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Abstract
Aim: Information on the amount of carbon stored in the living tissue of tree stems 
(sapwood) is crucial for carbon and water cycle applications. Here, we aim to investi‐
gate sapwood‐to‐stem proportions and differences therein between tree genera and 
derive a sapwood biomass map.
Location: Northern Hemisphere boreal and temperate forests.
Time period: 2010.
Major taxa studied: Twenty‐five common tree genera.
Methods: First, we develop a theoretical framework to estimate sapwood biomass 
for a given stem biomass by applying relationships between sapwood cross‐sectional 
area (CSA) and stem CSA and between stem CSA and stem biomass. These measure‐
ments are extracted from a biomass and allometry database (BAAD), an extensive 
literature review and our own studies. The established allometric relationships are 
applied to a remote sensing‐based stem biomass product in order to derive a spatially 
continuous sapwood biomass map. The application of new products on the distribu‐
tion of stand density and tree genera facilitates the synergy of satellite and forest 
inventory data.
Results: Sapwood‐to‐stem CSA relationships can be modelled with moderate to very 
high modelling efficiency for different genera. The total estimated sapwood biomass 
equals 12.87 ± 6.56 petagrams of carbon (PgC) in boreal (mean carbon density: 
1.13 ± 0.58 kgC m−2) and 15.80 ± 9.10 PgC in temperate (2.03 ± 1.17 kgC m−2) for‐
ests. Spatial patterns of sapwood‐to‐stem biomass proportions are crucially driven 
by the distribution of genera (spanning from 20–30% in Larix to > 70% in Pinus and 
Betula forests).
Main conclusions: The presented sapwood biomass map will be the basis for large‐
scale estimates of plant respiration and transpiration. The enormous spatial differ‐
ences in sapwood biomass proportions reveal the need to consider the functionally 
more important sapwood instead of the entire stem biomass in global carbon and 
water cycle studies. Alterations in tree species distribution, induced by forest man‐
agement or climate change, can strongly affect the available sapwood biomass even 
if stem biomass remains unchanged.
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1  | INTRODUCTION

In addition to the pith, cambium, phloem and bark, tree stems con‐
sist most importantly of heartwood and sapwood. Sapwood is the 
youngest formed wood and has the function of transportation of 
water and nutrients between tree compartments. Thus, sapwood 
cross‐sectional area (CSA) is related to foliage area and transpira‐
tion (Köstner et al., 1992; Vertessy, Benyon, O'Sullivan, & Gribben, 
1995). Later in the life of a tree, the inner sapwood is transformed to 
heartwood, which is no longer involved in water and nutrient trans‐
port but is more decay resistant and fulfils the function of giving 
the tree support. As a living tissue, sapwood contributes to auto‐
trophic respiration, unlike heartwood (Pruyn, Gartner, & Harmon, 
2002). The maintenance respiration of tree stems is mainly deter‐
mined by the magnitude of sapwood biomass (Ryan, 1990; Sprugel, 
1990). Therefore, prognostic biogeochemical models, such as dy‐
namic global vegetation models, explicitly simulate sapwood mass 
density as a state variable (Krinner et al., 2005; Sitch et al., 2003). 
Although total forest biomass has been used for model evaluation 
(Beer, Lucht, Schmullius, & Shvidenko, 2006; Thurner et al., 2017; 
Yang et al., 2018), an assessment of sapwood mass per ground area 
at large spatial scales is still lacking. In addition to their biogeochemi‐
cal importance regarding the carbon, water and nutrient cycles, sap‐
wood‐to‐heartwood ratios are relevant variables in wood industry, 
owing to the different chemical composition, mechanical properties 
and often colour of heartwood compared with sapwood.

The relationship between leaf area and sapwood CSA has been 
studied extensively, but its patterns of variation with tree height are 
not well understood. According to the pipe model theory (Shinozaki, 
Yoda, Hozumi, & Kira, 1964a, 1964b), the conversion of sapwood 
to heartwood can be considered as the effect of branch death, be‐
cause lowered water requirements when leaves on dead branches 
are lost allow reduction of sapwood in favour of heartwood (Mäkelä 
& Valentine, 2006). Following this theory, the leaf area of a tree 
is supported by, and thus directly related in a linear manner to, a 
certain sapwood CSA. This relationship was found to hold across 
measurements of sapwood CSA taken at different heights within 
individual trees (e.g., Waring, Schroeder, & Oren, 1982) and across 
species in a large dataset of individual‐level leaf area and sapwood 
CSA measurements (Falster, Duursma, & FitzJohn, 2018). However, 
the ratio of sapwood area to leaf area (Huber value) varies with tree 
size, exhibiting both increasing and decreasing trends (McDowell et 
al., 2002; Novick et al., 2009). The Huber value differs substantially 
among species and environmental conditions, increasing with fac‐
tors favouring fast‐growing species with high hydraulic conductivity 
but low resistance to desiccation. For instance, a higher sapwood 
area per unit leaf area has been observed in drier climatic conditions 

for some species (DeLucia, Maherali, & Carey, 2000; Mencuccini & 
Grace, 1994). Owing to its role in setting the supply limits to tran‐
spiration rates, quantification of sapwood areas across climatic and 
edaphic gradients is key, both for our conceptual understanding of 
tree responses to drought and for parameterizing vegetation models 
that explicitly account for hydraulic traits (for a review, see Manzoni, 
Vico, Porporato, & Katul, 2013).

Less is known about relationships between sapwood and heart‐
wood CSA, volume or mass and other traits (e.g., stem CSA, vol‐
ume or mass). There is contrasting evidence regarding heartwood 
formation, showing either continuous accumulation after a certain 
age and irrespective of environmental influences (Gjerdrum, 2003) 
or variable accumulation depending on age and light availability 
(Sellin, 1994), and differing between fast‐ and slow‐growing species 
(Bond‐Lamberty, Wang, & Gower, 2002; Longuetaud, Mothe, Leban, 
& Mäkelä, 2006). Trees growing in more fertile and dominant con‐
ditions have been observed to develop comparably more sapwood 
CSA, whereas heartwood CSA did not increase significantly (Mörling 
& Valinger, 1999). Conversion of growth rings to heartwood is usu‐
ally reported to increase with age (Knapic & Pereira, 2005; Pinto, 
Pereira, & Usenius, 2004). Moreover, in older trees, absolute heart‐
wood production per year was found to be of similar size to total 
volume growth. Relative heartwood volume (as a fraction of total 
wood volume) thus increases with tree age, levelling off in very old 
trees (Sillett et al., 2015). Relative heartwood CSA relates to age or 
diameter in a similar way (Kärenlampi & Riekkinen, 2003). However, 
even within stands in similar growing conditions, heartwood propor‐
tions exhibit considerable intraspecific variation (Björklund, 1999).

By applying radar remote sensing observations gathered by the 
Advanced Synthetic Aperture Radar (ASAR) instrument aboard the 
Envisat satellite, stem volume (or growing stock volume) has recently 
been mapped for northern boreal and temperate forests (Santoro et 
al., 2015). This spatially extensive information at a spatial resolution of 
0.01°, in combination with databases on wood density and biomass al‐
lometry, has allowed the estimation of stem biomass and, finally, total 
biomass and carbon stocks in these forest ecosystems (Thurner et al., 
2014). Despite its relevance, information on the large‐scale spatial dis‐
tribution of sapwood biomass and on sapwood biomass as a propor‐
tion of total stem biomass is currently lacking. Here, we investigate the 
variability in sapwood proportions among boreal and temperate tree 
genera and demonstrate how to infer sapwood biomass from available 
remote sensing‐based stem biomass maps (Thurner et al., 2014). We 
focus on boreal and temperate forests because these ecosystems are 
well covered by ground‐sourced measurements and because they are 
characterized by distinct spatial patterns in tree species distribution 
and by important differences in sapwood proportions between tree 
genera. We analyse how sapwood proportions at tree level vary by 
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genera and how they are influenced by average climatic conditions. 
The inferred sapwood biomass product at the stand scale allows us to 
investigate the resulting spatial patterns in sapwood biomass propor‐
tions compared with total stem biomass and to quantify the overall 
amount of sapwood biomass in northern boreal and temperate forests. 
Understanding the spatial relationships between sapwood proportions 
and the present tree species is also important with regard to changes 
in the distribution of tree species as a result of forest management or 
climate change (Dyderski, Paź, Frelich, & Jagodziński, 2018; Shuman, 
Shugart, & O'Halloran, 2011).

2  | MATERIALS AND METHODS

Given that direct measurements of sapwood biomass are rare, we 
instead derive it indirectly from relationships between sapwood 
CSA and stem CSA and between stem CSA and stem biomass. For 
this task, we explore a biomass and allometry database (BAAD; 
Falster et al., 2015) and other studies and analyse whether there are 
allometric differences among tree genera and leaf types and habits. 
In addition, we examine the influence of average climatic condi‐
tions on these relationships. Finally, we quantify the amount and 
distribution of sapwood biomass and its proportion of stem biomass 
in northern boreal and temperate forests. In order to address the 
above‐mentioned research objectives, here we: (a) develop a theo‐
retical framework to estimate sapwood biomass for a given stem 
biomass; (b) collect measurements of sapwood proportions from 
the BAAD, an additional extensive literature review and our own 
studies; and (c) derive a sapwood biomass map based on remote 
sensing products (accompanied by an uncertainty estimate), in‐
ferred allometric relationships and new products on the distribution 
of stand density and tree genera (Figure 1). A global stand density 

product (Crowther et al., 2015) allows scaling from measurements 
at tree level to areal estimates, and this is supplemented with infor‐
mation on tree species distribution (Beaudoin, Bernier, Villemaire, 
Guindon, & Guo, 2017, 2018; Brus et al., 2012; Schepaschenko et 
al., 2011; Wilson, Lister, & Riemann, 2012; Wilson, Lister, Riemann, 
& Griffith, 2013) that enable the application of allometric relation‐
ships for tree genera in addition to the leaf type level.

2.1 | Theoretical considerations

Sapwood biomass is derived from stem biomass based on the fol‐
lowing assumptions and equations. For more detailed theoretical 
considerations, the reader is referred to Supporting Information 
Appendix S1, and in the Discussion section these equations and 
the respective parameters are compared with existing theories 
and other studies.

The tree‐level sapwood CSA (Asap) can be estimated from the 
stem CSA (Astem) and the allometric parameters a and b which are 
fitted using measurements taken at breast height contained in the 
BAAD, other literature sources and our own measurements:

The Astem can be expressed as a function of stem biomass (mstem) 
and the allometric parameters c and d using measurements con‐
tained in the BAAD:

The volume of a tree stem (Vstem) can be calculated as follows:

(1)Asap=a ⋅A
b

stem

(2)Astem= c ⋅m
d

stem

(3)Vstem=
1

n
⋅Astem ⋅h

F I G U R E  1   Methodical approach (Asap= sapwood cross‐sectional area; Astem = stem cross‐sectional area; msap = sapwood biomass; mstem = 
stem biomass) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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with n describing the shape of the tree stem (e.g., cylinder, n = 1; 
paraboloid, n = 2; cone, n = 3; neiloid, n = 4) and h being the height of 
the tree stem (Supporting Information Appendix S1).

We account for a change in the relationship between Asap and 
Astem throughout the height of the tree. Tree stems vary in their 
shape, but always taper towards their top. The shape of the heart‐
wood core in general follows the shape of the tree stem, and its 
volume per height increment decreases towards the top (Cermak, 
Kucera, Bauerle, Phillips, & Hinckley, 2007; Gominho, Lourenço, 
Miranda, & Pereira, 2015). Sapwood width has been observed to 
remain approximately constant within trees, independent of the 
measurement height (Knapic & Pereira, 2005); however, this implies 
a decrease in absolute sapwood CSA, but an increase in relative sap‐
wood CSA per total stem CSA towards the top of the tree (Gartner, 
2002; Longuetaud et al., 2006).

Given that tree stem tissues are younger towards the top of the 
stem, we substitute the relationship between Asap and Astem through‐
out the height of the tree with the relationship between Asap and 
Astem derived from measurements of trees of different age (Equation 
1). Under this assumption, sapwood volume (Vsap) can now be ex‐
pressed as a function of Asap. In addition, Vsap depends on the factor 
n defining the shape of the tree stem, stem height (h) and the allome‐
tric exponent b (cf. Equation 1):

By dividing Vsap by Vstem, we can eliminate the dependence on h, 
as follows:

Assuming equal wood densities (see Discussion section) in sap‐
wood and overall stem wood (�sap=�stem), we can likewise express 
the ratio of sapwood biomass msaptomstem:

Accordingly, we can derive msap as a function of mstem :

Finally, by expressing Asap and Astem in dependence of mstem 
(Equations 1 and 2), we obtain:

We can now express msap as a direct function of mstem, the allo‐
metric parameters a, b, c and d, and the factor n, which defines the 
overall shape of the tree stem.

2.2 | Inventory data

We use the BAAD (Falster et al., 2015) to establish the relationships 
in Equations (1) and (2) for common Northern Hemisphere boreal 
and temperate tree genera. Given that the relationship between 
sapwood area and stem area varies considerably among tree gen‐
era, we collect additional data from the literature to cover the most 
common tree genera over the largest possible range of values. We 
also collected additional measurements of Asap and Astem to estab‐
lish the allometric relationship between these properties for Larix 
gmelinii (central part of Nizhnyaya Tunguska River basin in Central 
Siberia, 64° N 100° E; Larjavaara, Berninger, Palviainen, Prokushkin, 
& Wallenius, 2017) and for Abies sibirica, Betula pubescens, Picea obo‐
vata, Pinus sibirica and Sorbus aucuparia trees (close to the Zotino Tall 
Tower Observation Facility, 61° N 90° E) in data‐sparse regions (see 
Supporting Information Appendix S2.1). A list of all data sources is 
found in Appendix 1.

In total, we use 1920 simultaneous measurements of Asap 
and Astem for 25 tree genera (Abies, Acer, Alnus, Betula, Carpinus, 
Carya, Chamaecyparis, Cornus, Cryptomeria, Fagus, Fraxinus, Larix, 
Liriodendron, Oxydendrum, Picea, Pinus, Populus, Pseudotsuga, 
Quercus, Robinia, Sorbus, Thuja, Tilia, Tsuga and Ulmus; Supporting 
Information Appendix S2.2, Table S2.2), in addition to 2,194 si‐
multaneous measurements of Astem and mstem for 23 tree genera 
(Abies, Acer, Alnus, Betula, Carpinus, Carya, Castanea, Chamaecyparis, 
Cornus, Cryptomeria, Fagus, Fraxinus, Larix, Liriodendron, Magnolia, 
Oxydendrum, Picea, Pinus, Populus, Prunus, Quercus, Sorbus and Tsuga; 
Supporting Information Appendix S2.3, Table S2.3).

Measurements of Asap and Astem are aggregated into classes at the 
genus level (Betula, other broadleaf diffuse‐porous, Quercus, other 
broadleaf ring‐porous, Larix, Abies, Picea, Pinus, Pseudotsuga and 
Tsuga) in order to account for the variation in their relationship. A cor‐
responding map of the dominant tree genera in northern boreal and 
temperate forests is derived at 0.01° resolution from available up‐
scaled forest inventory data on tree species distribution for Canada 
(Beaudoin et al., 2017, 2018), the USA (Wilson et al., 2012, 2013), 
Europe (Brus et al., 2012) and Russia (Schepaschenko et al., 2011). 
The original tree species distribution maps are reclassified based on 
the tree genera classes identified above, adding other needleleaf ev‐
ergreen and other (unidentified) and resampled or reprojected (near‐
est neighbour) to 0.01° resolution and geographical coordinates.

In addition, the measurements of Asap and Astem are classified 
according to leaf types (broadleaf, needleleaf deciduous, needleleaf 
evergreen and mixed forest) to be applied in areas where no informa‐
tion on tree genera is available. In these study areas (outside Canada, 
the USA, Europe and Russia), we apply the leaf type and leaf habit 
classification extracted from the GLC2000 land‐use/land‐cover map 
(Bartholomé & Belward, 2005; Supporting Information Appendix S3, 
Table S3). Measurements of Astem and mstem are solely aggregated by 
leaf type, because differences in their allometric relationship are 
relatively small between tree genera and thus neglected. Here, the 
dominant leaf type is identified by GLC2000 for each 0.01° × 0.01° 
pixel in the entire study area. GLC2000 is resampled using nearest 

(4)Vsap=
1

(

n−1
)

b+1
⋅Asap ⋅h

(5)
Vsap

Vstem

=
n

(

n−1
)

b+1
⋅

Asap

Astem

(6)
msap

mstem

=
n

(

n−1
)

b+1
⋅
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Astem

(7)msap=
n

(
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)
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b+1
⋅a ⋅c

b−1
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neighbour resampling from its original 1 km resolution to 0.01° in 
order to match the resolution of the stem biomass map.

2.3 | Application to a remote sensing‐based stem 
biomass product

Stem volume (or growing stock volume; GSV) of northern boreal and 
temperate forests (30–80° N) for the year 2010 has been estimated 
from radar remote sensing at a spatial resolution of 0.01° (Santoro et 
al., 2015). This product has already been converted to stem biomass 
carbon density (Thurner et al., 2014), by making use of a global data‐
base on wood density (Chave et al., 2009). Here, we apply the above 
theoretical considerations, supported by evidence from the BAAD, 
to derive sapwood biomass from stem biomass. For this purpose, the 
allometric parameters a, b (Equation 1), c and d (Equation 2) are fitted 
for different tree genera and leaf types using observations from the 
BAAD and generalized nonlinear least square (GNLS) regression. For 
the tree stem shape factor n, a mean value of 2.5 is assumed, reflect‐
ing the mean value of the most common shapes of a paraboloid (n = 
2) and a cone (n = 3; see Discussion section).

While the data contained in the BAAD are inventory measure‐
ments at the tree level, the original remote sensing stem biomass 
carbon density map (Thurner et al., 2014) reports biomass carbon 
per square metre (mstemCarea, representing values at the stand scale. 
To apply tree‐level parameters derived from the BAAD (Equation 8) 
to the stand‐level remote sensing‐based stem biomass product, the 
latter is first converted to tree‐level stem biomass carbon (mstemC). For 
this task, we apply a global stand density map, which is available at the 
original resolution of 1 km (Crowther et al., 2015). Based on forest in‐
ventory data and regression models taking into account the influence 
of climate, topography, vegetation characteristics and land use, this 
stand density map provides the spatial distribution of the number of 
trees per area (D). The implicit assumption in this calculation is that a 
representative tree can be defined for each 0.01° × 0.01° grid cell. The 
stand density map is first resampled to the spatial resolution of the 
stem biomass product (0.01°), and afterwards, the mean stand density 
value (D̄) of an 11 × 11 moving window (0.11° × 0.11°) is used in order 
to dampen the effect of spatial variations in stand density:

Subsequently, we convert the resulting stem biomass carbon into 
stem dry weight. This conversion accounts for the variation in wood 
carbon concentration among leaf types (Thomas & Martin, 2012):

After deriving msap from mstem by applying Equation (8), the obtained 
msap at tree level is converted back to sapwood biomass carbon and 
finally to sapwood biomass carbon density (per square metre) by re‐
verse application of the above Equations (9–12; to msap instead of 
mstem). Total and mean sapwood biomass values are then calculated 
for different tree genera according to the dominant genus distribu‐
tion map in boreal and temperate forests [separation between bo‐
real and temperate regions according to Olson et al. (2001)] over 
North America and Eurasia.

The uncertainty in sapwood biomass carbon density is es‐
timated by means of propagation of the uncertainties of the in‐
dependent variables mstemCarea, D and n, and the uncertainties in 
the functional relationships (Equations 1 and 2) fitted to the mea‐
surements. For a detailed description of the implemented uncer‐
tainty analysis, see the Supporting Information (Appendix S4). In 
an additional analysis, we estimate the importance of tree genera, 
temperature and precipitation on these relationships by applying 
generalized additive models (GAMs; see Supporting Information 
Appendix S5).

3  | RESULTS

3.1 | Empirical evidence from databases

The value of Asap increases as a power function (in general, with 
exponents 0<b<1) of Astem (at breast height; Equation 1). When 
distinguishing among different tree genera [Larix, Pinus, Picea, 
Abies, Tsuga, Pseudotsuga, Quercus, other broadleaf ring‐porous 
(RP) trees, Betula and other broadleaf diffuse‐porous (DP) trees], 
we find that these relationships can be approximated with mod‐
erate to very high modelling efficiencies (MEF; Nash & Sutcliffe, 
1970). In particular, Betula (MEF = 0.983), other DP trees (MEF 
= 0.877) and needleleaf evergreen tree genera (Pinus: MEF 
= 0.869; Picea: MEF = 0.893; Abies: MEF = 0.888; Tsuga: MEF 
= 0.778; Pseudotsuga: MEF = 0.828) exhibit very well‐defined re‐
lationships (Figure 2). The MEFs are a bit lower for Quercus (MEF 
= 0.674), other RP trees (MEF = 0.760) and, in particular, for Larix 
(MEF = 0.452). When grouping all needleleaf evergreen (mixed NE; 
MEF = 0.722), all broadleaf (mixed B; MEF = 0.400) or all explored 
tree genera (mixed; MEF = 0.684), the MEFs decrease consider‐
ably. The values of the parameters in Equation (1) differ strongly 
among tree genera, with Larix, Pseudotsuga, Quercus and other RP 
exhibiting comparably lower Asap for a given Astem than the other 
genera. Uncertainties increase with increasing stem CSA accord‐
ing to Equation S4.VII in the Supporting Information (Appendix 
S4).

An even finer separation among tree genera (instead of aggregat‐
ing genera into the above‐mentioned classes) reveals further differ‐
ences (Supporting Information Appendix S6, Figure S6.2), but in some 
cases these differences are evaluated based on a limited number of 
data points. The remaining variation in the relationships between 
Asap and Astem for different tree genera are partly attributable to spe‐
cies‐specific differences, as is the case for Larix species (Supporting 

(9)mstemC=
mstemCarea

D̄

(10)mstem=
mstemC

0.488
for broadleaf tree species

(11)mstem=
mstemC

0.508
for needleleaf tree species

(12)mstem=
mstemC

0.498
for mixed tree species
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Information Appendix S6, Figure S6.3). However, their separation is 
not feasible for our purpose because reliable information on the spa‐
tial distribution of these Larix species is lacking. Overall, the applied 
classification of tree genera (as in Figure 2) leads to significant im‐
provements, in terms of adjusted R2, root mean square error (RMSE) 
and Akaike's information criterion (AIC; Akaike, 1974), in the deri‐
vation of Asap from Astem in comparison to aggregation by leaf type, 
also when GAMs are applied (Supporting Information Appendix S5, 

Figure S5a). Accounting for both mean annual temperature and mean 
annual precipitation sum in addition can improve these models fur‐
ther, but only to a relatively small extent, and cannot explain the ma‐
jority of the remaining variation in the relationship between Asap and 
Astem (with regard to adjusted R2 and RMSE).

Likewise, Astem (at breast height) is found to increase as a power 
function (with exponents 0<d<1) of mstem (Equation 2; Supporting 
Information Appendix S6, Figures S6.4 and S6.5). Given that these 

F I G U R E  2   Sapwood area at breast height as a function of stem area at breast height for different tree genera [mixed = all tree 
genera together; mixed B = all broadleaf tree genera together; mixed NE = all needleleaf evergreen tree genera together; other DP = 
other (than Betula) diffuse‐porous tree genera; other RP = other (than Quercus) ring‐porous tree genera]. The continuous lines show the 
fitted relationship between sapwood area and stem area (Equation 1), and the dashed lines show the fitted relationships ± the estimated 
uncertainty in these relationships (Supporting Information Appendix S4, Equation S4.VII). See the Supporting Information (Appendix S6, 
Figure S6.1) for a visualization of the fitted functions for all tree genera in one plot
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relationships show very high MEFs on a leaf type level [MEF = 0.948 
for broadleaf trees; MEF = 0.966 for needleleaf deciduous (Larix) 
trees; MEF = 0.933 for needleleaf evergreen trees], we do not fur‐
ther subdivide the dataset in tree genera.

3.2 | Evaluation

An evaluation of the estimated sapwood biomass at tree level (by ap‐
plying Equation 8 to measurements of stem biomass contained in the 
BAAD; Supporting Information Appendix S7) against independent 
measurements reveals that our models have good predictive power 
for Pinus (normalized root mean square error: nRMSE = 0.38) and 
Betula (nRMSE = 0.26), and a relatively good agreement (but slight 
underestimation for very high biomass) for other DP (nRMSE = 0.54) 
trees (Supporting Information Appendix S7, Figure S7.1). In con‐
trast, the sapwood biomass for Quercus (nRMSE = 0.71) and other 
RP (nRMSE = 0.76) trees is severely underestimated by ca. 50%, but 
only for trees with a sapwood biomass of > 200 kg. In addition, the 
two modelled relationships (Equations 1 and 2) are evaluated indi‐
vidually on test samples not used for model training. Based on this 
approach, the models perform well in estimating Asap from Astem for 
many of the distinguished tree genera classes, both in terms of bias 
(no strong under‐ or overestimation) and random error (nRMSE ≤ 0.4 
for Abies, Tsuga, Pseudotsuga and Betula; Supporting Information 
Appendix S7, Figure S7.2). When no information on tree genera is 
available and the relationships have to be applied at leaf type level, 
the model performance decreases considerably (needleleaf ever‐
green trees: nRMSE = 1.23; broadleaf trees: nRMSE = 0.95; all trees 
together: nRMSE = 1.14). Concerning the estimation of Astem from 
mstem, the model performance evaluated on the test sample is very 
good for all leaf types, with no detectable bias and relatively small 
random errors (nRMSE = 0.42 for broadleaf trees, nRMSE = 0.2 for 
needleleaf deciduous trees, nRMSE = 0.38 for needleleaf evergreen 
trees; Supporting Information Appendix S7, Figure S7.3).

3.3 | Spatially continuous sapwood biomass carbon 
density estimates

A stand density (trees per area) map (Crowther et al., 2015; 
Supporting Information Appendix S8) based on 0.4 million plot data 
allows for scaling between inventory data at tree level and remote 
sensing data at stand scale. In general, stand density is highest in 
southern boreal forests of Canada and Eurasia with an average of 
> 0.07 trees m−2 (or > 700 trees ha−1). The standard deviation in a 
spatial 11 × 11 moving window at 0.01° resolution, which has been 
used as a surrogate for uncertainty here, is highest in fragmented 
forest landscapes, such as those in central Europe, and transition 
regions between forest and non‐forest biomes.

The parameters derived from the relationships shown in Figure 2 
and Figure S6.4 in the Supporting Information (Appendix S6) are 
applied in Equation (8) to calculate msap from mstem at each grid cell 
according to the present tree genera class (Supporting Information 
Appendix S9). The spatial patterns in msap are thus influenced 

nonlinearly by differences in mstem and by the tree genera distri‐
bution, and also by the applied stand density product. As a result, 
msap can reach values > 3 kgC m−2 in temperate forests in the west‐
ern and eastern USA and western Canada, in central Europe and 
Japan, but also in temperate and even boreal forests in European 
Russia and western and central Siberia (Figure 3a). The lowest val‐
ues of msap (values < 1 kgC m−2) occur in Larix forests of central and 
eastern Siberia, the northern boreal forests in Alaska, Canada and 
Scandinavia, and in temperate forests in dry regions (e.g., southern‐
central USA, Spain, parts of northeast China).

In total, we estimate a sapwood biomass of 12.87 ± 6.56 peta‐
grams of carbon (PgC) in boreal forests (Table 1) and 15.80 ± 9.10 PgC 
in temperate forests (Table 2) of the Northern Hemisphere. In the bo‐
real zone, needleleaf evergreen forests account for 7.37 ± 3.63 PgC, 
in North America dominated by Picea forests, whereas in Eurasia 
Pinus forests contribute the largest amount. Broadleaf forests store 
3.35 ± 1.68 PgC in their stem sapwood in the boreal zone, with 
Russian Betula forests being responsible for the bulk of this num‐
ber. Interestingly, Larix forests account for only 1.53 ± 0.73 PgC of 
sapwood biomass in boreal forests, although they cover extensive 
areas. This is a result of their very low proportion of sapwood to 
stem biomass (Figure 3c) and, to a lesser extent, also owing to their 
comparably low stem biomass (Thurner et al., 2014).

In the temperate zone, needleleaf evergreen forests store 
8.27 ± 4.23 PgC in their sapwood, with Pinus and Picea forests being 
responsible for the majority, but also important contributions of 
forests dominated by Abies, Pseudotsuga and Tsuga, mostly in North 
America. For temperate broadleaf forests, we estimate a sapwood 
biomass of 7.05 ± 4.57 PgC, with the largest part in DP trees. Larix 
forests account for only 0.28 ± 0.15 PgC in the temperate zone.

With regard to the mean sapwood biomass, boreal forests 
have a sapwood carbon density on average of 1.13 ± 0.58 kgC m−2 
(Supporting Information Appendix S10, Table S10.1) and temperate 
forests of 2.03 ± 1.17 kgC m−2 (Supporting Information Appendix 
S10, Table S10.2). The lowest mean sapwood carbon densities by 
far occur in Larix forests (0.46 ± 0.21 kgC m−2 in Russian boreal for‐
ests). Needleleaf evergreen forests exhibit higher carbon densities in 
temperate (2.23 ± 1.14 kgC m−2) than in boreal (1.43 ± 0.71 kgC m−2) 
forests, with higher values in Pinus than Picea forests in boreal 
(1.94 ± 0.96 vs. 1.07 ± 0.51 kgC m−2), but not in temperate forests 
(2.20 ± 1.17 vs. 2.14 ± 1.10 kgC m−2). Forests composed of DP trees 
have higher mean sapwood carbon densities (2.36 ± 1.17 kgC m−2 
in boreal forests and 2.39 ± 1.42 kgC m−2 in temperate forests) 
than forests dominated by RP trees (1.47 ± 1.04 kgC m−2 in boreal 
forests and 1.14 ± 0.80 kgC m−2 in temperate forests). The larger 
contribution of RP trees leads to lower mean sapwood carbon den‐
sities of 2.02 ± 1.31 kgC m−2 in temperate forests compared with 
2.33 ± 1.16 kgC m−2 in boreal broadleaf forests.

3.4 | Uncertainty in the estimated sapwood biomass

The uncertainty in msap is, in general, between 30 and 40% in central 
and eastern Siberia, south‐western Canada and the north‐western 
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USA and between 40 and 50% in European Russia, western Siberia, 
Canadian boreal forests and the south‐western USA, among others 
(Figure 3b). These areas coincide with the predominance of spe‐
cific needleleaf evergreen tree genera that exhibit the lowest un‐
certainties in their relationship between Asap and Astem (cf. Figure 2) 
and in their previously estimated stem biomass (Thurner et al., 
2014). Uncertainties are higher in areas where broadleaf tree gen‐
era are prevalent (50–80% in the eastern USA and Mediterranean 
Europe) and highest in regions where only information on leaf 
type level is available or mixed forests are present (often > 80% 
in Alaska, the northern edge of boreal forests in Canada, in China, 
Korea and northern Japan) or where stand density has a high local 

spatial variation (e.g., in the transition regions from forest to non‐
forest biomes in parts of southern Siberia.

An important contribution to the overall uncertainty of msap is al‐
ready contained in the underlying stem biomass product (Supporting 
Information Appendix S11), which shows the highest uncertainties 
in the same regions, where biomass is very low or where broadleaf 
and mixed forests are situated (Thurner et al., 2014). In most of the 
study area, a higher contribution to the overall uncertainty origi‐
nates from the relationships of Asap to Astem. The contribution of the 
uncertainty in the relationship of Astem to mstem is relatively small, and 
the one from the uncertainty in the parameter describing the shape 
of the tree stem (n) is negligible compared with the others.

F I G U R E  3   (a) Sapwood biomass carbon per area (in kilograms of carbon per square metre). (b) Relative uncertainty in sapwood biomass 
carbon. (c) Ratio of sapwood to stem biomass carbon. Non‐forest areas have been masked out using GLC2000 (Bartholomé & Belward, 
2005) [Colour figure can be viewed at wileyonlinelibrary.com]
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3.5 | The proportion of sapwood to total 
stem biomass

The proportion of sapwood to stem biomass is lowest in central 
and eastern Siberian Larix forests (20–30%) and also low in for‐
ests where Quercus and other RP trees are prevalent (30–40%; 
Figure 3c; and Supporting Information Appendix S12, Tables S12.1 
and S12.2). Values of ca. 50% are common in needleleaf forests 
in Canada and central Europe, where Picea is the dominant tree 

genera. Sapwood proportions of 60–70% are characteristic mainly 
for other DP forests, which are distributed over large parts of the 
eastern USA. The highest proportions are estimated in forests 
dominated by Betula and Pinus, mainly in Scandinavia, European 
Russia and western Siberia (70–80%).

The spatial distribution of the derived sapwood biomass prod‐
uct differs strongly from the distribution of the entire stem bio‐
mass. This difference is driven importantly by the distribution 
of tree genera, but also by the sapwood biomass density itself 

TA B L E  1   Total sapwood biomass and its corresponding uncertainty [in petagrams of carbon (PgC)] in Northern Hemisphere boreal 
forests, divided into regions and dominant tree genera

Eurasia Europe Russia North America Canada Contiguous USA

All 9.685 ± 4.737 0.850 ± 0.450 8.547 ± 4.077 3.188 ± 1.821 2.923 ± 1.619 <0.001 ± 0.001

Broadleaf 3.024 ± 1.475 0.054 ± 0.032 2.949 ± 1.423 0.328 ± 0.203 0.319 ± 0.194 –

Diffuse‐porous 2.995 ± 1.449 0.054 ± 0.032 2.941 ± 1.417 0.316 ± 0.192 0.316 ± 0.192 –

Betula 2.384 ± 1.068 0.054 ± 0.032 2.330 ± 1.035 0.037 ± 0.016 0.037 ± 0.016 –

Ring‐porous 0.008 ± 0.006 – 0.008 ± 0.006 – – –

Quercus 0.007 ± 0.004 – 0.007 ± 0.004 – – –

Needleleaf 6.569 ± 3.184 0.796 ± 0.418 5.598 ± 2.654 2.332 ± 1.176 2.234 ± 1.116 <0.001 ± 0.001

Needleleaf 
evergreen

5.040 ± 2.458 0.796 ± 0.418 4.148 ± 1.974 2.328 ± 1.174 2.230 ± 1.113 <0.001 ± 0.001

Abies 0.243 ± 0.117 0.022 ± 0.015 0.220 ± 0.102 0.167 ± 0.092 0.167 ± 0.092 <0.001 ± 0.001

Picea 1.082 ± 0.493 0.218 ± 0.106 0.863 ± 0.387 1.812 ± 0.886 1.812 ± 0.886 <0.001 ± 0.001

Pinus 3.620 ± 1.783 0.555 ± 0.297 3.064 ± 1.486 0.200 ± 0.103 0.200 ± 0.103 –

Pseudotsuga – – – <0.001 ± 0.001 <0.001 ± 0.001 –

Tsuga – – – 0.010 ± 0.005 0.010 ± 0.005 –

Needleleaf 
deciduous (Larix)

1.529 ± 0.726 – 1.450 ± 0.680 0.004 ± 0.002 0.004 ± 0.002 –

TA B L E  2   Total sapwood biomass and its corresponding uncertainty [in petagrams of carbon (PgC)] in Northern Hemisphere temperate 
forests, divided into regions and dominant tree genera

Eurasia Europe Russia North America Canada Contiguous USA

All 7.619 ± 4.831 2.931 ± 1.869 2.614 ± 1.464 8.181 ± 4.270 2.773 ± 1.403 5.264 ± 2.783

Broadleaf 3.897 ± 2.663 1.186 ± 0.819 1.507 ± 0.855 3.151 ± 1.905 0.827 ± 0.506 2.321 ± 1.396

Diffuse‐porous 2.254 ± 1.338 0.815 ± 0.531 1.438 ± 0.808 2.715 ± 1.612 0.826 ± 0.505 1.889 ± 1.107

Betula 1.066 ± 0.572 0.119 ± 0.078 0.947 ± 0.494 0.147 ± 0.064 0.139 ± 0.061 0.008 ± 0.003

Ring‐porous 0.341 ± 0.250 0.272 ± 0.203 0.069 ± 0.047 0.432 ± 0.289 <0.001 ± 0.001 0.432 ± 0.289

Quercus 0.290 ± 0.209 0.234 ± 0.171 0.056 ± 0.038 0.386 ± 0.252 <0.001 ± 0.001 0.386 ± 0.252

Needleleaf 3.638 ± 2.103 1.745 ± 1.050 1.106 ± 0.609 4.910 ± 2.275 1.838 ± 0.816 2.943 ± 1.386

Needleleaf 
evergreen

3.365 ± 1.955 1.742 ± 1.048 0.963 ± 0.530 4.904 ± 2.273 1.836 ± 0.816 2.939 ± 1.384

Abies 0.273 ± 0.146 0.116 ± 0.066 0.157 ± 0.079 0.583 ± 0.256 0.231 ± 0.108 0.352 ± 0.148

Picea 0.814 ± 0.456 0.649 ± 0.375 0.165 ± 0.081 0.638 ± 0.287 0.526 ± 0.239 0.112 ± 0.049

Pinus 1.611 ± 0.971 0.969 ± 0.602 0.642 ± 0.369 2.100 ± 1.001 0.613 ± 0.264 1.487 ± 0.736

Pseudotsuga 0.004 ± 0.002 0.004 ± 0.002 – 0.721 ± 0.296 0.115 ± 0.048 0.606 ± 0.247

Tsuga – – – 0.406 ± 0.170 0.268 ± 0.116 0.137 ± 0.053

Needleleaf 
deciduous (Larix)

0.273 ± 0.148 0.003 ± 0.002 0.143 ± 0.080 0.006 ± 0.003 0.001 ± 0.001 0.004 ± 0.002
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(Figure 4). The proportion of sapwood to total stem biomass var‐
ies from generally 20–30% for Larix, 30–40% for other RP forests, 
ca. 50% for Picea and ca. 60% for other DP forests, to 60–80% for 
Pinus, Tsuga and Betula forests. Abies (usually 60–90%), Pseudotsuga 
(30–70%) and, especially, Quercus (20–70%) forests show the high‐
est variation in sapwood to total stem biomass proportions. Taking 
into account the differences in abundance of the separate tree 
genera, the proportion of sapwood is most often between 50 and 
80% when integrating over all genera (class ‘mixed’). Owing to the 
increase of heartwood with age (and thus with increasing biomass), 
forests with the highest (sapwood and stem) biomass density ex‐
hibit the lowest proportion of sapwood and vice versa.

4  | DISCUSSION

4.1 | Allometric relationships among sapwood area, 
stem area and stem mass

The allometric relationships in Equations (1) and (2) and the stem 
diameter–height relationship (Supporting Information Appendix S1, 
Equation S1.III) have been proposed both as empirically motivated 
functions and as fundamental theoretical predictions arising from 
optimal structure of plants (see details in Supporting Information 
Appendix S13). Metabolic theory (Hunt & Manzoni, 2015; West, 
Brown, & Enquist, 1999) predicts that the exponent b of the sap‐
wood area versus stem area relationship (Equation 1) should range 
between seven‐sixths and one, and that the exponent d of the stem 
area versus stem mass relationship (Equation 2) should be equal to 

three‐quarters. Our estimates of b (range: 0.65–1.02) are generally 
lower than these predictions, whereas those of d (0.70–0.79) are 
in line with them. The exponent of Equation S1.III in Supporting 
Information Appendix S1 is 

(

n−1
)

∕2, with n = 2.5 (consistent with 
recommendations of the Food and Agriculture Organization), 
whereas theoretical predictions for n range between three and five.

There are at least two possible explanations for the discrepancy 
of observed b from the predicted values. First, fitting a reduced 
major axis regression (used to characterize the scaling relationship 
between two variables) instead of GNLS regression (used here to 
predict one variable from another) to the data would yield higher 
estimates of b, closer to the theoretical expectations (Supporting 
Information Appendix S13). However, given that slopes estimated 
with these different methods converge as r2→1 and the observed 
relationships are relatively strong, the values from our data would 
still be less than predicted for some of the investigated tree genera. 
Second and more fundamentally, allometric theory tends to under‐
estimate the degree to which sapwood area tapers as trees grow 
larger. With b = 7/6, the metabolic model predicts that as plants 
grow, the fraction of the trunk that is sapwood increases until it 
reaches a maximum of one (West et al., 1999). Clearly, this pattern 
is unrealistic, as also noted on theoretical grounds by Kozlowski and 
Konarzewski (2004), and is not supported by our data (Figure 2).

4.2 | Uncertainties in the sapwood biomass product

The Northern Hemisphere sapwood biomass product is the first of 
its kind, and it is therefore challenging to evaluate it at its spatial 

F I G U R E  4   Frequency of the estimated 
sapwood biomass carbon per area (in 
kilograms of carbon per square metre) 
with different proportions of sapwood 
to total stem biomass for the tree 
genera classes distinguished [mixed = 
all tree genera together; mixed B = all 
broadleaf tree genera together; mixed 
NE = all needleleaf evergreen tree 
genera together; other DP = other (than 
Betula) diffuse‐porous tree genera; other 
RP = other (than Quercus) ring‐porous 
tree genera]. One hundred thousand 
representative 0.01° × 0.01° grid cells 
have been selected for each tree genera 
class randomly without replacement. 
The density of points in the scatterplot is 
visualized by means of hexagonal binning 
(Carslaw & Ropkins, 2012) [Colour figure 
can be viewed at wileyonlinelibrary.com]Proportion of sapwood to total stem biomass 
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scale (0.01° × 0.01°). Few studies (e.g., Zimmermann et al., 2000) 
present areal estimates of sapwood biomass, and they are usually 
covering relatively small plots that do not match the square kilome‐
tre scale required for an appropriate evaluation of our product. In 
addition to this mismatch of the spatial scale, very precise coordi‐
nates of the inventory data are needed but often not available. In 
the absence of a direct evaluation of the sapwood biomass product 
at the stand scale, we make extensive efforts to evaluate the under‐
lying allometric relationships at the tree level, revealing differences 
in their performance dependent on the applied tree genus class. 
Although there was strong agreement between estimated and meas‐
ured sapwood mass at the tree level for most of the genus classes, 
Quercus and other RP trees showed considerable underestimation, 
but only for trees with a sapwood biomass of > 200 kg. However, 
these tree genera account for only 0.06% of the total estimated sap‐
wood biomass in boreal forests and for 4.9% in temperate forests 
and, most importantly, only 0.95% (in the case of Quercus) and 3.27% 
(in the case of other RP) of the grid cells where these tree genera 
are prevalent exhibit an estimated average tree sapwood biomass 
of > 200 kg. Even when a stem mass distribution at sub‐grid scale is 
assumed (see below), the mean probability that Quercus and other 
RP trees exceed a sapwood biomass of > 200 kg is still < 5 and < 8%, 
respectively (see Supporting Information Appendix S14). Moreover, 
the evaluation results emphasize the importance of distinguishing 
tree genera instead of leaf types when deriving sapwood CSA from 
stem CSA, because the scatter increases and thus the model per‐
formance decreases considerably in the latter case. The application 
of these relationships aggregated by leaf type is necessary only in 
very limited areas (outside Canada, the USA, Europe and Russia). The 
modelled relationship between stem CSA and stem biomass, in con‐
trast, produced good results when applied to a test sample, although 
aggregated by leaf type. We conclude that the applied allometric re‐
lationships are robust in the greatest part of the study area.

Uncertainties of the estimated sapwood biomass densities are 
relatively high, especially in broadleaf and mixed forests. However, 
in many of the regions with the highest uncertainties, the biomass 
values are small. In areas with high biomass density, the uncertainty is 
usually within 50%, except for temperate broadleaf forests. The un‐
certainty could be reduced most importantly by more extensive field 
measurement campaigns, collecting both sapwood area and stem area 
(or diameter at breast height), including the most common tree spe‐
cies across their distributional range and thus covering possible ad‐
aptation to climatic or other environmental conditions. Alternatively, 
a greater number of field estimates of sapwood proportions of stem 
volume or biomass would be even more beneficial, because they 
would allow to circumvent generalized assumptions on the shape of 
the tree stem or, in the case of stem biomass estimates, on sapwood 
and heartwood densities. However, such measurements are compli‐
cated in practice, making the more widely available measurements of 
sapwood area a convenient surrogate. Most importantly, the dissem‐
ination of the original measurement data or, ideally, their contribu‐
tion to biomass allometry databases, such as the BAAD (Falster et al., 
2015), could greatly increase the amount of data available.

It is noted that our estimate of sapwood biomass only ac‐
counts for sapwood in tree stems, but not in branches or roots. 
Unfortunately, measurements on sapwood proportions in branches 
are comparably scarce. Heartwood production also affects branches 
after a certain age has been reached; however, young branches pri‐
marily consist of sapwood (Kramer, Sillett, & Carroll, 2014). In com‐
parison to tree stems, the proportion of heartwood in branches 
increases more slowly with age and is thus of relatively minor im‐
portance except in old trees. For instance, in Pinus sylvestris trees in 
southern Finland, branch heartwood accounts for < 2% of total tree 
biomass and < 20% of branch biomass for trees < 100 years of age 
(Vanninen, Ylitalo, Sievänen, & Mäkelä, 1996). Given that sapwood 
content depends on the availability of light (Sellin, 1994), the branch 
sapwood content is related to the position of the branch in the tree 
crown, with branches that receive the most sunlight exhibiting the 
highest proportion of sapwood.

Other uncertainties that we do not account for (see a detailed 
discussion in Supporting Information Appendix S14) include mea‐
surement errors of sapwood area or thickness (especially for species 
that do not form a coloured heartwood), the accuracy of the applied 
tree genera distribution and stand density products, the implications 
of our assumptions of equal wood density and carbon content in 
sapwood and heartwood, and the biomass distribution among trees 
in each grid cell (0.01° × 0.01°). By applying a single mean stand den‐
sity value per grid cell, here we assume that we can derive sapwood 
from stem biomass for an ‘average tree’ in each grid cell. When ac‐
counting for the distribution of stem mass within forest stands at the 
sub‐grid scale, the impact on the estimated total sapwood biomass 
is very small (for a distribution typical for young forests, −2.3% in 
boreal and −3.9% in temperate forests; for a distribution typical for 
old forests, −1.1% in boreal and −1.8% in temperate forests) and neg‐
ligible compared with other uncertainties (Supporting Information 
Appendix S14).

4.3 | Innovations in the synergy of 
satellite and forest inventory data for estimation of 
sapwood biomass

Notwithstanding the remaining uncertainties, which are unavoid‐
able with the currently available data, the present study involves 
several innovations that go far beyond state of the art in the synergy 
of satellite and forest inventory data for biomass estimation:

1. Theoretical considerations on the sapwood distribution in the 
tree stem make it possible to apply relatively more frequent 
measurements of sapwood area for estimation of sapwood 
biomass.

2. The application of a global stand density product (Crowther et al., 
2015) enables the gap to be bridged between inventory measure‐
ments at the tree level and satellite observations at the forest 
stand scale.

3. The application of a dominant tree genera map covering the bo‐
real and temperate forests in Canada (Beaudoin et al., 2017, 
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2018), the USA (Wilson et al., 2012, 2013), Europe (Brus et al., 
2012) and Russia (Schepaschenko et al., 2011) allows genera‐spe‐
cific differences in biomass allometry to be taken into account.

The presented sapwood biomass map shows important differences in 
its spatial distribution compared with the total stem biomass, strongly 
related to the distribution of tree genera. If the tree species distri‐
bution changes as a result of forest management or climate change, 
the available sapwood biomass may be altered significantly, even if 
the total stem biomass remains the same. For instance, a less harsh 
climate in Siberia that would lead to a retreat of Larix forests (Shuman 
et al., 2011) could imply a much higher sapwood biomass density (e.g., 
in the replacing Pinus forests) and, consequently, not only increased 
gross productivity, but also increased maintenance respiration levels. 
Thus, it is of crucial importance to use the functionally more import‐
ant sapwood instead of the entire stem biomass in large‐scale car‐
bon and water cycle studies. For instance, the presented sapwood 
biomass density product can be the basis for new spatial estimates 
of plant respiration and transpiration. In addition, it can be used for 
comparison with and calibration of models that consider sapwood 
biomass, for instance LPJ (Sitch et al., 2003) or ORCHIDEE (Krinner 
et al., 2005).
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