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We report on the experimental observation of multiorbital polarons in a two-dimensional Fermi
gas of 173Yb atoms formed by mobile impurities in the metastable 3P0 orbital and a Fermi sea in
the ground-state 1S0 orbital. We spectroscopically probe the energies of attractive and repulsive
polarons close to an orbital Feshbach resonance and characterize their coherence by measuring the
quasiparticle residue. For all probed interaction parameters, the repulsive polaron is a long-lived
quasiparticle with a decay rate more than 2 orders of magnitude below its energy. We formulate
a many-body theory, which accurately treats the interorbital interactions in two dimensions and
agrees well with the experimental results. Our work paves the way for the investigation of many-
body physics in multiorbital ultracold Fermi gases.

The problem of an impurity coupled to a bath lies
at the heart of numerous quantum many-body phenom-
ena. Remarkably, a single localized impurity can dramat-
ically modify the many-body behavior of the medium,
giving rise to intriguing phenomena such as the Kondo
effect [1] and Anderson’s orthogonality catastrophe [2].
Conversely, a mobile impurity interacting with a Fermi
sea can form a quasiparticle, or Fermi polaron, with
strongly modified properties compared to the bare par-
ticle [3]. The existence of such long-lived quasiparticle
states forms the basis of Landau’s Fermi liquid theory [4],
a paradigm in condensed matter physics. Moreover, the
nature of Fermi polarons has consequences for the sta-
bility of itinerant ferromagnetism [5–11], as well as the
phase diagram of spin-imbalanced Fermi gases [12, 13].

Ultracold atoms provide an ideal platform for inves-
tigating Fermi polarons since impurity-bath interactions
can be precisely tuned in the vicinity of a Feshbach res-
onance, independently of other parameters. Previously,
work in this field was limited to alkali atoms [14–19],
whereas the richer interactions in alkaline-earth(-like)
atoms (AEAs) have not yet been utilized. In AEAs, in-
teractions between the 1S0 ground state (denoted |g〉)
and the 3P0 “clock” state (denoted |e〉), a long-lived
metastable excited state, are of particular interest since
the decoupling of electronic and nuclear degrees of free-
dom induces spin exchange as well as SU(N)-symmetric
collisions [20–22]. The recently discovered orbital Fesh-
bach resonance (OFR) in 173Yb [23–25] between |g〉 and
|e〉 has now made it possible to study strongly interacting
multiorbital Fermi gases and polarons [26–29]. Such sys-
tems can potentially be used to benchmark theoretical
descriptions of interacting fermions in multiple orbitals
or bands. In particular, the multiorbital structure of the
OFR means that the closed interaction channel can be
strongly affected by the background medium, in contrast
to typical Feshbach resonances in alkali atoms. Thus, an
additional Fermi sea in the closed channel is believed to

significantly alter the quasiparticle properties [29].

Fermi polarons in two dimensions are of particular in-
terest due to the increased relevance of quantum fluctua-
tions [30–32]. Such 2D polarons are also relevant for un-
derstanding solid-state systems, as evidenced by the re-
cent observation of Fermi polaron-polaritons in 2D semi-
conductors [33]. Similar to three dimensions, there exist
attractive and repulsive polaronic branches in 2D [34, 35]
[see Fig. 1(a)]. Despite the successful realization of Fermi
polarons in 2D with ultracold gases [17, 18], the coherent
nature of the quasiparticles remains largely unexplored,
and it is unclear whether the repulsive polaron is well
defined given the discrepancy between the theoretically
predicted and the experimentally observed polaron en-
ergy [17].

Here, we study the many-body physics of Fermi po-
larons in 2D across the OFR of 173Yb. We record the
spectrum of the many-body system by driving a small
number of atoms from a weakly interacting initial state
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FIG. 1. (a) Numerical calculation of the repulsive polaron
(blue line), attractive polaron (red line), and bound dimer
(dashed gray line) energies in quasi-2D across the OFR. (b)
Relevant nuclear spin states in our measurement: The back-
ground Fermi sea is in the mF = +5/2 state (blue, |g, ↑〉),
while impurities are in the weakly interacting mF = −3/2
ground state (blue, |g, 0〉) or the strongly interacting mF =
−5/2 “clock” state (yellow, |e, ↓〉).
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into the strongly interacting final state using the op-
tical clock transition. We observe two distinct energy
branches, which we identify as repulsive and attrac-
tive polarons. By driving Rabi oscillations, we quantify
the polaron coherence properties with the quasiparticle
residue. We also investigate the stability of the repulsive
polaron against decay into lower lying states, and find
that its decay rate remains significantly smaller than the
polaron energy even when the latter is a sizable fraction
of the Fermi energy. This relatively large energy and the
small decay rate are in contrast to results in 2D with al-
kali atoms [17] and can provide favorable parameters for
the stability of ferromagnetism [3]. We develop a many-
body theory for the Fermi polaron in our two-orbital sys-
tem and find good agreement between theoretical predic-
tions and the experimental results.

In our experiment, we prepare a spin-imbalanced,
weakly interacting Fermi gas mixture in the nuclear
spin states |g,mF = −3/2〉 (minority, denoted |g, 0〉) and
|g,mF = +5/2〉 (majority, denoted |g, ↑〉). After evapo-
rative cooling, we adiabatically ramp up a single-axis op-
tical lattice to a depth of 86Erec, where Erec = h×2.0 kHz
is the lattice recoil energy. We operate the lattice close
to the magic wavelength at 759.35 nm ensuring the same
trapping potential for |g〉 and |e〉 atoms. The optical lat-
tice generates an array of isolated pancake-shaped traps,
where the axial trapping frequency ω = 2π × 37.1 kHz is
much larger than the Fermi energy and kinematics are
constrained to 2D. However, our system is quasi-two-
dimensional since the range of the interatomic scatter-
ing potential is still smaller than the confinement length
scale [36]. The external confinement leads to a varying
atomic density throughout the trap. We reduce the ef-
fects of this inhomogeneity by only considering a small
central region, which contains a few lattice layers and is
characterized by an effective background Fermi energy
εF ' h × 3.5 kHz, temperature T ' 0.16εF /kB , and mi-
nority fraction N0/(N0 + N↑) ' 0.28. The interaction
strength between the background Fermi sea in |g, ↑〉 and
impurities in |e,mF = −5/2〉 (denoted |e, ↓〉) is tuned us-
ing a magnetic field in the vicinity of the OFR and is
parametrized by ln(κFa2D). Here, κF =

√
2mεF /h̄ is

the effective Fermi wave vector, with the 173Yb mass m
and the low-energy 2D scattering length a2D [37].

In the following, we compare our experimental results
with a finite-temperature theory of the polaron [37] that
takes into account the full complexity of the strongly
energy-dependent scattering close to the orbital Fesh-
bach resonance [23], as well as the quasi-2D confine-
ment [48, 49]. By considering at most single particle-
hole excitations of the background Fermi sea [12, 50], we
obtain an approximate expression for the impurity self-
energy, from which all quasiparticle properties may be
determined [51]. Our model has no free parameters and
uses the scattering lengths from Ref. [24].

In a first experiment, we probe the spectral response
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FIG. 2. Spectral response of the spin-imbalanced Fermi
gas across the OFR. (a) Number of atoms transferred into
|e, ↓〉 as a function of detuning E/εF and interaction strength
ln(κF a2D). Each data point is the average of two or three in-
dividual measurements. The blue and white (red and white)
dashed line denotes the repulsive (attractive) polaron energy
predicted from our theory. Additionally, we plot the dimer
binding energy (solid magenta line) which saturates to E = 0.
(b)–(d) Raw spectra recorded with the clock laser at inter-
action parameters (b) ln(κF a2D) = −0.72(4), (c) 0.26(4),
and (d) 4.07(6). Here, zero detuning corresponds to the
|g, 0〉 → |e, ↓〉 transition in the absence of a background Fermi
sea. Error bars denote the standard error of the mean.

of the minority atoms. We drive atoms from the weakly
interacting |g, 0〉 state into the strongly interacting |e, ↓〉
state with a rectangular-shaped pulse addressing the σ−

clock transition [see Fig. 1(b)]. The duration is chosen
to match a π pulse in the absence of interactions, with
a Fourier-limited resolution ' 0.1εF much smaller than
the observed linewidths. The clock laser beam propa-
gates perpendicular to the pancake-shaped traps ensur-
ing that no photon momentum is transferred. After this
spectroscopy pulse, the background Fermi sea and any re-
maining atoms in |g, 0〉 are removed from the trap with a
“push” pulse [37]. Subsequently, the |e, ↓〉 impurities are
detected by repumping on the 3D1 line. For all param-
eters, less than 15% of the minority atoms are excited,
which leads to a total fraction of |e, ↓〉 impurities below
0.05 and our theoretical description neglects effects of fi-
nite impurity density.

The measured spectrum is shown in Fig. 2(a) for
−1.1 ≤ ln(κFa2D) ≤ 5. Here, we account for the
weak repulsion in the initial state [ln(κFa2D) ' −4.9]
by treating the minority atoms in |g, 0〉 as weakly in-
teracting polarons, and adding the corresponding energy
of 0.2εF to the spectrum [37]. With this calibration,
we find a positive energy shift for repulsive interactions
[ln(κFa2D) < 0] compared to the clock transition with-
out a background Fermi sea. The energy of this peak
increases up to 0.8εF at ln(κFa2D) = 0, beyond which
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the contrast quickly reduces. For attractive interactions
[ln(κFa2D) > 0], we find a second peak at negative en-
ergies, with a nonlinear dependence on ln(κFa2D). To-
wards strong interactions [ln(κFa2D) = 0], the energy of
this peak decreases monotonically to almost −2.5εF .

The polaron energies, as determined from our theory,
are also shown in Fig. 2(a) and agree very well with the
experimental data for both branches. Therefore, we iden-
tify the peak at positive (negative) energy with the repul-
sive (attractive) polaron. In Fig. 2(a), we also compare
the attractive polaron branch to the binding energy of
the quasi-2D dimer across the OFR [37]. This energy
is significantly higher and we conclude that this state is
not addressed for the drive strength used here. We do
not see any direct signatures of a ground-state transition
from attractive polaron to bound dimer [52], which is pre-
dicted for −1.1 ≤ ln(κFa2D) ≤ −0.8 in 2D and for the
case of a broad Feshbach resonance [31, 53–55]. However,
we do observe a reduction of contrast in the strongly in-
teracting regime until the attractive branch completely
vanishes around ln(κFa2D) ' −0.5.

As illustrated in Figs. 2(b)–2(d), both branches of the
spectrum feature asymmetric line shapes and the peak
widths exceed the Fourier limit of the excitation pulse.
The theoretically calculated spectrum approximately re-
produces the width of the repulsive branch, but predicts
a smaller linewidth for the attractive branch [37]. We be-
lieve the excess broadening and asymmetric line shapes
are caused by two effects. First, we average over dif-
ferent background densities due to trap inhomogeneity,
which is characterized by the standard deviation of the
Fermi energy, ∆εF ' 0.18εF . Second, the minority frac-
tion prior to excitation is relatively large, with a Fermi
energy ' 0.5εF . This can cause additional broadening
and asymmetry due to the width of the minority atoms’
initial momentum distribution.

In a second experiment, we extract the quasiparticle
residue Z, which corresponds to the squared overlap of
the polaron and the noninteracting impurity wave func-
tion. The residue quantifies the single-particle coherence
of each polaron peak and can be directly determined from
the normalized Rabi frequency, Ω/Ω0 =

√
Z [16]. Here, Ω

corresponds to the frequency of coherent Rabi oscillations
into the interacting state, while Ω0 is the bare-particle
Rabi frequency. We employ high-intensity clock laser
pulses to drive minority atoms into the strongly interact-
ing |e, ↓〉 state, yielding an impurity fraction below 0.22.
The excitation pulse is resonant with the polaron energy
and its duration is varied to record the Rabi oscillations.
After the pulse, we detect the remaining minority atoms
in the initial |g, 0〉 state. To extract the Rabi frequencies,
we employ a fit that captures the oscillation frequency Ω
with damping ΓR. The bare-particle Rabi frequency Ω0

is determined in a similar measurement for each dataset
but after removal of the background Fermi sea. Although
large Rabi frequencies, 0.9 < h̄Ω0/εF < 1.7, are required

0.5

0.6

0.7

0.8

0.9

1.0

(Ω
/Ω

) 02

a

−1 0 1 2 3

0.1

0.2

0.3

0.4

ħ
ε 

Γ R
F 

/

b

7 8

100 140 18020 60 250

0.0 0.2 0.4 0.6
Pulse time (ms)

0

1

Si
gn

al
(a

rb
. u

ni
ts

)

ln( ) κ a F 2D

Magnetic field (G)

FIG. 3. Coherent Rabi oscillations into attractive and re-
pulsive polarons. (a) Measured quasiparticle residue Z =
(Ω/Ω0)2 extracted from fits to Rabi oscillations. Blue circles
(red squares) correspond to the repulsive (attractive) polaron.
The theoretical prediction for Z is shown as dashed lines. In
the inset, we plot Rabi oscillations at ln(κF a2D) = −0.41(5)
(green), 0.84(5) (blue), and 7.52(10) (yellow) with fits (solid
lines). The gray points and solid line correspond to a reference
measurement without a background Fermi sea. (b) Damping
rates ΓR of the Rabi coupling into the repulsive (attractive)
polaron state are shown as blue circles (red squares). The blue
dashed line is the width of the repulsive polaron peak from our
theory, while the red dashed line corresponds to (1−Z) + γ0
with the fitted parameter γ0 = 0.06(2). Empty markers refer
to data points binned with distinct Ω0 and error bars denote
the fit parameter error.

to extract Ω from a fit, we do not observe a systematic
change of Ω/Ω0 or ΓR when varying the drive strength
Ω0 in this range [37].

In Fig. 3(a), we compare the measured ratio (Ω/Ω0)
2

to the quasiparticle residue Z predicted from theory. We
observe that the normalized Rabi frequencies of both
repulsive and attractive polarons decrease towards the
strongly interacting regime. For the attractive polaron,
we find very good agreement between our numerical cal-
culation and the experiment. However, on the repulsive
side, the experimentally determined (Ω/Ω0)

2
systemati-

cally exceeds Z, by up to 0.2. This discrepancy can be at
least partially ascribed to the finite repulsive interaction
in the initial state, which increases the overlap with the
repulsive polaron in the final state [19, 37].

As shown in Fig. 3(b), the damping rate of the Rabi os-
cillations is large, with h̄ΓR

>∼ 0.1εF , even in the weakly
interacting regime. Remarkably, on the repulsive side,
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the damping h̄ΓR matches the width of the repulsive po-
laron peak in the theoretically calculated spectral func-
tion [37], similar to what has been reported in 3D [19].
This implies that the damping rate of Rabi oscillations is
intrinsically connected to the incoherence of the quasipar-
ticle in this case. By contrast, we expect the attractive
polaron to exhibit a smaller degree of incoherence at low
temperature since it corresponds to an eigenstate (the
ground state at zero temperature) [56]. To model the
decoherence of the Rabi oscillations, we use a three-level
model featuring the initial state, the attractive polaron,
and the continuum represented as a single level with dis-
sipation. We find that coupling to the continuum leads to
a damping proportional to (1−Z) [37]. This qualitatively
agrees with our observations in Fig. 3(b).

Another important question is the stability of the re-
pulsive polaron with respect to decay into energetically
lower lying states such as the attractive polaron or bound
dimer. The polaron decay rate Γrep has implications for
the realization of itinerant ferromagnetism in the strongly
repulsive Fermi gas, since it determines the stability of
ferromagnetic domains that may exist when the repulsive
polaron energy E+ > εF [7, 10, 35]. We measure Γrep in
the experiment using a double-pulse sequence [37] simi-
lar to the one successfully applied in Refs. [16, 17, 19]:
We use two pulses resonant with the repulsive polaron to
drive minority atoms into the strongly interacting |e, ↓〉
state, hold them for a variable time, and then drive them
back into the initial |g, 0〉 state for detection. Immedi-
ately after the first pulse, the remaining |g, 0〉 atoms are
removed from the trap before the hold time. Both the ex-
citation and deexcitation pulse have a bare-particle Rabi
frequency ' 0.8εF /h and the fraction of |e, ↓〉 atoms after
the deexcitation pulse is between 0.08 and 0.16. Since the
pulses are spectrally broad and only resonant with the re-
pulsive branch, this measurement captures the decay to
lower lying states, while being insensitive to collisional
dephasing of the quasiparticles. We fit the number of re-
maining impurities to an exponential decay function with
a constant offset.

In Fig. 4, we display the extracted decay rate Γrep

as a function of ln(κFa2D). We observe that it grows
monotonically towards strong interactions, but the rate
only changes by a factor of 2. In 2D, a similar weak
dependence on the interaction parameter was reported
for a broad Feshbach resonance in 40K [17]. However,
our observed decay rates are smaller by roughly an order
of magnitude with respect to εF /h̄. The inset of Fig. 4
shows that the signal settles to a finite plateau, which has
also been found in Ref. [17]. In our system, spin exchange
at small magnetic fields [22] can potentially populate the
|g,mF = −5/2〉 state (denoted |g, ↓〉), which can con-
tribute to the measured ground-state population. This
could explain the higher plateau for ln(κFa2D) ' −1,
since spin exchange also occurs in the final state after
the decay.
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FIG. 4. Repulsive polaron decay rate (blue circles). The
error bars denote the fit error in Γrep and uncertainty in
ln(κF a2D). The blue dash-dotted line corresponds to the de-
cay rate from three-body recombination in 2D for the mean
kinetic energy in our system [37]. The inset shows sample
population time traces recorded at ln(κF a2D) = −0.94(4)
(yellow), −0.59(4) (green), and 0.05(4) (blue), as well as the
fitted exponential curves (solid lines).

We emphasize that the decay rate Γrep of the repul-
sive polaron is several orders of magnitude smaller than
the damping rate ΓR for Rabi oscillations in Fig. 3(b).
Therefore, the width of the repulsive polaron peak in the
spectral function is set by the dephasing of the repul-
sive polaron rather than by its decay into the attractive
branch. This is consistent with the findings of Ref. [19]
but is in contrast to what had been assumed elsewhere,
see, e.g., Ref. [3] and references therein. We approxi-
mate the decay process as the recombination of an im-
purity and two background atoms into a dimer and a
free particle. A similar approximation was successfully
used to describe the repulsive polaron decay over sev-
eral orders of magnitude in 3D [19]. Here, we consider
the three-body recombination rate in a purely 2D ge-
ometry [57]. Figure 4 shows that the calculated three-
body decay agrees with Γrep only at ln(κFa2D) ' −0.1.
However, it strongly disagrees with our experimental re-
sult when the dimer becomes larger than the interparticle
spacing [ln(κFa2D) >∼ 0], or when the dimer is no longer
strictly 2D [ln(κFa2D)� 0]. Notably, Γrep in the exper-
iment has a similar functional dependence on ln(κFa2D)
as the damping rate ΓR [37]. This suggests that both
the quasi-2D geometry and the medium effects present
in a many-body system need to be included in the calcu-
lation of the decay rate, which goes beyond the scope of
this work.

The multiorbital nature of interactions in our system
introduces the possibility to block intermediate scatter-
ing states with the introduction of an additional Fermi



5

sea in |g, ↓〉. Our theoretical model predicts increased
polaron energies for this configuration, which could po-
tentially stabilize a ferromagnetic phase. We explore this
regime experimentally by preparing a second Fermi sea in
|g, ↓〉 with εF = h× 2.7(2) kHz. In this configuration, we
still observe two distinct polaron energy branches, but
see only small energy shifts ≤ 0.15εF , within our ex-
perimental uncertainties [37]. To address this question,
much larger Fermi energies in |g, ↓〉 are desirable, which
are currently not accessible in our experiment.

In conclusion, we have realized and comprehensively
characterized multiorbital attractive and repulsive Fermi
polarons in 2D, which are well described by our many-
body theory. Moreover, we have measured the quasipar-
ticle residue in 2D for the first time. The particularly
long lifetimes of the repulsive polaron in 2D could be
beneficial for future studies of itinerant ferromagnetism.
Furthermore, the realization of a multiorbital many-body
system with tunable interactions provides a possible plat-
form for the observation of exotic superfluidity, such as
the elusive breached-pair phase [58–60]. By utilizing tun-
able mass ratios in state-dependent optical lattices [61],
the present work could be extended to the study of the
phase diagram of mass-imbalanced Fermi gases and the
regime of Anderson’s orthogonality catastrophe [62–64].
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[30] S. Zöllner, G. M. Bruun, and C. J. Pethick, Phys. Rev.

A 83, 021603(R) (2011).
[31] M. M. Parish, Phys. Rev. A 83, 051603(R) (2011).
[32] M. Klawunn and A. Recati, Phys. Rev. A 84, 033607

(2011).
[33] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink,

M. Kroner, E. Demler, and A. Imamoglu, Nat. Phys.
13, 255 (2016).

[34] R. Schmidt, T. Enss, V. Pietilä, and E. Demler, Phys.
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S.I. EXPERIMENTAL TECHNIQUES

A. State preparation

After forced evaporation in a magic-wavelength ODT (mODT, λ = 759.35 nm), we load the

atoms adiabatically into a magic-wavelength optical lattice with a depth of 86Erec, which is ramped

up within 500 ms. The mODT is kept at a constant value during the optical lattice ramp and holds

the atoms against gravity. Typical trap frequencies in the final trap configuration are ωz ≈ 2π ×
250 Hz along gravity and ωx ≈ 2π×65 Hz along the other transverse axis. Approximating the deep

lattice with a harmonic oscillator potential yields an axial trapping frequency ωy = 2π× 37.1 kHz.

Spin mixtures are prepared by a sequence of intensity-stabilized optical pumping pulses on the

intercombination line 1S
F=5/2
0 → 3P

F=7/2
1 at the beginning of evaporation. Usually, we prepare

an imbalanced mF = −3/2,+5/2 spin mixture in the 1S0 ground state (denoted |g, 0〉 and |g, ↑〉)
with a total atom count N ≈ 50× 103 and an overall minority fraction N−3/2/N ≈ 0.24. Typical

temperatures in the mODT before loading into the optical lattice are T ≈ 0.2EF /kB determined

by fitting density profiles to time-of-flight absorption images. Here, kB is the Boltzmann constant.

Ramping up and down the optical lattice leads to an increase of T below 0.05EF /kB. The specific

experimental parameters for all measurements presented in the main text are shown in Table S1.

The optical lattice produces an array of quasi-2D traps for each lattice plane where the confine-

ment h̄ωy is much larger than the 2D Fermi energy EF = h̄
√

2Nωxωz. The harmonic confinement

of the optical traps causes each of the lattice planes to be occupied by a different number of atoms.

Fig. S1 shows such a typical distribution extracted from absorption images of the whole atomic

cloud. By imaging the atoms along the transverse direction of the optical lattice, we can select

a few lattice planes and reduce the effects of trap inhomogeneity. The minimum number of se-

Fig. 2 Fig. 3 Fig. 4

Fermi energy εF /h 3.65(22) kHz 3.55(39) kHz 3.39(21) kHz

Reduced temperature kBT/εF 0.17(3) 0.16(4) 0.14(3)

Minority fraction C 0.26(2) 0.28(3) 0.31(1)

TABLE S1. Experimental parameters (Fermi energy, temperature, and minority fraction) for each figure

presented in the main text. The values discussed in the main text are the mean of the corresponding row.
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FIG. S1. Characterization of a typical in-trap atomic sample. (a) Fermi energy (solid line) and (b) minority

fraction (solid line) across different lattice planes. The shaded areas denote the error bars of the measured

value. The image in (c) shows the in-trap density distribution of mF = −3/2 and mF = +5/2 atoms in

atoms
/
µm2 . The red hatched square denotes a typical integration region and the optical lattice is aligned

along the y axis.

lected planes is only limited by the imaging resolution ≈ 3 µm, which is large compared to the

lattice spacing (0.38 µm). We select a small region with size ∆x×∆y = 5.6 µm× 5.6 µm near the

center of the cloud where we integrate the atom number for all our measurements. This region

contains approximately 15 lattice planes and the variation of atom number per plane is negligible.

Finite temperature as well as the non-zero extent of our integration region lead to an effective

Fermi energy εF < EF . We calculate εF from the number density n(x, z) in the local density

approximation,

n(x, z) = − m

2πh̄2β
Li1

[
−e−β(m

2 [ω2
xx

2+ω2
zz

2]−µ)
]
, (S.1)

where Lis(x) is the polylogarithm function of order s, m is the mass of 173Yb, µ denotes the

chemical potential, and β = 1/kBT . The effective background Fermi energy εF sampled by the

minority atoms is then given by

εF =
1

N0(∆x)

∫ ∆x/2

−∆x/2
dx

∫ ∞

−∞
dz n0(x, z)EF (x, z). (S.2)

Here, N0(∆x) =
∫ ∆x/2
−∆x/2 dx

∫∞
−∞ dz n0(x, z) is the total number of the |g, 0〉 atoms with n0(x, z) the

corresponding number density, and

EF (x, z) =
h̄2

2m
[4πn↑(x, z)] (S.3)

is the local Fermi energy of the background atoms with n↑(x, z) the number density of the |g, ↑〉
atoms. We calculate the standard deviation ∆εF to quantify the variation of effective Fermi energy

in our integration region,

(∆εF )2 =
1

N0(∆x)

∫ ∆x/2

−∆x/2
dx

∫ ∞

−∞
dz n0(x, z)[εF − EF (x, z)]2. (S.4)
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FIG. S2. The upper plot shows fits to the in-situ column density (blue circles) using Eq. (S.7) (Fermi-Dirac,

red solid line) and a Gaussian function (Maxwell-Boltzmann, gray solid line). Fit residuals both for the

Fermi-Dirac (red bars) and Maxwell-Boltzmann (gray bars) fits are shown in the lower plot. The minority

fraction in this data set is 0.08(1) and the fit yields T/TF = 0.18(2).

Typically, we find εF ' 0.8EF and ∆εF ' 0.2εF . For the effective Fermi wavevector κF , we use

κF =

√
2mεF
h̄

. (S.5)

For the minority fraction C, we calculate

C =
N0(∆x)

N0(∆x) +
∫ ∆x/2
−∆x/2 dx

∫∞
−∞ dz n↑(x, z)

. (S.6)

B. In-situ thermometry

For extracting temperatures in the 2D planes of the optical lattice, we use a fit to the column

density n(x), which we find by integrating Eq. (S.1) along z,

n(x) = −
√
m√

2πh̄2β3/2ωy
Li3/2

(
−e−β[m2 ω2

xx
2−µ]

)
. (S.7)

Here, the fugacity z = eβµ is related to the temperature by

T =
EF /kB√
−2Li2(−z)

. (S.8)

In the experiment, we cannot reliably measure the in-situ densities of |g, 0〉 and |g, ↑〉 atoms sep-

arately. Instead, we fit the distribution of all atoms. Simulating density profiles for imbalanced,

non-interacting samples shows that fitting the combined density leads to a small overestimation

of the temperature. However, we cannot confirm this result when we compare fitted temperatures

at the edge of the cloud (small minority fraction) with the center of the cloud (large minority

fraction). This can possibly be explained with the non-zero ground state interaction which leads

to a small broadening of the density profile across the trap. We perform the temperature fit across

multiple planes of the optical lattice and average the results to retrieve the absolute temperature.
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FIG. S3. Azimuthal averages of the optical column density for a spin-polarized, mF = −3/2 sample recorded

with different imaging intensities between 2.6Isat and 6.2Isat. The data in (a) contains the corrections from

the modified Lambert-Beer law [See Eq. (S.9)] with α = 2.673 whereas (b) does not contain any corrections

and shows a strong dependence on the imaging intensity. The insets show the variance of the atomic density

normalized to the average atom count per pixel.

The standard deviation is used as the error in the temperature fit. Fig. S2 shows such a fit at the

edge of the cloud where the minority fraction is small. We relate the temperature to the effective

Fermi energy εF which yields the reduced temperature kBT/εF (see Table S1).

C. Atom number calibration

Measurement of the absolute atom number is crucial for determining the Fermi energies in our

experiment. All atom number measurements are done with in-situ imaging at a small magnetic

bias field of 1 G. We use the broad 1S
F=5/2
0 → 1P

F=7/2
1 transition and address the σ+ as well as

σ− transition. Short pulses with a duration of 15 µs minimize atomic motion during absorption

imaging. However, the short imaging pulses require intensities larger than the saturation intensity

Isat to fully penetrate the dense atomic cloud. We account for the saturated atomic transition with

the modified Lambert-Beer law [1]

OD(i, j) = log

[
Iin(i, j)

Iout(i, j)

]
+
Iin(i, j)− Iout(i, j)

αIsat
. (S.9)

Here, OD(i, j) is the optical column density on camera pixel (i, j) and Iin is the incident inten-

sity whereas Iout is the intensity after absorption. The parameter α > 1 accounts for imperfect

polarization of the imaging light and the multi-level nature of the atom. This particularly applies

to 173Yb, since imaging on the 1S
F=5/2
0 → 1P

F=7/2
1 transition involves up to six mF states. In

the experiment, we determine α by imaging almost identical atomic samples with varying inten-

sity. Minimization of the atomic density variance across all pixels then yields α. This parameter

is independently determined for spin-polarized samples with mF ∈ {−5/2,−3/2,+5/2} and a

weighted average is used for imaging spin mixtures. Additionally, we measure α for the spin mix-

ture which results from repumping mF = −5/2 in the clock state back to the ground state on the
3P

F=5/2
0 → 3D

F=7/2
1 transition. We use the methods of Ref. [2] to determine the effective inten-

sity Iin(i, j) at the location of the atoms and find agreement within 11% of the directly measured

intensity.
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FIG. S4. Clock spectroscopy at magnetic fields (a) 30 G, (b) 90 G, and (c) 210 G across different integration

regions with varying effective Fermi energy εF = h× 4.1(2) kHz (green circles), h× 3.7(2) kHz (red circles),

and h × 3.3(2) kHz (blue circles). Due to different κF in each region, the interaction parameter differs

by ≈ 0.1 and the mean ln (κFa2D) is given by (a) −0.6, (b) 0.4, and (c) 4.2. Note that the effective minority

fraction varies across the regions as well, with c = 0.33(3) (green circles), 0.28(3) (red circles), and 0.24(3)

(blue circles). Dashed lines are Gumbel distribution fits [(a) and (c)] or Gaussian fits (b) intended as a guide

to the eye. Each data point is the average of two or three individual measurements and error bars are not

shown to reduce visual clutter.

D. Orbital Feshbach resonance

We use the description in Ref. [3, 4] for the orbital Feshbach resonance. In this formalism,

the Feshbach resonance is fully characterized by the scattering lengths a±, the effective ranges r±,

and the differential Zeeman shift ∆µ between |g, ↑〉 and |e, ↓〉. We use the scattering lengths and

effective ranges experimentally determined in Ref. [4]

a+ = 1878(37) a0, a− = 219.7(2.2) a0, (S.10)

r+ = 216 a0, r− = 126 a0, (S.11)

where a0 is the Bohr radius. We measure ∆µ with the methods from Ref. [5]. This differential

measurement is independent of the magnetic field calibration and only depends on the nuclear

magnetic moment of 173Yb, µI = −0.6776µN [6]. We find ∆µ /∆mF = h × 110.72(51) Hz/G,

where ∆mF is the difference between the ground and excited state mF numbers. We also use this

value for the calibration of the magnetic fields in our experiment. For the mF = ±5/2 states used

in all measurements, the differential Zeeman shift is given by

∆µ = h× 554(3) Hz/G. (S.12)

E. Clock spectroscopy

We use circularly polarized light to address the mF = −3/2 → mF = −5/2 transition. After

the clock excitation pulse, we rapidly lower the magnetic field to 1 G and turn on a high-intensity

(I ∼ Isat) “push” beam on the broad 1S
F=5/2
0 → 1P

F=7/2
1 transition. This removes all ground state

atoms from the trap. Subsequently, the impurity atoms in the clock state are pumped back to the
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ground state with a 0.3 ms pulse on the 3P
F=5/2
0 → 3D

F=7/2
1 transition and are imaged. During

the repump pulse, atoms can move due to finite photon recoil transferred during the cascade decay
3D1 → 3P1 → 1S0. We estimate the worst case transverse motion of a single atom during the 0.3 ms

pulse to be 1.7 µm, which is below our imaging resolution. Our repumping efficiency is 0.86(4) which

we account for when counting atoms in the clock state. We select a small central region for counting

atoms as described in Section S.I A. When varying the position of the integration region, we can

probe planes of the optical lattice with smaller effective Fermi energy εF and minority fraction which

is shown in Fig. S4. However, we do not find any systematic energy shifts within our experimental

resolution for regions with lower minority fractions. We also do not find any significant modification

of the observed lineshapes for regions with different effective Fermi energies.

The initial ground-state preparation in our measurement has weak repulsive interactions which

results in a positive energy shift. We account for this effect by estimating the ground state inter-

action energy and shifting the spectrum accordingly. For the calculation of this energy shift, we

consider the ground state minority atoms as weakly interacting repulsive polarons with energy E+.

In the limit of a deeply bound dimer (εb � εF ), the energy is given by [7]

E+

εF
≈ 2

ln(εb/εF )
= − 1

ln(κFa2D, gg)
. (S.13)

Here, εb is the dimer binding energy and the 2D scattering length of the ground state is given

by [8, 9]

a2D, gg = ly

√
π

D
exp

(
−
√
π

2

ly
agg

)
' 12.5 a0, (S.14)

where agg = 199.4a0 is the ground state s-wave scattering length [10], a0 is the Bohr radius,

ly = h̄/
√
mωy is the oscillator length, and D ' 0.905. We find ln(κFa2D, gg) = −4.9(1) and

E+ = 0.2εF for the repulsive polaron in the ground state. In Fig. 2 of the main text, we use this

energy ∆E = E+ to shift the experimental data in the spectrum. However, when comparing theory

and experiment at large magnetic fields where the attractive polaron is only weakly interacting,

we recover shifts which could be explained by a larger ground state interaction, i.e. 0.4(2)εF at

ln (κFa2D) = 8.2(1). This disagreement could originate from systematic errors due to the spectral

lineshape fit as well as effects of finite momentum and temperature for the polaron energy.

Our clock laser is stabilized to an optical cavity and the residual, non-linear drift of this laser over

the course of recording a spectrum such as that shown in Fig. 2 of the main text is typically∼ 100 Hz

which is below the relevant energy scales of the experiment. We can probe single-particle Fourier-

limited line shapes down to 200 Hz with the configuration discussed in Section S.I A. The deep

magic-wavelength lattice ensures recoil-free clock spectroscopy. Residual misalignment between

clock laser and optical lattice is below 26 mrad and leads to a negligible transverse recoil energy of

less than h× 2 Hz.

F. Rabi oscillations

After the clock excitation pulse, we detect the remaining |g, 0〉 atoms by first removing the

|g, ↑〉 atoms with a resonant pulse on the intercombination line (250 µs duration). The detection

of remaining |g, 0〉 atoms works more robustly for us than repumping the impurities in |e, ↓〉. We
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FIG. S5. Rabi frequencies Ω for different bare Rabi couplings Ω0 at (a) ln (κFa2D) = −0.57(5) (repulsive

polaron, blue circles), and (b) ln (κFa2D) = 2.22(6) (attractive polaron, red squares). The error bars denote

the errors of the fit to the Rabi oscillations. Dashed lines are linear fits to η×Ω0. The extracted parameter

η is (a) 0.93(1) and (b) 0.94(1).

fit the detected atom number N as a function of the pulse duration t to

N(t) = ae−Γbgt − be−ΓRt cos(Ωt). (S.15)

Here, Γbg is the background decay rate accounting for losses in the excited state, ΓR is the coherence

decay rate, Ω is the Rabi frequency, and a, b are two dimensionless parameters. After every

experimental cycle, we prepare a non-interacting, spin-polarized sample (mF = −3/2), and measure

the single-particle Rabi frequency Ω0. For this, we use a fit function without a background decay

rate and for the decoherence rate we typically find ΓR ≈ 0.3 kHz. The non-zero ΓR can be attributed

to finite laser linewidth and other experimental imperfections. We find Ω ∝ Ω0 for various single-

particle Rabi frequencies Ω0 both on the repulsive and attractive side as shown in Fig. S5. On

the repulsive side at small magnetic fields, the large Rabi frequencies are problematic since the

clock transitions of other spin states can be addressed as well. The detuning of the mF = +5/2→
mF
′ = +3/2 transition is ' 0.55 kHz/G. We verify that addressing of this additional transition is

negligible for magnetic fields ≥ 20 G by detecting atoms driven to the mF = +3/2 clock state in

an independent measurement.

G. Repulsive polaron lifetime

We measure the repulsive polaron lifetime with two sequential clock pulses. Right after the first

pulse, we remove any remaining |g, 0〉 atoms with a sequence of “push” pulses on the intercombi-

nation line (70 µs duration). The total number of impurities transferred back to |g, 0〉 is detected

after the second pulse and after removing all majority atoms (|g, ↑〉) using another “push” pulse

(100 µs duration). We fit the detected atom number N with

N(t) = ae−Γrept + b, (S.16)

where Γrep is the decay rate and a, b are dimensionless fit parameters. Fig. S6(a) shows such a

fit for longer times t compared to the inset in Fig. 4 of the main text. Here, the fast initial decay



8

0 20 40 60
Hold time (ms)

100

200

300

400
At

om
 c

ou
nt

a

1.0 0.8 0.6 0.4 0.2 0.0 0.2
ln( F a2D)

10 3

10 2

10 1

re
p /

F

b

FIG. S6. (a) Repulsive polaron decay at ln(κFa2D) = −0.43(4). The blue circles correspond to the number

of remaining atoms in the |g, 0〉 state after the double-pulse sequence. Each data point is the mean of two

separate measurements and the error bars refer to standard error of the mean. The solid blue line is a fit

to an exponential decay function with a constant offset. (b) Comparison of experimentally measured Γrep

(see Fig. 4 of the main text) with theoretical predictions. The dash-dotted line is the decay rate due to

three-body recombination and the dashed line is the width of the repulsive polaron branch. Data points are

shown as blue circles and the error bars denote the uncertainty in the fit.

and the slow decay of the plateau is clearly visible. In Fig. S6(b), we plot the data of Fig. 4 of the

main text along with theoretically expected contributions to the repulsive polaron decay rate. We

note that the width of the repulsive polaron branch predicted from our polaron theory model in

Eq. (S.45) (see below) approximately matches the slope, but its mean amplitude disagrees with the

experimental data. We also compare with the 2D three-body recombination rate K3 from Ref. [11],

where we assume that the background density n↑ is constant such that we obtain the decay rate

through dn↓/dt = n↓[n2
↑K3(E)] = n↓Γrep for the impurity density n↓. To estimate the collision

energy E, we assume a zero momentum impurity and approximate E as the mean kinetic energy

of the background sampled by the minority atoms,

εkin =
1

N0(∆x)

∫ ∆x/2

−∆x/2
dx

∫ ∞

−∞
dz n0(x, z)Ekin,↑(x, z), (S.17)

where the local kinetic energy Ekin,↑(x, z) is given by

Ekin,↑(x, z) =
2π

n↑(x, z)

∫ ∞

0
dp p

p2

2m
f↑(x, z, p). (S.18)

Here, f↑(x, z, p) =
{

1 + eβ[m/2 (ω2
xx

2+ω2
zz

2)+p2/(2m)−µ]
}−1

is the |g, ↑〉 number density in phase

space.

H. Polarons with dual Fermi seas

For probing the effect of an additional Fermi sea in |g, ↓〉, we follow the same state preparation

as described in Section S.I A. The only difference is the optical pumping sequence which we adjust

to yield a nearly balanced spin mixture of mF = ±5/2. Minority atoms are still prepared in

mF = −3/2. The two Fermi seas interact repulsively which modifies the local density compared to
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FIG. S7. Clock spectra in the presence (red circles and lines) and absence (gray circles and lines) of an

additional Fermi sea in the mF = −5/2 ground state at magnetic fields (a) 15 G, (b) 45 G, (c) 60 G, (d)

90 G, (e) 135 G, (f) 165 G, (g) 210 G, and (h) 255 G. Signal amplitudes are normalized to the integral of

the full spectrum at the given magnetic field. Each data point is the average of two or three individual

measurements and error bars are not shown to reduce visual clutter. The interaction parameters ln (κFa2D)

are shown in the top left corner of each plot. Note that they differ at the same magnetic field due to slightly

different effective Fermi energies εF = h × 2.99(19) kHz and h × 3.20(21) kHz. The minority fractions are

0.28(5) and 0.23(3), temperatures of the |g, ↑〉 Fermi sea are kBT/εF = 0.23(4) and 0.20(4).

the case without an additional Fermi sea. We use the local density approximation and an expansion

of the chemical potential for weak repulsive interactions to find the local Fermi energy EF (x, z).

In our system, the Thomas-Fermi equation is given by

µ0 = µ [n(x, z)] +
m

2

(
ω2
xx

2 + ω2
zz

2
)
, (S.19)

where n(x, z) is the local atom density, µ(n) is the local chemical potential, and µ0 is fixed by∫
n(x, z) = N , where N is the total number of atoms. We use the expansion of the chemical

potential for weak repulsive interactions in 2D up to second order from Ref. [12],

µ(g) = EF
[
1 + 2g + 4g2(1− ln 2) +O

(
g3
)]
. (S.20)

Here, EF is the local Fermi energy and g is a dimensionless interaction parameter which is related

to ln(κFa2D). In 2D, we use the following form to calculate the finite temperature chemical

potential [13]

µ(T ) = kBT ln
(
eTF /T − 1

)
, (S.21)

where TF = EF /kB is the local Fermi temperature. Numerically solving Eqs. (S.19), (S.20), and

(S.21) yields the local density n(x, z) and effective Fermi energy εF in the presence of interactions

and finite temperature. For the experimental parameters, we find an effective Fermi energy εF =

h × 2.99(19) kHz compared to h × 3.26(20) kHz in the absence of an additional Fermi sea. The

effective Fermi energy of the additional Fermi sea is given by ε↓F = h × 2.73(19) kHz. For the

temperature of the |g, ↓〉 Fermi sea, we find kBT/εF = 0.23(4).



10

1.0 0.8 0.6 0.4 0.2 0.0
ln( F a2D)

0.6

0.7

0.8

0.9

1.0
(

/
0)2

a

1.0 0.8 0.6 0.4 0.2 0.0
ln( F a2D)

0.10

0.15

0.20

0.25

0.30

R/
F

b

0.0 0.2 0.4 0.6
Pulse time (ms)

0.0

0.5

1.0

Si
gn

al
(a

rb
. u

nit
s)

FIG. S8. (a) Quasiparticle residue Z = (Ω/Ω0)2 in the presence (blue squares) and absence [purple circles,

see Fig. 3(a) of the main text] of an additional Fermi sea in the |g, ↓〉 state. The inset shows sample Rabi

oscillations in the presence of an additional Fermi sea for interaction parameters ln (κFa2D) = −0.50(3)

(blue points) and −0.01(3) (green points), where solid lines are fits to the data points. The gray points and

solid line correspond to a reference measurement without any background Fermi sea. (b) Damping ΓR of

Rabi coupling as described by the fit function in Eq. (S.15). Error bars indicate the fit error in ΓR and the

uncertainty in ln (κFa2D).

In the clock spectroscopy measurement shown in Fig. S7, we follow the same methods described

in the main text and Section S.I E except for the modified state preparation. We can still clearly

identify the repulsive and attractive polaron branches but do not find any striking features in the

spectrum compared to the configuration without the additional Fermi sea. However, at intermedi-

ate magnetic fields we find a small shift of the attractive polaron energy towards smaller energies

(see Fig. S7). This shift towards smaller energies is in contrast to the results of our theoretical

model (see Section S.II F). We point out that the energy shift is on the same level as our experi-

mental resolution as well as the correction due to the repulsive interactions of the |g, ↓〉 and |g, ↑〉
Fermi sea discussed above.

For the Rabi oscillations, we can only probe the repulsive polaron due to the finite tuning range

of our laser used for the “push” pulses on the intercombination line. For the repulsive polaron,

the normalized Rabi frequency (Ω/Ω0)2 is slightly larger in the presence of an additional Fermi sea

which could indicate a larger quasiparticle residue in this case. The decoherence of Rabi oscillations

ΓR is comparable for both configurations as shown in Fig. S8.

S.II. THEORETICAL DESCRIPTION

A. Two-body problem in a quasi-two-dimensional geometry

In our theoretical modeling, we assume that the 173Yb atoms move in a uniform two-dimensional

plane, while in the direction transverse to the plane we assume a harmonic potential V (y) =
1
2mω

2
yy

2. We define the associated oscillator length ly = 1/
√
mωy (here and throughout this

section we work in units where h̄ = 1). In this geometry, the center-of-mass and relative motion

decouple. Therefore, to describe the two atoms we consider the Hamiltonian of the relative motion,
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Ĥ = Ĥ0 + V̂ . Here, the non-interacting part is

Ĥ0 =
∑

k,n

2εkn |o,kn〉 〈o,kn|+
∑

k,n

(2εkn + δ) |c,kn〉 〈c,kn| , (S.22)

where k is the in-plane relative momentum, n denotes the transverse harmonic oscillator quantum

number for the relative motion, and 2εkn = k2/m + nωy is the non-interacting energy (measured

from the zero-point energy). The 173Yb system features two electronic orbitals (|g〉 and |e〉) as well

as two nuclear spin states (|↓〉 and |↑〉). In principle, there are four different configurations for two

atoms, but for the situation of interest we only have two: The open channel |o〉 ≡ |g ↑, e ↓〉 and

the closed channel |c〉 ≡ |e ↑, g ↓〉. Here, δ is the detuning of the closed channel,

δ ≡ ∆µB (S.23)

with ∆µ given by Eq. (S.12) and B the magnetic field. The interaction does not preserve the

orbital configuration, but rather proceeds via the triplet (+) and singlet (−) channels, with |±〉 ≡
1√
2

(|o〉 ± |c〉). Thus, the interaction part of the Hamiltonian takes the form

V̂ =
∑

k,k′,n,n′
φnφn′

{
U+ |+,kn〉

〈
+,k′n′

∣∣+ U− |−,kn〉
〈
−,k′n′

∣∣} , (S.24)

where we assume contact interactions of strength U±. Here,

φn =

{
(−1)n/2 1

(2πl2y)1/4

√
n!

2n/2(n/2)!
, n even

0, n odd
(S.25)

is the wave function of the transverse relative motion at zero separation.

The renormalization of the contact interaction in a quasi-two-dimensional geometry was carried

out in Refs. [8, 9]. Here, we mainly follow the notation outlined in the review [14], properly

generalized to account for the orbital structure of the interactions. We start by writing down the

Lippmann-Schwinger equation for the two-body T matrix

〈
k′n′

∣∣ T̂ (E) |kn〉 =
〈
k′n′

∣∣ V̂ |kn〉+
∑

k′′n′′

〈
k′n′

∣∣ V̂
∣∣k′′n′′

〉 〈
k′′n′′

∣∣ 1

E − Ĥ0 + i0

∣∣k′′n′′
〉 〈

k′′n′′
∣∣ T̂ (E) |kn〉 ,

(S.26)

where E is the energy, and the infinitesimal positive imaginary part +i0 ensures that we consider

the outgoing scattered part of the wave function. Note that we suppress the indices related to the

orbital configuration since we will consider this in a matrix representation. Since the interaction

part of the Hamiltonian, Eq. (S.24), is independent of momentum, Eq. (S.26) factorizes as a function

of momentum. Thus, in the triplet-singlet basis we have

〈
k′n′

∣∣ V̂ |kn〉 = φnφn′

(
U+ 0

0 U−

)
≡ φnφn′V. (S.27)

On the other hand, the polarization bubble is most straightforward to evaluate in the open-closed

channel basis where it takes the form

∑

k,n

〈kn| 1

E − Ĥ0 + i0
|kn〉 =

∑

k,n

(
φ2n

E−2εkn+i0 0

0 φ2n
E−2εkn−δ+i0

)
≡ Πq2D(E). (S.28)
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With these definitions, it is straightforward to formally obtain the vacuum scattering T matrix,

which we write in the open-closed basis

T(vac)(n1, n2;E) ≡ 〈k1n1| T̂ (E) |k2n2〉 = φn1φn2

[
RV−1R−Πq2D(E)

]−1
(S.29)

for arbitrary relative momenta k1,2. Here,

R =
1√
2

(
1 1

1 −1

)
(S.30)

is the involutory matrix that transforms between the triplet-singlet basis and the open-closed

channel basis.

Following the steps in Ref. [14] (see also Refs. [8, 9]) to evaluate the polarization bubble, we

obtain

T(vac)(0, 0;E) =
2
√

2π

m

[
R

(
ly
a+

0

0
ly
a−

)
R−

(
F(−E/ωy) 0

0 F((−E + δ)/ωy)

)]−1

(S.31)

where we specialize to scattering between the lowest transverse levels, and consider excited states

only in the intermediate virtual processes. This is a valid assumption since in our experiment the

transverse confinement frequency greatly exceeds all other relevant energy scales. The function F
takes the form [9]

F(x) =

∫ ∞

0

du√
4πu3

[
1− e−xu√

(1− e−2u)/2u

]
. (S.32)

The quantities a+ and a− are the triplet and singlet scattering lengths, respectively. While the

contact interaction model, Eq. (S.24), does not contain effective range corrections to the 3D scat-

tering phase shifts, we could in principle have used a two-channel model for each of the singlet and

triplet interactions to include this. This procedure is straightforward, but cumbersome to write

down. The end result is, however, simple. Indeed, we just have to make the replacement

a−1
± → a−1

± −
1

2
mr±

(
E − δ

2
+

1

2
ωy

)
, (S.33)

with r± the singlet and triplet effective ranges. In practice, all theory curves are calculated by

making this replacement and using the scattering lengths and effective ranges from Ref. [4].

Finally, we extract the two-body binding energy and the effective 2D scattering length from the

T matrix. The two-body binding energy εb > 0 is found from the pole of the T matrix, i.e., from

the condition det[T(vac)(0, 0; εb)]
−1 = 0. Thus, εb satisfies

[
2ly
a+
−F

(
εb
ωy

)
−F

(
εb + δ

ωy

)][
2ly
a−
−F

(
εb
ωy

)
−F

(
εb + δ

ωy

)]
−
[
F
(
εb
ωy

)
−F

(
εb + δ

ωy

)]2

= 0.

(S.34)

To extract an effective low-energy open-channel 2D scattering length, we compare the open-channel

element of Eq. (S.31) with the expression for the low-energy scattering:

fq2D(E) ≡ mT
(vac)
11 (0, 0;E) ' 4π

− ln(ma2
2DE) + iπ

, (S.35)
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FIG. S9. The 2D scattering length a2D as a function of the closed channel detuning δ (magnetic field)

for our typical experimental conditions with ly ' 750a0. The solid line shows a2D defined from the low-

energy scattering amplitude [see Eq. (S.36)], while the dashed line shows the a2D that would be obtained

by using the simple approximation a2D = 1/
√
mεb where εb is the quasi-2D dimer binding energy defined

in Eq. (S.34). For large δ (small εb), the two results agree while for small δ (gray shaded area) there are

rather large deviations as the inset shows.

where the subscript on T indicate the corresponding matrix element. Assuming that δ � |E| (i.e.,

that we are not close to B = 0) we find

a2D = ly

√
π

D
exp

[
−
√

2π
l2y/(a−a+)− 1

2(ly/a− + ly/a+)F(δ/ωy)

ly/a− + ly/a+ − 2F(δ/ωy)

]
. (S.36)

Again, we can replace a−1
± → a−1

± − 1
4r±m(ωy − δ) to include the effective ranges in the triplet-

singlet channels. Fig. S9 shows the functional dependence of a2D for our typical experimental

parameters. Here, we also see that the universal formula in the 2D limit, εb = 1/(ma2
2D), breaks

down at small δ (low magnetic field) where the dimer binding energy becomes comparable to the

transverse confinement.

B. Impurity Green’s function

To investigate the many-body dressing of an impurity, we evaluate its Green’s function which,

in general, also takes the form of a matrix. However, we will work under the assumption that we

create at most a single excitation of the fermionic medium. Such an approximation has proven

extremely accurate since it was first introduced in Ref. [15, 16]. Within this approximation, the

open and closed channel parts of the impurity Green’s function completely decouple, and since our

clock laser pulse injects the impurity into the open channel, we restrict ourselves to considering this

channel. Furthermore, since the transverse confinement frequency greatly exceeds both the Fermi

energies and temperature, we assume that the impurity is only virtually scattered into excited

bands of the transverse confinement such that we can consider an effective 2D Green’s function.

We note that higher bands of the transverse confinement can in principle be taken into account

using the formalism developed in [17].
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Within our approximations, the open-channel retarded impurity Green’s function satisfies the

Dyson equation

G(k, E) =
1

E − εk − Σ(k, E)
, (S.37)

where we take the impurity to be in the lowest harmonic oscillator state, and we use the 2D

single-particle energy εk ≡ εk0. The open-channel self energy is

Σ(k, E) =
∑

q

no(q)T11(k + q, E + εq), (S.38)

with no(q) =
{

1 + eβ[q
2/(2m)−µ]

}−1
the finite-temperature Fermi-Dirac distribution of the back-

ground Fermi sea in |g, ↑〉 and T the in-medium T matrix. The latter is related to the vacuum T

matrix, Eq. (S.31), via

T−1(k, E) =
[
T(vac)(E − εk/2)

]−1
+

(
∆Πo(k, E) 0

0 ∆Πc(k, E − δ)

)
. (S.39)

Note that we have dropped the transverse harmonic oscillator indices on the vacuum T matrix

since these have been set to 0. The functions ∆Πo,c are the differences between the medium and

vacuum T matrices:

∆Πo,c(k, E) =
∑

q

no,c(q)

E + εk − εq − εk−q + i0
, (S.40)

where nc(q) is the Fermi-Dirac distribution of the additional Fermi sea in state |g, ↓〉 which must

be taken into account for the configuration described in Sec. S.I H. We extract all quasiparticle

properties from the impurity Green’s function.

C. Polaron spectral response

The spectral response measured in experiment corresponds to the impurity spectral function

A(E), which we calculate from the Green’s function in Eq. (S.37) as

A(E) = − 1

π
Im[G(0, E)], (S.41)

where we neglect the initial distribution of impurity momenta. We extract the attractive and

repulsive polaron energies E− and E+, respectively, from the peak values of the spectral function.

The results are shown in Figs. 1(a) and 2(a) of the main text.

Fig. S10 shows sample spectra recorded at fixed magnetic fields of (a) 45G and (b) 210G

compared with the results of our theory. We see that while the width of the repulsive polaron

is approximately captured within our model, the attractive polaron peak is somewhat broader in

experiment than in the theoretical model.
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FIG. S10. Spectral response at fixed magnetic fields (a) B = 45G [repulsive side with ln(κFa2D) = −0.38(2)]

and (b) B = 210G [attractive side with ln(κFa2D) = 4.17(5)]. The experimental data (filled circles) is

compared with the theoretical predictions (solid lines) obtained from Eq. (S.41) at T/TF = 0.17 and with a

small Lorentzian broadening of 0.11εF , which corresponds to the Fourier limit of the excitation pulse. Note

that the overall amplitude of the theoretical spectrum is scaled to the height of the repulsive polaron peak

in the experiment. To better compare the shapes of the peaks, we have shifted the theoretical curves down

in energy by 0.2εF .

D. Quasiparticle residue

From the Rabi oscillations observed in experiment, we extract the quasiparticle residue, Z,

defined as the squared overlap between the non-interacting state of the impurity plus medium with

that of the strongly interacting system. Similar to the scenario in alkali-atom experiments [18, 19],

this overlap in reality compares states involving the impurity atom in two different spin states.

However, the Rabi coupling provides the spin-flip operator that is necessary to simply relate the

overlap to that of interacting and non-interacting states, without making explicit reference to the

spin state. In contrast to the case of alkali atoms, the interacting state of the impurity atoms

involves two orbitals, but since the overlap with the non-interacting state only involves the open

channel it can be extracted from the open-channel Green’s function.

Specifically, the Rabi frequency Ω is reduced by a factor
√
Z [18] from its bare value Ω0 due

to the dressing of the impurity by excitations of the medium. We calculate the residue using the

standard expression

Z−1
± = 1− Re

[
∂Σ(0, E)

∂E

∣∣∣∣
E=E±

]
. (S.42)

The results are shown in Fig. 3(a) of the main text, where we see that the measured repulsive

(attractive) polaron residues are systematically above (below) the theoretical prediction.

The main source of discrepancy between theory and experiment for the residue shown in Fig. 3(a)

is likely to be the repulsive interactions between the initial |g, 0〉 state and the Fermi sea in state

|g, ↑〉. Such repulsive interactions will respectively enhance and reduce the overlap of the initial

state with the repulsive and attractive polarons in the final state. We can estimate the maximum

amount this overlap can change as follows. Assume that a polaron |Ψp〉 with residue Zp has a wave

function consisting of only two terms, the state that overlaps with the non-interacting ground state
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FIG. S11. The quasiparticle residue extracted from fits to Rabi oscillations as in Fig. 3(a) of the main text.

Blue circles (red squares) correspond to the repulsive (attractive) polaron. The residues from our theory

without considering initial state interactions are shown as dashed lines, while the shaded bands illustrate

the range of possible values that Z can take once these are taken into account.

|0〉 and an incoherent background |inc〉:

|Ψp〉 =
√
Zp |0〉+ eiϕp

√
1− Zp |inc〉 , (S.43)

where we assume that both |0〉 and |inc〉 are normalized and eiϕp is a phase. Within this approxima-

tion, we would thus arrive at the maximum (minimum) overlap between the repulsive (attractive)

polaron states |Ψ+〉 (|Ψ−〉) and the initial (repulsive polaron) state |Ψi〉:

| 〈Ψi|Ψ+〉| <∼
√
Z+ +

√
1− Zi

√
1− Z+,

| 〈Ψi|Ψ−〉| >∼
√
Z− −

√
1− Zi

√
1− Z−, (S.44)

with the initial-state residue Zi ' 0.98. We show these estimates in Fig. S11, and we see that

this can improve the agreement between theory and experiment substantially. A similar effect was

found in Ref. [19] for 6Li atoms.

E. Damping of Rabi oscillations

Another observable is the width Γ± of each polaron peak in the spectral function, which can be

computed from the self energy for the attractive and repulsive branches:

Γ± = −Z±Im[Σ(0,E±)]. (S.45)

The result Γ+ for the repulsive polaron is plotted in Fig. 3(b) of the main text and is seen to match

the damping rate of the Rabi oscillations observed in experiment. However, for the attractive

polaron, the damping rate is much larger than that predicted from Eq. (S.45). This enhanced

damping could be because the Rabi frequency in experiment is comparable to or larger than the

Fermi energy, which has been theoretically shown to affect the Rabi oscillations of the attractive

polaron [20].
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FIG. S12. Theoretically predicted energy shifts of repulsive (blue lines) and attractive (red lines) polarons

for εF = h× 3.0 kHz and an additional Fermi sea in |g, ↓〉 with an effective Fermi energy ε↓F = h× 2.7 kHz

(solid), 2ε↓F (dashed), and 3ε↓F (dotted). The blue (red) shaded area denotes the interaction parameters

where we experimentally find a sufficient contrast of the repulsive (attractive) polaron peak.

To understand the damping rate of the attractive polaron, we consider a simple three-state

model of the Rabi oscillations that involves the non-interacting initial state |Ψi〉, the final attractive

polaron state |Ψ−〉, and a state |Ψcon〉 that represents the continuum of states in the final spectrum

that are orthogonal to |Ψ−〉. Taking the clock laser to be resonant with the attractive polaron, the

Hamiltonian for the three-state system is, in matrix form,

H =




0
√
Z Ω0

2

√
1− Z Ω0

2√
Z Ω0

2 0 0√
1− Z Ω0

2 0 −iΓcon


 . (S.46)

Here, we have assumed that the continuum is dominated by its spectral width Γcon ∼ εF since

it does not correspond to a well-defined peak in the spectrum. We have also required that the

spectrum obeys the sum rule |〈Ψi|Ψ−〉|2 + |〈Ψi|Ψcon〉|2 = 1, so that |〈Ψi|Ψcon〉| =
√

1− Z with

Z = |〈Ψi|Ψ−〉|2.

When the final state is non-interacting, then Z = 1 and we obtain the standard result for Rabi

oscillations of the initial-state fraction Ni as a function of time t,

Ni(t) =
1

2
[1 + cos(Ω0t)] . (S.47)

However, the continuum can significantly affect the oscillations when Z < 1 and Ω0 is comparable

or larger than εF , as is the case in experiment. In particular, if we assume that Ω0 � Γcon and Z

is close to 1, a perturbative calculation yields

N(t) ' e−ΓRt

2

[
1 + cos

(√
ZΩ0t

)]
, (S.48)

where the Rabi damping rate ΓR ' (1 − Z)Γcon. This is consistent with the results shown in

Fig. 3(b) of the main text. While we do not have a precise value for the width of the continuum

Γcon, we expect it to be comparable to the Fermi energy εF of the medium.
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F. Dual Fermi sea configuration

Finally, we comment on the dual Fermi sea configuration discussed experimentally in Sec. S.I H.

The motivation for this investigation is that this scenario corresponds to an effective frustration

of interactions close to the orbital Feshbach resonance. Indeed, while the impurity in state |g, 0〉
does not directly (strongly) interact with the Fermi sea in state |g, ↓〉, the presence of a Fermi

sea in the weakly-detuned closed channel provides an effective Pauli blocking of the open-channel

interactions. This is fundamentally different from the usual Feshbach resonances [21], where the

closed channel is detuned by an energy that far exceeds all scales relevant to the physics of interest.

Thus, our experiment provides the first steps towards realizing a “frustrated” Feshbach resonance.

Fig. S12 shows our predicted energy shifts in the “frustrated” configuration. We see that we

expect the energy of both polaron branches to increase. For the experimental Fermi energy in the

closed channel, the expected energy shifts (solid lines in Fig. S12) are below 0.15εF within the range

of magnetic fields where we have sufficient contrast, which may be the reason why these shifts are

not observed in experiment (see Fig. S7). However, as also illustrated in Fig. S12, we expect the

energy shift to strongly increase with the |g, ↓〉 Fermi energy. In particular, the increased energy

of the repulsive branch could potentially stabilize a ferromagnetic phase [22].
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