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Abstract 33	

 34	

Decisions are typically made after integrating information about multiple attributes 35	

of alternatives in a choice set. The computational mechanisms by which this integration 36	

occurs have been a focus of extensive research in humans and other animals. Where 37	

observers are obliged to consider attributes in turn, a framework known as “selective 38	

integration” can capture salient biases in human choices. The model proposes that 39	

successive attributes compete for processing resources and integration is biased 40	

towards the alternative with the locally preferred attribute. Quantitative analysis shows 41	

that this model, although it discards choice-relevant information, is optimal when the 42	

observers’ decisions are corrupted by noise that occurs beyond the sensory stage. Here, 43	

we used scalp electroencephalographic (EEG) recordings to test a neural prediction of 44	

the model: that locally preferred attributes should be encoded with higher gain in neural 45	

signals over posterior cortex. Over two sessions, human observers (of either sex) judged 46	

which of two simultaneous streams of bars had the higher (or lower) average height. 47	

The selective integration model fit the data better than a rival model without bias. 48	

Single-trial analysis showed that neural signals contralateral to the preferred attribute 49	

covaried more steeply with the decision information conferred by locally preferred 50	

attributes. Moreover, both broadband and time-frequency signals before response onset 51	

were best explained by evidence integration under selective integration. These findings 52	

provide neural evidence in support of selective integration, complementing existing 53	

behavioural work. 54	

 55	

Significance Statement 56	

 57	

We often make choices about stimuli with multiple attributes, such as when 58	

deciding which car to buy on the basis of price, performance and fuel economy. A 59	

model of the choice process, known as selective integration, proposes that rather than 60	

taking all of the decision-relevant information equally into account when making 61	

choices, we discard or overlook a portion of it. Although information is discarded, this 62	

strategy can lead to better decisions when memory is limited. Here, we test and confirm 63	

predictions of the model about the brain signals that occur when different stimulus 64	

attributes of stimulus are being evaluated. Our work provides the first neural support 65	

for the selective integration model. 66	
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INTRODUCTION 67	

 68	

Biological brains evolved to be both precise and efficient. Responding accurately 69	

to external stimulation requires noisy sensory signals 𝑥  to be transduced such that 70	

internal estimates 𝑥" are as close as possible to their generative counterparts. Sequential 71	

sampling and integration allow the precision of sensory estimates to grow with the 72	

number of independent observations obtained (Wald and Wolfowitz, 1949), and neural 73	

signals in multiple brain regions implement a basic form of memory that allows optimal 74	

estimates to be gradually integrated during inference (Gold and Shadlen, 2007; Hanks 75	

and Summerfield, 2017). Forming more precise estimates of the sensory world is often 76	

consequential for reinforcement, both in the lab (e.g. when a monkey categorises a 77	

stream of noisy sensory signals in return for liquid reward) and in the real world (e.g. 78	

when a consumer evaluates the quality of multiple relevant attributes of a product). 79	

However, where information arrives in high volumes, the carrying capacity of the 80	

neural system can limit the precision of sensory estimates. Consider a binary 81	

discrimination judgment between two stimuli 𝐴 and 𝐵, where information about their 82	

worth 𝑥%& and 𝑥%' arrives in parallel via a sequence of 𝑛 discrete sample pairs 𝑘. Let us 83	

assume that decisions are made by integrating and comparing transduced sensory 84	

estimates under the corrupting influence of “late” noise: 85	

*[𝑓(𝑥%& − 𝑥%')] +𝒩(0, 𝜎)
6

%78

> 0 86	

With limitless capacity (𝜎 = 0) the best judgments will be made by simply comparing 87	

the summed estimates for A and B – in other words, the optimal 𝑓(∙) is the identity 88	

function. Intuitively, if samples 𝑥 are numbers and you are in possession of a calculator, 89	

the best thing to do is to simply compute their relative sum. However, under imperfect 90	

memory, comparative judgments of ground truth quality can paradoxically be promoted 91	

by more selective transduction that discards part of the sensory information (Tsetsos et 92	

al., 2016; Li et al., 2017; Spitzer et al., 2017; Moran and Tsetsos, 2018). For example, 93	

when 𝜎 > 0, a reward-maximising strategy is to selectively integrate the locally highest 94	

valued sample (i.e. 𝑥%&  when 𝑥%& > 𝑥%' ) by partially down-weighting the less valued 95	

sample by a factor 𝑤	(1 > 𝑤 > 0). For illustration, imagine that deciding between two 96	

apartments to rent involves evaluating the candidates along multiple continuously-97	

valued dimensions (price, location, size, etc). As memory demands become prohibitive 98	
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(e.g. as 𝜎 grows), a strategy that is partly based on tallying the number of dimensions 99	

on which an alternative is higher valued (e.g. 𝑤 < 1) will lead to more accurate choices. 100	

This is because ordinal (rank-based) strategies confer robustness on inference, just as 101	

nonparametric methods allow statistical calculations to be more robust to outlying data. 102	

Selective integration can be shown to be “optimal” because it maximises reward given 103	

irreducible constraints on capacity. At the same time, however, selective integration is 104	

“irrational” in that it discards information and can lead to inconsistent choices, 105	

including violations of the normative axioms of transitivity and independence from 106	

irrelevant alternatives (Von Neumann and Morgenstern, 1944). Several models 107	

embodying this principle provide a good fit to human data in tasks involving sequential 108	

integration and comparison of discrete samples of information (Tsetsos et al., 2012; 109	

Bhatia, 2013; Summerfield and Tsetsos, 2015; Tsetsos et al., 2016; Glickman et al., 110	

2018; Gluth et al., 2018).  111	

The framework of selective integration also makes predictions about neural signals, 112	

but these remain as yet untested. For example, several studies have shown that during 113	

sequential integration of decision information, the amplitude of single-trial EEG signals 114	

contralateral to the side of stimulation correlates with the strength of evidence conferred 115	

by each sample (Wyart et al., 2015). Thus, we might expect that those samples that are 116	

selectively integrated by virtue of being the local “winner” would be encoded with 117	

higher gain, i.e. a steeper linear relationship between 𝑥 and relevant EEG signals. Here, 118	

we tested this view by recording scalp electroencephalographic (EEG) data whilst 119	

participants performed a task that involved averaging and comparing bar height within 120	

two parallel streams. 121	

 122	
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	123	
	124	
Figure	1.	Task design and model schematic. (A) Participants viewed a sequence of nine pairs of bars 125	
varying in height and compared the average bar height of the left and right stream. In two separate 126	
recording sessions, participants indicated the sequence with either the highest or lowest average bar 127	
height.  (B) The selective integration model assumes a separate accumulation process for each option, 128	
here the left and right bar sequence. Two concurrent input values 𝑋& and 𝑋' are transformed with a 129	
factor 𝑤 based on their relative difference, down-weighting the lower input value and up-weighting the 130	
higher input value. All transduced values 𝐼& and 𝐼'are then integrated over time, with greater loss of 131	
information for earlier samples. Finally, the model generates a choice probability based on the difference 132	
in integrated values between the two streams. 133	
 134	

MATERIALS AND METHODS 135	

 136	

Participants 137	

Participants were 18 healthy adult volunteers with no history of neurological or 138	

psychiatric illness. Those who failed to complete both recording sessions (n = 2) or who 139	

performed at chance level (n = 1) were excluded. Analyses were conducted on the 140	

remaining 30 EEG sessions from 15 volunteers (female = 8; left-handed = 2; Mage = 141	

24.29 ± 4.48). The study was approved by the Oxford University Medical Sciences 142	

Division Ethics Committee (MSD/IDREC/C1/2009/1) and informed consent was given 143	

at the start of each recording session. Monetary compensation was based on 144	

performance during the experiment (approximately £25 per participant). 145	
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 146	

Task design and stimuli 147	

All stimuli were created in the Psychophysics 3 Toolbox (Brainard, 1997; Kleiner 148	

et al., 2007) for Matlab (MathWorks). The experiment was presented on a 17-inch CRT 149	

monitor with 60 Hz presentation rate at a viewing distance of ~70 cm. 150	

On each trial participants viewed a sequence of 9 pairs of bars of variable height 151	

(Fig. 1A) that appeared in sequence, left and right of a central fixation dot. The task 152	

framing differed across sessions. In one recording session participants were asked to 153	

indicate with a button press the stream with the highest average bar height (‘high 154	

frame’) and in the other session they were asked to indicate the stream with the lowest 155	

average height (‘low frame’). The order of the two sessions was counterbalanced over 156	

participants and both sessions were separated by at least one week. We excluded 157	

participants who did not complete both sessions, because the framing manipulation 158	

allowed us to cleanly orthogonalize perceptual value (the raw bar height in pixels) from 159	

decision value (the level of evidence in favour of either response). The instructions 160	

stated that the bars indicated the value of two stock options whose prices fluctuated 161	

over time. They were asked to buy the most favourable (high frame) or sell the least 162	

favourable (low frame) stock option in different sessions. 163	

Each trial started with a white fixation dot (radius = 5 pixels [px]) presented 164	

centrally on a grey background. The dot remained on screen for the whole duration of 165	

the trial. All bar stimuli were presented within two black rectangular placeholders (60 166	

by 200 px) on either side of the fixation dot at a horizontal distance of 160 px. Each 167	

pair of bars remained on screen for 350 ms, and between successive pairs of bars, there 168	

was a gap of empty black frames, lasting approximately 150 ms (uniformly drawn 169	

between 100 – 200 ms). The first bar was a forward mask (300ms after fixation onset) 170	

of maximal bar height that occurred on both sides and was not included in the analysis. 171	

Bars were thus presented at a rate of ~2 Hz with a jitter to minimise steady state neural 172	

responses. When all 9 bar pairs had been presented, a backward mask appeared again 173	

on screen for 50 ms. The fixation dot then turned black, indicating to the participants 174	

that they could respond by pressing the A and L keys on a QWERTY standard keyboard 175	

to choose left and right stream respectively. If participants failed to respond within 3 176	

seconds, the fixation dot would turn red for 1000 ms and the words ‘Too late’ appeared 177	

in red above the fixation dot. If they responded before the deadline, the fixation dot 178	

would change colour for 500 ms: green for correct response and red for incorrect. The 179	
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next trial started after an inter-trial interval (ITI) of 300 ms. A trial could thus last for a 180	

maximum of 9350 ms (assuming 3 seconds with no response). 181	

 182	

Trials were drawn from one of four bar height distributions (conditions), randomly 183	

intermixed throughout the experiment. In two conditions (‘Low variance’ and ‘High 184	

variance’), samples for the left and right stream were drawn pseudorandomly from a 185	

Gaussian distribution whose mean 𝜇 was in turn drawn from a uniform distribution 186	

between 80 px and 120 px, and whose standard deviation 𝜎 set to 10 (low variance) or 187	

20 (high variance conditions). We used a resampling method to ensure that sample 188	

mean and variance closely matched the generative means and variance. To produce a 189	

correct answer, 6 px were subtracted from one of the two streams. 190	

 Samples for the remaining two conditions (‘Frequent winner’ and ‘Infrequent 191	

winner’) were generated as follows. In the frequent winner condition, the correct stream 192	

was manipulated to contain the winning sample in 2/3 of the sample pairs, while in the 193	

infrequent condition the correct stream only contained the winning sample 1/3 of the 194	

time. To achieve this, the mean bar length (𝑀) of each trial was first drawn from a 195	

uniform distribution ranging between 110 and 130 px. Next, values were calculated 196	

separately for every three sample pairs (‘triplets’ 𝑇) in the trial. A deviation (𝛿) from 197	

the trial mean for each triplet pair 𝑇  was drawn from a uniform distribution 198	

𝜕	~	𝑈(15,25) . Additional noise 𝜀8  and 𝜀L  was drawn per triplet 𝑇  from a normal 199	

distribution 𝜀	~	𝑁(0,3). For every triplet 𝑇, the two streams 𝑇& and 𝑇' would have the 200	

following form:  201	

 202	

𝑇& = {𝑀 +	𝜀8, 𝑀 + 𝛿 +	𝜀L, 𝑀 + 2𝛿 + (𝜀L −	𝜀8)} 203	

𝑇' = {𝑀 + 	𝛿, 𝑀 + 2𝛿, 𝑀} 204	

 205	

In this form, 𝑇' always contains two winning samples (𝑀 + 	𝛿 and 𝑀 + 2𝛿), while 206	

the means of both triplets are identical. To produce a correct answer, 6 px were 207	

subtracted from one of the two streams. In the frequent winner condition the mean of 208	

stream 𝐴, which contained most of the losing samples, was adjusted to make it the 209	

incorrect answer, while in the infrequent winner condition the mean of stream 𝐵 , 210	

containing the most winning samples, was adjusted. Adjustments in low and high 211	

frames were inversions of one another. 212	
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To prevent participants from shifting gaze directly at one of the two streams, an area 213	

around the fixation dot (256 x 205 px) was defined in which participants had to keep 214	

fixation. Eye movements were monitored using a Tobii EyeX eye-tracker (Tobii 215	

Technology, Stockholm, Sweden) and when the eyes moved outside the fixation area, 216	

the trial was classified as incorrect and the message ‘Eyes moved!’ appeared above the 217	

fixation dot. These trials were also omitted from analysis (0.35%). 218	

Each recording session consisted of 600 trials, divided in 10 blocks, resulting in a 219	

maximum of 1200 trials (10800 samples) for each participant. Participants could take 220	

self-timed breaks in between blocks. One session lasted around 2.5 h, including 221	

preparation of the cap, 60 minutes of task performance and removal of the cap at the 222	

end of the experiment. 223	

 224	

Selective integration model 225	

The model decision is based on the output of two accumulators 𝑌&  and 𝑌'  that 226	

integrate the input values of the left and right stream respectively (Fig. 1B). Input values 227	

𝑋& and 𝑋' are the raw pixel heights 𝐻 of each sample (bar), inverted for the low frame 228	

(200	–𝐻). Each integrator is updated separately for each sample 𝑘 according to the 229	

following formula: 230	

 231	

𝑌%& = 𝑌%T8& + 𝐼%& ∙ 𝜆 
(1) 

𝑌%' = 𝑌%T8' + 𝐼%' ∙ 𝜆 

 232	

𝑌& and 𝑌' are both initialized to zero. 𝐼& and 𝐼' are the transformed values of the 233	

input after graded selective integration: 234	

 235	

VW
X7(8TY)∙ZW

X

VW
[7Y∙ZW

[  with \𝑤 < 0.5	where	𝑋& > 𝑋'	for	sample	𝑘	
𝑤 > 0.5	where	𝑋& < 𝑋'	for	sample	𝑘

 (2) 

 236	

Where 𝑤 is a gating variable that is determined by passing the difference between 237	

input values (Δ𝑋 = 𝑋' − 𝑋&) through a logistic function 238	

 239	

𝑤 =
1

1 + 𝑒Tk(lZ)
 (3) 
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 240	

with the slope of 𝑚 determining the extent to which the difference between the two 241	

input values attenuates the input values 𝑋. The transfer function ensures that for very 242	

large differences between the bars, where it is clear which of the two bars wins, the 243	

winning input value is integrated close to its original value, while the losing sample 244	

value is almost entirely suppressed. On the other hand, for input values that lie close 245	

together and comparison is difficult, both values carry approximately equal weight to 246	

their accumulators. A recent study demonstrated that a ‘graded’ selective integration 247	

such as the one proposed here outperformed a ‘binary’ selective integration that works 248	

independent of the size of the sample difference, both in predicting human choices and 249	

its robustness to noise (Glickman et al., 2018). 250	

The model assumes a leaky accumulation, with earlier samples carrying less weight 251	

on the final decision. Each transduced sample is therefore multiplied with the leak 252	

function value: 253	

 254	

𝜆 =
(1 − 𝑙)6T%

(1 − 𝑙)  (4) 

 255	

with 𝑙	the amount of information loss and 𝑛 the total number of samples. 256	

 257	

Finally, the model outputs a choice probability based on the difference between the 258	

accumulators after all evidence has been accumulated: 259	

 260	

𝑃(𝐵) = 𝜅 +
1 − 2𝜅

1 − 𝑒Tq(r[TrX)
 (5) 

 261	

𝑠 is the slope of the response function, often referred to as ‘late’ or ‘integration 262	

noise’, a factor that adds uncertainty to the final choice. Finally, a lapse rate parameter 263	

𝜅 was added to the response function to allow for higher error rate in the model. 264	

 265	

Model fitting procedure 266	

The model has four free parameters: selective gating parameter 𝑚, leak 𝑙, late noise 267	

𝑠 and lapse rate 𝜅. Best fitting parameter sets for each participant were obtained by 268	
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minimizing the negative log-likelihood function using a scatter-search based global 269	

optimization solver in Matlab. The parameter search space was constrained as follows: 270	

 271	

𝑚, 𝜅 ∈ {0.001,… ,0.2},	 272	

𝑙, 𝑠 ∈ {0.01, … ,0.5} 273	

 274	

To test whether the gating parameter 𝑚  significantly contributed to the model 275	

performance, two models were compared: the full SI model and a fixed gating model. 276	

For the fixed gating model 𝑚 was set to 0, which effectively gave equal weight to each 277	

input (𝑤	 = 	0.5), whereas for the full model 𝑚 was unrestricted, allowing	𝑤 to take 278	

any value between 0.5 and 1. Model fits were compared through split-half cross-279	

validation, a method that allows comparing models with different numbers of free 280	

parameters through their generalizability to new data. Both models were trained on one 281	

recording session and the best fitting parameters from the training set were then used 282	

to estimate how well they predicted responses in the other session. Negative log-283	

likelihoods were summed per participant and fed into a Bayesian Model Selection 284	

procedure (Stephan et al., 2009) to compute posterior evidence for one model over 285	

another. Best fitting parameters for the model used in subsequent analyses were 286	

estimated from the collapsed data over both recording sessions. 287	

 288	

Parameter recovery 289	

To ensure there was no trade-off between the parameters of our model within our 290	

dataset, we tested whether simulated parameter combinations could be recovered using 291	

the same model-fitting procedure as above. We therefore generated 100 random 292	

combinations of our four parameters, with the search space of each parameter limited 293	

by the minimum and maximum estimated values from the real data. Model responses 294	

were then generated for each parameter combination using the input data from a 295	

randomly selected subject each time (1200 trials). Finally, the input data and model 296	

generated responses were used to estimate best-fitting parameters again and test how 297	

well we could recover the original parameter combinations. 298	

 299	

 300	

 301	
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Behavioural analysis: regression models 302	

All analyses of human data were performed on the collapsed data from both 303	

recording sessions, with input values for the ‘low frame’ session inverted (200 − 𝐻) to 304	

reflect the input value rather than raw bar height. The impact of winning and losing 305	

samples on choice was tested through a generalized linear model (GLM), modelled with 306	

a binomial distribution and a logit link function, predicting the probability of choosing 307	

the right stream, as follows: 308	

 309	

𝑃(𝑅) = 𝛽x + 𝛽8 ∙*𝑋y(𝐿 > 𝑅) + 𝛽L ∙*𝑋y(𝐿 < 𝑅) + 𝛽{ ∙*𝑋|(𝐿 < 𝑅) +	

𝛽} ∙*𝑋|(𝐿 > 𝑅) + 𝜀 
(6) 

 310	

The four parametric regressors in the model coded for the cumulative sum of input 311	

values for all (1) winning samples on the left side [𝑋y(𝐿 > 𝑅)], (2) losing samples on 312	

the left side [𝑋y(𝐿 < 𝑅)], (3) winning samples on the right side [𝑋|(𝐿 < 𝑅)] and (4) 313	

losing samples on the right side [𝑋|(𝐿 > 𝑅)]. The regressors were always standardized 314	

before parameter estimation. Parameter estimates for the left stream were then sign-315	

flipped and averaged with the estimates of the right stream, in order to obtain an average 316	

modulation of winning and losing samples (Fig. 2A). 317	

The SI model further allows for a ‘recency effect’ through the leak parameter, 318	

whereby earlier samples carry less weight in the final choice than later samples. We 319	

tested this assumption through a new GLM predicting choices for the right stream based 320	

on the signed difference of each sample pair (right minus left).  321	

 322	

𝑃(𝑅) = 𝛽x + 𝛽8 ∙ Δ(𝑋8|, 𝑋8y) + ⋯+ 𝛽� ∙ Δ(𝑋�|, 𝑋�y) + 𝜀 (7) 

 323	

The model thus consisted of 9 parametric regressors representing the serial position 324	

in the stream. If choices were driven more by more recent samples, coefficient estimates 325	

should be higher for regressors coding for later samples (Fig. 2C). 326	

All statistical tests were performed at the group level. Given the relatively low 327	

number of subjects, we opted for non-parametric tests that do not assume a normal 328	

distribution of the data. 329	

 330	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/642371doi: bioRxiv preprint first posted online May. 20, 2019; 

http://dx.doi.org/10.1101/642371
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

EEG acquisition and pre-processing 331	

EEG signals were recorded using a Neuroscan system with SynAmps-2 digital 332	

amplifiers with 60 Ag/AgCl electrodes located at FP1, FPz, FP2, F7, F5, F3, F1, Fz, 333	

F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, Cz, C2, 334	

C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, 335	

P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, O1, Oz, and O2. Four additional 336	

EOG electrodes in bipolar montage (two horizontal, two vertical) were recorded, 337	

together with one mastoid for reference. Electrode impedance was brought below 10 338	

kΩ before recording. Data was collected at a sampling rate of 1 kHz and high-pass 339	

filtered at .01 Hz. 340	

Preprocessing was done in Matlab using functions from the EEGLAB toolbox 341	

(Delorme and Makeig, 2004) and custom scripts. First, data was downsampled to 250 342	

Hz, subsequently low-pass filtered at 40 Hz and then high-pass filtered at 0.5 Hz. 343	

Excessively noisy channels were identified through visual inspection for each 344	

participant and interpolated based on the weighted average of the surrounding 345	

electrodes. Next the data was re-referenced offline to average reference (excluding 346	

EOG channels). Trial epochs were extracted spanning 1 second prior to the fixation dot 347	

onset until 7 seconds after. Epochs were subsequently baselined relative to the pre-348	

fixation time window of -500 to 0 ms. Artefacts related to eye-blinks and other sources 349	

of consistent noise were identified through Independent Component Analysis (ICA) 350	

and removed from the data after visual inspection. Finally, the data were epoched again 351	

at different times for various analyses. For the sample-based regressions, the data were 352	

epoched relative to each sample pair onset, starting at 100 ms before until 750 ms after 353	

sample onset and baselined again relative to the full pre-stimulus window, to exclude 354	

any systematic offset during the length of the trial. For response-locked analyses, the 355	

epoch was set to 3 seconds prior to response onset to 300 ms after. The baseline window 356	

was chosen at 3 to 2.5 seconds before response onset. 357	

 358	

Time-frequency transformation 359	

The pre-processed epochs spanning 8 seconds were transformed into the time-360	

frequency domain using functions from the Fieldtrip toolbox (Oostenveld et al., 2011) 361	

for Matlab and custom scripts. Power was calculated every 25 ms within an epoch by 362	

convolving a sliding Morlet wavelet (width = 7 cycles), for frequencies between 8 and 363	

38 Hz, incremented in steps of 3 Hz. To allow for a comparison of power estimates 364	
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over frequency bands, each frequency within an epoch was dB transformed relative to 365	

the baseline window [-300 300] ms, a ‘silent’ period including the ITI and start of a 366	

new trial, using the following formula: 367	

 368	

𝑑𝐵 = 10 ∙ 𝑙𝑜𝑔8x �
𝑠𝑖𝑔𝑛𝑎𝑙
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒�. 

(8) 

 369	

For the sample regression on TF data, the data was subsequently epoched into 370	

smaller epochs between [-100, 750] ms relative to sample pair onset. For visualization 371	

purposes the time-frequency results were interpolated, while cluster statistics were 372	

performed on the raw data. 373	

 374	

EEG analysis: regression models 375	

To understand how EEG signals were modulated by the stimulus information, we 376	

used a regression-based approach. Single-trial EEG data was regressed against 377	

parametric predictors for each time-point and electrode independently. This analysis 378	

tests for a linear relationship between the magnitude of decision values and the 379	

momentary amplitude of the EEG signal at each timepoint following each sample. 380	

Coefficient estimates obtained from the regression model reflect the slope of the 381	

modulation, i.e. the strength of the linear relationship. Group-level statistics were 382	

subsequently computed over the obtained time courses of parameter estimates over all 383	

participants. 384	

First, we constructed a sample-based linear regression model that allowed us to 385	

dissociate the neural modulation of winning and losing samples: 386	

 387	

𝐸𝐸𝐺 = 𝛽x(𝐿 > 𝑅) +	𝛽8(𝑅 > 𝐿) +	𝛽L ∙ |𝑋%y|(𝐿 > 𝑅) + 𝛽{ ∙ |𝑋%y|(𝐿 < 𝑅) + 𝛽}
∙ |𝑋%||(𝑅 > 𝐿) +	𝛽� ∙ |𝑋%||(𝑅 < 𝐿) + 	𝜀 

(9) 

 388	

with 𝛽x and 𝛽8 as binary indicator variables for samples where the left (L) or right 389	

(R) bar in the pair had the highest decision value respectively. The four parametric 390	

regressors 𝛽{ - 𝛽� code for the absolute decision evidence (𝑋%) of the bar when the left 391	

bar won (𝛽{), left lost (𝛽}), right won (𝛽�) and right lost (𝛽�).  Effectively, each sample 392	

pair related to four regressors (𝛽x, 𝛽8 and two of the four parametric regressors). The 393	

trial mean was subtracted from all bars to eliminate any differences related to the 394	
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absolute size of the bars. Single-trial EEG signal locked to stimulus onset was 395	

subsequently regressed against the full model with 6 regressors, independently for each 396	

sample pair. Estimated time courses were averaged over all sample pairs before 397	

statistical inference. 398	

We defined two regions of interest (ROI) based on previous research (Wyart et al., 399	

2015) to test for early modulation of sample evidence: left (O1, PO5, PO7, P5, P7, CP5, 400	

TP7) and right (O2, PO6, PO8, P6, P8, CP6, TP8) occipito-parietal (OP) electrodes. 401	

The coefficients 𝛽x and 𝛽8  in our regression model encode the average EEG signal for 402	

sample pairs where the left (𝛽x) or right sample won (𝛽8). To compare categorical 403	

modulation of stimulus-evoked activity, we averaged the activity over those electrodes 404	

contralateral to the winning sample, namely right OP electrodes for 𝛽x (trials where the 405	

left sample won) and left OP electrodes for 𝛽8(trials where the right sample won). This 406	

is equivalent to flipping the scalp maps and treating each sample pair as if the right 407	

sample won. The opposite hemispheres then contained the neural signals modulated by 408	

the losing sample. Time series for a parametric modulation of winning samples (Xwin) 409	

were obtained in a similar way: averaging over the right OP electrodes when left won 410	

(𝛽{) and left OP electrodes when right won (𝛽�). Time series for parametric modulation 411	

of losing samples (Xlose) were obtained at right OP electrodes when left lost (𝛽}) and 412	

left OP electrodes when right lost (𝛽�). Significance of adjacent time points in the 413	

averaged time series were tested using nonparametric cluster-based permutation tests 414	

(cluster-defining threshold and corrected significance level at p < 0.05, 5000 iterations) 415	

(Maris and Oostenveld, 2007). Estimated time series were smoothed per subject using 416	

a low-pass filter (Butterworth filter, cut-off = 25 Hz), removing small fluctuations in 417	

the signal that could obscure larger clusters from the permutation test.  418	

The same regression model and contrasts were used to study differences in 419	

lateralization of alpha band activity, with an additional iteration over frequency bands. 420	

The averaged time window was temporally smoothed with a 100 ms full-width at half-421	

maximum (FWHM) Gaussian kernel before cluster-based permutation test (cluster-422	

defining threshold and corrected significance level at p < 0.025). 423	

Next, we sought to identify neural signals related to evidence accumulation. We 424	

formalized ‘accumulated evidence’ as the signed difference between the cumulative 425	

sum of evidence of the right minus left stream.  426	

 427	
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𝐸𝐸𝐺 = 	𝛽x + 𝛽8 ⋅*Δ(𝑋%|, 𝑋%y)%

�

%78

+ 	𝜀 (10) 

 428	

Under the assumption that information is not integrated as such, but undergoes a 429	

weighted transformation before integration, we predicted that the accumulated 430	

evidence given by the SI model (Eq. 1) should be better at capturing the signal variance 431	

than the actual presented input. Since both accumulated evidences are highly correlated, 432	

we partialled one out from the other before estimating parameter coefficients to identify 433	

if either the two inputs captured unique variance in the EEG signal. Single-trial EEG 434	

data locked to the response was then regressed onto the residual accumulated evidence 435	

at each time point and electrode. Contrasts of activity at central electrodes were then 436	

calculated (C3 – C4) to test the differences in temporal fluctuations of parameter 437	

estimates from both regressions. An identical procedure was used for the time-438	

frequency data, with an additional iteration over frequency bands. The time window 439	

was temporally smoothed with a 100 ms full-width at half-maximum (FWHM) 440	

Gaussian kernel before cluster-based permutation test (cluster-defining threshold and 441	

corrected significance level at p < 0.025). 442	

 443	

RESULTS 444	

 445	

Behavioural results 446	

 447	

We first examined the behavioural data to test whether participants weighted the 448	

samples as described by the selective integration model. We fitted a logistic regression 449	

model that separately estimated the influence of winning and losing samples on right-450	

hand choices (Eq. 6). The null hypothesis is that there will be no difference in how 451	

much influence winning samples (e.g. 𝑋& when 𝑋& > 𝑋') and losing samples (e.g. 𝑋' 452	

when 𝑋& > 𝑋' ) carry on choice. However, we found that parameter estimates for 453	

winning samples (Mdn 𝛽Y�6= 3.12) were significantly higher than for losing samples 454	

(Mdn 𝛽��q� = 3.06; W = -120, p < 0.001, two-sided Wilcoxon paired signed rank test), 455	

suggesting there is indeed a difference in how samples were weighted according to their 456	

relative decision value (Fig. 2A). 457	
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If participants give more weight to winning samples, their performance might be 458	

poorer in a condition where the incorrect stream contains the most winning samples, a 459	

so-called ‘frequent-winner’ effect (Tsetsos et al., 2016). To maximize the opportunity 460	

to compare trials where the winning stream contained the most versus the fewest 461	

winning samples, we included two conditions that explicitly contained these types of 462	

trials (‘frequent winner’ and ‘infrequent winner’) as well as two conditions where the 463	

height variance was either low or high. A non-parametric omnibus test (Friedman test) 464	

first confirmed there were differences in choice accuracy between the four conditions 465	

(𝛸L = 13.34, p = 0.004; d.f. = 3, N=15) (Fig. 2B). We then ran a post hoc pairwise 466	

comparison between all conditions (two-sided Wilcoxon signed rank test) and corrected 467	

for multiple comparison using FDR correction (Benjamini and Hochberg, 2009). 468	

Unlike previous reports (Tsetsos et al., 2016), we did not observe a statistically 469	

significant difference between the ‘infrequent winner’ (Mdn = 0.66) and ‘frequent 470	

winner’ conditions (Mdn = 0.76; Z = 1.62, p = 0.1054), although the results did show 471	

a numerical trend in the predicted direction and a selective integration model fitted to 472	

the human choice data predicted a difference between the (in)frequent winner 473	

conditions (see below). Participants performed significantly worse in the ‘infrequent 474	

winner’ condition, but only in comparison to the ‘low variance’ condition (Mdn = 0.77; 475	

Z = 2.24, p = 0.0248). Participants also performed significantly worse in the more 476	

difficult high variance condition (Mdn = 0.72) compared to the low variance condition 477	

(W = -120, p < 0.001).  478	

Finally, the SI model predicts a ‘recency effect’, where samples presented later in a 479	

trial should carry more weight on the final decision, because there was less time for this 480	

information to be lost. A new logistic regression model predicting right-hand choices 481	

(Eq. 7) showed that indeed, when sample pairs were assessed based on their serial 482	

position in a trial, parameter estimates increased over time, indicated by a significantly 483	

increasing slope fitted to each subject’s parameter estimates (Mdn slope = 0.13; W = -484	

120, p < 0.001).  485	

 486	
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	487	
Figure	 2. Behavioural results and model fits. (A) Parameter estimates from a regression model 488	
predicting the probability of choosing the right-hand sequence, both in humans (blue/green) and the fitted 489	
SI model (red). In line with predictions of the SI model, sample values were weighted higher on average 490	
when decision evidence was greater relative to the concurrent sample. A SI model fitted to the choice 491	
data was able to recreate this pattern. (B) SI predicts that a tendency of tallying winning samples will 492	
lead to lower accuracy in trials where the incorrect sequence contains most winners. Performance was 493	
indeed lower in the ‘infrequent winner’ condition, but not significantly so from the ‘frequent winner’ 494	
condition. Qualitatively, the full SI model (red) resembled human accuracy better in all four conditions 495	
compared to a model where the gating parameter was fixed to 0. Black vertical lines show individual 496	
participant’s accuracy and grey shaded area represents non-parametric kernel estimate (bandwidth = 497	
0.03) of the accuracy distribution in our sample. (C) Parameter estimates from a new regression model 498	
showed a ‘recency effect’, where earlier samples carried less weight on participants’ final choice. The 499	
fitted SI model closely followed the same trend (red). Error bars and shaded area represent 95% 500	
confidence interval. (D) The slope of the response function (𝑠 ) in the fitted SI model correlated 501	
significantly with the slope of the selective gating function (𝑚), suggesting participants with greater 502	
levels of late noise compensate through stronger gating of information. Parameter recovery showed that 503	
this pattern was not due to a trade-off between the two parameters. Grey line represents least-squares fit 504	
line. 505	

 506	

Model fits to human data 507	

A more formal test for selective integration can be achieved by fitting the SI model 508	

to human data and comparing it to an equivalent alternative model that does not show 509	

selective integration. A full SI model with 4 free parameters (gating 𝑚, leak 𝑙, late noise 510	

𝑠 and lapse rate 𝜅) was fitted to each participant’s trialwise choice data (𝑚 = 0.0377 ± 511	
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0.03; 𝑙 = 0.234 ± 0.1; 𝑠 = 0.0414 ± 0.03; 𝜅 = 0.0176 ± 0.02). To assess whether the 512	

gating parameter meaningfully contributed to the model fits, we compared the full 513	

model to a fixed gating model where the gating parameter was fixed to 0, eliminating 514	

the unequal weighting of sample inputs. Both models were tested through two-fold 515	

cross-validation, estimating parameter fits on one recording session and testing model 516	

predictions on the other session. Negative log-likelihood (LL) estimates of the test sets 517	

were summed per participant and aggregate LL were fed into a Bayesian Model 518	

Selection procedure (Stephan et al., 2009) to determine the best fitting model. The full 519	

model (mean LL = -602.05) had a protected exceedance probability of 0.9983 compared 520	

to the fixed model (mean LL = -615.54), suggesting the gating parameter of the SI 521	

model was necessary to explain choice behaviour. To determine qualitative fits of both 522	

models, we reran our behavioural analyses on model choices. The full model was able 523	

to reproduce the difference in parameter estimates for winning and losing samples (Fig. 524	

2A) and the recency effect (Fig. 2C), even though the model was not specifically fit to 525	

these data points. Only the full model was further able to capture the lower performance 526	

in the ‘infrequent winner’ condition (Fig. 2B), and in general captured the patterns in 527	

human performance per condition better than the fixed model.  528	

Finally, Tsetsos et al. (2016) showed that the fitted parameters for gating and late 529	

noise were highly correlated in their data set (but not for simulated data), suggesting 530	

that the strength of the gating process compensates for higher levels of integration 531	

noise. We replicated this finding in our data set (Spearman 𝜌 = -0.91, p < 0.0001) (Fig. 532	

2D). To ensure that this correlation was not due to a trade-off between the two 533	

parameters in our data set, we performed parameter recovery on simulated parameter 534	

combinations and assessed how well our fitting procedure could recover the original 535	

parameters. For all four parameters, the mean absolute squared difference between 536	

original and recovered parameters was smaller than 10-10 (100 simulations). 537	

Furthermore, the recovered parameters for gating m and late noise s did not correlate 538	

after the fitting procedure (Spearman 𝜌 = -0.07, p = 0.4602). 539	

 540	

Early modulation of posterior EEG activity 541	

The SI model states that selective gating occurs at the level of the individual samples 542	

before evidence is passed to a subsequent integration stage. We thus predicted that 543	

posterior EEG signals would encode locally “winning” samples with higher gain than 544	
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“losing” samples, i.e. that the slope of regression linking decision information to EEG 545	

amplitudes would be steeper for winners than losers. In addition to this multiplicative 546	

effect, we also tested for an additive bias, i.e. that EEG signals were higher contralateral 547	

to the winning sample, irrespective of its input value.  548	

Since samples were presented parafoveally, we expected these effects to occur 549	

contralateral to the location of each sample. We therefore focused our analyses on two 550	

a priori defined posterior regions of interest (ROI): left and right occipito-parietal 551	

electrodes. We constructed a linear regression model (Eq. 9) with two intercepts, coding 552	

whether the left or right sample won within a sample pair (to test the additive effect), 553	

and four parametric regressors coding the sample evidence separately for left and right 554	

and whether the sample won or not (to test the multiplicative effect).  555	

We first examined the coefficients associated with the parametric regressors that, at 556	

each time point and electrode, reflect the slope of the relationship between the 557	

magnitude of the decision evidence and EEG amplitude, separated for winning and 558	

losing samples. After collapsing over posterior electrodes contralateral to winning or 559	

losing samples, we found that the sample evidence of both winning and losing samples 560	

was encoded in the EEG signal around 250 ms, but more importantly, this was 561	

significantly stronger for winning samples (pcluster < 0.05; Fig. 3A). This suggests that, 562	

as predicted, samples carrying equal decision evidence are encoded more strongly in 563	

the EEG signal when they are the winning sample in a sample pair. 564	

The intercepts of the regression model then reflect the average signal in trials where 565	

either the left or the right sample won, independent of their decision evidence. At each 566	

time point and electrode, the parameter estimates reflect an additive effect of sample 567	

identity (winner or loser) on EEG signals. To test a difference in the additive effect of 568	

winning and losing samples, we averaged parameter estimates at ROI electrodes 569	

contralateral to all winning samples and compared them to the averaged parameter 570	

estimates at ROI electrodes contralateral to all losing samples. We found that between 571	

~200 and 300 ms after sample onset the EEG signal in posterior electrodes encoded 572	

winning samples more strongly than losing samples (pcluster < 0.05; Fig. 3B), indicating 573	

samples were encoded differently based on the sample’s relative identity (winner/loser 574	

status), independent of the decision evidence they carried.  575	
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	576	
Figure	3. Early modulation by relative sample evidence in posterior electrodes. A linear regression 577	
model was used to separately assess the influence of winning and losing samples on EEG signals at each 578	
time point, electrode and sample pair. Coefficients for left sample regressors in our model were 579	
horizontally flipped, so winning samples were projected to the left hemisphere and losing samples to the 580	
right hemisphere. Plots represent coefficient estimates averaged for all nine sample pairs. (A) Coefficient 581	
estimates for the parametric regressors in our model showed that winning and losing samples were both 582	
significantly encoded in the EEG signal around 250 ms (bottom colored lines, pcluster < 0.05) in posterior 583	
electrodes (coloured dots on the scalp plots) contralateral to the sample location. More importantly, 584	
winning samples were encoded significantly stronger compared to losing samples (grey shaded area, 585	
pcluster < 0.05). Shaded coloured area represents SEM. Top and bottom scalp plot show significance of 586	
coefficient estimates for losing and winning samples respectively at the identified time window of 587	
significant dispersion. (B) By contrasting the coefficients for the intercepts of the regression model, 588	
depicting the categorical encoding of winning and losing samples, we observed an additive effect around 589	
250 ms after stimulus onset in posterior electrodes that was stronger for winning samples compared to 590	
losing samples (grey shaded area, pcluster < 0.05). The orange line represents the difference between the 591	
time series of the two intercepts at the posterior electrodes indicated on the scalp plot. Scalp plot shows 592	
the left minus right hemispheric difference of coefficient estimates. Shaded coloured area represents 593	
SEM. (C) An identical regression model was used to explain time-frequency data. We did not find a 594	
significant difference in coefficient estimates between winning and losing samples based on their 595	
parametric values. Colour map shows difference between winning and losing samples at the electrodes 596	
indicated on the scalp plot. Scalp plot shows difference between winning and losing samples and 597	
hemispheres at same time window as (D) for the 11 Hz frequency band. Time-frequency data was 598	
interpolated for visualization purposes, while cluster statistics were performed on the raw data. (D) 599	
However, we did observe an additive effect in alpha frequencies (8 – 12 Hz), with greater suppression 600	
for winning samples compared to losing samples in the same contralateral posterior electrodes starting 601	
around 375 ms after sample onset (pcluster < 0.025). Colour map shows the difference between winning 602	
and losing samples at the electrodes indicated on the scalp plot. Scalp plot shows difference between 603	
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winning and losing samples and hemispheres at the time of the identified cluster for the 11 Hz frequency 604	
band. 605	
 606	

Alpha suppression 607	

It has previously been suggested that SI could occur when selective attention is 608	

oriented to the winning sample (Glickman et al., 2018). Previous work has reported that 609	

a lateralized suppression in alpha (8 – 12Hz) power occurs when participants orient 610	

visuospatial attention towards a contralateral target (Sauseng et al., 2005; Bacigalupo 611	

and Luck, 2019). We used the same sample-based regression model as above (Eq. 9), 612	

but now predicting sample-wise fluctuations in power over frequency bands between 8 613	

and 38 Hz. The same occipito-parietal contrasts for the intercepts of the model revealed 614	

a significant cluster of greater alpha suppression contralateral to the winning sample 615	

compared to the losing sample from ~375 ms onwards (pcluster < 0.025) (Fig. 3D). This 616	

might imply that covert attention was dynamically shifting to the winning sample. We 617	

could not find any statistical evidence for a parametric modulation of alpha suppression 618	

by input value (pcluster > 0.05) (Fig. 3C). 619	

 620	

Evidence accumulation 621	

In the SI model, samples are first weighted according to their relative value, and 622	

then integrated into a cumulative signal that eventually determines choice. Previous 623	

studies have observed in both perceptual and value-based decision making tasks that  624	

central EEG signals build up in concert with the strength of accumulated evidence 625	

(Donner et al., 2009; van Vugt et al., 2012; Gluth et al., 2013; Wyart et al., 2015; Tickle 626	

et al., 2016; Pisauro et al., 2017; von Lautz et al., 2019). We used a time-window several 627	

hundreds of milliseconds before the response onset to test for encoding of the 628	

accumulated evidence, as predicted by the SI model. The response-locked EEG signal 629	

was regressed onto the total signed cumulative difference (Eq. 10), first calculated 630	

according to the true input and second according to the transduced input from the 631	

individually fitted SI model. To test which of the two inputs explained unique variance, 632	

inputs were partialled out from one another before regressing EEG signal onto the 633	

residual input. Only the input values predicted by the SI model significantly explained 634	

unique variance in the lateralized broadband EEG signal of central electrodes (C3 and 635	

C4) from ~120 ms before response onset (pcluster < 0.05; Fig. 4A). We then repeated the 636	

same analysis in the time-frequency domain, with a focus on the beta band (15 – 30 637	
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Hz). Again, the SI model was better in explaining the neural data than the original input, 638	

with a significant cluster in beta band frequencies starting around 300 ms before 639	

response onset (pcluster < 0.025; Fig. 4B). 640	

 641	

	642	
Figure	4. Evidence accumulation is explained by SI model in central electrodes (A) Response-locked 643	
EEG signal was regressed onto the accumulated values of the untransformed input values (black) or as 644	
estimated by the SI model (red). To find which of the two highly correlated regressors explained unique 645	
variance in the signal, both regressors were first partialled out from one another and the residual values 646	
were used as a new regressor in the regression model explaining EEG signals. Only the estimated 647	
accumulation values from the SI model explained unique variance, with a significant negative 648	
modulation contralateral to the response hand from around 120 ms before response onset. Scalp plots 649	
show the difference in parameter estimates of left minus right hemisphere between -200 and 0 ms. Time 650	
series show the same hemispheric difference at motor electrodes C3 and C4 (indicated as coloured dots 651	
on the scalp plots). Shaded coloured area represents SEM. Top coloured line depicts time of cluster 652	
significance (pcluster < 0.05). (B) The same analysis pipeline was applied to each frequency band of the 653	
time-frequency transformed data. We identified a significant cluster of contralateral decrease in beta 654	
power (15-30 Hz) starting around 300 ms before response onset (pcluster < 0.025). Scalp plots show the 655	
difference of parameter estimates of left minus right hemisphere between -200 and 0 ms at 23 Hz. Time-656	
frequency data was interpolated for visualization purposes, while cluster statistics were performed on the 657	
raw data. 658	
 659	

t-values

23 Hz

t-values

A

B

P < 0.05

P < 0.025

Σ IB - IA
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DISCUSSION 660	

 661	

In this report we tested for, and obtained, neural evidence in support of a “selective 662	

integration” policy during human decision-making. Input values conferred by each of 663	

two samples (bars) was weighted differently according to its local rank, and this 664	

behavioural effect was accompanied by modulation of neural signals over posterior 665	

electrodes. This modulation arose early after sample onset (~ 250 ms) and thus possibly 666	

before evidence integration could occur. Furthermore, input values that had been 667	

adjusted as the SI model predicts (𝐼& and 𝐼') explained more variance in neural signals 668	

than the untransformed input values (𝑋& and 𝑋'), both in broadband signals and beta-669	

band power.  670	

Selective attention has been hypothesized to be an important driving mechanism, 671	

for selective integration models (Glickman et al., 2018) and related theoretical accounts 672	

(Bhatia, 2013; Gluth et al., 2018). Our results seem to suggest an important contribution 673	

of selective attention in two ways. First, contralateral alpha power suppression has long 674	

been related to visuospatial attention towards a target (Sauseng et al., 2005; Bacigalupo 675	

and Luck, 2019). We found that 375 ms after each stimulus onset there was a 676	

suppression of alpha power contralateral to the winning sample. Although later in time 677	

than the modulation we found in broadband signals, previous studies have found similar 678	

‘late’ suppression of alpha. Second, the timing, location and pattern of the parametric 679	

modulation resemble the findings of a previous study that measured fluctuations in 680	

human perceptual choice under focused and divided attention (Wyart et al., 2015). In 681	

that experiment, participants integrated tilt information from two simultaneous streams 682	

of Gabor patches under focussed attention (where the decision-relevant stream was 683	

signalled in advance) and divided attention (where it was not). In the focused condition, 684	

posterior electrodes contralateral to the attended stream, but not the unattended stream, 685	

showed a negative modulation around 250 ms. The reduced encoding of the losing 686	

sample in our study could similarly point to a focussing of attention towards the 687	

winning sample. Here we additionally show that this putative neural correlate of 688	

attention can be shifted rapidly between the two sides of the screen as samples arrive. 689	

Our neural findings support both selective integration as described by Tsetsos et al.  690	

(2012) and models making similar theoretical claims. For example, the Associations 691	

and Accumulation Model (AAM) (Bhatia, 2013) similarly predicts that attention should 692	
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be drawn to options where the attribute value is high, which in turn asymmetrically 693	

drives choices. The SI model also shares a lot of features with the Multi-alternative 694	

Decision by Sampling (MDbS) model (Noguchi and Stewart, 2018). One characterizing 695	

feature of the MDbS model is that attribute values are integrated through ordinal 696	

pairwise comparison, simply tallying attribute ranks. This is in contrast to the SI model, 697	

where the magnitude of this difference influences the strength of the evidence 698	

weighting. Both our model fits and the neural results suggest that a comparison between 699	

attribute values is not solely a process of ordinal comparison. We did indeed find an 700	

additive effect by rank (winner vs loser), encoded both in broadband and time-701	

frequency signals. However, there was a further parametric modulation between 702	

winning and losing samples that depended on the magnitude difference of the samples, 703	

which supports an additional multiplicative step not posited by MDbS. 704	

In conclusion, our study provides a first step in understanding the neural 705	

mechanisms which accompany parallel integration and comparison of discrete samples 706	

of information.  707	
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