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We determine the modular Hamiltonian of chiral fermions on the torus, for an arbitrary set of disjoint
intervals at generic temperature. We find that, in addition to a local Unruh-like term, each point is
nonlocally coupled to an infinite but discrete set of other points, even for a single interval. These
accumulate near the boundaries of the intervals, where the coupling becomes increasingly redshifted.
Remarkably, in the presence of a zero mode, this set of points “condenses” within the interval at low
temperatures, yielding continuous nonlocality.
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Introduction.—Amongst the predictions stemming from
the interplay between quantum field theory (QFT) and the
causal structure of spacetime, one of the most robust is
the celebrated Unruh effect: An accelerated observer in
the vacuum measures a thermal bath, with a temperature
proportional to its proper acceleration [1–3]. Intimately
connected with the thermodynamics of black holes via
Hawking radiation, this lies at the heart of our current
understanding of the quantum nature of gravity [4].
Therefore, it is natural to explore its generalizations and
investigate it further.
In recent years, these phenomena have been extended into

the framework of quantum information theory. There, this
temperature is understood as arising from the entanglement
structure of the vacuum. Starting from a state ρ and some
entangling subregion V, one defines the reduced density
matrix ρV by tracing out the complement of V. Then, just as
the entanglement entropy SV ¼ −Tr½ρV log ρV � generalizes
the thermal entropy, the usual Hamiltonian is an instance of
the more general concept of a modular (or entanglement)
Hamiltonian KV defined via

ρV ≔
e−KV

tre−KV
: ð1Þ

Originally introduced within algebraic QFT [5], the
modular Hamiltonian has aroused much interest across a
wide community due its close connection to quantum
information measures. In the context of many body
quantum systems, the spectrum of this operator is known

as the “entanglement spectrum” and has been proposed as a
fingerprint of topological order [6–8] and investigated in
lattice models [9–13], as well as tensor networks [14–16].
In QFT, it is fundamental for the study of relative entropy
[17,18] and its many applications to energy and informa-
tion inequalities [19–21]. In the context of the AdS=CFT
correspondence, it is instrumental in the program of
reconstructing a gravitational bulk from the holographic
data [22–31].
However, the modular Hamiltonian is known in only a

handful of cases. The result is universal and local for the
vacuum of any QFT reduced to Rindler space [3,32] and
hence any CFT vacuum on the plane reduced to a ball [22].
For any CFT2, the same applies for a single interval, for the
vacuum on the cylinder or a thermal state on the real line
[33,34]. More generically, modular flows can be nonlocal,
as is the case for multiple intervals in the vacuum of chiral
fermions on the plane or the cylinder [35,36] and scalars on
the plane [37]. The exact nature of the transit from locality
to nonlocality, however, is not fully understood, and
remains an active topic of research.
In this Letter we report progress regarding this problem,

by providing a new entry to this list. We show that the chiral
fermion on the torus (finite temperature on the circle) is a
solvable model that undergoes such a transition between
locality and nonlocality. We compute the modular
Hamiltonian by restating the problem as a singular integral
equation, which in turn we solve via residue analysis.
Let us quickly quote our main result. For generic

temperature, the modular Hamiltonian takes the form

Kloc þKbiloc:

The local flow is of the standard Rindler form (7), with
entanglement temperature given in (19). The novel result is
the second term, given in (23) and depicted in Fig. 2,
involving bilocal couplings between a discrete but infinite
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set of other points within the subregion. In the low
temperature limit, the sector with a zero mode experiences
a “condensation” of these points, resulting in a completely
nonlocal flow.
The resolvent.—We start by introducing the resolvent

method, following [35,37,38]. For any spatial region V, the
reduced density matrix ρV is defined as to reproduce
expectation values of local observables supported on V.
Now, for free fermions, Wick’s theorem implies that it is
sufficient that ρV reproduces the equal-time Green’s function

Tr½ρVψðxÞψ†ðyÞ� ¼ hψðxÞψ†ðyÞi≕Gðx; yÞ

for x; y ∈ V. This requirement fixes the modular
Hamiltonian to be a quadratic operator given by [39]

KV ¼
Z
V
dx

Z
V
dyKVðx; yÞψ†ðxÞψðyÞ ð2Þ

with kernel KV ¼ − log½Gj−1V − 1�. This is specific for the
free fermion. GV refers to the propagator as the kernel of an
operator acting on functions with support on V.
As shown in [35] the modular Hamiltonian can be

rewritten as

KV ¼ −
Z

∞

1=2
dξ½RVðξÞ þ RVð−ξÞ� ð3Þ

in terms of the resolvent of the propagator,

RVðξÞ ≔ ðGjV þ ξ − 1=2Þ−1: ð4Þ

A derivation of (3) is provided in the Supplemental
Material [40]. In essence, it is the operator version of

logX ¼ 1

2πi

I
γ
dz

log z
z − X

for a suitable choice of contour γ.
In (4), the inverse of an operator is understood in the

sense of a kernel,

Z
V
dzRVðξ; x; zÞ½Gðz; yÞ þ ðξ − 1=2Þδðz; yÞ� ¼ δðx − yÞ:

Thus, provided G of the global state and the entangling
region V, this equation completely determines the resolvent
RV and hence the modular Hamiltonian via (3).
To obtain the resolvent, let us first do the redefinition

RVðξ; x; yÞ ¼
δðx − yÞ
ξ − 1=2

−
FVðξ; x; yÞ
ðξ − 1=2Þ2 : ð5Þ

The convenience of this is that the first term of (5) will
cancel the right-hand side of the previous equation, trans-
lating (4) into a singular integral equation

0 ¼ Gðx; yÞ − FVðξ; x; yÞ

−
1

ξ − 1=2

Z
V
dzGðx; zÞFVðξ; z; yÞ: ð6Þ

All previous considerations hold for free fermions on a
generic Riemann surface. The simplest case is the plane
where the solution of (6) is a standard result [41], which
was used by [35] to derive the corresponding modular
Hamiltonian. They found that for multiple intervals, it
consists of a local and a bilocal term. The former can be
written as

K ¼
Z
V
dxβðxÞTðxÞ ð7Þ

in terms of the stress tensor T ¼ ði=2Þ½ψ†∂xψ − ψ∂xψ
†�,

where βðxÞ is known as the entanglement temperature. On
the other hand, the bilocal term couples the field between
different intervals.
Let us now proceed to the case of a chiral fermion on

the torus. As is customary, we take the periods to be 1; τ
with ℑðτÞ > 0, such that the nome q ≔ eiπτ is inside the
unit disk. We restrict our discussion to purely imaginary
modulus τ ¼ iβ, where β is the inverse temperature—the
general case can be recovered by analytic continuation. For
simplicity, we move to radial coordinates w ¼ eiπz.
Since we are dealing with fermions, the correlator

Gðu; vÞ with u ¼ eiπx and v ¼ eiπy is either periodic
(Ramond; R) or antiperiodic (Neveu-Schwarz; NS) with
respect to either of the two periods of the torus. We focus on
the “thermal” case, with NS periodicity with respect to τ.
Combining this with the requirement to reproduce the UV
correlator GUVðx; yÞ ¼ ½2πiðx − yÞ�−1 on small scales fully
determines the standard Green’s functions [42]

Gνðu; vÞ ¼ η3ðq2Þ
iϑ1ðuv−1eϵjqÞ

ϑνðuv−1jqÞ
ϑνð1jqÞ

; ð8Þ

where ηðqÞ and ϑνðzjqÞ are the Dedekind eta and Jacobi
theta functions (see Supplemental Material [40]).
Here, the superscript

ν ¼ 2; 3 ¼ ðR;NSÞ; ðNS;NSÞ

labels the different spin structures, and we introduced a
regulator ϵ in order to treat the distributionGν as a function.
The sign of ϵ depends on the chirality—without loss of
generality, we choose ϵ > 0.
With the notation settled, we now go back to the integral

equation (6). In radial coordinates, it reads

0 ¼ Gνðu; vÞ − Fν
Vðξ; u; vÞ

−
1

ξ − 1=2
1

iπ

Z
A

dw
w

Gνðu; wÞFν
Vðξ;w; vÞ ð9Þ
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with A ≔ eiπV being the entangling region. The key
observation of this Letter is that (9) resembles the result
of a contour integral, involving simple poles and branch
cuts. Thus the strategy to solving (9) is to recast it as a
contour integral.
To this end, we start by listing a set of sufficient

properties that Fν
V must possess in order to solve this

equation:
(A) Periodicities. First, it must have the same periodic-

ities in the w argument as Gν, such that GνFν
V is well

defined on the torus. The reason is that doubly periodic
functions have vanishing residue along the boundary γ of
any fundamental region (see Fig. 1):

0 ¼ 1

iπ

I
γ

dw
w

Gνðu; wÞFν
Vðξ;w; vÞ: ð10Þ

Our aim is now to rewrite this in the form of (9).
(B) Location of poles and branch cuts. The next property

we demand is that Fν
V have a simple pole Fν

Vðu; vÞ ∼
1=2ðuv−1 − 1Þ at u → v, together with a branch cut along
the entangling region A, which we specify below.
Everywhere else it must be analytic. Note that, similarly
to Gν, we need to introduce a regulator ϵ0 > 0 for the pole
of Fν

V .
If these conditions are met, a simple residue analysis

shows that (10) reduces to

0 ¼ Gνðu; ve−ϵ0 Þ − Fν
Vðξ; ueϵ; ve−ϵ0 Þ

−
1

ξ − 1=2
1

iπ

Z
A↺

dw
w

Gνðueϵ; wÞFν
Vðξ;w; ve−ϵ0 Þ; ð11Þ

where we made the regulators explicit and A↺ denotes a
snug path around the cut on A as depicted in Fig. 1.
(C) Residues. This last integral decomposes into three

contributions: one along A just inside the unit circle, one
along A just outside the unit circle, and contributions from

the boundary points αn ¼ eiπan ; βn ¼ eiπbn of A as can be
seen from Fig. 1. Our final requirements on Fν

V are that the
residues at ∂#1A vanish, while Fν

V has to have a multipli-
cative branch cut along A: at every point, the ratio of the
function just above and below the cut is a fixed number

Fν
Vðue−ϵ00 ; vÞ

Fν
Vðueþϵ00 ; vÞ ¼

ξþ 1=2
ξ − 1=2

≕ e2πh: ð12Þ

The solution to (12) in the plane is familiar: FðzÞ ¼ zm

withm ∉ Z possesses such a cut. Below we find the analog
of this on the torus.
If properties (A), (B), (C) are satisfied, it is easy to show

that such an FV indeed solves the problem: our contour
equation (11) becomes exactly the original singular integral
equation (9). The requirement that the residues on ∂A
vanish is equivalent to demanding that the modular flow
behaves like Rindler space in the vicinity of ∂A. This is
analogous to the derivation of the black hole temperature by
the smoothness condition at the horizon.
In the Supplemental Material [40], we explicitly derive

Fν
V satisfying all of the above assumptions. The general

procedure is as follows: (1) Start with the standard solution
for the requirement of a multiplicative branch cut (12) on
the cylinder [36]. (2)Average over all fundamental domains
in the direction of τ. This yields a quasiperiodic function.
(3) Multiply with a slightly modified form of the Green’s
function (8) to turn the quasiperiodicity into a periodicity
and introduce the correct pole.
We are now in position to state one of the main results of

this Letter: the resolvent for a finite union of disjoint
intervals on the torus, V ¼∪N

n¼1 ðan; bnÞ. The exact expres-
sion lives in the complex plane, but is vastly simplified
along A. Introducing the shorthand notation

λ ≔
�YN

n¼1

αn
βn

�
ih
¼ eπhL; ð13Þ

where L is the total length of V, our result is

Fν
Vðξ; u; vÞ ¼

η3ðq2Þ
iϑ1ðuv−1eϵ0 jqÞ

ϑνðλuv−1jqÞ
ϑνðλjqÞ

× e−2πh
�
ΩVðuÞ
ΩVðvÞ

�
ih

ð14Þ

with h defined in (12), and

ΩVðwÞ ≔ −
YN
n¼1

ϑ1ðwα−1n jqÞ
ϑ1ðwβ−1n jqÞ : ð15Þ

Some comments are in order. The term in the second
line of (14) is the complex power of a quotient, which
introduces the required branch cut along A. This function is

FIG. 1. The complex plane analysis in the argument. The black
solid line is the entangling region—here for simplicity two
intervals. The blue line represents the contour of integration γ
in (10), which leads to the residues evaluated along the green
dotted curves.
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quasiperiodic, acquiring a factor of λ2 when translated into
the next fundamental domain. The first factor resembles the
propagator (8) and introduces the desired pole, as described
above. Additionally, the extra factor of λ in the argument of
ϑν is there to precisely cancel the quasiperiodicity of the
second term. This allows the product GνFν

V to be exactly
doubly periodic, as required.
Modular Hamiltonian.—Finally, now that we have found

the resolvent Rν
V , we can go back to (3) to obtain the

modular Hamiltonian Kν
V . First, note that the leading

divergence of Fν
Vðu; vÞ ∼ 1=2ðuv−1eϵ0 − 1Þ at u → v can

be rewritten as a Cauchy principle value

1

2

1

uv−1eϵ
0 − 1

¼ δðx − yÞ
2

þ P
1

2

1

uv−1 − 1
: ð16Þ

For the sake of readability, we shall keep P implicit for
the rest of this Letter. Equation (16) implies that the δ terms
from (5) drop out in (3), yielding

Kν
V ¼

Z
∞

1=2

dξ
ðξ − 1=2Þ2 ½F

ν
VðξÞ þ Fν

Vð−ξÞ�: ð17Þ

The main characteristic of (17) is that the integrand is
highly oscillatory and divergent around ξ ¼ 1=2. Indeed,
notice that when ξ → 1=2 the prefactor in (17) diverges
quadratically while FðξÞ vanishes linearly but oscillates
wildly due to the last factor in (14). However, this behavior
is well understood in the theory of distributions, and in this
sense the expression (17) is well defined and closely related
to the Dirac delta.
In the Supplemental Material [40], we evaluate (17)

analytically. Here we will simply quote the result, but the
main steps in the derivation are the following: (1) Change
variables to isolates all the infinite poles along the negative
axis, which then lie in successive fundamental domains.
(2) Regularize (17) by placing a contour that includes
increasingly many poles, and express it by residues. (3) Use
the quasiperiodicites of ϑν to bring every pole to the
fundamental region, expressing (17) as a highly oscillatory
function with a divergent prefactor. (4) Remove the
regulator, leading to standard Dirichlet kernel representa-
tions of the periodic or antiperiodic Dirac delta.
The final expression for the modular Hamiltonian

depends on the spin sector. Let us focus on the results
for a single interval. Both sectors ν ¼ 2, 3 have a local and
a bilocal term. The local term is identical in both cases and
takes the form

Klocðx; yÞ ¼ βðxÞ½i∂x þ fðxÞ�δðx − yÞ; ð18Þ

with the entanglement temperature

βðxÞ ¼ 2πβ

2π þ β∂x logΩVðeiπxÞ
; ð19Þ

whereΩV is as defined in (15) and the function fðxÞ is fixed
by requiring thatKloc is Hermitian. Note that the expression
(18) is equivalent to the more familiar Rindler-like repre-
sentation (7).
The bilocal term represents the central result of this

Letter and shows a novel feature: In both sectors, it involves
a coupling between an infinite but discrete set of points, and
is given by

K�
bilocðx; yÞ ¼

iπ
L sinh πμðx; yÞ
×

X
k∈Znf0g

ð�1Þkδðx − yþ βμðx; yÞ − kÞ;

ð20Þ

where the sign � corresponds to ν ¼ 2
3
. Here, we used the

function

μðx; yÞ ¼ 1

2πL
log

ΩVðeiπxÞ
ΩVðeiπyÞ

; ð21Þ

which will play an important role in the analysis below.
Note thatK�

biloc couples pairs ðx; yÞwhich are solutions of

x − yþ βμðx; yÞ − k ¼ 0; k ∈ Znf0g: ð22Þ

Because μðx; yÞ is monotonic in y and diverges at the end
points, Eq. (22) possesses a unique solution for every k,
as shown in Fig. 2. Solutions accumulate near the end points.
In the next section, we analyze the above expressions and
discuss their physical meaning. A summary of the results is
presented in Table I.
Discussion.—In this Letter we computed the modular

Hamiltonian of chiral fermions in a thermal state on the
circle, reduced to an arbitrary set of disjoint intervals.
Our main result is that for arbitrary temperature, the

modular Hamiltonian contains a local term, as well as an
infinite number of bilocal contributions, even for a single
interval. Let us now analyze the bilocal terms in more
detail. Inserting the kernel (20) back into (2), the bilocal
modular Hamiltonian reads

K�
biloc ¼

X
k≠0

ð�1Þk
Z
V
dxαðx; xkÞψ†ðxÞψ ½xkðxÞ�: ð23Þ

As depicted in Fig. 2, the xkðxÞ are an infinite set of points
within the interval, solutions to Eq. (22). The bilocal
coupling αðx; xkÞ has dimensions of energy and is given by

αðx; yÞ ¼ iπ
L sinh πμðx; yÞ

1

j1 − β∂yμðx; yÞj
:

Although determining the exact location of the xk is
difficult, two properties are simple to extract:
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First, the infinite set of xk accumulate near the end points
of the interval. Indeed, because μ diverges there, there is an
infinite number of solutions near the boundaries, located at

xk ¼ aþ e−2πLk=β; as k → ∞ ð24Þ

and similarly near b.
Second, their contributions vanish as they approach the

end points. Using (20), the coupling in (23) goes as

jαðx; xkÞj !k→∞ 4π2

β
ðxk − aÞ1þ1=2L: ð25Þ

The energy scale of αðx; xkÞ is set by the temperature
β−1, whereas the falloff is determined by the length of the
interval L. Interestingly, the strength of the nonlocal
couplings appears to be “redshifted” due to their proximity
to the local Rindler horizons located at the end points.
As a next step, let us see how to recover the known

results at very high [34] and low [36] temperatures. We start
with the high temperature limit β → 0. One easily sees from
(19) that the local term goes as the inverse temperature,
βðxÞ ∼ β, as expected. On the other hand, as depicted in
Fig. 2, the bilocal contributions (20) all approach the end
points, where they vanish exponentially.
Moving now to the low temperature limit β → ∞, the

entanglement temperature (19) approaches the well-known
result for the cylinder [36]

lim
β→∞

βðxÞ ¼ 2π

∂x log
sinðx−aÞ
sinðb−xÞ

: ð26Þ

The bilocal contributions, however, behave remarkably.
As can be understood from Fig. 2, as we lower the
temperature, the curve gets increasingly steep. Thus, the

solutions to (22) form a partition of the interval which
becomes denser and denser in the limit β → ∞. Now, recall
that the modular Hamiltonian must always be thought of as
a distribution, i.e., as integrated against regular test func-
tions. In this limiting procedure, the solutions to (22)
“condense” in the interval, and it can be shown that the
sequence of Dirac deltas in (20) reproduce precisely the
definition of a Riemann integral. Indeed, one can show that
in this sense (20) becomes completely nonlocal

lim
β→∞

Kþ
bilocðx; yÞ ¼

iπ
L sinh πμðx; yÞ ; ð27Þ

in agreement with [36], whereas limβ→∞K−
biloc ¼ 0 due to

the oscillating ð−1Þk.
The previous analysis provides a new insight into the

structure of fermionic entanglement: At any finite temper-
ature, nonlocality couples a given point only to an infinite
but discrete set of other points. The characteristic scale
needed to resolve this discreteness goes as 1=β. Hence,
continuous nonlocality emerges strictly in the limit of zero
temperature. We summarize the structure of the modular
Hamiltonian in Table I.
For multiple intervals, the only difference is that (22)

now possesses one solution per interval for a given k,
including the nontrivial (x ≠ y) solutions for k ¼ 0. In the
low temperature limit, these extra terms yield precisely the
bilocal terms of [35,36].
During the final stage of this project, related results were

independently reported in [43,44]. Equations (145) and
(146) of [43] give the modular flow of the correlator. The
generator of this flow corresponds to the expectation
value of our result for the modular Hamiltonian. Finally,
the versatility of the resolvent method has allowed us to
compute the associated entanglement entropy [45], and can
also be used to study other quantities related to the
entanglement spectrum.
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FIG. 2. For finite β (black solid line) the point at the center is
bilocally coupled to an infinite set xkðxÞ (black dots), solutions to
(22) for a single interval. For large β (blue dashed line), the
solutions distribute densely, whereas for β → 0 (green dotted
line) they all localize at the end points. The strength αðx; xkÞ of
the coupling (red, dot-dashed line) decays towards the end points.

TABLE I. Summary of our results for the modular Hamiltonian
in different spin sectors. The definitions for Kloc and K�

biloc are in
(18)–(20). The local and nonlocal terms at low temperature
(β → ∞) are given in (26) and (27).

ν β → ∞ β finite β → 0

2 Local þ continuous nonlocal Kloc þ Kþ
biloc βi∂xδðx − yÞ

3 Local Kloc þ K−
biloc βi∂xδðx − yÞ
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