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Abstract. Fluid-structure interaction models involve parameters that describe the solid and the
fluid behavior. In simulations, there often is a need to vary these parameters to examine the behavior
of a fluid-structure interaction model for different solids and different fluids. For instance, a shipping
company wants to know how the material, a ship’s hull is made of, interacts with fluids at different
Reynolds and Strouhal numbers before the building process takes place. Also, the behavior of such
models for solids with different properties is considered before the prototype phase. A parameter-
dependent linear fluid-structure interaction discretization provides approximations for a bundle of
different parameters at one step. Such a discretization with respect to different material parameters
leads to a big block diagonal system matrix that is equivalent to a matrix equation as discussed in [7].
The unknown is then a matrix which can be approximated using a low-rank approach that represents
the iterate by a tensor. This paper compares a low-rank GMRES variant as first mentioned in [1]
with a variant of the Chebyshev iteration. Numerical experiments show that such truncated methods
applied to parameter-dependent discretizations provide approximations with relative residual norms
smaller than 10−8 within a twentieth of the time used by individual standard approaches.
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rank, tensor
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1. Introduction. A parameter-dependent linear fluid-structure interaction prob-
lem as described in Section 2 discretized using bilinear finite elements with a total
number of M ∈ N degrees of freedom (see Section 3 for details) and m ∈ N parameter
combinations leads to equations of the form

(A0 + µisA1 + λisA2 + ρifA3)xi = bD for i ∈ {1, ...,m}(1)

where the discretization matrices A0, A1, A2, A3 ∈ RM×M and the right hand side
bD ∈ RM depends on the Dirichlet boundary conditions and the ith finite element
solution xi ∈ RM . The samples of interest are given by the shear moduli µis ∈ R, the
first Lamé parameters λis ∈ R and the fluid densities ρif for i ∈ {1, ...,m}.

Equation (1) can directly be written as the linear system

A

 x1

...
xm

 =

 bD
...
bD

(2)

where A ∈ RMm×Mm is a block diagonal matrix. Following [7], equation (2) can then
be translated into the matrix equation

A0X +A1XD1 +A2XD2 +A3XD3 = B(3)
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with B :=
[
bD · · · bD

]
and the diagonal matrices D1, D2, D3 ∈ RM×M , where

the ith diagonal entry of these diagonal matrices is given by µis, λ
i
s and ρif , respectively.

In (3), the unknown

X =
[
x1 · · · xm

]
∈ RM×m

is a matrix. Now an iterative method to solve linear systems can be modified such that
it uses an iterate that is a matrix. It is applied to the big system (2) but computation
is kept in the matrix notation (3) by representing the iterate as a matrix instead of a
vector. The methods used in this paper fix a rank R ∈ N, R � M,m and represent
this iterate as a tensor. The goal is to find a low-rank approximation X̂ of rank R

X̂ =

R∑
j=1

uj ⊗ vTj , uj ∈ RM and vj ∈ RM ∀j ∈ {1, ..., R}

that approximates the full matrix X from (3) and therefore provides (parameter-
dependent) finite element approximations for all equations in (1).

Fluid-structure interaction problems yield non-symmetric system matrices. Hence,
the system matrix A in (2) is not symmetric. The methods examined in this paper
are based on the GMRES method as introduced in a truncated variant in [1] and the
Chebyshev method from [9]. These methods will then be compared to a truncated
method based on the Bi-CGstab method from [16] similar to [7, Algorithm 3] and [3,
Algorithm 2].

In numerical experiments, the truncated approaches converged significantly faster
than standard approaches applied to m individual equations of the form (1). As a
consequence of the low-rank representation of the iterate, the storage needed to store
the approximation provided by the truncated approaches is notably smaller than the
full storage needed by standard approaches.

2. The Stationary Linear Fluid-structure Interaction Problem. Let d ∈
{2, 3}, Ω ⊂ Rd, F , S ⊂ Ω such that F̄ ∪ S̄ = Ω̄ and F ∩S = ∅, where F represents the
fluid and S the solid part. Let Γint = ∂F∩∂S and Γout

f ⊂ ∂F \∂S denote the boundary

part where Neumann outflow conditions hold. ΓDf = ∂F \ (Γout
f ∪ Γint) denotes the

boundary part where Dirichlet conditions hold. Consider the Stokes fluid equations
[11, Chapter 2.4.4] as a model for the fluid part and the Navier-Lamé equations [11,
Problem 2.23] as a model for the solid part. Both equations are assumed to have
a vanishing right hand side. If these two equations are coupled with the kinematic
and the dynamic coupling conditions [11, Chapter 3.1], the weak formulation of the
stationary coupled linear fluid-structure interaction problem reads

(4)

〈∇ · v, ξ〉F = 0,

µs〈∇u+∇uT ,∇ϕ〉S + λs〈tr(∇u)I,∇ϕ〉S
+νfρf 〈∇v +∇vT ,∇ϕ〉F − 〈p,∇ · ϕ〉F = 0,

〈∇u,∇ψ〉F = 0,

with the trial functions v ∈ vin + H1
0 (Ω,ΓDf ∪ Γint) (velocity), where vin ∈ H1(Ω) is

an extension of the Dirichlet data on ΓDf , u ∈ H1
0 (Ω) (deformation) and p ∈ L2(F )

(pressure) and the test functions ξ ∈ L2(F ) (divergence equation), ϕ ∈ H1
0 (Ω, ∂Ω \

Γout
f ) (momentum equation) and ψ ∈ H1

0 (F ) (deformation equation). 〈·, ·〉S and 〈·, ·〉F
denote the L2 scalar product on S and F , respectively. νf ∈ R denotes the kinematic
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fluid viscosity and ρf ∈ R the fluid density. The shear modulus µs ∈ R and the first
Lamé parameter λs ∈ R determine the Poisson ratio of the solid.

Definition 2.1 (The Poisson Ratio [11, Definition 2.18]).
The Poisson ratio of a solid is given by the number

νps =
λs

2(λs + µs)
.

It describes the compressibility of a solid.

3. Parameter-dependent Discretization. Assume the behavior of a linear
fluid-structure interaction model for m1 ∈ N shear moduli, m2 ∈ N first Lamé param-
eters and m3 ∈ N fluid densities is of interest. The kinematic fluid viscosity νf ∈ R is
assumed to be fixed. Let the samples of interest be given by the following sets.

{µi1s }i1∈{1,...,m1} ⊂ R+, a set of shear moduli,

{λi2s }i2∈{1,...,m2} ⊂ R+, a set of first Lamé parameters and

{ρi3f }i3∈{1,...,m3} ⊂ R+, a set of fluid densities.

In a bilinear finite element discretization of (4) with a mesh grid size of N ∈ N,
every mesh grid point corresponds to a pressure, a velocity and a deformation variable.
In two dimensions, the velocity and deformation are two dimensional vectors, in three
dimensions they correspond to a three dimensional vector each. The total number
of degrees of freedom is therefore M = 5N in two dimensions and M = 7N in three
dimensions.

Let Ωh be a matching mesh of the domain Ω as defined in [11, Definition 5.9] with
N mesh grid points, A0 ∈ RM×M a Q1 discretization matrix of all operators involved
in (4) with a fixed shear modulus µs ∈ R, a fixed first Lamé parameter λs ∈ R and
a fixed fluid density ρf ∈ R. Moreover, let A1, A2, A3 ∈ RM×M be Q1 discretization
matrices of the following operators:

A1 discretizes 〈∇u+∇uT ,∇ϕ〉S ,

A2 discretizes 〈tr(∇u)I,∇ϕ〉S and

A3 discretizes 〈∇v +∇vT ,∇ϕ〉F .

The parameter-dependent equation

(5)

(A0 + (µi1s − µs)A1 + (λi2s − λs)A2 + νf (ρi3f − ρf )A3)︸ ︷︷ ︸
=:A(µ

i1
s ,λ

i2
s ,ρ

i3
f )

xi1i2i3 = bD for

(i1, i2, i3) ∈ {1, ...,m1} × {1, ...,m2} × {1, ...,m3}

is the finite element discretization of (4) related to a shear modulus µi1s , a first Lamé
parameter λi2s and a fluid density ρi3f . The finite element solution is xi1i2i3 ∈ RM and

the right hand side bD ∈ RM depends on Dirichlet boundary conditions.
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Remark 3.1. If the fixed parameters vanish, namely µs = λs = ρf = 0, (5)
translates to

(A0 + µi1s A1 + λi2s A2 + νfρ
i3
f A3)xi1i2i3 = bD for

(i1, i2, i3) ∈ {1, ...,m1} × {1, ...,m2} × {1, ...,m3}.

At first sight, this presentation seems to be more convenient. But choosing, for
instance, the parameters µs = µ1

s, λs = λ1
s and ρf = ρ1

f minimizes the number of

nonzero entries in the diagonal matrices D1, D2, D3 ∈ Rm×m that will be introduced
in (7). From a numerical point of view, this is an advantage. Furthermore, vanishing
fixed parameters would lead to a singular matrix A0. This can become a problem if
the preconditioner PA0 from Subsection 3.2 is used.

Combining all sample combinations in (5) leads to a total of m = m1m2m3 equations.
Written as a linear system, these equations translate to

=:A︷ ︸︸ ︷
diag

i1∈{1,...,m1}
i2∈{1,...,m2}
i3∈{1,...,m3}

(A(µi1s , λ
i2
s , ρ

i3
f ))

 x1

...
xm1m2m3

 =

 bD
...
bD

 .(6)

Even though A ∈ RMm×Mm is of block diagonal structure, solving the blocks on
the diagonal m times (potentially in parallel) is often not a feasible way to go. If
100 samples per parameter are considered one would have to face 1003 = 106 blocks
already in such a direct approach. This would lead to huge storage requirements for
the solution vectors.

3.1. The Matrix Equation. Let D1, D2, D3 ∈ Rm×m be diagonal matrices
with diagonal entries µi1s − µs, λi2s − λs and ρi3f − ρf , respectively. The order of the
diagonal entries has to be chosen such that every parameter combination occurs once
only. If Im1

∈ Rm1×m1 denotes the m1 ×m1 identity matrix, a possible sample order
would lead to matrices

(7)

D1 = Im2m3
⊗ diag

i1∈
{1,...,m1}

(µi1s ), D2 = Im3
⊗ diag

i2∈
{1,...,m2}

(λi2s )⊗ Im1
and

D3 = diag
i3∈

{1,...,m3}

(ρi3f )⊗ Im1m2 .

As discussed in [7], equation (2) can then be written as the matrix equation

(8) A0 +A1XD1 +A2XD2 + νfA3XD3︸ ︷︷ ︸
=:F (X)

= B := [bD| · · · |bD]

where the unknown is the matrix X = [x1| · · · |xm1m2m3 ] ∈ RM×m whose ith column
corresponds to the finite element approximation of (4) related to the ith sample
combination. A theorem proved in [7, Theorem 2.4] now states that the singular
value decay of the matrix X is exponential.

3.2. Preconditioners. The system matrix A has the structure

A = Im ⊗A0 +D1 ⊗A1 +D2 ⊗A2 + νfD3 ⊗A3.



LOW-RANK LINEAR FLUID-STRUCTURE INTERACTION DISCRETIZATIONS 5

Promising choices of preconditioners that were used already in [7] are

PA0
:= Im ⊗A0

or

PT := Im ⊗ (A0 + µ̄sA1 + λ̄sA2 + νf ρ̄fA3)︸ ︷︷ ︸
=:PT

with the means

µ̄s =

min
i1∈{1,...,m1}

(µi1s − µs) + max
i1∈{1,...,m1}

(µi1s − µs)

2
,

λ̄s =

min
i2∈{1,...,m2}

(λi2s − λs) + max
i2∈{1,...,m2}

(λi2s − λs)

2
and

ρ̄f =

min
i3∈{1,...,m3}

(ρi3f − ρf ) + max
i3∈{1,...,m3}

(ρi3f − ρf )

2
.

The preconditioner PT usually provides faster convergence than PA0 , especially if the
means µ̄s, λ̄s and ρ̄f are big. Left multiplication of P−1

T with

A

 x1

...
xm1m2m3


is equivalent to application of P−1

T to F (X) from the left using the matrix notation
from (8).

4. The Low-rank Methods. Now, a method can be applied to the big system
(6). The iterate is then a vector x ∈ RMm. But if the iterate is represented as a
matrix instead of a vector, computation can be kept in the matrix notation from (8).
For instance, the matrix-vector multiplication in such a global approach corresponds
to the evaluation of the function F (·) from (8). The Euclidean norm of the vector x1

...
xm1m2m3


from (6) then corresponds to the Frobenius norm of the matrix X in (8), ‖X‖F . There
are many methods that are suitable for this approach. But since for fluid-structure
interaction problems, the matrix A is not symmetric, the focus in this paper lies on
methods that base on the GMRES and the Chebyshev method. As proved in Theorem
35.2 in [15], the GMRES method converges in this case, and so does the Chebyshev
method, if all eigenvalues of the system matrix lie in an ellipse that does not touch the
imaginary axis as proved in [9]. Also the Bi-CGSTAB method from [16] is considered
for a numerical comparison.

As mentioned, the low-rank methods this paper deals with use an iterate that is,
instead of a matrix, a tensor of order two. The iterate is then given by

X̂ =

R∑
j=1

= (uj ⊗ vTj ) with uj ∈ RM , vj ∈ Rm ∀j ∈ {1, ..., R},
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where the tensor rank R ∈ N is kept small such that R � M,m. The goal of the
method is to find a low-rank approximation X̂ that approximates the matrix X in (8).
The methods GMREST (also mentioned in [1]) and ChebyshevT are such methods
and will be explained in the following. They are not just faster than the standard
methods applied to m individual equations of the form (5), they also need a smaller
amount of storage to store the approximation. If M and m are very big, this plays
an important role since the storage amount to store X̂ is in O

(
(M +m)R

)
while the

storage amount to store the full matrix X is in O(Mm).

4.1. Tensor Format and Truncation. There are several formats available to
represent the tensor X̂. For d = 2, the hierarchical Tucker format ([5, Definition
11.11]) is equivalent to the Tucker format. It is based on so called minimal subspaces
that are explained in [5, Chapter 6].

Definition 4.1 (Tucker Format [5, Definition 8.1] for d = 2).
Let V := RM ⊗ Rm, (r1, r2) ∈ N2. For d = 2, the Tucker tensors of Tucker rank
(r1, r2) are given by the set

T(r1,r2)(V ) := {v ∈ V : there are subspaces V1⊂RM and V2⊂Rm with
dim(V1)=r1, dim(V2)=r2 and v∈V1⊗V2.

}.

From now on, the set T(R,R)(V ) will be denoted by TR. By a tensor of rank R a
Tucker tensor in T(R,R) is addressed in the following.

As explained in [5, Chapter 13.1.4], summation of two arbitrary Tucker tensors of
rank R, in general, results in a Tucker tensor of rank 2R. But to keep a low-rank
method fast, the rank of the iterate has to be kept small. This induces the need for
a truncation operator.

Definition 4.2. The truncation operator

T : RM ⊗ Rm → TR

maps a Tucker or a full tensor into the set of Tucker tensors of rank R.

Remark 4.3. As proved in [5, Chapter 3.2.3] it holds

RM ⊗ Rm ∼= RM×m.

Since for our purposes we consider a matrix that is represented by a tensor we assume

T : RM×m → TR.

and if

x̂ ∈ TR,

by x̂ the full representation of the tensor in RMm is addressed for the sake of notation.

Before we proceed, one more definition is needed.

Definition 4.4 (Vectorization restricted to RM×m). The vectorization operator

vec : RM×m → RMm, vec
(
v1 · · · vm

)
7→

 v1

...
vm


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stacks matrix entries column wise into a vector. Its inverse maps to an M×m matrix:

vec−1 : RMm → RM×m, vec−1
( v1

...
vm

) = (v1| · · · |vm).

Remark 4.5. The argument of the function F (·) from (8) is tacitly assumed to be
a matrix so F (x̂) addresses F

(
vec−1(x̂)

)
for x̂ ∈ TR.

Since truncation is an operation that is applied after nearly every addition of ten-
sors and multiple times in every iteration, the format that provides the trunca-
tion with the least complexity is often the preferred one. According to [8, Algo-
rithm 6], the htucker toolbox [8] for MATLAB R© provides truncation with complexity
(2 max(M,m)R2+2R4) if the input format is in hierarchical Tucker format. The trun-
cation complexity of the TT toolbox [10] for MATLAB that uses the Tensor Train
format is in O(2 max(M,m)R3) as stated in [10, Algorithm 2].

4.2. The GMREST and the GMRESTR Method. Consider A from (6), a
suitable preconditioner P = Im ⊗ P ∈ RMm×Mm, a start vector x0 ∈ RMm and

b :=

 bD
...
bD

 , r0 := P−1(b−Ax0).

l GMRES iterations with the preconditioner P applied to the system (6) minimize
‖r0 − P−1Az‖2 for z ∈ RMm over the Krylov subspace (compare [12, Chapter 6.2])

Kl := span{r0,P−1Ar0, ..., (P−1A)l−1r0}.

As mentioned before, from the theoretical point of view, this classical GMRES method
is equivalent to the global GMRES method that uses an iterate that is a matrix
instead of a vector. But if the iterate is represented by a tensor of a fixed rank
R, the truncation operator T generates an additional error every time it is applied
to truncate the iterate or tensors involved back to rank R. With an initial guess
x̂0 := T (x0),

b̂ := T (b) and r̂0 := T
(
P−1[b̂− F (x̂0)]

)
,

l iterations of the truncated GMRES method GMREST that is coded in Algorithm 1

minimize ‖ vec
(
T
(
r̂0 − P−1F (ẑ)

))
‖2 for ẑ ∈ TR over the truncated Krylov subspace

KTl := span{vec(r̂0), vec
(
T
(
P−1F (r̂0)

))
, ..., vec

((
T (P−1F )

)l−1
(r̂0)

)
}.

Even the standard GMRES method can stagnate due to machine precision. This
means that at the lth iteration the dimension of the numerical approximation of Kl
is smaller than l. As we will see later, the truncation operator brings, in addition to
the machine precision error, a truncation error into play. As a result, the GMREST
method can stagnate much earlier than the non truncated full approach. As in the
full approach, restarting the method with the actual iterate as initial guess can be a
remedy. This restarted variant of the GMREST method, called GMRESTR here, is
coded in Algorithm 2.
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Algorithm 1 GMREST(l) (Preconditioned Truncated GMRES Method)

Input: Iteration number l, truncation rank R for T , F (·) from (8), left preconditioner
P ∈ RM×M , right hand side B̂ ∈ TR and start matrix X̂ ∈ TR

Output: Approximate solution X̂ ∈ TR
Find R̂ ∈ TR such that PR̂ = T (B̂ − F (X̂)).

z :=
(
‖R̂‖F 0 · · · 0

)T
V̂1 := R̂

‖R̂‖F
for i = 1, ..., l do

Find Ŵ ∈ TR such that PŴ = T (F (V̂i)).
for k = 1, ..., i do
Hk,i := trace(V̂ Hk Ŵ )

Ŵ := T (Ŵ −Hk,iV̂k)
end for
Hi+1,i := ‖Ŵ‖F
V̂i+1 := Ŵ 1

Hi+1,i

end for
Now find a unitary matrix Q such that QH is a right upper triangular matrix via
Givens rotation. Find y such that QHy = Qz.

X̂ = T (X̂ +
l∑

j=1

yj V̂j)

Algorithm 2 GMRESTR(l, d) (Preconditioned Truncated GMRES Restart Method)

Input: In addition to the inputs of Algorithm 1, a divider d ∈ N
Output: Approximate solution X̂ ∈ TR
d1 := floor( ld )
for i = 1, ..., i do
X̂ =GMREST(d) with start matrix X̂

end for

4.3. The ChebyshevT Method. In the complex plane, positive real values
can be encircled by an ellipse that does not touch the imaginary axis. Hence, the
Chebyshev method converges for non-symmetric system matrices that have positive
real eigenvalues.

The diagonal blocks of the preconditioned system matrix P−1
T A are

Bl(i1, i2, i3) := P−1
T

(
A0 + (µi1s − µs)A1 + (λi2s − λs)A2 + νf (ρi3f − ρf )A3

)
for (i1, i2, i3) ∈ {1, ...,m1} × {1, ...,m2} × {1, ...,m3}.

Moreover, the parameter-dependent matrices (5) are assumed to be invertible. The
eigenvalues of P−1

T A denoted by Λ(P−1
T A) therefore coincide with the set⋃

i1∈{1,...,m1}
i2∈{1,...,m2}
i3∈{1,...,m3}

Λ(Bl(i1, i2, i3)).(9)

In numerical tests it turned out that Λ(P−1
T A) ⊂ (0,∞) for the linear fluid-structure

interaction problems considered and the maximum and the minimum of Λ(P−1
T A) do
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Algorithm 3 ChebyshevT(l, d, c) (Preconditioned Truncated Chebyshev Method)

Input: Iteration number l, ellipse by center d and foci d ± c, truncation rank R for
T , F (·) from (8), left preconditioner P ∈ RM×M , right hand side B̂ ∈ TR and start
matrix X̂ ∈ TR

Output: Approximate solution X̂ ∈ TR
Find R̂0 such that PR̂0 = T (B̂ − F (X̂))
Φ̂0 := 1

d R̂0

X̂ = T (X̂ + Φ̂0)
t0 := 1
t1 := d

c
for i = 1, ..., l do
ti+1 := 2dc ti − ti−1

αi := 2ti
cti+1

βi := ti−1

ti+1

Find R̂i such that PR̂i = T (B̂ − F (X̂)).
Φ̂i := T (αiR̂i + βiΦ̂i−1)
X̂ = T (X̂ + Φ̂i)

end for

not depend on the number of degrees of freedom. For a discretization, the quantities

Λmax := max Λ(P−1
T A) and Λmin := min Λ(P−1

T A)(10)

can therefore be computed using the representation (9) of Λ(P−1
T A) for a small number

of degrees of freedom. Since Λmin > 0, all the eigenvalues of P−1
T A can indeed be

encircled by an ellipse in the complex plane that does not touch the imaginary axis.
The Chebyshev method from [9] can therefore be generalized in the same manner as
the GMRES method in Subsection 4.2 and used to find a low-rank approximation X̂
of X in (8). The ellipse with center

d :=
Λmin + Λmax

2
and foci d± c for c := Λmax − d

encircles all eigenvalues of P−1A and does not touch the imaginary axis, i.e. d−c > 0
if the eigenvalues of P−1

T A are positive. The resulting truncated Chebyshev variant
ChebyshevT is coded in Algorithm 3.

5. Time Discretization.

5.1. The Linear Fluid-structure Interaction Problem. Let [0, T ] be a time
interval for T ∈ R+ and t ∈ [0, T ] be the time variable. The deformation u and the
velocity v now depend, in addition, on the time variable t so we write u(x, t) and
v(x, t). With the solid density ρs ∈ R, the non stationary Navier-Lamé equations [11,
Chapter 2.3.1.2] fulfill

ρs∂ttu− div(σ) = ρs∂tv − div(σ) = 0, ∂tu = v.

The time term ρf∂tv coming from the Stokes fluid equations as mentioned in [11,
(2.42)] is added to the left side of the momentum equation. The weak formulation of
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the non stationary coupled linear fluid-structure interaction problem is given by

(11)

〈∇ · v, ξ〉F = 0,

(?)︷ ︸︸ ︷
ρf 〈∂tv, ϕ〉F +ρs〈∂tv, ϕ〉S + µs〈∇u+∇uT ,∇ϕ〉S

+λs〈tr(∇u)I,∇ϕ〉S + νfρf 〈∇v +∇vT ,∇ϕ〉F − 〈p,∇ · ϕ〉F = 0,

〈∇u,∇ψ〉F = 0

with regularity conditions v(x, ·) ∈ C1([0, T ]), ∂tv(·, t) ∈ H−1(Ω) for all (x, t) ∈
Ω× [0, T ] in addition to the ones in (4).

Remark 5.1. The time term in the Navier-Stokes equations can also, in some
applications, be neglected. Then one is interested in a time discretization of the solid
part only. In this case, (?) = 0 and the discretization matrix Aft of Subsection 5.2
can be seen as the zero matrix in RM×M .

5.2. Time Discretization with the θ-Scheme. Let Aft , A
s
t ∈ RM×M be Q1

discretization matrices:

Aft discretizes 〈v, ϕ〉F and Ast discretizes ρs〈v, ϕ〉S .

Now consider a discretization that splits the time interval [0, T ] into s+1 ∈ N equidis-
tant time steps. Let the distance between two time steps be ∆t. The starting time is
t0 = 0 and the following times are given by ti := i∆t for i ∈ {1, ..., s}. Let Xi be the
approximate solution at time ti, X

0 is given as the initial value. The given Dirichlet
boundary conditions xi0 at time ti for all i ∈ {1, ..., s} yield the time dependent right
hand side

Bi := xi0 ⊗ (1, ..., 1) for i ∈ {1, ..., s}.

Consider the one-step θ-scheme explained in [11, Chapter 4.1]. Using the notation
from (8) at time ti the following equation is to be solved for Xi.

(12)

1

∆t
Af

tX
i(ρfIm +D3) +

1

∆t
As

tX
i + θF (Xi)︸ ︷︷ ︸

=:F i(Xi)

=
1

∆t
Af

tX
i−1(ρfIm +D3) +

1

∆t
As

tX
i−1 − (1 − θ)F (Xi−1) + θBi + (1 − θ)Bi−1︸ ︷︷ ︸

=:Bi(Xi−1)

,

where θ ∈ [0, 1]. F i(·) contains only two sum terms more than F (·) from (8). At time
ti, both Algorithm 1 and Algorithm 3 can be applied to the quasi stationary problem
(12) with F i(·) instead of F (·) and the right hand side Bi(Xi−1).

5.3. Preconditioner. At all time steps the full matrix is given by

At :=
1

∆t
(ρfIm +D3)⊗Aft +

1

∆t
Im ⊗Ast

+ θ(I ⊗A0 +D1 ⊗A1 +D2 ⊗A2 + νfD3 ⊗A3).

The mean-based preconditioner, similar to PT from Subsection 3.2, is

PtT := I ⊗ P tT where

P tT :=
1

∆t
(ρf + ρ̄f )Aft +

1

∆t
Ast + θ(A0 + µ̄sA1 + λ̄sA2 + νf ρ̄fA3).
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Even though the right hand side Bi(Xi−1) changes with every time step, the system
matrix does not.

6. Theoretical Error Bounds. The convergence proofs of the GMRES
method from [15, Theorem 35.2] and [13, Chapter 3.4] base on the fact that the
residual of the lth GMRES iterate can be represented as a product of a polynomial
in A and the initial residual since the lth GMRES iterate is a linear combination of
the start vector x0 and the generating elements of Kl. Also, the error bound of the
Chebyshev method in [4] relies on the fact that the residual of the lth Chebyshev
iterate is such a product. But even if one considers Algorithm 1 and Algorithm 3
in a non preconditioned version, multiplication with the system matrix A is always
disturbed due to the error induced by the truncation operator. The GMREST method
minimizes over KTl , the truncated Krylov subspace, instead of Kl. In Subsection 6.2,
the basis elements of KTl are represented explicitly taking the truncation accuracy
into consideration. Let xl be the lth GMRES iterate, x̂l be the lth GMREST iterate.
The error

‖xl − x̂l‖2
is then estimated based on these results. In relation to Krylov subspace methods,
distortions initiated by matrix vector multiplication result in so called inexact Krylov
methods and have been discussed in [14]. Iterative processes that involve truncation
have been discussed in a general way in [6]. For the lth Chebyshev iterate xl and the
lth ChebyshevT iterate x̂l, the error

‖xl − x̂l‖2
is bounded in the same way in Subsection 6.3. These bounds show how the truncation
error is propagated iteratively in Algorithm 1 and Algorithm 3 if the machine precision
error is neglected.

Remark 6.1. If v ∈ RMm, T (v) addresses T (vec−1(v)). Thus for the sake of
notation the truncation operator T from Definition 4.2 is regarded as a map

T : RMm → TR

and for v ∈ RMm, T (v) addresses the full representation of the tensor in RMm.

Definition 6.2 (Truncation accuracy). The truncation operator T from Defini-
tion 4.2 is said to have accuracy ε > 0 if for any x ∈ RMm

x̂ := T (x) = x+ Ex̂ with Ex̂ ∈ RMm and ‖Ex̂‖2 ≤ ε

holds. Ex̂ is the error induced by T when x is truncated.

6.1. Matrix Vector Product Evaluation Accuracy. If a tensor is multiplied
with a scalar or a matrix, there is no truncation needed since the tensor rank does not
grow. But the evaluation of F (·) from (8) involves 4 sum terms. After an evaluation
of F (·) with a tensor as argument, the result has to be truncated. To keep complexity
low for X̂ ∈ TR, the sum T

(
F (X̂)

)
, in practice, is truncated consecutively

T
(
F (X̂)

)
≡ T

(
T
(
T (A0X̂ +A1X̂D1) +A2X̂D2

)
+ νfA3X̂D3

)
= T

(
T (A0X̂ +A1X̂D1 +A2X̂D2 + EF̂s1

) + νfA3X̂D3

)
= T (A0X̂ +A1X̂D1 +A2X̂D2 + νfA3X̂D3 + EF̂s1

+ EF̂s2
)

= F (X̂) + EF̂s1
+ EF̂s2

+ EF̂s3
.
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EF̂si
denotes the truncation error induced by the truncation of the ith sum term for

i ∈ {1, 2, 3}. By Definition 4.2, ‖EF̂si
‖2 ≤ ε for all i ∈ {1, 2, 3}. In T (F (·)) are, if the

number of summands in F (·) is K ∈ N, a total of K − 1 truncations hidden. For a
truncation accuracy of ε > 0 we have

‖T (F (X̂))− F (X̂)‖2 ≤ (K − 1)ε.

Since K is a small number, usually not bigger than 4, we will neglect this detail and
simply assume

‖T (F (X̂))− F (X̂)‖2 ≤ ε

in the following. To make sure that the stated error bounds are still valid, the trun-
cation accuracy would be asked to be less than ε

K−1 .

6.2. GMREST Error Bounds. Let xl be the lth standard GMRES iterate,
x̂l be the lth GMREST iterate. The first question that arises is how accurate is
the truncated Krylov subspace KTl from Subsection 4.2? First we derive explicit
representations of the non-normalized basis elements of KTl .

Lemma 6.3 (Basis Representation of KTl ). Assume dim(KTl ) = l and

r̂0 = T
(
P−1(b−Ax0)

)
= r0 + Er̂0 .

Let the truncation operator T (·) have accuracy ε > 0. The non-normalized basis
elements of KTl are given by

r̂0 and

KTk := (P−1A)kr0 + (P−1A)kEr̂0 +

k∑
j=1

(P−1A)j−1EKTk−j+1

for all k ∈ {1, ..., l − 1}.
Proof. (by induction)

For k = 1

KT1 = T (P−1F (r̂0)) = T (P−1Ar̂0) = T (P−1A(r0 + Er̂0))

= P−1Ar0 + P−1AEr̂0 + EKT1

and k − 1⇒ k since

KTk = (T P−1F )k(r̂0) = T
(
P−1F (KTk−1)

)
= T (P−1AKTk−1)

= T
(
P−1A

(
(P−1A)k−1r0 + (P−1A)k−1Er̂0 +

k−1∑
j=1

(P−1A)j−1EKTk−j

))

= (P−1A)kr0 + (P−1A)kEr̂0 +

k−1∑
j=1

(P−1A)jEKTk−j + EKTk

= (P−1A)kr0 + (P−1A)kEr̂0 +

k∑
j=1

(P−1A)j−1EKTk−j+1 .
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Remark 6.4 (Truncation Error of r̂0). Consider the line

Find R̂ such that PR̂ = T (B̂ − F (X̂))

of Algorithm 1. In vector notation

P r̂0 = T
(
b− F (x̂0)

)
(13)

is solved for r̂0. Usually the initial vector x0 is chosen such that it can be represented
by a tensor of low rank. So we assume x̂0 = T (x0) = x0. If the linear system (13) is
solved before truncation we have

‖Er̂0‖2 ≤ ε.

But this is rarely implemented this way. In practice, the right side of (13) is truncated
before the linear system is solved for r̂0. In this case

‖Er̂0‖2 ≤ ε‖P−1‖2

holds. The following statements refer to the former case. The second case is always
treated separately in a successive remark.

Remark 6.5 (Truncation of Ŵ and Orthogonality). Consider the line

Ŵ := T (Ŵ −Hk,iV̂k)

in Algorithm 1. In the lemma above, this truncation is neglected. When the kth basis
element V̂k is set up, there are k extra additions involved due to this line. Let EŴ be
the truncation error that occurs when this line is executed. For the sake of readability,
we neglect that they differ from loop iteration to loop iteration. As a consequence,
we do not add another index to EŴ . The basis elements are then given by

r̂0 and

KTk := (P−1A)kr0 + (P−1A)kEr̂0 +

k∑
j=1

(P−1A)j−1EKTk−j+1 + kEŴ

for k ∈ {1, ..., l − 1}.

The basis elements the exact Arnoldi iteration yields are also not

{r0,P−1A, ..., (P−1A)l−1r0}.(14)

But we neglect machine precision. If truncation is also neglected, the GMRES and
the GMREST methods compute exactly the same basis elements for our problems.
We incorporate the error made at the orthogonalization of the basis elements, in the
truncated case, into EŴ and address by (14) the normalized basis elements that result
from the Arnoldi iteration. In other words, we tacitly assume that the basis elements
(14) of Kl are orthonormal, write them in the representation (14) and incorporate the
error we made at orthogonalization into EŴ . This is just one result of the assumption
that we use exact precision.

Lemma 6.6 (Error Bound for Truncated Basis Elements). Let σP := ‖P−1A‖2.
Under the assumptions of Lemma 6.3 for

ek :=

{
‖r̂0 − r0‖2 if k = 0

‖KTk − (P−1A)kr0‖2 if k ∈ {1, ..., l − 1}
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it holds that

ek ≤ ε
k+1∑
j=1

σj−1
P for k ∈ {0, ..., l − 1}.

Proof. Case k = 0 is clear. For k ≥ 1, Lemma 6.3 can be used.

ek = ‖(P−1A)kEr̂0 +

k∑
j=1

(P−1A)j−1EKTk−j+1‖2

= ‖(P−1A)kEr̂0 + EKTk +

k−1∑
j=1

(P−1A)jEKTk−j ‖2

≤ σkPε+ ε+

k−1∑
j=1

σjPε = ε

k+1∑
j=1

σj−1
P .

Remark 6.7. In the second case mentioned in Remark 6.4,

ek ≤ ε(
k∑
j=1

σj−1
P + ‖P−1‖2σkP)

holds for k ∈ {0, ..., l − 1} since then

‖(P−1A)kEr̂0‖2 ≤ ε‖P−1‖2σkP
instead. The convention ∑

j∈∅

σj−1
P = 0

is used.

Remark 6.8. If one takes the line mentioned in Remark 6.5 into consideration,
the bounds translate to

ek ≤ ε(
k+1∑
j=1

σj−1
P + k) or

ek ≤ ε(
k∑
j=1

σj−1
P + ‖P−1‖2σkP + k),

respectively, for k ∈ {0, ..., l − 1}.
The standard GMRES minimizes over the Krylov subspace Kl. In terms of Re-
mark 6.5, the standard GMRES method finds coefficients ci ∈ R for i ∈ {1, ..., l} such
that

xl = x0 + c1r0 + c2P−1Ar0 + ...+ cl(P−1A)l−1r0.

In the same way we can write

x̂l = x̂0 + d1r̂0 + d2K
T1 + ...+ dlK

Tl−1 ,

where the coefficients di for i ∈ {1, ..., l} refer to the coefficients found by the Arnoldi
iteration in the GMREST method. This allows to state the following theorem.
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Theorem 6.9 (Approximation Error of GMREST). Let xl be the lth iterate of
the standard GMRES method, x̂l be the lth iterate of the GMREST method. It holds

‖x̂l − xl‖2 ≤ ε
l∑

j=1

j∑
i=1

|dj |σi−1
P +

l∑
j=1

|cj − dj |+ εl.

Proof.

‖x̂l − xl‖2 = ‖x̂0 − x0 + d1r̂0 − c1r0 + d2K
T1 − c2P−1Ar0 + ...

+ dlK
Tl−1 − cl(P−1A)l−1r0‖2

≤ |d1|e0 + |d2|e1 + ...+ |dl|el−1 + |c1 − d1|‖ r0︸︷︷︸
(?)

‖2

+ |c2 − d2|‖ P−1Ar0︸ ︷︷ ︸
(?)

‖2 + ...+ |cl − dl|‖(P−1A)l−1r0︸ ︷︷ ︸
(?)

‖2 = (∗)

We assume that the standard GMRES method does an accurate orthogonalization of
the Krylov subspace Kl (see Remark 6.5). To be precise, the basis elements at (?) are
not the matrix products

(P−1A)j−1r0 for j ∈ {1, ..., l}

but this is neglected. By the elements (?), we address the orthonormal basis elements
of Kl. They all have an Euclidean norm of 1. Therefore,

(∗) =

l∑
j=1

(|dj |ej−1 + |cj − dj |)

≤ ε
l∑

j=1

j∑
i=1

|dj |σi−1
P +

l∑
j=1

|cj − dj |

holds. The additional sum term εl comes from the last successive sum in the method
where the approximation is built.

Remark 6.10. For the second case mentioned in Remark 6.4 the bound translates
to

‖x̂l − xl‖2 ≤ ε
l∑

j=1

|dj |(
j−1∑
i=1

σi−1
P + ‖P−1‖2σj−1

P ) +

l∑
j=1

|cj − dj |+ εl.

Remark 6.11. In addition, with the error from the orthogonalization, one obtains

‖x̂l − xl‖2 ≤ ε
l∑

j=1

|dj |(
j∑
i=1

σi−1
P + j − 1) +

l∑
j=1

|cj − dj |+ εl and

‖x̂l − xl‖2 ≤ ε
l∑

j=1

|dj |(
j−1∑
i=1

σi−1
P + ‖P−1‖2σj−1

P + j − 1) +

l∑
j=1

|cj − dj |+ εl

in the other case.
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6.3. ChebyshevT Error Bounds. Similar to Subsection 6.2, we derive an
error bound for the ChebyshevT method coded in Algorithm 3. Let xl denote the
lth iterate of the standard Chebyshev method and x̂l denote the lth iterate of the
ChebyshevT method.

Remark 6.12. The ith residual is given by the solution ri to

Pri = b−Axi.

The truncation of ri yields

r̂i = T (ri) = ri + Er̂i with ‖Er̂i‖2 ≤ ε

if the truncation operator T is assumed to have accuracy ε. In analogy to Remark 6.4,
the two cases ‖Er̂i‖2 ≤ ε (case 1) and ‖Er̂i‖2 ≤ ε‖P−1‖2 (case 2) will be distinguished
in the following.

The start vector and the right hand side are assumed to be of low rank, namely

x̂0 = T (x0) = x0 and b̂ = T (b) = b.

In the same way as in Subsection 6.2 the norm ‖x̂l − xl‖2 is to be estimated. Ex̂a
l

denotes the total error

Ex̂a
l

:= x̂l − xl

not to be confused with Ex̂l
, the truncation error with norm ε that occurs when

truncating x̂l. The iterative Chebyshev method is a three term recursion. Thus, the
Chebyshev iterates itself can be represented by a recursive formula.

Lemma 6.13 (Representation of the ChebyshevT Iterates). Let the scalars

αi, βi ∈ R for i ∈ {1, ..., l} and Φ̂i ∈ TR for i ∈ {0, ..., l}

be given as defined in Algorithm 3. Φi denote the non truncated full matrices corre-
sponding to Φ̂i if Algorithm 3 is applied and any truncation is neglected. If

r̂0 = r0 + Er̂0 ,

it holds that

Ex̂a
0

= 0,

x̂1 = x1 +
1

d
Er̂0 + Ex̂1︸ ︷︷ ︸
Ex̂a

1

,

x̂2 = x2 + EΦ̂1
+ Ex̂a

1
+ Ex̂2 + α1(Er̂1 − P−1AEx̂a

1
) +

β1

d
Er̂0︸ ︷︷ ︸

Ex̂a
2

and

x̂l = xl + EΦ̂l−1
+ Ex̂a

l−1
+ Ex̂l

+

l−1∑
j=1

αj(

l−j−1∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
)

+ (

l−1∏
j=1

βj)
1

d
Er̂0 +

l−2∑
j=1

(

l−j−1∏
i=1

βi+j)EΦ̂j
for l ≥ 3,
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where Ex̂a
j

:= x̂j − xj for j ∈ {0, ..., l}. We use the convention∏
j∈∅

βj = 1.

If a truncation operator of accuracy ε > 0 is used, then certainly ‖Ex̂i
‖2 ≤ ε but not

necessarily ‖Ex̂a
i
‖2 ≤ ε holds for i ∈ {0, ..., l}. The error induced by the truncation

operator that truncates Φ̂i is denoted by EΦ̂i
for i ∈ {0, ..., l}.

Proof. l = 1:
Provided that x̂0 = x0 = x0 + Ex̂a

0
⇒ Ex̂a

0
= 0.

x̂1 = T (x̂0 +
1

d
r̂0) = T (x0 +

1

d
r0 +

1

d
Er̂0) = x0 +

1

d
r0︸ ︷︷ ︸

=x1

+
1

d
Er̂0 + Ex̂1︸ ︷︷ ︸

=Ex̂a
1

l = 2:

x̂2 = T (x̂1 + Φ̂1) = T
(
x̂1 + T (α1r̂1 + β1Φ̂0)

)
= T

(
x̂1 + T (α1r̂1 +

β1

d
r̂0)
)

= T
(
x1 + Ex̂a

1
+ T

(
α1(r1 + Er̂1 − P−1AEx̂a

1
) +

β1

d
(r0 + Er̂0)

))
= (?)

since

r̂1 = T
(
P−1(b−Ax̂1)

)
= T

(
P−1(b−Ax1 −AEx̂a

1
)
)

= r1 − P−1AEx̂a
1

+ Er̂1 .

Thus,

(?) = T (x1 + α1r1 +
β1

d
r0︸ ︷︷ ︸

=x2

+α1(Er̂1 − P−1AEx̂a
1
) +

β1

d
Er̂0 + Ex̂a

1
+ EΦ̂1

)

= x2 + α1(Er̂1 − P−1AEx̂a
1
) +

β1

d
Er̂0 + Ex̂a

1
+ EΦ̂1

+ Ex̂2︸ ︷︷ ︸
=Ex̂a

2

.

The proof for l ≥ 3 is by induction. For the initial step l = 3 we need

Φ̂0 =
1

d
r̂0 =

1

d
(r0 + Er̂0) = Φ0 +

1

d
Er̂0 ,

Φ̂1 = T (α1r̂1 + β1Φ̂0) = T
(
α1r1 + β1Φ0 + α1(Er̂1 − P−1AEx̂a

1
) +

β1

d
Er̂0
)

= Φ1 + α1(Er̂1 − P−1AEx̂a
1
) +

β1

d
Er̂0 + EΦ̂1

and

(15)

Φ̂2 = T (α2r̂2 + β2Φ̂1) = α2r2 + β2Φ1 + α2(Er̂2 − P−1AEx̂a
2
)

+ α1β2(Er̂1 − P−1AEx̂a
1
) +

β1β2

d
Er̂0 + β2EΦ̂1

+ EΦ̂2

= Φ2 + α2(Er̂2 − P−1AEx̂a
2
) + α1β2(Er̂1 − P−1AEx̂a

1
)

+
β1β2

d
Er̂0 + β2EΦ̂1

+ EΦ̂2
.
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Therefore,

x̂3 = T (x̂2 + Φ̂2) = T
(
x2 + Φ2 + Ex̂a

2
+ α2(Er̂2 − P−1AEx̂a

2
) + α1β2(Er̂1 − P−1AEx̂a

1
)

+
β1β2

d
Er̂0 + β2EΦ̂1

+ EΦ̂2

)
= x3 + EΦ̂2

+ Ex̂a
2

+ Ex̂3
+ α1β2(Er̂1 − P−1AEx̂a

1
) + α2(Er̂2 − P−1AEx̂a

2
)

+
β1β2

d
Er̂0 + β2EΦ̂1

= x3 + EΦ̂2
+ Ex̂a

2
+ Ex̂3 +

2∑
j=1

αj(

3−j−1∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
) + (

2∏
j=1

βj)
1

d
Er̂0

+ β2EΦ̂1
.

To conclude l − 1→ l we first prove that

(16)

Φ̂l−1 = Φl−1 + EΦ̂l−1
+

l−1∑
j=1

αj(

l−j−1∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
)

+ (

l−1∏
j=1

βj)
1

d
Er̂0 +

l−2∑
j=1

(

l−j−1∏
i=1

βi+j)EΦ̂j

under the assumption that this equation holds for Φ̂l−2. For Φ̂2, this is true since
from (15) we have that

Φ̂2 = Φ2 + EΦ̂2
+

2∑
j=1

αj(

2−j∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
) + (

2∏
j=1

βj)
1

d
Er̂0 + β2EΦ̂1

.

The induction step for (16) is as follows.

Φ̂l−1 = T (αl−1r̂l−1 + βl−1Φ̂l−2)

= αl−1rl−1 + βl−1Φl−2 + EΦ̂l−1
+ αl−1(Er̂l−1

− P−1AEx̂a
l−1

) + βl−1EΦ̂l−2

+ βl−1

l−2∑
j=1

αj(

l−j−2∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
)

+ βl−1(

l−2∏
j=1

βj)
1

d
Er̂0 + βl−1

l−3∑
j=1

(

l−j−2∏
i=1

βi+j)EΦ̂j
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= Φl−1 + EΦ̂l−1
+

l−1∑
j=1

αj(

l−j−1∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
)

+ (

l−1∏
j=1

βj)
1

d
Er̂0 +

l−2∑
j=1

(

l−j−1∏
i=1

βi+j)EΦ̂j

With this it follows that

x̂l = T (x̂l−1 + Φ̂l−1) = xl + EΦ̂l−1
+ Ex̂a

l−1
+ Ex̂l

+

l−1∑
j=1

αj(

l−j−1∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
)

+ (
l−1∏
j=1

βj)
1

d
Er̂0 +

l−2∑
j=1

(

l−j−1∏
i=1

βi+j)EΦ̂j
.

Theorem 6.14 (ChebyshevT Approximation Error). Let εR > 0 be such that
‖Er̂i‖2 ≤ εR for all i ∈ {1, ..., l} and σP := ‖P−1A‖2. Under the assumptions of
Lemma 6.13, the following error bounds hold for a truncation operator of accuracy
ε > 0.

e1 := ‖x̂l − xl‖2 = ‖Ex̂a
1
‖2 ≤ ε+

1

|d|
εR,

e2 := ‖x̂2 − x2‖2 ≤ (3 + |α1|σP)ε+
(
|α1|+

1 + |β1|+ |α1|σP
|d|

)
εR and

el := ‖x̂l − xl‖2 ≤ (1 + |αl−1|σP)el−1 +

l−2∑
j=1

|αj |ejσP
l−j−1∏
i=1

|βi+j |

+
(

2 +

l−2∑
j=1

l−j−1∏
i=1

|βi+j |
)
ε

+
( l−1∑
j=1

|αj |
l−j−1∏
i=1

|βi+j |+

l−1∏
j=1

|βj |

|d|

)
εR for l ≥ 3.

Proof. l = 1:

e1 = ‖Ex̂a
1
‖2 ≤ ε+

1

|d|
εR

l = 2:

e2 = ‖EΦ̂1
+

1

d
Er̂0 + Ex̂1

+ Ex̂2
+ α1

(
Er̂1 − P−1A(

1

d
Er̂0 + Ex̂1

)
)

+
β1

d
Er̂0‖2

≤ ‖EΦ̂1
+ Ex̂1

+ Ex̂2
‖2 + |α1|σP‖Ex̂1

‖2 + |α1|‖Er̂1‖2 + (1 + |α1|σP + |β1|)‖
Er̂0
d
‖2

≤ (3 + |α1|σP)ε+ (|α1|+
1 + |β1|+ |α1|σP

|d|
)εR
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l ≥ 3:

el =
∥∥∥EΦ̂l−1

+ Ex̂a
l−1

+ Ex̂l
+

l−1∑
j=1

αj(

l−j−1∏
i=1

βi+j)(Er̂j − P−1AEx̂a
j
)

+ (

l−1∏
j=1

βj)
1

d
Er̂0 +

l−2∑
j=1

(

l−j−1∏
i=1

βi+j)EΦ̂j

∥∥∥
2

≤ ‖Ex̂a
l−1
‖2︸ ︷︷ ︸

=el−1

+|αl−1|σP‖Ex̂a
l−1
‖2 +

l−2∑
j=1

|αj |σP‖Ex̂a
j
‖2

l−j−1∏
i=1

|βi+j |

+ ‖EΦ̂l−1
+ Ex̂l

‖2 +

l−2∑
j=1

‖EΦ̂j
‖2

l−j−1∏
i=1

|βi+j |

+

l−1∑
j=1

|αj |‖Er̂j‖2
l−j−1∏
i=1

|βi+j |+

l−1∏
j=1

|βj |

|d|
‖Er̂0‖2

≤ (1 + |αl−1|σP)el−1 +

l−2∑
j=1

|αj |ejσP
l−j−1∏
i=1

|βi+j |

+ (2 +

l−2∑
j=1

l−j−1∏
i=1

|βi+j |)ε

+ (

l−1∑
j=1

|αj |
l−j−1∏
i=1

|βi+j |+

l−1∏
j=1

|βj |

|d|
)εR

7. Numerical Evaluation of the Error Bounds. In algorithm and software
implementations, the accuracy of a truncation operator depends on the truncation
rank. If one chooses a rank R, the iterate of the GMREST or the ChebyshevT
method is truncated to, the accuracy of the truncation operator is still unknown. Most
truncation techniques like the HOSVD for hierarchical Tucker tensors ([5, Chapter
8.3 and Chapter 10.1.1]) or the TT-rounding for TT tensors ([10, Algorithm 1 and 2])
provide quasi optimality for tensors of order d > 2. For tensors of order d = 2 they
even provide optimality in the sense that the result of the truncation of a matrix to
rank R is indeed the best rank R approximation of the matrix. Nonetheless, since the
singular value decay of the argument to be truncated is, in general, not known, the
truncation operator will be simulated for a numerical evaluation of the error bounds
of Theorem 6.9 and Theorem 6.14. Using the MATLAB routine rand(), a vector

z̃ ∈ RMm

with entries that are uniformly distributed on the interval (0, 1) is constructed first.
The argument x ∈ RMm is then truncated using the truncation simulator

Ts(x) := x+
ε

‖z̃‖2
z̃.(17)

Of course, z̃ is computed anew every time Ts(·) is applied. For this subsection, all
the computations are therefore made in the full format and whenever a truncation
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operator is applied, the truncation simulator Ts(·) is evaluated. The main advantage
of this strategy is that

‖Ts(x)− x‖2 = ε ∀x ∈ RMm.

A truncation operator based on the singular value decomposition does not provide
such a reliable behavior. Let

{σi}i∈{1,...,min{M,m}}, σ1 ≥ σ2 ≥ ... ≥ σmin{M,m}

be the singular values of vec−1(x) and ∃k ∈ {1, ...,min{M,m} − 1} such that, e.g.,

σk = 10−4 and σk+1 = 10−10.

A truncation operator with accuracy ε = 10−5 based on the singular value decompo-
sition would provide an approximation of x with accuracy 10−10 in this example. So
in this sense, the truncation simulator Ts yields the worst case error every time it is
applied.

7.1. GMREST Error Bound. We apply the preconditioner after the trunca-
tion operator so we use the second bound mentioned in Remark 6.11 that reads

‖x̂l − xl‖2 ≤ ε
l∑

j=1

|dj |(
j−1∑
i=1

σi−1
P + ‖P−1‖2σj−1

P + j − 1) +

l∑
j=1

|cj − dj |+ εl.

This theoretical error bound is compared with

‖xl − x̂l‖2,(18)

where xl denotes the lth GMRES iterate and x̂l the lth GMREST iterate. As just
explained, everything is computed in the full format and every time a truncation
is involved (which affects the GMREST iterate x̂l only), Ts from (17) is evaluated.
The 3d jetty from Subsection 8.1 is considered with size M = 4095 and a three
parameter discretization with a total of m = 8000 parameter combinations as used
in Subsection 8.2. We use the estimate σP ≈ d+ c with c, d from Subsection 8.4. In
addition, the basis element error bound from Remark 6.8 (the second case) is plotted
for a truncation accuracy of ε = 10−12. If one starts with a matrix whose entries are
all set to 1, the error bound (18) states that ‖x10 − x̂10‖2 is not bigger than ≈ 10−2,
which can be seen in Figure 1a. The reason for such a tolerant bound is that the
first coefficients d1, d2, ... are very big if the initial guess is bad. But if both methods
are restarted with x̂6 as start matrix, these coefficients become smaller as shown in

Figure 1b. Also, the relative residual norm of the GMRES iterate, ‖B−F (x)‖F
‖B‖F , and

the one of the GMREST iterate, ‖B−F (x̂)‖F
‖B‖F , are plotted. So even though ‖xl − x̂l‖2

stagnates, the residual of the truncated approach still decreases.
The dominating terms are

ε

l∑
j=1

|dj |‖P−1‖2σj−1
P and ε

l∑
j=1

|dj |
j−1∑
i=1

σi−1
P .

As pointed out above, d1, d2, ... are big for a bad initial guess. Then, in addition, ε
can not compensate the (exponential) growth of σj−1

P for j ∈ {1, ..., l}. Notice that
σP ≈ 1.6 in this example. Since ‖P−1‖2 is rather big, namely ≈ 3·104 in this example,
the former of these two terms is bigger for the first 10 iterations.
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GMREST Error Bound Comparison

(a) ε = 10−12. All entries of the start matrix are set to 1.

1 2 3 4 5 6 7 8 9 10

Iteration

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2
GMREST Error Bound Comparison

(b) ε = 10−12. x̂6 is used as start matrix.

Fig. 1. A numerical evaluation of the theoretical GMREST error bound.
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7.2. ChebyshevT Error Bound. In this subsection, the approximation error
from Theorem 6.14 is numerically examined. Let xl be the lth Chebyshev iterate
and x̂l be the lth ChebyshevT iterate. For the ChebyshevT method, similar to the
GMRES comparison, Ts is used as truncation operator.

Remark 7.1. If preconditioned with PT , in theory,

εR ≤ ε‖P−1
T ‖2

holds since the implementation used works like the case 2 mentioned in Remark 6.12.
But, due to the bad condition of the preconditioner and machine precision, in practice,
εR is often bigger. The line

Find R̂i such that PR̂i = T (B̂ − F (X̂)).

is executed in every iteration in Algorithm 3 which sometimes leads to real errors that
are higher than the error bound from Theorem 6.14. In contrast to this, the line

Find Ŵ ∈ TR such that PŴ = T (F (V̂i)).

in Algorithm 1 is less vulnerable. To circumvent this problem, for the error bound of
Theorem 6.14, the error εR is computed explicitly. This value instead of ε‖P−1

T ‖2 is
then used to compute the theoretical error bounds that are compared with the real
errors.

We use the same configuration as used in Subsection 7.1. Even though the theoretical
error bound literally explodes, for ε = 10−12, the truncated method converges roughly
as good as the non truncated method until iteration 10 for the 3d jetty model from
Subsection 8.1 as shown in Figure 2a. But the convergence of the ChebyshevT method
deteriorates remarkably after 4 iterations for ε = 10−6 if compared to the full approach
(see Figure 2b).

The two terms in the error bound that are not multiplied with ε are

(1 + |αl−1|σP)el−1 and(19)

l−2∑
j=1

|αj |ejσP

(?)︷ ︸︸ ︷
l−j−1∏
i=1

|βi+j | .(20)

The coefficients βi in the Chebyshev method have norms that are smaller than 1. This
becomes clear if one considers the recursive computation formula for the Chebyshev
polynomials (see [9] (2.4)) evaluated at d

c with |c| < |d|. The coefficients βi are
then given as a fraction where the numerator has a norm that is smaller than the
denominator. The product (?) becomes smaller the higher the iteration number is
and therefore the term (20) becomes negligibly small, at least if it is compared with
the term (19). For our configuration, c = 0.6. Hence, the coefficients αi are bigger
than 1 on the other hand (see [9] (2.24)). For σP ≈ c+ d = 1.6

1 + |αl−1|σP ≥ 2.6.

This explains why the first term in Theorem 6.14, the term (19), dominates the error
bound and makes it explode. Thus, when using ChebyshevT, one has to be very
careful about the choice of the truncation tolerance.
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(a) ε = 10−12
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(b) ε = 10−6

Fig. 2. A numerical evaluation of the error bound from Theorem 6.14. All entries of the start
matrix are set to 1.
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Fig. 3. The initial configuration of the jetty where the Dirichlet boundary conditions simulate
an inflow from left.

8. Numerical Examples.

8.1. A Three Dimensional Jetty in a Channel. The geometric configuration
of a 3d jetty in a channel is given by

Ω := (0, 8)× (0, 8)× (0, 4), S := (3, 4)× (0, 8)× (0, 2) and F := Ω \ S̄.

With the velocity v1

v2

v3

 ∈ R3, the deformation

 u1

u2

u3

 ∈ R3 and coordinates (x, y, z) ∈ Ω̄,

the left Dirichlet inflow is given by

v =

 1
2y(8− y)z(4− z)

0
0

 if x = 0.

The geometric configuration is illustrated in Figure 3. On the right, for x = 8, do
nothing boundary outflow conditions [11, Chapter 2.4.2] hold. The surface is at y = 8.
There, v2 and u2 vanish. Everywhere else on ∂(Ω), the velocity and the deformation
fulfill zero Dirichlet boundary conditions.

To stabilize the Stokes equations on the fluid, stabilized Stokes elements [11,
Lemma 4.47] are used.

8.2. Three Parameter Discretization. Problem (4) is discretized with re-
spect to

20 shear moduli µi1s ∈ [30000, 50000],

20 first Lamé parameters λi2s ∈ [100000, 200000] and

20 fluid densities ρi3f ∈ [50, 200].

The kinematic fluid viscosity is fixed to νf = 0.01. The shear modulus and first
Lamé parameter ranges cover solids with Poisson ratios between 1

3 (e.g. concrete)
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and 0.43478 (e.g. clay). The total number of equations is m = 203 = 8000 and the
number of degrees of freedom is M = 192423.

In the following computations, MATLAB 2017b on a CentOS 7.6.1810 64bit with
2 AMD EPYC 7501 and 512GB of RAM is used. The htucker MATLAB toolbox [8]
is used to realize the Tucker format TR. The preconditioners are decomposed into a
permuted LU decomposition using the MATLAB builtin command lu(). All methods
start with a start matrix whose entries are all set to 1.

8.3. GMREST. A standard GMRES approach is compared with the GMRE-
STR method from Algorithm 2.

By standard GMRES approach the standard GMRES method applied to m =
8000 different equations of the form (5) is meant. It is once restarted after 8 iterations
so it uses a total of 16 iterations per equation. For all 8000 separate standard GMRES
methods, 5 preconditioners given by

A0 + (D1)i,iA1 + (D2)i,iA2 + (D3)i,iA3 for i ∈ {800, 2400, 4000, 5600, 7200}(21)

are set up where the diagonal matrices {Dj}j∈{1,2,3} are the ones from (7).

0 1000 2000 3000 4000 5000 6000 7000 8000
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10
-11

10
-10

10
-9

10
-8

10
-7

Fig. 4. The standard GMRES method applied to 8000 seperate equations (residual norms in
red) is compared with the GMREST method (residual norms in blue).

The GMRESTR method uses 6 iterations per restart and is restarted 3 times. The
mean based preconditioner PT is used. The times to compute the preconditioners (one
in the case of GMRESTR, 5 in the case of standard GMRES) can be found in the
column Precon. in Table 1. The method itself took the time that is listed in the
column Comp. and the column Total is then the sum of these times. Both methods
result in 8000 approximations. Each of these approximations (x axis) then provide a
certain accuracy (y axis) that is plotted in Figure 4. The standard GMRES method
applied to 8000 equations in this way provides accuracies that are plotted in red
within about 5432 minutes. The approximations the GMRESTR method provides
have accuracies that are plotted in blue. The GMRESTR method took only about
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Table 1
GMRESTR Compared With Standard GMRES

Method Approx. Computation Times
Storage (in Minutes)

Precon. Comp. Total

GMRESTR O[(M +m+R)R]
(R = 200) ≈ 306.12MB 1.24 179.88 181.12

Standard GMRES O(Mm)
(8000 times) ≈ 11744.56MB 6.63 5426.23 5432.86

181 minutes to compute these approximations as one can see in Table 1. Also the
storage that is needed to store the approximation varies significantly. The rank 200
approximation, in the Tucker format, requires only about 306MB whereas the full
matrix requires about 11744MB.
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Fig. 5. The standard Chebyshev method applied to 8000 separate equations (residual norms in
red) is compared with the ChebyshevT method (residual norms in blue).

8.4. ChebyshevT. Before the Chebyshev method can be applied, the extreme
eigenvalues of P−1

T A have to be estimated as explained in Subsection 4.3. An esti-
mation of Λmax and Λmin from (10) involves the estimation of extreme eigenvalues
for m different matrices if the representation (9) is considered. But we restrict to an
estimation of

Λ̄max = max
i1∈{1,m1}
i2∈{1,m2}
i3∈{1,m3}

Λ(Bl(i1, i2, i3)) ≈ Λmax and Λ̄min = min
i1∈{1,m1}
i2∈{1,m2}
i3∈{1,m3}

Λ(Bl(i1, i2, i3)) ≈ Λmin.

With the mean based preconditioner PT , this leads to d = 1 and c = 0.6 in this
configuration. The time needed to compute Λ̄max and Λ̄min on a coarse grid with a
number of degrees of freedom of M = 735 is listed in the column Est. in Table 2.



28 R. WEINHANDL, P. BENNER, AND T. RICHTER

In the same manner as in the preceding subsection, for a comparison, a stan-
dard Cheyshev approach is applied to 8000 equations of the form (5). The standard

Table 2
ChebyshevT Compared With Standard Chebyshev

Method Storage Computation Times
needed by (in Minutes)
Approx. Est. Precon. Comp. Total

ChebyshevT O[(M +m+R)R]
(R = 200) ≈ 306.12MB 0.013 1.24 177.99 179.243

Standard Chebyshev O(Mm)
(8000 times) ≈ 11744.56MB 0.013 6.63 5490.85 5497.493

Chebyshev method uses 20 iterations at each equation and, in total, the same 5 pre-
conditioners (21) as the standard GMRES uses. The ChebyshevT method iterates,
in total, 24 times and uses PT , the mean based preconditioner. The ChebyshevT
method is restarted 3 times with 6 iterations per restart. Compared to this, 24 itera-
tions without restart take about the same time but provide approximation accuracies
that are slightly worse.
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Fig. 6. The approximation accuracies for the GMREST (blue), the ChebyshevT (cyan) and
the truncated Bi-CGstab (red).

9. Comparison With the Bi-CGstab method. Another method that also
works for non-symmetric matrices is the Bi-CGstab method [16]. It was not considered
in the first place because it can break down under some circumstances as explained
in [2, Chapter 2.3.8]. The preconditioned truncated variant similar to [7, Algorithm
3] but strictly based on [16] is compared with the GMRESTR and the ChebyshevT
method. The truncated Bi-CGstab method is applied with 6 iterations per restart. If
once restarted, in total, the method iterates 12 times. The resulting approximation
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accuracy is indeed better than the one obtained when iterating 12 times directly
without any restart.

Table 3
Computation Time Comparison of the Truncated Approaches

Method Computation Times
(R=200) (in Minutes)

Est. Precon. Comp. Total

ChebyshevT 0.013 1.24 177.99 179.243

GMREST - 1.24 179.88 181.12

Truncated Bi-CGstab - 1.24 302.94 304.18

To avoid early stagnation, the residual at step i is computed directly

R̂i = T (B̂ − F (X̂)).

10. Conclusions. The truncated methods discussed in this paper provide ap-
proximations with relative residual norms smaller than 10−8 within less than a twen-
tieth of the time needed by the correspondent standard approaches that solve the
m equations individually. This raises the question how these methods perform when
applied to nonlinear problems.

Since the truncation error affects, in addition to the machine precision error, the
accuracy of the Arnoldi orthogonalization, the GMREST method should preferably
be applied in a restarted version. Mostly, the ChebyshevT method is a bit faster
and a bit more accurate than the GMREST method. But the main disadvantage of
the ChebyshevT method is that the ellipse that contains the eigenvalues of P−1A
described by the foci d ± c has to be approximated newly every time the parameter
configuration changes. In this matter, the GMREST method can be seen as a method
that is a bit more flexible if compared to the ChebyshevT method.

Also the ChebyshevT and the truncated BiCGstab methods can and preferably
should be applied in a restarted manner. If not restarted, the methods stagnate after
a few iterations already. The reason is a numerical issue initiated by the bad condition
of the mean-based preconditioner.

There is still investigation needed regarding the error bounds. If the GMREST
method is applied, the coefficients cj are not known. The ChebyshevT bound is rather
of theoretical nature. The method seems to converge too fast such that the truncation
error does not really play a role in the cases examined.
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