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Prospects of reinforcement learning 
for the simultaneous damping of 
many mechanical modes
Christian Sommer1*, Muhammad Asjad1 & Claudiu Genes1,2

We apply adaptive feedback for the partial refrigeration of a mechanical resonator, i.e. with the aim to 
simultaneously cool the classical thermal motion of more than one vibrational degree of freedom. The 
feedback is obtained from a neural network parametrized policy trained via a reinforcement learning 
strategy to choose the correct sequence of actions from a finite set in order to simultaneously reduce 
the energy of many modes of vibration. The actions are realized either as optical modulations of the 
spring constants in the so-called quadratic optomechanical coupling regime or as radiation pressure 
induced momentum kicks in the linear coupling regime. As a proof of principle we numerically illustrate 
efficient simultaneous cooling of four independent modes with an overall strong reduction of the total 
system temperature.

The radiation pressure effect of light onto the motion of mechanical resonators has been extensively employed 
to bring such macroscopic systems towards the quantum ground state1–11. In a standard approach, the aim is to 
isolate a single vibrational mode and bring it to a state where the only relevant motion is given by the zero-point 
fluctuations. Cold-damping is one of the used techniques, where one detects motionally-induced phase changes 
in the cavity output and an electronic feedback loop is implemented to dynamically modify the cavity drive such 
as to produce an extra optical damping effect12–19. Alternatively, in the good cavity limit where the photon loss 
rate is smaller than the mechanical frequency, the resolved sideband technique can be implemented by detuning 
the drive to the cooling sideband20–24. As the effect stems from the inherent time delay between the action of the 
mechanical resonator onto the cavity field and the back-action of light, this can be seen as a sort of automatic cav-
ity induced feedback. Both techniques are devised and have been successfully applied for single vibrational mode 
cooling. However, it is interesting to devise an alternative technique that can induce partial to full refrigeration 
of the mechanical resonator, i.e. to simultaneously cool a multitude of vibrational modes into which the thermal 
energy is distributed. An impediment is that the detected output signal only gives information on a generalized 
collective quadrature but not on all modes. This leads to efficient cooling of some collective mode (for example 
center of mass) while some collective modes become dark and remain in a high temperature state. It has been 
recently pointed out that some strategies such as multimode cold-damping could in principle lead to sympathetic 
cooling of many modes via disorder induced coupling between bright and dark modes25.

Here, we propose a machine learning approach towards devising a strategy capable of providing refrigeration 
of the classical motion of a mechanical resonator based on the feedback obtained from the detection of a single 
optical mode. While the detected optical mode only gives information on a collective generalized quadrature 
obtained as a linear combination of individual mode displacements, the procedure is optimized such as at any 
instant in time a compromise is made between efficiently cooling a particular target mode while not affecting 
the others too much. We provide proof-of-principle multi-mode numerical simulations using a neural network 
parametrized policy trained by a reinforcement learning algorithm to generate the feedback signal capable of 
simultaneously extracting thermal energy from four distinct modes of a single mechanical resonator.

Machine learning techniques have been recently applied to various applications in quantum physics rang-
ing from the identification of phases in many-body systems, predicting ground-state energies for electrostatic 
potentials, active learning approaches to propose and optimize experimental setup configurations and towards 
applications for quantum control and quantum-error correction26–34. In particular, a few studies26,34,35 successfully 
applied the technique of reinforcement learning with neural networks36. This approach originates from the idea, 
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to let an intelligent agent that observes its environment choose an action, that is determined by a given policy 
trying to optimize a particular reward and/or minimize a punishment.

We employ such a reinforcement learning technique for optically assisted cooling of the classical thermal 
state of a multi-mode mechanical resonator system37–39. The learning technique allows one to acquire a nonlinear 
function that chooses a feedback action that will be applied on the dynamical system upon taking the full or par-
tial measured state of the system as an input. The training of this function that is given by a dense neural network 
is obtain by trial and error and quantified by an increased reward that is obtained by successfully reducing the 
energy of the resonators.

The physical systems considered are depicted in Fig. 1. The mechanical resonator is subject to environmental 
noise described by a standard Brownian motion stochastic force leading to thermalization at some equilibrium 
temperature T. The feedback action is implemented via the radiation pressure force, i.e. photon kicks either from 
one or two sides. The induced damping is straightforward in the two-sided kicking case [illustrated in Fig. 1a]: 
the read-out of motion is followed by appropriate kicking action from the side towards which the resonator is 
moving. However, one-sided kicking [illustrated in Fig. 1b] already suffices allowing setups such as the cavity 
optomechanical platform pictured in Fig. 1c. The typical weak free space photon-phonon interaction can also 
be drastically increased by the filtering of the action through the high-finesse optical cavity. Such a situation is 
characterized by a linear coupling of the photon number to the membrane’s displacement and has been exten-
sively studied in single mode cooling via cavity time delayed effects12 or by implementation of cold damping 
techniques12 especially in the bad cavity regime. The membrane-in-the-middle40–42 scenario in Fig. 1d,e corre-
sponds to a quadratic coupling in displacement leading to the possibility of optically modulating the mechanical 
oscillation frequency42. We describe in Fig. 1e a possible approach for feedback cooling via cavity field detection 
and neural network assisted feedback.

We will consider the bad cavity case where losses are large compared to the mechanical resonator’s vibration 
frequencies such that the cavity back-action is negligible. In such a case, the situations described in Fig. 1b,c are 
physically equivalent with the difference that in Fig. 1c the action of a single photon is multiplied by a large num-
ber roughly proportional to the finesse of the cavity. We also distinguish between a parametric regime with quad-
ratic coupling implemented in the membrane-in-the-middle setup and the linear coupling regime realizable with 
a single-end mirror cavity or in free space. First we analyze the performance of a neural network suggested set of 
actions onto the cooling of a single mode via parametric modulation of the oscillation frequency: we describe the 
shape of the action and numerically show the efficient reduction of energy from the initial thermal distribution. 
We then apply the technique to the linear cooling of four distinct modes of the resonator and find a more complex 
set of actions required for efficient simultaneous cooling of all four modes (with limitations arising due to the 
numerical complexity of the simulations).

Model
We consider a membrane resonator with a few modes of oscillations of frequencies ωj (where = …j N1, ). We 
start with a quantum formulation of the system’s dynamics aimed at future treatments of cooling in the presence 
of quantum noise. However the current formulation aims only at the reduction of classical thermal noise and is 
therefore obtained by inferring the equivalent classical stochastic equations of motion. The Hamiltonian for the 
collection of modes is written as ω= ∑ +=H p q/2( )m j j j j1

2 2 , in terms of dimensionless position and momentum 
quadratures qj and pj for each independent membrane oscillation mode. The effect of the thermal reservoir can be 
easily included in a set of equations of motion supplemented with the proper input stochastic noise terms:
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Figure 1.  Cooling of thermal motion via two-sided kicking in (a) or via one sided-kicking in (b). (c) Increased 
damping efficiency can be realized by an amplification of the photon-phonon coupling in the linear coupling 
regime via an optical cavity enhancement of the electric field amplitude. (d) Membrane-in-the-middle 
configuration leads to a quadratic coupling in the mechanical displacement allowing optical control of the 
mechanical mode’s spring constant. (e) Simultaneous cooling of multiple oscillating modes (inset shows a few 
drum modes of a dielectric membrane) using feedback generated by a reinforcement trained policy, encoded in 
a neural network. While the illustration shows a quadratic membrane-in-the-middle setup, the validity extends 
to the end-mirror linear setup as well. The outgoing signal from a driven cavity carries information on the 
collective displacement of all membrane vibration modes. This signal is fed through a neural network and the 
network’s suggested action is implemented as a modulation of the cavity input drive amplitude.
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ω=q p , (1a)j j j

p q p F t( ) (1b)j j j j j j jω γ ξ= − − + + .

The parameter jγ  describes the damping of the j’s resonator mode. Its associated zero-averaged Gaussian sto-
chastic noise term leading to thermalization with the environment can be fully described by the two-time corre-
lation function:
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where Ω is the frequency cutoff of the reservoir and the thermal noise spectrum is given by 
S k T( ) [ coth( /2 ) 1]Bth ω ω ω= + . For sufficiently high temperatures ωk TB j , the correlation function 
becomes a standard white noise input with delta correlations both in frequency and time. Specifically, one can 
approximate t t n t t( ) ( ) (2 1) ( )j j j j jjξ ξ γ δ δ〈 ′ 〉 ≈ + − ′′ ′, where the occupancy of each vibrational mode is given by 
n k T k T(exp( / ) 1) /j j B B j

1 ω ω= − ≈− . For numerical simulations we generate a stochastic input noise as a 
delta-correlated Wiener increment with variance proportional to the integration time-step (see Methods) and 
follow an approach described in ref. 43. For consistency we check (in the Methods) that the thermal bath indeed 
correctly describes the expected thermalization of an initially cold oscillator towards the equilibrium temperature 
T  at a rate given by γ.

The momentum kicks selected by the network are encompassed in the action of the force terms F t( )j . This can 
be realized for example by the radiation pressure effect of a laser beam, modulated by a device like an AOM 
(acousto-optic modulator). Here, forces acting on different resonators given by Fj and ′Fj  for j j≠ ′ differ only by 
a constant multiplication factor as they are all obtained from the same quantity (the output field).

To amplify the effect of the action force onto the mechanical resonator one can utilize optical cavities. A cavity 
also allows control over the coupling by placing the membrane either in a node (quadratic coupling) or anti-node 
(linear coupling) of the cavity mode. The Hamiltonian is now modified by the addition of the free cavity mode 
ω † a ac , laser driving resonant to the cavity mode  † −Ei t a a( ) ( ) (in a frame rotating at cω ) and optomechanical 

interaction of linear †∑ g a aqj j j
(1)  or quadratic form ∑ †g a aqj j j

(2) 2. The amplification effect of the light field ampli-

tude can be seen from the relation κ ω=E Pt t( ) 2 ( ) /L c0  connecting the driving amplitude to the input laser 
power P t( )0  through the left mirror with losses at rate Lκ . For high-finesse cavities photons perform many round 
trips before leaking out through the mirrors resulting in a large momentum transfer onto the mirror: this can be 
seen by taking the limit of small Lκ  resulting in a large value of a(t) for a given t( )0P . Notice that we considered a 
double-sided cavity with left κL and right Rκ  decay rates adding to the total loss rate κ κ κ= +L R. The coefficients 
gj

(1) and gj
(2) are the linear and quadratic per photon optomechanical coupling rates corresponding to the two 

situations depicted in Fig. 1c,d, respectively. While the cavity field amplitude inherently depends on the displace-
ment of the mechanical mode, we will assume the unresolved sideband regime where this dependence is weak. 
Moreover, we are interested in the classical problem i.e. in simulating the proper set of actions that results in the 
shrinking of an initial large thermal distribution for the total energy of the oscillator. To this end we only consider 
the trivial dynamics of the cavity field classical amplitude α = 〈 〉t a t( ) ( )  which follows the driving field as 

α κα= − + Et t( ) ( ). We can then reduce the dynamics of the system to

 ω=q p , (3a)j j j

ω γ ξ α= − − + − | |p q p g t( ) , (3b)j j j j j j j
(1) 2



t( ), (3c)

α κα= − + E

which resemble Eqs. 1a,b, where we can identify the action forces α= − | |F t g t( ) ( )j j
(1) 2 (the cavity field α(t) play-

ing the role of the action delivering the cooling momentum kicks to the mechanical oscillators). As noted before, 
as the actions are obtained from the same cavity field intensity, they only differ by the multiplicative gj

(1) factor. 
Notice also that this configuration strongly resembles a cold damping approach12–14.

In contrast, for a quadratic coupling Hamiltonian, the changes in the momentum are of a very different nature

 ω α γ ξ= − + | | − +p g t q p[ 2 ( ) ] , (4)j j j j j j j
(2) 2

as the cavity periodically modulates the oscillation frequencies of each mode.
To provide the neural network feedback onto the motional dynamics, we use the inferred q and q at a given 

time − Δt t as input values for the neural network [see Fig. 1]. The trained network then selects the appropriate 
action by choosing the value of E t( ) (from a finite number of possible values) to be acted upon the system. The 
size of the time-step Δt is chosen such that 1/

 tjω Δ  for all j to minimize the error in the numerical integration. 
For a given drive amplitude, the set of actions on the different modes will be different according to the values of 
the optomechanical couplings (as they are proportional to g t( )j

(1) 2α| |  or α| |g t2 ( )j
(2) 2). We then use the Runge-Kutta 
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fourth-order method (RK4) for the numerical integration of the dynamical system where we iteratively sum for 
each time step. Additionally, at each time step we inject the measured parameters of the dynamical system as 
input data into the nonlinear function formed by the neural network to predict on the action and thereby the 
momentum kick or cavity field strength suitable for the next time step, which is acquired from the output nodes 
(neurons) of the network.

Reinforcement Learning
The neural network provides a nonlinear function, that for some given input data, which harbor information 
about the oscillator states at a given time step t, predicts the correct action for the next time step + Δt t that helps 
to reduce the overall energy of the dynamical system at later times. This function forms the neural network para-
metrized policy π. To obtain an optimal (or nearly optimal) policy we employ the technique of reinforcement 
learning36,44 and in particular a policy gradient approach45. Such a problem is in general referred to as a Markov 
decision process (MDP)46 and described in detail in the Methods section. Here, the network acts as an agent that 
by observing parameters of the environment (resonator) improves its probabilistic policy that chooses the right 
actions at at a given time t to increase an overall reward = ∑R Rt t (full reward over a trajectory) that is connected 
to the reduction of the energy of the resonator modes. The actions are chosen from a finite set (of values of differ-
ent amplitudes) and realized as momentum kicks or translated into frequency shifts. As an input to the network 
we feed information about the state of the environment given by s q t q t( ( ), ( ))t = . The network outputs the prob-
abilities a s( )t tπ |θ  for the actions at that could be applied to the dynamical system. Here, the parameter θ encom-
passes all the weights and biases of the network. We take the action with the highest probability and apply it in the 
next iteration of Eq. 1 up to Eq. 3b. The probabilities π |θ a s( )t t  can be optimized with respect to an increased reward 
return Rt by employing an update rule for the weights and biases of the neural network, following θ θ θ← + Δ  
and

∑θ η η πΔ = ∂ = − ∂ |θ θ θ R R b a s[ ] [( ) (ln ( ))],
(5)j

t
t tj j

where  is the expectation value over all state and action sequences (full trajectories), which here is approximated 
by averaging over a large enough set of oscillator trajectories (training batch) and their corresponding action 
sequences which we have obtained from the iterative summation of the dynamical equations (RK4) and from the 
predictions of the neural network at each time step for various randomly chosen initial conditions. The learning 
rate is given by the parameter η and b is a baseline to suppress fluctuations of the reward gradient45,47. Here, the 
baseline is approximated by ≈ = − ∑ =

−b b n R(1/ 1)n i
n i

1
1 ( ), where R i( ) is the average total Reward from the i’s 

learning epoch. Here, the training epoch is defined as the number of updates θ θ θ← + Δ .
The neural network which is represented by the array θ encompassing all weights and biases, consists of an 

input and output layer and two hidden layers whereby the number of input neurons depends on the number 
measured of variables of the system while the number of output neurons depends on the number of possible 
output actions, respectively (see Methods). The two hidden layers consists of up to 60 to 100 neurons each. The 
network is densely connected and we chose “relu” (rectified linear unit) as a nonlinear function acting on each 
neuron in the two hidden layers. The probabilities for each action given out by the output layer are obtained by 
using the “softmax” nonlinear function for the output neurons. From these probabilities the action is chosen by 
taking the neuron index with the highest probability value in the output.

Results
Single mode cooling.  In a first step we numerically simulate the time dynamics of a single oscillating mode 
of frequency ω initially in a thermal distribution imposed by its coupling to an environment at some temperature 
T. This corresponds to the following distribution of energies

P E Z e( ) , (6)E1= β ω− − 

with a partition function β ω≈ −Z ( ) 1  and the total occupation number normalized energy = +E q p( )2 2 /2. We 
then randomly pick an initial energy value from the thermal distribution

β ω= − −E s(1/ ) ln(1 ), (7)0 

by picking a random number s between zero and one. From the equipartition theorem we deduce q(0) and p(0) 
and train the neural network by recursively injecting sequences of | …q t q t( ( ), ( )) T[0 ], obtained by applying the 
terms of Eqs. 3a, 3c and 4 recursively on the initial values, as training data into the network. A reward at each time 
step is only given when the action reduced the energy of the resonator at a given time step with respect to the 
previous time. The reward is defined by

θ= − −+Δ +ΔR E E E E( ) ( ), (8)t t t t t t0

where Et is the total energy at time t. The reward gets larger when the energy separation between the current and 
initial energy increases therefore optimizing the effective cooling rate (see Methods). The application of the 
reward to the single mode cooling is exemplified for the quadratic coupling configuration illustrated in Fig. 1d. 
The cooling dynamics is exemplified both as amplitude decreases Fig. 2a and in phase space Fig. 2b on two trajec-
tories corresponding to two different initial states randomly picked from a thermal initial distribution with aver-
age occupancy =n 100. The action sequences of the network in Fig. 2c show a periodic structure matching the 
frequency of the resonator mode, which is more visible in the zoom-in plot provided in Fig. 2e. There one can 
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follow the time dynamics of the applied action and the effect onto both the position and momentum, which in 
total for all trajectories results in the reduction of the average energy as presented in Fig. 2d.

While the training of the neural network to produce an optimal policy is done with training batches of 80 
trajectories each with 4000 time steps (already approaching a low energy steady state as presented in Fig. 2a,b), we 
test the stability of the cooling policy by applying the trained network on a sample of thousands of trajectories 
with an extended time range of 20000 time steps. These results of thousands of sample trajectories are presented 
as initial and final phase space distributions in Fig. 2f and as a histogram of the energy distributions in Fig. 2g. The 
injected thermal noise in all plots in Fig. 2 corresponds to a thermal occupation number of n 100≈  and a ther-
malization rate of γ/ 4 10 5ω = × − . The choice of the initial thermal state is however arbitrary and with equal 
computational power one can also describe the dynamics of oscillators initially populated with more than 105 
quanta. These results show that the policy reduces the energy of the mechanical mode and converges at a steady 
state irrespective of the initial high energy state derived from the thermal distribution. Additionally, the larger 
data set does not show any divergent outliers suggesting that convergence has been reached.

Simultaneous cooling of many modes.  We display the generality of this approach by applying the net-
work to find a strategy to cool up to four modes simultaneously. As in the case of the single mode cooling, we 
apply a single force on the mirror: this poses a challenge as a good cooling strategy for a given mode might actu-
ally lead to the heating of the other modes. In general, owing to this challenge, a simultaneous cooling strategy has 
an increased complexity in the choice of the action sequences, which leads to overall slower cooling rates. The 
same principles for cooling a single resonator are applied to cooling four modes subjected to the same actions by 
the network as presented in Fig. 3. Here, we use the setup configuration presented in Fig. 1b. While the four 
modes have different frequencies ωj and coupling strengths gj they are subjected to the same time sequence of 
actions delivered by intensity variations of an impinging laser beam in free space or via the field intensity α| |t( ) 2 
in the cavity.

The input to the network is given by = s Q t Q t( ( ), ( ))t  with Q t q t( ) ( )j j= ∑  and  ω= ∑Q t p t( ) ( )j j j  as a collective 
position coordinate and its derivative. The quantities can be obtained for example from an interferometer that is 
sensitive to the fluctuations on the membrane (see Fig. 1e) or via homodyne detection. The derivation of the ini-
tial condition is described in the Methods section.

Here, the agent needs to find a strategy that simultaneously cools the center of mass motion as well as all of 
the relative mode dynamics. As an example the trajectories of the four modes are presented in Fig. 3a,b, where 
the cooling results from the corresponding actions presented in Fig. 3c with magnified view shown in Fig. 3c. In 
contrast to the action sequence imposed on the trajectory of a single resonator presented in Fig. 2c, which basi-
cally shows a periodic signal matching the frequency of the oscillator, here we find a more complex signal with a 
quasi periodic pattern. The change of the average energy of the four resonators as a function of time is presented 
in Fig. 3f. In Fig. 3e the initial values obtained from a Boltzmann distribution and final phase space values of a 
thousand trajectories for all oscillators are presented. A histogram of the sum of their individual energies is given 
in Fig. 3g. These results show that all four resonators can be simultaneously cooled down to lower temperatures, 
that differ by orders of magnitude from their initial values and thereby exemplify the strength of this adaptive 
approach.

(a) (b)

)d()c(

noitc
A-

(g)

(e) (f)

Figure 2.  Single mode parametric cooling. (a) Time dynamics followed on two trajectories with initial 
conditions drawn from a Boltzmann distribution corresponding to an initial thermal state with average 
occupancy of =n 100. The inset refers to the choice of cooling performed parametrically by modulation of 
the spring constant. (b) Corresponding phase space trajectories. The black arrow indicates where the force 
is applied. (c) Action sequences chosen by the network for each trajectory (d) Average energy for a thermal 
ensemble of trajectories exposed to the actions chosen by the network and rescaled to give the value of the 
occupation number of the harmonic oscillator. (e) Zoom-in into the time dynamics of the cavity 
modulated actions g t2 ( )(2) 2ω αΔ = | |  and quadratures for two distinct trajectories. (f) Phase space 
comparison of initial (orange) and final (blue) distributions. The 4 × 103 points of the distribution of final 
states are obtained by running each trajectory starting from its initial state under the actions of the policy 
for 2 × 104 time steps. (g) Corresponding histogram of energy distribution in the initial and final states. 
The parameters are γ ω= × −4 10 5 , ω= × −g 1 10(2) 8 , α| | ≈ . ×0 5 102 7 and ωΔ = . −t 0 05 1.
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Discussions and Outlook
We have shown results of numerical simulations for the simultaneous cooling of a few degrees of freedom of a 
vibrating mechanical resonator. The feedback action has been realized via the reinforcement learning technique 
implemented on a neural network. There is a variety of other optimization methods that could obtain simi-
lar results. For example, stochastic optimization methods such as hill climbing, random walks or genetic algo-
rithms36. It has been recently shown that evolution strategies (ES) offer a similar performance and efficiency as 
RL48. We have selected RL and especially the policy gradient method to approach this problem due to its efficiency 
when a large continuous or quasi continuous set of states is present49.

Simultaneous cooling of a few modes indicates the possibility of partial or full refrigeration of mechanical res-
onators via optical control. It is remarkable that the network can perform efficient cooling of many modes while 
only being fed information of a time-evolving collective displacement quadrature. This is owed to the fact that the 
designed strategy optimizes single mode cooling at every instance in time while keeping the heating of all other 
modes to small values. The described procedure works both inside and outside optical cavities and both in linear 
or nonlinear regimes therefore being easily adaptable to new systems. The technique could be easily extended to 
cool a number of oscillators or a number of particles trapped inside optical cavities or with tweezers. While the 
present treatment considers classical stochastic dynamics, a full quantum theory of neural network aided cooling 
will be tackled in the future that might also lead towards feedback production of squeezed or squashed states. 
In this regard, for both single and many oscillation modes, we plan to analyze the efficiency of neural network 
cooling in comparison with standard cold-damping optical cooling. It is expected that a Fourier analysis of the 
action function indicated by the network could hint towards feedback implementations that could surpass exist-
ing techniques, especially at the level of many degrees of freedom.

Methods
Initial conditions.  We assume an initial Boltzmann distribution of energies … = β− − +…+P E E Z e( , , )n

E E
1

1 ( )n1  
where =Z 1/ nβ , from which we extract the initial conditions by integration

dE dE P E E e s( , , ) [1 ] ,
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where s is a value between 0 and 1. We set b e[1 ]j
Ej= − β−  and define that b [0, 1]j ∈  for ≤ ≤j n0  which results 
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E b1 ln(1 )
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Figure 3.  Simultaneous cooling of 4 modes. (a) Time dynamics of the oscillation amplitudes of four independent 
modes under the action of a collective force in the setup shown in the inset. (b) Corresponding time dynamics 
in phase space. (c) Neural network indicated sequence of actions leading to simultaneous cooling. (d) 
Magnification of the action and the momentum and position traces. (e) Reduction of the initial thermal 
distribution (orange) towards a low temperature distribution (blue) for each independent oscillation mode after 
2 × 104 time steps. (f) Corresponding decrease of the total average energy of all four modes. (g) Histogram of 
initial (orange) and final (blue) energy distribution for 4 × 103 trajectories. The parameters for the simulation 
are given by ω ω= . . .(0 8, 1 2, 0 6)2,3,4 1, γ ω= × −(4, 3, 5, 2) 101,2,3,4

5
1, where the multiplication factors for 

the action are = . . . .g (0 3, 0 2, 0 4, 0 3)1,2,3,4  to obtain Fj and we have ωΔ = . −t 0 05 1
1.
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where φj is a random number between 0 and 1 for all ∈ …j n1, , .

Thermalization dynamics.  Let us describe the numerical procedure for simulating the action of a thermal 
environment onto the state of the mechanical resonator. We consider the equations of motion

ω=q p, (11a)

 ω γ ξ= − − +p q p , (11b)

which we rewrite as equations of differential forms

ω=dq pdt, (12a)

dp qdt pdt n dW t(2 1) ( ), (12b)ω γ γ= − − + +

where the noise dW(t) is included as a Wiener process. Numerically, this can be realized by Δ ∝ ΔW t t N( ) (0, 1), 
where N(0, 1) describes a normally distributed random variable of unit variance - consequently the Wiener incre-
ment is normally distributed with a variance equal to the numerical time increment Δt. As a numerical check we 
simulate the thermalization of an initially cold mechanical mode under the action of an environment with rate 
γ ω= × −4 10 5  and at an effective occupancy n 100= . The analytical Boltzmann distribution for this occupancy 
is shown in Fig. 4a as black dots while the final state obtained from the numerical integration is represented by the 
red dots (blue dots in the middle are the initial state). In Fig. 4b the agreement between the numerical simulation 
and the Boltzmann distribution is illustrated as a histogram of energy states. The time evolution is shown in 
Fig. 4c as dynamics for the position and in Fig. 4d for the total energy showing it approaching =n 100 in the long 
time limit.

Additionally, in Fig. 4e we present the learning process for the results presented in Fig. 2 for a single mode and 
for four modes as presented in Fig. 3, where the increase in the average reward over 400 epochs each with batches 
of 80 trajectories is shown.

(a) (b)

)d()c(

Initialization Reheating (e)

Training epoch

Training epoch

single mode

four modes

Figure 4.  Thermalization dynamics of a single mode of vibration. (a) Phase space coordinates from initialization 
with a Boltzmann distribution with =n 100 (black points) and obtained from the evolution equation 
containing thermal noise. An initial distribution around the phase space origin (blue points) is evolved up to the 
steady state (red points). In (b) the corresponding energy distributions following the same color coding are 
presented. (c) Two example trajectories with starting energies close to zero are following the evolution guided 
by thermal noise. In (d) the average energy is presented as a function of time. (e) The learning progress for the 
single and four-mode cooling presented in the main text. Here, the reward increases steadily with each training 
epoch until reaching a saturation.
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Markov decision process.  The reinforcement learning procedure presented above can be fully described by 
a discrete time stochastic control process. Since in this process the agent selects an action based on the stochastic 
policy a s( )π |θ  which is only dependent on the current observation of the given state s, the problem is described by 
a Markov decision process (MDP)46. Formally, a Markov decision process is a 4-tuple S A P R( , , , ), where S is the 
set of states, A forms the set of possible actions, P S A S: [0, 1]× × →  is the transition function between states 
and × × → RR S A S:  is the reward function as described above with = ⊂R R R[ , ]min max  being the contin-
uous set of possible rewards.

In the case of a single resonator mode the state space is given by ω= = | = ∈−
S s q p p q q p{ ( , ) , , }1   while 

the action space is the finite set = …A {0, 1, , 10} which allows the agent to choose between ten different force 
strength. The transition function |+ΔP s a s( , )t t t t  giving the probability for moving to the state +Δst t from st under 
the action at can be obtained from the equations of motion � ��s Ms aξ= + +  with ξ ξ= (0, )  being the noise and 


=a F a(0, ( ))  the force term. In the case the random noise contribution ξ is zero the transition function is deter-
ministic and P s a s( , ) 1t t t t| =+Δ  for = + Δ

∼
+Δ s Ms a tt t t t  with M M t1= + Δ

∼  and zero otherwise. The reward 
function is given by the expression defined above R R s a s E E E E( , , ) ( ) ( )t t t t t t t t t t0 θ= = − −+Δ +Δ +Δ . For multi-
ple resonator modes where we observe s Q t Q t( ( ), ( )))t =   with Q t q t( ) ( )j j= ∑  and ω= ∑Q t p t( ) ( )j j j , we only 
obtain partial information of the state which originally is described by the phase space vector 

… …q q p p( , , , , , )n n1 1 . Here we need a generalization of an MDP which is given by a partially observable Markov 
decision process (POMDP), where the agent cannot observe the full state. Here, we additionally have the sets Ω 
which describes the set of observations and O describing the set of conditional observation probabilities.

A pseudo code to implement reinforcement learning (RL) is presented in the following:



∑

θ

π

θ θ η

= …

= ′

= + + Δ

=

← + ∇

∼∼
θ

θ

′∈

+Δ

N
s

t
a a s

s Ms dW a t

R R

R

initialize
for iteration 1, 2, , epoch do

initialize training batch of initial states
for each time step do

argmax ( , ) sample action for the full batch

run dynamics: for the full batch
end for

total reward for each trajectory of the batch

( ) update network parameters
end for

t a A t

t t t t

t
t



Network parameters.  The simulations were run on a standard Laptop computer (CPU, Intel Core i7 – 
5500U @ 2.40 GHz). We use the Keras package for Python and the Theano framework50 to realize the neural net-
work and the reinforcement learning procedure51. The network and training parameters are presented in Table 1.
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