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Abstract
Extreme value functionals of stochastic processes are inverse functionals of 
the first passage time—a connection that renders their probability distribution 
functions equivalent. Here, we deepen this link and establish a framework for 
analyzing extreme value statistics of ergodic reversible Markov processes in 
confining potentials on the hand of the underlying relaxation eigenspectra. 
We derive a chain of inequalities, which bounds the long-time asymptotics 
of first passage densities, and thereby extrema, from above and from below. 
The bounds involve a time integral of the transition probability density 
describing the relaxation towards equilibrium. We apply our general results to 
the analysis of extreme value statistics at long times in the case of Ornstein–
Uhlenbeck process and a 3D Brownian motion confined to a sphere, also 
known as Bessel process. We find that even on time-scales that are shorter 
than the equilibration time, the large deviation limit characterizing long-time 
asymptotics can approximate the statistics of extreme values remarkably well. 
Our findings provide a novel perspective on the study of extrema beyond the 
established limit theorems for sequences of independent random variables and 
for asymmetric diffusion processes beyond a constant drift.

Keywords: first passage time, record statistics, extreme value theory, Markov 
processes, Fokker–Planck equation, large deviation theory, eigenspectrum
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1.  Introduction

The statistical properties of extreme values, which correspond to record-breaking events of 
a stochastic process, attracted increasing interest in various fields of research over the past 
decades. For example, climate changes were found to be reflected in the appearance of extreme 
(record-breaking) temperatures [1, 2], rainfall [3, 4], and possibly other extreme weather con-
ditions [5]. Statistics of records are also important in the context of earthquakes [6], in stud-
ies of stock pricing in economics [7, 8], sports [9, 10], and in the theory of random matrices 
[11–13] to name but a few (see, e.g. [14, 15] for a more detailed overview).

In sequences of independent random variables extreme values approach one of the three 
classes of limiting distributions, which are denoted by the Gumbel [16], Fréchet, and Weibull 
distributions (see, e.g. [14, 17–20]). However, as soon as consecutive time steps of a stochastic 
process become correlated, a theoretical discussion of the statistics of extrema becomes more 
challenging [21]. In this case universal laws have been discovered, for example, for processes 
with symmetric step-length distributions [22, 23]. Subsequent studies also investigated cor-
relations between records [24, 25] as well as their persistence [26–28] and number [29], and 
extensions have been made to processes with constant drift [27, 30–32] (see also [33] for an 
interesting experiment with trapped Cs atoms). A recent physical application includes the 
observation that the mean value of the minimum of the entropy production in stationary driven 
systems is bounded by the negative value of Boltzmann’s constant ‘−kB’ [34], which is also 
confirmed by experiments [35].

More broadly, a deep and important connection has been established, relating the statistics 
of extreme values to first passage times [14, 23, 36, 37]. In this work we deepen this con-
nection between the first passage and the extremum functional, which allows us to obtain 
the statistics of extreme values in finite time for Markovian diffusion processes in confining 
potentials on time-scales, where consecutive time-steps remain correlated. Exploiting further 
a duality between first passage processes and ensemble propagation [38, 39] we derive a chain 
of inequalities, which bound the long time asymptotics (i.e. the large deviation limit) of the 
probability densities of extrema both from above and from below. As we will show, the large 
deviation limit approximates the probability density of extreme values surprisingly well even 
on relatively short time-scales.

The paper is organized as follows. In section 2 we recapitulate the well-known connec-
tion between distributions of extrema and first passage time densities. We then utilize recent 
findings on the large time asymptotics of first passage time densities [38, 39] to determine 
distributions of extrema in the large deviation limit. The usefulness of our general results is 
demonstrated in section 3, by determining the long-time statistics of maxima of the Ornstein–
Uhlenbeck process and the statistics of the minimum of the 3D Brownian motion (Bessel 
process) confined to a sphere. All analytical results are corroborated by Brownian dynamics 
simulations. We conclude in section 4.

2.  Fundamentals

2.1.  Extreme values from first passage times

We consider processes governed by an overdamped Langevin equation

ẋt = −βDU′(xt) + ξt� (1)

where U′(x) = ∂xU(x) is the gradient of a potential U(x) and ξt stands for Gaussian white 
noise with zero mean and covariance 〈ξtξt′〉 = 2Dδ(t − t′). Without any loss of generality 
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we set the inverse temperature β and diffusion coefficient D to unity (β ≡ D ≡ 1), i.e. free 
energies U are expressed in units of kBT . The Fokker–Planck equation corresponding to the 
Langevin equation (1) reads [40]

∂tP(x, t|x0) = ∂x
[
∂x + U′(x)

]
P(x, t|x0) ≡ LFPP(x, t|x0),� (2)

where P(x, t|x0) = 〈δ(x − xt)〉 is the normalized probability density for a particle starting from 
x0 to be found at position xt  =  x at time t with the initial condition P(x, 0|x0) = δ(x − x0). The 
probability density function relaxes to the normalized Boltzmann–Gibbs equilibrium density 
Peq(x) ≡ P(x,∞|x0) ∝ e−U(x) for any x0, which requires a sufficiently confining potential 
U(x).

While the probability density P(x,t|x0) only depends on the initial and final states, the 
extreme values are functionals that depend on the entire history along a trajectory {xτ}0�τ�t. 
We define the maximum and the minimum of the process xt as

mt ≡ max
0�τ�t

(xτ ) and mt ≡ min
0�τ�t

(xτ ),� (3)

respectively. For a given initial condition x0 the extrema satisfy mt � x0 as well as mt � x0, 
where mt  is non-decreasing and mt  non-increasing in time t (see figure 1). It can be shown that 
the first passage time defined as

ta(x0) ≡ min
τ�0

(τ |xτ = a)� (4)

is an inverse functional of the extrema. To see that we consider the distribution function of the 
maximum of the process mt = max0�τ�t(xτ ), i.e. the probability that mt  exceeds the value 
a � x0 , Pmax(a|t, x0), which satisfies

Pmax(a|t, x0) ≡ Prob [a > mt] = Prob [ta(x0) > t] ≡ Pa(t|x0),� (5)

where Pa(t|x0) is called the survival probability (see also figure 1(a)). Equation (5) can be 
interpreted as follows: each path, whose maximum mt  after time t is smaller than a, must have 
a first passage time from x0 to a � x0 , ta(x0), larger than t. Equation (5) connects the first pas-
sage time functional ta(x0) (where time is stochastic and position is fixed to a) to the maximum 
value functional mt  (where time is fixed to t and the position is stochastic). Note that the sur-
vival probability can also be expressed as the integral over the first passage time density ℘a via

Pa(t|x0) =

∫ ∞

t
℘a(τ |x0)dτ ,� (6)

i.e. ℘a(τ |x0) = −∂tPa(t|x0).
The minimum of a process mt = min0�τ�t xt can be studied in a similar manner as 

the maximum, since mt  is equivalent to the maximum of the reflected process −xτ , i.e. 
mt = −max0�τ�t(−xτ ). Hence, in the case of the minimum (a � x0) equation (5) holds with 
the replacement Pmin(a|t, x0) = Prob [a < mt] = Pa(t|x0), which is illustrated in figure 1(b). 
For convenience, we simply refer to Pκ as the extremum distribution function, which in the 
case x0 � a corresponds to the maximum distribution (κ = max) and for x0 � a to the mini-
mum distribution (κ = min). The density of the extremum (κ = max, min) in either case is 
then given by the slope of the distribution function

pκ(a|t, x0) =
∣∣∂aPκ(a|t, x0)

∣∣ = ∣∣∂aPa(t|x0)
∣∣,� (7)

D Hartich and A Godec﻿J. Phys. A: Math. Theor. 52 (2019) 244001



4

where in the second step we used equation (5). Equation (7) describes the density of maxima 
(κ = max) for a � x0  and the density of the minima (κ = min) for a � x0 . For example, the 
mean value of the maximum and minimum are given, respectively, by

〈mt〉 =
∫ ∞

x0

pmax(a|t, x0)ada = x0 +

∫ ∞

x0

Pa(t|x0)da,

〈mt〉 =
∫ x0

−∞
pmin(a|t, x0)ada = x0 −

∫ x0

−∞
Pa(t|x0)da,

� (8)

where we used equation (7) and performed a partial integration in the last step in both lines.
In the following subsection we focus on the probability density function of the two extrema 

pmax and pmin, whereas further discussions on the mean of extreme value fluctuations (〈mt〉 
or 〈mt〉) can be found, for example, in [21, 23–25, 41]. Notably, ta(x0)—the first passage 
time from x0 to a � x0—is unaffected by the potential landscape U(x) beyond x � a, which 
according to equation (5) implies that any two potentials U1(x), U2(x) with U1(x) = U2(x) for 
all x � R generate the same maximum distribution Pmax for all a � R.

2.2.  First passage time statistics from ensemble propagation

According to equation  (5) the problem of determining the statistics of the extremum 
Pmax(a|t, x0) is in fact equivalent to determining the survival probability Pa(t|x0), or, accord-
ing to equation  (6), to determining the first passage time density ℘a(t|x0) = −∂tPa(t|x0), 
which will be the central goal of this section.

We determine the first passage time density (or survival probability) using the renewal 
theorem [42]

P(a, t|x0) =

∫ t

0
P(a, t − τ |a)℘a(τ |x0)dτ ,� (9)

reflecting the fact that all the paths starting from x0 and ending up in a after time t by construc-
tion must reach a for the first time at some time τ � t, and then return to a again after time 

Figure 1.  Schematics of the extreme value functional versus first passage time 
functional for a process {xτ}0�τ . (a) Schematics of the maximum functional mτ  (thick 
blue line) of the process xτ  (thin gray line) as function of time τ ; the dotted black arrow 
indicates the functional of the maximum mt  and the dashed red arrow represents first 
passage time ta(x0); the arrows indicate the equivalence between a > mt and ta(x0) > t . 
(b) The minimum functional mτ  (thick blue line) defined analogously to (a), whereas 
a < mt is here equivalent to ta(x0) > t .
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t − τ . We have recently established a duality between first passage and relaxation processes, 
i.e. between P and ℘a, which will allow us to solve equation (9) for ℘a in the following manner 
(see also [38, 39] for more details).

First, we Laplace-transform2 the renewal theorem (9) in time (t → s), which converts the 
convolution to a product, P̃(a, s|x0) = P̃(a, s|a)℘̃a(s|x0), implying

℘̃a(s|x0) =
P̃(a, s|x0)

P̃(a, s|a)
,� (10)

where ℘̃a(s|x0) is the Laplace transform of the first passage time density and P̃(x, s|x0) obeys 
the Laplace transformed Fokker–Planck equation (2)

[LFP − s]P̃(x, s|x0) = −δ(x − x0)� (11)

with natural boundary conditions. The next step is to render equation (10) explicit in the time 
domain, i.e. to find the explicit inverse Laplace transform ℘̃a(s|x0) → ℘a(t|x0).

Therefore, recalling that we consider sufficiently confining potentials U(x), there exist a 
spectral expansion of the Fokker–Planck operator LFP with discrete eigenvalues −λk � 0 
for k = 0, 1, . . . and corresponding symmetrized nontrivial solutions ψk(x) to the eigenequa-
tion LFPψk(x) = −λkψk(x), which are assumed to be normalized 

∫
ψk(x)2/Peq(x)dx ≡ 1. The 

ground state ψ0 corresponding to eigenvalue λ0 = 0 represents the equilibrium Boltzmann 
distribution Peq(x) = ψ0(x). Using the eigenfunctions {ψk} and eigenvalues {λk} defined this 
way, the Laplace transform of the ensemble propagator can be written in the form

P̃(a, s|x0) =
Peq(a)

s
+

∞∑
k=1

ψk(a)ψk(x0)/Peq(x0)

s + λk
,� (12)

where ψk(x)/Peq(x) ≡ ψ†
k (x) are in fact the eigenfunctions to the adjoint of LFP, that is 

L†
FPψ

†(x) = −λkψ
†(x). Note that in our previous work we used the equivalent non-symmetric 

eigenspectrum with right and left eigenfunctions ψk and ψ†
k, respectively [38, 39, 43]. Since 

the Laplace transform of a function f  with a simple pole f̃ (s) = (s + λ)−1 yields in the time 
domain an exponentially decaying function f (t) = e−λt with rate λ, we can interpret the 
eigenvalues λk  as relaxation rates, which characterize the speed at which the dynamics gov-
erned by equation (2) approaches the equilibrium Peq(x) ∝ e−U(x).

The Laplace transform of the first passage time density ℘̃a(s|x0), as well has simple poles, 
which are located at s = −µk  (k = 1, 2, . . .) and need to be determined for equation (10) to be 
written as [38]

℘̃a(s|x0) =

∞∑
k=1

wk(a, x0)µk(a)
µk + s

.� (13)

The expansion in equation (13) can formally be found by determining the zeros s = −µk  that 
solve P̃(a, s|a) = 0, to which we refer as first passage rates µk . Determining all first passage 
rates µk , while doable in general, is rather involved and is described in [38, 39], whereas 
detailed information on the determination of slowest rate µ1, to which we refer to as large 
deviation limit, can be found in section 2.3 below as well as in [44]. If all first passage rates 
{µk} are known, we can obtain the corresponding weights wk(a, x0) in equation (13) directly 
from equation (10) using Cauchy’s residue theorem

2 The Laplace transform of a function f (t) is defined by f̃ (s) =
∫∞

0 f (t)e−stdt.
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wk(a, x0)µk(a) =
P̃(a, s|x0)

∂sP̃(a, s|a)

∣∣∣∣
s=−µk

.� (14)

Dividing equation  (14) by µk(a) yields the ‘weights’ wk(a, x0), which according to equa-
tion (13) are normalized such that ℘̃a(0|x0) =

∑
k wk(a, x0) = 1. Equation (13) in turn imme-

diately yields the first passage time density

℘a(t|x0) =
∑
k>0

wk(a, x0)µk(a)e−µk(a)t,� (15)

and the corresponding survival probability

Pa(t|x0) =

∫ ∞

t
℘a(τ |x0)dτ =

∑
k>0

wk(a, x0)e−µk(a)t,� (16)

where we used equations (6) and (15). Inserting equations (16) into (7) allows us to rewrite the 
probability density of the extremum to have value a at time t as

pκ(a|t, x0) =
∣∣∂aPκ(a|t, x0)

∣∣ = ∣∣∂aPa(t|x0)
∣∣ =

∣∣∣∣
∑
k>0

∂a
[
wk(a, x0)e−µk(a)t]

∣∣∣∣,
� (17)

where κ = max or κ = min.

2.3.  Large deviation limit

At long times the extremum (mt  or mt) will be dominated by extreme fluctuations of the process 
xt that are not reflected by the ‘typical’ equilibrium measure given by Peq(x) ∝ e−U(x). As a 
result, the extreme value distribution may differ substantially from the equilibrium Boltzmann 
distribution Peq(x). Fortunately, at long times the first passage distribution will be dominated 
solely by the slowest first passage time-scale 1/µ1(a), which leads to what we refer here to as 
the large deviation limit that reads

pκLD(a|t, x0) ≡
∣∣∂aw1(a, x0)e−µ1(a)t

∣∣ � pκ(a|t, x0),� (18)

where ‘�’ denotes the asymptotic equality in the limit t → ∞ and κ = max, min. An explicit 
general method to determine w1(a, x0) and µ1(a) can be found in [38, 39, 44]. We note that 
the large deviation limit becomes exact in the long time limit e−µ1(a)t � e−µ2(a)t as well as 
whenever w1(a, x0) � |wk�2(a, x0)| holds.

We recall that according to equation (13) each first passage rate, µk , is located at a simple 
pole (at s = −µk) of ℘̃a(s|x0), which according to equation (10), is also a root of P̃(a, s|a). 
Hence, the large deviation limit ‘µ1’ is characterized by the root (s  <  0) closest to the ori-
gin, s = −µ1, solving P̃(a, s|a) = 0. In order to determine µ1 exactly, we Taylor-expand the 
function

f (s) = sP̃(a, s|a) =
∑
n�0

σnsn/n!� (19)

around s  =  0, where σn  is the nth derivative of f  with respect to s, which according to equa-
tion (12) holds for all s within the radius of convergence |s| < λ1

3. Note that f (s) = sP̃(a, s|a) 

3 The radius of convergence is limited by the pole of f (s) = sP̃(a, s|a) which is closest to the origin. According 
to equation (12) the closest pole to s  =  0 is located at s = −λ1, yielding a converging sum equation (19) for all 
|s| < λ1.
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has the same non-trivial roots but, in contrast to P̃(a, s|a), does not have a pole at the origin 
(see equation  (12)), which is why we are always allowed to expand f  as in equation  (19). 
The closest non-trivial zero s = −µ1 with 0 < µ1 � λ1 can then be formally be found by a 
Newton’s iteration, which in terms of a series of almost triangular matrices reads explicitly 
[39] (see also [38, 44])

µ1(a) =
∞∑

n=1

σn
0

σ2n−1
1

detAn

(n − 1)� (20)

where An is a (n − 1)× (n − 1) almost triangular matrix with elements (i, j = 1, . . . , n − 1)

Aij
n ≡

σi−j+2Θ(i − j + 1)
(i − j + 2)!

×
{

i if j = 1,
n(i − j + 1) + j − 1 if j > 1,� (21)

with Θ(l) = 1 if l � 0 and Θ(l) = 0 if l  <  0 as well as detA1 ≡ 1. Equation (20) exactly 
determines the first non-trivial root, f (s) = 0 with s = −µ1, at which the right hand side 
of equation (19) vanishes. It should be noted that determining µ1 in equation (20) requires 
only P̃(a, s|a) or the coefficients σn  from equation (19), whereas the expansion equation (12) 
including the eigenvalues {λk} is generally not required to be known. The weight w1(a) can 
then be deduced from Cauchy’s residue theorem equation (14)

w1(a) =
P̃(a,−µ1(a)|x0)

µ1(a)∂sP̃(a, s|a)

∣∣∣∣
s=−µ1(a)

.� (22)

Equation (18) with equations (20) and (22) fully characterize the large deviation limit of the 
density of the extreme value pmax

LD (a|x0).

2.4.  Large deviation limit in the presence of a spectral gap

In the large time limit the probability mass of the extremum pmax(a|t, x0) or pmin(a|t, x0) con-
centrates at the potential boundaries (i.e. U(a) � kBT ), such that we can accurately approxi-
mate µ1 by truncating equation (20) already after the first term yielding (see [38] for more 
details)

µ̃1(a) ≡
σ0

σ1
≈ µ1(a),� (23)

where using equation (12) we can identify

σ0 = Peq(a) and σ1 =

∫ ∞

0
[P(a, t|a)− Peq(a)]dt.� (24)

Since f (s) ≡ sP̃(a, s|x0) = σ0 + σ1s + O(s)2 , we expect equation (23) to be quite accurate 
as soon as the formal condition µ̃1 � λ1 is met, where λ1 from equation (12) is the slowest 
rate at which the system approaches the equilibrium density [38]. Note that λ1 in fact does not 
need to be known, as equation (23) necessarily becomes accurate at sufficiently high potential 
values U(a), such that a is not located in the deepest point in the potential [38]. This also fol-
lows from the work of Matkowsky and Schuss, who have shown that λ1 is the expected time 
to overcome the barriers on the way to the deepest potential well [45].

In fact, at very long times t → ∞ the probability mass pκ(a|t, x0) � pκLD(a|t, x0) (with 
κ = max, min) will inevitably be pushed towards the boundaries with high potential values, 
which will again render equation (23) asymptotically exact in the limit U(a) → ∞. To prove 
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that equation (23) indeed becomes asymptotically exact, we inspect equation (12) in the fol-
lowing way. First, we find that f (s) = sP̃(a, s|a) is a concave function f ′′(s) � 0 within the 
interval −λ1 � s � 0, whereas g(s) ≡ s(s + λ1)P̃(a, s|a) = (s + λ1) f (s) is a convex function 
g′′(s) � 0 in the same interval. Hence, we find that the tangent tf (s) = σ0 + sσ1 to f  and the 
tangent tg(s) = λ1σ0 + (σ0 + λ1σ1)s to g have roots that sandwich s = −µ1 according to

µ̃1(a)
1 + µ̃1(a)/λ1

=
λ1σ0

σ0 + λ1σ1
� µ1(a) �

σ0

σ1
= µ̃1(a),� (25)

where the lower bound, s = −µ̃1(1 + µ̃1/λ1)
−1, solves tg(s)  =  0 and the upper bound, 

s = −µ̃1, solves tf (s)  =  0. The chain of inequalities equation (25) and its implications, which 
we explore below, are the main result of this paper. Notably, in the limit of U(a) � kBT , 
where µ̃1 → 0 (i.e. µ̃1 � λ1 [45]) holds, the inequalities in equation (25) saturate and provide 
an asymptotically exact value for µ1.

We emphasize that the chain of inequalities (25) holds for the slowest time-scale µ−1
1  of 

the first passage process as well as for the slowest time-scale of the extremum functional, 
i.e. either the maximum or the minimum. For example, if µmin

1 (a) and µmax
1 (a) denote the 

large deviation limit of the minimum and maximum, respectively, then the slowest first pas-
sage rate is given by µ1(a) = min[µmax

1 (a),µmin
1 (a)]. Since the maximum mt = a � x0  after 

a long time t will be more likely located at the ‘right’ border of a confining potential, where 
U(mt) � U(x0), whereas the minimum mt = a � x0  will more likely move to the ‘left’ bor-
der, where U(mt) � U(x0), we will use equation (25) to determine the minimum near the left 
boundary a  <  x0 and to determine the maximum if a  >  x0 is closer to the right boundary.

To be more specific, we use µ̃1(a) � µmax
1 (a) self-consistently for the large deviation 

limit of the maximum, whenever µ̃1(a) ↘ is monotonically decreasing with increasing 
a ↗, whereas we use µ̃1(a) � µmin

1 (a) for the large deviation limit of the minimum, whenever 
µ̃1(a) ↘ is monotonically decreasing with decreasing a ↘. Notably, if a is located at a reflect-
ing boundary, where formally U(x) = ∞ for x � a, we immediately get µ1(a) = µmin

1 (a) and 
µmax

1 (a) = ∞, since for any x0  >  a the maximum mt  cannot reach any value below x0 and 
hence a certainly cannot correspond to the maximum4.

3.  Examples

3.1.  Statistics of maxima in the Ornstein–Uhlenbeck process

As our first example we consider the Ornstein–Uhlenbeck process with U(x)  =  x2/2. The 
corresponding propagator in the time domain is well known and reads [40]

P(a, t|x0) =
1√

2π(1 − e−2t)
exp

[
− (a − x0e−t)2

2(1 − e−2t)

]
� (26)

with a Gaussian equilibrium density Peq(a) = P(a,∞|x0) = (2π)−1/2 exp(−a2/2). Inserting 
equations (26) into (23) yields for a � 0 the following approximation for the large deviation 
eigenvalue of the density of the maximum5

4 A similar finding can be found in [39], where µ1(a) = µmin
1 (a) corresponds to a first passage to a, entering from 

the right, and µ1(a) = µmax
1 (a) corresponds to a first passage to a, entering from the left. For example, if a reflecting 

boundary is located at a with U(x) = ∞ for x � a, it is impossible to enter a from the left.
5 For a � 0 equation (27) approximates the large deviation limit of the minimum functional.

D Hartich and A Godec﻿J. Phys. A: Math. Theor. 52 (2019) 244001



9

µ̃1(a) =
∫ ∞

0

[
1√

1 − e−2t
exp

(
a2e−t

1 + e−t

)
− 1

]
dt � µ1(a).� (27)

The relaxation eigenvalues are integers λk = k with k = 0, 1, . . ., such that equation  (25) 
translates into

µ̃1(1 + µ̃1)
−1 � µ1 � µ̃1,� (28)

where the upper limit µ̃1 is depicted in figure  2(a) as the dash-dotted red line, the lower 
limit µ̃1(1 + µ̃1)

−1 as the dashed green line, and the exact value µ1, determined as described 
below, is given by the solid blue line. The inset displays the same results but scaled by the 
exact value µ1. We emphasize that it is not necessary to determine µ1 in order to show that 
equation (27) asymptotically saturates when µ̃1 approaches zero in the limit of large a, since 
µ̃1 � µ1 follows immediately from µ̃1(1 + µ̃1)

−1 � µ̃1 (for µ̃1 → 0) as well as from equa-
tion (28). For completeness, we also present in figure 2(a) (dotted line) the long time asymp-

totics, µ1 � (2π)−1/2ae−a2/2, for the limit a → ∞, which have been reported previously  

[44, 46, 47].
In order to determine the large deviation eigenvalue µ1 and weight w1 entering 

pmax
LD (a|t, x0) = ∂aw1(a, x0)e−µ1(a)t , we Laplace-transform the propagator (26) in time (t → s), 

which for x0 � a yields (see also [42])

P̃(a, s|x0) = Γ(s)2sPeq(a)H−s(−a/
√

2)H−s(x0/
√

2),� (29)

where Γ(s) is the complex gamma function and Hs(y ) is the generalized Hermite polynomial. 
Inserting equation (29) into the renewal theorem (10) yields [42, 49, 50]

℘̃a(s|x0) =
H−s(−x0/

√
2)

H−s(−a/
√

2)
,� (30)

where s = −µ1 is the root, H−s(−a/
√

2) = 0, closest to the origin such that the weight in 
equation (22) becomes [46, 48]

w1(a) = − Hµ1(−x0/
√

2)
µ1hµ1(−a/

√
2)

,� (31)

where we introduced hs(y) ≡ ∂sHs(y). For convenience we determined µ1 and w1 numerically 
according to [48]6. The results in figure 2(a) confirm the validity of the chain of inequalities in 
equation (25), which, as already mentioned, become asymptotically tight in the limit of high 
values of the potential, U(a) = a2/2 � 1.

The lines in figure  2(b) represent the large deviation limit of the density of the maxi-
mum pmax

LD (a|x0) = ∂aw1(a, x0)e−µ1(a)t , which agree rather well with the density of the maxi-
mum pmax(a|x0) (symbols) obtained from Brownian dynamic simulations with a time step 
dt = 10−5 using 105 trajectories.

We note that the large deviation limit pmax
LD  (see lines in figure 2(b)) approximates the den-

sity of the maximum pmax quite well already on relatively short time-scales t ∼ λ−1
1 = 1 (see 

6 We note that with the eigenfunctions ψk(a) = Peq(a)(k!2k)−1/2Hk(a/
√

2) (see, e.g. [40]) and equations (12) and 
(19) we can formally identify

σ0 = Peq(a) and
σn

n!
= Peq(a)(−1)n+1

∞∑
k=1

Hk(a/
√

2)2

k!2kkn ,� (32)

which with equation (20) would be an alternative but equivalent approach for determining µ1 as done, e.g. in [39].
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triangles and dash-dotted light green line), where λ−1
1  represents the equilibration time of the 

Ornstein–Uhlenbeck process. Notably, even for long times (see, e.g. t  =  50 in figure 2(b)), 
the left and right tails of the density of the maximum remain asymmetric yet still deviat-
ing from a Gumbel distribution [16] (see thick gray line in figure 2(b)). This indicates that 
the extreme value theorem for sequences of uncorrelated random variables becomes valid 
on much longer time-scales. Therefore, the large deviation limit presented here allows us to 
approximate extreme value statistics exceptionally well despite the fact that the extreme value 
theorem does not yet apply7.

Figure 2.  Probability density of the maximum and its large deviation limit for 
the Ornstein–Uhlenbeck process. (a) Large deviation eigenvalue µ1(a) (solid blue 
line) compared to the approximation from equation  (27) (dash-dotted red line) and 
the lower bound equation  (25) (dashed green line); the dotted line represents the 
asymptotic approximation (2π)−1/2ae−a2/2 � µ1(a) from, e.g. [44, 46, 47]. The 
inset shows the same result but scaled by µ1, which was determined numerically by 
the root, sP̃(a, s|a) = 0, closest to the origin s = −µ1 (see, e.g. [48]). (b) Probability 
densities of the maximum pmax(a|t, x0) (symbols) are obtained from simulating 105 
trajectories for each time t = 1, 2, 10, 20, 50; the lines represent the large deviation 
limit pmax

LD (a|t, x0) = ∂aw1(a, x0)e−µ1(a)t , where µ1 adopted from the upper panel (a) 
and w1 is determined from equation (31). The thick gray line represents the Gumbel 
density g(a, η, γ) = γ−1e−(a−η)/γ exp[−e−(a−η)/γ ] with arbitrarily chosen parameters 
η = 2.85 and γ = 0.42 [16]. The initial condition was x0  =  0 and the symbols are 
obtained from Brownian dynamics simulations with a time increment dt = 10−5.

7 We find that the probability density of the maximum approaches a Gumbel density on extremely large time-scales 
t � 103. The underlying assumptions are the approximation µ1 � a(2π)−1/2e−a2/2 (see inset of figure 2(a) for 
deviations) and w1 � 1 (which holds for a � 3).
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3.2.  Density of the minimum of the confined Bessel process

In our second example we consider the minimal distance to the origin of Brownian motion 
inside a d-dimensional sphere with inner radius R− � 0 and a reflecting boundary at R+ < ∞ 
(see figure 3(a) for an illustration with R−  =  0 and d  =  2). The distance from the origin xt (i.e. 
the radius) at time t within the interval R− � x � R+ obeys the Langevin equation

ẋt =
d − 1

xt
+ ξt� (33)

where 〈ξt〉 and 〈ξtξt′〉 = 2δ(t − t′). This process is also known as the Bessel process [51, 52]. 
We note that the maximum excursion of the free Bessel process (see e.g. [53]), which in the 
present context corresponds to the limiting case with R+ = ∞ and will not be considered 
here, allows in the specific case of d  =  3 a mapping onto a simpler problem for the 1-dimen-
sional Brownian motion [51].

Comparing equations  (1) and (33) allows us to identify the geometric free energy 
U(x) = −(d − 1) ln x  of purely entropic origin and accounts for the invariance with respect 
to angular degrees of freedom ∝ xd−1 (see figure  3(b)). The equilibrium measure corre-
sponds to a uniform distribution in a d-dimensional hyperspherical shell and is given by 
Peq(x) = dxd−1/(Rd

+ − Rd
−).

For simplicity we here from restrict our discussion to the case d  =  3, yielding the Fokker–
Planck equation

∂

∂t
P(x, t|x0) =

[
∂2

∂x2 − ∂

∂x
2
x

]
P(x, t|x0)� (34)

with zero flux boundary condition J(R±, t|x0) = 0, where J(x, t|x0) ≡ (2/x − ∂x)P(x, t|x0). 

We emphasize that the probability density P is normalized according to 
∫ R+

R−
P(x, t|x0)dx = 1, 

whereas the radial density, discussed for example in [54], would correspond to P(x, t|x0)/(4πx2) 
instead. A Laplace transform in t yields

[
∂2

∂x2 − ∂

∂x
2
x
− s

]
P̃(x, s|x0) = −δ(x − x0),� (35)

Figure 3.  Graphical illustration of the Bessel process. (a) Trajectory of a Brownian 
motion starting from x0 and ending at distance xt after time t in d  =  2 dimensions. The 
minimum of the distance is indicated as mt . (b) Effective potential U(x) = − ln(xd−1), 
where x denotes the distance to the origin and R− the inner radius of the confinement 
and R+ the outer radius of the volume.
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where the solution P̃(x, s|x0) can be constructed from the two solutions of the homogeneous 
problem, v1(x, s) = xe−x

√
s and v2(x, s) = xex

√
s/
√

s obtained by setting the right hand side 
of equation  (35) to zero. The Laplace transform of the propagator for a Brownian particle 
confined between R−  =  a and R+   =  R in turn reads

P̃(a, s|x0) =
a2 sinh [

√
s (R − x0)]− a2R

√
s cosh [

√
s (R − x0)]

x0(1 − aRs) sinh [
√

s(R − a)]−
√

sx0(R − a) cosh [
√

s(R − a)]
.

� (36)
We are allowed to choose R−  =  a, since the first passage time distribution from x0 to 
a � x0  is not affected by the potential U(x) in the region x � a, where R−  =  a formally 
corresponds to U(x) = ∞ for x � a (see also the discussion at the end of section  2.1). 
Most importantly, setting R−  =  a removes all roots of P̃(a, s|a), which would account for 
the maximum of the Bessel process. In other words, in the presence of a reflecting bound-
ary at a every single root of P̃(a, s|x0=a) from equation (36) is indeed a first passage time 
scale for approaching a for the first time from above (for more details on the influence of 
boundary condition please see [39]). Moreover, the limit R = R+ = ∞, which is not con-
sidered here, would allow us to map the 3d-Bessel process to 1d Brownian motion [51] with 
℘̃a(s|x0) = P̃(a, s|x0)/P̃(a, s|a) → (a/x0) exp[

√
s(a − x0)], which would in turn yield the 

Lévy–Smirnov density8.
For R < ∞, we use equation (36) to identify the Taylor coefficients of sP̃(a, s|a), which we 

denote by σn  according to equation (19). The exact smallest eigenvalue µ1 is then determined 
using equation (20). The results are presented in figure 4(a) (see solid blue line), where we 
also compare µ1 to the approximation µ̃1 from equation (23) (see dash-dotted red line), which 
for the 3d-Bessel process reads

µ̃1(a) =
σ0

σ1
=

15a
(
a2 + aR + R2

)
(a − R)2 (a3 + 3a2R + 6aR2 + 5R3)

� µ1(a).� (37)

Equation (37) delivers the exact value for µ1 in the limit a → 0 as shown in figure 4(a), where 
the relative deviation ε ≡ (µ̃1 − µ1)/µ1 vanishes in the limit a → 0 (see dashed green line). It 
should be noted that µ1, given by the series equation (20), is in fact an explicit solution of the 
transcendental equation R

√
µ1 = tan[(R − a)

√
µ1] in the form of a Newton’s series.

To rationalize why equation  (37) becomes asymptotically exact as a approaches zero, 
we recall that λ1 ≈ 0.81 is the slowest relaxation rate corresponding to R−  =  0, which 
solves R

√
λ1 = tan(R

√
λ1) (here using R  =  5). Since equation  (36) obeys a reflect-

ing boundary condition at a, we have that λ1(a) � λ1 ≈ 0.81, i.e. the eigenvalue µ1(a) is 
bounded by µ̃1(1 − µ̃1/0.81) � µ1 � µ̃1. Hence for asymptotically high potentials (here 
U(a) = −2 ln a → ∞ as a → 0) the inequality equation (25) renders µ̃1 asymptotically exact 
as soon as µ̃1(a)/0.81 → 0.

In figure  4(b) we compare the density of the minimum pmin (symbols), obtained from 
simulations of 105 trajectories (with R−  =  0, R+   =  R  =  5 and starting condition x0  =  3), to 
the corresponding large deviation limit pmin

LD (a|t, x0) = −∂aw1(a, x0)e−µ1(a)t (lines), where we 
determined w1 using equation (22) and took the exact µ1(a) obtained using equation (36). The 
error bars in the simulation results denote 95% confidence intervals.

By design the large deviation limit pmin
LD  approaches the density of the minimum pmin in the 

long time limit, which is perfectly corroborated by simulation results for t = 40 (� λ−1
1 ≈ 1.2) 

8 The Lévy–Smirnov density is defined as ℘a(t|x0) = (a/x0)× (x0 − a)/
√

4πt3 × e−(x0−a)2/(4t).
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in figure 4(b). Notably, pmin
LD  (see solid dark-blue line in figure 4(b)) approximates quite well 

the full probability density of the minimum pmin (see filled circles).
To our surprise, the large deviation limit pmin

LD  can approximate pmin even for smaller times 
(e.g. t  =  1), i.e. those that are shorter than the equilibration time λ−1

1 ≈ 1.2 (see dash-dot-
ted green line versus open triangles), which can be explained as follows. For any a within 
0 � a � 3 = x0 we find a spectral gap µ1(a) � µ2(a), which for 1.5 � a � 3 also satisfies 
µ2(a) � λ1(a) ≈ 0.81. This in turn implies that for t = 1 ∼ λ−1

1  the condition e−µ1t � e−µ2t  
is still met, whereas the relative deviations between pmin and pmin

LD  (i.e. between the open tri-
angles and the dash-dotted green line) become substantial for small values of a (see a � 1) 
and µ2(a) concurrently approaches λ1 � 0.8. Once the time exceeds λ1t ≈ 0.81t � 1, the 
condition e−µ1t � e−µ2t  is satisfied for any value of a, and thus pmin

LD  approximates pmin over 
the full range (see symbols and lines in figure 4(b) for t � 5). Therefore, pmin

LD  approximates 
pmin rather well for any value a and on all time scales longer than the equilibration time scale 
(t � λ−1

1 ).
Let us finally discuss the ‘ultimate’ long time limit (t → ∞) in which the density of the 

minimum pmin(a|t, x0) will be sharply peaked around the shortest distance a  =  0. Inspecting 
equation  (37) one can easily find µ1(a) = 3a/R3 + O(a). Moreover, at high values of the 
potential the weight becomes w1(a, x0) = 1 + O(a) implying that the limiting density 

becomes pmin(a|t, x0) → 3tR−3e−3at/R3
, which is an exponential distribution falling into the 

Figure 4.  Probability density of the minimum of a 3d Bessel process. (a) Slowest 
time scale µ1 (solid blue line) and its approximation µ̃1 (dash-dotted red line) given 
by equation (37) as a function function of the distance to the origin a; we truncated 
equation  (20) after n  =  10 to calculate µ1. The corresponding relative deviation 
ε(a) = [µ̃1(a)− µ1(a)]/µ1(a) is depicted by the dashed green line. (b) Probability 
density of the minimum (symbols), pmin(a|t, x0), sampled from 105 Brownian 
trajectories obtained by evolving equation  (33) with time increment dt = 10−5 and 
using R−  =  0; error-bars indicate 95% confidence intervals. The large deviation limit 
pmin

LD (a|t, x0) = −∂aw1(a, x0)e−µ1(a)t (lines) determined using the eigenvalues µ1(a) 
from (a) and the weight w1 from equations (22) and (36). All results correspond to an 
initial distance x0  =  3 and an outer radius R+   =  5.
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class of Weibull distributions. At t  =  40 (see figure 4(b)) the density of the minimum still 
qualitatively deviates from an exponential density; while the exponential density is a convex 
function of a the resulting curve from figure 4(b) for t  =  40 clearly did not yet reach a convex 
shape in a. While the Ornstein–Uhlenbeck process shows a Gumbel distribution in the limit 
t → ∞, the Bessel process provides an example in which the extreme value distribution falls 
into the class of Weibull distributions.

4.  Concluding perspectives

We used the link between first passage and extremum functionals of reversible ergodic Markov 
processes in order to formulate the probability density of extreme values in terms of the first 
passage times. We pushed the connection between these two functionals even further, by uti-
lizing the duality between first passage and relaxation processes [38, 39], which allowed us to 
determine the statistics of extremes from transition probability densities describing the relax-
ation towards equilibrium. In their present form our results hold for diffusion in effectively 
one-dimensional potential landscapes that are sufficiently confining to allow for a discrete 
eigenspectrum of the corresponding Fokker–Planck operator. Our findings provide a new and 
deeper perspective on the study of extrema of asymmetric diffusion processes beyond a con-
stant drift. We emphasize that the full probability density of extreme values (pmax or pmin) on 
arbitrary time-scales still requires the knowledge of the eigenspectrum of the Fokker–Planck 
operator.

To avoid an eigendecomposition of the Fokker–Planck operator entirely, we established 
the long time asymptotics of the distribution of extreme values, pmax

LD � pmax
LD  (or pmin

LD � pmin), 
which accounts for the slowest decaying mode ∝ e−µ1t  ignoring all faster decaying contrib
utions (∝ e−µ2t, e−µ3t, etc). In this large deviation limit we determined explicit bounds on the 
exact slowest time-scale µ−1

1 , and showed that these asymptotically tightly bound µ1 from 
above and from below, which is the central result of this paper.

We illustrated the usefulness of our results by analyzing the statistics of maximum value 
of the Ornstein–Uhlenbeck process and the minimal distance to the origin of a confined 3d 
Brownian motion (Bessel process). Our examples underline that the large deviation limit, 
albeit designed to be asymptotically exact for infinitely long times, approximates the density 
of the maximum surprisingly well even on relatively short times comparable to the relaxation 
time, t � 1/λ1. Since t = 1/λ1 reflects the time-scale on which the process tends to decorre-
late from the initial condition, the present results describe the statistics of extrema in presence 
of weak but non-vanishing correlations, and hence go beyond the three classes of limit laws 
for non-correlated random variables, i.e. the Gumbel, Fréchet, and Weibull distributions [14, 
16–20] as demonstrated on hand of the Ornstein–Uhlenbeck and Bessel process. More gener-
ally, it would be interesting to systematically investigate the effect of the potential shape on 
the limiting extreme value distribution as in [18].

The remarkable accuracy of the approximation can readily be explained by the interlac-
ing of first passage and relaxation time-scales (µ1 � λ1 � µ2 . . .) [38, 39], which renders all 
higher contributions (∝ e−µ2t, e−µ3t . . .) negligibly small compared to the large deviation limit 
∝ e−µ1t  once the condition t � λ−1

1  is met.
Our results can be extended and generalized in various ways. Extending the formalism 

presented here to systems obeying a discrete state Master equation would be straightforward; 
for example, our main result equation (25) would still hold by formally replacing the prob-
ability densities from equation (24) by the corresponding state probabilities [39]. Interesting 
and challenging extensions could include the consideration of trapping times [55, 56], spatial 
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disorder [57] and multi-channel transport [58], as well as extreme value statistics in discrete-
state Markov processes with a broken time-reversal symmetry [34, 35].
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