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Impurity accumulation in the core plasma leads to fuel dilution and higher

radiative losses that can lead to loss of H-mode and to thermal collapse of

the plasma and eventually even to a disruption in tokamaks. In present

experiments, it has been shown that ELMs at sufficiently high frequency

are required to prevent W accumulation in the core, by expelling impurities

from the edge plasma region, thus preventing their penetration into the

plasma core. We present a full-orbit particle extension of the MHD code

JOREK suitable for simulating impurity transport during ELMs. This

model has been applied to the simulation of an ELM crash in ASDEX

Upgrade, where we have quantified the displacement of W particles across

flux surfaces. The transport mechanism is shown to be the particle E×B-

drifts due to the electric field created by the MHD instability underlying

the ELM. In- and outwards transport is observed as a series of interchange

motions leading to a superdiffusive behaviour. This causes particles near

the plasma pedestal to move outwards, but also particles outside of the

pedestal to move inwards. This has important consequences for operation

with W in ITER, where it is expected to be screened in the pedestal, and

ELMs are shown here to increase the core W density. A comparison with

existing diffusive modelling is made, showing a qualitative agreement and

the limitations of this simplified modelling approach.
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Team 2017 Nucl. Fusion 57 102015.
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I. INTRODUCTION

Tokamak operation with tungsten (W) plasma facing components (PFCs) has

many operational advantages regarding fuel retention and lower wall erosion, lead-

ing to increased lifetime of the PFCs. The PFC of the ITER divertor will be

tungsten1. The main drawbacks for its application in fusion reactors concern W

contamination of the core plasma and melting of the PFCs by transient events;

although the melting temperature for W is the highest of any metal the energy

fluxes in these events in a fusion reactor are expected to be large enough to po-

tentially cause W PFC surface melting2. Sputtered W accumulating in the core

plasma leads to higher radiative losses that can cause a back-transition from H- to

L-mode, a thermal collapse of the plasma or even a disruption. Relative W con-

centrations in the range of a few 10−5 are expected to significantly decrease fusion

performance in ITER and next step devices3. This pollution must be controlled

to have reliable H-mode operation, for instance by triggering frequent ELMs with

pellet injection or by vertical position oscillations. ELMs at sufficiently high fre-

quency can prevent W accumulation in the core4, by expelling impurities from the

edge plasma region5,6. This effect is more pronounced for high-Z impurities given

the large inwards edge neoclassical pinch that they are subject to and the ensuing

edge impurity density peaking in present experiments. The effect of ELMs on

high-Z impurity outflux in ITER, however, remains uncertain given the expected

impurity screening in the plasma pedestal7. There is circumstantial evidence that

in some cases ELMs can contribute to the increase of W influx in the core plasma

that leads to an increase of edge radiation and a decrease of the pedestal temper-

ature8.

Besides preventing accumulation in the core, ELMs also play a role in creating

impurities. The higher heat fluxes and plasma temperatures in the divertor region

during an ELM greatly increase the sputtering yields and cause most of the im-

purity production9. It is thus important to keep the power fluxes impinging onto
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the divertor during ELMs at a sufficiently low level that avoids melting of the W

PFCs and large W impurity production. Calculating this impurity production and

subsequent neoclassical transport in JOREK is currently under investigation but

out of the scope of this article.

Heavy impurities can be transported up the fieldlines and neoclassically inwards

by the temperature gradient force, until a balance with temperature screening

effects is established. During the inter-ELM period this sets up a density profile,

often with a peak in the pedestal top region, which is then altered strongly by the

ELM7,10.

The MHD instability causing the ELM creates strong electric fields, leading to

perpendicular E×B flows with an RMS velocity of hundreds of m/s in the peeling-

ballooning mode vortices in the outer regions of the plasma. This is much faster

than either neoclassical or turbulent transport. Here, the transport of W due to

the ELM MHD instability is evaluated by tracing the full orbits of collisionless

Tungsten ions in the 3D perturbed electric and magnetic fields obtained from a

JOREK11,12 nonlinear MHD simulation of an ELM in ASDEX Upgrade13.

This will provide insight into the nature of radial heavy impurity motion due

to ELMs, which is important for present experiments and the extrapolation to

ITER. In ITER, while unmitigated type-I ELMs are unacceptable in the 15MA

plasma current experiments they are potentially acceptable at the half-current

scenarios (up to 7.5 MA)2. Mitigated small ELMs, such as those triggered by

pellet injection or by vertical kicks14 are characterised by the same underlying

MHD mode (i.e. ballooning-peeling mode), leading to an interchange motion of

the tungsten distribution similar to that shown in the rest of this paper.

In this paper, we provide insight into the nature of this motion and the underly-

ing physical mechanisms. Relevant questions are for instance whether the motion

is caused by electric or magnetic field fluctations, and to what extent it can be

described by a convection-diffusion model.
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In Section II we introduce the kinetic particle extension to JOREK and explain

the numerical methods used. Section III contains results for particle transport in

a realistic multi-mode (n = 1..8) simulation of a type-I ELM in ASDEX Upgrade.

We will discuss the validity of 1D diffusive ELM flushing modelling in Section IV.

In Section V we summarize our findings and indicate directions for future research.

II. FULL-ORBIT PARTICLE TRACKING IN NONLINEAR MHD

SIMULATIONS

To simulate W motion in time-varying fields, we have implemented a kinetic

particle tracer and coupled it to the non-linear MHD code JOREK11,12. This sec-

tion describes the algorithms used and provides an overview of the implementation.

A diagram of the code operation is shown in figure 1. A more detailed description

of this particle extension, including a feedback from the impurity distributions and

the associated losses to the plasma (radiation, ionization, etc.) into the reduced

MHD equations can be found in15.

The charged particle trajectories are determined by the Lorentz force F =

q (E + v ×B), leading to orbits around the magnetic field lines. These are in-

tegrated with the well-known Boris integrator16, a leap-frog type scheme17. The

positions and velocities are staggered in time, shifted by ∆t/2. The velocities

are known at the half-timesteps, vn+1/2 and the positions are known at the full

timesteps xn. The equation is written in centered difference form, where the mag-

netic term is centered by averaging vn−1/2 and vn+1/2, following18. The electric

and magnetic fields are interpolated from the JOREK simulation at the particle

location at the full timesteps xn.

vn+1/2 − vn−1/2

∆t
=

q

m

[
E +

vn+1/2 + vn−1/2

2
×B

]
, (1)

If we substitute vn+1/2 = v+ + qE
m

∆t
2

and vn−1/2 = v− − qE
m

∆t
2

into (1), E cancels
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FIG. 1. Schematical view of the operations in the JOREK particle tracer. Events are

used for diagnostic output, as well as for reading new JOREK output files.

entirely and we are left with

v+ − v−

∆t
=

q

2m

(
v+ + v−

)
×B (2)

which produces a pure rotation of the velocity vector due to the magnetic field,

leading to the energy-conservation properties of the Boris method. Extra accuracy

is obtained here by replacing f = q∆t
2m

with f ′ = tan(f |B|)/|B| to reproduce the

gyrofrequency exactly. In the JOREK cylindrical coordinate system (R,Z, φ)12

the position update is determined as19

Rn+1 =

√(
Rn + v

n+1/2
R ∆t

)2

+
(
v
n+1/2
φ ∆t

)2

(3)

Zn+1 = Zn + v
n+1/2
Z ∆t (4)

φn+1 = φn + sin−1

(
v
n+1/2
φ ∆t

Rn+1

)
. (5)
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Finally the velocity vector vn+1/2 is rotated to match the change in φ

vn+1/2
r → cosα v

n+1/2
R + sinα v

n+1/2
φ (6)

v
n+1/2
φ → − sinα v

n+1/2
R + cosα v

n+1/2
φ (7)

(8)

where α = φn+1 − φn.

The accuracy of the pusher is tested in appendix A in an axisymmetric, sta-

tionary JOREK equilibrium through conservation of energy and canonical toroidal

momentum Pφ, showing the expected second-order scaling of the Boris method,

and leading to a timestep requirement of 10−8 s or smaller for acceptable accuracy.

We choose a timestep of 10−9 for extra safety margin.

After each particle position update, the new JOREK element-local coordinates

need to be calculated, since the iso-parametric finite element discretisation in

JOREK12, mapping the element-local coordinates ξ = (s, t, ielm) to real-space co-

ordinates x = (R,Z) is not analytically invertible. We can calculate the new

element-local coordinates ξ by using Newton’s method to solve x = F (ξ). Since

space in the elements is typically only weakly distorted, this converges in only a

few iterations. We use a tolerance here of 10−12 m in the L2-norm. Particles that

leave the domain are assumed to be lost.

To speed up the search when no nearby position is known, e.g. in the beginning

of the simulation, we implement an R-Tree20 which indicates the possible elements

containing a point x. Then we use several starting points in this element as initial

guesses for the same algorithm described above.

An interpolation in time between the output files of JOREK is also required,

which are generally not equidistant in time. For this we use third-order Hermite-

Birkhoff interpolating functions, with the local derivatives estimated using non-

uniform second order finite differences, a slight improvement on the method em-
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ployed in21. This yields a C1-continuous interpolation, which is important since

the toroidal electric field is related to the time derivative of the poloidal magnetic

flux ψ in the JOREK reduced MHD models22.

Particle positions are initialised by a rejection sampling algorithm, which can

take arbitrary functions of the MHD and space variables, but is used to sample

uniformly in this work. Once the particle positions have been chosen, the velocity is

sampled from the local Maxwellian velocity distribution and the charge is sampled

from the coronal equilibrium charge state distribution. No other particle sources,

like sputtering, are implemented, since any sputtered particles are very unlikely to

make it into the core plasma during this simulation of a single ELM crash.

After each particle step the ionisation and recombination probabilities in that

time are calculated from the ADAS ADF11 dataset, at the interpolated local

electron temperature and density. Charge-exchange processes are not included.

The particle charge is then updated by drawing two uniform random numbers

ui, ur on [0, 1] and ionizing or recombining if the probability is greater than ui or

ur respectively.

This code improves upon earlier modelling of W transport in stationary fields

(for instance IMPGYRO23, SOLPS24) by having time-dependent electromagnetic

fields. The plasma background evolution is not affected by impurity dynamics.

Particle-background collisions are not included in the present model as a first

approximation, since the collisional slowdown time τs, seen in Table I, is compa-

rable to the correlation time of the E×B drift velocity caused by the ELM (the

ELM eddy turnover time of ∼ 100µs) and the E×B drifts move every species

in the plasma equally. This indicates that the influence of collisional processes

on ELM-induced particle motion is limited. The particle-background collisions

are however necessary for longer-time simulations, for instance to model impurity

accumulation in the inter-ELM period, which we intend to address in future work.

Additionally it is important to note the length of the bounce time tb and the
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TABLE I. Typical values of W properties at the plasma core, top and bottom of the

density pedestal. The temperature T , in keV, density in 1020 [m−3], the safety factor q,

the most probable charge state qmp, the sound speed cs,W in km/s, the gyrofrequency ωg
in MHz, the gyroradius rg and the average banana orbit width wb in mm, the average

banana orbit period tb in ms, the Coulomb logarithm ln Λ and the collisional slowdown

time τs in ms, assuming a 0 and 1% concentration of beryllium in the plasma.

ASDEX Upgrade25,26 JET27 ITER 15MA28

Core Top Bottom Core Top Bottom Core Top Bottom
T [keV] 3 0.6 0.1 5 1.5 0.1 30 4.5 0.3
ne [1020 m−3] 0.7 0.5 0.1 1.0 0.5 0.1 1.2 0.8 0.5
q = 1/ι 1 5 6 1 3 6 1 3 6
qmp [e] 42 24 14 47 30 14 65 45 19
cs,W [km/s] 69 31 13 88 48 13 220 80 20
ωg [MHz] 8 4 2 8 4 2 27 15 6
rg [mm] 1.1 1.0 0.7 1.5 1.5 0.9 1 0.7 0.4
wb [mm] 40 50 40 60 40 50 10 20 20
tb [ms] 2 4 10 3 2 2 0.5 3 19
ln Λ 15 13 12 15 14 12 17 15 12
τs [ms] 0.17 0.07 0.09 0.20 0.16 0.07 1.1 0.2 0.04
τs [ms] (1% Be) 0.13 0.05 0.07 0.16 0.13 0.05 0.9 0.15 0.03

slow sound speed, noted in Table I for several devices. This means that W ions do

not make many toroidal turns during an ELM crash, since their parallel velocity

is low. This limits the contribution of radial W transport due to parallel motion

along ergodic fieldlines, which will be further detailed in the next section.

III. W TRANSPORT IN AN ASDEX UPGRADE ELM

We follow W impurity particles initialized uniformly throughout the volume in

a JOREK simulation of a convective type I ASDEX Upgrade ELM (#33616)13,26,

with parameters as in Table I. The simulated ELM-induced density losses are 7%

and the duration is 2 ms, in good agreement with experimental results, indicating

that E×B convective losses, causing the density losses, are reproduced realistically

in the ELM simulation. The initial unstable mode is an n = 6 peeling-ballooning

mode, which later couples to n = 5 and other toroidal mode numbers, in bursts
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with an approximate period 0.2 ms and duration of 0.1 ms. The n = 3− 5 modes

are dominant, with n > 6 remaining strongly subdominant in this simulation,

which includes diamagnetic flows. The energy losses are 2.5%.

Non-linear MHD simulations of ELMs at the low, experimental, values of the

resistivity are challenging due to the small scale lengths in the current density at

low resistivity. In this case, the resistivity is almost exactly matching the Spitzer

resistivity with neoclassical corrections, differing by only a factor 4.1 This can be

considered the state of the art of what is presently possible in non-linear MHD

simulations of ELMs. In this regime of low resistivity a further decrease by the

factor of 4 is not likely to have a significant influence on the global size of the

vortices and the E×B flow velocities.

To start the particle simulation, a total number of 10 million particles are

sampled from a Maxwellian velocity distribution at the local background plasma

temperature, with charge states determined from the coronal equilibrium distri-

bution.

We then trace the paths of these particles in the nonlinear fields of the ELM

simulation with a timestep of 10−9 s, which has been chosen after a convergence

study shown (Appendix A). The particles make large radial excursions inwards

and outwards during the ELM crash. In Figure 2 we show characteristic paths of

particles that started with ψn ∈ [0.895, 0.905]. ψn is the poloidal magnetic flux,

normalized to be 0 at the magnetic axis and 1 at the separatrix.

To investigate the motion of particles in the whole plasma due to the ELM

we group all particles into a set of rings in ψn. The number density of particles

from a specific ring is reconstructed using a Gaussian kernel density estimator

on the number of particles with a specific ψn and dividing by the flux surface

volume differential dV
dψn

. This reconstruction is shown at every 0.5 ms during the

ELM in Figure 3. They show the spread in location of particles that started

1 In the original publication13 a factor of 8 was mentioned, since neoclassical corrections were

not taken into account there.
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FIG. 2. Projection onto the poloidal plane of the paths of characteristic particles starting

with ψn ∈ [0.895, 0.905] (region shaded in grey). Different behaviours are observed, such

as trapping and fast radial motion. The outer thin grey line is the separatrix. Particle

paths are coloured for clarity.

in a specific interval in ψn. Particles that originated near the top of the density

pedestal can be found inside up to ψn = 0.75, and outside the separatrix. Particles

outside of the separatrix have moved inwards or have been lost to the wall and

divertor. Transport to and from the private region (not shown in the figure)

is small, in agreement with experimental observations that show ELM transport

being outwards in the SOL.

There are two candidate mechanisms for radial transport, the E×B-drift and

the parallel transport of W along an ergodic magnetic field, which has small ra-

dial excursions leading to radial transport. We can distinguish between these by

disabling the effect on the particles of either the non-axisymmetric electric or mag-

netic field component, which is caused by the peeling-ballooning mode. To test

this we plot in Figure 4 the distribution of a single ring of particles over time

with and without electric field perturbation, and with and without magnetic field

perturbation. Disabling the non-axisymmetric component of the magnetic-field
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FIG. 3. Spreading of particles grouped in rings due to an ELM. The inward radial

penetration of an ELM can be seen to increase during the whole ELM crash up to t = 2

ms. The top row contains the flux-surface averaged electron density every 1 ms after

the onset of the ELM. The next rows contain the evolution of various tungsten density

rings every 0.5 ms.

perturbation leads to no significant changes in the W density distribution. In

all cases where the non-axisymmetric component of the electric field is zero no

significant radial transport is visible. The electric field is thus a necessary ingre-

dient for radial particle motion, which indicates the E×B-drift as the cause. The

E×B-drift is parallel to the isolines of the potential perturbation in the poloidal

plane to first order in |∇ψ|/|F0|, drawn in figure 5. The radial E×B-drift velocity

is shown in Figure 6 at 0.5-ms intervals after the start of the ELM. The figure

shows the E×B-drift velocity distribution be time-varying and present far into

the core plasma, with radial velocities of up to 5000 s−1, which indicates a drift

of one minor radius in 0.2 ms. There is no preferential radial direction, i.e. the
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FIG. 4. Redistribution of a set of particles starting at ψn ∈ [0.87, 0.88], shown at

t = 0, 1, 2 ms. The top row has no magnetic perturbations, the right column has no

non-axisymmetric electric field. The groups are reconstructed through Gaussian kernel

density estimation with a smoothing factor of 0.002. The difference between rows indi-

cates that the electric field perturbation is necessary for the redistribution, whereas the

rows are similar, indicating the limited effect of the magnetic field perturbations.

distributions are symmetric around the point of zero radial motion.

We compare the W particle radial motion with the E×B-drift velocity in Fig-

ure 7, for particles just inside the top of the pedestal, during a short period around

t = 1.025 ms. It shows a Gaussian core with longer tails, with approximately ex-

ponential decay. The distribution is also almost symmetric, with a mean value

of -1.6 s−1 meaning that as many trajectories move inwards as outwards at this

point. The measured distribution is in close agreement with the radial E×B-drift

velocities in s−1:

vψn =
E×B

|B|2 · ∇ψn. (9)
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FIG. 5. The velocity stream function u of the ELM fields (left) with an inset including

also E×B drift of particles in an ELM at t = 0.3 ms. Arrows indicate the direction of the

drift, with the color indicating the magnitude |v| and
√
|v| as the length. The velocity

stream function isolines are colored with the local velocity magnitude |v|. Labels below

the inset indicate the value of ψn.

The motion of W particles due to the ELM can thus be characterized as a

localized interchange motion, with roughly similar proportions of particles moving

radially inwards and outwards. This will act to flatten any steep density gradients.

To look at time-resolved motion, we compare the kinetic energy of the MHD

perturbation against vr and v2
r , the first and second moment of the particle velocity

distribution at each radial location in Figure 8 during 2 ms after the ELM onset.

These are calculated as

vr(ψn, t) =
1

N∆t

N∑
j=1

(
ψi+1
n − ψin

)
j

(10)
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ms after the start of the ELM.

and

v2
r(ψn, t) =

1

N∆t2

N∑
j=1

(
ψi+1
n − vr(ψin, t)∆t− ψin

)2

j
, (11)

where j numbers the radial bins and i numbers the snapshots, at time-increments

of ∆t. There is a clear correlation between the peaks in kinetic mode energy Ekin

and v2
r , which characterizes the strength of the interchange motion. This shows

that the radial transport is intermittent on the timescale of the eddy turnover time

τ = 0.18 ms.

To find the effect of this ELM on a specific W density distribution we weigh the

uniformly distributed particles with three initial profiles and calculate the time-

evolution. The first is a W impurity profile which resembles that of the electron

density in H-modes, shown in Figure 9. We show that the ELM causes a net
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over t = 1.0 − 1.05 ms, and radial E×B-velocity in the same ψn at t=1.025 ms. The

inset shows the same plot on a linear scale. The radial drift velocities found agree very

well with the E×B-drift velocities.

movement of particles into the SOL coming from the region ψn ∈ [0.75, 0.95]. The

density that establishes there is roughly half the initial density inside the pedestal.

At ψn = 0.85 − 0.9 ,the density does not change much after the first millisecond,

while further inside the plasma, particles are still moved outwards.

The second W profile, in Figure 10, has a maximum near the pedestal top. This

has been observed in experiments when the density and temperature pedestals are

not aligned29. This local W pedestal peak disappears completely during the ELM.

Most of the particles in the peek region are moved outside of the pedestal. This

corresponds well to results in earlier modelling of edge transport of W30. Besides

this, the behaviour is similar to that shown in Figure 9.

Finally, in Figure 11 we look at a distribution where W is strongly screened,
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FIG. 8. Top pane shows the plasma density loss over time (blue) and the kinetic energy

of the MHD perturbation (orange). Below that, the kinetic energies in different toroidal

harmonics with dominant mode numbers n=1-6 in agreement with experimental obser-

vations26. The lower middle pane shows the mean radial velocity, and the bottom pane

shows the mean square of radial velocity, both averaged over ∆t = 2 · 10−5 s.

leading to W profiles which are hollow in the pedestal region. In this case, we

obtain large particle losses to the divertor and wall, and inward penetration of

10-20% of W. From our results, it becomes clear that W expulsion by ELMs, when

there is good W screening in the pedestal, will be very ineffective as also identified

with a diffusive ELM model7,31, and a few 10 % of the W outside the pedestal can

actually be transported inside it in some cases by the ELM crashes.

IV. COMPARISON WITH 1D DIFFUSIVE MODELS

Simple 1D diffusive models are commonly used to estimate the effect of ELMs

on impurity distributions, such as in6,30. The peeling-ballooning mode vortices

lead to an interchange-type mode which is however not properly described in 1D
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FIG. 9. A W impurity distribution with a profile similar to that of the electron density

before an ELM, and at 0.5 ms intervals.

by a diffusive model, since the trajectory of the particle depends on the mode phase

and not just on the radial position. The strength of the E×B-drift varies locally

with the mode amplitude, on a length scale comparable to the radial excursions

of the particle, i.e. the ballistic length of transport is comparable to the system

size. Additionally, the characteristic time scale of the particle radial velocity, the

eddy turnover time τ = 0.18 ms, indicates that, since diffusive-like behaviour can

only be seen after many ballistic times, a diffusion coefficient can only be defined

on a time scale of multiple milliseconds. Nonetheless, it is relevant to compare the

performance of diffusive models with the full trajectory calculations in this paper,

to see how they perform.

We can make a rough estimate of a diffusion coefficient from the length scale and

typical velocity, at for instance t = 1.0− 1.05 ms at ψn = 0.95 by calculating the
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FIG. 10. Profile of a distribution with edge W density peaking, which can be caused due

to neoclassical transport when the temperature and density pedestals are not coincident,

at 0.5 ms intervals after ELM onset.

RMS of the radial velocity distribution in Figure 7,
√
〈v2
r〉 = 497 /s. Multiplying

this with the approximate vortex radius (See Figure 5) rv = 0.015 gives us

Dψn ≈
√
〈v2
r〉rv = 7.5 /s. (12)

To estimate the magnitude of the diffusion coefficient in m2/s we can multiply this

by the flux-surface average of 1/|∇ψn|2, which is (at ψn = 0.95) 1.51 m2, corre-

sponding to Dr ≈ 11 m2/s which is comparable to the diffusion coefficients used

in literature6,30, though, since only two rows of vortices are present the diffusive

effects will be highly localized.

Additionally, from the microscopic trajectories, we can estimate a local diffusion

coefficient. In a homogeneous medium and on timescales much longer than that
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FIG. 11. Profile of a W density distribution with dominant screening in the pedestal at

0.5 ms intervals after ELM onset.

of the driving force, this can be measured from the mean-squared displacement

2Dψnt =
〈
(ψn(t)− ψn(0))2〉 , (13)

where ψn denotes the position of a specific particle and the brackets denote an

average over all particles in a region. In this case it is complicated by the locality

of the driving forces in space and time. The time of our measurement needs to

be small enough for the particles not to encounter significantly different diffusion

coefficients. This means that our integration time must be much smaller than the

ELM burst period. In space, we have the locality requirement as
√

2Dψnt� 0.05,

which is approximately the radius of the ballooning mode structure of the ELM.

A scan of analysis timesteps shows t = 0.02 ms to be a suitable period, with the
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calculated Dψn not changing significantly for larger timesteps.

We can then determine transport coefficients from the moments of the particle

radial velocity distribution, shown in Figure 8. The effective radial velocity con-

tains both the real radial velocity as well as the contribution due to the spatial

gradient of the diffusion coefficient driven by the divergence of the flux proportional

to ∇n,
∂n

∂t
= D∇2n+ (∇D − vr) · ∇n− (∇vr)n. (14)

Where the radial velocity vr is closely related to the average radial E×Bdrift of

−0.4 /s, which varies very little during the ELM, and thus negligible compared to

the ∇D radial velocity. We can obtain an estimate of the diffusion coefficient Dψn

from the second moment of the position distribution function, as

Dψn(ψn, t) =
∆t

2
v2
r . (15)

To perform one-dimensional modelling, we calculate a time average over the ELM

of Dψn to obtain a smooth 1D profile, localized between ψn = 0.80 and ψn = 1.05,

as seen in Figure 12.

We follow the evolution with our 6D model, with the 1D coefficients derived

above as well as with one-dimensional diffusion coefficients approximated from30,

shown in Figure 12. These have been chosen to reproduce experimental ELM

flushing behaviour30 in STRAHL. This has negligible v/D during the ELM, and for

D a gaussian profile with height 20 m2/s, center 2 cm inwards from the separatrix

and σ = 3.5 cm, which we translate to ψn-coordinates2 as

Dref = 6.5 · exp

(
−(ψn − 0.98)2

2 · 0.0282

)
(16)

where we kept the diffusion coefficient constant over time (instead of linearly de-

2 using the flux-surface average of 1/|∇ψn|2, which is (at ψn = 0.95) 1.51 m2 as a length scale.
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FIG. 12. The calculated diffusion coefficient, a fit with a Gaussian (A = 4.2, µ =

0.94, σ = 0.05) and the diffusion coefficient used in30.

creasing), since this corresponds better to the character of radial and interchange

motions seen in Figure 8, but have decreased the strength by a factor of 2 to com-

pensate. It is peaked slightly further outwards than our derivation from particle

trajectories.

In the 1D modelling we include a sink in the SOL, modelled as in30 with a

parallel connection length L‖ = 50 m, a loss frequency

ν‖ =
2v‖,W
L‖

, (17)

an impurity velocity

v‖,W ≈ v‖,D = M

√
kB(3Ti + Te)

mD

= 10km/s (18)
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FIG. 13. A W impurity distribution with a profile similar to that of the electron density

after an ELM, compared with two diffusive models. The diffusive models show the

same qualitative behaviour, but cannot reproduce the steepness of the profiles after our

simulation or the inwards extent of flushing.

at Ti = Te = 100 eV, with a Mach number of 0.07. This leads to ν‖ = 387/

s, corresponding well with the estimate we can make from the evolution of the

impurity distribution in Figure 11, where 50% of the SOL density is removed in 2

milliseconds, leading to ν‖,est = − ln(0.5)
2ms

= 346 /s.

In the case where all impurities start inside the pedestal, i.e. Figure 13, the

Dux diffusion coefficients overestimate flushing into the far SOL, but reasonably

reproduce the total amount of flushing. The inwards extent of the impurity flush-

ing is however not reproduced well by either of the models. Particles are drawn

from much farther inside the plasma than the diffusive modelling suggests. In the

related case, including edge peaking of the impurity distribution, the behaviour is

similar 14.
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FIG. 14. Profile of a distribution with edge W density peaking after an ELM, compared

with two diffusive models. Qualitatively the diffusive models show the same behaviour,

though the flushing from inside the peak is not reproduced.

The inverted profile, where W is screened and the concentration outside of the

pedestal is higher than inside, the Dux model and to a lesser extent the 1D model

presented here, underestimate the inwards motion of W. The losses from the SOL

are modelled well, as well as the general characteristics of the motion.

To first order the W transport from the 3D interchange motion of the ELM

ballooning mode can be approximated by a 1D radial diffusion process, in the

sense that any, positive or negative, gradient in the initial profiles will be reduced.

The 1D radial diffusion process however does not describe well the after-ELM

radial W profile as the W losses with the 1-D model do not reach as far inwards

and outwards as those of the 6-D model, and features such as the limited flattening

of the gradient at the outwards moved edge imply a low diffusive component. This
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FIG. 15. Profile of a W density distribution with dominant screening in the pedestal

after an ELM, compared with two diffusive models. The 6D model shows further inward

penetration than the diffusive models, but there is good qualitative agreement.

is incompatible with the 1-D modelling results and illustrates the limitation of

applying simple models to W particle expulsion by ELMs.

V. CONCLUSIONS

Our 6D simulation of W impurity transport in an ASDEX Upgrade ELM crash

show very efficient transport in the pedestal region, with particles being redis-

tributed in a region of ψn ∈ [0.75, 1.05]. W impurities from the top of the pedestal

are expelled into the SOL while those near and just inside the separatrix are

brought inwards by the ELM.

W transport is found to be due to the electric fields from the peeling-ballooning

MHD instability causing an ELM. The transport due to magnetic field pertur-
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bations is negligible. Effective radial transport, i.e. averaged over flux surfaces,

is to first order diffusive, but this 1D description lacks many features of the W

particle motion observed here, such as the inward extent of flushing of particles

inside ψn = 0.85. This is to be expected in the case of a strong interchange motion,

where a diffusive model is not a completely appropriate description.

The very large inward and outward W fluxes created by the ELM have par-

ticularly important consequences for W expulsion when W is well screened in the

pedestal between ELMs. In this case, the 6-D model applied here indicates that

the ELMs will actually cause an increase of the W density in the confined plasma

rather than a reduction. The experimental validation of this finding is essential to

assess the viability of ELMs as the mitigation approach to provide W exhaust in

ITER scenarios.
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Appendix A: Verification of the particle pusher

To prove the correctness of the particle pusher we check the conservation of

kinetic energy K and of canonical toroidal momentum Pφ in an axisymmetric

JOREK equilibrium without electric fields. This equilibrium is obtained by re-

moving the electric field from the pre-ELM equilibrium described in Section III.

W ions are initialized near the axis, with ψN ∈ [0, 0.214] and with the velocities

sampled from the local Maxwellian and charge state Z = 10. 10000 particles are
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FIG. 16. Mean and maximum change in kinetic energy in eV.

followed for each of the timestep sizes tested, between 0.1 microsecond and 0.1

nanosecond.

Figure 16 shows the mean change in kinetic energy < |K−K0| > after the start

of the simulation in eV. The error made here is negligible compared to the average

value of the kinetic energy of ∼ 4.1 keV. They grow as
√
t, indicating a random

walk of floating-point roundoff errors per step. This also explains why the error

increases with number of steps and hence decreases with timestep size.

Figure 17 shows the mean relative change in Pφ = Zeψ − mRvφ, a constant

of motion. This is nearly constant throughout the simulation, showing that the

particle trajectory integration is correct. A small drift is present at the smallest

timestep sizes, but is far too small to play a role in our application. Decreasing

the timestep size causes the conservation of Pφ to quadratically improve, as ex-

pected from the second-order Boris method. This is better illustrated in figure 18,

where the solid line indicates the mean relative change and the violins show the
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FIG. 17. Mean relative change in Pφ over time at different timestep sizes.

distribution of changes in Pφ. From this we can estimate a timestep size at which

to run our simulations. Time steps smaller than 10−8 second seem adequate, since

they lead to an acceptable mean relative variation of 8 · 10−6 over 6 milliseconds

of simulation time.

Appendix B: Convergence study of results with number of particles.

Figure 19 shows the scaling of reconstruction of tungsten profiles after an ELM

with the number of particles. This shows that enough particles have been used to

remove statistical variation. Particles followed have been placed pseudo-randomly

in the plasma, leading to the scaling of 1/
√
N in the reconstruction.
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√
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for Monte-Carlo methods.
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