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AN EQUIVARIANT QUILLEN THEOREM

BERNHARD HANKE AND MICHAEL WIEMELER

Dedicated to Tammo tom Dieck on the occasion of his eightieth birthday

ABSTRACT. A classical theorem due to Quillen (1969) identifies the unitary bordism ring with
the Lazard ring, which classifies the universal one-dimensional commutative formal group law.
We prove an equivariant generalization of this result by identifying the homotopy theoretic Z/2-
equivariant unitary bordism ring, introduced by tom Dieck (1970), with the Z/2-equivariant
Lazard ring, introduced by Cole-Greenlees-Kriz (2000). Our proof combines a computation of
the homotopy theoretic Z/2-equivariant unitary bordism ring due to Strickland (2001) with a
detailed investigation of the Z/2-equivariant Lazard ring.

1. INTRODUCTION

Almost 50 years ago Daniel Quillen gave the following algebraic description of the unitary
bordism ring.

Theorem 1.1 ([Q69]). The canonical map
L, — MU,
from the Lazard ring to the coefficient ring of unitary bordism theory is an isomorphism.

Recall that the Lazard ring is the representing ring of the universal one-dimensional commu-
tative formal group law [L55], and that the unitary bordism ring MU, = MU™* is the underlying
ring of a one-dimensional formal group law

F(z,y) € MU *[[z,y]] = MU *(CP* x CP*)

given by the pull back of the universal Chern class in MU?(CP*) under the classifying map
CP*>® x CP*® — CP® of the tensor product of the universal line bundles on each factor of
CP> x CP®°.

Today Quillen’s theorem is one of the organizational principles of stable homotopy theory.
Establishing equivariant analogues of this result is therefore a reasonable goal. Tom Dieck
[tD70] defined homotopy theoretic G-equivariant unitary bordism theories MUf for compact
Lie groups G, using arbitrary unitary G-representation as suspension coordinates. Further
information on the foundations of equivariant stable homotopy theory is contained in [LMS85],
for instance.

For compact abelian Lie groups A the notion of A-equivariant formal group laws was intro-
duced in [CGKO00Q], and subject to an extensive theoretical investigation in [ST1]. Similarly to the
non-equivariant situation there is a universal one-dimensional commutative A-equivariant for-
mal group law, see [CGKOQ, Cor. 14.3], together with a representing ring L4, and a classifying
map

A Ly — MUA.
An equivariant version of Quillen’s theorem amounts to A4 being an isomorphism.

Let A be a finite abelian group. By use of a localization-completion pull back square due to
tom Dieck (for cyclic A this is [tD70, Theorem 5.1]), together with the classification of Euler-
complete and Euler local equivariant formal group laws, one can show that A4 is surjective with
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each element in the kernel being Euler torsion and infinitely Euler divisible, see [GOI, Theorem
13.1].

Strickland [SO1] presented an algebraic description of MUZ? in terms of generators and
relations, and stated without proof the existence of a section MU%/ S Ly5 of the classifying

map Az/z, establishing MU%/ % as a retract of Lzs.

In spite of these positive results, injectivity of A4 has remained elusive for any non-trivial
A. This problem has been raised at several places, see e.g. [GOI, Questions 16.8] and [S11],
Chapter 13]. We remark that there do exist non-additive Z/2-equivariant formal group laws
with representing rings containing non-zero, infinitely Euler divisible and Euler torsion elements,
see Example LTl Hence injectivity of A4 does not follow merely from the results mentioned
before, but requires some new structural insight concerning the ring L 4 itself. This is what we
will achieve in the paper at hand for the simplest non-trivial case A = Z/2, providing the first
instance of an equivariant Quillen theorem:

Theorem 1.2. The map Az : Lz — MU%/2 is an isomorphism.

Our argument starts with the construction of an explicit section piz/y of the classifying map
Az/2. This allows us to introduce structure constants p;; € Lz/5 in the kernel of Az /5, which
measure the deviation from Az, being an isomorphism.

The proof of the vanishing of all p;; rests on two major lines of thought, developed in Sections
and [ of our paper. The first one is of a conceptual nature and based on the construction of a
normalization functor, turning Z/2-equivariant formal group laws into ones with Euler classes
equal to 1. Applied to the universal Z/2-equivariant formal group law we can hence derive
efficient upper bounds on the Euler torsion of the elements p;;, see Theorem

The second one is an explicit computation of a particular Z/2-equivariant formal group law,

which is obtained from Lz, by dividing out the ideal J generated by the images under jiy, /2 of

the positive degree generators of MU%/ ?. It turns out that the resulting 7 /2-equivariant formal

group law is the additive one. In other words (Theorem [B.3): The structure constants p;; lie in
J.

Combining these two results in a bootstrap like manner forces vanishing of the p;;. See
Section Bl for more details.

On the one hand we are optimistic that our approach can be generalized to more general
A, for example cyclic groups of prime order. On the other hand we feel that the proof of an
equivariant Quillen theorem for all compact abelian A requires some additional insight, which,
among others, avoids explicit computations of MU;4 in terms of generators and relations. We
leave this topic for future research.

Acknowledgements: We thank the referee for a number of helpful comments. B.H. is grateful
to the MPI, Bonn, to the IMPA, Rio de Janeiro, and to the IHES, Bures-sur-Yvette, for their
hospitality while parts of this research were carried out. This work was partially supported by
a DFG research grant (B.H. and M.W.), by the DFG Priority Programme SPP 2026 (B.H. and
M.W.), and by the SFB 878 at WWU Minster (M.W.).

2. RECOLLECTIONS ON EQUIVARIANT FORMAL GROUP LAWS

For the notion of equivariant formal group laws, and the basics of the corresponding theory
we refer the reader to [CGKO00]. Here we only recall some of the most important features and
fix some notation. Let A be a compact abelian Lie group. We denote by A* = Hom(A, Sl)
the group of irreducible unitary A-representations. The trivial one-dimensional representation
is denoted by e. An A-equivariant formal group law is given by a quintuple (k, R, A,0,y(¢))
with a commutative ring k, a complete commutative topological k-algebra R, a continuous
comultiplication

A: R — R®R,
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an augmentation 6 : R — k4" and an orientation y(e) € R, such that the following axioms are

satisfied, see [CGKOQ, Def. 11.1], which we here only recall for finite abelian A.

(1) The comultiplication A is a map of k-algebras, co-commutative, co-associative and co-
unital.

(2) The augmentation # is a map of k-algebras compatible with the coproduct, so that ker ¢
defines the topology.

(3) y(e) € R is a regular element in the kernel of #(e), and 6(¢) induces an isomorphism

R/(y(e)) = k.
We obtain an action [ of A* on R by the formula

lo(c) = (0(a™") ®@id)(A(c))

for « € A* and ¢ € R. Moreover, corresponding to o« € A* we have coordinates y(a) =
la(y(€)) € R. Finally, we define Euler classes

() = 0(e)(y(a)) € k.

For explicit computations it is necessary to choose a basis of the topological k-module R. Recall
[CGKO0O, Notation 12.1] that a complete flag F = (V? ¢ V1 € V2 C ...) is a sequence of r-
dimensional complex A-representations V" such that V" C V"*! and each finite dimensional
complex A-representation is isomorphic to a subrepresentation of some V". Given a complete
flag (V"),en we obtain a k-basis (y(V")),en of the topological k-module R, see [CGK00, Lemma
13.2]. In this basis the coproduct A is given by

Aly(v)) = B85y (Vi) @ y(v9)

1,520
with structure constants 51-(7? € k. Let k' C k be the subring generated by the coefficients

ﬁi(}j) and the Euler classes e(a), « € A* and let ' C R be the free k’-module with basis
(y(V"))ren. By an argument similar as for the proof of [CGK00, Theorem 16.1] the coproduct
A restricts to a coproduct on R’ and thus we obtain an induced Z/2-equivariant formal group
law (K', R, A,0,y(e)). We can hence assume without loss of generality that the underlying ring

k of a formal group law (k, R) is generated by the structure constants ﬁi(}j) € k and the Euler
classes e(a). In this case we briefly call k the representing ring of the A-equivariant formal
group law.

It is sometimes important to consider graded A-equivariant formal group laws (k, R). This
means that & and R are Z-graded rings, where for r > 0 the basis element y(V") sits in degree
—2r, and the coproduct, the A*-action and the augmentation are grading preserving. In this
case the structure constants BZ(Z) are homogeneous of degree 2(i + 7 — r) and the Euler classes
have degree —2. The most prominent example is the universal A-equivariant formal group law
(La, R). Here we notice that the construction of (L4, R) in [CGKO00, Cor. 14.3] in fact produces
a graded A-equivariant formal group law. With this grading the classifying map

L4 — MUA4

of the formal group law associated with A-equivariant unitary bordism theory is grading pre-
serving. We remark that this grading structure of L4, which plays an important role for our

argument, is not present in [CGKOQ].

3. COORDINATE CHANGE

Let A =Z/2 and let (k, R, A, 0,y(¢)) be an A-equivariant formal group law. We will work out
some explicit formulas relating expansions of elements in R with respect to different complete
flags. Let n € A* be the unique non-trivial one dimensional unitary A-representation and
define e := e(n) € k as the corresponding Euler class. For n > 0 we define a complete flag
F, = (V;7)r>0 as follows:

o V' =¢" forr <nmn,



o VI = en @ (@ )P for p > 0,

o VT —en gy (n@ e @ for p > 0.
In many cases we will work with the so-called alternating flag F1, whose subquotients Vf“ A%
r > 0, alternate between ¢ and 7, starting with e. It has been studied before in [CGKO0,
Appendix C].

We denote by d; € k the coefficients of the expansion of y(¢€) in the topological basis induced
by Fo,
yle) =D di-y(Vy).
i>0

By applying the action [, to both sides we obtain

y(n) =Y di-y(Vi).
i>0
Note that dg = e by definition of the Euler class.
We will now study the coordinate change induced by passing from the flag F, 1 to the flag

F,,. For n > 0 a basis element induced by Fj,;1 has one of the following forms:

* y(e), ... y(e)",

o y(e)" (y(n)y(e))” with p > 0,

o y(e)" H(y(n)y(€))Py(n) with p > 0.
The basis elements of the first and last type are also part of the basis induced by Fj,. Therefore
we only have to express the basis elements of the second type in the basis induced by F,,,

()™ y(my()” = y(e)" (y(y(e))” Z di - y(Vg)
= ()" (wmy())” D (dai - (y(€)y(m))" + daiyr - (y()y(n))'y(n))

(2

N Z (d2i - y(&)" (y(€)y ()™ + dai1 - y(e)" (y(e)y () Py(n)).

This implies the following coordinate change formula.

Lemma 3.1. Let n > 0 and

Sty =Y A y(Vi) R,
i>0 i>0

with coefficients v

1
o ' = AL for i <,

_ 1 +1
o =Apt + e

and ;' in k. Then we have

Given two flags F}, and F,, where n,m > 0, we have a topological basis (y(V}}) ®y(V#‘L))Z-7j20
of the complete k-module RQR. We denote by B 3m € k the coefficients in the expansion of
A(y(e)) with respect to this basis,

(3.1) Aly(e) = > B - y(Vi) @ y(Vih).

1,520
Note that we can study coordinate change formulas seperately for the index pairs (n,i) and
(m, j) while fixing the other index pair. Keeping Lemma B3] in mind we will now introduce
some special elements in k:

e For 0 <i<mnand 0 <j<m the coefficient 3" Jm is independent of n, m and we denote
this element by «; ;.
e For 0 < n and 0 < j < m the coefficient BZ’]m is independent of m and we denote this

element by o, ;.
0,m

e For 0 < m we set 7, = By,



Lemma 3.2. The elements o j, 0y, j and Ty, satisfy the following relations:
a) 70=0, opp=¢e, 010=1and o,0=0 forn>1,
b) opnj — anj = eonq1; for all j,n >0,
C) Tm — O0m = €Tm+1 for all m > 0.
Proof. By the equivariance of the comultiplication with respect to the action [, and using l?] =

l,2 = id, we have

= > B by (V) @Ly(V) =" 8 - y(Vy) @ y(1g).
7]>O 1,7>0

We conclude 79 = 0 0 = ﬁo o = 0, the last equation by the co-unitality of the coproduct. Also,
for n > 0, we have

y(e)zl( (€)) = (8(e) ® Id) o A(y(e))
€) ® 1d) Zﬁ"“" i) @ y(Vi))

Z ,Bn+1 n
- 0,5
n,n+1 n+1,n

Moreover we have 0,9 = /Bn,O =By, the first equation by definition, the second equation
by symmetry of the coproduct. Since for n > 1 we have y(V,}) = y(e), and y(e) = >, d; - y(V{)
with dy = e by the definition of the Euler class, the remaining parts of assertion a) follow.

Assertion b) and c) follow from the second coordinate change formula in Lemma 3] which
implies, for n > 0 and j < m,

1 1
anj =B =BT — B = O — €oniy

and for all m >0

00,m = 0, ‘mal = — €Tm+1-

O

Definition 3.3. The given equivariant formal group law is called tame if d; = 0 for all 7 > 1
and d; =1, i.e. if
y(n) = y(e) + e and y(e) = y(n) + e

Note that for tame equivariant formal group laws we have 2e = 0. The additive equivariant
formal group law (cf. [CGKO00, Appendix A]) is tame. Another tame group law will be described
in Example [£]] below.

Lemma 3.4. For a tame equivariant formal group law the coefficients appearing in Lemma 31l
satisfy the following relations:

oyl V' ifi<nori#n mod 2,
! W —e- v, ifi>nandi=n mod 2.

Proof. This follows by the calculation preceding Lemma [B.T] together with the fact that dy = e,
dy =1 and d; = 0 for all ¢ > 1 for tame equivariant group laws. O

From this we derive the following coordinate change formula.

Lemma 3.5. Let the given equivariant formal group law be tame. If i > n, then in the formula

+1
n szné 6 rVH—Za

which is implied by Lemma[3.4), the coeﬂiczents Tin,e satisfy the congruence

o= (PH1070)
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if i + ¢ is even. Here [—] denotes the Gauf§ bracket.

Proof. The assertion is clear for n = 0. In the induction step we assume the assertion holds for
n = ng. Assume that i > ng+1,0< /¢ <ng+ 1 and i + £ is even. We distinguish the following
cases:

e ng and i (and hence also ny and ¢) have the same parity.

e ng and i (and hence also ny and ¢) have different parities.
In the first case we have

,yin0+2 _ 'Y@'TLO+1
such that by the induction assumption and the fact that ng and £ have the same parity
i =i = (1007 OR) (000 gy

completing the induction step. In the second case we first notice that the assertion of the lemma
is clear for £ = 0. In the case £ > 0 we have

no+2 __ . no+l no+1 _ _no+1 no+1
Vs =7’ —evf =70 teyy] mod?2

such that, again by the induction assumption,

B R G

Ting+1,6 = Ting,t T Titlnol—1 = ( , /—1

Using the fact that ng and ¢ have different parities the last sum is equal to

<€ -1+ [((no;r 1) - 5)/2]> . (5 -1+ [((ZojL 1) - 5)/2]> _ <€ + [((no ;1) - 5)/2])

completing the induction step in the second case.

4. A SECTION OF THE CLASSIFYING MAP Azy2t Lzjs — MUf/2

Let A = 7Z/2 and let the coproduct of the universal non-equivariant formal group law be
given by A(z) = Zij a;j - 2' ® 27, where the elements a;;, i, 7 > 0, generate the non-equivariant
Lazard ring L [[55]. By [SOI, Section 2] the coefficient ring MUZ of A-equivariant unitary
bordism is given as an algebra over L by generators s,;, n,j > 0, and t,,, m > 0, and relations

e tp=0,s190=1and s,0 =0 forn >1,

® Spj — Anj = €Sp+1,5,

® 1y, — Som = €lmt1-
Here e is an abbreviation for sgg, and this element corresponds to the Euler class in MUf‘Q
associated to the representation 7.

Example 4.1. Introducing the additional relations

° aij:Ofori—i—jZQ,

® so1 =1,s0;=0forj>2, 5, =0for j#2andn >1,

ety =1,1,=0form>1,
we obtain a tame 7Z/2-equivariant formal group law with a representing ring which is given as
a Zl[e]/(2e)-algebra by generators spa, n > 1, and relations esia = 0, sp2 = esp412 for n > 1.
When viewed as a graded equivariant formal group law all elements of positive degree in this
ring are infinitely e-divisible and e-torsion.

We now combine this description of MUZ with the calculus developed in Section
Proposition 4.2. The assignment
® ;j —r Qyj,
® Spj — Onj,
® Iy = Ty



defines a graded Ting map jia : MU:1 — L which satisfies Aq o pag = id.

Proof. By the relations for the generators for MU*A given by Strickland and by Lemma[B.2]above
we indeed get a well defined ring map MU*A — Ly.

It remains to check that the canonical map Ag: L4 — MU:1 sends the elements «;;, 0,5 and
Tm to the elements a;;, s,; and t,,. Consider the commutative diagram

Ly A MuA

L

La—A Mud
relating the map A4 to the induced map of completions at the ideal (e).
The map A4 can be identified with the identity L[[e]]/[2](e) — L[[e]]/[2](e), using the canon-
ical isomorphism L4 = Li[e]]/[2](e) from [GO1, Cor. 6.6], which is induced by «;; — a5, e — e,

—

and the L-algebra isomorphism MU# 22 L[e]]/[2](e) from [SOI, Section 4].
Furthermore the completion map

MUZ — MUZ = L[[e]}/[2](e) = MU~*(BZ/2)

appearing as the right hand vertical map in the above diagram can be identified with a “bundling
map” of tom Dieck, which, in the case relevant for us, was shown to be injective in [tD70), Prop.
6.1 and preceding explanations]. Alternatively the injectivity of the completion map follows
from the results in [SOT].

We therefore need to show that o,; and s,; on the one hand, and 7, and ¢, on the other, are
mapped to the same elements under the left and right hand vertical maps in the above diagram.
By the recursive formulas for ¢,,; and 7, from Lemma and the corresponding formulas for
spj and t,, from [SOI, Section 4] we arrive at the equation

Onj = Y anyeje’ = snj € L{[e])/[2)(e)
£>0

and this implies, in a similar way,

T =D O0miee’ =) somiee’ = tm € L[[e]]/[2)(e).

>0 >0

5. PROOF OF THE MAIN THEOREM

In this section we explain the proof of Theorem Let us write the coproduct of the
equivariant formal group law of Z/2-equivariant unitary bordism as

A(y(e)) = Y Bij-y(V) @y(V7),

4,520
with 3;; € MU%/Q, where we use the alternating flag (V") = (V/"). Setting
Yij = Hzs2(Bij) € Lz o,

with the map pgz/o : MU%/ S Lz from the previous section, the coproduct of the universal
7 /2-equivariant formal group law takes the form

Aly(e) =Y (i + pij) - y(V) @ y(V7).
i
7



This defines new structure constants p;; € Lz measuring the deviation from ugz/, being sur-
jective (and hence from )z, being injective). Note that p;; = 0 for i+ j < 1 and p;; € ker Az
for all 4, j. Hence each p;; is infinitely e-divisible and e-torsion [GOI]. In particular,

Pij * Ppq = 0
for all 4, ,p,q > 0.

Lemma 5.1. The kernel of the canonical map Mgy @ Lz — MU%/2 1s equal to the square zero
ideal generated by ppq, p,q > 0.

Proof. It is clear that the given ideal is contained in ker Az/,. Conversely, note that Ly is
generated as an Zle, v;;]-module by the elements 1 and py,. If 2 € Lz lies in the kernel of
Az/2, then the coefficient of 1 in some expansion of x as a linear combination of these generators
is equal to 0, because each pp, lies in ker Az 5 and Az /5 in injective on Zle,vij]-1 C Lz,/5. Hence
x lies in the ideal generated by the elements py,. O

The proof of Theorem is based on the following two results, the first of which provides
an efficient estimate of the order of the e-power torsion of p;;.

Theorem 5.2. We have o
pititl pi; =0

for alli,j > 0.

This is proven in Section [B, where we introduce and investigate a normalization functor,
which turns any Z/2-equivarant formal group law into a Z/2-equivariant formal group law with
Euler class equal to 1.

Let a;; € L denote the structure constants of the universal non-equivariant formal group law,
/2

. . Z . . .
considered as elements in MU,”" as in Section @l Recal a;; = aj;, ag; = d1; and a;; carries a

grading equal to 2(i + j — 1). Next, let J C M *Z/2 be the ideal generated by a;j, s,;, and t,,,
with i+j > 2, n+j > 2, and m > 2. In particular this ideal is generated by elements in strictly
positive degrees. By the calculations in [SO1] the remaining generators of MU%/ 2, as an algebra
over Lle], satisfy the relations t; = 1 + e(s11 + t2) and sg; = t; — eto = 1 + esq1, and hence we
get
MUZ2 17 = 7e]/(2e).

Let J C Lz,5 be the ideal generated by ,uZ/Q(J) C Lgzs, or, in other words, generated by aj,
Onj, and Ty, with i4+j > 2, n4+j > 2, and m > 2. We obtain an induced Z/2-equivariant formal
group law with representing ring Lz s /J. In Section [ we will show by an explicit computation
that this is in fact the additive Z/2-equivariant formal group law. This implies the following
fact.

Theorem 5.3. Ly 5/ J = Ze]/(2e).

After these preparations we are in a position to prove Theorem Let some 4,5 > 0 be
given. We claim p;; = 0. This holds for i + j < 1 by the co-unitality of the coproduct on Lz 5.
We therefore can assume 7 + j > 2, which implies that the degree of p;; is positive.

We abbreviate Az/3 by A and pz/, by p. Since the degree of p;; is positive, Theorem

implies
Pij = Z Ve e
J4
with a finite sum on the right hand side, where each v, € u(J) and xy € Lz/5. Let us define

8 = po N axy) and x) := xp — Jy .

Because each x, € ker A we have A(}_ 7 - 2}) = 0 and hence

> e 00 = (o N ve-60) = (wo N e we) = o Mpig) =0.
8



The first equation holds because Y 7, -y € im p. We conclude
Pij = Z Ve -
l

where each zj is in the ideal ker A, which is equal to the ideal generated by the elements p,q by
Lemma 5.l Repeating this process several times we conclude that for each N > 0 there is a
relation of the form
Pij = Z Cpq * Vpq * Ppq
X
where cpq € Lz and vpq € p(J )N the N-th power of u(J). Because each generator of J has
degree at least 2 we conclude, by comparing degrees of the right and left hand sides of the last
equation, that ¢y, - p, must be divisible by P4 1+N=(+i=1) For N = + j + 1 the exponent
satisfies
prq—1+N—-(i+j—1)=p+q+1.
Hence for N =i+ j + 1 we get ¢pq - Vpq - ppg = 0 for all p, ¢ by Theorem We must therefore
have p;; = 0, as required.

6. NORMALIZATION FUNCTOR

Let (k,R,A,0,y(¢)) be a (graded or ungraded) Z/2-equivariant formal group law. As before
the Euler class is denoted by e, which sits in degree —2, if (k, R) happens to be graded. Passing
to the quotient ring k/(e — 1) we obtain a new, ungraded Z/2-equivariant formal group law
with Euler class equal to one. In this section we will present a different way to associate
to (k,R,A,0,y(e)) a Z/2-equivariant formal group law (k’, R, A’,6',y'(¢)) with the following
properties:

e k'is a subring of £/ Ann(e?), where Ann(e?) is the annihilator ideal of the multiplication
with e2. If (k, R) is graded, then k' is concentrated in degree 0.

e The Euler class of (K, R') is equal to 1.

e The construction is functorial in (k, R, A, 0,y(¢)).

e For the formal group law (k = MU%/ Q,R), associated to Z/2-equivariant unitary bor-
dism, the formal group law (K, R) is the universal Z/2-equivariant formal group law
with Euler class equal to 1.

Definition 6.1. We call (k', R', A’ ¢,/ (€)) the normalization of (k, R,A,0,y(e)).

Our construction is based on the description of equivariant formal group laws relative to flags,
see [CGKO0, Section 12]. We work with the alternating flag (V") = (V}") throughout. Let the
coproduct of (k, R) be given by

Aw(VD) =3 15wV @y(v9).
i,j>0
Furthermore let ‘ ‘
y(n) =D _diy(V) = e+ diy(V").
i>0 i>1
Now consider the free topological k-module T with topological basis (2(V?));>0 where z(V?) := 1
and define the elements

z(e) := 2(V') and 2(n) := 1+ Z e diz(V?)
i>1
of T'. We define a k-bilinear multiplication on T' as follows. If at least one of r and s is even,
then we set
2(VT) - 2(V®) i= 2(V7F9),
Furthermore, we set
(V) 2(VH) =2V + ) e (V)
i>1
9



and define

(VT L (V2T = (VT2 (V) 2(V.
This determines a continuous, k-bilinear product on all of T'. It is easy to check that it is
commutative and associative, where the last point follows from the equation

(V1) -2(V1) - 2(V1) = 2(V) - (2(V) - 2(V1))

which is implied by commutativity of the product.

We first have to check that the topological ring T satisfies the conditions (Flag) and (Ideal)
from [CGKOQ, Section 12]. By definition we have

2(VP)z(e) = 2(VP)2(V!) = 2(VPH)
which is consistent with (Flag), whereas by definition of z(n)
AV)2(n) = (V1 + 3 el (V)).
i>1

If this element is equal to z(V?2), then the condition (Flag) is satisfied on T by the definition of
the product on 7.

For this and later calculations we set

Z(VT)=e"2(V") eT
for all » > 0 and consider the map W : R — T of topological k-modules given on basis elements
by
y(V") = Z(V7").

If the original formal group law (k, R) is graded and we consider all z(V") € T as sitting
in degree 0, then the degree of Z(V") is equal to —2r and the map W is grading preserving.
Moreover the definition of the ring structure on 7" together with the calculation

W(y(Vh) - y(V) = W(ey(Vh) + Y _diy(VH) = (V1) + Y _diz(VT) ==z(vV1) -Z(V?)
i>1 i>1
shows that the map V¥ is a ring map. Note that the elements Z(e) := ez(e) and
Z(n) = ez(n) = Y _ diz(V')
i>0
are the images of y(¢) and y(n) under the map W. After these preparations we can calculate

e? - 2(Vhz(n) = 2(V)z(n) = U(y(V1) - U(y(n) = V(y(V') -y(n) = V(y(V?)) = e* - 2(V?).
The fourth equation follows from the relation (Flag) in R. In other words: The coefficients
of 2(V1)2z(n) — 2(V?) € T are in the annihilator ideal Ann(e?) C k. Hence the normalization
condition (Flag) is satisfied in T, if we pass from the ring k to the quotient ring k/ Ann(e?). In
this case also the condition (Ideal) follows immediately.

Next we define an A*-action on the topological ring T'. We set [ := id,

(V) = (V)
and
LAV = (V) - 2(o).
This map is extended k-linearly onto 7. We need to examine the compatibility of [, with the

multiplication on 7" defined before as well as the property l,zz =id.
By definition we have

(V) - 2(V) = (V) -1 (V).
if either r or s is even. If both » = 2p + 1 and s = 2¢ + 1 are odd, then, by definition,
Ly(z(V7) - 2(V?)) = by (2(V#F20) - 2(V1) - 2(V1)) = (VT2 4y (2(V) - 2(V1))

and
y(z(V7) - Iy(2(V®)) = 2(VF20) - 1 2(V) - 1yz(V1).
10



Thus we need to show

For this we calculate
-1y (2(VY) - 2(VY) = 1, Z(VY) - 2(VY) = 1,E(VY) - 1,Z(V!) =2(n) - 2(n) = € - 2(n)=(n).

The second equation uses the fact that the above ring map ¥ is compatible with the map [,,.
For this assertion we notice that indeed [, (Z(€)) = el (2(€)) = ez(n) = Z(n) and

l,(Z(n)) Zszl )=e+Z(n ZszZl ) = Z(e),
i>0 i>1

where the last equation follows from the corresponding relation in R and application of the ring
map V. In summary we see that [, is a ring map on T after passing to the coefficient ring

k/ Ann(e?).
The equation [, oI, = id on T holds after passing to the coefficient ring k/ Ann(e?), because
e-lyz(n) =1,Z(n) =Z(e) = e- z(e)
and l,z(e) = z(n), by definition.
Let us turn to the definition of the coproduct on T.

Lemma 6.2. For the structure constants of the coproduct in R we have
2 2
fé,j) = 02, and efl(J) =0
for all j > 0.

Proof. Recall
=N 12y e y(v).

1,7>0
The first equality of the lemma holds by the co-unitality of A. For the second equality we use
the fact that the coproduct A is compatible with I,,:

A(V?) = Al (V) = Y £12 - Ly (V) @ y(v7).
i,j>0
Hence the second equation in the lemma follows from [,,(V1) = e+ D>t diy(V?) and Ly(V") €
(y(V1)) (the ideal spanned by y(V1)) for all » > 2, by comparing coefficients and using the first

part of the lemma. O
Now we set
Az(e)) = et (v @ 2(V9),
i,j>0
AGRVE) = > 2P (Vi @ (V).
i,j>0

Note that on the right hand sides only non-negative exponents occur at e, by the co-unitality
of the coproduct A on R, compare the first part of Lemma [6.21 We now deﬁne forp>1,

A(z(V?)) = A(2(V2))P,
and
A(VPH)) == A(=(V?)) - A2(e)).
Tt follows from the definition of the multiplication on T" and from the second part of Lemma[6.2]
that this extends to a continuous map
A:T —TRT
after passing to the coefficient ring k/ Ann(e?). We also notice that this coproduct A is com-
patible with the coproduct on R and the ring map ¥ : R — T'. By definition
A(z(V7T) - 2(V?)) = A(z(V")) - A(z(V?))
11



if at least one of r and s is even. If r and s are odd, then we only need to check
A(z(V) - 2(Vh) = A((VD) - A(z(V1).

Applying the same reasoning as before we know that this equation holds after multiplication
with e?, by using the corresponding relation for the coproduct on R. Hence this equation holds
after passing to the coefficient ring k/ Ann(e?).

Next we check compatibility of A with the left A*-action on T'. Because this action is by ring
maps, it is enough to check

e A(z(n) = (I, ®id)(A(z(€))) = (id ®l,)(A(z(€))),
o A(z(€)) = (I ®id)(A(2(n))) = (id@ly)(A(2(n))),
o A(z(e)) = (ln ® ln)(A(Z(E))a
o A(z(n) = (Iy @ Iy) (A(z(n)).

All of these equation are true after multiplication with e, hence we are fine if we work over the
coefficient ring k/ Ann(e?). Finally we check co-associativity. Because A is multiplicative on T,
if we work over the coefficient ring k/ Ann(e?), it is enough to consider the equations

(A®id)o A(:() = (id®A) 0 A2(e))
and
(A®id) o A(z(V?)) = (Id®A) o A(z(V?)).
The first equation holds after multiplication with e, and the second equation holds after multi-
plication with e?. Hence both equations hold after passing to the coefficient ring &/ Ann(e?).
In summary, using the discussion of [CGKOQ0, Section 12|, we have defined a Z/2-equivariant
formal group law (k/ Ann(e?), T, A, 6, z(¢)), where we write T instead of T/(Ann(e?)) by a slight
abuse of notation. The augmentation @ : T — (k/ Ann(e?))4" is given by the constant term in
the expansion relative to the flag (V]') (resp. relative to the flag (V{])), at the representation e

(resp. at the representation 7).

By definition this formal group law has Euler class equal to 1. Now we let k' C k/ Ann(e?) be
the subring generated by the coefficients e+7—1 fl%), i,7 > 0, of the coproduct on T' (regarded as
elements in k/ Ann(e?)) and define R as the free topological k’-module with basis (2(V")),>0.
If (k, R) is graded, then £’ is indeed concentrated in degree 0. Regarding R’ as a subset of T
we note that the product, coproduct and A*-action on T restrict to corresponding structures
on R/, compare [CGK00, Theorem 16.1]. Also the augmentation 6 restricts to an augmentation
0 : R — (K')?". Setting /(€) := z(€) this concludes the construction of (&', R',A’,¢,y/(¢)).
The functoriality of this construction is clear.

The next result highlights an important example.

Proposition 6.3. The normalized formal group law R’ associated to Z./2-equivariant unitary

bordism k = MU%/ 2 s the universal Z /2-equivariant formal group law with Euler class 1.

Proof. Set k = MU%/ 2 and let R be the topological k-algebra of the associated Z/2-equivariant
formal group law. We work with the notation from [SO1], repeated in Section @l above. By [S01,
Cor. 10] the annihilator ideal Ann(e?) C k is generated by (¢; + 1), and in fact equal to the
annihilator ideal of the multiplication with e. By Section d] we can identify the distinguished
generators a;j;, t,, and s, of k with certain coefficients of the coproduct A(y(e)) in R developped
with respect to suitable flags. By our definition of the coproduct on R’ the ring k" is therefore
the subring of k/(t; + 1) generated by the elements

itj—1

n+j—1

e = R 7 . m—1
a;j =€ ajj , Spji=¢ Snj, tm i =¢€ tm,

withi4+ 35> 1, n+7 > 1, and m > 1. These elements are only subject to the relations

%m — Som = %erl ) gnj - anj = §n+1,j

for all m, j, and n. This implies that & is generated as a Z-algebra by the elements @;;, i+j > 2,

and 3¢,,, m > 1, where the generators @;; satisfy the same relations as in the non-equivariant
12



Lazard ring and Sp,, are free polynomial generators. Using Strickland’s calculation of k& we
hence conclude, on the one hand, that the quotient map k +— k/(e — 1) induces an isomorphism

K ~k/(e—1).
On the other hand we observe that Lz/,/(e — 1) is the underlying ring of the universal Z/2-
equivariant formal group law with Euler class equal to 1. But the classifying map

)‘Z /2" LZ /2 — k

is surjectivce and elements in the kernel are Euler torsion, see [GOI]. It hence induces an
isomorphism

Lzja/(e —1) 2 k/(e —1).
This finishes the proof of Proposition O

We are now in a position to prove Theorem Consider the classifying map
A: Ly — k= MUY

of the equivariant formal group law of Z/2-equivariant unitary bordism and the section p of
this map constructed in Section[d. Applying the normalization functor we obtain induced maps
N:Ly,— K and p' : kK — L7, /o satisfying N o/ =1id, by functoriality. Furthermore we have

7/2
M/(eiJrjflﬁij) — eiJrjfl,yij
by the definition of 3;; and 7;; in Section Bl Proposition implies that the equivariant formal
group law for L7, /2 is classified by a ring map
qb . ]C/ — LIZ/2

Because both X and ¢ are classifying maps, they are inverse to each other, and because N oy’ =
id we in fact have ¢ = u/. Since
o(e 1 Biy) = € (v + pig)
this implies ‘
BZ—H_lpZ’j =0¢c L/Z/Q

/

Finally, because L;, /2

C Lyzys/ Ann(e?), this implies the equation
it g =0
in Lz/y, and hence the assertion of Theorem

7. COMPUTATION OF A PARTICULAR Z/2-EQUIVARIANT FORMAL GROUP LAW

Let (Lz/2, R, A, 0,y(€)) denote the universal Z/2-equivariant formal group law. We consider

the graded ideal J C Ly /2 defined in Section [, spanned by the homogenous elements a;;, oy
and T, for i +j > 2, n+j > 2, and m > 2. The resulting 7 /2-equivariant formal group law
(Lzy2/J,R/(J),A) has the form

A(V)) =y @ t+1@y(Vi) + D piy-y(Vi) @ y(VY)
4,520
with respect to the alternating flag. By abuse of notation we here denote by p;; € Lz/» /J the
images of the structure constants p;; introduced in Section Bl In particular we have p;; = 0 for

i+ 7 < 1 and the p;; are all infinitely e-divisible and e-torsion, such that all products p;; - ppg
are equal to 0. Also recall that p;; = pj;; for all 4,5 > 0.

The section pgz/; : MU%/2 — Lz induces a section MU%/2 /J — LZ/Q/j of the canonical
map A : Lyo/J — MUZ/2 /J. We can hence consider MUZ/2 /J = Z[e]/(2e) as a subring of
Ly)3/J. In particular 2e = 0 in Lz/,/J and therefore

2- pij =0
13



for all 4,57 > 1, by the e-divisibility of p;;. This will simplify the following computations
considerably.

Notice that the kernel of A : Lz /J — MU%/ 2 /J is generated by the structure constants p;;.
In the remainder of this section we will show that all p;; =0 € Ly, /J. This assertion implies
Theorem

The structure constants p;; € Lz /o /J underly the following restrictions:

(1) The comultiplication A is co-associative.
(2) The elements oy, ; € Lz, n+j > 2, and 7y, € L5, m > 2, map to 0 in the quotient
ring Lz /J.
At first we will explore Restriction (1), which results in Proposition [[Il Then, in Propositions
[7.3] [7.4] and we will derive implications from Restriction (2), making use of the coordinate
change formulas from Section [3l After these preparations the proof of p;; = 0 will be completed
at the end of this section.

As a shorthand we use the notation 2" := y(V{) € R/(J), r > 0, for the basis elements
corresponding to the alternating flag. We warn the reader that in the ring R/(.J) we cannot
assume the relation 2" - 2" = 2"1F"2 for ri, 7y > 1.

The Z/2-equivariant additive formal group law (kq, Ra, A, 04, ya(€)) with representing ring
ko = Zle]/(2e) defines structure constants fi(;) € Z[2]/(2e) for r > 0 by the equation

Ag(ya(V1)) = Z f(r)ya(vli) ® ya(vlj)'
i,7>0

(r)

We now define pij € LZ/Q/j by the equation

A(ZT) = Z (f(r) (7")) S @

4,520

In particular pz(()j) = 0, pz(lj) = p;; for all 4,7, and all p

u?

(r)

Z. .

are in the kernel of A : Ly /] —

J and hence lie in the ideal spanned b , p,q > 0. In particular 2 - ™ — 0 and
/ p Y Ppg> D4 p Pij

pg]) ’ p;g)q) = 0 for all Z’J’T and b, q,s.

We obtain
(A®Id)oA()=(A® 1d><2<f}},2 + p§},3> 2 @ )
j,k
lym,j.k
= > Jk+p”f + D50 A @@ 2,
lym,j.k
Here we use the vanishing of products of p’s. Similarly we have
(@A) o A(z) = > (f £ + o0 11 + 1AL - @ 2 @ 2.
l,m,j,k

Taking into account that the comultiplication A, is co-associative, these calculations together
with the co-associativity of A imply that for all k,1,m > 0 we have

(7.1) S o8y =S, £ o).

v>0 v>0

Observe that this is a finite sum on each side, because the comultiplication A is continuous.

(r)

Since the equation 2 - pij =0 holds for all i,j,r, we need to compute the images of the

elements f,Eg) in Z/2[e] when evaluating Equation (7I]). In the following we use the shorthand
14



notation x” := y,(V{), = := z'. In particular 2?> = x - (z + ) = 22 + ex, 2*" = (2 + ex)" and
22t = 2. (2% + ex)” for all n > 0. We have A, (r) =2® 1+ 1® x and

Ag(z?) = Ag(z) Ag(z+e)=2@1+102) (z@1+1@z4+e-101) =201 +1Q 22,

after passing to the representing ring Z/2[e]. Hence (for even and odd r) we obtain

T
Az =zl+1lez) = Z <T>x5 ®z"0.
S
s=0
This happens to be the same formula as for the additive non-equivariant formal group law with
coordinate z. In Z/2[e] we hence obtain the equality

1) _ {(p;q) ifr=p+gq.

0 else.

Recall that (p ;q) is equal to 0 modulo 2, if and only if in the binary expansions of p and ¢ the
digit 1 occurs at the same position, or, in other words, if the binary addition of p and ¢ involves
carryovers.

We arrive at the following conclusion resulting from Restriction (1).

Proposition 7.1. LZ/Q/j is generated over Z[e]/(2e) by the elements p;j, i+ j > 2, and these
elements satisfy the following relations.
a) pij - Ppg =0 and 2p;; = 0.
b) If i,5 > 1, if either i or j is not a power of 2, and if the binary addition of i and j
involves carryovers, then

pij =0 € Lz /J.
c) If neither i,j > 1 nor p,q > 1 fall in the case b), and if i + j = p + q, then

Pij = Ppq-

Proof. Tt remains to deal with parts b) and c). Both of them follow from Equation (], where
(¥) ¥)

Lo &m can only occur with a factor 1, if v = 1, by our

we observe that the elements p, ’ and p

previous computation of fé}q) as elements in Z/2[e].

For part b) we write
i= Zwig-Qg and j = ijg-Qe
£20 >0
with w;e, wje € {0,1} where 4, say, is not a power of 2. We choose ¢; with w;, = wj,, = 1.
Then the assertion follows from Equation (1) with k = j, [ =i — 24 and m = 24,

Now we turn to part c). If i and j are both powers of two, then under the given assumptions
the same must hold for p and g. We obtain p =i, p = j or p = j,q = i, and claim c) follows
from the commutativity of the formal group law A. It therefore remains to deal with the case
that i, say, is not a power of two. Let us write

i:Zwig-Qé and j :ijg-Qz
>0 >0
with w;e, wje € {0,1} and wje - wj = 0 for all £. Choose ¢; with w;,, = 1. Then it follows from
Equation (ZI) with k =i — 24, m =2, [ = j, that
Pij = Pi—201 j4201 -

In other words, we can shift the binary digit 1 at position ¢; from the left to the right hand
subscript of p. From this claim c¢) in the proposition follows.
O
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For exploring Restriction (2) we need to work with different flags. Let us write, for n,m > 1,

Aly(Vh) =gV o1+ 1@yVe) + > o™ - y(Vi) @ y(V).

4,520
Note that y(V{') = y(V! ) y(V.1) = 2! by our assumption n,m > 1. By the co-unitality
of A we therefore have on = pgm = 0 for all 4,7 > 0, and, using the notation introduced
in Equation ([BJ]), we have ,0”» =B 3m for i +j > 2 (notice that p}’y" = pgy" = 0 whereas

) = Byy" = 1for n,m > 1). Also note that pllj = pij for i,j > 0, and all p;;" are in the

kernel of the map Ly /2 /7 — MU%/? /J, and hence lie in the ideal generated by the elements
Ppq- In particular all p ™ are 2-torsion and arbitrary products of such elements vanish.

We wish to apply the coordinate change formula in Lemma B4l This was originally stated
for tame group laws. However, for the group law considered in this section the coefficients
d; appearing in the base change formula preceding Lemma B.1] are equal to those of a tame
equivariant law, modulo elements in the kernel of A : Lz, [J = MUZ/ 2 /J, which is equal to
the square zero ideal generated by the elements py,,. Hence Lemmas [3.4] and remain valid
in our case of the (potentially) non-tame group law A, if we apply it to coordinates of the form
APt = p?;rl ™ or 'y;“ﬂ = p?]mﬂ where n,m > 1 and 4,5 > 1. Hence, for all n,m,j > 1 we
have equations

1
(7.2) Py = ZW ¢ Pt

where y,, 0 € Z/2, and for all n,m,i > 1 we have equations

m
n,m—+1 v n,1
(7.3) Pim Z Tmw " € Pimiyus

where each x,,, € Z/2 is equal to the coeﬂi(:lent Zm,m,v from Lemma [3.51 Notice that

Yn,0 = Tm,0 = 1

for all n,m > 1, by the recursive formula in Lemma .4l Let us compute the coefficients z,, ,
in some more cases.

Lemma 7.2. For all ¢ > 0 we have
.%'2q72q =1.
Furthermore, if ¢ > 2, then for all 0 < w < 291 we have
T2 —ww = 0.

—w+1
—w

according to Equation (Z3]). The relation z¢_y, = 0 will be a crucial ingredient for proving
Proposition [7.3] below.

Note that z9a_, is the coefficient appearing in front of ¥ - p' Qq, if we develop pl 2q

Proof of Lemma[7.24 By Lemma and the discussion preceding Lemma we have
W [(m - w>/21>

w

mod 2

Tmw = Tmmw = <

if m + w is even. Evaluating this formula for m = w = 27 shows the first assertion. We now
assume ¢ > 2, 0 < w < 2971 and set m = 29 — w. Then m + w is even because ¢ > 2 and we

obtain X
29 — 2w) /2 29~
= (BN (2
w w
This vanishes because 0 < w < 297! by assumption. Hence the lemma is proven. ]

We can now explore Restriction (2), saying [0y, j] = [rm] = 0 € Ly)/J for n+j > 2 and
m > 2. Let us start with the relation [o, ;] = 0.
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Proposition 7.3. Let p > 1. If 1 < j < 2P is not a power of 2, then we have
1,1
Pop j = 0.
Proof. Let 1 < j < 2P~! be not a power of 2 and assume inductively that we have proven
p;;}j, =0 for all j < j' < 2P where j' is not a power of 2 (this condition is empty for j = 2P —1).

Choose 1 < ¢ < p minimal with 2¢ > j and write j = 29 — w where 0 < w < 297!, Using
Equations (7.2 and (Z.3]) we obtain

2P —129—y
21’ 29wl v 1,1
(7-4) 0= [UZP,Qq—w] = Pop ,20 — z Z Z Yor g - 29—, * +Vp2p+z 20 —w+v *
(=0 v=0
By part b) of Proposition [(T] p2p 20—t = 0 can only occur in one of the following cases:

i) 2P + ¢ and 29 — w + v are both powers of 2.
ii) The binary addition of 2P 4+ ¢ and 2¢ — w 4 v does not involve carryovers.

Case i) is equivalent to £ = 0 and v —w = 0, and the corresponding summand on the right hand
side of Equation (Z4)) is equal to xga_ . - € - pé},{zq (recall that yor o = 1). By Lemma [[L2] we
have x94_, , = 0 and hence this summand vanishes.

Let us now assume that we are in case ii), but not in case i). We claim that 2¢ —w+v+4/¢ < 2P.
In a first step we prove 2¢ — w + v < 2P. Here we notice 29 — w + v < 2P+ because ¢ < p and
v —w < 29. Hence the assumption 29 — w + v > 2P together with 0 < ¢ < 2P implies that in the
binary expansions of both 2P 4+ ¢ and 27 — w + v the digit 1 occurs at position p (corresponding
to 2P), contradicting the assumption of case ii). Because ¢ < 2P — 1 and the binary addition of
2P + ¢ and 29 — w + v does not involve carryovers, the inequality 29 —w + v < 2P in turn implies
29 —w+ v+ < 2P, as claimed before.

Part ¢) of Proposition [l now implies

1,1 1,1
Pov4£,29—wtv = P2p 20 —wtv+e -
Since 27 — w + v + £ is not a power of 2 (by the assumption of case ii) and since we are not in
case 1)) and smaller than 2P (as shown before), the last expression vanishes by our induction
assumption, if either ¢ > 0 or v > 0.
In summary Equation (7.4]) simplifies to 0 = pé;{zqfw, finishing the induction step.
O

Proposition 7.4. Ifi,j > 1 and either i or j is not a power of 2, then
1,1
pij =0
If i and j are both powers of 2, then we have the relations
i 1,1

1,1
p” +epy ;=0 andp” —i—eﬂpwj:(),

Proof. The first assertion follows from Proposition and the parts (b) and (c) of Proposition
[Tl Using the first assertion and Equations (7.2)) and (3] we have

oP_1 24
+v 1 1 24 1 1
0= [o9p 24| = E E :927’,3 cL2a, ¢ Pap 02041 = Pzp 20 T €7 Py 20+1
(=0 v=0

for all p,q > 0, where we use yor o = 24,0 = ¥4 2¢ = 1, the last equation by Lemma [Z.21 Hence
we have
1,1
pij + e =0
if 7 and j are powers of 2. The remaining claim follows by interchanging 7 and j. O
Finally we get the following uniform Euler torsion estimate. Here we use the relation [7;,] = 0

for m > 2.
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Proposition 7.5. We have
1,1
e-p;; =0

for all j > 2.

Proof. The assertion follows from Proposition [[4] if j is not a power of 2. It hence remains to
handle the case when j > 2 is a power of 2.
First we need some preparation. Write the coproduct A(z) = A(y(e)) as in Equation (B

in the form
= B y(Vg) @y(Vi),

1,j20
where we henceforth assume m > 1. For all j > 2 we then have (recalling Bi i pl ¥ " for
i+j>2)
(75) DB w(V) @u(Vi) =D 8wV @uVi) =D ey y(V) @ y(V4).
120 120 120

According to the base change formula preceding Lemma [3.I] we have

o) ey = { P, WD eV forvent |
J i (e (V) @u(Vin) +y(V§) @ y(Vin)) for odd i,
again using the fact that modulo the ideal generated by the elements p,, we have dg = e, d; =1
and d; = 0 for ¢ > 1. Comparing coefficients of the left and right hand side in Equation ({Z3])
we obtain
/803 _pOJ +ep1j
for all 7 > 2. We have p(l];” = 0 for 7 > 0 by the co-unitality of the coproduct A, hence the last
equation implies
0,m 1,m
Bo,j =€P1,5
for all j > 2.
After these preparations let j > 2 be a power of 2. Since epijl., =0, if 7/ > 3 is not a power
of 2 (by Proposition [T4]), Equation (.2)) shows

¢ 11 1,1
Boj =epj=e-d wee Prjre =€ Prje
where the first equation follows from the preceding remarks. We therefore get
, 1,1
0=[r] = 50] =€ P1;
as required. This finishes the proof of Proposition [7 O

Now let ¢ = 2P, j =29 p,q > 0, where we assume p < g without loss of generality. Applying
Proposition [(4] several times and using Proposition we get

j—op—1 11 i D 1,1
— 2 (@-1),bl g,

L1 51,1 -
Pij = € Par 2 Pop—1 2 — =€ P1,2;

This finishes the proof of Theorem
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