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Abstract
Resting state fMRI is a tool for studying the functional organization of the human brain. Ongoing

brain activity at “rest” is highly dynamic, but procedures such as correlation or independent compo-

nent analysis treat functional connectivity (FC) as if, theoretically, it is stationary and therefore the

fluctuations observed in FC are thought as noise. Consequently, FC is not usually used as a single-

subject level marker and it is limited to group studies. Here we develop an imaging-based technique

capable of reliably portraying information of local dynamics at a single-subject level by using a

whole-brainmodel of ongoing dynamics that estimates a local parameter, which reflects if each brain

region presents stable, asynchronous or transitory oscillations. Using 50 longitudinal resting-state

sessions of one single subject and single resting-state sessions from a group of 50 participants we

demonstrate that brain dynamics can be quantified consistently with respect to group dynamics

using a scanning time of 20 min. We show that brain hubs are closer to a transition point between

synchronous and asynchronous oscillatory dynamics and that dynamics in frontal areas have larger

heterogeneity in its values compared to other lobules. Nevertheless, frontal regions and hubs

showed higher consistency within the same subject while the inter-session variability found in pri-

mary visual andmotor areas was only as high as the one found across subjects. The framework pres-

ented here can be used to study functional brain dynamics at group and, more importantly, at

individual level, opening new avenues for possible clinical applications.
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1 | INTRODUCTION

Ongoing resting state activity is a powerful tool that enables a detailed

exploration of the brain's functional organization atmultiple spatial scales

(Deco, Jirsa, & McIntosh, 2011; Singer, 2013). At the group level, many

studies have addressed the intrinsic functional architecture of the

healthy brain (e.g., Damoiseaux et al., 2006; Honey, Thivierge, & Sporns,

2010) while many others have focused on the differences between con-

trol participants and patients suffering from a wide variety of brain disor-

ders, such as schizophrenia (Damaraju et al., 2014; Lynall et al., 2010),

Parkinson's Disease (Göttlich et al., 2013) and autism (Jones et al., 2010).

Although these studies uncovered important information about the

functional principles of brain activity, few of them have focused on con-

sistent methods applied at a single-subject level and in ways that infor-

mation is relevant when used in the clinical environment (but seeMueller

et al., 2013; Laumann et al., 2015).

This represents a major issue given the well-known large anatomical

and functional variability across individuals (Frost & Goebel, 2012; Pan-

nunzi et al., 2017). Moreover, functional variability is also expected

within a single subject depending on many factors such as the state of

the subject and environmental noise (Mueller et al., 2013). A reliable

single-subject analysis of brain dynamics should then yield stable and

reproducible results across different sessions (Fiecas et al., 2013; Zuo &

Xing, 2014), and be sensitive enough to show between-groups contrast

(Castellanos, Di Martino, Craddock, Mehta, & Milham, 2013; Ferreira &

Busatto, 2013). Previous studies that analyzed the functional connectiv-

ity (FC) of the brain using a correlation matrix or using more advanced

statistical techniques such as independent component analysis (ICA)

(Damoiseaux et al., 2006; reviewed in Fox & Raichle, 2007) hypothesized

that functional connectivity is constant over time, although it is now

becoming clear that even at rest, there are dynamical processes worth

considering (Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013).

Conversely, numerous studies have postulated that brain dynamics are

essential to explain both health and disease, placing fluctuation of phase

synchronization as one of the main features required to understand how

integration and segregation arise and modulate brain states (Tognoli &

Kelso, 2014). For this reason, some groups have proposed that functional

connectivity dynamics (FCD) have to be taken into account to develop

FC-related metrics that properly reflect temporal aspects of brain func-

tion (Calhoun, Miller, Pearlson, & Adalı, 2014; Deco et al., 2014; Deco,

Tononi, Boly, & Kringelbach, 2015; Hansen, Battaglia, Spiegler, Deco, &

Jirsa, 2015).

In this context, whole-brain computational models have been used

as powerful tools to understand the relation between structural and

functional brain connectivity by linking brain function with its physiologi-

cal underpinnings (Ponce-Alvarez, He, Hagmann, & Deco, 2015; Deco

et al., 2015; Kringelbach et al., 2015). In contrast to conventional resting

state analyses, studies based on brain models allow the exploration of

brain dynamics (Deco et al., 2014; Deco & Kringelbach, 2016) both in

health and disease (Cabral et al., 2013). Recent studies used a novel

whole-brain modeling technique to simulate brain dynamics estimating

local parameters containing information about the oscillatory nature of a

given region (Deco, Kringelbach, Jirsa, & Ritter, 2017; Jobst et al., 2017).

These previous works have shown modeling to be a powerful tool for

the analysis of brain dynamics for the description of brain states and the

changes during disease. Nevertheless, they did not deepen in the

between-session and between-subjects consistency of these modeling-

based parameters. In this work, we make a progress and use this model

to develop a multimodal processing method to provide new insights

about brain function at a single-subject level as well as to estimate con-

sistency of local dynamics and to explore the minimum scan length and

number of sessions required to have a robust estimation.

We also demonstrated that the metrics derived from local

modeled dynamics provide a powerful framework that can be used to

quantify localized brain activity consistently across participants and

sessions. Using 50 longitudinal resting state (rs-fMRI) sessions from a

single subject and by comparing the within-subject consistency to that

estimated using 50 recordings from different participants we searched

for the optimal number of sessions required for accurately estimate

these parameters. Finally, we studied which brain regions exhibited

higher consistency within subjects compared with the consistency

across subjects.

2 | MATERIALS AND METHODS

2.1 | Conceptual considerations of whole-brain
computational modeling

Modeling of brain signals classically have been organized into two main

model families (a) noise-based and (b) oscillatory based (Cabral,

Kringelbach, & Deco, 2017). To reconcile noise-based approaches with

models based on oscillators, Hopf bifurcation based models have been

proposed. Based on the normal form of a Hopf bifurcation (Freyer et al.

2011, 2012), the behavior of the signal generator abruptly change after

trespassing the critical value of one or more parameters; in particular, a

Hopf bifurcation occurs when a system characterized by a stable fixed

point loses its stability by exhibiting oscillations. As such, this model

allows transitions between asynchronous noise activity and oscillations,

thus making it a good candidate to reproduce empirical data as observed

with EEG,MEG, or fMRI (Cabral, Kringelbach, &Deco, 2017).

In this work, we developed and applied a supercritical Hopf model

(Deco, Kringelbach, et al., 2017; Jobst et al., 2017) that uses functional

and structural connectivity (SC) information to simulate whole-brain

activity. Importantly, this model has been applied to disease (Saenger

et al., 2017) and altered states of consciousness (Jobst et al., 2017),

revealing important characteristics of the resting brain architecture.

As shown in Figure 1, the model uses brain dynamics from fMRI data

as well as the SC from diffusion weighted imaging (DWI) data to con-

struct an interconnected network (Figure 1a). In this network, each

node (brain region) presents supercritical Hopf bifurcation dynamics

(Marsden & McCracken, 2012) that depending on the value of its

bifurcation parameter (BP) reflect if the region behaves either in a

noisy asynchronous or stable oscillatory manner (Figure 1b). A nega-

tive BP means that the node is working as a noise generator, while a

positive BP generates stable oscillatory dynamics. Thus, when a

node's BP is away from zero, it is expected to not respond to the envi-

ronmental conditions. Lastly, nodes that exhibit a BP around zero can

be understood as flexible systems on the edge of a bifurcation,
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capable of changing their information profile depending on physiologi-

cal demands. Therefore, a “flexible brain” at rest is expected to have a

global mean of the bifurcation parameters centered around zero in

order to rapidly adapt to environmental or internal demands (Deco,

Kringelbach, et al., 2017). An in-depth mathematical explanation of

this model and its optimization can be found in the Supporting Infor-

mation. The fine-tuning of each BP allows the description of how each

brain region operates as a signal generator, engaged in a network

determined partially (but not exclusively) by the SC data. A model with

the right set of BPs allowed us to simulate brain signals, matching

dynamical properties of the brain. Therefore, we named the full set of

BPs as dynamical core (DynCore) of the brain (Deco, Kringelbach,

et al., 2017).

The model is fitted to the empirical data (blood oxygen level

dependent [BOLD] signal) of each subject using the DynCore and an

extrinsic global scaling factor G that determines the impact of the SC

on brain dynamics. In the fitting process, we iterate over G, to find

(at each step of G) a single DynCore by using a gradient descendent

algorithm to fit nodal spectral distributions between empirical and

simulated BOLD signals. Then, we use a similarity score to automati-

cally find the optimal G and DynCore that allows simulating best the

empirical data through the model. The similarity score we developed

unifies static and dynamical properties of the brain system into a sin-

gle metric, making it feasible to detect the subject's DynCore (see

Supporting Information for more details). We then used this optimal

DynCore as a functional descriptor of the brain and analyzed its con-

sistency across subjects and sessions.

2.2 | Participants

Fifty-one participants were recruited in total from which one partici-

pant volunteered to be included in the longitudinal part of the study

in which she was scanned 50 times over the course of 6 months

(female, aged 29). The remaining fifty participants (all female, mean

age 25, SD = 3.27, range: 18–32) underwent scanning with the same

MRI sequences only once.

The study was approved by the local ethics committee (Charité

University Clinic, Berlin). All participants gave written consent and

were asked whether they ever had a psychiatric disease during

recruitment. Other medical and neurological disorders were also rea-

sons for exclusion. None of the participants showed structural abnor-

malities in the MRI scans.

2.3 | fMRI data collection

Images were collected on a 3 T Magnetom Trio MRI scanner system

(Siemens Medical Systems, Erlangen, Germany) using a 12-channel radio-

frequency head coil. Structural images were obtained using a three-

dimensional T1-weighted magnetization-prepared gradient-echo sequence

(MPRAGE) based on the ADNI protocol (www.adni-info.org) (repetition

time (TR) = 2,500 ms; echo time (TE) = 4.77 ms; TI = 1,100 ms, acquisition

FIGURE 1 Whole-brain model. (a) The whole-brain model is based on the structural connectivity (SC) matrix derived from tractography of

diffusion weighted imaging (DWI) (left) between the 90 regions of an automated anatomical labeling (AAL) parcellation (middle). The control
parameters of the model were tuned using the static FC and the FCD derived from fMRI blood oxygen level dependent (BOLD) data (right).
(b) For modeling local neural masses, we used the normal form of a Hopf bifurcation, where depending on the bifurcation parameter (BP in the
equations), the local model generates a noisy signal (left), a mixed noisy and oscillatory signal (middle) or an oscillatory signal (right) [Color figure
can be viewed at wileyonlinelibrary.com]
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matrix = 256 × 256 × 192 mm3, flip angle = 7�; bandwidth = 140 Hz/

pixel, 1 × 1 × 1 mm3 voxel size). Functional images were collected using a

T2*-weighted echo planar imaging (EPI) sequence sensitive to BOLD con-

trast (TR = 2000 ms, TE = 30 ms, image matrix = 64 × 64, FOV = 216 ×

216 × 129 mm3, flip angle = 80�, bandwidth = 2042 Hz/pixel, voxel size

3 × 3 × 3 mm3, 36 axial slices using parallel imaging [GRAPPA] with an

acceleration factor of 2, 5:08 min duration).

2.3.1 | fMRI data preprocessing

The first 10 volumes were discarded to allow the magnetization to

approach a dynamic equilibrium. Data preprocessing, including slice

timing, head motion correction (the least squares approach and a

6-parameter spatial transformation), linear trend removal, and spatial

normalization to the Montreal Neurological Institute (MNI) template

(resampling voxel size of 3 × 3 × 3 mm3), were conducted using the

SPM5 and data processing assistant for resting-state fMRI (DPARSF,

Chao-Gan & Yu-Feng, 2010). A spatial filter of 4 mm full-width at half

maximum (FWHM) was used. One fMRI recording with head motion

above 2 mm of maximal translation (in any direction of x, y, or z) and

more than 1.0� of rotation throughout the course of scanning was

excluded. To reduce spurious fluctuations in functional connectivity

(Laumann et al., 2016) motion-induced noise was regressed out (three

rigid body rotations and translations, as well as their first three tempo-

ral derivatives, resulting in 24 motion regressors) from the functional

data using the least squares and retaining the residuals.

The data were parcellated into regions of interest (ROIs) using the

automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

Each recording was represented by 90 nodes with 140 time points for

each node. fMRI data were temporally band-pass filtered (0.01–0.25 Hz)

to reduce low-frequency drift and high-frequency respiratory and cardiac

noise (Biswal, Zerrin Yetkin, Haughton, &Hyde, 1995). Additionally, given

that the whole-brain computational uses the relationship between the

energy distribution in a narrow frequency band and a wide frequency

band for the optimization, we estimated narrow band time signals, filtered

in the range 0.04–0.07 Hz, by using a sixth order Butterworth band-pass

filter (Cordes et al., 2001). This frequency band has been mapped to the

gray matter and it has been shown to be more reliable and functionally

relevant than other frequency bands (Achard, Salvador, Whitcher, Suck-

ling, & Bullmore, 2006; Biswal et al., 1995; Buckner et al., 2009; Glerean,

Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012).

2.4 | DWI data used on the model

We used an averaged structural connectome obtained using DWI in

16 different healthy right-handed participants (11 men and 5 women,

mean age: 24.75 ± 2.54), recruited through the online recruitment

system at Aarhus University. In this study, participants with psychiat-

ric or neurological disorders (or a history thereof) were excluded from

participation. The MRI data was recorded in a single session on a 3 T

Siemens Skyra scanner at CFIN, Aarhus University, Denmark. Struc-

tural T1-Weighted MRI scans were adquired with an isotropic voxel

size of 1 mm3; a reconstructed matrix size of 256 × 256 pixels, TE of

3.8 and TR of 2,300 ms.

The DWI data were collected using a TR = 9,000 ms, TE = 84 ms,

flip angle = 90�, reconstructed matrix size of 106 × 106, voxel size of

1.98 × 1.98 mm with slice thickness of 2 mm and a bandwidth of

1,745 Hz/Px. The data were recorded with 62 optimal nonlinear diffu-

sion gradient directions at b = 1,500 s/mm2. One non-diffusion

weighted image (b = 0) per 10 diffusion-weighted images was

acquired. Additionally, the DWI images were recorded with different

phase encoding directions. One set was collected applying anterior to

posterior phase encoding direction and the second one was acquired

in the opposite direction. To co-register the DWI image to the

T1-weighted structural image, we used the linear registration tool

from the FSL toolbox (www.fMRIb.ox.ac.uk/fsl, FMRIB, Oxford)

(Jenkinson, Bannister, Brady, & Smith, 2002). We co-registered the

T1-weighted image to the T1 template of ICBM152 in MNI space.

The resulting transformations were concatenated and inversed and

further applied to warp the AAL template (Tzourio-Mazoyer et al.,

2002) from MNI space to the DWI native space, where we preserved

the discrete labeling values by applying interpolation using nearest-

neighbor method. Accordingly, brain parcellation was conducted in

each participant's native space. The acquired DWI data were used to

generate the SC maps for each participant. The two recorded datasets

were processed, each with different phase encoding to optimize signal

in difficult regions. To construct these SC maps we applied a three-

step process. First, we defined the regions of the whole-brain network

with the AAL template as used in the functional MRI data. Second, we

used probabilistic tractography to estimate the connections between

nodes in the whole-brain network (i.e., edges). Finally, the data were

averaged across participants.

In accordance with the procedure applied for analyzing the rs-fMRI

data, the AAL template was used to parcellate the entire brain into

AAL90. In order to co-register the b0 image in diffusionMRI space to the

T1-weighted structural image and then to the T1 template of ICBM152

in MNI space (Collins, Neelin, Peters, & Evans, 1994), we used the FLIRT

tool from the FSL toolbox (www.fMRIb.ox.ac.uk/fsl, FMRIB, Oxford).

We concatenated and inversed the two transformation matrices from

the described co-registration steps and applied them correspondingly to

warp the AAL templates (Tzourio-Mazoyer et al., 2002) fromMNI space

to the diffusionMRI native space.

2.5 | Whole-brain model as a processing approach

We used the optimized BPs (see Supporting Information) to simulate

BOLD signals. To obtain the DynCore, we explored the simulated sig-

nals across the coupling parameter (G) between 0 and 12 using steps

of 0.1 to find at what point in the G space the optimal modeled activ-

ity becomes closely similar to empirical dynamics. For this, we used

three metrics, namely metastability, grand average functional connec-

tivity, and dynamical functional connectivity (explained in Supporting

Information). We then developed a global similarity (GS) score to auto-

matically find the best point in the G space:

GS Gi½ �= 1− EmpMet−Met Gi½ �ð Þj jð ÞFit Gi½ � 1−KSDist Gi½ �ð Þ2, ð1Þ

where Met[Gi] and Fit[Gi] represent the Metastability and the Fitting

Score (the correlation score between empirical and simulated grand

average correlation matrices) for a given Gi and EmpMet is the meta-

stability of the empirical data. KSDist is the Kolmogorov–Smirnov dis-

tance between the empirical and modeled FCD. It can be noticed
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from the equation that GS gets larger than (a) the metastability of sim-

ulated and empirical signals become more alike (Tognoli & Kelso,

2014), (b) the fitting gets closer to one, and (c) KSDist gets closer to

0. To give more weight to the oscillatory properties found in the FCD,

GS depends quadratically on KSDist, while it depends only linearly on

the Fitting and the Metastability.

Using this processing approach, we were able to identify an opti-

mal DynCore of single fMRI recordings and also of group of recordings,

obtaining a mean DynCore by concatenating multiple recordings

before the frequency filtering (as in Deco, Kringelbach, et al., 2017).

Finally, DynCores with a KSDist larger than 0.3 or a Fitting smaller

than 0.25 were discarded as we considered the rs-fMRI recording to

be noisy and unsuitable for the model to further generate acceptable

simulations of brain dynamics. In this work, more than 4,000 simula-

tions were generated with a rejection rate of around 10%.

2.5.1 | Normalization of BPs

The main problem of using raw bifurcation parameters to study brain

dynamics at a single subject level is that, depending on Gi, BPs can have

very different ranges (Figure 2a). Therefore, each set of BPs[Gopt] has

values that cannot be directly compared between different datasets,

irrespective of whether they come from the same or different subjects.

In order to make different sets of BPs comparable, we applied a

normalization procedure that (a) produced a fixed range of values and

(b) generated BP change rate function near zero (dBPidG ≈0) (Figure 2c),

making comparisons between subjects and sessions possible. To this

aim we took each BPsi (set of BPs for a given Gi) and split them in two

subsets, one containing all the positive values (pBPi) and another with

all negative ones (nBPi). To obtain the normalized bifurcation parame-

ter set (NBPsi) we divided pBPi and nBPi by the largest absolute value

on that subset. This procedure is given by Equations 2, 3, and 4,

mpBPi =maximum of pBPið Þ, ð2Þ

mnBPi =mininimum of nBPið Þ, ð3Þ

where mpBPi represents the largest positive value for a given Gi, and

mnBPi the largest negative value for Gi. Finally, the normalized vector

of Normalized Bifurcation Parameters (NBPs) is given by Equation,

NBPsi =

BPi
mpBP

for eachBPsbelonging topBPi

BPi
mnBP

for eachBPsbelonging tonBPi

8>><
>>:

, ð4Þ

where BPi represents the raw bifurcation parameter vector and NBPsi

the normalized vector for a given Gi. This simple normalization method

yields values between −1 and 1, which allows to directly compare

local dynamics between sessions or subjects.

2.6 | Combinatorial analysis

An important issue we aimed to address is the minimum scanning time

required to obtain stable results, that is to say, the point at which the

error to a reliable measurement does not diminish as we add more scan-

ning time. For this, we implemented a combinatorial analysis in which we

gradually increased the number of concatenated resting state recordings.

The analysis consisted of: (a) Obtaining the DynCore for each single fMRI

recording, (b) Concatenate 50 random sets of two fMRI recordings,

(c) Repeating this while increasing number of concatenated recordings

until using 20 recordings by steps of 1, (d) For each of these steps (from

1 to 20) we obtained two types ofDynCores, a set 50 rawDynCores and a

single median DynCore that was calculated by computing the median of

the NBPs for each brain region.

This combinatorial analysis allowed us to simulate the effect of

having different scanning times and therefore to explore consistency

as scanning time is progressively increased.

2.6.1 | Optimal scanning time estimation

We used the Euclidean distance (square root of the sum of squared

nodal-wise differences) to the reference mean DynCore (the one

obtained by concatenating all the recordings) to study how the consis-

tency changes as more resting state functional magnetic resonance

(rs-fMRI) data is used in the calculation of the DynCore. In the first

place we looked for an optimal scanning time using the error to the

median DynCore of each number of sessions (from 1 to 20). The

median DynCore was obtained by keeping the median for each

region's NBP.

2.6.2 | Within-subject and between-subjects reliability
comparison

In the clinical environment, each patient usually is scanned only once,

which makes difficult to calculate a median DynCore across different

sessions. To analyze this, situation we studied Euclidean distances

between each raw DynCore (without using the median of each BP)

and the reference mean DynCore. We then compared within-subject

intersession variability with between-subject variability using the

DynCores and its distance to the references DynCore and analyzed

how this distance changes as more rs-fMRI sessions are used in the

estimation of the DynCore through the model.

2.6.3 | Region-wise consistency assessment

Local consistency was assessed by using the absolute error between

each BP from the combinatorial analysis and its correspondent value

from the reference mean DynCore constructed using all recordings.

We used DynCores from the combinatorial analysis to study the reli-

ability at the region level as more data are used for the estimation of

the DynCore through the model. Then, we compared the between-

subjects and within-subject local error profiles, that is, the mean error

of each region's NBP to its value in the reference mean DynCore, in an

absolute and relative way. The absolute consistency measurement is

stated was calculated by:

absolute nodal error difference ANEð Þ=mean local errorbs−mean local errorws,

ð5Þ

whereas the relative local consistency measurement we used the rela-

tive nodal error difference given by:

relative nodal error difference RNEð Þ= mean local errorbs−mean local errorws
mean local errorws

:

ð6Þ

This metric represents how many times the between-subject vari-

ability of a node is larger than that found within-subject.
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3 | RESULTS

3.1 | Normalization of bifurcation parameters

To show the effect of the normalization, we started by exploring the

behavior of the intrinsic BPs across the extrinsic coupling factor G.

Figure 2a illustrates how raw BPs depend on G in a nonlinear way,

which makes comparison across subjects and sessions difficult. In con-

trast, when the normalization is performed, these values become sta-

bilized for G > 2 (Figure 2b), allowing the comparison across subjects

and sessions. Figure 2c depicts the change rate of the mean BP for

50 different recordings of the same subject, demonstrating the

enhanced reliability of this normalization procedure for G > 2.

3.2 | Within-subject consistency of normalized
bifurcation parameters

An important goal is to demonstrate that the DynCore is a measure

that reliably captures properties of brain dynamics, which can be used

to compare both local and global brain dynamics within the same sub-

ject. To this aim we compared the results of two different within-

subject processing pipelines using the same data. We obtained a sin-

gle DynCore concatenating all 50 rs-fMRI sessions from the same sub-

ject, which is plotted in Figure 3 as a gray-dotted line and represents

the optimal baseline DynCore. Furthermore, we obtained a set of

1,000 DynCores by using the combinatorial analysis described in

“Optimal scanning time estimation” section Boxplots in Figure 3 por-

tray the dispersion of the medians from each of the combinatorial

groups. Figure 3 also shows the within-subject “mean DynCore” (green

lines) obtained by estimating the mean of each box. By looking into

local values more closely, frontal regions (among others) exhibited a

large diversity of NBPs across all recordings (mean SD: 0.501),

whereas temporal and occipital regions showed a smaller parameter

dispersion (mean SD: 0.284, 0.277, respectively.). It is worth noticing

that regions such as the precuneus, parietal cortices, posterior and

anterior cingulate gyri, and the medial frontal cortex showed a mean

value near the bifurcation point (0.029 ± 0.016), all hubs with central

roles in information trafficking (Deco, Van Hartevelt, Fernandes,

Stevner, & Kringelbach, 2017; van den Heuvel & Sporns, 2013).

We quantified the global reliability of the NBPs as the correlation

between DynCores obtained by the two analyses (r = 0.977, p < 0.001

and r = 0.936, p < 0.001 [for the right and the left hemisphere,

FIGURE 2 Bifurcation parameter normalization. (a) Bifurcation parameter as a function of coupling strength G for a single subject. Each yellow

line represents the parameter evolution in a single node. (b) The same dependency, but for normalized values (blue lines). Given that normalized
values are stable across G, they can be used to make comparisons across sessions or participants. (c) The mean change rate (derivative with
respect to G) for all normalized parameters of 50 different recordings depicted as gray lines, which portray a stable behavior (slight oscillations
around 0) of the average bifurcation parameter across G for each recording [Color figure can be viewed at wileyonlinelibrary.com]
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respectively.]). We decided to use the mean DynCore of the combina-

torial analysis as our reference DynCore (green lines, Figure 3) for the

further analysis below.

3.3 | Optimal scanning time estimation using whole-
brain modeling

In order to determine a minimum scanning time large enough to pro-

duce a reliable DynCore, we performed a combinatorial analysis of 1 to

20 randomly-combined scans and assessed the Euclidean distance

between the median DynCore at each step of the combinatorial analy-

sis and the reference DynCore. Figure 4 shows this distance of the

estimated DynCores as a function of the set size (or scan duration).

For both hemispheres, we found that the error substantially decreases

as more sessions were added. Note that already after adding four

recordings this error reached asymptotic levels comparable to the

distance between the reference DynCore and the DynCore estimated

by concatenating all the 50 recordings from the same subject (gray

dotted lines in Figure 3).

3.4 | Dynamical core's single estimation consistency

As stated before, the clinical environment does not allow to have multi-

ple estimations of the DynCore for each patient and then to use the

median (as done in previous analyses). For this reason, we studied the

Euclidean distance to the reference DynCore using each single DynCore

estimation from the combinatorial analysis, that is, without computing

each region's median as described above. We calculated the distance of

each of these DynCores to the reference DynCore. To study to what

extent a single estimation can capture subject's specific and also group-

wise functional features of the brain, we performed the same combinato-

rial analysis using 50 rs-fMRI sessions from different participants

FIGURE 3 Distribution of the normalized bifurcation parameter (NBP) in each region. Green whisker boxes represent the distribution of each

region medians over the combinatorial analysis using within-subject data. The mean of these values (reference DynCore) is represented in green,
whereas the gray dotted line is the DynCore obtained by concatenating all the 50 rs-fMRI recordings from the same subject. Region's names are
abbreviated as: G: gyrus; P: pole; Gy: gyri; orb: orbital; Inf: inferior; mid: middle; med: medial; sup: superior; S: sulcus [Color figure can be viewed
at wileyonlinelibrary.com]
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(between-subjects analysis). Similar to what is shown in Figures 4 and 5

reveals that the Euclidean distance to the reference DynCore decreased

asmore datawas added to the analysis both for thewithin-subject analy-

sis and also for the between-subjects analysis. Note that although the

distance never reached levels lower than those estimated using medians

(Figure 4), it became relatively low after four recordings. This is especially

true considering that in thewithin-subject analysis using all 50 recordings

(dotted gray lines in Figure 3), the distance was ~0.5 for the left hemi-

sphere and ~1.0 for the right hemisphere (thresholds values in Figure 4),

which suggests that using 20 min of data from a single subject, is enough

to study local brain dynamics of a single subject in a consistent way

(as also suggested by Laumann et al., 2015).

Interestingly, in the left hemisphere the difference between

within and between distances required more recordings to lose statis-

tical significance compared to that uncovered in the right hemisphere,

which might indicate that the dynamics found in the left hemisphere

are more individualized. Another observation supporting the notion of

asymmetric functional specialization is represented in Figures 4 and 5,

where the error in the left hemisphere using small number of sessions

is smaller than error in the right hemisphere.

3.5 | Region-wise variability using the whole brain
model

To analyze how reliability is distributed in each brain region, we stud-

ied the mean local error, that is, the NBP absolute difference between

each DynCore estimation and the reference DynCore, through the

combinatorial analysis. We found that as more recordings were added,

the estimation of the NBP in each region became more reliable (this is

shown in Supporting Information Figure S1).

Then, we compared the overall between-subject and within-

subject absolute mean local errors (shown in Supporting Information

Figure S2), finding those regions where the within-subject mean local

error was lower than that found in the between-subjects analysis. Fur-

thermore, we explored the degree of consistency and reliability of each

node by means of its relative nodal error difference (see Methods).

Using this difference, we then ranked them in descending order, from

high to low consistency (Figure 6a). After setting a minimum consis-

tency threshold of 0.25, we found that 10 regions were simultaneously

consistent in both hemispheres (Figure 6a), specifically the orbitofrontal

cortex (superior frontal gyrus), olfactory cortex, anterior cingulate gyrus,

amygdala, inferior parietal lobe, precuneus, paracentral lobe, thalamus,

pallidum, and inferior temporal gyrus. The hippocampus showed an

asymmetric behavior, as the left portion was between the most consis-

tent nodes while the right portion presented a consistency near to zero

(within-subject variability equal to between-subjects variability). Also,

interesting is the fact that occipital regions seemed to have very low

consistency values across both hemispheres, indicating a large inter-

session variability.

Finally, we studied the spatial distribution of the RNE (Figure 6b),

finding a similar pattern in both hemispheres. Orbitofrontal and infe-

rior temporal cortical parcels seemed to show increased RNE, while

primary motor and sensitive cortices showed a similar pattern of

decreased RNE.

4 | DISCUSSION

In this study, we used whole-brain computational modeling (Deco &

Kringelbach, 2016) to address the consistency of nodal and global

metrics of multiple sessions of rs-fMRI from a single subject and single

sessions from multiple subjects. We have shown that the DynCore reli-

ably represents brain dynamics of a single subject in resting state, and

that these parameters are consistent with group results. Additionally,

we found that as the recording time gets larger, the DynCore estima-

tion converges after concatenating four sessions of 5 min. We there-

fore propose that an optimal scan time for analysis of global and local

brain dynamics on an individual level is in the order of 20 min. We

have also shown that the proposed metrics not only capture the gen-

eral properties of brain dynamics, but also that the DynCore can be

used at a local scale, suggesting an optimal methodological scenario to

study local and global brain dynamics consistently at a single-subject

level, which is an important requirement to fully study neuropsychiat-

ric disorders (Deco & Kringelbach, 2014).

This is not the first study trying to address reproducibility and

consistency in resting state sessions. Many studies have shown that

the longer the scanning time is, the better the consistency and reliabil-

ity of the analysis is (Pannunzi et al., 2017). Interestingly, some have

found that the optimal scanning time to have reproducible results is

greater than 14 to 20 min (Anderson, Ferguson, Lopez-Larson, &

Yurgelun-Todd, 2011; Birn et al., 2013; Laumann et al., 2015), which

represents around three to four sessions in the present study,

FIGURE 4 Deviation from reference DynCore as measured by the

Euclidean distance. Analysis for the left hemisphere in dark colors and
for the right hemisphere in lighter colors. Blue (dark and light) lines
represent the distance between the reference DynCore and the
median DynCore while increasing the number of rsfMRI sessions used
in the estimation. Dotted lines represent the error to the reference
DynCore from the within-subject analysis using all 50 recordings, here
used as a threshold for consistency [Color figure can be viewed at
wileyonlinelibrary.com]
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corroborating the idea of a minimal scanning time to have reproduc-

ible results. To extend this, another study (Kalcher et al., 2012) found

that as the scanning time increases, the number of independent com-

ponents found also increases monotonically also suggesting a better

estimation of resting state dynamics by longer scanning times. Our

results are in line with many findings addressing these issues

(Anderson et al., 2011; Birn et al., 2013; Kalcher et al., 2012) and, in

contrast to what now has become a common practice, 5 min (van Dijk

et al., 2010) of scanning time may not be sufficient to produce reliable

results on an individual level. A major limitation to the suggested

20-min scan length is the movement of the subject over such period,

however, in this work we showed a good estimation of the DynCore

can be obtained by using several shorter sessions (in this Case 4 ses-

sions of 5 min).

Following this line of thinking, an interesting observation is that

although we found symmetric profiles both for local standard devia-

tion and error, symmetry for standard deviation was better explained

by fewer recordings and weakened by adding more (Supporting Infor-

mation Figure S1). This might suggest that although using multiple

sessions is better to obtain a highly consistent estimation of the

underlying functional organization of brain at rest, a plausible very

slow physiological and/or environmental mediated variability

(Taubert, Lohmann, Margulies, Villringer, & Ragert, 2011) of brain

states could be overlooked using this approach. This might indicate

that, to study very slow changes in the brain's functional organization,

longitudinal rs-fMRI sessions must be processed in series of small

batches. Like this, symmetry in variability patterns (error to grand-

average DynCore and SDs) can reveal useful information to study

changes in the brain at rest that occur over long periods of time

(Taubert et al., 2011) that could ultimately be related to different, and

not well studied physiological, cognitive, emotional, or even pharma-

cological factors.

At a whole-brain scale, the median value of the reference DynCore

is 0.017, which indicates a critical oscillatory behavior optimally

FIGURE 5 Euclidean distance between DynCore's single estimations in the combinatorial analysis and their correspondent reference DynCore

for within (light blue) and between (green) subject analysis. These distances represent the error to the reference DynCore and are plotted as a
function of the number of recordings used. Stars and circles represent significant difference values between the within and between subject
Euclidean distances using an unpaired t-test (with Bonferroni's correction for multiple comparisons) [Color figure can be viewed at
wileyonlinelibrary.com]

DONNELLY-KEHOE ET AL. 2975

http://wileyonlinelibrary.com


operating at the edge of a bifurcation (Deco & Jirsa, 2012; Deco,

Kringelbach, et al., 2017). By exploring bifurcation parameter values

from Figure 3 at a lobe scale, we were also able to identify that frontal

lobe exhibited larger parameter dispersion (larger standard deviation)

compared to occipital and temporal cortices, suggesting higher func-

tional variability in the frontal lobe. Interestingly, a study (Anderson,

Kinnison, & Pessoa, 2013) found that functional diversity in terms of

cognitive domains varies across the brain. More importantly, frontal

(a)

(b)

FIGURE 6 Local consistency assessment. In (a) For both hemispheres, nodes are ordered according to their consistency levels such that nodes

with high within-subject consistency are ranked in the left. The green dotted lines represent a threshold of relative nodal error difference equal to
0.25. (b) Whole-brain consistency spatial representation by means of the RNE. Black regions present values below zero, while values over zero

are depicted with a color between red and yellow according to the RNE value. Regions with values above one are all colored in yellow. Brain
images were generated with BrainNet viewer (Xia, Wang, & He, 2013). Region's names are abbreviated as: G: gyrus; P: pole; Gy: gyri; orb: orbital;
Inf: inferior; mid: middle; med: medial; sup: superior; S: sulcus [Color figure can be viewed at wileyonlinelibrary.com]
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regions presented higher levels of diversity compared to other regions

such as temporal and parietal cortices. A more specific and causal

interpretation of local bifurcation values is beyond the scope of this

study, but it is worth noticing that at least qualitatively, local NBPs

display patterns that seem to relate with functional segregation. Also,

supporting this idea is the fact that after performing a simple post-hoc

analysis, nodes from the default mode network (as in van den

Heuvel & Sporns 2011; van den Heuvel & Sporns, 2013) display a

mean parameter value of 0.02, which is significantly closer to zero

(p = 0.041) compared with the same mean value of 10,000 randomly

bootstrapped subnetworks of the same size. Given that all these

regions are considered hubs (van den Heuvel & Sporns, 2012; van den

Heuvel & Sporns, 2013; Tomasi & Volkow, 2010), this suggests that

local values closer to a transition or bifurcation state might also have

central key role in information transfer. Future studies should explore

with greater detail the functional role of local bifurcation dynamics in

information trafficking and cognition.

Global consistency only makes sense in light of local consistency.

This is an important consideration as regions presenting high within-

subject consistency are not only better biomarker candidates, but

might indicate important functional properties. For example, we found

high consistency levels in the left and right orbitofrontal cortex

(Figure 6). Interestingly, this region has been tightly linked with hedo-

nistic experience (Kringelbach, 2005) and described as a sensory inte-

gration hub with multiple anatomical domains (Kringelbach & Rolls,

2004). The heterogeneity of both structure and function of this region

might explain why at a single-subject level, its consistency is much

larger than that extracted from multiple subjects as these characteris-

tics might be highly individualized (Finn et al., 2015). Furthermore, the

left superior orbitofrontal cortex was by far the most consistent of all

regions, with a between-subject mean error four times larger than the

within-subject mean error. This is interesting given that recently this

region was described as one of the most important for maintaining

brain dynamical organization (Deco, Van Hartevelt, et al., 2017).

Additionally, both precuneus and thalamus also showed high level

of consistency in both hemispheres, suggesting that highly centralized

cores (Deco, Van Hartevelt, et al., 2017; van den Heuvel & Sporns,

2011) might also be the ones reflecting higher consistency levels. This

was corroborated after exploring the consistency (from Figure 6a) of

the rich and binding club members (listed in Deco, Van Hartevelt,

et al., 2017) where we found that 66% of the (8/12 nodes) rich club

while 41% (5/12) of the binding club exhibited high consistency levels

(Supporting Information Figure S3).

At the other side of the spectrum, within-subject consistency of

visual and motor areas was as high or even lower as that found by

using multiple subjects (Figure 6a and Supporting Information

Figure S2), indicating that the variability of these regional dynamics is

high and less individualized. Under a cognitive perspective, this makes

sense as primary sensory information might be processed in similar

ways across individuals. Finally, we found regions such as the hippo-

campus and the middle occipital gyrus that exhibited high consistency

for one hemisphere but low in the other (Figure 6a) and that interest-

ingly were in concordance with previous studies (Deco, Van Hartevelt,

et al., 2017). These asymmetric profiles and other consistency consid-

erations should be addressed carefully in future studies.

5 | LIMITATIONS AND FUTURE
CONSIDERATIONS

A primary limitation of the present study is the lack of single-subject

structural connectivity matrices. Because current models (including

the one presented here) of brain dynamics are based on the average

structural information (Deco et al., 2014), it would be interesting to

investigate if the number of sessions required to optimally reach the

reference DynCore is smaller by using single-subject structural matri-

ces. Finally, due to fMRI technical limitations, the temporal resolution

is relatively low. Further modeling of resting state activity using MEG

(Nakagawa et al., 2014) at a single subject level should also give richer

insights into the behavior of local dynamics both in health and

disease.

The parcellation used in this study (AAL) also represents a limita-

tion because of the relative small number of regions in which the brain

is parcellated and also the relative inhomogeneity inside each node,

nevertheless as only young control subjects where used in this study,

this should not be a mayor limitation (Gordon et al., 2014). However,

in future works more advanced parcellation schemes should be used,

combining surface based morphometry and multi-scale parcellation to

analyze whole brain modeling based metrics in health and disease

(Cammoun et al., 2012).

Additionally, as within-subject data was acquired in different days

in a period of 6 months, the estimation of consistency could lead to

an overestimation of the optimal minimum single-session scanning

time as day-to-day variability might play an important role. In a clinical

environment though, it seems more feasible to acquire 15–20 min in

a single session than to split it up in different scanning sessions. More-

over, this split across different days also means that the day-to-day

variability might not only produce an overestimation, but also produce

valuable information about changes in brain organization only cap-

tured over longer periods. Future works should then analyze the con-

sistency between long-length single session DynCores and multiple

sessions DynCores.

Single subject dynamics as well as the shown variability of the

estimated local consistency might operate differently across subjects.

Because the aim of the current study was to address the consistency

of brain dynamics using multiple sessions in one subject, it would be

valuable to assess the same long-term consistency in other subjects

using multiple sessions. This is especially true in light of recent find-

ings showing accurate identification of subjects using functional fin-

gerprints (Finn et al., 2015).

Dynamical properties of the brain, such as the neuronal variability

(SD) (by means of the variability of the amplitude in the BOLD signal)

(Martino et al., 2016) have shown to be plausible biomarkers for neu-

ropsychiatric diseases, such as depression, mania, and bipolar disease

(Magioncalda et al., 2015; Northoff et al., 2017). Additionally, other

studies have shown that brain dynamics-based metrics, such as lead-

ing eigenvector dynamics analysis (LEiDA) associated with the cogni-

tive performance in healthy older adults (Cabral et al., 2017).

Therefore, in future steps the DynCore should be analyzed and com-

pared with other dynamics-based features to describe pathological

changes in the brain.
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6 | CONCLUSIONS

We presented a conceptual framework for analyzing local brain dynam-

ics consistently at a single subject level by modeling resting state activ-

ity with a supercritical Hopf bifurcation model. The estimated intrinsic

parameter, the DynCore, allowed us to explore the amount of informa-

tion required to minimize the error in order to estimate consistent brain

dynamics. Overall, including four sessions from the same subject

yielded highly consistent results. Importantly, we showed a heteroge-

neous consistency variability across the brain. Already known brain

hubs showed higher consistency within the same subject while the con-

sistency found in primary visual and motor areas was only as high as

that found using recordings from multiple subjects. This heterogeneity

is a reflection of highly individualized dynamics that point toward useful

clinical applications. These methods open new avenues to analyze local

brain dynamics at a single subject level that may reveal individualized

aspects of the healthy and diseased brain.
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