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THE HOLOMORPHIC BOSONIC STRING

OWEN GWILLIAM AND BRIAN WILLIAMS

ABSTRACT. We describe and analyze a holomorphic version of the bosonic string in the formalism

of quantum field theory developed by Costello and collaborators, which provides a powerful combi-

nation of renormalization theory and the Batalin-Vilkovisky formalism. Our focus here is on the case

in which the target space-time is a vector space. We identify the critical dimension as an obstruction

to satisfying the quantum master equation, and when the obstruction vanishes, we construct a one-

loop exact quantization. Moreover, we show how the factorization algebra of observables recovers

the BRST cohomology of the string and use this perspective to give a new construction of its Gersten-

haber structure. Finally, we show how the factorization homology along closed manifolds encodes

the determinant line bundle over the moduli space of Riemann surfaces. An auxiliary goal of this

paper is to give an exposition of this QFT formalism with the holomorphic bosonic string theory as

the running example.
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1. INTRODUCTION

Two intertwined goals govern our exposition. First, we want to describe a two-dimensional field

theory, which we view as a holomorphic version of bosonic string theory, and its perturbative

quantization. We’ll see that this theory encodes the chiral sector of a bosonic string with linear

target space, justifying our interpretation. Second, we want to use this theory as the running

example for key ideas and techniques in the formalism for quantum field theory developed by

Costello and collaborators [Cos11, CG17, CG, LL16, GG14, GLL17, Li]. We hope to give readers a

feel for how to use this formalism by exhibiting it with a beautiful theory.

Our focus is thus on narrative rather than detailed argumentation. That is, we work systemati-

cally according the natural flow of the formalism. Along the way we emphasize the motivations

behind each step rather than the nitty-gritty computations. Precedence is given to communi-

cating the essence of an argument, over spelling everything out. We do give detailed citations
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where such arguments can be found in the literature, but we defer some not-yet-extant details to

a forthcoming work on this theory with curved target space [GW].

None of the results here about string theory is new, as the bosonic string has been under intensive

study for several decades, but this formalism recovers them in a single, systematic process, often

giving a novel argument or perspective. It is compelling to have a direct path from the action

functional to such sophisticated constructions as the semi-infinite cohomology of a vertex alge-

bra. In fact, since so many of these results are familiar, the reader may see more clearly what’s

distinctive and illuminating about this approach to field theory.

There are many references on the bosonic string that have influenced us. In the physics literature

there are the classic sources [GSW12a, GSW12b, Pol98] that explain perturbative string theory. In

addition, there is an extensive mathematically-oriented treatment of perturbative string theory

in [DP88], as well as D’Hoker’s notes in Volume II of [DEF+99]. Our approach, while intimately

related, starts with a “first-order” description of the bosonic string.

Given the vastness of the string theory literature, it should not be a surprise that there is already

work along these lines, notably by Losev, Marshakov, and Zeitlin [LMZ06]. One could view this

paper as attempting to communicate many of their insights to those with an intuition growing

out of homotopical algebra and the functorial approach to geometry. Again, we note that the

formalism of Costello provides a mathematical articulation and verification of many ideas long

known to physicists, such as the Wilsonian view of renormalization and the Batalin-Vilkovisky

(BV) approach to gauge and gravity theories.1 This machinery allows us to revisit such prior

work in a manner particularly amenable to mathematicians.

1.1. Overview. The central figure of this paper is a holomorphic analogue of the bosonic string.

We proceed, as usual in physics, from the classical to the quantum.

Hence, we begin by introducing the classical theory, expressed both in the BV formalism and also

in terms of an action functional. We take some time to identify this theory as the chiral sector of

a limit of the bosonic string, where the Kähler metric of the target is made very large. We also

interpret the theory in the language of derived geometry.

We then turn to analyzing the deformations of this classical theory, which by Costello’s work ad-

mits a nice description in terms of a type of Gelfand-Fuks cohomology. This perspective naturally

leads to a discussion of string backgrounds.

With a firm grip on the classical theory, we turn to constructing the perturbative quantization. We

first work with a disk or C as the source manifold, and we review relevant features of Costello’s

approach to renormalization. The usual dimensional Weyl anomaly appears as an obstruction to

satisfying the quantum master equation, a key condition in the BV formalism. At this stage, the

anomaly appears as a computation with Feynman diagrams.

1We also note that given the literature’s size, and our relative and unfortunate ignorance of much of it, we have chosen

to mention a reference when we feel its description is particularly useful for us, even if it is not the original or standard

reference for the result.
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The next section describes the vertex algebra of the quantized theory, using the machinery of fac-

torization algebras of [CG17, CG]. We find this piece of the formalism particularly illuminating,

as it lets a mathematician understand how to read off the OPE from path integral manipulations.

We then turn to the case of a compact Riemann surface as the source manifold. Here we discuss

how the formalism relates to the global approach to computing anomalies using, for instance, the

Grothendieck-Riemann-Roch formula. We also discuss conformal blocks in this formalism.

Finally, we sketch how to modify the approach here to allow a complex manifold as the target.

This paper can be viewed as an expository precursor to future work, which pushes into new

territory (particularly in describing the vertex algebra).

1.2. Lessons to bear in mind. Before turning to our example, we want to expound some key

ideas of the Costello formalism so that the reader is alert to them when proceeding through the

text. That is, we wish to articulate here the structural features of this BV/renormalization package

that make the arguments below conceptual.

For instance, in a gauge theory we know that connections provide the “naive” fields and that one

must identify connections that are gauge-equivalent. A mathematician would say the true fields

are a stacky quotient of the naive fields. Similarly, the critical locus of the action functional S is the

zero locus of its differential dS (ignoring some subtleties of the variational set-up), which is the

intersection of dS with the zero section of the cotangent space of the fields. But in mathematics it

is better to take derived intersections.

Lesson 1.1 (Part 1, [CG]). The classical BV formalism is a method for computing the derived

critical locus of the action functional on the derived stack of fields. Ghosts appear to describe

the direction along which one quotients—the stacky direction—while the antifields appear to

describe the direction along which one intersects—the derived direction.

We will describe our theory in the usual way, involving fields and ghosts, but we will also sketch

its meaning in terms of global derived geometry, which we find illuminates the deep connections

between string theory and algebraic geometry.

Path integral quantization amounts to trying to put a kind of measure or volume form on the

derived stack of fields. When the fields form a linear space, there is a natural quantization that

is translation-invariant along the fields, which is the analogue of the Lebesgue measure on an

ordinary vector space.

Lesson 1.2 ([GH18]). Linear BV quantization is functorial, and it behaves much like a determinant

functor. Hence, when one takes the fiberwise quantization of a family of linear theories, one

typically obtains a determinant line bundle over the base.

This situation is relevant to us because the theory we study arises from a simple free theory, the

free βγ system, which lives on any Riemann surface. Hence the quantization of the free βγ system

makes sense over the moduli of Riemann surfaces and naturally produces a line bundle.
3



To be more specific, our classical theory of interest arises by gauging the natural action of holo-

morphic vector fields on the free βγ system. As holomorphic vector fields are infinitesimal bi-

holomorphisms, one can say that we couple the βγ system to holomorphic gravity. But then we

recognize a natural consequence of our prior lessons.

Lesson 1.3 (§5.11, [Cos11]). Gauging a classical theory corresponds to taking a stacky quotient

of the original fields. To quantize the gauged theory corresponds to descending the quantiza-

tion to the quotient. Hence, an anomaly that prevents quantization should be understood as an

obstruction to descent.

The formalism of Costello makes this relationship manifest, as the anomaly that appears in try-

ing to produce a BV quantization—which is a Feynman diagram construction—is a cocycle in a

dg Lie algebra determined by the classical field theory. Thus, the anomaly determines an ele-

ment of a natural Lie algebra cohomology group (in this case, Gelfand-Fuks cohomology), whose

descent-theoretic meaning is typically easy to recognize. Here we will discover the famed Weyl,

or conformal, anomaly, which requires the target space to be real 26-dimensional.

Anomalies are often characteristic classes, and this BV/renormalization package offers a struc-

tural explanation. Most classical field theories—at least most of broad interest—make sense on a

class of manifolds, and so the anomaly ought to be determined by the local geometry of this class.

In more mathematical language we have the following.

Lesson 1.4 ([GGW]). If a classical theory determines a sheaf on some site of manifolds (such as the

site of Riemann surfaces and local biholomorphisms), then to quantize the theory over the whole

site, it suffices to check on a generating cover (typically given by disks with geometric structure)

but compatibly with all automorphisms.

In particular, the BV anomaly is a cocycle for the Lie algebra of automorphisms of the formal disk

equipped with such geometric structures. In other words, it lives in some kind of Gelfand-Fuks

cohomology, which gives deep and informative connections with foliation theory and topology.

So far, everything we have mentioned is well-known in field theory, albeit often expressed in a

different dialect of mathematics. We now turn to the main new notion of this framework: fac-

torization algebras, which provide an efficient and powerful way to organize the local-to-global

structure of the observables of a field theory.

Lesson 1.5 ([CG17, CG]). Every BV theory produces a factorization algebra. The local structure

encodes the OPE algebra, so that for a chiral CFT, one recovers a vertex algebra. On compact

manifolds, the global structure often has finite-dimensional cohomology because solutions to the

equations of motion are typically finite-dimensional. For a chiral CFT, one recovers the conformal

blocks in this way.

A technical result of [CG17] gives a precise articulation of this lesson, and we will apply it to

identify the vertex algebra arising from our holomorphic version of the bosonic string.
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2. THE CLASSICAL HOLOMORPHIC BOSONIC STRING

There is a basic format for a string theory, at least in the perturbative approach. One starts with

a nonlinear σ-model, whose fields are smooth maps from a Riemann surface to a target man-

ifold X; in this setting we want the theory to make sense for an arbitrary Riemann surface as

the source manifold. In the usual bosonic string theory, this nonlinear σ-model picks out the

harmonic maps from a Riemannian 2-manifold to a Riemannian manifold. In our holomorphic

setting, the nonlinear σ-model picks out holomorphic maps from a Riemann surface to a complex

manifold. One then quotients the space of fields (and solutions to the equations of motion) with

respect to reparametrization. In the usual bosonic string, one quotients by diffeomorphisms and

Weyl rescalings (i.e., multiplying the metric by a positive real function), which can thus change

the metric on the source. In our setting, we quotient by biholomorphisms, which act on the com-

plex structure on the source.

In this section we begin by describing our theory in the BV formalism. We do not expect the

reader to find the action functional immediately clear, so we devote some time to analyzing what

it means and how it arises from concrete questions. We then turn to interpreting this classical BV

theory using dg Lie algebras and derived geometry (i.e., we identify the moduli space it encodes).

Finally, we conclude by sketching how our theory appears as the chiral sector of a degeneration

of the usual bosonic string when the target is a complex manifold with a Hermitian metric. Our

theory thus does provide insights into the usual bosonic string; moreover, it clarifies why so many

aspects of the bosonic string, like the anomalies or B-fields, have holomorphic analogues.

2.1. The theory we study. Let V denote a complex vector space (the target), and let 〈−,−〉V de-

note the evaluation pairing between V and its linear dual V∨. Let Σ denote a Riemann surface (the

source). Let T1,0
Σ

denote the holomorphic tangent bundle on Σ, let 〈−,−〉T denote the evaluation

pairing between T1,0
Σ and its vector bundle dual T1,0∗

Σ . These are the key geometric inputs.
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In a BV theory, the fields are Z-graded; we call this the cohomological grading. We have four kinds

of fields:

field −1 0 1 2

γ Ω0,0(Σ)⊗ V Ω0,1(Σ)⊗ V

β Ω1,0(Σ)⊗ V∨ Ω1,1(Σ)⊗ V∨

c Ω0,0(Σ, T1,0
Σ ) Ω0,1(Σ, T1,0

Σ )

b Ω1,0(Σ, T1,0∗
Σ

) Ω1,1(Σ, T1,0∗
Σ

)

More accurately, we have eight different kinds of fields, but we view each row as constituting a

single type since each given row consists of the Dolbeault forms of a holomorphic vector bundle.

For instance, the field γ is a (0, ∗)-form with values in the trivial bundle with fiber V, and the field

b is a (0, ∗)-form with values in the bundle T1,0∗ ⊗ T1,0∗.

To orient oneself it is helpful to start by examining the fields of cohomological degree zero, since

these typically have a manifest physical meaning. For instance, the degree zero γ field is a smooth

V-valued function and hence the natural field for the nonlinear σ-model into V. The degree zero c

field is a smooth (0, 1)-form with values in vector field “in the holomorphic direction,” and hence

encodes an infinitesimal change of complex structure of Σ. The degree −1 part of c contains the

gauge fields of the theories, vector fields. The equations of motion dictate that these vector fields

be holomorphic, so we are seeing the infinitesimal version of the symmetry by biholomorphisms

we mentioned above. These constitute the obvious fields to introduce for a holomorphic version

of the bosonic string. The fields β and b are less obvious but appear as “partners” (or antifields)

whose role is clearest once we have the action functional and hence equations of motion.

The action functional is

(1) S(γ, β, c, b) =
∫

Σ
〈β, ∂γ〉V +

∫

Σ
〈b, ∂c〉T +

∫

Σ
〈β, [c, γ]〉V +

∫

Σ
〈b, [c, c]〉T.

(We discuss below how to think about fields with nonzero cohomological degrees as inputs.) The

equations of motion are thus

0 = ∂γ + [c, γ] 0 = ∂β + [c, β]

0 = ∂c + 1
2 [c, c] 0 = ∂b + [c, b]

Note that these equations are familiar in complex geometry. For instance, the equation purely

for c encodes a deformation of complex structure on Σ; concretely, it modifies the ∂ operator

to ∂ + c. The other equations then amount to solving for holomorphic sections (of the relevant

bundle) withe respect to this deformed complex structure. For instance, the equation in γ picks

out holomorphic maps from Σ, with the c-deformed complex structure, to V.

The field b can be understood as an “antifield” to the ghost field c; in other words, it is an antighost.

In that sense, b does not have any intrinsic, physical meaning by itself.

Remark 2.1. Just looking at this action functional, one might notice that if one drops the last two

terms, which are cubic in the fields, then one obtains a free theory

(2) S f ree(γ, β, c, b) =
∫

Σ
〈β, ∂γ〉V +

∫

Σ
〈b, ∂c〉T,

6



which is known as the free bcβγ system. Thus, one may view the holomorphic bosonic string as

a deformation of this free theory by “turning on” those interaction terms. We will repeatedly

try a construction first with this free theory before tackling the string itself, as it often captures

important information with minimal work. For instance, we will examine the vertex algebra for

the free theory before seeing how the interaction affects the operator products. Similarly, one can

identify the anomaly already at the level of the free theory.

This viewpoint of arriving at the bosonic string as a deformation of a free CFT is central to the

analysis of the string in the physics literature [GSW12a] and Chapter 2 of [Pol98]. See also the

work in [Sch75].

Remark 2.2. It is easy to modify this action functional to allow a curved target, i.e., one can replace

the complex vector space V with an arbitrary complex manifold X. The fields b, c remain the

same. The degree 0 field γ still encodes smooth maps into X, but now the degree 1 field is a

section of Ω0,1(Σ, γ∗T1,0
X ). Similarly, β is now a section of Ω1,∗(Σ, γ∗T1,0∗

X ). The action is then

(3) S(γ, β, c, b) =
∫

Σ
〈β, ∂γ〉TX

+
∫

Σ
〈b, ∂c〉TΣ

+
∫

Σ
〈β, [c, γ]〉TX

+
∫

Σ
〈b, [c, c]〉TΣ

.

In Section 7 we will indicate how the results with linear target generalize to this situation.

2.2. From the perspective of derived geometry. We would like to explain what this theory is

about in more conceptual terms, rather than simply by formulas and equations. Thankfully this

theory is amenable to such a description. We will be informal in this section and not specify

a particular geometric context (e.g., derived analytic stacks), except when we specialize to the

deformation-theoretic situation (i.e., perturbative setting) that is our main arena.

Let M denote the moduli space of Riemann surfaces, so that a surface Σ determines a point

in M. Let Maps∂(Σ, V) denote the space of holomorphic maps from Σ to V, and hence a bundle

Maps∂(−, V) over M by varying Σ. For our equations of motion, the γ and c fields of a solution

determine a point in this bundle Maps∂(−, V). The commutative algebra O(Maps∂(Σ, V)) of

functions on the space encodes the observables of the classical theory.

This construction makes sense on noncompact Riemann surfaces as well. Let RS denote the cat-

egory whose objects are Riemann surfaces and whose morphisms are holomorphic embeddings.

There is a natural site structure: a cover is a collection of maps {Si → Σ}i such that the union

of the images is all of Σ. Then Maps∂(−, V) defines a sheaf of spaces over RS . The observables

for the classical theory is, in essence, the cosheaf of commutative algebras O(Maps∂(−, V)), and

hence provides a factorization algebra.

In fact, it is better to work with the derived version of these spaces. One important feature of

derived geometry is that the appropriate version of a tangent space at a point is, in fact, a cochain

complex. In our setting, a point (c, γ) in Maps∂(−, V) determines a complex structure ∂ + c on

Σ—we denote this Riemann surface by Σc—and γ a V-valued holomorphic function on Σc. The

tangent complex of Maps∂(−, V) at (c, γ) is precisely

Ω0,∗(Σc, T1,0)[1]⊕ Ω0,∗(Σc, V).
7



The first summand is the usual answer from the theory of the moduli of surfaces (recall, for

example, that the ordinary tangent space is the sheaf cohomology H1(Σ, TΣ) of the holomorphic

tangent sheaf), and the second is usual elliptic complex encoding holomorphic maps.

Remark 2.3. It is useful to bear in mind that the degree zero cohomology of the tangent complex

will recover the “naive” tangent space. In our case, we have

H1(Σc, TΣc)⊕ H0(Σc, V),

which encodes deformations of complex structure and holomorphic maps. Negative degree co-

homology of the tangent complex detects infinitesimal automorphisms (and automorphisms of

automorphisms, etc) of the space. For instance, here we see H0(Σc, TΣc) appear in degree -1, since

a holomorphic vector field is an infinitesimal automorphism of a complex curve. These negative

directions are called “ghosts” (or ghosts for ghosts, and so on) in physics. The positive degree

cohomology detects infinitesimal relations (and relations of relations, and so on).

Note that the underlying graded spaces of this tangent complex are the c and γ fields from the

BV theory described above. We emphasize that the tangent complex is only specified up to quasi-

isomorphism, but it is compelling that a natural representative is the BV theory produced by the

usual physical arguments. This behavior, however, is typical of the relationship between derived

geometry and BV theories: when physicists write down a classical BV theory, the underlying free

theory is essentially always the tangent complex of a nice derived stack.

The reader has probably noticed that, yet again, we have postponed discussing the β and b

fields. From a derived perspective, the full BV theory describes the shifted cotangent bundle

T∗[−1]Maps∂(−, V). At the level of a tangent complex, the shifted cotangent direction con-

tributes

Ω1,∗(Σc, T1,0∗)[−1]⊕ Ω1,∗(Σc, V∨),

whose underlying graded spaces are the β and b fields. These “antifields” are added so that the

overall space of fields has a 1-shifted symplectic structure when Σ is closed, and a shifted Poisson

structure when Σ is open.

2.3. Relationship to the Polyakov action functional. This holomorphic bosonic string has a nat-

ural relationship with the usual bosonic string. We sketch it briefly, only considering a linear

target.

We begin with a bosonic string theory where the source is a 2-dimensional smooth oriented Rie-

mannian manifold Σ and the target is a Hermitian vector space (V, h). The “naive” action func-

tional is

Snaive
Poly (ϕ, g) =

∫

Σ
h(ϕ, ∆g ϕ) dvolg

where the field g is a Riemannian metric on Σ and the field ϕ is a smooth map from Σ to V. The

notation ∆g denotes the Laplace-Beltrami operator on Σ.

Note that Snaive
Poly is invariant under the diffeomorphism group Diff(Σ) and under rescalings of

the metric (i.e., the theory is classically conformal). Typically we express these Weyl rescalings

as g 7→ e f g with f ∈ C∞(Σ). As we are interested in a string theory, we want to gauge these
8



symmetries. In geometric language, we want to think about the quotient stack obtained by taking

solutions to the equations of motion and quotienting by these symmetry groups.

Our focus is perturbative, so that we want to study the behavior of this action near a fixed solution

to the equations of motion. In other words, we want to work with the Taylor expansion of the

true action near some solution. Hence, we work around a fixed metric g0 on Σ, and we substitute

for the field g, the term g0 + α where α ∈ Γ(Σ, Sym2(TΣ)). That is, we will consider deformations

of g0. As ϕ is linear, we just consider expanding around the zero map. Thus our new fields are

ϕ ∈ C∞(Σ, V) and α ∈ Γ(Σ, Sym2(TΣ)).

There are also ghost fields associated to the symmetries we gauge. First, there are infinitesimal

diffeomorphisms, which are described by vector fields on Σ. We denote this ghost field by X ∈
Γ(Σ, TΣ). It acts on the fields by the transformation

(ϕ, α) 7→ (ϕ + X · ϕ, α + LXα),

where LX denotes the Lie derivative on tensors. Second, there are infinitesimal rescalings of the

metric, such as α 7→ α + f α, with ghost field f ∈ C∞(Σ). The rescaling does not affect ϕ. The two

symmetries are compatible: given f and X, then LX( f α) = X( f )α + f LXα for any α ∈ Sym2(TΣ).

To summarize, we have the following graded vector space of fields:

field/antifield −1 0 1 2

ϕ, ϕ∨ Ω0(Σ)⊗ V Ω2(Σ)⊗ V

α, α∨ Ω0(Σ, Sym2(TΣ)) Ω2(Σ; Sym2(T∗
Σ))

X, X∨ Vect(Σ) Ω2(Σ; T∗
Σ)

f , f∨ C∞(Σ) Ω2(Σ).

The BV action functional is of the form:

SBV
Poly(ϕ, α, X, f ) =

∫

Σ
h(ϕ, ∆g0 ϕ) dvolg0 + ∑

n≥1

1

n!

∫

Σ
h(ϕ, Dn(α)ϕ)dvolg0(4)

+
∫

Σ
h(ϕ, X · ϕ)dvolg0(5)

+ S′(X, f , α)(6)

The right hand side of the first line amounts to expanding out the Laplace-Beltrami operator ∆g0+α

as a function of α. Hence, the Dn are differential operators of the form Dn :
(

Sym2(TΣ)
)⊗n

→
Diff≤2(Σ) where Diff≤2(Σ) are order ≤ 2 differential operators on Σ. Thus, for each section α of

Sym2(TΣ), we get a second-order differential operator Dn(α) acting on functions on Σ. (This term

is the nth term in the Taylor expansion, so its homogeneous of order n: Dn(tα) = tnDn(α) for a

scalar t.) The second line encodes how vector fields act on the maps of the σ-model. The third line

S′(X, f , α) is independent of ϕ and only depends on the fields f , X, α and their antifields (denoted

with checks (−)∨). It is of the form

S′( f , X, α) =
∫

Σ

〈
α∨, LX(g0 + α) + f (g0 + α)

〉
+
∫

Σ

〈
X∨, [X, X]

〉
+
∫

Σ

〈
f∨, X · f

〉
.
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The first term encodes how vector fields and Weyl transformations act on the perturbed metric

g0 + α and the remaining terms are required to ensure the gauge symmetry is consistent (satisfies

the classical master equation).

An explicit formula for Dn(α, . . . , α) is a rather involved exercise (and not needed here). For

instance, if we are working locally on Σ = R2 with the g0 the flat metric, then the operator D1(α)

is sum of a first-order and a second-order differential operator

D1(α) =
1

2

∂

∂xi
(tr(α))

∂

∂xi
+

1

2
tr(α)

∂

∂xi

∂

∂xi
,

or in a more coordinate-free notation,

D1(α) =
1

2
⋆ d (tr(α) ⋆ d) .

Here, we use the natural trace map tr : Sym2TΣ → C∞(Σ) of symmetric 2 × 2 matrices.

There is an important parameter in this action functional: the Hermitian inner product h. We can

consider scaling it h → th, with t ∈ (0, ∞). The “infinite volume limit” as t → ∞ admits a nice

description, provided one rewrites the action functional in a first-order formalism (i.e., adjoins

fields so that only first-order differential operators appear in the action, which is a sort of action

functional analogue of working with phase space).

Lemma 2.4. In this infinite volume limit the bosonic string becomes equivalent to a BV theory whose

action functional has the form

S(β, γ, b, c) + S(β, γ, b, c),

where S(β, γ, b, c) is the action functional for the holomorphic bosonic string in Equation (1) and S is its

anti-holomorphic conjugate.

Remark 2.5. The action functional S is similar to S where the fields γ, β, b, c are replaced by sections

in the the relevant conjugate bundles. For example, β ∈ Ω1,∗(Σ) becomes β ∈ Ω∗,1(Σ). Moreover,

the operator ∂ is replaced by the holomorphic Dolbeault operator ∂. Another way of saying this

is that S is the holomorphic string on Σ, which is the conjugate complex structure to Σ.

Remark 2.6. For physics references that study the holomorphic splitting of the Polyakov action

(and more general conformal field theories), we refer to the original sources [BK86, KLS91].

Outline of proof. There are two things that may cause alarm in the statement of the claim. First, the

space of fields of the Polyakov string (in the BV language) and those of the holomorphic bosonic

string do not match up. Second, the infinite volume limit t → ∞ is naively ill-defined using the

action functional (4). It turns out that these two issues are solved by the same maneuver.

We begin with the first term in the first line of (4). Notice that it is simply the action functional

for the σ-model of maps from (Σ, g0) to (V, h). It is shown in Appendix 21 of [GGW] how to

make sense of the infinite volume limit of this usual σ-model. The idea is to rewrite this theory

in the first order formalism. This amounts to introducing a new field B ∈ Ω1(Σ)⊗ V∨ and action

functional ∫

Σ
〈B, dϕ〉V − 1

2

∫

Σ
h∨(B, ⋆B)

10



where 〈−,−〉V represents the evaluation pairing between V and its dual, ⋆ is the Hodge star oper-

ator for the metric g0, and h∨ denotes the dual metric on V. This action functional is equivalent to

the original σ-model; one can compare the equations of motion. Moreover, since (th)∨ = (1/t)h∨,

the dual (th)∨ goes to 0 in the infinite volume limit t → ∞, and hence kills the second term in the

first order action. The remaining theory splits as the direct sum of the free βγ system with target

V and its anti-holomorphic conjugate. At the level of fields, the original field ϕ corresponds to

γ + γ in the first order description, and B corresponds to β + β.

We now consider the remaining terms in the first line of the action (4). Note that this action only

depends on the conformal class of the metric, i.e., on the metric up to Weyl rescaling. Hence this

feature remains true in the infinite volume limit, which simplifies the situation considerably, as

we now explain.

It is convenient to work in holomorphic coordinates for the complex structure determined by the

background metric g0. With respect to this complex structure, the tensor square of the cotangent

bundle splits as

T∗ ⊗ T∗ = T∗0,1 ⊗ T1,0 ⊕ T∗1,0 ⊗ T0,1 ⊕ T∗1,0 ⊗ T∗0,1 ⊕ T∗0,1 ⊗ T∗1,0.

Sitting inside of this bundle is the symmetric square, where the field α lives. With respect to this

splitting, we write sections as α = c + c + f g0, where f ∈ C∞(Σ). But since the action only

depends on the conformal class of the metric, only the fields c and c are relevant. In the first-order

formalism of the preceding paragraph, we thus find that the remaining terms in the first line of

(4) read ∫

Σ
〈β, [c, γ]〉V +

∫

Σ

〈
β, [c, γ̄]

〉
V

.

This first term is precisely the third term in the holomorphic string action functional (1), which

describes how deformations of complex structure couple to the fields of the σ-model.

In the infinite volume limit, the term S′( f , X, α) recovers the terms
∫

Σ
〈b, ∂c〉T +

∫

Σ
〈b, [c, c]〉T

in the action of the holomorphic string, plus their conjugates. The arguments are similar to those

we have just sketched. �

Remark 2.7. Another approach to arrive at the holomorphic theory we consider comes from con-

sidering supersymmetry. Without gravity, the pure holomorphic σ-model can be viewed as the

holomorphic twist of the N = (2, 0) supersymmetric σ model (in this case the target is required to

be Kähler). Moreover, the βγbc system is the holomorphic twist of the N = (2, 2) model. Conjec-

turally, we expect the holomorphic theory of gravity we consider to be the holomorphic twist of

two-dimensional N = 2 supergravity.

Remark 2.8. In this infinite volume limit, one can put the dependence of the target metric back

into the theory by choosing a certain background to work in. In the BV formalism this amounts

to choosing a certain deformation parameter, which in this instance corresponds to infinitesimal

deformations of the target metric. Note that to deform the metric on the target we leave the

world of “holomorphic field theory” as the deformation involves both z and z dependent terms.
11



It would be interesting to study how to formulate the theory with finite target metric in the BV

formalism.

3. DEFORMATIONS OF THE THEORY AND STRING BACKGROUNDS

Whenever one is studying a theory, it is helpful to understand how it can be modified and how

features of the theory change as one adjusts natural parameters of the theory, such as coupling

constants of the action functional. In other words, one wants to understand the theory in the

moduli space of classical theories.

In the BV formalism, because we are working homologically, this moduli space is derived, and

there is a tangent complex to our theory in the moduli of classical BV theories. We call it the

deformation complex of the theory. A systematic discussion can be found in Chapter 5 of [Cos11].

As a gloss, the underlying graded vector space of this deformation complex consists of the local

functionals on the jets of fields, i.e., Lagrangian densities. (Note that we allow local functionals

of arbitrary cohomological degree.) There is also a shifted Lie bracket {−,−}, which arises from

the pairing
∫

Σ
〈−,−〉 on the fields. It is, in essence, the shifted Poisson bracket corresponding

to that shifted symplectic pairing on the fields. The differential on the local functionals is then

{S,−}, where S is the classical action. All together, the deformation complex forms a shifted dg

Lie algebra. Observe that if we find a degree zero element I such that

0 = {S + I, S + I} = 2{S, I}+ {I, I},

then I is a shifted Maurer-Cartan element and hence determines a new classical BV theory whose

action functional is S + I. In particular, degree 0 cocycles determine first-order deformations of

the classical BV theory. Cocycles in degree -1 encode local symmetries of the classical theory; and

obstructions to satisfying the quantum master equation end up being degree 1 cocycles.

In this section, we will explain why the deformation complex Defstring of the holomorphic string

can be expressed in terms of Gelfand-Fuks cohomology [Fuk86]. Along the way we will see how

the usual backgrounds for the bosonic string (a target metric, dilaton term, and so on) appear as

elements in this complex of local functionals and hence as deformations of the classical action.

Right now, we will focus on the case Σ = C, and in Section 6 we will consider arbitrary Riemann

surfaces. We restrict ourselves to examining translation-invariant local functionals (which will

allow us to descend to a theory defined on an elliptic curve). Unpacking what this means will

lead swiftly to Gelfand-Fuks cohomology.

3.1. Deformations for the classical theory. As a local functional is given by integration of a La-

grangian density, translation invariance requires the density to be the Lebesgue measure d2z, up

to rescaling, and requires the Lagrangian to be specified by its behavior at one point. Hence,

a translation-invariant local functional on C is determined by a function of the jet (i.e., Taylor

expansion) of the fields at the origin in C.

It is particularly easy to understand what we mean in the case of the free bcβγ system. For

instance, the γ fields live in the Dolbeault complex Ω0,∗(C; V), and their jets at the origin are
12



(V[[z, z]][dz], ∂), where ∂ is the formal Dolbeault differential. An example of an element is thus

γ̂ = ∑m,n
1

m!n! gmnzmzn, which is just a formal power series with values in V. An example of a

functional is

F(γ̂) = g10 + g21 = (∂zγ̂) |0 +
(

∂2
z∂zγ̂

)
|0,

which corresponds to the local functional

F(γ) =
∫

C

∂zγ + ∂2
z∂zγ d2z.

We call the first kind of term a chiral interaction, as it only depends on holomorphic derivatives.

By the ∂-Poincaré lemma, this complex (V[[z, z]][dz], ∂) is quasi-isomorphic to V[[z]], concen-

trated in degree zero. This observation is actually quite concrete: it simply says that for a solution

γ to the equation of motion ∂γ = 0, its Taylor expansion is just a power series in z and it is inde-

pendent of z. In consequence, if we consider translation-invariant Lagrangians depending only

on the γ field, then up to quasi-isomorphism these are Sym(V∨[z∨]). In other words, only chiral

interactions yield distinct modifications of the action, when one takes into account the equation

of motion.

Note that we have chosen to work with functionals of the fields that are polynomials built out of

continuous linear functionals V∨[z∨] of the jets. This choice is the standard and natural one for

variational problems. We note as well that constant functionals are irrelevant, so we want to use

Sym>0(V∨[z∨]) to describe translation-invariant local functionals.

An analogous argument applies to the c field. It shows there is a quasi-isomorphism of dg Lie

algebras between the jet at the origin of the Dolbeault complex Ω0,∗(C; T1,0
C

) of holomorphic vec-

tor fields and the Lie algebra of formal vector fields W1 = C[[z]]∂z. The translation-invariant

Lagrangians depending only on the c field are thus quasi-isomorphic to C∗
Lie,red(W1), by which

we mean the (reduced) continuous Lie algebra cohomology, often known as the Gelfand-Fuks co-

homology Similar arguments work for the β and b fields.

If we take all the fields into account together and consider the full equations of motion for the

holomorphic string, which couple the c field to the others, then these arguments yield the follow-

ing.

Lemma 3.1. There is a quasi-isomorphism

Defstring(C, V)C ≃ C∗
Lie,red(W1, Sym(V∨[z∨]⊕ V[z∨ ]dz∨ ⊕Wad

1 [2]))[2]

between the deformation complex of translation-invariant local functionals for the holomorphic string and

a certain Gelfand-Fuks cochain complex.

This lemma already substantially simplifies our lives, as one can invoke the literature on Gelfand-

Fuks cohomology. But before we do, we will take advantage of another symmetry condition to

simplify the situation.
13



3.2. Dilating cotangent fibers. We have already seen how to think of the holomorphic bosonic

string theory as corresponding to the shifted cotangent bundle T
∗[−1]Maps∂(−, V), as a bundle

over the moduli of Riemann surfaces. There is a natural action of the group C× on this space by

scaling the shifted cotangent fibers, and we will use the notation C
×
cot to indicate this appearance

of the multiplicative group.

This group action can be seen on the level of the field theory as follows: we give the γ and c

fields—the base of the cotangent bundle—weight 0 and give the β and b fields—the cotangent

fiber—weight 1. Note that, in consequence, the pairing 〈−,−〉 on fields thus has weight -1. In

these terms, the classical action functional is weight 1. Thus, we focus on weight 1 deformations

of the action for the holomorphic bosonic string, as we are interested in local functionals of the

same kind. That means we consider the subcomplex of weight 1 local functionals inside the

deformation complex.

Remark 3.2. Although this action S has weight 1, its role in the cochain complex of classical ob-

servables is to define the differential {S,−}. Observe that the shifted Poisson bracket {−,−} has

weight -1, because it is determined by the pairing, and so the differential has weight 0.

This subcomplex admits a nice description in terms of the geometry of the target.

Lemma 3.3. There is a GL(V)-equivariant quasi-isomorphism

Defstring(C)C,wt(1) ≃ Sym(V∗)⊗ V[1]

between the weight 1, translation-invariant deformation complex and the polynomial vector fields on V,

placed in degree -1.

Concretely, this result says that there are no weight zero interactions that are not not trivialized

by an automorphism of the theory. This claim is a consequence of the fact that the zeroth coho-

mology group vanishes. On the other hand, this lemma says the theory admits a large group of

symmetries, namely diffeomorphisms of the target, which appears as the degree -1 cohomology.

The GL(V) equivariance takes into account the natural symmetries of the target. It also is the first

step in the approach to studying the deformation complex with general curved target. We will

discuss this further in the section on string backgrounds.

3.3. Interaction terms that appear at one loop. As we will see in Section 4, the quantization of the

holomorphic string only involves local functional of weight zero for this C
×
cot-action. (Concretely,

this restriction appears because the one-loop Feynman diagrams only have external legs for c

and γ fields.) Hence, it behooves us to compute the weight zero subcomplex of the deformation

complex as well.

Lemma 3.4. There is a GL(V)-equivariant quasi-isomorphism

Defstring(C)C,wt(0) ≃ C[−1]⊕ Ω2
cl(V)[1]⊕ Ω1(V)⊕ Ω1

cl(V)[−1]

between the weight 0, translation-invariant deformation complex and natural complexes related to the

geometry of the target.
14



Before explaining the key steps of the proof, we remark that there is another, more structural

way to see that only weight zero local functionals should be relevant. A quick physical argument

would say that we want the path integral measure exp(−S/h̄) to be weight zero, which forces h̄

to have weight one to cancel out with the weight of the classical action. But the one-loop term I1

in the quantized action Sq = S + h̄I1 + · · · must then have weight zero.

There is a BV analogue of this argument. It notes that the differential of the quantum observables

has the form {Sq,−}+ h̄∆, where ∆ denotes the BV Laplacian. (See Section 4.2 for a discussion of

these objects.) As the BV Laplacian has weight -1 because it is determined by the bracket, we must

give h̄ weight 1 to ensure the total differential has weight zero. Again the one-loop interaction is

forced to have weight zero.

3.3.1. Sketch of proof. We have already mentioned that we can identify the full translation-invariant

deformation complex with a certain Gelfand-Fuks cohomology. In terms of this Gelfand-Fuks co-

homology we find that the cotangent weight zero piece is identified with

Defstring(C)C,wt(0) = C∗
Lie,red

(
W1; Sym(V∨[z∨])

)
[2].

We will drop the overall shift by 2 until the end of the proof.

Any symmetric algebra has a natural maximal ideal: for any vector space W,

Sym(W) = C ⊕ Sym≥1(W).

Thus, we can decompose our complexes as

C∗
Lie,red

(
W1; Sym(V∨[z∨])

)
= C∗

Lie,red(W1)⊕ C∗
Lie

(
W1; Sym≥1(V∨[z∨])

)
.

The first summand is the reduced Gelfand-Fuks cohomology of formal vector fields with values

in the trivial module. It is well-known that H3
red(W1) ∼= C[−3], i.e., this cohomology is one-

dimensional and concentrated in degree 3.

We now proceed to computing the second summand. Denote by {Ln = zn+1∂z} the standard

basis for the Lie algebra of formal vector fields W1. Notice that the Euler vector field L0 = z∂z

induces a grading on W1, that we will call conformal dimension. Note that Ln has conformal dimen-

sion n. This grading extends naturally to the Chevalley-Eilenberg complex of W1 with coefficients

in any module.

Let λn ∈ W∨
1 be the dual vector to Ln. (We work with the continuous dual vector space, as in

the setting of Gelfand-Fuks cohomology.) An arbitrary element of V[[z]] is linear combination of

vectors of the form v ⊗ zk. Write ζk for the dual element (zk)∨. Thus an element of (V[[z]])∨ is a

linear combination of the vectors of the form v∨ ⊗ ζk.

Lemma 3.5. Let M be any W1-module. The inclusion of the subcomplex of conformal dimension zero

elements

C∗
Lie(W1; M)wt(0) ≃−→ C∗

Lie(W1; M)

is a quasi-isomorphism.
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Proof. For each p − 1 ≥ 0, define the operator ιL0
: C

p
Lie(W1; M) → C

p−1
Lie (W1; M) by sending a

cochain ϕ to the cochain

(ιL0
ϕ)(X1, . . . , Xp) = ϕ(L0, X1, . . . , Xp).

Let d be the differential for the complex C∗
Lie(W1; M). It is easy to check that the difference dιL0

−
ιL0

d is equal to the projection onto the dimension zero subspace. �

The underlying graded vector space of this conformal dimension zero subcomplex splits as fol-

lows:

(7) C#
Lie(W1)

wt(0) ⊗
(

Sym≥1 (V[[z]])∨
)wt(0)

⊕ C#
Lie(W1)

wt(1) ⊗
(

Sym≥1 (V[[z]])∨
)wt(−1)

In the first component, the purely dimension zero part of the reduced symmetric algebra is simply

Sym≥1(V∨), i.e., power series on V with no constant term. We denote this algebra concisely as

Ored(V), for reduced functions on V. Similarly, in the second component, the dimension one part

of Sym≥1 (V[[z]])∨ is of the form Sym(V∨)⊗ z∨V∨, which is naturally identified with Ω1(V).

The differential in this Gelfand-Fuks complex has the form

0

1 ⊗Ored(V)

ddR

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

1

λ0 ⊗Ored(V) //

ddR

((P
P

P

P

P

P

P

P

P

P

P

P

P

P

2

λ−1 ∧ λ1 ⊗Ored(V)
3

λ−1 ∧ λ1 ∧ λ0 ⊗Ored(V)

λ−1 ⊗ Ω1(V) // λ−1 ∧ λ0 ⊗ Ω1(V)

The top line comes from the first summand in (7) and the bottom line corresponds to the second

summand. The top horizontal map sends λ0 to 2 · λ−1 ∧ λ1, and the bottom horizontal map

sends λ−1 to λ−1 ∧ λ0 (both are the identity on V). The diagonal maps are given by the de Rham

differential ddR : Ored(V) → Ω1(V). This complex is quasi-isomorphic to

1 ⊗Ored(V)

ddR

''❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

λ−1 ∧ λ1 ∧ λ0 ⊗ Ored(V)

λ−1 ⊗ Ω1(V) λ−1 ∧ λ0 ⊗ Ω1(V)

which, in turn, is identified with Ω2
cl(V)[−1] ⊕ Ω1(V)[−2] ⊕ Ω1

cl(V)[−3]. After accounting for

the overall shift by 2, we arrive at the identification of the C
×
cot-weight zero component of the

translation-invariant deformation complex.

3.4. Interpretation as string backgrounds. We now discuss, in light of the calculations above,

how to interpret string backgrounds in our approach. Since V is flat, we will see that the following

deformations will be trivializable. Note that this trivializations will not be equivariant for the

obvious GL(V) action (or for non-flat targets, general diffeomorphisms of the target). Thus, these

deformations are relevant for the case of a curved target, and we can give an interpretation of

them in terms of the usual perspective of string backgrounds.
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We have already mentioned that we should think of the C
×
cot weight 1 local functionals as defor-

mations of the classical theory as a cotangent theory. The cohomological degree zero deforma-

tions of the weight one deformations is H1(V; TV). Given any such element µ ∈ H1(V; TV) we

can consider the following local functional

∫

Σ
〈β, µ(γ)〉V .

The element µ determines a deformation of the complex structure of V, and we have prescribed an

action functional encoding this deformation. We propose that this an appearance of the ordinary

curved background in bosonic string theory from the perspective of the holomorphic model we

work with.

There are interesting deformations that go outside of the world of cotangent theories. Con-

sider the cohomological degree zero part of the weight 0 complex. There is a term of the form

H1(V; Ω2
cl(V)). It is shown in Part 2 Section 8.5 of [GGW] how closed holomorphic two-forms

determine local functionals of the βγ system with curved target. A sketch of this construction

goes as follows. Locally we can write a closed holomorphic 2-form as dθ for some holomorphic

one-form θ ∈ Ω1(V). If γ : Σ → V is a map of the σ-model there is an induced map (when γ

satisfies the equations of motion) γ∗ : Ω1(V) → Ω1(Σ). We can then integrate γ∗θ along any

closed cycle C in Σ and one should think of this as a residue along C. In [GGW] we write down

a local functional that realizes this residue, and one can show that it only depends on the corre-

sponding class in H1(V; Ω2
cl(V)). We posit that this is the appearance of the B-field deformation

of the ordinary bosonic string.

In future work we aim to study how our description of holomorphic string backgrounds com-

pares to the approaches of string backgrounds in the physics literature. See for instance [CFMP85]

for an overview.

4. QUANTIZING THE HOLOMORPHIC BOSONIC STRING ON A DISK

For us, quantization will mean that we use perturbative constructions in the setting of the BV

formalism. Concretely, this means that we enforces the gauge symmetries using the homological

algebra of the BV formalism and that we use Feynman diagrams and renormalization to obtain

an approximation for the desired, putative path integral. There are toy models for this approach

where one can see very clearly how it gives asymptotic expansions for finite-dimensional integrals

[GJF]. In particular, these toy models show that this approach need not recover the true integral

but does know important information about it; a similar relationship should hold between this

quantization method and the putative path integral, but in this case there is no a priori definition

of the true integral in most cases.

This notion of quantization applies to any field theory arising from an action functional, and the

algorithm one applies to obtain a quantization is the following:

(1) Write down the integrals labeled by Feynman diagrams arising from action functional.
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β γ b c

FIGURE 1. The βγ and bc propagators

(2) Identify the divergences that appear in these integrals and add “counterterms” to the

original action that are designed to cancel divergences.

(3) Repeat these steps until no more divergences appear in Feynman diagrams. We call this

the “renormalized action.”

(4) Check if the renormalized action satisfies the quantum master equation. If it does, you

have a well-posed BV quantum theory, and we call the result a quantized action. If not,

guess a way to adjust the renormalized action and begin the whole process again.

It should be clear that along the way, one makes many choices; hence if a quantization exists, it

may not be unique. It is also possible that a BV quantization may not exist.

In this section we will apply the algorithm in the case of Σ = C. For this theory we are lucky,

however: at one-loop the integrals that appear in our quantization from the Feynman diagrams

do not have divergences, so that renormalized action is easy to compute. This aspect is the subject

of the first part of this section. (In Section 6 we will provide an argument based on deformation

theory as to why quantizations exist on arbitrary Riemann surfaces.) Moreover, it is easy to check

whether the quantum master equation is satisfied, and the answer is simple. This aspect is the

subject of the second part. The results can be summarized as follows.

Proposition 4.1. The holomorphic bosonic string with source C and target Cd admits a BV quantization

if d = 13. This quantized action only has terms of order h̄0 and h̄ (i.e., it quantizes at one loop).

4.1. The Feynman diagrams. Let us describe the combinatorics of the Feynman diagrams that

appear here before we describe the associated integrals.

4.1.1. The procedure constructs graphs out of a prescribed type of vertices and edges; we must

consider all graphs with such local structure. The classical action functional determines the al-

lowed kinds of vertices and edges. The quadratic terms of the action tell us the edges; each

quadratic term yields an edge whose boundary is labeled by the two fields appearing in the term.

For us there are thus two types of edges: an edge that flows from β to γ, and an edge that flows

from b to c displayed in Figure 1.

The nonquadratic terms tell us the vertices: each n-ary term yields a vertex with n legs, and the

legs are labeled by the n types of fields appearing in the term. For us there are thus two types of

trivalent vertices: a vertex with two c legs and a b leg, and a vertex with a c leg, a γ leg, and a β

leg. It helpful to picture these legs as directed, so that c and γ legs flow into a vertex and b and β

legs flow out. These vertices are displayed in Figure 2.

The kinds of graphs one can build with such vertices and edges are limited. We focus on con-

nected graphs, since an arbitrary graph is just a union of connected components.
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FIGURE 2. The trivalent vertices for
∫
〈β, [c, γ]〉 and

∫
〈b, [c, c]〉

c

c
P
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γ

P

β

FIGURE 3. An example of a tree with four inputs and one output

c

c

c

c

FIGURE 4. An example of a wheel with four inputs

A tree (i.e., a connected graph with no loops) must have at most one outgoing leg, which must be

either a b or a β; the other legs are incoming, so each must be labeled by a c or a γ. An example of

such a tree is given in Figure 3.

Note that there are two types of trees. If there is a γ leg, then there is a β leg, and there is a chain

of γβ edges connecting them; all other external legs are of c type. If there is a b leg, then the only

other legs are c type.

A one-loop graph will consist of a wheel (i.e., a sequence of edges that form an overall loop) with

trees attached. The outer legs are all of c type. Every edge along a wheel will have the same type.

It is not possible to build a connected graph with more than one loop. This combinatorics is the

essential reason that we can quantize at one loop. For an example of such a wheel see Figure 4.

We write Graphstring for the collection of connected graphs just described, namely the directed

trees and 1-loop graphs allowed by the string action functional. Let Graph
(0)
string denote the 0-loop

graphs (i.e., trees) and let Graph
(1)
string denote the 1-loop graphs (i.e., wheels with trees attached).
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4.1.2. These graphs describe linear maps associated to the field. More precisely, a graph with k

legs describes a linear functional on the k-fold tensor product of the space of fields. One builds

this linear functional out of the data of the action functional.

As an example, a k-valent vertex corresponds to a k-ary term in the action, which manifestly takes

in k copies of the fields and outputs a number. Thus, the vertex labels an element of a (continuous)

linear dual of the k-fold tensor product of fields. In fact, one restricts to compactly-supported fields,

since the action functional is rarely well-defined on all fields when the source manifold is non-

compact. (Note this domain of compactly-supported fields is all one needs for making variational

arguments or for constructing a BV quantization.)

An edge corresponds an element P of the 2-fold tensor product of the space of fields, often called

a propagator. More precisely, the edge should correspond to the Green’s function for the linear dif-

ferential operator appearing in the associated quadratic term of the action; hence the propagator

is an element of the distributional completion of the 2-fold tensor product. For us the βγ leg should

be labeled by ∂
−1 ⊗ idV , where ∂

−1
denotes an inverse to the Dolbeault operator on functions.

The bc leg should be labeled by ∂
−1
T , the inverse of the Dolbeault operator on the bundle T1,0.

Given a graph Γ, one should contract the tensors associated to the vertices and edges. We denote

the linear functional for this graph by wΓ(P, I), where w stands for “weight,” the term P indicates

we label edges by the propagator P, and the term I indicates we label vertices by the “interaction”

term of the action S (i.e., the terms that are cubic and higher).

This contraction is not always well-posed, unfortunately. Each vertex labels a distributional sec-

tion of some vector bundle on Σ, and each edge labels a distributional section of a vector bundle

on Σ2. Thus the desired contraction can be written formally as an integral over the product mani-

fold Σv, where v denotes the number of vertices. In most situations this contraction is ill-defined,

since one cannot (usually) pair distributions. Concretely, one sees that the integral expression is

divergent.

Thus, to avoid these divergences, one labels the edges by a smooth replacement of the Green’s

functions. (Imagine replacing a delta function δ0 by a bump function.) Since one can pair smooth

functions and distributions, each graph yields a linear functional on fields using these mollified

edges. Thus we have regularized the divergent expression.

But now this linear functional depends on the choice of mollifications. Hence the challenge is to

show that if one picks a sequence of smooth replacements that approaches the Green’s function,

there is a well-defined limit of the linear functionals.

4.1.3. We will now sketch one method well-suited to complex geometry that allows us to see

that no divergences appear for the holomorphic bosonic string. Our approach is an example

of the renormalization method developed by Costello in [Cos11], which applies to many more

situations.
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c

FIGURE 5. The tadpole diagram Γtad

Our primary setting in this section is Σ = C. For this Riemann surface, a standard choice of

Green’s function for the ∂ that acts on functions is

P(z, w) =
1

2πi

dz + dw

z − w
.

It is a distributional one-form on C2 that satisfies ∂ ⊗ 1(P) = δ∆, where δ∆ is the delta-current

supported along the diagonal ∆ : C →֒ C
2 and providing the integral kernel for the identity. In

terms of our discussion above, we view this one-form as a distributional section of the fields γ

and β: for example, for fixed w, the one-form dz/(z − w) is a β field in the z-variable as it is

a (1, 0)-form. (This propagator is for the βγ fields—and one must tensor with a kernel for the

identity on V—but a similar formula provides a propagator for the bc fields.)

4.1.4. We will now describe the integral associated to a simple diagram. For simplicity, we as-

sume V = C so that the γ and β fields are simply functions and 1-forms on C, respectively.

Consider a “tadpole” diagram, Figure 5, Γtad whose outer legs are c fields (i.e., vector fields on C).

There is only one vertex here, corresponding to the cubic function on fields

wΓtad
(P, Istring) =

∫

z∈C

β ∧ cγ.

If the field c is of the form f (z)dz∂z, with f compactly supported, then our integral is
∫

z∈C

β ∧ f (z)(∂zγ)dz.

(Note that a general cubic function could be described as an integral over C3, but our function is

supported on the small diagonal C →֒ C
3.) The linear functional for this tapole diagram should

be given by inserting the propagator P in place of the β and γ fields. Hence it ought to be given

by the following integral over C:
∫

z∈C

c(z)P(z, w)|z=w =
∫

z∈C

f (z)∂z

(
1

2πi

dz + dw

z − w

)
|z=w dz.

This putative integral is manifestly ill-defined, since the distribution is singular along the diago-

nal.

4.1.5. We smooth out the propagator P using familiar tools from differential geometry. Fix a

Hermitian metric on Σ, which then associates provides an adjoint ∂
∗

to the Dolbeault operator ∂.

For the usual metric on C, we have

∂
∗
= −2

∂

∂(dz)

∂

∂z
.

In physics one calls a choice of the operator ∂
∗

a gauge-fix. The commutator [∂, ∂
∗
], which we will

denote D, is equal to 1
2 ∆, where ∆ is the Laplace-Beltrami operator for this metric. In the physics

literature, explicit gauge fixes for the bosonic string can be found in [Boc87].
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We introduce a smoothed version of the propagator using the heat kernel e−tD, which is a notation

that denotes a solution to the heat equation ∂t f (t, z) + D f (t, z) = 0. For C with the Euclidean

metric, the standard heat kernel is

e−tD(z, w) =
1

4πt
e−|z−w|2/4t(dz − dw) ∧ (dz − dw).

For 0 < ℓ < L < ∞, we define

PL
ℓ
= ∂

∗
∫ L

ℓ

e−tDdt.

We compute

∂PL
ℓ
= D

∫ L

ℓ

e−tDdt =
∫ L

ℓ

d

dt
e−tDdt = e−LD − e−ℓD.

In the limit as ℓ → 0 and L → ∞, the operator PL
ℓ

goes to a propagator (or Green’s function) P

for ∂. To see this, consider an eigenfunction f of D where D f = λ f where λ is a non-negative real

number. Then

(∂PL
ℓ
) f = (e−Lλ − e−ℓλ) f ,

which goes to f as L → ∞ and ℓ → 0. Thus, if one works with the correct space of functions, PL
ℓ

is almost an inverse to ∂; moreover, it is a smooth function on Σ × Σ.

4.1.6. We now return to the tadpole diagram and put PL
ℓ

on the edge instead of P. (We again

assume V = C for simplicity.) The propagator is

PL
ℓ
(z, w) =

∫ L

ℓ

dt
∂

∂(dz)

∂

∂z

(
1

4πt
e−|z−w|2/4t(dz − dw) ∧ (dz − dw)

)
(8)

=
∫ L

ℓ

dt
1

4πt

z − w

2t
e−|z−w|2/4t(dz − dw).(9)

Note that it is smooth everywhere on C2. The integral for the tadpole diagram is

wΓtad
(PL

ℓ
, Istring) =

∫

z∈C

c(z)PL
ℓ
(z, w)|z=w

=
∫

z∈C

∫ L

ℓ

dt f (z)∂z

(
1

4πt

z − w

2t
e−|z−w|2/4t(dz − dw)

)
|z=w dz

=
∫

z∈C

∫ L

ℓ

dt f (z)

(
1

4πt

(
z − w

2t

)2

e−|z−w|2/4t(dz − dw)

)
|z=w dz

= 0,

since the integrand vanishes along the diagonal. Note that this integral is independent of ℓ and L

and hence the limit is zero.

4.1.7. By explicitly analyzing the ℓ → 0 limit for the integral associated to every Feynman dia-

gram, we find the following result.

Proposition 4.2. For any graph Γ ∈ Graphstring allowed by the combinatorics of the string action

functional and for any L > 0, there is a well-defined limit limℓ→0 wΓ(PL
ℓ

, Istring).

We denote this limit by wΓ(PL
0 , Istring). The necessary manipulations and inequalities referenced

below are very close to those used in [Cos, GGW].
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Outline of proof. When Γ is a tree, there is never an issue with divergences; we could even use

the Green’s function ∂
−1

on each edge. To see this, note that one can view a tree as having a

distinguished root, given by the leg that is either of β or b type. One can then see the tree as

describing a multilinear map from the leaves (i.e., legs that are not roots) to the root. Indeed,

one can view each cubic vertex as such an operator. For instance, 〈b, [c, c]〉 corresponds to the Lie

bracket of vector fields, since we view 〈b,−〉 as an element of the c fields. For a tree, one can then

input arbitrary elements into the leaves, apply the operations labeled by the vertices, apply the

operator labeled by the edge, and so on, until one reaches the root. The composite multilinear

operator sends smooth sections to smooth sections, even if the edges are labeled by distributional

sections, since the associated operator sends smooth sections to smooth sections.

When Γ is a one-loop graph, it consists of a wheel with trees attached to the outer legs. By the

preceding argument, we know those trees do not introduce singularities; hence any divergences

are due solely to the wheel. It thus suffices to consider pure wheels (i.e., those with no trees

attached).

Let the wheel have n vertices. The kth vertex has a coordinate zk on C; the kth external leg has

input ck = fk(zk, zk)dzk ∂zk
, where fk is a compactly-supported smooth function. Then the integral

has the form
∫

(z1,...,zn)∈Cn
dnz ( f1∂z1 PL

ℓ
(z1, zn))( f2∂z2 PL

ℓ
(z2, z1)) · · · ( fn∂zn PL

ℓ
(zn, zn−1)),

since the kth input will act on one of the propagators entering the kth vertex. One needs to show

that this expression has a finite ℓ → 0 limit.

Let us prove this limit exists for the case n = 2. Then we have
∫

z1,z2∈C

dz1dz2

∫ L

ℓ

dt1

∫ L

ℓ

dt2 f1(z1) f2(z2)∂z1

(
1

4πt1

z1 − z2

2t1
e−|z1−z2|2/4t1(dz1 − dz2)

)

× ∂z2

(
1

4πt2

z1 − z2

2t2
e−|z1−z2|2/4t2(dz2 − dz1)

)
,

which is already a bit lengthy. As our focus is on showing a limit exists, we will throw out

unimportant factors and simplify the expression. First, note that taking the partial derivative

∂zi
will simply multiply the integrand by (z1 − z2)/2ti. Moreover, we change coordinates to

u = z1 − z2 and v = z2. Then the integral is proportional to

∫ L

ℓ

dt1

∫ L

ℓ

dt2

∫

C2
d2u d2v f1 f2

u4

t3
1t3

2

e
−|u|2( 1

t1
+

1
t2
)
.

We take the integral over v last; it will be manifestly well-behaved after we take the other inte-

grals.

Thus consider the integral just over u ∈ C, so that we are computing the expected value of

F = f1 f2 against a Gaussian measure whose variance is determined by t1 and t2. (Namely, the

variance is t1t2/(t1 + t2).) We might as well focus on values of ti that are very small, as those

would be the source of divergences when ℓ → 0. For small ti, we only care about the behavior

of F near the origin as the measure is concentrated near the origin. Thus, consider a partial

Taylor expansion of F. The polynomial part can be computed quickly since the expected values
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of monomials against a Gaussian measure (i.e., the moments) have a simply expression in terms of

the variance. The first nonzero contribution would come from the u4 term in the Taylor expansion

of F, and it contributes a factor of the form (t1t2/(t1 + t2))
5, up to constant that we ignore. We

are left with
∫ L

ℓ

dt1

∫ L

ℓ

dt2
(t1t2)

3

(t1 + t2)5
≤
∫ L

ℓ

dt1

∫ L

ℓ

dt2 2−5
√

t1t2 = 2−5(L3/2 − ℓ
3/2)2,

where we use the arithmetic-geometric mean inequality
√

t1t2/(t1 + t2) ≤ 1/2 in the middle.

This expression has a finite limit as ℓ → 0. The higher terms in the Taylor expansion contribute

bigger powers of the variance and hence have ℓ → 0 limits. Finally, the expected value of the

error term of our partial Taylor expansion, which vanishes to some positive order at the origin,

can be bounded in such as way that an ℓ → 0 limit exists. �

We can now define the effective theory that we consider for the string.

Definition 4.3. The renormalized action functional at scale L for the holomorphic bosonic string is

I[L] = ∑
Γ∈Graph

(0)
string

wΓ(PL
0 , Istring) + h̄ ∑

Γ∈Graph
(1)
string

wΓ(PL
0 , Istring).

We denote the first summand—the tree-level expansion—by S0[L] and the second summand—the

one-loop expansion—by S1[L]. We use the notation S[L] = S f ree + I[L] where S f ree is the classical

free part of the action functional.

Remark 4.4. For any functional J, let w(PL
ℓ

, J) denote the sum over all graphs as above with the

smooth propagator PL
ℓ

placed at the edges and J placed at the vertices. Then, the family {I[L]}
satisfies the homotopy RG equation

I[L] = w(PL
ℓ

, I[ℓ]).

The operator w(PL
ℓ

,−) defines a homotopy equivalence between the theory at scale ℓ, defined

using S[ℓ], and the theory at scale S, defined using S[L].

4.2. The quantum master equation. In the BV formalism the basic idea is to replace integration

against a path integral measure e−S(φ)/h̄Dφ with a cochain complex. In this cochain complex,

we view a cocycle as defining an observable of the theory, and its cohomology class is viewed

as its expected value against the path integral measure. For toy models of finite-dimensional

integration, see [GJF]; these examples are always cryptomorphically equivalent to a de Rham

complex, which is a familiar homological approach to integration.

Hence the content of the path integral, in this approach, is encoded in the differential. A key idea

is that the differential is supposed to behave like a divergence operator for a volume form: recall

that given a volume form µ on a manifold, its divergence operator maps vector fields to functions

by the relationship

divµ(X )µ = LX µ.

This relationship, in conjunction with Stokes lemma, implies that if a function f is a divergence

divµ(X ), then
∫

f µ = 0, i.e., its expected value against the measure µ is zero. The BV formalism
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axiomatizes general properties of divergence operators; a putative differential must satisfy these

properties to provide a BV quantization.

When following the algorithm of Section 1.1, we want the renormalized action

S = Scl + h̄S1 + h̄2S2 + · · ·

to determine a putative differential d
q
S on the graded vector space of observables. To explain

this operator, we need to describe further algebraic properties on the observables that the BV

formalism uses.

First, in practice, the observables are the symmetric algebra generated by the continuous linear

duals to the vector spaces of fields. There is also a pairing on fields that is part of the data of

the classical BV theory, between each field and its “anti-field.” (This pairing is a version of the

action of constant vector fields on functions in the toy models.) In our case, there is the pairing

between b and c and between β and γ, respectively. It behaves like a “shifted symplectic” pairing

as it has cohomological degree −1, and hence it determines a degree 1 Poisson bracket {−,−} on

the graded algebra of observables. Finally, the pairing also determines a second-order differential

operator ∆BV on the algebra of observables by the condition that

∆BV(FG) = (∆BV F)G + (−1)FF(∆BV G) + {F, G}.

(This equation is a characteristic feature of divergence operators with respect to the product of

polyvector fields.)

With these structures in hand, we can give the formula

d
q
S = {S,−}+ h̄∆BV

for the putative differential. As S has cohomological degree 0, the operator {S,−} has degree 1.

We remark that modulo h̄, one recovers the differential {Scl,−} on the classical observables; the

zeroth cohomology of the classical observables is functions on the critical locus of the classical

action Scl.

By construction, this putative differential d
q
S satisfies the conditions of behaving like a divergence

operator. The only remaining condition to check is that it is square-zero. This condition ends up

being equivalent to S satisfying the quantum master equation

(10) h̄∆BVS +
1

2
{S, S} = 0.

More accurately, d
q
S is a differential if and only if the right hand side is a constant.

4.2.1. We now turn to examining this condition in our setting. It helps to understand it is dia-

grammatic terms.

As the bracket is determined by a linear pairing, it admits a simple diagrammatic description as

an edge. For instance, given an observable F that is a homogeneous polynomial of arity m and

an observable G of arity n, then {F, G} has arity m + n − 2. It can be expressed as a Feynman

diagram where the edge connecting F and G is labeled by a 2-fold tensor K.
25



The BV Laplacian acts by attaching an edge labeled by K as a loop in all possible ways. This

diagrammatic behavior corresponds to the fact that ∆BV is a constant-coefficient second-order

differential operator.

The tensor K determined by the pairing on fields is distributional. As one might expect from

our discussion of divergences above, these diagrammatic descriptions of the BV bracket and

Laplacian are thus typically ill-defined. In other words, the quantum master equation is a pri-

ori ill-posed for the same reason that the initial Feynman diagrams are ill-defined. We can apply,

however, the same cure of mollification.

4.2.2. Costello’s framework [Cos11] provides an approach to renormalization built to be com-

patible with the BV formalism. A key feature is that for each “length scale” L > 0, there is a BV

bracket {−,−}L and BV Laplacian ∆L. The scale L renormalized action S[L] satisfies the scale L

quantum master equation (QME)

h̄∆LS[L] +
1

2
{S[L], S[L]}L = 0

if and only if S[L′] satisfies the scale L′ quantum master equation for every other scale L′, see

Lemma 9.2.2 in [Cos11]. Hence, we say a renormalized action satisfies the quantum master equa-

tion if its solves the scale L equation for some L.

Thus it remains for us to describe the scale L bracket and BV Laplacian in our setting, so that we

can examine whether the renormalized action satisfies the quantum master equation.

Definition 4.5. The scale L bracket {−,−}L is given by pairing with the scale L heat kernel

KL(z, w) =
1

4πL
e−|z−w|/4L(dz − dw) ∧ (dz − dw).

The scale L BV Laplacian ∆L is given by the contraction ∂KL
.

These definitions mean that testing the quantum master equation leads to diagrams whose inte-

grals are similar to those we encountered earlier. We explain the diagrammatics and sketch the

relevant integrals in the proof of the following result, which characterizes when the string action

admits a BV quantization.

We emphasize that up to now, we have not indicated explicitly which vector space V is the target

space for our string. But the action functional explicitly depends on this choice, so here we will

write SV for the action with target V.

Proposition 4.6. The obstruction to satisfying the quantum master equation is the functional

ObV [L] = h̄∆LSV [L] +
1

2
{SV [L], SV [L]}L.

It has the form

ObV [L] = h̄(dimC(V)− 13)F[L],

where F[L] is a functional independent of V.
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In short, the failure to satisfy the QME is a linear function of the dimension of the target space V.

In particular, when V ∼= C
13, the obstruction vanishes and the renormalized action does satisfy

the QME, giving us an immediate corollary. (Note that we do not need to know F[L] to recognize

that the obstruction vanishes!)

Corollary 4.7. When the target vector space is 13-dimensional (i.e., has 26 real dimensions), the holomor-

phic bosonic string admits a BV quantization.

Proof. It is a general feature of Costello’s formalism that the tree-level term S0[L] of the renormal-

ized action satisfies the scale L equation

{S0[L], S0[L]}L = 0,

known as the classical master equation. Hence the first obstruction to satisfying the QME can

only appear with positive powers of h̄. We can also see quickly that no terms of h̄2 appear: the

one-loop term S1[L] is only a function of the c field, so

{S1[L], S1[L]}L = 0 and ∆LS1[L] = 0.

Hence the obstruction to satisfying the QME is precisely

h̄ ({S0[L], S1[L]}+ ∆LS0[L]) .

Thus we see that the obstruction is a multiple of h̄. For simplicity, we will divide out that factor

and let ObV denote the term inside the parenthesis.

Consider the term {S0[L], S1[L]}L. Diagrammatically, it corresponds to attaching a tree with a b

“root” to a wheel using an edge labeled by KL. Arguments similar to Lemma 16.0.3 of [Cos] carry

over to account for the vanishing of this term in the L → 0 limit.

Now consider the term ∆LS0[L]. Diagrammatically, it corresponds to turning a tree into a wheel

by using an edge—labeled by KL—to attach the root to an incoming leaf. There are thus two

kinds of wheels that appear, since there are two kinds of trees. There are the wheels where the K

edge is for bc fields. Note that these wheels are the same for every choice of target V as they only

depend on the bc fields, i.e., are independent of the βγ fields. These will contribute a term F[L] to

the obstruction. On the other hand, there are the wheels where the K edge is for βγ fields. These

depend on V but in a very simple way: the distribution K is just the heat kernel tensored with

the identity on V, and hence the contraction amounts to taking dimC(V) copies of the V = C

value. In other words, the βγ wheels contribute a term dimC(V)G[L] to the obstruction, where

G[L] is the value for V = C. The last part of the proof of the theorem is a direct calculation of

the functionals F[L] and G[L]. So as to not diverge from our track of thought we include this

calculation in Appendix A where we show that F[L], G[L] are both independent of L and satisfy

F = −13G, thus completing the proof. �

Remark 4.8. One can consider coupling the βγ system to any tensor bundle on the Riemann sur-

face. For instance, suppose γ is a section of T⊗n
Σ and hence β is a section of T∗⊗n+1

Σ . In this case,

one can show that the part of the obstruction with internal edges labeled by the βγ propagators

contributes a factor (6n2 + 6n + 1)G, with G the same functional above.
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5. OPE AND THE STRING VERTEX ALGEBRA

Vertex algebras are mathematical objects that axiomatize the behavior of local observables (i.e.,

point-like observables) of a chiral conformal field theory (CFT), such as the bcβγ system or the

holomorphic bosonic string. In particular, the operator product expansion (OPE) for these local

observables—which is of paramount importance in understanding a chiral CFT—is encoded by

the vertex operator of the vertex algebra of the CFT. (We will not review vertex algebras here as

there are many nice expositions [FHL93, FBZ01].)

In this section we will explain how to extract the vertex algebra of the holomorphic bosonic string,

using machinery developed in [CG17, Li, GGW]. The answer we recover is precisely the chiral

sector of the usual bosonic string.

5.1. Some context. In the BV formalism one constructs a cochain complex of observables, for both

the classical and the quantized theory, if it exists. The cochain complexes are local on the source

manifold of a theory: on each open set U in that manifold Σ, one can pick out the observables

with support in U by asking for the observables that vanish on fields with support outside U.

Furthermore, you can combine observables that have support on disjoint open sets. It is the

central result of [CG17, CG] that the observables also satisfy a local-to-global property, akin to the

sheaf gluing axiom. Such a structure is known as a factorization algebra on Σ.

We will not need that general notion here. Instead, we will use vertex algebras. Theorem 5.2.3.1

of [CG17] explains how a factorization algebra F on Σ = C yields a vertex algebra Vert(F), under

natural hypotheses on F. It assures us that the observables of a chiral CFT determine a vertex

algebra.

In particular, Section 5.3 of [CG17] examines the free βγ system in great detail. Its main result is

that the well-known βγ vertex algebra Vβγ is recovered by the two-step process of BV quantiza-

tion, which yields a factorization algebra, and then the extraction of a vertex algebra. The exact

same arguments apply to the free bc system, recovering the vertex algebra Vbc; and of course, the

exact same arguments apply to the free bcβγ system.

Let V denote the vector space appearing in the βγ contribution of the holomorphic bosonic string

theory, as introduced in Section 2. Let Obs
q
f ree denote the observables of this theory on Σ = C.

As a quantization of a free field theory, it is a factorization algebra valued in the category of

C[h̄]-modules. In particular, the associated vertex algebra Vert(Obs
q
f ree) is also valued in C[h̄]-

modules. Putting the claims together, we have the following.

Proposition 5.1. For n = dimC(V), there is an isomorphism of vertex algebras

Vert(Obs
q
f ree)h̄=2πi

∼= Vbc ⊗V⊗n
βγ

where on the left-hand side we have set h̄ = 2πi.

5.2. A reminder on the chiral algebra of the string. We now provide a brief review of the vertex

algebra for the chiral sector of the bosonic string. For a detailed reference we refer the reader to

[LZ93, LZ96]. The construction builds a differential graded vertex algebra, which is simply a vertex
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algebra in the category of cochain complexes. The underlying graded vertex algebra has a state

space of the form

V⊗13
βγ ⊗ Vbc,

where Vβγ and Vbc are the βγ and bc vertex algebras, respectively. The β and γ generators are in

grading degree zero, the c generator is in grading degree −1, and the b is in grading degree 1. In

the physics literature it is referred to as the BRST grading or ghost number.

Forgetting the cohomological (or BRST) grading, this vertex algebra is a conformal vertex algebra

of central charge zero (by construction). In particular, this means that the vertex algebra has a

stress-energy tensor. Explicitly, it is of the form

Tstring(z) =

(
13

∑
i=1

βi(z)∂zγi(z) + ∂zβi(z)γi(z)

)
+ (b(z)∂zc(z) + 2∂zb(z)c(z)) .

Note that Tstring is of cohomological degree zero. The first parenthesis is interpreted as the stress-

energy tensor of the vertex algebra V⊗13
βγ and the second term is the stress-energy tensor of Vbc.

We have not yet described the differential on the graded vertex algebra. The BRST differential is

defined to be the vertex algebra derivation obtained by taking the following residue

(11) QBRST =
∮

c(z)Tstring(z).

By construction this operator satisfies (QBRST)2 = 0.

Definition 5.2. The string vertex algebra is the dg vertex algebra

Vstring =
(
V⊗13

βγ ⊗Vbc, QBRST
)

.

There is another grading on Vstring coming from the eigenvalues of the vertex algebra derivation

c0 called the conformal dimension. In particular, this determines a filtration and we can consider the

associated graded Gr Vstring. The conformal weight grading preserves the cohomological grading

so that this object still has the structure of a dg vertex algebra.

Note that the cohomology of a dg vertex algebra is an ordinary (graded) vertex algebra. The

cohomology of the string vertex algebra is called the BRST cohomology of the bosonic string. In

the remainder of this section we will show how we recover the string vertex algebra from the

quantization of the holomorphic bosonic string.

5.3. The case of the string. The holomorphic bosonic string is a chiral CFT and so the machinery

of [CG17] applies to it. One can extract a vertex algebra directly by this method, as one does with

the free bcβγ theory.

But there is a slicker approach, using Li’s work [Li], which studies chiral deformations of free

chiral BV theories such as the free bcβγ system. Recall that a deformation of a classical field

theory is given by a local functional. We have seen that this is essentially the data of a Lagrangian

density, which is a density valued multilinear functional that depends on (arbitrarily high order)

jets of the fields. In other words, for a field ϕ, a Lagrangian density is of the form

L(ϕ) = ∑(Dk1
ϕ) · · · (Dkm

ϕ) · volΣ

29



for C∞(Σ)-valued differential operators Dki
. By a chiral Lagrangian density we mean a Lagrangian

for which the differential operators Dki
are all holomorphic. For instance, on Σ = C, we require

Dki
to be a sum of operators of the form f (z)∂n

z where f (z) is a holomorphic function. On Σ = C

we will also require the chiral Lagrangian to be translation invariant. This means that all differ-

ential operators Dki
are of the form ∂n

z . Thus, a translation-invariant chiral deformation is a local

functional of the form

I(ϕ) = ∑
∫
(∂k1

z ϕ) · · · (∂km ϕ)d2z.

Such a deformation stays within the class of chiral CFTs.

One of Li’s main results is that for a free chiral BV theory with action Sfree and associated vertex

algebra Vfree, one has the following:

• For any chiral interaction I, the action S = Sfree + I yields a renormalized action functional

I[L] = limℓ→0 W(PL
ℓ

, I) that requires no counterterms. That is, the weights of all Feynman

diagrams are finite (compare to Proposition 4.2),

• If the renormalized action {I[L]} satisfies the quantum master equation, then it deter-

mines a vertex algebra derivation DI of Vfree of the form

DI =
∮

Iq dz

that is square-zero and of cohomological degree one. Here, Iq = limL→0 I[L], where I[L]

is the renormalized action functional. Modulo h̄, it agrees with the chiral interaction I, but

it has h̄-dependent terms that provide the “quantum corrections” to the classical action.

• The dg vertex algebra VI for such an action {I[L]} has the same underlying graded vertex

algebra Vfree but it is equipped with the differential
∮

Iqdz.

This construction significantly reduces the work of constructing the vertex algebra for the chiral

deformation, as one need not analyze the factorization algebra directly.

Remark 5.3. The fact that I satisfies the quantum master equation implies that one has a map,

for each open set U ⊂ C, from the free factorization algebra evaluated on U to the factorization

algebra of the deformed theory evaluated on U:

eI/h̄ : Obs
q
f ree(U) → Obs

q
I (U).

This map sends an observable O ∈ Obs
q
f ree(U) to O · eI/h̄. In fact, this map is an isomorphism

with inverse given by O 7→ O · e−I/h̄. So, open by open, the factorization algebra assigns the same

vector space for the deformed theory. This isomorphism is not compatible with the factorization

product, so we do get a different factorization algebra in the presence of a deformation.

The holomorphic bosonic string with target V = C13 provides a concrete example of this situation.

The free theory is the bcβγ system, the holomorphic bosonic string is a chiral deformation of it,

and we have seen that the renormalized action of the string satisfies the QME. Hence we obtain

the following.
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Proposition 5.4. Let Obs
q
string be the factorization algebra on Σ = C of the holomorphic bosonic string

with target V = C13. Let Vert(Obs
q
string) be the dg vertex algebra (defined over C[h̄]) obtained via Li’s

construction. There is an isomorphism

Vstring
∼= Vert(Obs

q
string)

∣∣
h̄=2πi

of dg vertex algebras. Moreover, this vertex algebra is isomorphic to the chiral sector of the bosonic string

as in Section 5.2.

The factorization algebra Obs
q
string is also a quantization of the factorization algebra Obscl

string of

classical observables. We have noted that the classical observables of any theory has the structure

of a P0 factorization algebra, and the h̄ → 0 limit of Obs
q
string is isomorphic to Obscl

string as P0 fac-

torization algebras. By definition, the classical observables are simply functions on the solutions

to the classical equations of motion. The P0 structure is induced from the symplectic pairing of

degree -1 on the fields. The classical factorization algebra still has enough structure to determine

a vertex algebra Vert(Obscl
string). Moreover, the P0 bracket on the classical observables determines

the structure of a Poisson vertex algebra on Vert(Obscl
string).

Corollary 5.5. In the classical limit, there is an isomorphism

Vert(Obscl
string)

∼= Gr Vstring

of Poisson vertex algebras.

Proof of Proposition 5.4. By Proposition 5.1 we know that the vertex algebra of the associated free

theory is identified with the bcβγ vertex algebra. The thing we need to check is that the differ-

ential induced from the quantization of the holomorphic string agrees with the differential of the

string vertex algebra. In fact, we observe that the induced differential
∮

I dz from the classical

interaction of the holomorphic bosonic string agrees with the BRST charge in Equation (11). To

see that this persists at the quantum level we need to check that there are no quantum corrections.

Indeed, this follows from the fact that the quantum master equation holds identically (as opposed

to holding up to an exact term in the deformation complex) provided dimC V = 13. �

5.4. The E2 algebra and descent. In this section we highlight a remarkable feature of the vertex

algebra associated to the bosonic string. At first glance, the theory we have constructed is far from

being topological. Indeed, the classical theory depends delicately on the complex structure of the

two-dimensional source. Nevertheless, the local observables of the bosonic string behave like the

observables of a topological field theory (TFT). In particular, as noted perhaps first by [Get94], the

observables of a 2-dimensional TFT have the structure of a Gerstenhaber algebra. In this section we

provide two equivalent methods for extracting this algebra. The first is intuitive from the point

of view of factorization algebras, but has the disadvantage of not giving a concrete description of

the algebra. The second approach gives an explicit formula for the bracket and is based on the

formalism of “descent” for local operators.
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5.4.1. The E2 algebra. We continue to consider the theory on the Riemann surface Σ = C. In this

section we show how to produce, from the point of view of factorization algebras, the structure

of a Gerstenhaber algebra on the BRST cohomology of the bosonic string.

Recall that a Gerstenhaber algebra is equivalent to an algebra over the operad given by the ho-

mology of the little 2-disk operad. Hence, our approach is to see why the factorization algebra

naturally exhibits the structure of a algebra of little 2-disks. Here we use an important result of

Lurie (namely Theorem 5.4.5.9 of [Lur]): a locally constant factorization algebra on Rn is equivalent

to an algebra over the little n-disks operad, i.e., an En-algebra.

Proposition 5.6. The factorization algebra Obs
q
string is locally constant, and hence it determines an E2

algebra.

In particular, the cohomology H∗(Obs
q
string) is an algebra over the cohomology of the E2 operad

and hence a Gerstenhaber algebra.

Remark 5.7. When a topological field theory arises from an action functional (e.g., Chern-Simons

theories), the factorization algebra is locally constant. Hence such a TFT in n real dimensions

produces an En-algebra, by Lurie’s result. (This claim holds true, at least, for all the examples

with which we are familiar.) In this sense, holomorphic bosonic string theory is a 2-dimensional

topological field theory. Moreover, by work of Scheimbauer [Sch], every En algebra determines

a fully-extended framed n-dimensional TFT in the functorial sense, albeit with values in an un-

usual target (∞, n)-category. In this sense, at least, the holomorphic bosonic string determines a

functorial 2-dimensional TFT.

Proof. We need to show that for any inclusion of open disks D →֒ D′, the natural map

Obs
q
string(D) → Obs

q
string(D′)

is a quasi-isomorphism.

We first show that the classical observables are locally constant. We have already mentioned that

the classical observables are the commutative algebra of functions on the space of solutions to the

classical equations of motion. This space of solutions forms a sheaf on Σ, since satisfying a PDE is

a local condition. We find it convenient to encode the equations of motion as the Maurer-Cartan

equation of a sheaf of dg Lie algebras:

Ω0,∗(Σ; TΣ)⋉
(

Ω0,∗(Σ; V)[−1]⊕ Ω1,∗(Σ; V∗)[−1]⊕ Ω1,∗(Σ; T ∗
Σ )[−2]

)
.

(Note that the underlying graded space is simply the fields shifted up by one degree, which is

a generic phenomenon in the BV formalism.) The dg Lie algebra Ω0,∗(Σ; TΣ) is simply a sheaf-

theoretic resolution of holomorphic vector fields, with the usual Lie bracket. Our large dg Lie

algebra is a square-zero extension of Ω0,∗(Σ; TΣ), by the dg module inside the parentheses. The

vector fields act by the Lie derivative on the space

Ω0,∗(Σ; V)[−1]⊕ Ω1,∗(Σ; V∗)[−1]⊕ Ω1,∗(Σ; T ∗
Σ )[−2],

which is simply a copy of the βγ system with target vector space V, plus the b-field part of the

classical theory.
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For simplicity, we write L = Ω0,∗(Σ; TΣ) and write M for the module inside the parentheses. In

this language, the space of classical observables supported on an open set U ⊂ Σ is the Chevalley-

Eilenberg cochain complex

Obscl
string(U) = C∗

Lie (L(U)⋉M(U)) = C∗
Lie (L(U); Sym(M(U)∗[−1])) ,

where M(U)∗ denotes the continuous linear dual of M(U).

Consider now the case that the open set is a disk U = D, which we can assume is centered at

zero. By the ∂-Poincaré lemma there is a quasi-isomorphism of dg Lie algebras T hol(D) →֒ L(D)

where T hol(D) is the vector space of holomorphic vector fields on D. Thus, we have a quasi-

isomorphism

C∗
Lie (Thol(D); Sym(M(D)∗[−1])) ≃ Obscl

string(D).

This quasi-isomorphism clearly holds for any disks (and is compatible with inclusions of disks),

so it suffices to check that the left-hand side is a quasi-isomorphism for an inclusion of disks.

Consider the composition of Lie algebras

W
poly
1 →֒ Thol(D) → W1

where W
poly
1 are the holomorphic vector fields with polynomial coefficients, and W1 is the Lie

algebra with power series coefficients (i.e., formal vector fields). The second map is the power

series expansion, at zero, of a holomorphic vector field. We will compare Lie algebra cohomology

using these different Lie algebras.

Let A(D) denote Sym(M(D)∗[−1]). It determines a module over W
poly
1 by restriction, which we

will abusively denote A(D) as well. Likewise, if j∞
0 M denotes the infinite jet of the sheaf M at

the origin of the disk D, then it determines a natural module over W1. Then Sym(M(D)∗[−1])

determines a W1-module that we will also abusively denote by A(D).

The inclusion D →֒ D′ then yields a commutative diagram

C∗
Lie

(
W

poly
1 ;A(D)

)

��

C∗
Lie (Thol(D);A(D)))oo

��

C∗
Lie (W1;A(D))oo

��

C∗
Lie

(
W

poly
1 ;A(D′)

)
C∗

Lie (Thol(D′);A(D′))oo C∗
Lie (W1;A(D′)) .oo

By Lemma 3.5 (and an analogous result for polynomial vector fields), these complexes C∗
Lie(W1;M)

and C∗
Lie(W

poly
1 ;M) are quasi-isomorphic to the subcomplex consisting of conformal dimension

zero elements, i.e., to the constants. As the conformal dimension zero subcomplex does not de-

pend on the size of the disk, we conclude that vertical arrows on the outside of the commutative

diagram are quasi-isomorphisms. It follows that the middle vertical arrow is as well, thus show-

ing that Obscl
string(D) → Obscl

string(D′) is a quasi-isomorphism, as desired.

To finish the proof, we need to prove the quasi-isomorphism for quantum observables. Consider

the spectral sequence induced from the filtration of the module Sym M(D) by symmetric poly-

nomial degree. The E1 page of this spectral sequence is the classical observables above, and it

converges to the cohomology of the quantum observables. As the map of factorization algebras
33



induced by the inclusion D →֒ D′ preserves this filtration, we obtain a map of spectral sequences,

which is quasi-isomorphism on the first page. Hence, Obs
q
string(D) → Obs

q
string(D′) is also a

quasi-isomorphism. �

5.4.2. The stress-energy tensor. In [Wit88], where the notion of a TFT was introduced, Witten char-

acterized a topological field theory as a theory whose stress-energy tensor is (homotopy) trivial.

We now verify that property of the holomorphic bosonic string. That is, we want to show that the

translation symmetries of the holomorphic bosonic string act trivially on the cohomology of the

observables.

As a first step, consider the action of the differential operators d
dz and d

dz on the Dolbeault complex

Ω0,∗(C). This action extends to an action on the fields of the holomorphic bosonic string, and

hence to their classical observables as well. By Noether’s theorem any symmetry of a theory

determines classical observables: for these symmetries, these are simply the zz and zz components

of the stress-energy tensor Tzz, Tzz. In the case of the bosonic string, we will now show that the

stress-energy tensor is cohomologically trivial on the quantum observables. (Similar but simpler

arguments apply to the classical case.)

For each open U ⊂ C, the differential operators lift to cochain maps on the quantum level

d

dz
,

d

dz
: Obs

q
string(U) → Obs

q
string(U)

because the BV Laplacian is translation-invariant. These cochain maps intertwine with the struc-

ture maps of the factorization algebra in the sense that they define derivations of the factorization

algebra. (See Definition 7.3.2 of [CG17] for a discussion of this notion.) Note that these operators

preserve the cohomological degree.

Consider now the operator

η =
∂

∂(dz)

acting on Dolbeault forms. This operator η extends to a derivation of degree −1 on the factoriza-

tion algebra Obs
q
string. It satisfies the relation

(12) [∂ + h̄∆ + {Iq,−}, η] =
d

dz

as endomorphisms of the factorization algebra, as we now explain. One observes first that [∂, η] =
d
dz . Moreover, since Iq is a chiral deformation, we also have η · Iq = 0. Finally, since the pairing

defining the −1-shifted symplectic structure is holomorphic, we see that η also commutes with

the BV Laplacian [η, ∆] = 0. Hence we have shown the following, by relation (12).

Lemma 5.8. The operator d
dz acts homotopically trivial on Obs

q
string.

This fact ensures that the stress-energy tensor vanishes in the zz direction.

We now turn to d/dz. View this vector field d
dz as a constant c-field. Consider the linear local

functional of cohomological degree −2:

O d
dz
(β, γ, b, c) =

∫ 〈
b,

d

dz

〉
,
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It only depends on the b-field. Note that for this integral to be nonzero, the field b must live in

Ω1,1(Σ, T1,0∗
Σ ). (In fact, b must also be compactly supported for the integral to be well-defined.)

Using the BV bracket, we obtain a derivation of the factorization algebra

η = {O d
dz

,−}

of cohomological degree −1. It might help to draw this bracket diagrammatically, so one can see

that it is a derivation that acts linearly on the generators (i.e., linear functionals on the fields).

Lemma 5.9. The derivation η satisfies

(13) [∂ + h̄∆ + {Iq,−}, η] =
d

dz
.

Proof. The derivation η commutes with both ∂ and ∆. Thus, the left-hand side reduces to

[{I,−}, η] = {{I, O d
dz
},−}.

The only part of the interaction that contributes is
∫
〈β, c · γ〉+

∫
〈b, [c, c]〉, and one computes that

{I, O d
dz
} =

∫
〈β, ∂zγ〉+

∫
〈b, [∂z, c]〉 .

Bracketing with this local functional encodes applying d
dz to the inputs, as desired. (In diagram-

matic terms, this feature is almost immediately visible.) �

Together these two lemmas ensure that translations act trivially on the cohomological observ-

ables.

5.4.3. Descent for local operators. We will now sketch an important consequence of the work above.

As we will see, it gives both an approach to the method of descent (expositions of this method, as

related to two-dimensional gravity, can be found in [WZ92, DVV91]) as well as another explicit

description of the E2 algebra associated to the quantum observables of the bosonic string.

The key role here is played by observables that are local, in the sense discussed in Section 3,

where they appeared in our description of the deformation complex, but we revisit now the main

idea in a more useful form for our current purposes. We will focus first on the classical theory,

where the constructions manifestly make sense, before discussing what needs to be modified in

the quantum setting.

Let JEstring denote the ∞-jet bundle of the classical fields of the holomorphic bosonic string. Con-

cretely, a fiber of JEstring at a point x corresponds to all the possible Taylor series at x of fields

of the bosonic string. In consequence, the ∞-jet of a γ field determines a section of JEstring, as

does the ∞-jet of any other field in the theory. This bundle JEstring is equipped with a canonical

flat connection ∇jet such that horizontal sections are precisely the ∞-jets of classical fields; and

so JEstring is a left D-module on the Riemann surface, where D means the sheaf of smooth dif-

ferential operators. (See the appendix of [GG18] for expository background oriented toward the

approach here.)
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Lagrangians can be expressed naturally in terms of JEstring, as sections of the bundle

Sym(JE∨
string) =

⊕

k≥0

Symk(JE∨
string),

where JE∨
string denotes the appropriate dual vector bundle. (Some care is required here because

JEstring is a pro-finite rank vector bundle.) To unpack this assertion a little, note that a smooth

section λ of JE∨
string can be evaluated on the ∞-jet of a field to obtain a smooth function on the

Riemann surface; it thus determines a linear functional of fields with values in functions on the

surface. Similarly, a polynomial in such λ determines a nonlinear functional on fields with values

in smooth functions. In other words, it is a Lagrangian. If we multiply it against a density, then

we obtain a Lagrangian density and hence a local functional.

Note that sections of Sym(JE∨
string) naturally form a graded-commutative algebra, since polyno-

mials can be multiplied. We denote it by O(JEstring). The shifted pairing on fields determines

a shifted Poisson bracket on O(JEstring), which we will denote {−,−}, since the construction is

parallel to the BV bracket.

We will restrict our attention from hereon to Σ = C, on which d2z determines a natural volume

form. The classical action functional S thus determines a Lagrangian (simply divide by this vol-

ume form) that we will abusively denote S as well. The operator {S,−}, known as the BRST

operator in physics, is square-zero by construction. Hence, we obtain a commutative dg algebra

(
O(JEstring), {S,−}

)

in left D-modules, where a flat connection is inherited by the dual bundle and hence by the sym-

metric powers.

Elements of
(
O(JEstring), {S,−}

)
are not observables of the classical theory, since they are just

Lagrangians. There is, however, a natural way to produce observables from Lagrangians. Es-

sentially, a Lagrangian can be multiplied by a de Rham current; for instance, evaluating a delta

function with a Lagrangian produces a pointlike observable (or local operator in the terminology

of physics).

We choose to encode this idea in the following way. Consider the de Rham complex Ω∗(C,O(JEstring))

of our D-module, equipped with the total differential ∇jet + {S,−}. It consists of smooth de

Rham forms with values in Lagrangians. These determine observables supported on closed sub-

manifolds, as follows. For a closed submanifold C ⊂ C, fix a tubular neighborhood NC. Integra-

tion along C then determines a map

(14)
∫

C
: Ω∗(NC,O(JEstring)) → Obscl

string(NC)

of cochain complexes.

Many of the most familiar observables arise in this fashion. For instance, take C to be the point at

the origin and consider

F(γ, β, b, c) =
1

n!
(∂n

z γ)
∣∣
0
,

which returns the coefficient of zn in the Taylor expansion of γ around the origin. (Note that

evaluation at 0 denotes integration at the origin.) It is easy here to factor F into a Lagrangian term
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and a de Rham form term: the Lagrangian is the linear functional that returns the function 1
n! ∂

n
z γ,

and the form is the constant function 1.

As a closely related example, take C to be the unit circle and consider

F(γ, β, b, c) =
1

2πi

∫

C
γ(z)

dz

zn+1
.

For “on-shell” γ fields—i.e., when γ ∈ C∞(C) is holomorphic)—this observable F returns the

coefficient of zn in the Taylor expansion around the origin. It is easy here to factor F into a La-

grangian term and a de Rham form term: the Lagrangian is the linear functional that simply

returns the function γ, and the form is (1/2πi)dz/zn+1, which is well-defined on any small an-

nulus around C.

These concrete examples exhibit a compelling virtue of this process for producing observables: it

encompasses the observables typically discussed in physics, particularly in conformal field the-

ories. In our situation it is straightforward to show that the entire vertex algebra Gr Vstring is

realized by the image of the map (14). (Such an argument is given in Part III of [GGW] for the free

βγ system.)

After this lengthy build-up of notions and notations, we now finally turn to describing descent.

Our interpretation is that it is a process for promoting pointlike operators to more general observ-

ables. We will soon apply it to give an explanation for the Gerstenhaber structure on H∗Vstring,

identified by Lian-Zuckerman.

Definition 5.10. A pointlike operator is an element of Sym(JE∨
string)0, the fiber at the origin 0 ∈ C

of the bundle Sym(JE∨
string).

Equivalently, it is an element of the algebra Sym((J0Estring)
∗) of polynomial functions on the fiber

at 0 of JEstring. Since our theory is translation-invariant, any point in the plane would serve as

well as the origin. Note that this definition is equivalent to our earlier, heuristic notion.

Construction 5.11 (Method of ”descent”). Any pointlike operator O descends to an element

Õ = Õ0 + Õ1 + Õ2

in Ω∗(C,O(JEstring)). We construct it as follows. First, because our theory is translation-invariant,

there is a natural trivialization of the bundle Sym(JE∨
string), and hence there is a canonical element

Õ0 ∈ C∞(C,O(JEstring)), given by a constant section whose value at the origin is O. In formulas,

we write

Õ0(z) = τzO,

where τz : C → C is the translation sending a point w to w + z. (This operator acts on fields by

pullback, and so on the jets of fields as well.) Using the homotopies η, η, we define the 1-form

part as

Õ1 = dz (̃ηO)
0
+ dz (̃ηO)

0
,

where ηO denotes the image of O under the map η. Similarly, the 2-form part is

Õ2 = dz dz (̃ηηO)
0
.
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By construction, if O is closed for the classical differential {S,−}, then

(ddR + {S,−})Õ = 0,

so the total form Õ is closed as well.

Remark 5.12. The terminology “descent” is due to Witten [Wit88]. Our construction above is a

method of solving what he refers to as the topological descent equations. Mathematically, we

are performing a zig-zag in the double complex given by the de Rham complex of the flat vector

bundle of Lagrangians. In the horizontal direction, the Lagrangians are equipped with the BRST

operator {S,−}. In the vertical direction there is the differential induced from the flat connection.

Combining the construction with the map (14), we find that a pointlike operator O and a closed

submanifold C determine an observable
∫

C
Õ ∈ Obscl

string(NC).

Note that if O has cohomological degree k and C is of dimension l, then
∫

C Õ has degree k − l.

We remark that every element of Gr Vstring can be realized by applying descent to the pointlike

operators and then evaluating at the origin.

Extending this whole package to quantum observables is nontrivial. The map (14) makes sense

at the level of graded vector spaces, but it is not easy to equip O(JEstring) with a BV Laplacian in

such a way that the map (14) intertwines with the differential on the quantum observables. For

linear observables, however, no such issues arise (cf. Part III of [GGW]), and those are sufficient

to identify the Gerstenhaber bracket, the problem to which we now turn.

5.4.4. Formula for the Gerstenhaber bracket. A Gerstenhaber algebra is a graded commutative al-

gebra with a Lie bracket of cohomological degree −1 that is a graded biderivation for the prod-

uct. In this section we show how to explicitly write down the product and bracket on the local

observables (i.e., the observables on any disk) and compare our answer to the work of Lian-

Zuckerman [LZ93].

As explained just before Proposition 5.6, the Gerstenhaber operad Gerst is the operad H∗(E2)

arising by taking homology of the E2 operad. Recall that E2(2) parametrizes the space of binary

operations as the configuration space of disjoint two disks in the unit disk in R2. This space

deformation retracts onto S1. Hence

Gerst(2) = H∗(E2(2)) ∼= H∗(S1).

(Note that we view homology of spaces as concentrated in nonpositive degrees, since it is viewed

as the linear dual to cohomology.) The degree zero operation—corresponding to a commu-

tative product—matches with a zero-dimensional cycle of S1, and the degree -1 operation—

corresponding to the shifted Poisson bracket—matches with a one-dimensional cycle of S1.

Thus, to obtain the commutative product on H∗Obsq, we need only pick an embedding of two

disjoint disks inside a larger disk, which is precisely such a zero-cycle in E2(2). Then the factor-

ization product

Obsq(D)⊗ Obsq(D′) → Obsq(D′′).
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induces the commutative product

· : H∗Obsq ⊗ H∗Obsq → H∗Obsq.

Since this configuration space E2(2) is connected, we could use any other choice of embeddings

and get the same answer at the level of cohomology. In particular, we could have put D′ on the

opposite side of D, which is why the product must be commutative. (A topologist would call this

the Eckmann-Hilton argument, as it is the same argument one uses to show that the homotopy

group π2(X) is always abelian.)

To construct the shifted Poisson (i.e., Gerstenhaber) bracket, we need to pick a one-cycle in the

configuration space E2(2). To describe the associated binary operation, we use descent along this

one-cycle in conjunction with the fact—s remarked just after Construction 5.11—that the under-

lying vector space of the vertex algebra Vstring is generated by pointlike operators.

Let O and O′ be two pointlike operators supported at 0 ∈ C. Fix a disk D centered at zero. We

can view O as an element in Obsq(D).

Now fix a loop C that wraps around D but is disjoint. Let NC be a tubular neighborhood of C that

does not intersect D. Via descent we have the observable
∫

C Õ′ in Obsq(NC). Pick a bigger disk

D′ containing D and NC. Then
∫

C Õ′ also determines an observable in Obsq(D′).

We suppose that these observables are cocycles, which lets us identify them with elements [O]

and [O′] of the vertex algebra.

Consider now the factorization product

µ : Obsq(D)⊗ Obsq(NC) → Obsq(D′)

corresponding to D ⊔ NC →֒ D′. We define a bracket by

{[O], [O′]}Ger := µ

(
O,
∫

C
Õ′
)

.

Note that if deg(O) = k and deg(O′) = k′, then deg({[O], [O′]}Ger) = k + k′ − 1, so we obtain a

bracket of the correct degree to define a Gerstenhaber structure.

Remark 5.13. This construction manifestly involves picking a 1-cycle, here C, to exhibit the bracket,

and it should be clear geometrically how we could relate to any other choice C′. If C and C′ do

not intersect, they bound an annulus and hence determine cohomologous observables. (One may

have to shrink D in the construction, but that is no issue by local constancy.) If they do intersect,

one can choose a C′′ that does not intersect either, and then one has a pair of cohomologous terms.

As the terms are cohomologous, they induce the same brackets at the level of cohomology.

We now connect our constructions with well-known approaches.

Proposition 5.14. The bracket {−,−}Ger together with the product · determine the structure of a Gersten-

haber algebra on H∗Vstring, the cohomology of the dg vertex algebra Vstring. This Gerstenhaber structure

is isomorphic to the one found by Lian-Zuckerman [LZ93].
39



Proof. The vertex algebra construction of [CG17] extracts Vstring as the direct sum of the weight

spaces of Obs
q
string(D), where D is a disk centered at the origin and we take weight space for the

rotation action of S1 on C. The bracket and product restrict to this subspace of Obsq(D), mani-

festly playing nicely with this eigenspace decomposition. Hence they descend to the cohomology

of Vstring.

Let VLZ be the Gerstenhaber algebra considered by Lian-Zuckerman. As vector spaces, both

H∗Vstring and VLZ are isomorphic to the state space of the βγ vertex algebra.

According to the construction of a vertex algebra from a holomorphic factorization algebra in

Chapter 6 of [CG17], the factorization product of two disks is what defines the operator prod-

uct map Y(−, z) : V ⊗ V → V((z)) of a vertex algebra. It is this operator product that Lian-

Zuckerman use to define the commutative product. Thus, as commutative algebras, the algebras

coincide.

The brackets coincide by noting that the derivation η trivializing d/dz agrees with Lian-Zuckerman’s

trivialization. �

6. THE HOLOMORPHIC STRING ON CLOSED RIEMANN SURFACES

Thus far we have discussed the local behavior of the holomorphic string, such as its quantization

on a disk and the concomitant vertex algebra. Now we turn to its global behavior, particularly

the observables on a closed Riemann surface, and the relationship with certain natural holomor-

phic vector bundles on the moduli space of Riemann surfaces. This local-to-global transition is

where the BV/factorization package really shines. On the one hand, the theory of factorization

algebras provides a conceptual characterization of the local-to-global relationship, much like the

understanding of sheaf cohomology as the derived functor of global sections. On the other hand,

the examples from BV quantization provide computable, convenient models for the global sec-

tions, much as the de Rham or Dolbeault complexes do for the cohomology of sheaves that arise

naturally in differential or complex geometry.

As we will explain, the answers we recover for the holomorphic string can be related quite cleanly

to natural determinant lines on the moduli of Riemann surfaces, hence providing a bridge from

the Feynman diagrammatic anomaly computations to the index-theoretic computations.

6.1. The free case. Before jumping to the holomorphic string, we will work out the global ob-

servables in the simpler case of the bcβγ system, introduced in Remark 2.1. The global classical

observables on a Riemann surface Σ are given by the symmetric algebra on the continuous linear

dual to the fields,

Sym
(

Ω0,∗(Σ, V)∨ ⊕ Ω1,∗(Σ, V∨)∨ ⊕ Ω0,∗(Σ, T[1])∨ ⊕ Ω1,∗(Σ, T∗
Σ[−2])∨

)
,

with the differential ∂ extended as a derivation. Hence the cohomology is

Sym
(

H∗(Σ, V)∨ ⊕ H∗(Σ, ω ⊗ V∨)∨ ⊕ H∗(Σ, T[1])∨ ⊕ H∗(Σ, ω⊗2[−2])∨
)

,
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where ω denotes the canonical bundle. Although this expression might look complicated, it can

be readily unpacked in the setting of algebraic geometry, particularly when Σ is closed. In that

case, this graded commutative algebra is a symmetric algebra on a finite-dimensional graded

vector space, which encodes the derived tangent space of the moduli of Riemann surfaces at Σ

and of holomorphic functions to V.

As this theory is free, it admits a canonical BV quantization. Denote by Obs
q
f ree be the correspond-

ing factorization algebra. One can compute its global sections on Σ by using a spectral sequence

whose first page is the global classical observables. The result of Theorem 8.1.4.1 of [CG17] states

that the cohomology of this free theory along a closed Riemann surface with values in any line

bundle is one-dimensional concentrated in a certain cohomological degree. In our case, it the

calculation implies that we get a shifted determinant of the cohomology of the fields:

H∗
(

Obs
q
f ree(Σ)

)
∼= det (H∗(Σ;OΣ))

⊗ dim(V) ⊗ det
(

H∗(Σ; T1,0
Σ

)
)−1

[d(Σ)]

where

d(Σ) = dim(V)
(

dim H0(Σ;OΣ) + dim H1(Σ;OΣ)
)
+ dim(H0(Σ; T1,0

Σ ))− dim(H1(Σ; T1,0
Σ )).

Remark 6.1. The shift d(Σ) here likely looks funny. In this case at least, the meaning can be un-

packed pretty straightforwardly. The BV complex for an ordinary finite-dimensional vector space

is equivalent to the de Rham complex shifted down by the dimension of the vector space, so that

the top forms are in degree 0. (Abstracting this situation is one way to “invent” the BV formal-

ism.) For the σ-model, the global solutions to the equations of motion are H0(Σ,O)⊗ V for the γ

fields and H0(Σ, ω)⊗ V∨ for the β fields. For Σ closed, these are finite-dimensional, and thus we

get the shift

dim(V)
(

dim H0(Σ;OΣ) + dim H1(Σ;OΣ)
)

.

For the ghost system (the bc fields), the BV complex recovers the Euler characteristic

dim(H0(Σ; T1,0
Σ ))− dim(H1(Σ; T1,0

Σ ))

as it encodes the de Rham complex on the formal quotient stack Bg = ∗/g for the Lie algebra of

symmetries g.

The computation here works for any Riemann surface Σ and, indeed, for any family of Riemann

surfaces. Hence it implies that the global observables of the free bcβγ system determine a deter-

minant line bundle on the moduli M of Riemann surfaces.

We can work out the first Chern class of this determinant line bundle using the Grothendieck-

Riemann-Roch (GRR) theorem as follows. Consider the universal Riemann surface π : C → M
over the moduli space, and consider the bundles OC ⊗ V and Tπ = TC/M, which one can view

the universal γ fields and c fields, respectively. The first Chern class of the derived pushfor-

ward Rπ∗(OC ⊗ V) is given by the first Chern class of det(H∗(OC ⊗ V)) ∼= det(OC)
⊗ dim V , since

the first Chern class of a vector bundle is the first Chern class of its determinant bundle. The

Grothendieck-Riemann-Roch theorem states that for a complex of coherent sheafs F = F ∗ on C,
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the Chern character ch(Rπ∗F ) of its derived pushforward Rπ∗F is given by

π∗(ch(F )Td(Tπ)) = π∗

((

∑
i

(−1)ich(F i)

)
Td(Tπ)

)

= π∗

((

∑
i

(−1)i(rk(F i) + c1(F i) +
1

2
(c1(F i)2) + · · · )

)
(1 +

1

2
c1(Tπ) +

1

12
c1(Tπ)

2)

)

where Tπ denotes the relative tangent bundle along π, which is here just the tangent line bundle

of a Riemann surface. The first Chern class is the component of cohomological degree 2. For

instance, when F = F 0 is concentrated in degree zero, the above simplifies to:

1

12
rk(F )c1(Tπ)

2 +
1

2
c1(F )c1(Tπ) +

1

2
c1(F )2.

When F = T⊗n
π [1], the expression for the first Chern class is − 1+6n+6n2

12 c1(Tπ)2. When F = O⊗V

we simply get dim(V).

Hence, when F = T[1]⊕O ⊗ V, for the determinant line of global observables H∗
(

Obs
q
f ree(C)

)

as a bundle over C we obtain

c1

(
H∗
(

Obs
q
f ree(Σ)

))
=

1

12
(dim(V)− 13)c1(Tπ)

2.

It is worthwhile to point out that the above argument based on GRR for identifying the first

Chern class of this determinant line bundle resonates with our computation of the anomaly of

the bosonic string on the disk. Indeed, this is a manifestation of “Virasoro uniformization.” Also,

notice that the above calculation assumed that there was no deformation, so that we were working

with a free theory. However, deforming the action from free bcβγ system to holomorphic bosonic

string doesn’t affect the line bundles, since those are continuous parameters and Chern classes

are discrete.

6.2. The anomaly and moduli of quantizations on an arbitrary Riemann surface. We have al-

ready seen that the holomorphic string on a disk admits a BV quantization if and only if the target

is a complex vector space of dimension 13. Here we will explain why this anomaly calculation

is actually enough to show the existence of a quantization on an arbitrary Riemann surface. An

argument using the Grothendieck-Riemann-Roch theorem was given in the above section. In this

section we give a proof using only the perspective of BV quantization. One can view this as giv-

ing a proof of the Grothendieck-Riemann-Roch theorem using Feynman diagrams (and will be

the topic of future work).

Our diagrammatic arguments showed that only wheels with c legs appear in the anomaly, and

these arguments did not depend on the choice of Σ. Hence the anomaly will be purely a functional

on the c fields. So we restrict ourselves to the piece of the deformation complex only involving

such fields.

When Σ is a disk, a corollary of the calculations in Section 3 is that this deformation complex

for the c-fields is quasi-isomorphic to C∗
Lie,red(W1)[2]. A classical calculation of Gelfand and
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Fuks shows that the reduced Lie algebra cohomology H∗
red(W1) of formal vector fields is one-

dimensional concentrated in degree 3. Thus, the cohomology of the deformation complex is

H∗
red(W1)[2] = C[−1].

The generator of this cohomology can be taken to be λ−1λ0λ1, where λi is dual to the formal

vector field Li = zi+1∂z. Some readers might recognize this cocycle as a manifestation of the

usual cocycle for the Virasoro Lie algebra.

As shown in Proposition 5.3 of [Wil17], this situation generalizes from disks to arbitrary Riemann

surfaces: on any Riemann surface Σ, the deformation complex is equivalent to the derived global

sections of CΣ[−1], the constant sheaf on Σ with a cohomological shift. In particular, the coho-

mology of the deformation complex is equal to the shift of the de Rham cohomology H∗(Σ)[−1].

Hence, the first cohomology group of the deformations—where the anomaly lives—is spanned

by the constant functions. When Σ is connected, we thus know the anomaly, up to scale. Locally,

this anomaly cocycle agrees with the usual expression for the generator of H3(W1), but since this

description depends on the choice of a coordinate, the global version is somewhat subtle. See

Section 5 of [Wil17] for an extensive discussion.

The sheaf-theoretic nature of the deformation complex works to our advantage here. As the

construction of BV quantization is manifestly local-to-global on spacetime anomalies inherit this

property: the anomaly computed on an open set U ⊂ Σ is equal to the anomaly of the theory on

Σ restricted to U. In our case, this global anomaly is a 1-cocycle for the derived global sections of

the shifted constant sheaf, and hence is determined by a constant function on Σ. Thus, it suffices

to compute the anomaly on an arbitrary open, such as on a flat disk. But this is precisely the

context in which we computed the anomaly in Section 4, so we know the anomaly is simply the

dimension of the target vector space. Thus, a quantization of the holomorphic string exists on

any Riemann surface provided dimC(V) = 13.

Now we ask how many such quantizations are possible, i.e., what is the moduli of theories. By

the calculation in Section 3, we know that, up to BV equivalence, the possible one-loop terms in

the quantized action functional are parametrized by

H0(Σ)⊗ Ω1(V)⊕ H1(Σ)⊗ Ω2
cl(V).

(That is, these vector spaces are the first cohomology group of the relevant deformation complex.)

This space of deformations corresponds to continuous parameters we can vary in the action func-

tional. As the isomorphism classes of line bundles form a discrete set, varying these continuous

parameters will not change the class of the line bundle of global observables. In conclusion, no

matter what one-loop quantization we choose, the cohomology of the global observables will be

the same.

6.3. Global observables for the holomorphic string. Now, let us consider the global observables

of the holomorphic string Obsq(Σ). Consider the filtration on the quantum observables induced

by the polynomial degree of the functional. There is a spectral sequence abutting to the cohomol-

ogy of the global observables H∗Obsq(Σ) with E1 page given by the cohomology of the global
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observables of the free bcβγ system which we have already computed:

E2
∼= det (H∗(Σ; TΣ[1]))⊗ det

(
H∗(Σ;OΣ)

⊕13
)

∼= det
(

H1(Σ; TΣ)
)
⊗ det

(
H0(Σ; TΣ)

)−1
⊗ det

(
H0(Σ; KΣ)

)−13

where we have used the fact that H0(Σ;O) ∼= C for any Σ. Since this page is concentrated in a

single line, we see that the spectral sequence degenerates at this page.

Let Σg be a surface of genus g. Then for g = 1 the above simplifies to

det
(

H1(Σ1; TΣ1
)
)
⊗ det

(
H0(Σ1; K)

)−14
.

If g ≥ 2 one has

det
(

H1(Σ1; TΣ1
)
)
⊗ det

(
H0(Σ1; K)

)−13
.

Thus the above expressions give the global observables for the holomorphic string for genus

g = 1 and g ≥ 2, respectively. Compare these formulas to Witten’s analysis of the bosonic string

in [Wit15].

7. LOOKING AHEAD: CURVED TARGETS

In this section we briefly advertise our future work, which is to provide a complete analysis of

the bosonic string with a complex manifold as the target. Our approach is a modification of our

treatment of the curved βγ system given in [GGW]. The main idea there was to consider the βγ

system with target a formal disk D̂n. Then, in the style of Gelfand and Kazhdan’s treatment of

formal geometry, we show how working equivariantly for formal automorphisms allows us to

globalize this theory to a complex manifold. In general, we find an obstruction to doing this,

which is measured by the second component of the Chern character of the tangent bundle of the

complex manifold. The appearance of the characteristic class is expected from the theory of chiral

differential operators. In fact, we show that the factorization algebra of observables descends to

the sheaf of chiral differential operators on the target manifold.

We will give a similar argument for the bosonic string. The key difference to the βγ system is

that even in the case of a flat target, the bosonic string is an interacting theory. Nevertheless, the

theory of BV quantization that is equivariant for formal automorphisms can still be applied and

we arrive at the following result.

Theorem 7.1 ([GW]). Consider the holomorphic bosonic string with target a complex manifold X. There

exists a one-loop exact quantization if and only if

(1) dimC X = 13,

(2) ch2(TX) = 0, and

(3) c1(TX) = 0.

Moreover, if the conditions above hold, the space of all quantizations is a torsor for the abelian group

H1(X, Ω2
cl)⊕ H0(X, Ω1).
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There are two further directions we intend to address in our future work:

(1) We have seen that the local observables for the case of a flat target return the semi-infinite

BRST cohomology of the βγ vertex algebra. We expect that the local observables in the

case of a curved target produce a sheafy refinement of semi-infinite cohomology. This

should produce a sensitive invariant of the target manifold and gives a variant of quantum

sheaf cohomology.

(2) The partition function of the curved βγ system on elliptic curves is known to produce

the Witten genus of the target manifold [Cos]. For flat space, the partition function of the

string is given by the Mumford form [BlM86]. We propose that the partition function for

the curved string produces an invariant of the target manifold analogous to the Witten

genus.

APPENDIX A. CALCULATION OF ANOMALY

In this section we compute the functional F[L] and G[L] mentioned in the proof of Proposition 4.6,

hence completing the calculation of the anomaly.

We have reduced the calculation to the weight of two wheel diagrams: A) with internal edges

labeled by the bc heat kernel and propagator, respectively. B) with internal edges labeled by the

βγ heat kernel and propagator, respectively. The weight of A gives the functional we called F[L],

and the weight of B gives the functional we called dimC(V)G[L].

We will utilize the following version of Wick expansion to evaluate the integrals below.

Lemma A.1. Let Φ be a smooth compactly supported function on C and suppose τ > 0. Then

∫

ξ∈C

Φ(ξ)e−τ|ξ|2/4d2ξ = 4π · τ−1

(
exp

(
τ−1 ∂

∂ξ

∂

∂ξ
Φ

)

ξ=0

)
.

We start with the weight of diagram A. Use coordinates z, w to denote the coordinates at each of

the vertices. Denote the inputs of the weight by the compactly supported vector fields f (z)∂z and

g(w)dw∂w. (Note that the diagram is only nonzero if the total degree of the elements is +1.) If

c(z)∂z is another vector field, the action by f (z)∂z is given by

[ f (z)∂z, c(z)∂z] = f (z)∂zc(z)∂z − c(z)∂z f (z)∂z.

Thus, the weight of diagram A can be written as the ℓ → 0 limit of

(15)

∫
z,w f (z)∂zPL

ℓ
(z, w)g(w)∂wKℓ(z, w)

−
∫

z,w ∂z f (z)PL
ℓ
(z, w)g(w)∂wKℓ(z, w)

−
∫

z,w f (z)∂zPL
ℓ
(z, w)∂wg(w)Kℓ(z, w)

+
∫

z,w ∂z f (z)PL
ℓ
(z, w)∂wg(w)Kℓ(z, w).

We label the integrals in each line above as I,II, III, IV, respectively.

Using the form of the propagator in (8) we see that line I is given by

I =
1

(4π)2

∫

(z,w)∈C×C

∫ L

t=ℓ

f (z)g(w)
1

ǫ2

1

t3

(z − w)3

8
exp

(
−1

4

(
1

ℓ
+

1

t

)
|z − w|2

)
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(we are omitting volume factors for simplicity). To evaluate this integral we change variables and

apply the Wick expansion, Lemma A.1, to one of the variables of integration. Indeed, introduce

ξ = z − w, and notice that the integral simplifies to

I =
1

(4π)2

∫

w∈C

∫

ξ∈C

∫ L

t=ℓ

f (ξ + w)g(w)
1

ǫ2

1

t3

ξ
3

8
exp exp

(
−1

4

(
1

ℓ
+

1

t

)
|ξ|2
)

.

Applying Lemma A.1 to the ξ-integral we see that this simplifies to

I =
1

4π

∫

w∈C

∂3
w f (w)g(w)

∫ L

t=ℓ

ℓ2t

(ℓ+ t)4
+O(ℓ)

where the terms O(ℓ) are of order ℓ so are zero in the limit ℓ → 0. On the other hand, we can

evaluate the remaining t-integral and see that in the limit ℓ → 0, Line I becomes

lim
ℓ→0

I =
1

4π

1

12

∫

w∈C

∂3
w f (w)g(w)d2w.

We evaluate II, III, and IV in a similar fashion.

After changing coordinates and performing the Wick type integral, we obtain

II =
1

4π

∫

w∈C

∂3
w f (w)g(w)d2w

∫ L

t=ℓ

ℓt

(ℓ+ t)3
dt +O(ℓ).

Evaluating the remaining t integral and taking ℓ → 0, this becomes

lim
ℓ→0

II =
1

4π

3

8

∫

w∈C

∂3
w f (w)g(w)d2w.

Integral III is given by

1

4π

∫

w∈C

∂3
w f (w)g(w)d2w

∫ L

t=ℓ

ǫ2

(ǫ + t)3
dt + O(ℓ).

In the limit ℓ → 0 we obtain

lim
ℓ→0

III =
1

4π

1

8

∫

w∈C

∂3 f (w)g(w)d2w.

Finally, integral IV is

1

4π

∫

w∈C

∂3
w f (w)g(w)d2w

∫ L

t=ℓ

ǫ

(ǫ + t)2
dt + O(ℓ).

In the limit ℓ → 0, we obtain

lim
ℓ→0

IV =
1

4π

1

2

∫

w∈C

∂3
w f (w)g(w)d2w.

In total, the functional F[L] applied to ( f (z)∂z, g(w)dw∂w) is given by

F[L]( f (z)∂z, g(w)dw∂w) = − 1

4π

13

12

∫

w∈C

∂3
w f (w)g(w)d2w.

Note that this functional is independent of L.
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Diagram B is similar to A, except the internal edges are labeled by the βγ propagator. Applied to

the input vector fields ( f (z)∂z, g(w)dw∂w) the weight is given by the dimension of V times the

integral we computed in I. Thus

G[L]( f (z)∂z, g(w)dw∂w) =
1

4π

1

12

∫

w∈C

∂3
w f (w)g(w)d2w.

The proposition follows.
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