
ComPat Framework for Multiscale Simulations Applied to Fusion Plasmas

O. O. Luk,1 O. Hoenen,1 A. Bottino,1 B. D. Scott,1 and D. P. Coster1, a)

Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748, Garching,

Germany

Abstract:

Understanding the dependency between plasma turbulence and overall transport is

essential in predicting the performance of fusion devices. This dependency is not fully

understood because of the highly disparate spatio-temporal scales involved, which

prohibits a fully-resolved turbulence simulation at transport scales. The Computer

Patterns for High Performance Multiscale Computing (ComPat) project takes the

component based approach for multiscale simulations to connect existing single-scale

models into a workflow. In this paper, we present the ComPat’s approach in building

a multiscale fusion application: it brings equilibrium, transport and turbulence mod-

els together, where the turbulence is described by a 3D gyrofluid code. Initial results

and challenges encountered with such approach are also presented and discussed. One

of the challenges is to ensure numerical stability, for which adaptive time step size

and the search for quasi-steady state are implemented as possible solutions. Another

challenge is to improve the overall performance of multiscale simulation, and that is

addressed by increasing the level of parallelism to the workflow.

a)Email: {onnie.luk, olivier.hoenen, bottino, bds, david.coster}@ipp.mpg.de

1

I. INTRODUCTION

The dynamics of a thermonuclear fusion plasma is very complex. Such complexity arises

from the instabilities driven by plasma turbulence, which in turn can destroy plasma con-

finement. Fully simulating the impact of turbulence on the performance of a fusion device

such as ITER1 is challenging, and doing so solely with a turbulence code is projected to

exceed even the next generation of exascale computers. Therefore, a multiscale approach

will become necessary, for fusion plasmas exhibit highly disparate spatio-temporal scales.

For example, in the continuity equation:

∂

∂t
nα +∇ · Γα = S,

the particle density of species α (nα), can be obtained from a plasma transport code; the

particle flux of species α (Γα), is obtained from turbulence calculations. All quantities rely

on the equilibrium state, including the prescribed particle source (S). This is a multiscale

problem, for turbulence spans roughly microseconds in time and millimeters in space, while

transport describing energy confinement spans in the order of few seconds in time and a few

meters in space.

While there exist single-scale models to study turbulence (e.g. gyrokinetic models) and

transport (large-scale simplified models) separately, efforts are made in building multiscale

models to study fusion plasmas in the past.2–5 Some of the more recent efforts6,7 include in-

tegrated modeling framework that takes users’ feedback and inputs to improve and broaden

the multiscale physics model8; transport solver that takes steady state turbulent fluxes from

a turbulence code9; and, transport manager that runs turbulent transport and neoclassical

codes in parallel10. In particular, the European Integrated Tokamak11 Modelling Task Force

(EFDA ITM-TF) constructed a generic platform for both tokamak modeling and framework

to build complex workflows12. These workflows use the component based approach and are

established on a standardized interface. A significant advantage to this approach is that

it allows simple replacement of any individual component with another that has the same

interface, therefore increases extensibility and eases the benchmarks and verification efforts.

Currently, this platform is sustained through the EUROfusion consortium13 and contributes

extensively to the Integrated Modelling and Analysis Suite14, which is developed specifi-

2

cally for ITER. In the MAPPER project15, the same standardized interface were used with

different framework (Multiscale Modelling and Simulation Framework, or MMSF) and tech-

nologies (Multiscale Coupling Library and Environment, or MUSCLE216) for applications

that require distributed or high-performance computing (HPC) resources17,18. This paral-

lel effort is continued within the ComPat project19, in which the MMSF is extended with

the concept of Multiscale Computing Patterns20, or MCP. The project aims to run appli-

cations more efficiently, especially when one or several single-scale models require petascale

computing resources.

The developed MMSF and the available technologies within the ComPat project can

be extended to build a multiscale workflow for the fusion application. In this paper, we

apply such workflow to study multiscale fusion plasmas in a tokamak scenario. We also

introduce and implement methods that improve numerical stability and increase overall

runtime performance to the workflow. The layout of the paper is as follows: specifics on

the ComPat project and the implementation of the fusion application using such framework

are discussed in Section II and III, respectively. Challenges encountered in this simulation

framework and solutions we enact, including alleviate time-scale mismatch between small-

scale turbulence and large-scale plasma transport, terminate simulation at appropriate time

(e.g. quasi-steady state), and increase level of parallelism to the workflow, are detailed in

Section IV. Finally, we conclude with summary and future plans in Section V.

II. COMPAT PROJECT

Nowadays there is a growing demand for heavy HPC resources in multiscale applications.

Traditionally, the monolithic approach is taken to construct a multiscale application, in

which all scales of interests are included within one single code (Fig. 1, left). However, the

MMSF takes the component based approach, in which a group of single-scale models (or

submodels, with each simulating a shorter range of scales) are coupled together to form a

multiscale simulation (Fig. 1, right). In such scale separation process, the submodels can

have either partial or complete overlap in time, space or both. It is an interesting approach

from the software engineering point of view, for it leads to a simpler algorithm and code base

for each submodel. In return, this allows for faster and better-optimized implementations

that are easy to debug and maintain. However, despite the benefits that appear at the

3

FIG. 1. Comparison between the range of space and time covered by the traditional, monolithic

multiscale model (left) and the component based, multiscale model (right).

submodel level, this approach implies added complexity in binding all submodels within a

coupled multiscale application. This in turn can generate runtime overheads. To alleviate the

efforts required from the application developers, many generic and domain specific projects

are developing coupling libraries, frameworks and execution platforms. An overview is given

by Groen et. al.21

The ComPat project represents one such effort: its purpose is to develop domain-agnostic

solutions for multiscale simulations. Its first major objective is to provide a collection of

methods and software that can ease the development of component based, multiscale sim-

ulations. The other major objective is to create generic transformation and optimization

methods (e.g smart scheduling and load-balancing of the components) that can improve

the simulations’ performance on a targeted set of execution platforms, despite the coupling

overheads. A simulation’s performance can be measured by metric such as runtime, time

to completion, efficiency, and energy consumption. The underlying idea is to first estimate

the computing requirement for each submodel, and then to understand how and when the

submodels interact with each other. With these information, the multiscale application can

be categorized in terms of one of the three MCPs shown in Fig. 2, for each pattern has its

own transformations and optimization techniques. In ComPat, multiscale applications from

several domains (e.g. thermonuclear fusion, astrophysics, material science, biomedicine, and

social science) are mapped to the most suitable patterns to demonstrate how generic these

MCPs are. In this paper, the fusion application we constructed (Section III) falls into the

Extreme Scaling MCP, in which a primary submodel (computationally intensive) is coupled

4

FIG. 2. Graphic illustrations of the three Multiscale Computing Patterns: Extreme Scaling (left),

Heterogeneous Multiscale Computing (center), and Replica Computing (right) patterns.

to several auxiliary submodels (computationally inexpensive).

III. IMPLEMENTATION OF THE COUPLED MULTISCALE

APPLICATION

A. A generic and non-intrusive implementation

In order to minimize the intrusiveness of this approach to the existing single scale models,

each one of these models has to go through several layers of transformations (called wrap-

pers) to become a component of the multiscale application, as illustrated in Fig. 3. First,

a data wrapper is implemented around a physics routine (can be a legacy code) to ensure

both inputs and outputs are using a common interface (called consistent physical objects

CPOs). This layer is independent to the component-coupling and execution environment,

therefore the data wrappers can be reused in different applications using different technolo-

gies. Around this data wrapper, a component layer is implemented for a given coupling

environment. In our present fusion application, we use MUSCLE2 as the coupling environ-

ment. The instantiation of a component (or kernel in MUSCLE2 terminology) requires the

calling of MUSCLE2 API to perform different generic steps. These steps include initializing

kernel execution, getting parameters’ values, implementing the parameterized time loop (in-

ternal to each kernel), receiving and sending data, and finalizing the execution of the kernel.

The MUSCLE2 is available for C++/Fortran/Java/Python/Matlab codes and its API is

very similar to MPI’s, so the learning curve is not very steep for HPC-experienced develop-

ers. Each kernel is compiled into a single executable, and it runs through the MUSCLE2

5

FIG. 3. The layers of wrappers apply around the native code to create a non-intrusive, component

based approach.

execution environment. The MUSCLE2 requires an input configuration file that describes

the coupled simulation. This file is written in the Ruby programming language, and con-

tains the list, types and path to executable of all kernels present in this application, some

of kernels’ parameters (global or local), and the coupling topology (i.e. how kernels are

linked through their respective inputs/outputs). Such description is easy to extend, modify,

and parameterized. For example, kernels with the same interface can be interchanged by

updating a single line of file. This makes the implementation of toy submodels and the

benchmarking process (with different implementations) during the application development

phase very easy and straightforward. In our current application, which is described in detail

in Section III B, the components are tightly-coupled due to frequent data exchange and feed-

back loops. The tightly-coupled simulation requires memory-based or network-based data

exchange, and MUSCLE2 handles such exchange over TCP/IP. However, data exchange

using MPI-like communications is also possible.

B. Details of the fusion application

The multiscale application we propose in this work is composed of four major submodels:

• TRA: a 1D transport model that evolves temperature and other profiles in time

• EQU: a 2D fixed boundary equilibrium model that updates geometrical information

• TUR: a 3D gyrofluid turbulence model that computes heat and particle fluxes

• FDV: a module that converts fluxes coming from turbulence submodel into transport

coefficients compatible with transport submodels

6

Native codes for the targeted submodels have been developed independently; their respec-

tive data wrappers are available through the ITM community in Europe, and the common

data structures are defined by Imbeaux et. al.22. In the current implementation, the TRA

submodel is described by the ETS module,23 which solves for equation describing poloidal

flux, density equation for every ion species, temperature equations for both ions and elec-

trons, and the toroidal rotation equation for ions. It has temperature fixed at the boundary.

The EQU is described by CHEASE24, which is a high-resolution, fixed-boundary Grad-

Shafranov solver. The TUR is described by GEM25, which is a gyrofluid electromagnetic

flux-tube model that determines heat and particle fluxes at each flux-tube in a field-aligned

shifted-metric coordinate system. It takes straight fieldline coordinate metric and builds a

field-aligned shifted-metric coordinate system. The numerical grids are based on field-aligned

coordinate system (x,y,s): one axis (s) runs in parallel to the magnetic field, one (x) points

radially across toroidal flux surfaces, and one (y) has vanishing projections to both equi-

librium magnetic field and background gradient. We use fixed number of grids throughout

the entire simulation, with 128 x 128 x 32 grids in x - ,y-, s-direction, respectively. Dirichlet

boundary conditions are applied to the x -direction.26 Initial fluctuations are launched as

single Maxwellian density structure localized at nonlinear amplitude with Gaussian profiles

in drift plane and along field lines. Finite electron pressure launches shear-Alfvén waves and

then drift wave field at nonlinear amplitude. The system proceeds to full-turbulence unless

nonlinearly stable. The calculations at each flux-tube are done concurrently. The FDV is

described by a module based on dynamical alignment26. As mentioned in Section III A,

a data wrapper surrounds the submodels and a MUSCLE2 kernel is implemented around

each of these data wrappers to form components in the coupled multiscale application. A

few additional components are required and are depicted in the coupling topology presented

in Fig. 4: the INI component imports initial data into the system from various sources

(files, databases, etc.) and generic duplication data mappers dup (a part of the MUSCLE2

standard library) scatter data to several destinations.

Fig. 4 also shows the communication flow of CPOs among the components. The arrows

in blue show the flow of equilibrium CPOs: the EQU outputs the updated geometrical in-

formation (in the form of CPOs), then MUSCLE2 duplicates and distributes the CPOs to

TUR, FDV, and TRA as inputs. The arrows in red show the flow of core plasma profiles

CPOs: the TRA outputs the updated profiles such as electron temperature Te, then MUS-

7

FIG. 4. Topology of the fusion application. Each box represents a component of the application,

and colored arrows represent the data flow within the application.

CLE2 duplicates and distributes the CPOs to EQU, TUR, and FDV as inputs. The arrows

in green show the flow of core plasma transport coefficients as CPOs: the TUR outputs

updated transport coefficients such as electron heat flux qe, then MUSCLE2 duplicates and

distributes the CPOs to FDV as inputs. The FDV then converts fluxes from TUR to coef-

ficients that are required by the transport model, and passes these coefficients to TRA as

inputs.

There are computing challenges arising from this workflow that need to be addressed.

One issue is that only the TUR submodel is described by a parallel code, and it needs

more computing resources than those required by other submodels. Hence, the application

fits into the Extreme Scaling MCP. Another issue with our workflow topology is that the

data dependencies exhibited in this application prevent concurrent execution of submodels:

the TUR submodel needs to wait for updated data from other serial submodels, which

decreases the overall parallel efficiency to the application. In the next section, we discuss

the challenges arising from the workflow topology and the methods we use in attempt to

resolve these challenges.

IV. CHALLENGES IN MULTISCALE, COMPONENT BASED

APPROACH

There are two types of challenges in building a multiscale fusion simulation using the

component based approach: physics ones and computation ones. Some of these physics

challenges include conversion of fluxes into diffusivity and convection coefficients (D and v,

8

respectively). However, we will not elaborate the physics challenges any further. Instead,

we will focus on several computational challenges in this paper. This includes time bridging

between turbulence and transport models of disparate scales, finding quasi-steady state, and

optimizing the overall performance of the workflow.

A. Time Bridging Technique

Using the workflow we constructed (see Fig. 4) and initial parameters based on an ASDEX

Upgrade tokamak-like scenario, a simulation was performed using 1024 cores with 8 flux-

tubes in GEM, while particle density is fixed in time. The results are plotted in Fig. 5.

In this figure, Te, which is calculated by ETS, experiences large fluctuations in time. The

Te fluctuations do not allow for the plasma to converge to a steady state value. This is

especially apparent for flux-tubes closer to the core of the plasma. On the other hand, qe,

directly calculated by GEM, does not change much until Te drops significantly. Whenever

Te drops significantly, qe rises and drops in a short period of time, forming bursts on qe. The

time evolution of Te displayed in Fig. 5 is not physical, but instead, it is artificially produced

from the time-scale mismatch between turbulence and transport codes.

Every time we call GEM within the workflow, it runs 5000 internal time steps. Each one

of these steps is 0.002 L⊥/cs, in which L⊥ is the background profile length scale and cs is the

speed of sound. The vorticity scale is approximately cs/L⊥. Therefore, 5000 GEM internal

time steps equate to 10.0 L⊥/cs. A call to the ETS comes after GEM, and each ETS call

has time step size ∆t (a predefined parameter) fixed at 0.01 s. As a result, the qe cannot

correctly adapt to the Te profile, especially when the profile evolves too quickly within one

ETS time step.

We performed another simulation with ∆t set to 0.001 s, with the time evolution of qe

and Te shown in Fig. 6. The figure shows that, with the time step size lowered by a factor

of 10, the time-scale mismatch between turbulence and transport calculations diminishes.

Therefore, we need the transport code to evolve the profiles at a lower rate compared to the

turbulence code, such that the turbulence code can adapt to the changes from the profile.

To carry such idea further, a time-bridging technique is introduced to alleviate the time-

scale mismatch in the current workflow. Instead of having a fixed ∆t, it becomes adaptive

and dependent on two parameters: ∆Te,lim and ∆∂ρTe,lim. The ∆Te,lim is an upper limit to

9

FIG. 5. Time history of electron heat flux qe (top panel, in the unit of eVm−3s−1) and electron

temperature Te (bottom panel, in the unit of eV) at eight flux-tube locations. Colored traces

represent flux-tube locations in the normalized toroidal flux coordinate value ||ρtor||. The ETS

time step size ∆t is 0.01 s.

the change on Te at time t (∆Te(t)), which is expressed as

∆Te,lim > ∆Te(t) =

∣∣∣∣Te(t−∆t)− Te(t)
Te(t−∆t)

∣∣∣∣ . (1)

The other parameter, ∆∂ρTe,lim, is an upper limit to the change on radial gradient of Te at

time t (∆∂ρTe(t)), which is expressed as

∆∂ρTe,lim > ∆∂ρTe(t) =

∣∣∣∣∣ ∂ρTe(t−∆t)− ∂ρTe(t)
|∂ρTe(t−∆t)|+ Te(t−∆t)

a

∣∣∣∣∣ . (2)

Here, ∂ρTe is the derivative of Te with respect to the toroidal flux coordinate ρ and a is

the maximum toroidal flux coordinate value. The reason we set ∆t to be dependent on

∆Te(t) and ∆∂ρTe(t) is to make sure the temperature profile is evolving slowly enough, such

10

FIG. 6. Time history of electron heat flux qe (top panel, in the unit of eVm−3s−1) and electron

temperature Te (bottom panel, in the unit of eV) at eight flux-tube locations. Colored traces

represent flux-tube locations in the normalized toroidal flux coordinate value ||ρtor||. The ETS

time step size ∆t is 0.001 s.

that the turbulence code can adapt to the changes from the profile. If ∆t is too large and

therefore does not allow the deviations ∆Te(t) and ∆∂ρTe(t) to go below the limits set by the

user, then the algorithm would use a smaller ∆t and try again, until the deviations satisfy

the corresponding limits. However, if the limits are not satisfied after several iterations,

namely when ∆t has become smaller than the turbulence time scale, then the simulation

would terminate. This is a process implemented within the data wrapper around ETS to

ensure the temperature profiles calculated by the transport submodel evolve at a pace more

adaptable for the turbulence submodel.

A simulation using the described time bridging technique has been tested. The time

history of the qe and Te at various flux-tube locations, along with time history of time step

size is shown in Fig. 7, with a = 0.695m. The deviation limits are fixed at ∆Te,lim = 0.2

and ∆∂ρTe,lim = 0.1.

In comparison to Fig. 5, where ∆t is fixed at 0.01 s, Te does not have large-scale fluc-

11

FIG. 7. The time history of qe (top panel, in the unit of eVm−3s−1) and Te (bottom panel, in the

unit of eV) of each flux-tube, along with ∆t (middle panel, in the unit of s). Every ETS time step

ranges from 1e-8 to 1e-2 s (see middle panel).

tuations, even though qe continues to have bursts in time, especially with the inner most

flux-tubes. The time history of Te indicates that it is converging to a steady-state value.

B. Determine Quasi-Steady State

The turbulence code uses the majority of the computing resources allocated to the mul-

tiscale simulation, which makes it the most costly component to run in terms of both wall

clock time and number of cores, when compared to the equilibrium, transport, and the

FDV module calculations. For example, when we run one iteration of the workflow (Fig. 4)

with 1024 cores on the Marconi Tier 0 supercomputer from Cineca, with Intel Xeon 8160

(Skylake) processors, GEM takes all 1024 cores and runs for approximately 27.0 s, while

ETS and CHEASE take one core each and run for 0.8 and 1.9 s, respectively. If we were to

replace GEM with a more precise but even more costly gyrokinetic turbulence model, then

the computing resources consumed by a single iteration would increase and the timescale

covered by the model would decrease, so the workflow would require more iterations before

reaching saturation. Therefore, developing a method that can detect the appropriate time

to terminate the simulation is desirable in order to spare computing resources.

12

FIG. 8. The time history (time steps divided into groups) of averaged electron temperature < Te >.

Horizontal dotted lines mark the < Te > value of every flux-tube and vertical dotted line marks

the time at which quasi-steady state is reached. The colored dash lines represent the < Te > of

every flux-tube, with respect to time.

The Te for each flux-tube saturates over time as electrons reach quasi-steady state. Hence,

the following method is established. We place every N time steps of Te calculations into a

time group. First, we determine for every flux-tube the average of Te within the nth time

group < Te >n and its standard deviation σn. Then < Te >n and σn are compared to

< Te > of the previous G time groups, in other words, from < Te >n−G to < Te >n−1. If

those values fall within < Te >n ±σn for every flux-tube, then quasi-steady state is achieved.

The simulation mentioned in section IV A (see Fig. 5) is utilized for the quasi-steady state

tests: N = 10, 20, 50, 100, and 200 steps/group were tested with G set to 5. While the first

four scenarios show that quasi-steady state for all flux-tubes cannot be reached within 4000

time steps, N = 200 shows that saturation is achieved, and Fig. 8 shows the < Te > in time

groups for every flux-tube. This time-averaging approach shows that quasi-steady state in

the core plasma is reached at n = 15, or at t = 1.235 s.

To further test the reliability of such approach, the same simulation is extended for

another 2000 time steps. Then the time-average of Te is performed on every 200 steps, as

described earlier. There are a total of 14 time groups after the established quasi-steady state

(with time group ID of n = 15). The < Te >n of these later time groups (16 ≤ n ≤ 29)

13

are being compared to < Te >n ±σn at n = 15. The results show that the outer flux-tubes

(flux-tube #3-7, or at normalized toroidal flux coordinate value ||ρtor|| = 0.561−0.956) agree

with the determined quasi-steady state. Specifically, the < Te >n at these outer flux-tubes

remain within one standard deviation of the quasi-steady state temperature (< Te >n ±σn
at n = 15). However, the values of < Te >n (with 16 ≤ n ≤ 29) at the inner flux-tubes

(flux-tube #0-2, or ||ρtor|| = 0.144−0.443) do not always fall within < Te >n ±σn at n = 15.

The statistics on the number of occurrences of < Te >n (with (16 ≤ n ≤ 29) at the inner

flux-tubes with value that falls within < Te >15 ±xσ15 are shown in Table I, with x being

a constant above one. Overall, for < Te >n with 16 ≤ n ≤ 29, any deviation above σn=15

happens only at flux-tubes closer to the plasma core. However, these deviations never reach

above 1.4σn=15.

x

flux-tube # 1.01− 1.10 1.11− 1.20 1.21− 1.30 1.31− 1.40 > 1.40

0 1 0 0 0 0

1 1 2 0 1 0

2 2 0 2 1 0

TABLE I. Number of occurrences in which < Te >n (with 16 ≤ n ≤ 29) at an inner flux-tube

falls within < Te >n ±xσn=15, where n = 15 is the time bin ID # in which quasi-steady state is

established.

C. Optimization: improving the level of parallelism

A quick analysis of the workflow presented in Fig. 4 shows that only one component

(MUSCLE kernel) can run at a given time while the others would need to wait due to

their input data dependencies. Each kernel contains three sequential steps: blocking receive

– run – send ; this means in practice, the time spent in receive in each iteration is equal

to the sum of run time for all other kernels (if we consider high-performance interconnect

and the targeted jobs size, communication costs are negligible for such data transfers).

Since the TRA, EQU and FDV models are implemented by serial codes, the idle time

spent in receive for the parallel implementation of the TUR component is receive(TUR) ≈

14

FIG. 9. Parallel (new) workflow: the equilibrium EQU and turbulence TUR codes can run at the

same time.

run(TRA) + run(EQU) + run(FDV), which reduces the parallel efficiency of the coupled

application.

A closer look into the submodels gives us two important information: the run time of EQU

is dominant compared to TRA and FDV (run(EQU) > run(TRA)+run(FDV)), and EQU

has no specified physical time scales. From this observation we decided to modify the logical

order of the components of the workflow to obtain the new topology described in Fig. 9. As

highlighted in this schema, the TUR and EQU kernels can run at the same time, as soon

as they have received output data from TRA. Assuming that run(EQU) <= run(TUR)

(which is a valid assumption in most use cases), the waiting time lost in TUR is reduced to

receive(TUR) = run(TRA) + run(FDV).

With the same parameters presented in Section IV A, a simulation using the new workflow

configuration is conducted with 1024 cores on Marconi supercomputer. The simulation

completes 4000 iterations in 31 h, 40 min and 37 s, which is almost two hours less than

the simulation using the initial workflow configuration (5.7% faster). As expected, the

measurement of receive step for TUR shows where most of the improvement lies: from

2.8 s at each iteration in the initial workflow, to 0.9 s with the new workflow. It is also

important to note that such performance improvement was obtained without modifying the

code base for any of the kernels, but solely through the MUSCLE2 configuration file (thus

no re-compilation was necessary). This illustrates how flexible this approach can be for

modifying and testing several workflow configurations.

However, this new configuration also means that the heat and particle fluxes calculated

15

FIG. 10. Comparison between serial and parallel workflows at both initial and saturation time bins.

Time-averaged electron temperature 〈Te〉 vs. normalized toroidal flux coordinate value ||ρtor||

by the turbulence code, in addition to the transport coefficients calculated by the numerical

module FDV, would be based on the geometry property computed by the equilibrium code

at the previous time step. Since EQU is scaleless in time, such modification is expected to

have minimal impact on the simulation results. To validate such statement, we performed

the quasi-steady state test (see Section IV B) on the new workflow and then compared the

results to the original workflow shown in Fig. 8. Both workflows set N to 200 and G to 5. The

quasi-steady state test shows that the initial workflow saturates at group ID #15, or 1.235 s.

On the other hand, the new workflow saturates at group ID #16, or 1.201 s. The Te profiles

from the original (serial) and the new (parallel) workflows at initial time group (group ID

#0) and saturation time groups are plotted in Fig. 10. At saturation time, as shown in the

figure, the Te profile of the parallel workflow stays within one standard deviation from the

serial workflow’s Te profile. This indicates that both workflow configurations yield agreeable

results.

V. CONCLUSION AND FUTURE PLANS

To understand the entirety of the problem on how turbulence affects the overall perfor-

mance of fusion devices such as ITER, a multiscale approach is inevitable. However, building

16

a multiscale simulation to study fusion plasmas is not so simple because of the disparate

time scales involved. The ComPat project offers a framework that helps tackle multiscale

problems through a component based approach; this approach connects existing single-scale

models into a multiscale workflow. Besides re-using existing single-scale models (CHEASE,

ETS, GEM), standardized interfaces (CPOs) and a flexible and extensible coupling library

(MUSCLE2), we introduced a time-bridging technique to alleviate the time-scale mismatch

between small-scale turbulence and large-scale plasma transport. We defined upper limits

on the evolution of electron temperature and radial gradient of electron temperature at each

time step. An adaptive time step mechanism was introduced to ensure that such limits can

be met. This allows for the short time-scale physics to be correctly resolved in a multiscale

simulation involving widely disparate time scales. Determining quasi-steady state of the core

plasma for the purpose of stopping simulation at appropriate time is addressed. Specifically,

a time-averaging method is developed to find the time-averaged electron temperature of a

time group at every flux-tube. The values are then compared to the ones from previous

time groups to determine whether quasi-steady state is reached. This heuristic for defining

a quasi-steady state has shown promising results, and needs to be confirmed with a more

computationally-intensive Gyrokinetic submodel for the turbulence simulation. The method

we presented in this paper is one of many ways to find the quasi-steady state quickly. In

comparison to one method that takes eddy-turn-over time into consideration27, our approach

aims to ensure the electron temperature at each flux-tube reaches saturation. For example,

even though the outer flux-tubes in our simulations reach quasi-steady state before the inner

flux-tubes, we chose to terminate the simulation when all flux-tubes reach saturation. Fi-

nally, we showed that a workflow’s level of parallelism can be improved easily thanks to the

effortless topology change in the MUSCLE2 configuration file. We introduced parallelization

at the workflow level, with equilibrium and turbulence codes running concurrently. Simu-

lations using both serial and parallel workflows were compared, and the parallel workflow

showed an overall gain of 5.7% in runtime, as well as agreeable electron temperature profiles

with the serial workflow at quasi-steady state.

In the future, physics challenges mentioned in this paper will be explored. The 3D

gyrofluid model (e.g. GEM) will be replaced with more realistic, 5D gyrokinetic codes

(e.g. dFEFI and ORB528). Since ORB5 is a global turbulence code, the physics challenge

on how to update global profiles and calculate transport coefficients in turbulence code

17

will naturally be addressed. In addition, parameters implemented in the time-bridging

technique will become time-dependent. This would require further understanding on heat

flux and temperature, and how they vary based on size of the time step. As for determining

quasi steady state, we will test all the mentioned parameters with different values, and try

to understand the quasi-steady state for each flux-tube. Other methods on determining

quasi-steady state may also be explored in the future. Lastly, the overall performance

will be further investigated with respect to available resources allocated to the simulation.

Additional techniques such as the use of additional cores on each node may also improve

multiscale simulation performance.

ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme for the ComPat project, under grant agreement No 671564. This

project is part of the FET-Future Emerging Technologies funding schema.

REFERENCES

1http://www.iter.org.

2L. LoDestro, B. Cohen, and R. Cohen, “Comparison of simulations and theory of low-

frequency plasma turbulence,” in Plasma physics and controlled nuclear fusion research

1990. V. 2 (1991).

3A. Shestakov, R. Cohen, J. Crotinger, L. LoDestro, A. Tarditi, and X. Xu, “Self-consistent

modeling of turbulence and transport,” Journal of Computational Physics 185, 399–426

(2003).

4Y. Nishimura, D. Coster, and B. Scott, “Characterization of electrostatic turbulent fluxes

in tokamak edge plasmas,” Physics of Plasmas 11, 115–124 (2004).

5D. Reiser and B. Scott, “Electromagnetic fluid drift turbulence in static ergodic magnetic

fields,” Physics of plasmas 12, 122308 (2005).

6E. Highcock, N. Mandell, M. Barnes, and W. Dorland, “Optimisation of confinement in a

fusion reactor using a nonlinear turbulence model,” Journal of Plasma Physics 84 (2018).

18

http://www.iter.org

7J. B. Parker, L. L. LoDestro, D. Told, G. Merlo, L. F. Ricketson, A. Campos, F. Jenko,

and J. A. Hittinger, “Bringing global gyrokinetic turbulence simulations to the transport

timescale using a multiscale approach,” Nuclear Fusion 58, 054004 (2018).

8O. Meneghini, S. Smith, L. Lao, O. Izacard, Q. Ren, J. Park, J. Candy, Z. Wang, C. Luna,

V. Izzo, et al., “Integrated modeling applications for tokamak experiments with omfit,”

Nuclear Fusion 55, 083008 (2015).

9M. Barnes, I. Abel, W. Dorland, T. Görler, G. Hammett, and F. Jenko, “Direct multiscale

coupling of a transport code to gyrokinetic turbulence codes a,” Physics of Plasmas 17,

056109 (2010).

10J. Candy, C. Holland, R. Waltz, M. R. Fahey, and E. Belli, “Tokamak profile predic-

tion using direct gyrokinetic and neoclassical simulation,” Physics of Plasmas 16, 060704

(2009).

11A. Becoulet, P. Strand, H. Wilson, M. Romanelli, L.-G. Eriksson, et al., “The way towards

thermonuclear fusion simulators,” Computer physics communications 177, 55–59 (2007).

12G. L. Falchetto, D. Coster, R. Coelho, B. Scott, L. Figini, D. Kalupin, E. Nardon,

S. Nowak, L. L. Alves, J.-F. Artaud, et al., “The european integrated tokamak modelling

(itm) effort: achievements and first physics results,” Nuclear Fusion 54, 043018 (2014).

13https://www.euro-fusion.org/.

14F. Imbeaux, S. Pinches, J. Lister, Y. Buravand, T. Casper, B. Duval, B. Guillerminet,

M. Hosokawa, W. Houlberg, P. Huynh, S. Kim, G. Manduchi, M. Owsiak, B. Palak,

M. Plociennik, G. Rouault, O. Sauter, and P. Strand, “Design and first applications of

the iter integrated modelling and analysis suite,” Nuclear Fusion 55, 123006 (2015).

15https://www.mapper-project.eu.

16https://github.com/psnc-apps/muscle2.

17O. Hoenen, L. Fazendeiro, B. D. Scott, J. Borgdoff, A. G. Hoekstra, P. Strand, and

D. P. Coster, “Designing and running turbulence transport simulations using a distributed

multiscale computing approach,” in 40th EPS Conference on Plasma Physics, EPS 2013;

Espoo; Finland; 1 July 2013 through 5 July 2013, Vol. 2 (2013) pp. 1094–1097.

18J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. B. Belgacem, B. Chopard,

D. Groen, P. V. Coveney, and A. G. Hoekstra, “Distributed multiscale computing with

muscle 2, the multiscale coupling library and environment,” Journal of Computational

Science 5, 719–731 (2014).

19

https://www.euro-fusion.org/
https://www.mapper-project.eu
https://github.com/psnc-apps/muscle2

19http://compat-project.eu.

20S. Alowayyed, D. Groen, P. V. Coveney, and A. G. Hoekstra, “Multiscale computing in

the exascale era,” Journal of Computational Science (2017).

21D. Groen, S. J. Zasada, and P. V. Coveney, “Survey of multiscale and multiphysics

applications and communities,” Computing in Science & Engineering 16, 34–43 (2014).

22F. Imbeaux, J. Lister, G. Huysmans, W. Zwingmann, M. Airaj, L. Appel, V. Basiuk,

D. Coster, L.-G. Eriksson, B. Guillerminet, et al., “A generic data structure for integrated

modelling of tokamak physics and subsystems,” Computer Physics Communications 181,

987–998 (2010).

23D. P. Coster, V. Basiuk, G. Pereverzev, D. Kalupin, R. Zagorksi, R. Stankiewicz, P. Huynh,

F. Imbeaux, et al., “The european transport solver,” IEEE Transactions on Plasma Science

38, 2085–2092 (2010).

24H. Lütjens, A. Bondeson, and O. Sauter, “The chease code for toroidal mhd equilibria,”

Computer physics communications 97, 219–260 (1996).

25B. D. Scott, “Free-energy conservation in local gyrofluid models,” Physics of Plasmas 12,

102307 (2005).

26B. D. Scott, “Dynamical alignment in three species tokamak edge turbulence,” Physics of

plasmas 12, 082305 (2005).

27C. Holland, L. Schmitz, T. Rhodes, W. Peebles, J. Hillesheim, G. Wang, L. Zeng, E. Doyle,

S. Smith, R. Prater, et al., “Advances in validating gyrokinetic turbulence models against

l-and h-mode plasmas,” Physics of Plasmas 18, 056113 (2011).

28A. Bottino, B. Scott, S. Brunner, B. F. McMillan, T. M. Tran, T. Vernay, L. Villard,

S. Jolliet, R. Hatzky, and A. G. Peeters, “Global nonlinear electromagnetic simulations

of tokamak turbulence,” IEEE Transactions on Plasma Science 38, 2129–2135 (2010).

20

http://compat-project.eu

	ComPat Framework for Multiscale Simulations Applied to Fusion Plasmas
	Abstract
	Introduction
	ComPat Project
	Implementation of the Coupled Multiscale Application
	A generic and non-intrusive implementation
	Details of the fusion application

	Challenges in Multiscale, Component Based Approach
	Time Bridging Technique
	Determine Quasi-Steady State
	Optimization: improving the level of parallelism

	Conclusion and Future Plans
	Acknowledgements
	References

