to detect weak chirality, much shorter words w can be used that
can be exhibited explicitly.

Example 7.6. (N. Elkies [MO2])
For a ∈ G = M11 an element of order 11 and w = x4y2xy3 the fibres

w̃a and w̃a−1 are of cardinalities 7491 and 7458, respectively. So (w,G)
is a weakly γ-chiral pair where γ stands for the inversion map.

Question 7.7. Does there exist a finite group G equipped with an
anti-automorphism γ which is γ-achiral but weakly γ-chiral?

Remark 7.8. In a somewhat similar spirit, R. Guralnick and P. Shumy-
atsky [GuSh] considered words w for which the equations w(x1, . . . , xd) =
g and w(x1, . . . , xd) = ge are equivalent for all e (or all e prime to the
order of G), in the sense of the existence of a solution or the number
of solutions. Not too much is known about the invariance of Im w̃ with
respect to other operations on Fd and G. It would be interesting to
divide words into equivalence classes with respect to certain invariance
properties of Im w̃ for a given group G.

7.6. Word maps with constants. One of the most natural general-
izations of the problems considered in the present paper is the following
one. Let Fd (d ≥ 1) be the free group on generators x1, . . . , xd, let G
be an abstract group, and let G ∗ Fd denote the free product. Then to
every wΣ ∈ G ∗ Fd one can associate the word map with constants

w̃Σ : G
d → G (7.1)

defined by evaluation, exactly as for genuine word maps. For the re-
sulting equations with constants of the form

w1(x1, . . . , xd)σ1 · · ·wr(x1, . . . , xd)σrwr+1(x1, . . . , xd) = g

one can pose the same questions as those discussed in the present paper
for word maps without constants. In particular, one can ask about the
surjectivity or dominance of map (7.1), about the size and structure of
its image, etc. These topics are almost unexplored and, in our opinion,
definitely deserve thorough investigation. Being interesting in its own
right, say, in view of natural connections with classical group-theoretic
problems such as Thompson’s conjecture and computing covering num-
bers (see, e.g., [Go1]), information on the properties of equations with
constants can be useful for treating genuine word equations; relevant
examples can be found in [GKP1], [GKP2], [KT]. Here we only quote
several results from these papers. Recall that as mentioned in Intro-
duction, we limit ourselves to considering equations in groups but not
over groups.

Following [KT], we denote by ε : G∗Fd → Fd the augmentation map,
sending all elements of G to 1. If ε(wΣ) = 1, we say that wΣ is singular.

With this notation, we have the following facts:
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(i) If G = U(n), d = 1, and a word with constants wΣ is non-
singular, then the map w̃Σ : G → G is surjective [GeRo].

(ii) If p is a prime number, G = SU(p), d = 2, and ε(wΣ) does not
belong to [F2, F2]

p[F2, [F2, F2]] (the second step of the exponent-
p central series), then the map w̃Σ : G → G is surjective.

(iii) If G is (the group of points of) a simple linear algebraic group
defined over an algebraically closed field, wΣ = w1σ1 · · ·wrσrwr+1

is a non-singular word with w2, . . . , wr+1 6= 1 and “general”
σ1, . . . , σr, then the map w̃Σ : G → G is dominant [GKP2] (see
there a precise definition of a general r-tuple).

Note that the methods used to prove these statements are entirely
different: (i) relies on a purely homotopic approach (the Hopf degree
theorem), (ii) needs much more advanced techniques from homological
algebra, and (iii) is based on algebraic-geometric arguments.

How far can one hope to go trying to generalize these surjectivity
and dominance results? There are some immediate limitations: say,
there are simple algebraic groups and words with constants such that
the image of map (7.1) collapses to 1 (so-called group identities with
constants, see, e.g., [Go2]). The word wΣ(x) = σ−1xσ gives rise to an
example of a map (7.1) whose image consists of a single conjugacy class
of G. So far, the most optimistic approach consists in parameterization
of the image of (7.1) using the quotient map π : G → T/W , where T is
a maximal torus of G and W is the Weyl group (see [SS]). Namely, one
can show (see [GKP3]) that if the composed map π ◦ w̃Σ : G

d → T/W
is dominant, then so is the word map with constants w̃′

Σ : G
d+1 → G

corresponding to w′
Σ = ywΣy

−1. Thus in such a case the map w̃Σ is
“dominant up to conjugacy”, or, in other words, almost all conjugacy
classes of G (except for some closed subset of G) intersect Im w̃. So our
biggest hope is the dichotomy which will arise if the following question
(see [GKP3]) is answered in the affirmative.

Question 7.9. Is it true that Im(π ◦ w̃(x1, . . . , xd, σ1, . . . , σr)) is either
just one point for every Σ = (σ1, . . . , σr) ∈ Gr, or a dense subset in
T/W for every Σ = (σ1, . . . , σr) ∈ U from some non-empty open set
U ⊂ Gr?
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[HR] K. H. Hofmann, W. A. Ruppert, Lie groups and subsemigroups with sur-
jective exponential function, Mem. Amer. Math. Soc. 130 (1997), no. 618.

[HLS] C. Y. Hui, M. Larsen, A. Shalev, The Waring problem for Lie groups
and Chevalley groups, Israel J. Math. 210 (2015), 81–100.

[Hu] J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups,
Math. Surveys and Monographs, vol. 43, Amer. Math. Soc., Providence,
RI, 1995.

[JZ] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p groups,
Rev. Mat. Iberoam. 24 (2008), 617–630.

[KLT] R. Kadison, Z. Liu, A. Thom, A note on commutators in algebras of
unbounded operators, preprint, available at https://tu-dresden.de/

mn/math/geometrie/thom/forschung/publikationen.
[KNZ] V. Kaftal, P. W. Ng, S. Zhang, Commutators and linear spans of projec-

tions in certain finite C∗-algebras, J. Funct. Anal. 266 (2014), 1883–1912.
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