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Abstract

Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density and
pressure. Therefore, a model is required that allows perturbations of similar or even larger magnitude to the time-averaged back-
ground value. The fluid-turbulence code GRILLIX is extended to such a global model, which consistently accounts for large
variation in plasma parameters. Derived from the drift reduced Braginskii equations, the new GRILLIX model includes electro-
magnetic and electron-thermal dynamics, retains global parametric dependencies and the Boussinesq approximation is not applied.
The penalisation technique is combined with the flux-coordinate independent (FCI) approach [F. Hariri and M. Ottaviani, Com-
put. Phys. Commun. 184:2419, (2013); A. Stegmeir et al., Comput. Phys. Commun. 198:139, (2016)], which allows to study
realistic diverted geometries with X-point(s) and general boundary contours. We characterise results from turbulence simulations
and investigate the effect of geometry by comparing simulations in circular geometry with toroidal limiter against realistic diverted
geometry at otherwise comparable parameters. Turbulence is found to be intermittent with relative fluctuation levels of up to 40%
showing that a global description is indeed important. At the same time via direct comparison, we find that the Boussinesq ap-
proximation has only a small quantitative impact in a turbulent environment. In comparison to circular geometry the fluctuations
are reduced in diverted geometry, which is related to a different zonal flow structure. Moreover, the fluctuation level has a more
complex spatial distribution in diverted geometry. Due to local magnetic shear, which differs fundamentally in circular and diverted
geometry, turbulent structures become strongly distorted in the perpendicular direction and are eventually damped away towards

the X-point.
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1. Introduction

Understanding the complex multi-physics of the edge region
— the scrape-off layer (SOL) and closed-field line region im-
mediately near the separatrix — is of critical importance for the
development of fusion energy. Due to the relative stiffness of
the internal profiles of temperature and density, the core values
and therefore the overall fusion performance is strongly deter-
mined by the edge profiles. Furthermore, in a fusion reactor
there will be a large exhaust of particles and heat due to imper-
fect confinement. This plasma exhaust is directed towards di-
vertor target plates, and preventing these fluxes from exceeding
engineering limits, above which the performance and lifetime
of the reactor is significantly reduced, is a high-priority area of
fusion research. Prediction of these heat fluxes for future de-
vices such as ITER or DEMO is complicated by uncertainty in
extrapolation of the width of the exhaust channel from current
devices [1, 2].

Modelling of the edge plasma is a significant challenge due
to the highly-coupled interplay of multiple different physics
regimes and disparate spatial and temporal scales. Magnetized
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plasma physics, complex magnetic geometry, neutral physics
and momentum transfer, atomic and molecular chemistry, ra-
diation from excited states, wall recombination, surface chem-
istry and impurity sputtering all can affect the edge plasma. Fur-
thermore, the edge can exhibit phenomena over a large range of
spatial and temporal scales — from the formation of small-scale
intermittent turbulent filaments to large-scale long-timescale ef-
fects such as equilibration of the background in response to the
magnetic and wall geometry. Inclusion of an extended physics
set or finer spatial and temporal scales typically improves the
accuracy of the code with respect to experiment, but at the ex-
pense of increased computational cost. Within the subset of
codes based on the multi-fluid approximation, the two broad
classes are ‘transport’ and ‘turbulence’ codes. Transport codes
such as SOLPS code [3] include a significant range of multi-
physics but do not treat turbulent transport self-consistently.
Instead, the effects of turbulence are approximated via an ef-
fective diffusion, which remains an ad-hoc input. In contrast,
turbulence codes self-consistently treat turbulence by evolving
the 3D Braginskii models [4] — at the cost of increased runtime
and/or a reduced physics set.

Several recent projects aim at developing fluid-turbulence
codes, of which we note the GBS [5, 6, 7], HERMES

April 25, 2019



(BOUT++) [8], TOKAM3X [9], GDB [10] and GRILLIX [11]
projects. In contrast to the other codes mentioned, the GRIL-
LIX project is notable for its use of the flux-coordinate inde-
pendent (FCI) approach [12, 13, 14]. This method prevents
the issue of coordinate singularities at the separatrix and X-
point which arise from the use of field- or flux-aligned coor-
dinates [15]. GRILLIX employs a cylindric grid (R;, ¢k, Z))
where parallel operators are discretised via field line tracing
between toroidal planes and field line map interpolation within
each plane. This allows for the use of a single consistent method
to be used for all grid points, including the possibility of (possi-
bly multiple) X-points. Furthermore, the use of Cartesian grids
prevents resolution imbalances between the outboard mid plane
and the X-point region, allowing the dynamics around the X-
point to be investigated with high accuracy. To allow for the
treatment of general non-conformal boundaries, the penaliza-
tion method is used to enforce the desired boundary conditions.

In this paper, the extension of GRILLIX by electromagnetic
and electron thermal dynamics is presented, with the result-
ing model being a global drift reduced Braginskii model. Here
"global’ means that parametric dependencies are kept and that
the Boussinesq approximation is not applied, i.e. nowhere a
separation is made between fluctuations and background for
the density and temperature. This is needed for the consis-
tent description of high amplitude fluctuations which are reg-
ularly observed in experiments [16]. Recently several codes
were adapted to abolish the Boussinesq approximation also
for turbulence applications [6, 10], whereat now the geomet-
rical complexity of diverted equilibria is additionally intro-
duced in GRILLIX. The Boussinesq approximation has often
been studied at isolated sub problems, i.e. blob propagation
[17, 18, 19, 20]. Here we investigate its impact in a fully
turbulent environment and find that it has only minor quanti-
tative impact on results. Using parameters characteristic for
the COMPASS tokamak [21] turbulence simulations are car-
ried out with GRILLIX. The turbulence features intermittency
and exhibits large relative fluctuation levels, which shows that a
global description is generally important. The impact of geom-
etry is studied by comparing simulations in circular geometry
with toroidal limiter against realistic diverted geometry at oth-
erwise comparable parameters. The fluctuation level is reduced
in diverted geometry owed to a different zonal flow structure.
Moreover, the fluctuation level exhibits a more complex spa-
tial distribution, which we explain as a consequence of local
magnetic shear, which fundamentally differs in the edge region
between circular and diverted geometry. Strong local magnetic
shear causes a distortion of turbulent structures, which become
subsequently subject to strong perpendicular dissipation. The
X-point, where magnetic shear becomes locally very strong,
thereby tends to disconnect the low field side from the high
field side, where curvature acts as stabilizing [22]. Therefore,
stronger poloidal asymmetries in the fluctuation level are ob-
served in diverted geometry.

The remainder of this paper is organized as follows: In sec-
tion 2 we present the physical model employed in GRILLIX,
a global 3D drift reduced Braginskii model [23]. With respect
to the previous version [11] GRILLIX has been extended by

electromagnetic dynamics, electron temperature dynamics and
the Boussinesq approximation has been relaxed, which enables
to simulate plasma turbulence globally, i.e. without splitting
quantities into background and fluctuations. The implemen-
tation of important new features is described in section 3. A
geometric multigrid solver for the generalised 2D perpendic-
ular Helmholtz equation allows an efficient treatment of the
new electromagnetic terms and relaxation of the Boussinesq
approximation. The treatment of sheath boundary conditions
at the divertor/limiter plates via penalization techniques was
motivated from the GDB code [10, 24] and we give a gener-
alisation to diverted geometries. The extended model and new
features are verified by analytic means and the method of man-
ufactured solutions (MMS) [25]. In section 4 we characterize
edge turbulence with GRILLIX simulations and clarify the im-
pact of geometry by comparing simulations in circular geome-
try with toroidal limiter against simulations in diverted geome-
try at otherwise comparable parameters. A summary and out-
look is given in section 5.

2. Physical model

2.1. Global drift reduced Braginskii equations

Based on the assumptions of short mean free paths, i.e. 1, <
Ry, the drift reduced Braginskii model describes plasma dy-
namics of low frequency (w < ;) in comparison to the ion
cyclotron frequency Q; [4, 23]. It is suitable to describe tur-
bulence at low temperature in the edge region self consistently.
As further practical approximations cold ions (7; <« T,) are
assumed in GRILLIX, and whereas electromagnetic effects are
kept in Ohm’s law, magnetic flutter is neglected, i.e. transport
is assumed to be electrostatic.

The following normalisation is employed: Time ¢ is nor-
malised against Ry/cy with the sound speed cy := VTo/M;
at some reference temperature 7. Parallel scales xj are nor-
malised against major radius Ry and perpendicular scales x,
against the sound Larmor radius py := ¢ VToM;/(eBy) with
By the magnetic field strength on axis and M; is the ion mass.
The dynamical variables in GRILLIX are density n normal-
ized against some reference density ng, electron temperature
T, against Ty, parallel ion u) and electron v velocities against
cs0, parallel current j; against enpcy, electrostatic potential ¢
against T /e and the parallel component of the electromagnetic
potential Ay against SyBopso wWith By := 4rngTo/ Bg the dynam-
ical plasma beta at reference values. In order to preserve its
positivity the logarithms of normalised density 6, := logn and
temperature &, := log T, are evolved in time. Finally, the nor-
malised set of equations implemented in GRILLIX are:

dy
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Equations (1-6) are the electron continuity equation, vortic-
ity equation or quasineutrality condition, parallel momentum
equation, Ohm’s law, electron temperature equation and Fara-
day’s law respectively. The total time derivatives contain ad-
vection by the ExB drift and the parallel velocity, i.e. % =
% +ug-V+ l/t”VH and % = (')Qt +ug-V+ V”V”. The par-
allel gradient V| = b - V is taken along the static equilibrium
magnetic field B with unit vector b := B/B. This assumption
excludes the description of edge localised modes (ELMs) [26]
and further large electromagnetic perturbations. As auxiliary
variables the generalised vorticity Q := V - (%V lqﬁ) and the

generalised parallel electromagnetic potential ¢ := SoA) + y%

have been introduced. Within the FCI approach (see section
3.1) the advection by ExB velocity and the curvature operator
can be written as:

5 0
ug-Vf :E(B><V<;5)~Vfz _E[(b’f]R’Z’
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with the Jacobi bracket [, flz, = Or¢pdzf — 0z¢0rf. The
dimensionless parameters of the system are the drift scale
6 = Ro/ps, electron to ion mass ratio u := mﬁ”[, the dy-
namical plasma beta By, reference parallel resistivity no :=
0.51u/(te0(cs0/Ro)) with 7.9 the electron-ion collision time at
reference values and the reference parallel heat conductivity
Xio = 3.15/ut.o(cs0/Ro). Particle and thermal source terms
S 1, S have been added, and mostly for numerical reasons also

dissipation terms:
Df = VJ_’fViNf + V||,fV . (bV“f) s (7)

with constant coefficients v, ¢, uy s, and N controlling the or-
der of perpendicular dissipation. Note that in order to ensure

conservation of particles the dissipation in the continuity equa-
tion (1) does not act on the logarithm of the density 6,,, but the
density n.

The model is global in the sense that no separation of vari-
ables between a background part and fluctuating part is made
and the dependency of the parallel resistivity and heat conduc-
tion on density and temperature is kept. Moreover the depen-
dency on the density in the polarization term of the vorticity
equation (2) is also kept, i.e. the Boussinesq approximation is
not applied. The model conserves energy apart from the fact
that we have neglected advection by the polarization velocity,
which has been shown to have only a minor effect on conserva-
tion of energy [27].

2.2. Boundary conditions

The simulation domain in GRILLIX is usually bounded by
an inner (core) limiting flux surface, an outer (wall) limiting
flux surface and depending on geometry by limiter or divertor
baffle plates.

Sheath physics determining the boundary conditions for the
divertor/limiter is a rich topic by itself. A sophisticated set of
boundary conditions is given e.g. in [28], where an inclination
of the magnetic field with respect to the target plates is taken
into account, but more commonly just Bohm boundary con-
ditions [29] are employed. Moreover, the treatment of sheath
boundaries within the FCI approach is also numerically cum-
bersome for which a penalization method is employed in GRIL-
LIX described in section 3.2. Due to all these complexities we
restrict ourselves firstly to the relatively simple but robust set
of insulating sheath boundary conditions. This assumption im-
plies, e.g. that blobs propagate purely according to the inertial
scaling vppp o w;{fb, with vy, the radial blob velocity and
Wpiop the blob width, whereas with Bohm boundary conditions
larger blobs would propagate slower according to the sheath
connected scaling vp,p o w;lzo » [30]. Therefore, the assumption
of an insulating sheath might appear strong, but is of relevance
for modelling detached conditions where resistivity in the front
of the target plates is strongly enhanced due to the presence of
neutrals.

Finally, the boundary conditions employed in GRILLIX are:

up 2 =T, ®)
Jir=0, )
¢ = AT, (10)
“ XV Te = veTeuy, (11)
Vin =0, (12)

where the upper/lower sign denotes if the direction of mag-
netic field is directed towards/away from target plates, A =
0.5 ln(%) is the sheath floating potential and y, ~ 2.5 the
effective electron sheath transmission factor. As the continu-
ity equation is of hyperbolic nature in the parallel direction the
boundary condition on the density should be as unrestricted as
possible, and we found that a homogeneous Neumann bound-

ary condition is numerically more robust than extrapolation



(Vﬁn = 0). The generalised vorticity and electromagnetic po-
tential are obtained consistently with the electrostatic potential
respectively the parallel current as described in section 3.2.

In the radial direction either homogeneous Neumann bound-
ary conditions (for n, T,, u;) are applied or homogeneous
Dirichlet boundary conditions (for 4, jj, €2). An exception
is the electrostatic potential which is set at the wall to ¢|,,,; =
AT,. In order to avoid fluxes of energy and particles due to EXB
drifts through the core, the potential has to be constant on the
inner limiting flux surface, and we set it to ¢eore = A{Te)1cFs»
where (T,);crs 1S the zonal averaged electron temperature on
the last closed flux surface. The motivation for this stems from
the fact that due to the sheath boundary conditions the potential
follows roughly ¢ ~ AT, in the SOL, and the chosen bound-
ary condition does therefore not allow a global radial electric
field in the closed flux surface region. The large scale radial
electric field in the closed field line region is determined by ef-
fects that are not yet included in the GRILLIX model, e.g. ion
pressure gradient [31, 32]. Therefore, the self-consistent mod-
elling of the global radial electric field in the closed field line
region is postponed until at least ion temperature effects will
be taken into account in GRILLIX. We want to note that from
the geometrical point of view GRILLIX is able to deal easily
with the full tokamak including the core region with O-point
[11]. Whereas this would exclude a possibly spurious influence
from core boundaries and therefore allow a more self-consistent
approach, the many additional grid points would pose a large
computational overhead.

3. GRILLIX

3.1. Spatial discretisation

GRILLIX is based on the FCI approach [12, 13, 14] in a
toroidally staggered framework which is described in detail in
[11] and is therefore here only reviewed very shortly. For toka-
mak geometries a cylindric grid (R;, ¢, Z;) is employed be-
ing Cartesian within poloidal planes. Based on the assump-
tion of strong toroidal field (B,o;/Bior < 1), the discretisation
of perpendicular operators remains within poloidal planes for
which second order finite difference methods are used. The Ja-
cobi bracket is discretised according to the Arakawa scheme
[33] and the discretisation of the non-linear polarization term
in eq. (2) is described in [27]. The discrete parallel gradient is
computed at toroidally staggered positions ¢, i according to a
finite difference along magnetic field lines (see fig. 1):

Jier (7,-,] (%)) —Jk (7,-,,- (‘%))
A b
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where ¥; (¢) is the poloidal projection of the characteristic

along field line and s, j(¢) the associated length along field line

defined as the solution of the following ordinary differential

Vilfirrdj =

>

Figure 1: Scheme for toroidally staggered FCI. A cylindric grid (R;, ¢k, Z;)
is used spanning the simulation domain by a set of Cartesian poloidal planes
bounded by limiting flux surfaces (Ymin, Ymax)- In addition to the canonical grid
(black, k = 0,1,2,...) atoroidally staggered dual grid (gray, k = %, %, %, L)
is introduced. The parallel gradient is discretised via field line tracing and in-
terpolation and maps from the canonical grid to the staggered grid.

equations which are solved via a Runge-Kutta integrator [34]:

i _ 1 ith: y = Zi
dy . (B ) with: y; ;(0) ( j),
dsi;j |B 0)=0

i _| J’ with: s; ;(0) = 0,

i.e. corresponding map points are computed by tracing along
magnetic field lines. The values on map points are obtained
from a 3rd order bi-polynomial interpolation within the poloidal
planes ¢; and ¢;,;. We note that the magnetic field is assumed
axisymmetric in GRILLIX, which is however not a general con-
straint for the FCI approach [35, 36]. In the same spirit opera-
tors are established that map quantities between the grid and the
staggered dual grid and vice versa. The parallel divergence op-
erator V - (bf) is obtained in its discrete version via the support
operator method [37, 38] as described in [11]. The structure of
the equations suggest that n, 6,,, &, T., ¢ and Q are co-located to
the canonical grid whereas uy, vy, jj, Aj and ¥ are co-located to
the staggered grid.

3.2. Penalization for sheath boundary conditions

The boundaries at the sheath are in general neither conformal
with the grid nor aligned with the exceptional parallel direc-
tion along the magnetic field line, which makes their treatment
numerically difficult and cumbersome. In such situations pe-
nalization techniques have proven themselves also for plasma
fluid codes [39, 40]. A combination of the FCI with penaliza-
tion was firstly employed in GDB for limited plasmas [10, 24]
and we implemented in GRILLIX a generalization allowing to
deal also with diverted plasmas.

Equations (1-5) are each modified according to:

O 1=y Fy+ X (fo-
~f= (-0 F +%(fo- . (13)



where f represents here the dynamical variables respectively
and Fy the corresponding terms according to the Braginskii
model. y is a characteristic function, which is O in the phys-
ical domain and 1 in the boundary region, where we choose in
practice a smooth transition [39] across the boundary based on
tanh functions (see fig. 5 left column for examples). € <« 1 is
the penalization parameter such that in the region where y ~ 0
eq. (13) approximates the original physical equation, whereas
in the region y =~ 1 the variable f is strongly damped to a pre-
scribed function fp. Via suitable choice for fp different bound-
ary conditions can be realized.

As an illustrative example we discuss here our implementa-
tion for general Neumann boundary conditions, i.e.:

V”f|sheath =a

Firstly, we define an additional function ¢, which is 1 in the pe-
nalization region where the magnetic field is pointed towards
the target and —1, where the magnetic field is pointed away
from the target with possibly, i.e. in toroidal limiter geome-
try, a smooth transition between both regions (see fig. 5 right
column for examples). Secondly, we denote for some grid
point f* := fii (yi’ j(tAgo)) the values on its map points which
are again obtained via interpolation within adjacent planes and
§* 1= s; j(xAp) the associated lengths along field line. The pe-
nalization value is then prescribed as:

for: ¢ > 0,

for: £ < 0. (14

= [0 s A=l s
I(f* = sta) + (1= )L

The first terms set the actual boundary condition and use the
values obtained from the field line map towards the interior do-
main. The second terms ensure for toroidal limiter geometries
a continuous transition between both limiter sides.

A special treatment is needed for penalisation of the poten-
tials. After having evolved the density, the electron temperature
and the vorticity from time step 7 to # + 1 (see section 3.3) the
electrostatic potential ¢'*! is computed at time step ¢+ 1 accord-
ing to:

§% t+1

A+l _ .n
o -1 -V (B2

ws’“) =X (ar)-a-pam,
€

15)

yielding ¢ = AT, in the penalisation region, where y ~ 1.
The insulating sheath boundary condition implies that the gen-
eralised electromagnetic potential has to be penalised to y = 0,
which is realised by adding the corresponding penalisation term
to Ohm’s law (4). After having evolved the generalised electro-

magnetic potential in time to wl’l“ the electromagnetic potential

A|t|+l is obtained according to:

U

nt+ 1

PoA = S VIAT =y (16)

from which the parallel current is computed according to j|’|+1 =
_ViAﬂH- Equations (15) and (16) are Helmholtz equations for
¢! and A*' that are solved in GRILLIX via a multigrid solver

(see section 3.4). Finally, we note that we also tried slightly
different methods for penalisation of the potentials [24], and
the results seemed not to depend strongly on the details of the
technique employed.

3.3. Time stepping

The equations are advanced in time with the 3rd order Kar-
niadakis scheme [41]. Only the penalization term that is di-
rectly proportional to the quantity itself is treated fully implicit
in time, i.e. the equations written in the form of eq. (13) are
discretised in time according to:

! (11 + 6Az’ﬁ) = > af i+ bt [(1 - )ﬁ)F’-"( ey + X

€ oo € €
withag = 18, a; = -9, ay =2 and by = 3, by = -3, b, = 1.
The solution for f*! is trivial as the implicit penalization term
on the left hand side is diagonal.

3.4. Elliptic solver

In order to compute the electrostatic potential ¢ from eq. (15)
and the parallel electromagnetic potential A from egs. (16) two
Helmholtz type equations have to be solved in each time step
within each poloidal plane:

cif —aaV-(e3Vif) = b, a7

with given right hand side b, and coefficients c;, ¢; and c3.
In the global model the coefficients have in general a spatio-
temporal dependency, where direct solvers become very inef-
ficient as a costly matrix LU-decomposition would have to be
performed in each time step. An efficient solution technique
for eq. (17) is provided by geometric multigrid methods [42],
which is implemented in GRILLIX based on a damped Jacobi
smoother with trivial restriction and bilinear prolongation.

3.5. Verification

One of the main new features in GRILLIX are electromag-
netic and electron inertial effects in Ohm’s law, which gives
rise to shear Alfvén dynamics. The core model for the shear
Alfvén wave is obtained by linearizing equations (1-6) in the
isothermal limit (7, = 1), neglect curvature, parallel ion ve-
locity (u; = 0) and parallel resistivity np = 0. In this limit a
wave equation is obtained [43] for the ‘non-adiabaticity* (7i—@),
where the tilde denotes a fluctuating quantity.

2
ﬁ(ﬁ—g{)) = Viaw Vi (- ). (18)
with V§ aw = (1 + ki)/ Bo + uki) the phase velocity of the
shear Alfvén wave, where k, is the perpendicular mode num-
ber. In the limit k;, < 1 the wave propagates at the Alfvén
speed va = B, /2 and in the limit k, > 1 at the electron thermal
speed vr, = u~'/2. In order to verify the implementation of the
electromagnetic and electron inertia effects we perform simu-
lations with GRILLIX in a 3D periodic slab (C = 0) without
the parallel momentum equation (3) and electron thermal equa-
tion (5), but set T, = 1 and i = 0. Otherwise we run the global
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Figure 2: Velocity of shear Alfvén wave obtained with GRILLIX against an-
alytic prediction for fixed 8y = 1-1072 and 4 = 1-107* in dependence of
ky

version of the code but initialize the density with constant back-
ground plus a fluctuation of small amplitude - = 0.1 being a
mode structure in the perpendicular plane and aCGausman along
the parallel direction. The phase velocity of the divergent wave
along the magnetic field is measured and compared to the ana-
lytic prediction for vg4w. The result in fig. 2 shows an excellent
agreement between GRILLIX simulations and the analytic pre-
diction.

The presence of shear Alfvén dynamics is also numerically
beneficial, as it limits the parallel electron motion resulting in
a Courant-Friedrichs-Lewy number (CFL) based on the Alfén
speed. In the electrostatic case (8y = 0, u = 0) parallel electron
motion would only be hindered by parallel resistivity. A rough
guess on the time step limitation in the electrostatic case can
be obtained by considering the linearised vorticity equation (2)
and Ohm’s law (4) neglecting electron and density variations,
ie.n = 1, T, = 1. For a single perpendicular mode V2 —
—k? a parallel diffusion equation for the electrostatic potential
is finally obtained:

0
59 = 7 ”V -(bV)9).

Treating this problem explicit in time would result in a time step
limitation of At < As?k2n,, where As is the parallel grid dis-
tance. As this time step limitation is severe for large modes at
low resistivity, it would make an implicit treatment practically
inevitable [9, 44].

A verification of the full system via the Method of Manufac-
tured Solution (MMS) [25] was performed in circular geometry
with purely closed flux surfaces. The same setup and procedure
as described in [11] for the previous simplified set of equations
is applied here to the global model. The analytic MMS func-
tions are prescribed for each dynamical field as a product of
radial (k,), poloidal (k, with phase shift 66), toroidal (k, with
phase shift d¢) and temporal (w) modes (see table 1). The an-
alytic MMS functions are quite general for GRILLIX, as its
numerical approach is independent of flux surfaces. The nu-
merical error of the MMS analysis for all dynamical fields in
dependence of resolution is shown in fig. 3 and follows a sec-

ko (kg,00) (ky,00) W
0, | 1 (1, 0) (1,0) 100
& |1 (1,15 (1,05 73
¢ 2 2,0 (1, 0) 80
u | 3 (1, 0) (1, 0) 65
Al 2 (1, 0) (1, 0) 88

Table 1: Parameters for analytic MMS functions used as inputs for different
dynamical fields.

10°
~N1072F
4 — increasing resolution
1077 E ‘ s ;
8 16 32 64
n
pol

Figure 3: Numerical error of MMS verification procedure for different dy-
namical fields evolved in GRILLIX. Error is measured in L2-norm, i.e. &, =
|ttnm — Ummslo [ [mmsl at t = 0.2. Black dashed lines indicates second order
convergence for reference. Resolution is subsequently doubled in all directions
starting at t]}e coarsest level with n,, = 8 poloidal planes, & = 3 - 1073 and
At=1-107%

ond order convergence, which is a good indication for correct
implementation of the equations in GRILLIX.

Finally, we want to note that also a validation in slab geom-
etry based on experiments in the Large Plasma Device (LAPD)
was performed for which results can be found in [19, 20].

4. Simulation results

4.1. Setup

The parameters for our simulations are motivated from ex-
periments with deuterium plasma in the COMPASS tokamak
[21], where we normalise density and temperature to upstream
separatrix values:

Rp =56 cm,

ng =1- 1083 em3,

Apin =20 cm,

TO =30 CV,

By =12T,

with a,,;,, the minor radius. This corresponds to the following
dimensionless input parameters for GRILLIX:

Bo =1.68-107%,
X”() =340,

0 =849,
Mo =472 - 10_3.

u=272-107%,



The strongest time step limitation stems from the parallel elec-
tron heat conduction, and by linearizing this term we may an-

ticipate a rough scaling for the time step of Ar < b ’; - Ap?
0% e

with Ay the toroidal grid distance between adjacent planes. In
order to perform simulations at a larger time step we employ in
our simulations presented here mostly a reduced heat conduc-
tivity of y|o = 20, but still retain the parametric dependency on
temperature (cc Te5 2., Correspondingly, we also use a reduced
value for the effective sheath transmission factor of y, = 0.15.
In section 4.5 we investigate the effect of this by comparing to a
run with more realistic heat conductivity. Development towards
relaxation of the time step limitation by an implicit treatment of
parallel electron heat conduction is targeted for future work.
We performed simulations in circular geometry with toroidal
limiter and diverted geometry at otherwise comparable param-
eters. The background magnetic field for the diverted geometry
is given in terms of an analytic flux function (R, Z) from the
class of solutions described in [45] with parameters chosen as
described in [46]. We define as normalised radial coordinate
p = l;’lj(f;o ’
magnetic axis respectively at separatrix. For circular geome-
try we define equivalently the normalised radial coordinate as

p = —W and the magnetic field is given in terms of a
prescribed safety factor profile g(p). The setup for the simu-
lations in terms of radial view is shown in fig. 4 and the char-
acteristic functions y prescribing the location of the sheath via
penalisation is illustrated for both geometries in fig. 5.

The simulations are driven via a particle source of the form

where g, ¢, is the poloidal magnetic flux at

S = ( (p _ psrc)z
n=ChXpl—————
w

src

) <<n>p - nzarget)

and an energy source Sy of the same form. The sources are
located near the inner boundary at py,. and drive the zonal aver-
aged density (n), and temperature (T,), towards prescribed val-
ues Ryarger ANA T gqrger Within a narrow region (wy,). The param-
eters c,, ¢; control the rate of the sources. Outside the source
region the profiles relax freely and develop self-consistently.
We preferred this form for the sources to a purely flux driven
source as it allows an effective control over keeping simulations
within a desired parameter regime. Eventually, it is comparable
to other approaches, who source their simulations via penalis-
ing the profiles near the core [24] or use a feedback control loop
[8].

The main simulations analysed in section 4.2 to 4.4 were
run with 32 poloidal planes, perpendicular resolution of 7 =
1 [ps0] corresponding to 0.066 cm and a time step of Ar =
5-1075 [Ry/cs0]. The total number of grid pints were = 5.0 - 100
grid points for the circular case and ~ 14 - 10° for the diverted
case. A sixth order hyperviscosity (v, (V$) is applied in the
perpendicular direction and regular diffusion (4 /V - (bV))) in
the parallel direction, where the coefficients were chosen as
viy = 10 and pyy = 0.025 cutting off turbulent spectra by
smoothing structures on the grid scale. The independence of the
results from these numerical parameters was checked at the cir-
cular case (see section 4.5). The radial extent of the simulations
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Figure 4: Safety factor g as function of normalised radial coordinate p for circu-
lar and diverted geometry. The limiting flux surfaces are indicated with dashed
blue respectively red lines and the source regions with coloured shaded areas.

in circular geometry is ~ 1.5 cm (edge) + 3.5 cm (SOL) and in
diverted geometry ~ 1.5 cm (edge) + 2.3 cm (SOL) at outboard
mid plane respectively ~ 3.2 cm (edge) + 5.5 cm (SOL) at in-
board mid plane.

The simulations were initialized with uniform background in
density and temperature (0.2) plus small random noise (0.01).
Particles and energy are injected via the sources, and the simu-
lations enter saturated phase, which is independent of the initial
state (for the circular case around ¢ =~ 30) from where data is
collected for performing statistical analysis. The overall simu-
lation time for the circular case was up to t = 77, corresponding
to = Ims. The simulations were carried out on the Marconi-A2
(KNL) partition on 16 nodes (2 MPI processes times 34 cores
per node). Within 24 hours GRILLIX ran a normalised time
interval of ~ 10 [Ry/cyo] for the circular case and ~ 4 [Ry/c]
for the diverted case.

4.2. Circular geometry

Snapshots of density, electron temperature, electrostatic po-
tential and parallel velocity for the circular geometry with
toroidal limiter are shown in fig. 6. There is a clear difference
between the closed field line region and the SOL, which is dom-
inated by the Bohm boundary condition for the parallel velocity.
Blob-like structures in the density can be observed around the
last closed flux surface.

Time traces of pressure during the saturated state at low
(LFS) and high (HFS) field side mid plane are shown in fig. 7.
Especially the LFS-signal is highly intermittent with fluctua-
tions of up to 200%, implying that a global model, which does
not rely on a splitting into fluctuations and background, is in-
deed important. The fluctuation level on the HFS is slightly
lower which results from the ballooning character of the turbu-
lence where curvature acts stabilizing at HFS and destabilizing
at LFS. It has been found that turbulence in the SOL of lim-
ited plasmas is driven by resistive ballooning modes [47, 48]
with linear growth rates somewhat smaller than the interchange
growth rate y; = /2Ry/L,, where L, is the background pres-
sure gradient length. Via the autocorrelation we may gain some
insight into the characteristic time scales of the turbulent dy-
namics, which is computed discretely and in normalised form
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Figure 5: Penalization functions y (left) and £ (right) used in circular (top)
and diverted (bottom) geometry. Black lines indicate separatrix and limiter
respectively divertor target plates.

Figure 6: Snapshots of density (top left), electron temperature (top right), elec-
trostatic potential (bottom left) and parallel ion velocity (bottom right) in circu-
lar geometry. Insets show outboard mid plane region enlarged. Solid black line
indicates last closed flux surface and gray shaded area penalization region due
to toroidal limiter.

Figure 7: Time traces of pressure on the last closed flux surface (p = 1.0) at
low (LFS) and high (HFS) field side mid plane positions for circular limited
geometry.
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Figure 8: Autocorrelation function of pressure signal taken at low field side
in closed field line region where pressure gradient is strongest at (at (R —
Ricrs)/pso = —11, see fig. 9). Right dashed vertical lines indicates autocor-
relation time 7., where autocorrelation function drops to 1/e of its peak value,
and left vertical line indicates characteristic time-scale related with growth rate
of interchange instability 7 = /L,/(2Ry).

as:
2 @) f(tn-i)

Ap(Ti) %f(tn)z ;
with f(z,) the signal at discrete time point #,,. The autocorrela-
tion function for the pressure at LFS in the region of strongest
pressure gradient is shown in fig. 8, and a correlation time
of 7. ~ 0.125 is obtained. The characteristic turbulent time
scales are therefore slightly larger than the interchange time
scale t; = 71‘1 ~ 0.08, where the pressure gradient length in
the edge has been estimated from the self-consistently obtained
profiles (see fig. 9) as L,/Ry =~ 0.012. The turbulence is there-
fore compatible to be driven by resistive ballooning modes.
Furthermore, we analyse the simulation by computing pro-

files (f), fluctuation levels o f = <f2 - (f)2>]/2 and skewnesses

vf = ( 2 =(f )3> /63, where angular brackets denote an aver-
age over toroidal direction and time within the saturated phase.
Our statistical analysis was robust against averaging over dif-
ferent time windows. In fig. 9 profiles, fluctuation levels and
skewnesses taken at outboard mid plane position are shown for
density, electron temperature and pressure. There is a kink in
the density and pressure at the last closed flux surface and a lit-
tle distance outside also for the temperature. The electrostatic
potential follows in the SOL ¢ = AT, and deviates from this in
the closed field line region where the potential at the inner limit-
ing flux surface is prescribed as ¢|, .= (AT,),-;. The absolute
fluctuation level for the density in the closed field line region is
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Figure 9: Radial cut at outboard mid plane showing profiles (top), fluctuation
levels (center) and skewnesses (bottom) for circular geometry. Dashed black
line indicates last closed flux surface.

below 0.13 and still around 0.05 in the near SOL. This translates
into relative fluctuation levels (6f/(f)) of around 30 — 40%,
which substantiates again the importance of a global model.
The skewnesses of the density and pressure approach zero in
the region of its strongest gradients, which is an indication for
a Gaussian probability density function and uncorrelated tur-
bulence, which is driven in this region. Towards the core the
skewnesses become negative which is an indication for holes
and it becomes positive in the SOL indicating the presence of
blobs.

4.3. Comparison with diverted geometry

Snapshots for the diverted case are shown in fig. 10, where
again a clear distinction between closed field line region, SOL
and private flux region in the dynamics is obvious. From the
snapshots there seems to be a qualitative difference with respect
to circular geometry: The turbulence in the saturated state is
generally more quiescent especially in the SOL and we do not
identify blobs at outboard mid plane as clearly as in circular
geometry.

Firstly, we consider again time traces of pressure at differ-
ent poloidal positions on the separatrix in fig. 11. In compari-
son to circular geometry (see fig. 7) the dynamics is generally
more quiescent with smaller fluctuations, poloidal asymmetries
are much stronger pronounced and the course into saturation is
more complex and takes much longer. Until ¢ = 30 the turbu-
lence exhibits a strong ballooning character with violent fluctu-
ations at the LFS, whereas the HFS is rather quiescent. After
t ~ 30 the fluctuation levels approach each other whereas the
signal at the X-point remains always rather quiescent.

0.8

0.6

0.4

0.2

0.6

0.4

0.2

-0.2

-0.4

-0.6

Figure 10: Snapshots of density (top left), electron temperature (top right),
electrostatic potential (bottom left) and parallel ion velocity (bottom right) in
diverted geometry at ¢+ = 48.25. Insets show outboard mid plane region en-
larged. Solid black line indicates separatrix, dashed black lines flux surfaces
p = 095 and p = 1.05 as reference. Gray shaded area marks penalization
region due to divertor plates.
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Figure 11: Time traces of pressure on the separatrix at different poloidal posi-
tions for diverted geometry.
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Figure 12: Profiles (top), fluctuation levels (center) and skewnesses (bottom)
for diverted geometry cut through outboard mid plane position (Note the differ-
ent range of the x-axis in comparison to fig. 9).

Profiles, fluctuation levels and skewnesses for the diverted
simulation are shown in fig, 12. Compared to the circular case
(see fig. 9), the profiles are steeper and the SOL-width is smaller
such that the pressure in the SOL is lower. The fluctuation lev-
els, especially in the SOL, are also reduced with a relative level
of around 15 — 25%. The skewnesses are qualitatively similar
indicating that blobs in the SOL are still present, although it
might not directly be visible from the snapshots in fig. 10.

To illustrate the course of the diverted simulation into its sat-
urated state we show a series of density snapshots in the out-
board mid plane region in fig. 13 at different times during the
simulation. At an early time (¢ = 18) -but still well after the ini-
tial onset of turbulence- there are strong fluctuations and blobs
can clearly be observed. The fluctuations reduce gradually and
slowly until in the saturated state the dynamics becomes rela-
tively quiescent. This transition and the qualitative difference
to the circular geometry correlates with the rise of a poloidal
shear flow illustrated in fig. 14. When the flow profile of the
diverted geometry at ¢+ = 18 resembles the saturated flow pro-
file in circular geometry the turbulence looks similar (Compare
fig. 13 left with fig. 6 upper left inset). In the saturated state, a
strong poloidal flow is built up exhibiting a slightly larger and
qualitatively different shearing rate that swamps away turbulent
fluctuations. However, we have to stress here again that that the
radial electric field and therefore the flow profile in this case
is probably not very realistic as the ion temperature dynamics,
which has a significant impact, is not yet included in the model
and the core boundary condition for the potential is also chosen
somewhat ad-hoc. Besides revealing the need for an accurate
and self-consistent description for the radial electric field, the
study shows that geometry has a significant qualitative effect
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Figure 13: Snapshots of density in outboard mid plane region for diverted ge-
ometry at time ¢ = 18 (left), # = 30 (center) and ¢t = 58 (right). For temporal
orientation of the simulation see fig. 11.

on turbulence.

Another qualitative difference between circular and diverted
geometry are poloidal asymmetries. Whereas the fluctuation
level in circular geometry varies within a flux surface only by
a factor of two it varies in diverted geometry by an order of
magnitude (see fig. 15). Approaching the X-point region from
LFS there is a strong drop in the fluctuation level. The poloidal
asymmetry can also be seen by comparing again the time traces
in figs. 7 and 11. Especially during earlier phases of the diverted
simulation the fluctuations seem to be concentrated at the LFS,
whereas the HFS and especially the X-point region are rather
quiescent.

To give a reason for the stronger poloidal asymmetries in di-
verted geometry we investigate the effect of magnetic geometry
on turbulent fluctuations and consider the local magnetic shear:

_ 0 (B
sloc(eva) - % (ﬁ) P
where tan 6 := Z/(R — Ry) is the geometric poloidal angle. A
plot of the local magnetic shear for flux surfaces just inside the
separatrix is shown in fig. 16. Whereas the local shear is ob-
viously constant in circular geometry, it follows a complicated
course in diverted geometry, i.e. it is very low in the outboard
mid plane region, increases towards the top and high field side
region and approaches a singularity at the X-point. Turbulent
structures, which are driven in the outboard mid plane region
due to unfavourable curvature, become distorted in the perpen-
dicular direction due to local magnetic shear (see also [49]).
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Figure 14: Poloidal flow velocity (top) and flow shear (bottom) at outboard mid
plane. Whereas the flow profiles of the circular geometry differs qualitatively
from the diverted geometry in saturated state, it is very similar to the diverted
flow profile at time 7 = 18.
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Figure 15: Pressure fluctuation level dp, for a) circular geometry and b) di-
verted geometry.
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Figure 16: Local magnetic shear s, on flux surface p = 0.992 close to separa-
trix for circular and diverted geometry as function of geometric poloidal angle.
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Figure 17: Snapshot of pressure at ¢ = 30 where the distortion of structures to-
wards the X-point is visible. Solid lines show p = 0.99, 1.0, 1.01 flux surfaces,
illustrating flux expansion.

Being strongly distorted, i.e. especially in the vicinity of the X-
point, the fluctuations are damped due to perpendicular dissi-
pation. Therefore the X-point ultimately acts as kind of barrier
for fluctuations [22] (See also resistive X-point mode by Myra
et al. [50]). This explains the drop of the fluctuation level near
the X-point towards HFS in our simulation (see fig. 15b). There
is also a drop in fluctuation level in the top region towards HFS,
where local magnetic shear is also relatively large.

In contrast to flux-aligned approaches GRILLIX does not
suffer from coordinate singularity and a loss of resolution near
the X-point due to flux expansion, but the FCI approach allows
an accurate treatment of the dynamics around the X-point. A
detailed view of the pressure at the X-point is shown in fig. 17.
Fluctuations approaching the X-point fan out radially becom-
ing ever narrower in the poloidal direction, which illustrates the
mechanism described in the previous paragraph.

4.4. Comparison to Boussinesq system

Although the Boussinesq approximation is factually not jus-
tified in the edge and SOL, it has often been employed in
various codes and in various forms for numerical reasons
(e.g. [11, 7, 8, 9]). For that matter the effect of the Boussinesq
approximation has been a long standing discussion, and since
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Figure 18: Comparison of global model (FS, solid lines) and Boussinesq mod-
ified model (BS, dashed lines). Profiles (top), fluctuation level (center) and
skewnesses (bottom) at outboard mid plane are shown.

recently there have been several developments on its abolish-
ment [6, 10]. At the same time the impact of the Boussinesq
approximation has mainly been studied at isolated phenomena,
i.e. blobs [6, 17, 18], whereas we investigate here the effect of
the Boussinesq approximation in a fully turbulent environment.
For this purpose we modify the vorticity equation (2) to:

d, .
_Qbsq =-—nT, [C(en + fe)] +V- (b]H) + D,

- (Qbsg), (19

where we define the Boussinesq vorticity as s, = V~(§V sz)),
i.e. we drop the spatio-temporal dependence of the density in
the polarisation term completely. We note that we also tried
another form for the Boussinesq approximation, where the den-
sity is taken out of the divergence with retention of its spatio-
temporal dependence, i.e. Qpsyauy = 1V - (%V Lqﬁ). This al-
ternative form breaks the conservation property of the quasi-
neutrality equation, for which reason we observed a strong spu-
rious poloidal flow rising that eventually caused our simulations
to crash [19, 20].

Based on the circular limited case, we directly compare our
simulation results from section 4.2, obtained with the global
model, to the Boussinesq reduced model. We restarted the cir-
cular case from scratch, and except from the Boussinesq modi-
fication there are no other modifications neither in physical nor
numerical parameters. The result of this comparison is shown
in fig. 18, i.e. profiles, fluctuation levels and skewnesses at out-
board mid plane. Our results were again checked to be robust
against statistical noise via averaging over distinct time win-
dows within the saturated phase. There are only small quantita-
tive differences between the global and the Boussinesq model.
There is basically no difference in the temperature profile and
only a small difference of around 10% in the density profile
around the separatrix. The fluctuation levels differ at most
around 10% and the skewnesses are very similar in both cases.

12

hi Ny v u Wo Wp
coarse 2.0 16 5000 5.0-1072 0.1 6.0-10°°
nominal | 1.0 32 100 25-102 75-1072 4.0-1073
fine 0.67 48 2.0 151002 50-102 3.0-1073

Table 2: Numerical parameters used for convergence check. wy is poloidal
decay length in radians and w), radial decay length in units of Ry for penalisation
function, which is parametrized via tanh functions.

In conclusion, the Boussinesq approximation has only minor
quantitative effects for the case considered here.

4.5. Convergence analysis and impact of heat conductivity

A posteriori, we subject our results to a convergence check
and study the impact of heat conductivity, as we decreased it
artificially. We perform this study only for circular geometry as
it is computationally generally less expensive than the diverted
case and its saturation time is shorter.

For a convergence check we ran the circular case at nomi-
nal resolution, at half resolution and at a resolution that was
increased by a factor of one third. We correspondingly adapted
also other numerical parameters, i.e. we decreased numerical
dissipation coefficients with increasing resolution. Moreover,
we also varied the poloidal and radial decay lengths of the pe-
nalisation functions y in order to exclude spurious effects from
our penalisation approach. The numerical parameters employed
are listed explicitly in table 2. The obtained profiles and pres-
sure fluctuation level at LFS are shown in fig. 19. Whereas
there is a deviation in the temperature profile to the coarse res-
olution case, the fine and nominal resolution match here very
well. The density profiles between nominal and fine resolution
match overall well apart from the density shoulder at the last
closed flux surface, which is slightly more pronounced at finer
resolution. Also the pressure fluctuation converges and devia-
tion between nominal and fine resolution could also be owed to
the fact that for the fine case not as much statistics as for the
other cases was available due to computational constraints.

Compared to realistic COMPASS parameters we employed
a significantly reduced artificial heat conductivity of yo = 20
instead of x| = 340 and correspondingly also decreased the
effective sheath transmission factor to y, = 0.15 instead of v,
2.5. In order to study the effect of this we restarted with reduced
time step the circular limited simulation from a saturated state
with a more realistic heat conductivity of yjo = 140 and y, =
1.0. The obtained profiles and pressure fluctuation level are
shown in fig. 20. While the increased heat conductivity does not
alter the density profile significantly it steepens the temperature
profile in the SOL. The fluctuation level reduces slightly which
is consistent with [48], where a similar study was carried out.

5. Conclusions and Outlook

By incorporating full parametric dependencies and relax-
ing the Boussinesq approximation, GRILLIX was extended
to a global fluid turbulence code for the tokamak edge and
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Figure 19: Result of convergence analysis: Outboard mid plane profiles for
density (top), electron temperature (center) and pressure fluctuation level (bot-
tom) obtained with coarse, nominal and fine resolution.
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Figure 20: Impact of heat conductivity on density (top) temperature profile
(center) and pressure fluctuation level (bottom) at outboard mid plane position.

SOL, i.e. no assumption about fluctuation amplitudes of den-
sity or temperature is made. Further new features are electro-
magnetic and electron-thermal dynamics, and the implementa-
tion of the extended model was verified by analytical means
and the Method of Manufactured Solutions (MMS). The flux-
coordinate independent approach (FCI) is employed in GRIL-
LIX in order to deal with realistic geometries avoiding coor-
dinate singularities at the X-point or separatrix. As boundary
contours do in general not conform with the computational grid
nor the magnetic field as exceptional direction, a penalisation
technique is used in order to treat boundary conditions at the
target plates.

Turbulence simulations in circular geometry with toroidal
limiter and in realistic diverted geometry at otherwise compa-
rable parameters were presented, where parameters were cho-
sen being characteristic for the COMPASS tokamak. A rel-
ative fluctuation level of around 30 — 40% in the SOL, with
isolated highly intermittent phenomena of up to 200% fluctu-
ation level were observed in circular geometry, which implies
that a global description for SOL turbulence is indeed impor-
tant. At the same time a direct comparison to a Boussinesq
reduced model revealed that the Boussinesq approximation had
only minor quantitative effects. However, this conclusion might
possibly not hold true for other parameter regimes [20] and
therefore it is safest to abolish it consequently. Besides this,
other global features, e.g. parametric dependencies of the heat
conductivities and resistivity, might play a more important role.
In diverted geometry the turbulence was found to be generally
more quiescent in the saturated phase, which is related to a dif-
ferent zonal flow structure. Moreover, the diverted geometry
exhibits stronger poloidal asymmetries that can be attributed
to local magnetic shear, which is fundamentally different in the
edge region between circular and diverted geometry. Approach-
ing regions of strong local magnetic shear turbulent structures
become distorted towards the high field side and subsequently
subject to enhanced perpendicular dissipation. As this mecha-
nism is very strong near the X-point, it tends to disconnect low
field side and high field side, where curvature is favourable [22].
In conclusion the presented studies point out the importance of
global effects due to the presence of large intermittent fluctua-
tions and qualitative differences between circular and diverted
geometry.

However, the results have to be considered qualitative as
there are yet important effects in the physical modelling miss-
ing, i.e. ion thermal dynamics, interaction with neutrals and
more realistic sheath boundary conditions that could also take
into account glancing angles of incidence. Our study revealed
also the importance of the radial electric field, and its self-
consistent description requires either an adjustment of the core
boundary conditions or simply a complete abolishment of the
core boundary by performing computationally intense full toka-
mak simulations. Besides this, there are also numerical con-
straints in order to achieve realistic parameter regimes concern-
ing computational efficiency. The strongest time step limita-
tion arises from the parallel non-linear heat conduction scaling
strongly with yj oc T2, for which an implicit treatment will be
necessary. Efforts to extend GRILLIX in these directions are



currently ongoing.

In the near future our studies would concentrate on in-
vestigation of advanced divertor concepts such as double-
null, snowflake or super-X configurations, whose treatment is
straight forward with GRILLIX as its numerics is independent
of flux surfaces.
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