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Acetoin is a key odor for resource location in the giant robber crab
Birgus latro
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Susanne Erland1, Steffen Harzsch2 and Bill S. Hansson1

ABSTRACT
The terrestrial and omnivorous robber crab Birgus latro inhabits
islands of the Indian Ocean and the Pacific Ocean. The animals live
solitarily but occasionally gather at freshly opened coconuts or
fructiferous arenga palms. By analyzing volatiles of coconuts and
arenga fruit, we identified five compounds, including acetoin, which
are present in both food sources. In a behavioral screen performed in
the crabs’ habitat, a beach on Christmas Island, we found that of 15
tested fruit compounds, acetoin was the only volatile eliciting
significant attraction. Hence, acetoin might play a key role in
governing the crabs’ aggregation behavior at both food sources.
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INTRODUCTION
The robber crab Birgus latro (Linnaeus 1758) (Coenobitidae) is a
terrestrial hermit crab, and the world’s largest extant land-living
arthropod. The species inhabits the islands of the Indian Ocean and
the Pacific Ocean (Drew et al., 2010) with Christmas Island (Indian
Ocean) holding one of the largest and most undisturbed populations
in the world. Individuals of this species may live for over 100 years
(Drew et al., 2013), and are usually lone feeders with an average
density of only 29.5 animals per hectare at the coastal site of this
island (Drew and Hansson, 2014). The food spectrum of these
omnivorous animals is extremely diverse, ranging from plant
material, to large insects, to carrion of vertebrates and invertebrates.
On Christmas Island, the robber crab also actively predates on a
terrestrial brachyuran crab species, the endemic Gecarcoidea
natalis (Gecarcinidae; Krieger et al., 2016). Here, we found that
robber crabs gather at freshly opened coconuts (Cocos nucifera).
However, only large individuals are able to open a coconut with
their claws (Fig. 1A), and even for them it takes about 2 days (Drew
et al., 2010). Coconuts are very abundant on Christmas Island, but
unopened fruit usually are not attractive for most of these crabs.
However, as soon as a single robber crab has managed to open a
coconut, other animals approach this fruit. In addition, we observed
similar accumulations of robber crabs when fruit of an arenga palm

start to ripen. In this case, many of these animals assemble in the
vicinity and feed on the fallen fruit (Drew and Hansson, 2014)
(Fig. 1B). Finally, we found animals accumulating at and feeding
from the palm core of an arenga rotting on the ground. Behavioral
and neurobiological analyses provide evidence that robber crabs and
their closest relatives, the terrestrial hermit crabs (Coenobitidae), like
insects, have evolved an olfactory sense that allows the animals to
detect airborne molecules (Krang et al., 2012; Krieger et al., 2010;
Stensmyr et al., 2005), and this helps the crabs to find and evaluate
food (Stensmyr et al., 2005; Rittschof and Sutherland, 1986; Thacker,
1998) and shelter (Small and Thacker, 1994). Because carrion odors
that are behaviorally active for robber crabs have been described
(Stensmyr et al., 2005), we hypothesized that the number of crabs
building up around open coconuts and fructiferous arenga palms is
also olfactory driven. Furthermore, because robber crabs share this
food preference with other arthropods like the vinegar fly (fermented
fruit; Knaden et al., 2012) and the desert ant (dead insects;
Buehlmann et al., 2014), we asked whether this similarity is based
on preference for the same key volatile compounds.

MATERIALS AND METHODS
Aggregation behavior
We opened coconuts and placed them at the crabs’ habitat on
Christmas Island, to observe whether robber crabs would become
attracted to them. We furthermore counted the number of animals in
an area (5 m diameter) surrounding arenga palm trees either without
fruit or with fruit at different ripening stages. None of the animals
was harmed during the behavioral observations.

Odor collections
We collected volatiles from both coconuts and arenga for chemical
analyses. Coconut fruit volatiles were trapped by solid-phase
micro-extraction (SPME), and volatiles were subsequently analyzed
by coupled gas chromatography-mass spectrometry (GC-MS).
We collected headspace from intact young (i.e. green) and old
(i.e. brownish) fruit, and from the milk of both ripening stages.
During collection of headspace from the fruit, the coconuts were
wrapped in polyester bags (Toppits Bratschlauch, Germany). The
coconut milk was transferred into a clean glass vial and sealed with a
Teflon-coated lid.

SPME analyses were carried out using a 65 µm
polydimethylsiloxane/divinylbenzene (PDMS/DVB; Sigma-Aldrich,
Steinheim, Germany) coated fiber (Ho et al., 2006; Santos et al.,
2011) that was conditioned by heating for 20 min in the GC
injection port at 250°C. Static SPME headspace collections were
performed by exposing the fiber for 15 min to the headspace of
the nuts or milk. All volatile collections were performed within
an incubator at 35°C in order to imitate the ambient temperature on
Christmas Island. Empty polyester bags and blank SPME fibers
served as controls.Received 6 March 2019; Accepted 24 May 2019
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Arenga volatiles were collected from unripe and ripe fruit
as well as from palm core of this plant placed in clean and
silanized 250 ml glass flasks. Activated charcoal-filtered air was
pumped through the flask at 250 ml min−1 for 10 h. Volatiles
were trapped on filters charged with 25 mg each of Carbotrap C,
B and X. After elution with 400 µl dichloromethane containing
400 ng bromodecane as internal standard, the solutions were

concentrated under a gentle stream of nitrogen to a final volume
of 25 µl.

Chemical analysis
Coconut volatile compounds collected with the SPME fiber were
thermally desorbed and analyzed using a GC-MS (GC 6890 and
MS 5975, Agilent Technologies, Palo Alto, CA, USA). The GC
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Fig. 1. Giant robber crabs are attracted to coconuts and fruit of the arenga palm. (A) A crab opening a coconut. (B) Crabs aggregating under a fructiferous
arenga palm. (C) Gas chromatography (GC) profiles from coconut samples. (D) GC profiles from arenga samples. (E) List of 26 odorants that were identified by
coupled gas chromatography-mass spectrometry (GC-MS) in coconut, arenga or both samples. IS, internal standard; RT, retention time (min).

2

SHORT COMMUNICATION Journal of Experimental Biology (2019) 222, jeb202929. doi:10.1242/jeb.202929

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



was equipped with a non-polar column (HP5; 30 m×0.25 mm
i.d., 0.25 µm film thickness, Alltech Associates, Deerfield, IL,
USA). The carrier gas was helium with a flow rate of
1.1 ml min−1. After exposure, the SPME fiber was
immediately injected into the GC injector port, followed by a
1 min desorption and column trapping period at 250°C. The GC
temperature program was: initial temperature of 40°C for 3 min,
rising to 240°C at 10°C min−1, held for 3 min, followed by a
post-run at 300°C, held for 10 min.
Aliquots of 1 µl per arenga volatile sample were analyzed on

a GC-MS (as above), but equipped with a polar column
(HP Innowax, 30 m×0.25 mm i.d., 0.25 µm film thickness)
and operated under constant flow (1 ml min−1), and the GC
oven was programmed to hold at 40°C for 3 min, rise at
5°C min−1 to 240°C, and hold for 15 min. The inlet and the
MS transfer line were operated at 240 and 250°C, respectively.
Compounds were tentatively identified by comparing their
mass spectra with those of the NIST MS-library (National
Institute of Standards and Technology, Gaithersburg, MD,
USA, 2008), and confirmed by comparing MS and retention
times with authentic standards.

Behavioral experiments
Experiments were conducted during dusk and dawn at Dolly Beach
on Christmas Island (10°31′36S, 105°40′22E). The beach is
inhabited by about 30 robber crabs of both sexes. In a former
study, long-term experiments showed that robber crabs accumulate
under hanging baits containing coconut flesh, ripe arenga fruit or the
carrion odor dimethyl trisulfide (DMTS) (Stensmyr et al., 2005).
However, to be able to screen the attraction of many odors to
individual crabs, we established a novel experimental paradigm: we
pipetted either pure coconut milk or DMTS (2 μl of odorant diluted
in 200 μl of mineral oil) onto a foam plug (5 cm diameter, 2 cm
height) and placed the plug 2 m upwind of a resting robber crab. We
observed that 7 out of 12 animals approached the coconut milk
(DMTS: 8 out of 12 animals) and contacted the foam plug in less
than 2 min. In contrast, only 1 out of 24 crabs was attracted to a plug
that contained mineral oil only (Fig. 2A), showing that neither the
visual cue of a foam plug nor the solvent alone induced attraction.
Therefore, we conclude that this assay was suitable to screen the
behavioral activity of odors under field conditions. During the
experimental period (14–30 October 2012), this beach was steadily
exposed to east winds (i.e. the wind blew from the sea straight
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Fig. 2. Behavioral screen of odor
attractiveness to robber crabs. (A) Coconut
and arenga odorants tested for attraction to
robber crabs; numbers in parentheses refer to
corresponding numbers from the GC-MS
analysis in Fig. 1E. (B,C) PublishedDrosophila
(B) and Cataglyphis attractants (C) tested for
attractiveness to robber crabs. Contact with
source is indicated. Numbers in bars indicate
the number of responding and non-responding
animals. *Significantly different from the
solvent control (Fisher’s exact test with
Bonferroni–Holmes correction for multiple
comparisons). Schematic drawing shows
robber crab approaching a foam plug
containing an attractive odor.
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landwards). By moving along the beach with our stimulus sources,
we could therefore consecutively test individual crabs, while crabs
that were 90 deg to the right or left were not exposed to any straight-
downwind plume of the test odor. Crabs reacted to attractive odors
with a sequence of behaviors: (1) flicking of the antennules, i.e. the
peripheral olfactory organs of Birgus (Stensmyr et al., 2005), (2)
turning towards the source and (3) approaching the source until
source contact. When the crab exhibited this sequence and finally
touched the foam plug within 2 min, the response was counted as
positive. Any other outcome (e.g. no response or only flicking of
antennules and/or locomotion that did not end up in plug contact)
was counted as negative. Individual crabs were tested only once per
odorant and a single crab was not tested more than 4 times per day.

RESULTS AND DISCUSSION
In initial field studies, we observed that robber crabs seemed to
accumulate around arenga palms having ripe but still attached
fruit approximately 5–10 m above the forest floor. Large groups
of crabs would already be increasing in numbers before the fruit
started dropping from the tree, and some crabs were even observed
climbing up the tree to reach the ripening fruit. Although we
counted 6–25 crabs for each tree exhibiting ripe fruit (average, 13.9
crabs; n=7 trees), almost no crabs at all accumulated around trees
having unripe (average, 0 crabs; n=4 trees) or no fruit (average, 0.1
crabs, n=16 trees). In areas where coconut palms were present,
we opened coconuts and observed immediate attraction of
robber crabs from distances over 30 m. We hypothesized that the
attraction towards arenga fruit and coconuts was governed by
olfaction. To identify potential active compounds in the blends of
both food sources, we collected the headspace from young and old
coconuts, and young and old coconut milk (Fig. 1C), as well as from
arenga fruit in different ripening stages, and from arenga palm core
(Fig. 1D). We identified a total of 26 compounds in the different
headspaces. Five odorants (acetoin, 2,3-butanediol, hexanal,
1-hexanol, styrene) occurred in both arenga and coconut samples,
while 13 odorants were specific for arenga and 8 odorants for
coconut, respectively (Fig. 1E).
We then tested the attraction of robber crabs to 15 of the identified

individual compounds and complemented the behavioral screen
with odorants we had identified from fermenting fruit or dead
insects that had been shown to be highly attractive either to the
vinegar flyDrosophila melanogaster (Knaden et al., 2012) or to the
desert ant Cataglyphis fortis (Buehlmann et al., 2014).
Because of the limited number of accessible animals at the

experimental site, we first conducted six replicates per odor and only
increased the sample size if more than two animals became
attracted. However, the only attractive single odorant turned out to
be acetoin, which attracted 79% of the tested animals (Fig. 2A). This
odorant is found in high amounts in preferred robber crab food
sources like old coconut milk, ripe arenga fruit and arenga palm
core, but is absent or only present at trace levels in young coconut
milk, closed coconuts and green (unripe) arenga fruit (Fig. 1C,D),
none of which are eaten by the animals. Thus, acetoin seems to be a
key odorant governing the crabs’ attraction to coconuts and arenga.
Interestingly, acetoin is a fermentation product that in a blend

seems to be involved in governing the attraction of vinegar flies to
yeast, while as a single compound it is not attractive to the flies
(Becher et al., 2010). We also found that none of the tested single
odorants that are known to attract vinegar flies to fermenting fruit
(Knaden et al., 2012) or govern the desert ants’ attraction to insect
carcasses (Buehlmann et al., 2014) were attractive to the robber
crabs (Fig. 2B,C). Hence, attraction to the same kind of food seems

to be governed by different key odors in robber crabs versus insects.
This is in line with the finding that robber crabs do not express
insect-like odorant receptors but possess only the more ancient
group of olfactory ionotropic receptors (Groh et al., 2014). In
vinegar flies, which express both kinds of receptors, these
ionotropic receptors have a clearly different receptive profile from
the odorant receptors (Silbering et al., 2011).

To summarize, we found that apart from acetoin, none of the
additional 25 tested odorants elicited attraction in the robber crab.
Interestingly, presenting a plug soaked with acetoin not only
immediately attracted the tested robber crab but also very often
resulted in the approach of robber crabs that were hidden in the
coastal forest before the experiment started. Some of these animals
approached over distances of more than 10 m, suggesting
that robber crabs are extremely sensitive to this odor. These
long-distance approaches never occurred when we tested any of the
other odorants, but could be observed when robber crabs
approached a conspecific that succeeded in opening a coconut.
The gathering of these usually solitary animals at freshly opened
coconuts and under trees with ripening arenga fruit presents a
remarkable exception in the daily routine of these crabs. Our data
suggest that these feeding assemblages are governed by olfaction,
with acetoin being one of the key odorants involved.
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