
ar
X

iv
:1

90
4.

07
53

2v
1

 [
cs

.D
C

]
 1

6
A

pr
 2

01
9

Parallel Balanced Allocations:

The Heavily Loaded Case

Christoph Lenzen∗ Merav Parter† Eylon Yogev‡

Abstract

We study parallel algorithms for the classical balls-into-bins problem, in which m balls
acting in parallel as separate agents are placed into n bins. Algorithms operate in synchronous
rounds, in each of which balls and bins exchange messages once. The goal is to minimize the
maximal load over all bins using a small number of rounds and few messages.

While the case of m = n balls has been extensively studied, little is known about the
heavily loaded case. In this work, we consider parallel algorithms for this somewhat neglected
regime of m ≫ n. The naı̈ve solution of allocating each ball to a bin chosen uniformly and
independently at random results in maximal load m/n + Θ(

√
m/n · log n) (for m ≥ n log n)

with high probability (w.h.p.). In contrast, for the sequential setting Berenbrink et al. [BCSV06]
showed that letting each ball join the least loaded bin of two randomly selected bins reduces
the maximal load to m/n +O(log log m) w.h.p. To date, no parallel variant of such a result is
known.

We present a simple parallel threshold algorithm that obtains a maximal load of m/n+O(1)
w.h.p. within O(log log(m/n) + log∗ n) rounds. The algorithm is symmetric (balls and bins all
“look the same”), and balls send O(1) messages in expectation. The additive term of O(log∗ n)
in the complexity is known to be tight for such algorithms [LW16]. We also prove that our
analysis is tight, i.e., algorithms of the type we provide must run for Ω(min{log log(m/n), n})
rounds w.h.p.

Finally, we give a simple asymmetric algorithm (i.e., balls are aware of a common labeling
of the bins) that achieves a maximal load of m/n+O(1) in a constant number of rounds w.h.p.
Again, balls send only a single message per round, and bins receive (1+ o(1))m/n+O(log n)
messages w.h.p. This goes to show that, similar to the case of m = n, asymmetry allows for
highly efficient solutions.

∗MPI for Informatics, Germany. Email: clenzen@mpi-inf.mpg.de.
†Weizmann Institute, Israel. Email: merav.parter@weizmann.ac.il. Supported in part by grants from BSF-NSF

No. 2017758 and Minera No. 713238.
‡Technion, Israel. Email: eylony@gmail.com. Supported by the European Union’s Horizon 2020 research and

innovation program under grant agreement No. 742754.

http://arxiv.org/abs/1904.07532v1

1 Introduction

We consider simple parallel algorithms for the heavily loaded regime of the well-known balls
into bins problem. When m balls are thrown randomly into n bins, the maximal load can be
bounded by m/n + Θ(

√
log n · m/n) with high probability (w.h.p.)1 for any m = Ω(n log n) (e.g.,

by Chernoff’s bound). In the balanced case, i.e., for m = n, it was demonstrated that parallel
communication between balls and bins can considerably improve this load using a small num-
ber of messages and rounds. In contrast, for the m ≫ n regime, to this point, there was no
(communication efficient) parallel algorithm that outperforms the naı̈ve random allocation.

In this paper, we ask how to leverage communication to improve the maximal load for this
heavily loaded case. We are in particular intrigued by the number of communication rounds
required to achieve the almost perfect maximal load of m/n + O(1). We focus primarily on
algorithms which are symmetric (bins are anonymous) and use few messages.

The Classical Setting of Balls into Bins. Balls into bins and related problems have been studied
thoroughly in a wide range of models. The high-level goal of any balls-into-bins algorithm is to
allocate “efficiently” a set of items (e.g., jobs, balls) to a set of resources (machines, bins). The
naı̈ve single-choice algorithm places each ball into a bin chosen independently and uniformly
at random. It is well-known that for m = n this achieves a maximal load of O(log n/ log log n)
with high probability. In a seminal work, Azar et al. introduced the multiple-choice paradigm,
in which the balls are placed into bins sequentially one by one, and each ball is allocated to the
least loaded among d ≥ 2 randomly selected bins. They showed that this algorithm achieves,
w.h.p., a maximal load of O(1 + log log n/ log d), an exponential improvement over the single
choice algorithm.

Adler et al. [ACMR98] introduced the parallel framework for the balls-into-bins problem, with
the objective of parallelizing this sequential multiple choice process. They restricted attention to
simple and natural parallel algorithms that are both (i) symmetric: all balls and bins run the
same algorithms, and bins are anonymous; and (ii) non-adaptive: each ball picks a set of d bins
uniformly and independently at random and communicate only with these bins throughout the
protocol. They showed that such symmetric and non-adaptive algorithms can achieve a total load
of Θ(log log n/ log log log n) with the same number of rounds.

Lenzen and Wattenhofer [LW16] relaxed the non-adaptivity constraint, and presented an
adaptive and symmetric algorithm that obtains a bin load of 2, w.h.p., within O(log∗ n) rounds
and using a total of O(n) messages. Again, this is tight for this class of algorithms, and dropping
any of the constraints the lower bound imposes leads to constant-round solutions.

The Heavily Loaded Case of Balls into Bins. It has been noted in the literature that the m ≫ n
regime of the balls into bins problem is fundamentally different than the case where m = n;
this explains why attempts to extend the analysis of existing m = n algorithms to the heavily
loaded case mostly fail [BCSV06, TW14]. In a breakthrough result, Berenbrink et al. [BCSV06]
provided an ingenious analysis for the multiple choice process in the heavily loaded regime.
They showed that when balls are allowed to pick the best among 2 random choices, the bin load
becomes m/n+O(log log n) with high probability. Thus the 2-choice process super-exponentially
improves the excess bin load compared to the single choice random allocation and makes it
independent of m.

1Throughout this work, we say that an event happens with high probability if it succeeds with probability of at
least 1 − 1/nc for any constant c ≥ 1.

1

To the best of our knowledge, there has been no work that parallelizes this sequential process
in a similar manner as has been done by Adler et al. and others for the m = n case.2 As a result,
no better parallel algorithm has been known for this regime other than placing balls randomly
into bins.

Our Results. We propose a very simple threshold algorithm (cf. [ACMR98]) that appears to be
suitable for the heavily loaded regime. In every synchronous round r of our algorithm, each
unallocated ball sends a join-request to a bin chosen uniformly at random. Bins will accept balls
up to a load of Tr (a threshold that increases with r). Thus, a bin with load ℓ at the beginning of
round r acknowledges up to Tr − ℓ requests (chosen arbitrarily among all received requests) and
declines the rest. We show that such a simple algorithm achieves a maximal load of m/n + O(1)
within O(log log(m/n)) rounds with high probability.

Theorem 1. There exists a parallel symmetric and adaptive algorithm of O(log log(m/n) + log∗ n)
rounds that achieves maximal load of m/n + O(1) with high probability. The algorithm uses a total of
O(m) messages, w.h.p.

Note that, trivially, one can place all balls within n rounds, by each ball approaching each bin
once (and bins using thresholds of Lr = ⌈m/n⌉ in all rounds). Thus the above time bound is of
interest whenever log log(m/n) ≫ n.

The technically most challenging part is our lower bound argument. We consider a special
class of threshold algorithms to which our algorithm belongs. This class consists of all threshold
algorithms in which in every round, every (unallocated) ball contacts O(1) bins sampled uni-
formly and independently at random. This class generalizes our algorithm in two ways. First,
it allows a ball to contact O(1) bins per round instead of only 1 (as in the main phase of our
algorithm). Second, it allows bins to have distinct threshold values, which can depend on the
state of the entire system in an arbitrary way.

Theorem 2. Any threshold algorithm in which in each round balls choose O(1) bins to contact uniformly

and independently at random w.h.p. runs for Ω(min{log log(m/n), 2nΩ(1)}) rounds or has a maximal
load of m/n + ω(1).

This theorem applies to the algorithm of Theorem 1, but not to the trivial n-round algorithm
mentioned above. We conjecture that any threshold algorithm runs for Ω(min{log log(m/n), n})
rounds or incurs larger loads, but a proof seems challenging due to the obstacles imposed by
balls using differing probability distributions for deciding which bins to contact.

Asymmetric Algorithms. In the asymmetric setting, all bins are distinguished based on globally
known IDs, which can be rephrased as all balls’ port numberings of bins being consistent. A
perfect allocation can be obtained trivially in this setting, simply by letting all balls contact the
first bin, which then can send to each ball the bin ID to which it should be assigned. To rule
out such trivial solutions, one should restrict attention to algorithms in which no bin receives
(significantly) more messages than necessary. Concretely, bins should receive no more than
(1 + o(1))m/n + O(log n) messages; as with constant probability some bin will receive m/n +√

m/n + log n messages even if each ball sends a single message, this is the best we can hope for.

2We note that Stemann [Ste96] considers the possibility that m > n, but provides algorithms for load O(m/n) only;
for almost the entire range of parameters, the naı̈ve algorithm or using multiple instances of algorithms for m ≤ n
yields better results.

2

Theorem 3. There exists a parallel asymmetric algorithm that achieves a maximal load of m/n + O(1)
within O(1) rounds w.h.p., where each bin receives a total of (1 + o(1))m/n +O(log n) messages w.h.p.

This goes to show that, similar to the case of m = n, asymmetry allows for highly efficient
solutions. In what follows, we give a high-level overview of the proofs of Theorems 1 and 2. The
full proof of Theorem 3 is given in Section 5.

Additional Related Work. Following [ABKU99], multiple-choice algorithms have been stud-
ied extensively in the sequential setting. For instance, [Vöc03] considered a variant of this set-
ting where the selections made by balls are allowed to be nonuniform and dependent. The
works [SP02, MPS02] have studied the effect of memory when combined with the multiple
choice paradigm and showed that a choice from memory is asymptotically better than a ran-
dom choice. The analysis of the multiple choice process for the heavily loaded case was first
provided by [BCSV06] and considerably simplified by [TW14]. See [Wie17] for a survey on se-
quential multiple-choice algorithms.

Turning to the distributed/parallel setting, [SS12] studied distributed load balancing proto-
cols on general graph topologies. [BCE+12] considers a semi-parallel framework for balls into
bins, in which the balls arrive in batches rather than one by one as in the sequential setting.
[ADRS14] consider a variant of the balls-into-bins problem, namely, the renaming problem and
the setting of synchronous message passing with failure-prone servers. Finally, [BL14] intro-
duced a general framework for parallel balls-into-bins algorithms and generalizes some of the
algorithms analyzed in [LW16].

1.1 Our Approach in a Nutshell.

The Symmetric Algorithm. To get some intuition on threshold algorithms, we start by consider-
ing the most naı̈ve algorithm, in which each bin agrees to accept at most T = m/n + O(1) balls
in total, without modifying its threshold over the course of the algorithm. That is, in every round
each unallocated ball picks a bin uniformly and independently at random, each bin agrees to
accept at most T balls in total, and rejects the rest. Clearly, the final load of each bin is bounded
by T and hence it remains to consider the running time of such an algorithm. One can show
that, w.h.p., after a single round a constant fraction of the bins are going to be full (i.e., contain T
balls). Hence, the probability of an unallocated ball to contact a full bin in the following rounds
is constant. This immediately entails a running time lower bound of Ω(log n), even if the balls
may contact a constant number of bins per round.

The crux idea of our symmetric algorithm is to set the threshold lower than the allowed bin
load (e.g., in the first round we set T = m/n − (m/n)2/3). At first glance, this seems unintuitive
as a bin might reject balls despite the fact that it still has room. The key observation here is that
setting the threshold a bit smaller than the allowed load keeps all bins equally loaded throughout
the algorithm, yet permits placing all but a few of the remaining balls in each step. This prevents
the situation where an unallocated ball blindly searches for a free bin in between many occupied
bins. Crunching the numbers shows that this approach reduces the number of remaining balls
to O(n) in O(log log(m/n)) rounds, after which the established techniques for the case of m = n
can be applied.

The Lower Bound. Our lower bound approach considers a natural family of threshold algo-
rithms, which in particular captures the above algorithm. Every algorithm is this family has the

3

following structure. In each round i, every unallocated ball picks O(1) bins independently and
uniformly at random. Every bin j accepts up to Ti,j requests and rejects the rest. The value Ti,j

can be chosen non-deterministically by the bins.
This class is more general than our algorithm, in several ways. Most significantly, it allows

bins to have different thresholds. The decision of these can depend on the system state at the
beginning of each round (excluding future random choices of balls). Moreover, we allow for
algorithms that “collect” allocation requests from balls for several rounds before allocating them
according to the chosen threshold. While this is not a good strategy for algorithms, is it useful in
the simulation part of the proof, which is explained next.

The proof follows in two steps. First, we prove the lower bound for degree one algorithms
(where balls contact a single bin in each iteration) in the family described above. The argument
for this step is somewhat technical, and it is based on focusing on one class of bins that have
roughly the same number of rejected balls in expectation. We show that one can find such a class
of bins which captures a large fraction of the expected number of rejected balls. We then exploit
the fact that all bins in this class are roughly the same, which allows us to provide concentration
results for that class.

The second step is a simulation technique in which we show how to simulate an algorithm
with higher degree by an algorithm from the above family. Roughly speaking, we simulate a
degree d algorithm by contacting a single bin over d different rounds. Only after these d rounds
the bins decide which balls to accept. Here we crucially rely on the fact that our lower bound for
single degree algorithms includes such algorithms.

2 Preliminaries

Definition 1 (With high probability (w.h.p.)). We say that the random variable X attains values from
the set S with high probability, if Pr[X ∈ S] ≥ 1 − 1/nc for an arbitrary, but fixed constant c > 0. More
simply, we say S occurs w.h.p.

We use some theory on negatively associated random variables, which is given in [DR98].

Definition 2 (Negative Association). A set of random variables X1, . . . , Xn is said to be negatively
associated if for any two disjoint index sets I, J ⊆ [n] and two functions f , g that are both monotone
increasing or both monotone decreasing, it holds that

E
[

f (Xi : i ∈ I) · g(Xj : j ∈ J)
]
≤ E[f (Xi : i ∈ I)] · E

[
g(Xj : j ∈ J)

]
.

Lemma 1 (Chernoff Bound). Let X1, . . . , Xm be independent or negatively associated random variables
that take the value 1 with probability pi and 0 otherwise, X = ∑

m
i=1 Xi, and µ = E[X]. Then for any

0 < δ < 1,
Pr[X < (1 − δ)µ] ≤ e−δ2µ/2

and
Pr[X > (1 + δ)µ] ≤ e−δ2µ/3.

If µ > 2 log m, with δ =
√

2 log m/µ we get that

Pr[X < µ −
√

2µ log m] ≤ 1/m,

and
Pr[X > µ +

√
3µ log m] ≤ 1/m.

4

Proposition 1 ([DR98], Proposition 7(2)). Non-decreasing (or non-increasing) functions of disjoint
subsets of negatively associated variables are also negatively associated.

Our lower bound proof makes use of the following Berry-Esseen inequality.

Theorem 4 (Berry-Esseen Inequality [Ber41, Ess42]). Let Yj, j ∈ {1, . . . , M}, be i.i.d. random variables

with E
[
Yj

]
= 0, ∑

2 := E
[
|Yj|2

]
> 0, and ρ := E

[
|Yj|3

]
< ∞, and let Y = ∑

M
j=1 Yj. Denote by F the

cumulative distribution functions of Y

∑
√

M
and by φ the cumulative distribution function of the standard

normal distribution. Then

sup
s∈R

{|F(s)− φ(s)|} ≤ cρ

∑
3
√

M
, for a constant c.

Symmetric Algorithm for m = n. Our algorithm for the heavily loaded regime uses the algo-
rithm of [LW16] for allocating n balls into n bins. We denote this algorithm by Alight. Specifically,
we use the following theorem.

Theorem 5. [From [LW16]] There exists a symmetric algorithm for placing n balls into n bins with the
following properties w.h.p.: The algorithm terminates after log∗ n +O(1) rounds with bin load at most 2.
The total number of messages sent is O(n), where in each round balls send and receive O(1) messages in
expectation and O(log n) many with high probability. Finally, in each round, bins send and receive O(1)
messages in expectation and O(log n/ log log n) many with high probability.

3 The Parallel Symmetric Algorithm

In this section, we describe our symmetric algorithm for allocating m balls into n bins. We begin
by describing the precise model in which the algorithm works.

The Model. The system consists of m bins and n balls, and operates in the synchronous message
passing model, where each round consists of the following steps.

1. Balls perform local computations and send messages to arbitrary bins.

2. Bins receive these messages, perform local computations and send messages to any balls
they have been contacted by in this or earlier rounds.

3. Balls receive these messages and may commit to a bin (and terminate).

All algorithms may be randomized and have unbounded computational resources; however, we
strive for using only very simple computations.

High-Level Description. The algorithm consists of two phases. The first phase consists of
O(log log(m/n)) rounds, at the end of which the number of unallocated balls is O(n). The second
phase consists of O(log∗ n) rounds and completes the allocation by applying Theorem 5 [LW16].

For simplicity, we will assume that all values specified in the following are integers; as we
aim for asymptotic bounds, rounding has no relevant impact on our results. In our algorithm,
the threshold values of all bins are the same, but depend on the current round. In the first round,
all bins set their threshold to T = m/n − (m/n)2/3, each ball picks a single bin uniformly at
random, and bins accept at most T balls and reject the rest. Applying Chernoff’s bound, we see

5

that w.h.p. each bin is contacted by at least m/n−
√

10 log n · m/n > T balls. Hence, each bin has
exactly T allocated balls after the first round. Accordingly, the number of unallocated balls after
the first round is m′ = m − T · n = O(m2/3n1/3). We continue the same way in the second round,
handling an instance with m′ balls and n bins. It follows that the number of remaining balls after

i rounds is bounded by O(m(2/3)i
n1−(2/3)i

). When m′ gets very close to n, i.e., m′ ∈ npolylog(n),
concentration is not sufficiently strong any more to guarantee that all bins receive the desired
number of balls. However, one can show that w.h.p. this holds true for the vast majority of bins.
Overall, we show that after O(log log(m/n)) rounds, O(n) unallocated balls remain.

At this point, we employ the parallel algorithm of Lenzen and Wattenhofer [LW16], which
takes additional O(log∗ n) rounds. To this end, we let each bin act as O(1) virtual bins. This
way, at most O(1) additional balls will be allocated to each bin, as the algorithm guarantees a
maximum bin load of 2. We next describe the algorithm and its analysis in detail.

The Algorithm Aheavy:

1. Set m̃0 = m.

2. For i = 0, . . . , O(log log(m/n)) do:

(a) Each ball sends an allocation request to a uniformly sampled bin.

(b) Set Ti =
m
n − (m̃i

n)
2
3 . Each bin accepts up to Ti − ℓi balls, where ℓi is the load of the bin

at the beginning of the round.

(c) Set m̃i+1 = m̃2/3
i n1/3.

3. At this point at most O(n) balls are unallocated (w.h.p.). Run Alight for the remaining balls
with each bin simulating O(1) virtual bins.

Theorem 6. Algorithm Aheavy finishes after O(log log(m/n) + log∗ n) rounds with maximal load of
m/n + O(1), w.h.p., using in total O(m) messages (over all rounds). Each ball sends and receives
O(1) messages in expectation and O(log n) many w.h.p. Each bin sends and receives (1 + o(1))m/n +
O(log n) messages w.h.p.

Proof. For any round i of step (2), let mi be the number of unallocated balls at the beginning
of the round, and notice that m̃i is the bin’s estimate of mi. Fix a round i. Let Xb be a random
variable indicating the number of balls that choose bin b in round i (we suppress the round index
for ease of notation) and set T−1 := 0.

Observe that (m̃i/n)2/3 = m̃i+1/n. Moreover, mi ≥ m̃i, as nTi−1 = m− n(m̃i−1/n)2/3 = m− m̃i

balls can be allocated by the end of round i − 1. We make frequent use of these observations in
the following. We start by bounding the probability that a bin gets “underloaded” in a given
round, i.e., despite the conservatively small chosen threshold, it does not receive sufficiently
many requests to allocate Ti − Ti−1 balls in round i.

Claim 1. P[Xb < Ti − Ti−1] < e−(
m̃i
n)1/3/2.

Proof. For all i, it holds that

Ti − Ti−1 =
m̃i

n
− m̃i+1

n
=

m̃i

n
−
(

m̃i

n

) 2
3

.

6

As mi ≥ m̃i, E[Xb] =
mi
n ≥ m̃i

n . Using a Chernoff bound with δ = (mi
n)−1/3, we get that

Pr [Xb < Ti] ≤ Pr

[
Xb <

mi

n
−
(mi

n

) 2
3

]

= Pr [Xb < (1 − δ)E[Xb]] ≤ e−δ2E[Xb]/2

= e−(
m̃i
n)1/3/2 .

Using this bound, we next show that each bin is allocated balls to match its threshold in each
round, at least until only npolylog(n) balls remain.

Claim 2. Let i0 ∈ O(log log(m/n)) be minimal with the property that m̃i0 ≤ nc3 log3 n for a sufficiently
large constant c. Then mi0 = m̃i0 w.h.p.

Proof. We apply Claim 1 to all bins and all i < i0. Using a union bound over all such events, the
probability that Xb < Ti − Ti−1 in any such round for any bin is bounded by

i0−1

∑
i=0

ne−(
m̃i
n)1/3/2 ∈ O


n

i0−1

∑
i=0

2−ie
−
(

m̃i0−1
n

)1/3

/2


 ⊆ ne−Ω(c log n) ⊆ n−Ω(c) .

Thus, w.h.p. each bin has exactly ∑
i0−1
i=0 Ti = m/n − m̃i0 /n balls allocated to it at the end of round

i0 − 1. Therefore, mi0 = m̃i0 w.h.p.

It remains to consider the final O(log log log n) iterations required to reduce m̃i to O(n). As
the number of balls is not large enough anymore to ensure sufficient concentration for individual
bins, we consider the random variable Yi counting the number of balls allocated to all bins
together in round i.

Claim 3. Let i1 be minimal with the property that m̃i1 ≤ 2n. For each round i0 ≤ i < i1 and any c > 0,

it holds that Yi ≥ n
(

Ti − Ti−1 − f (c)2−(i1−i)
)

with probability at least 1 − n−c, where f : R
+ → R

+.

Proof. Denote by Zb, b ∈ {1, . . . , n}, the indicator variables which are 1 if bin b receives fewer
than Ti − Ti−1 allocation requests in round i and 0 else. By Claim 1 and linearity of expectation,
we have for Z = ∑

n
b=1 Zi that

E[Z] ≤ e−(
m̃i
n)1/3/2n .

The random variables Zb are negatively associated (according to Definition 2). To see this, ob-
serve that by [DR98, Theorem 13] we know that X1, . . . , Xn are negatively associated: the Zb

are monotone nonincreasing functions of disjoint subsets of the negatively associated variables
X1, . . . , Xn (namely, Zb is a function of the set {Xb}), so Proposition 1 applies. Therefore, we can
apply a Chernoff bound (with δ = 1) to Z:

Pr [Z > 2E[Z]] ≤ e−E[Z]/3 .

If E[Z] ≥ 3c log n for a sufficiently large constant c, this entails that Z ≤ 2E[Z] w.h.p. Otherwise,
we use a simple domination argument: each Zb is replaced by an independent 0-1 variable Z′

b
that is 1 with probability 3c log n/n, so that for Z′ := ∑

n
b=1 Z′

b we have that

Pr
[
Z > 2E

[
Z′]] ≤ Pr

[
Z′

> 2E
[
Z′]] ≤ e−c

< n−c .

7

Together, this entails that Z ≤ 6c log n + 2e−(
m̃i
n)1/3/2n w.h.p. As i ≥ i0 (where m̃i0 ∈ npolylog(n)),

we have that 2i1−i ∈ 2O(log log log n) and Ti − Ti−1 ≤ Ti ∈ polylog(n). Hence 6c log n(Ti − Ti−1) <

f (c)2−(i1−i+1)n for a suitable choice of f . As 2e−(
m̃i
n)1/3/2 decreases exponentially in m̃i/n, which

itself decreases exponentially in i, we also have that

2e−(
m̃i
n)1/3/2(Ti − Ti−1)n < 2e−(

m̃i
n)1/3/2 m̃i

n
< f (c)2−(i1−i+1)n

if f (c) is sufficiently large. Noting that Yi ≥ (Ti − Ti−1)(n − Z), the claim follows.

Claim 4. For any c > 0, mi1 ≤ g(c)n with probability at least 1 − n−c, where g : R
+ → R

+.

Proof. The number of unallocated balls at the beginning of round i1 is mi1 = m − ∑
i1−1
i=0 Yi. By

Claim 2, we have that mi0 = m̃i0 w.h.p., i.e., Yi = (Ti − Ti−1)n for all i < i0 w.h.p. For i0 ≤ i < i1,

by Claim 3 we have that Yi ≥ n
(

Ti − Ti−1 − f (c)2−(i1−i)
)

w.h.p., where c is the constant in the

w.h.p. bound. Accordingly, by a union bound it holds that

mi1 ≤ m − n

(
i1−1

∑
i=0

(Ti − Ti−1) +
i1−1

∑
i=i0

f (c)2−(i1−i)

)
< m − (m̃0 − m̃i1) + f (c)n ≤ (2 + f (c))n

with probability 1− (i1 − i0 + 1)n−c. As i1 − i0 ∈ O(log log log n), mi1 ≤ g(c)n w.h.p. for a suitable
choice of g.

Thus, after i1 ∈ O(log log(m/n)) iterations, at most g(c)n balls remain unallocated w.h.p. We
apply Alight, where each of the n bins simulates g(c) virtual bins. That is, any ball allocated in
one of the g(c) virtual bins will be allocated in the real bin. Finally, by the properties of Alight we
have that each virtual bin will have at most 2 balls and thus each real bin will add at most 2g(c)
balls. Overall, the total load of any bin is m/n + O(1).

Number of Messages. We bound the number of messages sent by balls and bins. The number
of messages sent in step 3 is specified in Theorem 5. Thus, we analyze the messages in step 2.

Each ball sends at most 1 message per round, thus a total of mi in round i. Each round
reduces the number of balls by at least a constant factor, cf. Claim 2 and Claim 3. Thus, the total
number of messages sent is bounded by a geometric series, i.e., at most 2m messages are sent
w.h.p. Moreover, since all balls are identical we have that the expected number of message sent
by a ball is O(1). The probability that a single ball sends more than ℓ message is at most 2ℓ.
Thus, with high probability, a ball sends at most O(log n) messages. As all messages are sent
to uniformly and independently random bins, a standard Chernoff bound yields that each bin
receives (1 + o(1))m/n + O(log n) messages w.h.p.

A Note on Success Probability. As described, Algorithm Aheavy succeeds with high probability
in n. As n may be a constant, this probability bound could be a constant as well. However, the
case of n < log log(m/n) can be covered by a trivial algorithm that deterministically guarantees a
perfectly balanced allocation in n rounds: balls try all bins one by one, in arbitrary order (which
may be different for each ball). Bins use threshold m/n in each round. If n < log log(m/n),
we can apply this trivial algorithm within our round budget. Combining both algorithms, we
achieve a success probability of 1 − o(1) for the entire parameter range.

8

4 Lower Bound for Threshold Algorithms

In this section, we present a lower bound for a special class of threshold algorithms. Roughly
speaking, the only limitation that we pose here is that in each round unallocated balls pick the
bins they contact independently and uniformly at random (as in our upper bound), and bins do
not take decisions based on random choices of balls in future rounds.

This class is more general than our algorithm, as it allows bins to have different thresholds.
The decision on these thresholds can be an arbitrary function of the system state at the beginning
of the round (excluding future random choices of balls); this does not affect the lower bound
result. Moreover, we allow for algorithms that “collect” allocation requests from balls for k ∈ N

rounds before allocating them according to the chosen threshold. While this is not a good strategy
for algorithms, it is useful for generalizing our lower bound to algorithms in which balls contact
multiple bins in each round, as it allows for a straightforward simulation argument.

The Family of Uniform Threshold Algorithms. The degree of an algorithm is the maximal
number of bins that a ball contacts in a single phase. Formally, in this special threshold model a
degree d algorithm collecting for k rounds works in phase i as follows. Bins and balls have each
an internal state ∑. Decisions are a function of ∑, which is updated after each operation, and
(private) randomness. We remark, however, that the structure imposed by the algorithm actually
entails that the state of a non-allocated ball is simply a function of its own randomness only, as
it received no information beyond all its requests being rejected.

In contrast, bins may perform more complex internal operations. Denote by ℓb the load of bin
b at the beginning of phase i, i.e., the number of balls it has sent accept messages to and which
have not yet informed the bin that they are allocated to another bin.

1. Each bin b determines its threshold Tb for the current phase. The decision on these thresh-
olds is oblivious to (i.e., stochastically independent from) the random choices of balls in
this and future phases.

2. Based on its state, each ball u chooses (at most) dk bins bu
1 , . . . , bu

dk uniformly and indepen-
dently at random to send allocation requests to. These requests are sent over k rounds, i.e.,
at most d per round.

3. Denote by Rb the set of balls sending a request to bin b in this phase. In the last round of
the phase, bin b responds with accept messages to a subset of Rb of size max{Tb − ℓ, |Rb|}.
This set is chosen based on the bin’s port numbers for the requesting balls3 and its internal
randomness, subject to the constraint that each ball is accepted only once.

4. Balls receive accept messages. They may decide on an accepting bin to be allocated to
(provided they received at least one accept message so far) at the end of any phase (i.e.,
they do not need to commit immediately), where this phase is a function of the phase
number in which they received the first accept message.4

5. Balls that selected a bin inform all bins that sent accept messages to it about its decision at
the end of the phase.

3For each bin, there is a bijection from {1, . . . , m} to the balls. Requests from a ball are received on the respective
port and responses are sent to the same port. Balls have a port numbering of the bins for the same purpose.

4This is not a good idea for algorithms, but we use it in our lower bound for a simulation argument.

9

For technical reasons, we assume that bins port numbers are chosen adversarially, i.e., first the
randomness of balls and bins is determined and then the port numbering is chosen. Algorithms
must achieve their load guarantees despite this; note that our algorithms are capable of this.

The structure of this section is as follows. We first establish in Section 4.1 the lower bound
for degree 1 algorithms, i.e., threshold algorithms in which each unallocated ball contacts one bin
chosen independently and uniformly and random (our algorithm falls within this class). Then,
in Section 4.2, we extend the argument to any degree d algorithms for d = O(1) by providing a
simulation result.

4.1 Lower Bound for Degree 1 Algorithms

Our lower bound shows that any algorithm in the threshold model, granted that balls choose
bins uniformly at random, must use a large number of rounds.

Theorem 7. Suppose M ∈ N balls each contact one of 2 ≤ n ∈ N bins independently and uniformly
at random, where M ≥ Cn for a sufficiently large constant C. If bin i ∈ {1, . . . , n} accepts up to
Li balls contacting it, where ∑

n
i=1 Li ∈ M + O(n) and Li does not depend on the balls’ randomness,

with probability at least 1 − e−Ω((n/t)2/3) the number of balls that is not accepted is Ω(
√

Mn/t) for
t = Θ(min{log n, log(M/n)}).

Proof. Denote by µ = M/n the expected number of messages received by bin i. Fix a bin and
denote by X(i) the random variable counting the number of messages it receives. Because each
ball picks a bin uniformly and independently at random, we have that

X(i) =
M

∑
j=1

Xj ,

where the Xj are independent 0-1 variables attaining 1 with probability p = 1/n ≤ 1/2 (we omit
i for ease of notation). Our first goal is to provide a lower bound on the expected number of
rejected balls. To do that, we first analyze a single bin and show the following:

Claim 5. Any bin has load at least µ + 2
√

µ with probability p0 = Ω(1).

Proof. We apply the Berry-Esseen Inequality (see Theorem 4) to the random variables Yj := Xj −
p, j ∈ {1, . . . , M}. Thus, ∑ =

√
p(1 − p) and ρ = p(1 − p)(1 − 2p(1 − p)), yielding that

sup
x∈R

{|F(x)− φ(x)|} ≤ c(1 − 2p(1 − p))√
p(1 − p)M

p≤1/2

≤ c(1 − p)√
p(1 − p)M

<
c√
pM

≤ c√
C

in the terminology of the theorem, where Y = ∑
M
j=1 Xj − µ, i.e., Y equals the deviation of the load

of bin i from its expectation. Thus, the theorem implies that for all x ≥ 0, we have that

Pr

[
Y ≥ x

√
µ

2

]
p≤1/2

≥ Pr

[
Y ≥ x

√
(1 − p)µ

]
= Pr

[
Y ≥ x ∑

√
M
]
≥ 1 − F(x)− c√

C
.

Choosing x = 2 ·
√

2 and using that C is sufficiently large, it follows that

P
[

X(i) ≥ µ + 2
√

µ
]
∈ Ω(1) .

10

Thus, we have shown that any bin has load at least µ + 2
√

µ with probability p0 ∈ Ω(1),
causing it to reject at least µ + 2

√
µ − Li balls (provided that µ + 2

√
µ ≥ Li).

Corollary 1. At least p0 ·
√

Mn balls are rejected in expectation for p0 ∈ Ω(1).

Proof. By Claim 5, the expected number of rejected balls for bin i is at least p0 · max{µ + 2
√

µ −
Li, 0}. Thus, by linearity of expectation the expected number of rejected balls is at least

p0

n

∑
i=1

max{µ + 2
√

µ − Li, 0} ≥ p0

(
M + 2

√
Mn −

n

∑
i=1

Li

)
≥ p0

√
Mn ,

where the final step exploits that
√

Mn ≥
√

Cn with C being sufficiently large.

So far, we have shown that the expected number of rejected balls is sufficiently large. One of
the major obstacles for providing a concentration result comes from the fact that the number of
rejected balls might vary considerably between bins (e.g., due to different threshold values). To
overcome this, our proof strategy is based on finding a sufficiently “heavy” subset of bins that
have roughly the same number of rejected balls in expectation.

Towards that goal, for every bin i, we look at the value Si := µ + 2
√

µ − Li and restrict
attention to all bins satisfying that Si > 0. These bins are now divided into classes where, for
k ∈ Z≥0, bin i ∈ Ik ⊆ {1, . . . , n} iff Si ∈ [2k, 2k+1). Let I∗ be the class of all bins with Si ∈ (0, 1).

The selection of the class of bins for which we will show concentration is done in two steps.
First, we find at most t := min{⌈log n⌉, ⌈log(M/n)⌉+ 1} (plus 1) particular classes that together
capture at least half of the expected value of rejected balls. Once we do that, we focus on the
heaviest class among these t classes, hence loosing only a factor of t in our bounds. Concretely,
denoting by kmax the largest value of k such that Ikmax

6= ∅, the following holds.

Claim 6. Let kmin := max{kmax − ⌈log n⌉+ 1, 0}. Then the expected number of rejected balls by bins
i ∈ [kmin, kmax] is at least p0

√
Mn/2. In addition, kmax − kmin ≤ t.

Proof. First, suppose that kmax ≤ t. Observe that the total contribution of all bins i ∈ I∗ is at most
n, since ∑i∈I∗ Si ≤ n. By the prerequisite that M ≥ Cn for a sufficiently large constant C, we may
assume that C ≥ 4/p2

0 and get that n ≤
√

Mn/C ≤ p0

√
Mn/2. As by Corollary 1 at least p0

√
Mn

balls are rejected in expectation, the classes 1, . . . , kmax capture at least half of this expectation.
Second, consider the case that kmax > t. We claim that this entails that t = ⌈log n⌉, as

t = ⌈log(m/n)⌉+ 1 would yield for all i that

µ + 2
√

µ − Li ≤ µ + 2
√

µ =
M

n
+ 2

√
M

n
≤ 2M

n
≤ 2t ,

implying that kmax ≤ t. Therefore, indeed t = ⌈log n⌉ and hence kmin = kmax − t. It follows that

∑
i∈I∗

Si + ∑
k<kmin

∑
i∈Ik

Si ≤ n · 2kmax

n
≤ ∑

i∈Ikmax

Si .

Using the same expression for the expected number of rejected balls as in the proof of Corollary 1,
we get that

p0

kmax

∑
k=kmin

∑
i∈Ik

Si ≥
p0

2

(

∑
i∈I∗

Si + ∑
k∈Z0

∑
i∈Ik

Si

)
=

p0

2

n

∑
i=1

max{µ + 2
√

µ − Li, 0} ≥ p0

√
M/n

2

11

balls are rejected in expectation by bins in classes kmin, kmin + 1, . . . , kmax. As in the first case
kmax − kmin ≤ t − 0 = t and in the second case kmax − kmin = t, this completes the proof.

By the pigeonhole principle and Claim 6, there must be a class k ∈ [kmin, kmax] satisfying that

p0 ∑
i∈Ik

Si ≥
p0

√
Mn

2(t + 1)
.

Denote by zi, i ∈ Ik, the indicator variables that are 1 iff X(i) ≥ µ + 2
√

µ − Li. By [DR98, Theorem
13] and Proposition 1 these variables are negatively associated. Setting Z := ∑i∈Ik

zi, we have that
E[Z] ≥ p0|Ik|, and by Chernoff’s bound (Lemma 1), it follows that

Pr

[
Z <

p0|Ik|
2

]
≤ e−Ω(|Ik |) .

If |Ik| ≥ (n/t)2/3, then we have that with probability 1− e−Ω((n/t)2/3), the number of rejected balls
is at least

2k−1 p0|Ik| ≥
p0

4 ∑
i∈Ik

Si ∈ Ω

(√
Mn

t

)
.

It remains to consider the case that |Ik| < (n/t)2/3. Because up to factor 2 all bins in Ik have the
same Si value, it holds for each i ∈ Ik that

Si = µ + 2
√

µ − Li ∈ Ω

(√
Mn

t · |Ik|

)
. (1)

Let α :=
√

µ · n/(t · |Ik|) >
√

µ · (n/t)1/3 >
√

µ =
√

M/n. By Inequality (1) and because M ≥ Cn
for sufficiently large C,

Li ≤ µ + 2
√

µ − 3α ≤ µ − α .

As Li ≥ 0, this bound also implies that δ := α/(2µ) ∈ (0, 1). As X(i) is the sum of independent
0-1 variables, we can thus apply Chernoff’s bound to X(i) to see that for sufficiently large n,

Pr
[

X(i) − Li < α/2
]
≤ Pr

[
X(i) ≤ µ − α/2

]

≤ Pr
[

X(i) ≤ µ(1 − α/(2µ))
]

∈ e−Ω(n2/(t2·|Ik |2)) ∈ e−Ω((n/t)2/3) ,

where in the final step we use that Ik < (n/t)2/3. By a union bound over all bins in Ik, we

get that with probability 1 − e−Ω((n/t)2/3), the number of rejected balls from this class is at least
Ω(|Ik| · α) ⊆ Ω(

√
Mn/t).

4.2 Simulation for Higher Degree

In this subsection, we show that any algorithm with a higher degree (i.e., balls can contact more
than one bin in a single round) can be simulated by an algorithm with degree 1 at the expense of
more rounds. To this end, we simply increase the length of phases by factor d. We then proceed

12

to show that a degree 1 algorithm with phase length k > 1 can be improved on by reducing the
phase length. We then can apply Theorem 7 to the resulting degree 1 algorithm of phase length
1 to prove Theorem 2.

Lemma 2. Let A be a uniform threshold algorithm of degree d that runs in r rounds. Then there is a
uniform threshold algorithm A′ with degree 1 that achieves the same maximal load within d · r rounds.

Proof. A′ simulates A. It simply increases phase length by a factor of d and lets the balls send
their messages spread out over more rounds. This reduces the degree to 1. At the end of each
phase, the bins can compute the internal state they would have in A and act accordingly. Thus,
bin loads will be identical to those in A.

Lemma 3. There is a uniform threshold algorithm of degree 1 and phase length 1 achieving the same
guarantees on bin loads in the same number of rounds.

Proof. Assume that A has phase length k. We simulate A by algorithm A′ of phase length 1. Balls
and bins keep maintaining a state according to A, following these rules:

• If a ball receives its first accept message in round r of A′, it determines the phase i = ⌈r/k⌉
of A this round belongs to. Then it determines the phase i′ of A in which it would inform
bins about its decision. It will do so in A′ in round i′k (i.e., the same round this would
happen in A).

• For each i ∈ N, at the beginning of round (i − 1)k + 1 each bin computes the threshold
it would use in A in phase i based on the state for A it maintains. This threshold is used
in phases (i − 1)k + 1, . . . , ik of A′. The subset of balls it accepts in a given phase of A′ is
chosen arbitrarily.

• To update the internal state a bin maintains for A from phase i to phase i + 1, at the end
of round ik it performs the following operation. Let P ⊆ {1, . . . , m} be the set of ports it
received requests on. It determines the subset Q ⊆ P of ports it would have responded to
with accept messages in A when receiving the requests it got in rounds (i − 1)k + 1, . . . , ik.
Let Q′ be the set of ports it sent accept messages to in rounds (i − 1)k + 1, . . . , ik of A′. The
bin now “rearranges” its port numbering by permuting P such that Q′ is mapped to Q.
Finally, it updates its state for A in accordance with the modified port numbering and the
requests received during rounds 1, . . . , ik.

We claim that the third step maintains the invariant that the simulation is consistent with an
execution of A at the bin for the port numbering it computes. This holds true, because no
bin ever sends two accept messages to the same ball, implying that the modification to the
port numbering never conflicts with earlier such changes made. Thanks to this observation,
a straightforward induction now establishes that A′ simulates an execution of A for the port
numberings the bins have determined by the end of the simulation. Accordingly, A′ achieves the
same load distribution as A with the modified port numbers.

Note that the choice of port numbers does not affect the guarantees on the load distribution A
makes, as we assumed an adversarial choice of bins’ port numbers. Thus, the claim follows.

We are now ready to complete the lower bound proof.

13

Proof of Theorem 2. First, we show that the claim holds for degree 1 algorithms with phase length
1 by repeatedly applying Theorem 7. The induction hypothesis is that after round i, at least

Mi := (m/n)3−i
n1−3−i ∈ ω(n) balls remain with probability 1 − ie−Ω(n1/2). By the induction

hypothesis, we have that

min{log n, log(Mi/n)} ≤ log(Mi/n) ≤ log
(
(m/n2)3−i

)
∈ O

(
(m/n)3−(i+1)/2

)
.

As the total capacity of all bins is n · (m/n +O(1)) = m +O(n) by assumption, the theorem5 and
the induction hypothesis imply that, with probability

(
1 − ie−Ω(n1/2)

) (
1 − e−Ω((n/ log n)2/3)

)
≥ 1 − (i + 1)e−Ω(n1/2) ,

we have that

Mi+1 ∈ Ω

(√
Min

min{log n, log(Mi/n)}

)
⊆ Ω



(
(m/n)3−i

n2−3−i

(m/n)3−(i+1)

)1/2

 ⊆ (m/n)3−(i+1)

n1−3−(i+1)
,

as claimed.
Note that in the induction step we applied Theorem 7, which necessitates that Mi ≫ n,

which holds for sufficiently small i ∈ Ω(log log(m/n)). To ensure that the probability bound is

sufficiently strong for a w.h.p. result, we need, e.g., that i ≤ 2−n1/4 ∈ 2nΩ(1)
. Both are ensured by

the assumptions of the theorem. Finally, by applying Lemma 2 and Lemma 3, we can extend the
result to degree d algorithms for any d = O(1) and arbitrary phase length k.

5 An Asymmetric Algorithm

In this section, we prove Theorem 3 by providing an asymmetric algorithm that achieves a max-
imal load of m/n + O(1), w.h.p., within a constant number of rounds. In this algorithm, each
bin receives O(m/n + log n) messages in total. If m > n log n, we apply a single round of the
symmetric algorithm from Section 3 first to reduce the number of remaining balls to o(m), so
that each bin receives m/n +O(log n) messages in the first round and o(m) +O(log n) messages
in the subsequent application of the asymmetric algorithm.

Similarly to before, each active ball sends a single request in each round. The key idea of
the algorithm is to operate on simulated “superbins.” Each superbin is controlled by a leader,
where we make sure that the expected number µ of messages received by each superbin leader is
roughly m/n in each round (unless m/n is very small). Denote by δ a value that is large enough
so that the deviation from the expected number of messages a superbin receives is at most δ

w.h.p. Then we can be sure that superbins receive µ − δ messages w.h.p., and it allocates the
respective balls to its bins round-robin.

As a result, the algorithm w.h.p. allocates exactly the same number of balls to each bin, and
it is straightforward to show that this process allocates all but O(n) balls in a constant number
of rounds. It then completes by invoking an asymmetric algorithm for allocating n balls with
constant load in constant time, where each bin simulates O(1) virtual bins.

Concretely, the algorithm operates as follows.

5Note that we can apply Theorem 7 due to the constraint that bins thresholds are independent from balls random
choices regarding which bins to contact.

14

1. Set

• m1 := m

• r := 1.

2. Set

• nr := mr min{n/m, 1/ log n}
• δr := c

√
mr/nr · log n for a sufficiently large constant c

•
Lr :=

{
⌈mr/nr − δr⌉ if ⌈mr/nr − δr⌉ > 2c2 log n

4c2 log n else.

3. Each active ball chooses i ∈ {1, . . . , nr} uniformly at random and contacts bin i · n/nr.

4. Each bin selects up to Lr requests and responds to them in a round-robin fashion with
messages “j” for j ∈ {0, . . . , n/nr − 1}.

5. If a ball received response j from bin i, it informs bin i − j that it is allocated to this bin.

6. If Lr 6= ⌈mr/nr − δr⌉, then terminate. Otherwise set6

• mr+1 := mr − Lrnr

• r := r + 1

and go to Step 2.

We establish the properties of the algorithm by a series of claims that are straightforward to show.
First, we show that each superbin leader receives the “right” number of messages w.h.p.

Claim 7. W.h.p., in round r bins i · n/nr, i ∈ {1, . . . , nr}, receive between mr/nr − δ and mr/nr + δ

messages (provided that mr is the number of unallocated balls at the beginning of the round).

Proof. If m ≥ n log n, the expected number of messages per bin is mr/nr = m/n ≥ log n and the
claim is immediate from applying Chernoff’s bound. Otherwise, this follows from a standard
tail bound on the binomial distribution.

Claim 8. The algorithm terminates in round r iff mr/nr ≤ 2c2 log n.

Proof. ⌈mr/nr − δr⌉ = mr/nr − c
√

mr/nr · log n ≤ 2c2 log n iff mr/nr ≤ 2c2 log n. Hence Lr 6=
⌈mr/nr − δr⌉ and the termination condition is satisfied iff this holds true.

Claim 9. The algorithm terminates within 3 rounds.

Proof. Consider a round r in which the algorithm does not terminate. By Claim 8, thus mr/nr >

2c2 log n. Accordingly, nr = mrn/m and δr = c
√

m/n · log n. It follows that mr+1 = mr − Lrnr ≤
δrnr = mr

√
n/m · log n. If the algorithm does not terminate in the first two rounds, it follows

that m3 = m1 · n/m · log n = n log n. Therefore, m3/n3 = log n < 2c2 log n and the algorithm
terminates in round 3.

6W.l.o.g., we assume that nr+1 divides n; otherwise, one of the superbins is made at most factor 2 larger, which
does not affect the asymptotic bounds.

15

Claim 10. When the algorithm terminates, all balls are allocated w.h.p. The maximum bin load is m/n +
O(1) w.h.p.

Proof. Consider a round r in which the algorithm does not terminate. By Claim 7, superbin
leaders receive at least Lr = ⌈mr/n − δ⌉ messages w.h.p., implying that nrLr balls are allocated
in round r. By Claim 9, the algorithm terminates within 3 rounds. As mr+1 = mr − Lrnr and
m1 = m, a union bound thus shows that at the beginning of the final round r ≤ 3, exactly mr

unallocated balls remain w.h.p. Applying Claim 7 to the final round, w.h.p. no bin receives more
than mr/nr + δ messages. By Claim 8, we have that mr/nr ≤ 2c2 log n and thus mr/nr + δ ≤
4c2 log n = Lr. Hence, all balls are allocated w.h.p.

Concerning the bin load, observe that with the exception of the final round, loads cannot
deviate by more than 1 per round w.h.p., as each superbin receives exactly Lr balls per round.
However, in the final round we have that Lr = 4c2 log n. As nr ≤ mr/ log n, each superbin consists
of at least log n bins, so no bin receives more than 4c2 ∈ O(1) additional balls in this round.

Corollary 2. If m ≤ n log n, w.h.p. no bin receives more than O(log n) messsages. If m > n log n, no
bin receives more than O(m/n) messages w.h.p.

Proof. By choice of nr, we have that mr/nr ≤ max{m/n, log n} for each r. The corollary thus
follows from Claim 7 if m ≤ n log n. If m > n log n, we apply Claim 7 together with Claim 9 and
a union bound.

Proof of theorem 3. Claim 9, Claim 10, and Corollary 2 establish all the required claims except that
bins receive O(m/n + log n) messages w.h.p. instead of (1 + o(1))m/n + O(log n) w.h.p. in case
m > n log n. This is resolved by first executing a single round of the symmetric algorithm from
section 3. The analysis shows that this allocates all but o(m) balls such that most bin loads are the
same; only o(n) balls may be “missing” for a balanced allocation. Thus, using the asymmetric
algorithm from this section to place the remaining o(m) balls still guarantees a load of m/n +
O(1) w.h.p. and reduces the number of messages received by bins to (1 + o(1))m/n + O(log n)
w.h.p.

6 Conclusion

In this paper, we consider the somewhat neglected regime of m ≫ n in the setting of parallel balls
into bins. We present a very simple algorithm that achieves the almost perfect load of m/n+O(1)
within O(log log(m/n) + log∗ n) rounds with high probability. Our lower bound implies that the
running time analysis of our algorithm is tight. This lower bound also generalizes to a broader
class of threshold algorithms and implies for instance that allowing different threshold values
does not increase the power of the algorithm.

There are two intriguing open problems that we leave open. The first question concerns the
upper bound: can we provide a faster symmetric algorithm for the problem? The second question
concerns generalizing our lower bound argument to the entire class of threshold algorithms, i.e.,
removing the restriction that balls contact uniformly random bins. We conjecture that this is true
whenever n ≫ log log(m/n), as then balls can glean little information out of having contacted
o(n) bins throughout the course of the algorithm; this would match the fact that, trivially, n
rounds are deterministically guaranteed by balls never contacting the same bin twice.

16

References

[ABKU99] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
SIAM J. Comput., 29(1):180–200, 1999.

[ACMR98] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Eilstrup Ras-
mussen. Parallel randomized load balancing. Random Struct. Algorithms, 13(2):159–
188, 1998.

[ADRS14] Dan Alistarh, Oksana Denysyuk, Luı́s E. T. Rodrigues, and Nir Shavit. Balls-into-
leaves: sub-logarithmic renaming in synchronous message-passing systems. In ACM
Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 232–241, 2014.

[BCE+12] Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel.
Multiple-choice balanced allocation in (almost) parallel. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, pages 411–422.
Springer, 2012.

[BCSV06] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced
allocations: The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.

[Ber41] Andrew C Berry. The accuracy of the Gaussian approximation to the sum of inde-
pendent variates. Transactions of the american mathematical society, 49(1):122–136, 1941.

[BL14] Pierre Bertrand and Christoph Lenzen. The 1-2-3-toolkit for building your own balls-
into-bins algorithm. In 2015 Proceedings of the Seventeenth Workshop on Algorithm En-
gineering and Experiments (ALENEX), pages 44–54. SIAM, 2014.

[DR98] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative depen-
dence. Random Struct. Algorithms, 13(2):99–124, 1998.

[Ess42] C.G. Esseen. On the Liapunoff limit of error in the theory of probability. Ark. Mat.
Astron. Fys., A28(9):1–19, 1942.

[LW16] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load
balancing. Distributed Computing, 29(2):127–142, 2016.

[MPS02] Michael Mitzenmacher, Balaji Prabhakar, and Devavrat Shah. Load balancing with
memory. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages 799–808, 2002.

[SP02] Devavrat Shah and Balaji Prabhakar. The use of memory in randomized load bal-
ancing. In IEEE International Symposium on Information Theory, 2002., page 125. IEEE,
2002.

[SS12] Thomas Sauerwald and He Sun. Tight bounds for randomized load balancing on
arbitrary network topologies. In Foundations of Computer Science (FOCS), 2012 IEEE
53rd Annual Symposium on, pages 341–350. IEEE, 2012.

17

[Ste96] Volker Stemann. Parallel Balanced Allocations. In Proceedings of the Eighth Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’96, pages 261–269,
1996.

[TW14] Kunal Talwar and Udi Wieder. Balanced allocations: A simple proof for the heavily
loaded case. In Automata, Languages, and Programming - 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 979–990,
2014.

[Vöc03] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589,
2003.

[Wie17] Udi Wieder. Hashing, load balancing and multiple choice. Foundations and Trends in
Theoretical Computer Science, 12(3-4):275–379, 2017.

18

	1 Introduction
	1.1 Our Approach in a Nutshell.

	2 Preliminaries
	3 The Parallel Symmetric Algorithm
	4 Lower Bound for Threshold Algorithms
	4.1 Lower Bound for Degree 1 Algorithms
	4.2 Simulation for Higher Degree

	5 An Asymmetric Algorithm
	6 Conclusion

